
1 
 

Demystifying unsupervised learning: how it helps and hurts 1 

Franziska Bröker1,2,3,4,*, Lori L. Holt5, Brett D. Roads6, Peter Dayan1,7,†, Bradley C. Love6,† 2 

1 Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany 3 

2 Gatsby Computational Neuroscience Unit, University College London, London, UK 4 

3 Department of Psychology, Carnegie Mellon University, Pittsburgh, US 5 

4 Neuroscience Institute, Carnegie Mellon University, Pittsburgh, US 6 

5 Department of Psychology, University of Texas at Austin, Austin, US 7 

6 Department of Experimental Psychology, University College London, London, UK  8 

7 University of Tübingen, Tübingen, Germany 9 

† equal contribution 10 

* Correspondence: franziska.broeker.15@ucl.ac.uk (F. Bröker) 11 

 12 

Published paper: https://doi.org/10.1016/j.tics.2024.09.005 13 

 14 

This work is licensed under CC BY-NC-ND 4.0. To view a copy of this license, visit 15 
https://creativecommons.org/licenses/by-nc-nd/4.0/ 16 

Highlights 17 

Humans are not guaranteed to benefit from unsupervised experiences (and neither are machines). 18 

Instead, given unsupervised experience, humans self-reinforce their predictions. This can help 19 

performance when the predictions are accurate; it can hurt or have no effect when the predictions are 20 

inaccurate. 21 

Predictions depend on the internal representations of learners which are shaped by prior experiences. 22 

Thus, prediction accuracy depends on how well internal representations align with the task. Only by 23 

assessing these representations can researchers understand whether and why unsupervised learning 24 

helps or hurts in a specific task and in a specific person. 25 

Literatures on self-reinforcement and unsupervised learning in humans have largely operated in isolation 26 

but would benefit from more crosstalk. 27 

Insights also have broad implications for lifelong learning and the design of instruction. 28 
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“There was, Carter thought, a downside to experience. ‘Experience is making the same mistake 30 

over and over again, only with greater confidence,’ he said. The line wasn’t his, but he liked it.” 31 

― Michael Lewis, The Premonition: A Pandemic Story 32 

 33 

Abstract 34 

Humans and machines rarely have access to explicit external feedback, or supervision, yet 35 

manage to learn. Most modern machine learning systems succeed because they benefit from 36 

unsupervised data. Humans are also expected to benefit and yet, mysteriously, empirical results 37 

are mixed. Does unsupervised learning help humans or not? We argue that the mixed results 38 

are not conflicting answers to this question, but reflect that humans self-reinforce their 39 

predictions in the absence of supervision, which can help or hurt depending on whether 40 

predictions and task align. We use this framework to synthesize empirical results across various 41 

domains to clarify when unsupervised learning will help or hurt. This provides new insights into 42 

fundamentals of learning with implications for instruction and lifelong learning. 43 

 44 

 45 
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Supervised and unsupervised learning 48 

We live and learn in an environment that rarely provides us with supervision (see Glossary) in 49 

the form of explicit external feedback. For example, we have learned to call some animals 50 

“sheep” and others “goats”. Many of us acquired this distinction at a young age when we spent 51 

much time around our caretakers. Like an external teacher, they provided us explicitly with the 52 

correct labels by naming animals in our field of view. Getting older, we still encounter sheep and 53 

goats, as well as animals we have never seen before, but we now rarely have a teacher in tow. 54 

Thus, our learning about the world could be helped if we also made use of the information 55 

contained in all these unsupervised experiences (Fig. 1). 56 

Machine learning faces a conspicuously similar problem. Typically, an abundance of 57 

unsupervised data is available for learning (e.g., images of sheep and goats), but supervision 58 

(e.g., human-annotated sheep / goat labels for each image) is rare and expensive. This has led 59 

to extensive research aiming to harness the information contained in unsupervised data. As a 60 

result, we now have powerful learning algorithms able to extract statistical information and 61 

features from unsupervised data [1] which can be further fine-tuned to specific tasks [2] or used 62 

to boost supervised learning [3]. Ultimately, the tremendous success of machine learning 63 

methods stems from their ability to learn in the absence of supervision.  64 

The mystery of unsupervised learning in humans 65 

It seems clear that both humans and machines benefit from leveraging unsupervised 66 

experiences. There has thus been a surge in empirical and computational work over the past 67 

decades proposing that humans perform unsupervised learning by applying information 68 

processing capabilities they share with machine learning algorithms [4–6]. A simple and 69 

intuitive prediction results from this: If humans share unsupervised information processing 70 

capabilities with machines, and machines show benefits leveraging unsupervised data, then 71 

humans should benefit from their unsupervised experience in the same way. That is, humans 72 

should be able to recover statistical information from their unsupervised experiences and they 73 

should be able to combine it with their rare, supervised experiences. 74 
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Paradoxically, this is not supported by the scientific literature. In the most basic learning 75 

experiments, humans are not guaranteed to extract the statistical information in their 76 

unsupervised experiences [7–10] or to boost their supervised learning [11–13]. In fact, 77 

unsupervised experiences can reduce performance in category learning [14], language learning 78 

[15,16], motor learning [17] and stereotyping [18,19]. So instead of supporting the view that 79 

unsupervised experiences help humans in their learning, the literature on lab studies is riddled 80 

with equivocal results about their benefit. In one experiment people may need feedback to 81 

learn how to distinguish between different visual inputs; in another, they do not [7,20]. 82 

These results stem from highly influential experimental designs that have shaped our 83 

understanding of how humans extract statistical information. Unsupervised studies often use a 84 

simple stimulus-response or passive exposure paradigm. These well controlled designs are 85 

popular because they parallel supervised designs, allowing comparisons. In unsupervised 86 

studies, learners predict task-appropriate responses from stimuli without feedback. The 87 

statistics in the stimuli are the only information available for learning. Supervised studies are 88 

close analogues which provide additional corrective feedback or correct labels, giving learners 89 

more information. 90 

Outside the lab, human learning operates on a larger scale in terms of data and time. For 91 

example, an abundance of additional information can inform learning about sheep and goats, 92 

like separate housing. Learning also serves long-term performance in the world rather than on 93 

one specific task. Similarly, modern machine learning solves increasingly large-scale learning 94 

problems. Because machine learning algorithms can be flexibly chosen for specific problems, 95 

supervised algorithms now solve unsupervised problems by adapting the objective of the 96 

learning task, as in self-supervised learning. Another example is large language models which 97 

learn not by getting feedback on text they generate, but from predicting words in a sequence. 98 

This then serves as a foundation model for further supervised fine-tuning on how to engage in 99 

friendly chat with users. These developments increase the complexity in technical approaches 100 

and terminology that has yet to be reconciled with human learning inside and outside the lab. 101 

While an analogy between human and machine unsupervised learning is compelling and often 102 

assumed, the devil appears to be in the details. 103 
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Here, we mainly focus on in-lab studies that test unsupervised or semi-supervised learning 104 

using the well-controlled, influential designs. Other unsupervised paradigms exist but are rarer 105 

[21]. Our narrower focus ensures results across various learning contexts are informative about 106 

the same learning principles. We refer to momentary learning from unsupervised experiences in 107 

experimental tasks as simply “unsupervised learning” to differentiate it from momentary 108 

learning with supervisory signals. While focusing on in-lab studies, we also present evidence 109 

suggesting unsupervised learning to be limited more generally, as it can worsen performance in 110 

machines [3] and human learning outside the lab [22]. In fact, as it happens, telling sheep apart 111 

from goats is a task on which many people fail despite recurring exposure (Fig. 1b). 112 

 113 

 114 

Figure 1. Learning with and without supervision.  115 

(a) Illustration of supervised, unsupervised, and semi-supervised learning problems. (b) Empirical 116 

results conflict as to whether unsupervised experiences improve human performance in 117 

unsupervised and semi-supervised learning tasks. We refer to the momentary learning from 118 

unsupervised experiences as simply “unsupervised learning” throughout the manuscript. The 119 
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reader is encouraged to guess whether the test animal is a sheep or goat. The answer is 120 

provided in the footnote.1 121 

 122 

The unsupervised snowball effect 123 

How can we explain the mysterious results? When does unsupervised learning help and when 124 

does it not? We think that the answer lies in the way that unsupervised learning is affected by 125 

the relationship between the experimenter-defined task and the representations subjects have 126 

acquired from prior experience (representation-to-task alignment, [14]). Concretely, we 127 

propose the unsupervised learning mechanism to be self-reinforcement by which humans learn 128 

from their own predictions so that pre-existing associations between experiences and 129 

appropriate responses are strengthened (Fig. 2 b, Key Figure) and decision confidence increases. 130 

For example, when seeing the woolly goat in Fig. 1b, readers who categorize by woolliness 131 

would incorrectly self-reinforce their predictions that it is a sheep, whereas readers who know 132 

to attend to the tail would correctly self-reinforce their prediction that it is a goat. Since 133 

strengthening predictions snowballs existing learning without changing its course, self-134 

reinforcement can help or hurt depending on how accurate the predictions are for the task at 135 

hand (Fig. 2 a). Self-reinforcing predictions that are largely correct will improve performance in 136 

the task. But predictions will only be largely correct if prior experiences shaped the learner’s 137 

representations in a way that new experiences elicit appropriate predictions. If this is the case, 138 

representations and task are aligned, the task feels “easy”, and supervision is superfluous. By 139 

contrast, self-reinforcing predictions that are largely incorrect will have a detrimental, or at best 140 

no, effect on performance. Predictions will be largely incorrect if prior experiences have shaped 141 

the learner’s representations to be misaligned with the task. In this case, the task feels “hard”, 142 

and supervision is necessary to adjust the unhelpful representations and predictions of the 143 

learner. That self-reinforcing existing representations results in these kind of learning dynamics 144 

has previously been described in the specific context of unsupervised Hebbian (correlational) 145 

 
1 The test animal in Fig. 1b is a goat. While most non-experts make their sheep/goat predictions based on 
unreliable features, such as woolliness, the easiest way to tell them apart is by their tails: goats point their tails 
upward while sheep cannot lift their tails.  
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learning [23,24]. Our framing of unsupervised learning in terms of representation-to-task 146 

alignment and self-reinforcement is more general in that it does not assume specific 147 

representations nor a specific computational model of learning. 148 

This type of self-reinforcing snowball effect can also be seen when trying to master a new skill, 149 

such as playing the violin. This requires practicing with the correct technique because a faulty 150 

technique engrains mistakes if left uncorrected. Thus, from our perspective, the equivocal 151 

results in the literature about the benefit of unsupervised experiences do not reflect a conflict 152 

but are in fact expected from representation-to-task alignment and its interaction with 153 

unsupervised self-reinforcement. Our argument not only follows an intuitive logic but is also 154 

supported by the theoretical principles that allow machine learning algorithms to leverage 155 

unsupervised data on many, but not all, occasions (Box 1). 156 

In the following, we provide support for this perspective by synthesizing various cognitive 157 

science literatures that have long investigated the questions about how feedback influences 158 

human learning. The fact that related research fields have largely developed in isolation allows 159 

us to test our predictions against their extensive independent evidence. First, we show that 160 

representation-to-task alignment correlates with the efficacy of unsupervised learning, as 161 

predicted by our hypothesized unsupervised snowball effect. The evidence we consider for the 162 

effect of alignment is often somewhat indirect because learners’ representations, let alone their 163 

alignment with the task, are not typically assessed. We thus leverage the equivalences between 164 

representation-to-task alignment, predictions and task difficulty as described in Fig. 2a to 165 

contextualize the results. Second, we show that unsupervised self-reinforcement has been 166 

reported repeatedly across diverse learning settings. We conclude by discussing the implications 167 

of our analysis and promising future avenues.  168 

  169 
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 171 

 172 

Figure 2. The unsupervised snowball effect.  173 

Two key factors affect unsupervised learning: representation-to-task alignment and self-174 

reinforcement resulting in the unsupervised snowball effect as illustrated for the example of a 175 

category learning task. (a) Relationship between experimenter-defined task, its internal 176 

representation and the resulting predictions, responses, and accuracy. Factors including prior 177 
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experience, context or attention transform observed stimuli and warp their similarities into an 178 

internal representational space that might or might not recover experimenter-defined task 179 

statistics. If learners have a task-aligned representation, stimuli from different categories are 180 

sufficiently separated in the learner’s representational space such that it supports accurate 181 

predictions. The task will seem easy and performance will be high. If learners have a task-182 

misaligned representation, items from different categories are not well separated in the 183 

learner’s representational space such that they make incorrect predictions based on whichever 184 

task-irrelevant statistics their representations reflect. The task will seem hard and performance 185 

will be low. We can thus assume an equivalence between alignment in representations, accuracy 186 

of predictions and task difficulty. (b) Self-reinforcement of predictions (adapted from [19]). When 187 

a stimulus is observed without supervision, an appropriate response is predicted and 188 

subsequently self-reinforced. This results in changes in the representations and predictions. (c) If 189 

prior representations and predictions are sufficiently aligned with the task, self-reinforcement 190 

leads to performance improvement. In the case of misalignment, self-reinforcement has 191 

detrimental or no effect on performance. This results in a snowball effect, the course of which 192 

can only be changed if supervision is provided to correct mistakes and align representations with 193 

the task. 194 

 195 

Box 1: Theoretical principles predict unsupervised snowball effect 196 

We propose that human predictions self-reinforce in the absence of supervision. Since self-197 

reinforcement simply snowballs prior learning, it can help or hurt performance depending on 198 

whether predictions and their underlying representations align with the task. Unsupervised 199 

learning only succeeds in tasks aligned with the learner’s representations. 200 

This intuitive reasoning is supported by the theoretical and computational principles that allow 201 

unsupervised and semi-supervised machine learning algorithms to be successful. Inevitably, 202 

unsupervised learning can only recover ground-truth structure in the data if this structure is 203 

reflected in salient data statistics. For example, for clustering to work, similar points must 204 

belong to the same cluster and dissimilar points must belong to different clusters (this is known 205 

as the cluster assumption, [95]). In other words, clusters need to be sufficiently easy to tell apart 206 

to be accurately recovered. In the same way, successful semi-supervised learning requires the 207 

to-be-learned input classes to be sufficiently distinctive to work effectively [96–98,3]. Because 208 

this is not always guaranteed, and in practice is often difficult to validate, unsupervised data is 209 
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not guaranteed to boost an algorithm’s supervised performance. In fact, much of the success of 210 

semi-supervised machine learning could be due to standard-practice data curation that removes 211 

difficult datapoints from unsupervised training with the effect that input classes become more 212 

distinct [99]. Thus, while learning from unlabeled data has led to the much-reported 213 

performance boosts in machine learning, they can also lead to degradation. In fact, reports of 214 

performance degradation following the addition of unsupervised data exist and are likely under-215 

reported [3].  216 

Returning to empirical studies, sufficient cluster “distinctiveness” may appear to be a theoretical 217 

prerequisite that is easy enough to control experimentally to assess successful, rather than 218 

detrimental, unsupervised learning. However, there is a subtle, yet crucial, twist: while 219 

experimental tasks may appear to comply with the prerequisite in the experimenter-defined 220 

input space, they can simultaneously violate it in the space relevant for learning which is not 221 

routinely assessed -- the learner’s internal representations of the input space (Fig. 2a). When 222 

overlooked, equivocal results about the benefit of unsupervised experiences can appear 223 

conflicting when, in fact, they are predictable. To understand whether results conflict or are 224 

simply evidence for the varied directions unsupervised self-reinforcement can take, the 225 

alignment between internal representations and experimenter-defined task needs to be 226 

considered. 227 

 228 

Representation-to-task alignment determines efficacy of unsupervised learning 229 

Representation-to-task alignment is a theoretical concept capturing how well a learner’s 230 

representations set them up for learning in a new task. Alignment is sufficient when task-231 

relevant statistics are prominent in the representations (e.g., well-separated clusters), when 232 

only adaptation of existing representations is needed (e.g., repositioning cluster centers), or 233 

both when a beneficial learning sequence builds on prominent representations and 234 

subsequently adapts them (e.g., an easy-to-hard curriculum). In these cases, performance is 235 

high, and tasks are easy (Fig. 2a). Because representation-to-task alignment is independent of 236 

any specific type of representation or task, we can expect to observe its effects on the efficacy 237 
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of unsupervised learning across all types of learning. Here, we will test this prediction against 238 

the evidence from different, independent literatures. 239 

Perceptual and category learning  240 

Perceptual and category learning experiments share many methodological commonalities. 241 

Perceptual learning investigates how perception is changed because of experience with sensory 242 

inputs, like the ability to distinguish different line lengths. This fundamental form of learning is 243 

often studied by manipulating simple, physical stimulus dimensions like line length. Category 244 

learning investigates the process of assigning labels (or other distinct responses) to groups of 245 

inputs, such as assigning either “sheep” or “goat” to each input. This is often studied by 246 

manipulating stimulus distributions and boundaries defining categories within them. Stimuli can 247 

range from simple shapes or sounds, akin to those used in perceptual learning, to complex, 248 

high-dimensional artificial objects. In both paradigms, learners are usually presented with 249 

stimuli on a trial-by-trial basis and respond by guessing category membership, or in the case of 250 

perceptual learning, making a same-different judgment between two stimuli. 251 

The perceptual learning literature has extensively studied the effect of different forms of 252 

supervision [25,26] and thus serves as a superb source of evidence on the effectiveness of 253 

unsupervised learning. Results can be summarized simply: unsupervised perceptual training can 254 

help in some, but not all, tasks. It does this in a way that correlates with task difficulty, as 255 

predicted by our representation-to-task alignment view that requires sufficient class separation 256 

or convenient presentation order. Concretely, unsupervised learning helps if the task is easy and 257 

training accuracy is high, as predicted for aligned tasks, [27] or if high-accuracy, easy trials 258 

precede or are interleaved with low-accuracy, difficult trials [28–30]. By contrast, feedback 259 

appears necessary for learning when task difficulty is high and initial performance is low, as 260 

predicted for misaligned tasks [31,27]. 261 

Unsupervised and semi-supervised categorization studies in adults echo results from perceptual 262 

learning: unsupervised experiences facilitate learning in easier tasks, but not in more difficult 263 

ones [9,10]. Learning to separate low-variability categories is easy (aligned task) and equally 264 

effective with or without feedback, whereas learning to separate high-variability categories is 265 
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hard (misaligned task) and requires feedback [32]. Extending this finding, category learning is 266 

known to be influenced by the degree of within-category variance [8], with unsupervised 267 

learning being most effective and robust when categories are statistically dense and category 268 

separation is large [33–35]. This further indicates that sufficient class separation is necessary for 269 

successful unsupervised learning (Box 1). 270 

Moreover, unsupervised experiences can have both beneficial and detrimental effects in the 271 

exact same task, depending on the alignment of a learner’s representations [14]. This pattern is 272 

also reflected across tasks. In simple category structures, where stimuli vary along a single 273 

dimension, learners can recover categories [20] or shift previously supervised category 274 

boundaries without feedback [36–40]. By contrast, in two-dimensional tasks, subjects appear 275 

unable to recover categories without feedback [7] and the addition of unsupervised experiences 276 

does not boost supervised performance [11,12] except under limiting conditions [41–43]. While 277 

experimenter-defined task dimensionality does not imply task difficulty per se, in these 278 

experiments, representations required to succeed in the two-dimensional tasks were 279 

unmistakably less obvious compared to those required for the one-dimensional tasks. In line 280 

with these results, prior knowledge relevant to the task can enhance unsupervised learning 281 

[44]. 282 

This pattern of results is echoed in language acquisition. When learning nonnative phonetic 283 

contrasts, unsupervised exposure has been shown to be unsuccessful unless it is complemented 284 

by sufficient supervised learning [45] or if it only involves shifting boundaries of existing 285 

phonetic contrasts [46] or if phonetic contrasts are made distinctive [47,48]. We can rephrase 286 

these results within our perspective: Learning new phonetic contrasts is challenging due to their 287 

misalignment with the native speech sound space. To make unsupervised exposure succeed, the 288 

task needs to be simplified either by providing feedback that fosters the formation of more 289 

aligned representations, by changing the task to only involve modulation of existing, sufficiently 290 

aligned representations, or by amplifying the to-be-learned contrast as a form of class 291 

separation. Similarly, unsupervised exposure to an artificial language leads to simple word 292 

learning whereas learning its complex syntactic regularities requires feedback [49]. Further, 293 

research on infants’ capacity to integrate labeled and unlabeled exposure to new categories 294 
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indicates that learning is successful only when labels are introduced initially, but not when they 295 

are presented at the end or omitted entirely [50,51]. This lends credence to our prediction that 296 

supervision is required to transition from a misaligned to an aligned representational space 297 

before unsupervised experiences can improve performance. A study investigating children’s 298 

acquisition of linguistic category labels revealed that unsupervised exposure to structured, 299 

straightforward labels (regular plural nouns) impaired performance on unstructured, difficult 300 

labels (irregular plural nouns) among younger, error-prone children who have not yet mastered 301 

the regularities and irregularities. Conversely, it boosted performance among older, more 302 

proficient children capable of making adequate predictions [15,16]. This underscores that the 303 

outcomes of unsupervised training can vary within the same task, contingent on the learners’ 304 

representations. 305 

Pre-exposure studies assess the impact of initial unsupervised exposure on later supervised 306 

learning and have received independent attention. The effects of pre-exposure vary with 307 

category structures [13] with improvements seen for statistically dense categories [52] and 308 

exposure to easy stimuli [53,54]. This is in line with our perspective: unsupervised pre-exposure 309 

helps in easy tasks but does not affect, or even hinders, difficult ones. Interestingly, rat studies 310 

show the opposite (Box 2). This discrepancy is likely due to humans’ ability to reason about 311 

tasks [55]. 312 

Selective Feedback 313 

Real-world feedback is selective and action-dependent which can lead to learning traps due to 314 

unchallenged false predictions [56]. For example, a negative first impression may deter future 315 

interactions, preventing the revision of potentially false initial impressions [57]. Similarly, 316 

stereotyping can be perpetuated by initial negative experiences with a group, leading to future 317 

avoidance. This selective information sampling prevents updating of false predictions about 318 

group members and the likelihood of future avoidance increases when predictions are made 319 

without feedback [18]. Consequently, stereotyping intensifies over time, with untested 320 

predictions often misremembered as validated [19]. In this way, the selective-feedback 321 

literature highlights the detrimental effects of unsupervised learning when predictions are 322 

misaligned with reality, as seen in stereotyping. 323 
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Expertise 324 

So far, we have seen that unsupervised learning effects vary in controlled lab studies. To gauge 325 

whether this generalizes to real-world learning, we can assess uncontrolled, long-term learning. 326 

Expertise is the product of extensive learning from varying quantity and quality of supervisory 327 

signals outside the lab. For instance, radiologists initially receive supervised training but later 328 

get less feedback, often not knowing if their diagnoses were correct. If unsupervised 329 

experiences had only beneficial effects, we would expect performance to improve over time, 330 

leading to expertise even without supervision. However, this prediction has received substantial 331 

opposition [58–62] and has even led critics to claim that “At best, experience is an uncertain 332 

predictor of degree of expertise. At worst, experience reflects seniority – and little more.” [60].  333 

Biases, a form of prior expectations, can distort learning and hinder steady improvement 334 

through experience. For instance, confirmation bias gives more weight to information that 335 

aligns with learners’ expectations, skewing learning away from actual evidence [63,64]. In other 336 

circumstances, learners may attribute their failure to external factors instead of modifying their 337 

erroneous behavior so that performance deteriorates [22].  338 

Irrespective of how expert performance is reached, the expertise literature supports, on a more 339 

general level, the claim that unsupervised experiences alone do not guarantee improvement. 340 

Instead, reliable improvement seems to require rapid and regular feedback on decisions [62]. 341 

Because acquiring expertise is not easy, but involves learning new skills beyond prior 342 

knowledge, these results fit well with our representation-to-task alignment perspective. This is 343 

further supported by work showing that initial feedback and guidance are crucial for skill 344 

learning [65]. For instance, an in-lab study shows that withdrawing feedback early in motor skill 345 

learning, when errors are high (inaccurate predictions), causes performance to deteriorate, 346 

whereas doing so later, when errors are low (accurate predictions), enables the skill to be 347 

maintained or improved [17]. 348 

 349 

Box 2: Results requiring further attention 350 
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Pre-exposure in rodents. Interestingly, the effects of unsupervised pre-exposure in rodents are 351 

found to be the opposite of those observed in humans. Rodent studies show that unsupervised 352 

learning benefits are greater when stimuli are perceptually similar and thus hard to discriminate 353 

[100]. Conversely, rodent learning can be hindered when the stimuli are perceptually distinct 354 

and thus easier to discriminate [101,102]. This effect is attributed to a combination of two 355 

learning principles: unsupervised differentiation, which refines representations over time, and 356 

latent inhibition, which reduces the associability between inputs and a response [102]. In this 357 

context, latent inhibition could explain the slower learning seen after exposure to stimuli that 358 

are easily distinguishable. 359 

The opposing effects observed in animals and humans could be due to humans’ awareness of 360 

their participation in an experiment, leading to heightened attention to stimuli and potential 361 

weakening of latent inhibition [55,103]. This is supported by the reversal of pre-exposure effects 362 

in rats when using hedonic stimuli which are believed to stimulate attention [104]. Moreover, 363 

interleaving unsupervised and supervised trials in mice appears more effective than 364 

unsupervised pre-exposure [105], potentially also modulated by attentional factors. 365 

Blocked testing effects. Understanding learning is important, but it is also important to examine 366 

how learning could be helped. Across domains, research on optimal training schedules shows 367 

that interleaving supervised training with blocks of unsupervised testing consistently improves 368 

human learning compared to no testing or restudying of materials. It helps learning and 369 

retention of materials preceding or following testing [106,107] and even replacing interim active 370 

testing with passive exposure improves performance [108,109]. While individual studies 371 

highlight the benefits of supervised testing, particularly its ability to correct inaccuracies and 372 

confirm low-confidence predictions [110], a meta-analysis reveals unsupervised testing benefits 373 

are comparable [111]. Taken together, these results appear to suggest that unsupervised testing 374 

is exclusively beneficial, a finding that would contradict our unsupervised snowballing theory. 375 

However, occasional evidence of performance interactions with learner proficiency and 376 

confidence suggest representation-to-task alignment effects may be at play and could simply 377 

have gone underreported. 378 

 379 
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Self-reinforcement underlies unsupervised learning 380 

While representation-to-task alignment can predict the effectiveness of unsupervised learning, 381 

it does not provide a mechanism. A number of specific learning procedures have been explored 382 

in this context, all of which have self-reinforcement at their core, where learning uses the 383 

system’s own predictions in lieu of ground-truth supervision, snowballing existing learning 384 

without altering its direction. 385 

Perceptual learning, category learning and expertise  386 

The perceptual learning literature not only supports representation-to-task alignment, but also 387 

offers strong evidence for unsupervised self-reinforcement, formalized by Hebbian learning 388 

models. Unsupervised Hebbian learning can improve or degrade performance depending on 389 

how well representations serve learning a task [23,24]. A Hebbian model that learns from both 390 

unsupervised and supervised experiences by adapting representations and their associations 391 

with responses [66,67] is successful in accounting for a broad range of results [27]. While trial-392 

by-trial category learning is only rarely modelled, self-reinforcement models have demonstrated 393 

their ability to account for semi-supervised categorization [68,14] and can also predict 394 

unsupervised learning trajectories in children acquiring linguistic labels [16]. In expertise 395 

studies, computational work is limited. However, theories of closed-loop motor skill learning 396 

suggest internal estimates guide learning in the absence of feedback leading to either 397 

performance gains or decrements [69].  398 

Selective Feedback  399 

As described earlier, false predictions that remain unchallenged can, for example, lead to the 400 

perpetuation of stereotypes. This can be accounted for by models employing unsupervised self-401 

reinforcement [18,19]. Predictions also remain unchallenged when some actions are never 402 

followed by feedback (i.e., unsupervised actions). Here, the same self-reinforcement can be 403 

observed: humans learn from their own predictions as if they received validation for it 404 

(constructivist coding hypothesis,  [70–72]) which can be modeled by a self-reinforcement 405 

mechanism [71]. 406 

Internal feedback signals  407 
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Self-reinforcement requires internal learning signals independent of external supervision. While 408 

the neural mechanisms involved in external supervision (or at least rewards and punishments) 409 

are fairly well understood [73], knowledge of the brain’s self-generated feedback signals is 410 

limited. Recent studies indicate that brain areas active during external feedback processing are 411 

also active when feedback is inferred [74–76]. Moreover, choice consistency and subjective 412 

confidence increase in the absence of feedback reflecting self-reinforcement [77] which is in line 413 

with evidence that chosen actions carry more internal weight than unchosen ones [78]. 414 

Subjective rewards can also self-reinforce choices [79]. Large-scale, real-world studies indicate 415 

that this can cause people to fall into a learning trap, ceasing exploration and exploiting even 416 

when better options exist [80], which an error-driven learning model can account for by aligning 417 

subjective preferences with past choices [81]. Neuroimaging also shows that preferences are 418 

updated online and only for remembered choices [82]. Moreover, replay, another active 419 

research area, involves a form of self-reinforcement in which the brain rehearsed past 420 

experiences through offline neural reactivation [83,84]. Overall, research supports the brain’s 421 

use of unsupervised self-reinforcement mechanisms, with internal signals like confidence 422 

playing a key role when feedback is absent. 423 

 424 

Concluding remarks 425 

In summary, studies across different literatures and learning domains support our perspective: 426 

Humans self-reinforce their predictions in the absence of supervision, which can either help or 427 

hurt performance depending on the alignment between the learner’s representations and the 428 

task. While we focused on studies testing unsupervised learning under controlled conditions, 429 

the expertise literature suggests that these considerations are also relevant to naturalistic 430 

settings. This shift in perspective resolves the paradox to predict learning successes and failures 431 

in the lab, and fundamentally alters what we expect from unsupervised learning. Unsupervised 432 

learning may not be the knight that battles to save us when we lack supervision; instead, it 433 

appears to wield a double-edged sword. This raises new questions and lays the foundation for 434 
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future research on the role of supervision in learning that will have implications for the design 435 

of instruction and learning over the lifespan (see Outstanding Questions). 436 

A key implication of this perspective is that a deeper understanding of unsupervised learning 437 

requires consideration of the alignment between mental representation and task. This is 438 

challenging because alignment depends on specific stimuli, task structures, and learners’ 439 

representations. Efficiently assessing and modeling alignment to account for individual tasks 440 

and learners is an important future direction that can build on recent advances [85–88]. In fact, 441 

assessing alignment is also important for predicting supervised learning [89,90], memory [91] 442 

and perception [92] which suggests that it also applies to naturalistic, large-scale unsupervised 443 

learning. Future models need to make explicit the concrete relationship between alignment and 444 

learning and be constrained by neural evidence on biologically supported mechanisms [93]. 445 

Our efforts to understand when unsupervised learning succeeds and fails have illuminated the 446 

rich interconnections between historically separate research areas that can be leveraged in 447 

future studies. Beyond the topics discussed here, relevant research also encompasses areas like 448 

attention [94] and training schedules (Box 2). Linking results across these domains promotes a 449 

more rigorous examination of learning principles.  450 

Future research should also go beyond the traditional approach of studying unsupervised 451 

learning in isolation. To understand why humans manage to learn despite all difficulties, we 452 

need to explore how supervised and unsupervised learning mechanisms interact and relate to 453 

feedback sources more akin to reinforcement, self-supervised, or sequential learning that are 454 

blended in modern machine learning systems. Crucially, future work should explore how 455 

unsupervised self-reinforcement and learning from (self-)supervisory signals coexist in humans, 456 

who may use one general-purpose mechanism instead of different special-purpose algorithms 457 

like machines. This crosstalk could lead to a more holistic theory of human learning, which is 458 

important for understanding real-world learning, like the acquisition of expertise. 459 

In conclusion, we advocate for an interdisciplinary approach to studying the mechanisms of 460 

unsupervised learning and the broader role of supervision which should integrate 461 

representational and neural constraints. This new direction contributes to our understanding of 462 
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learning fundamentals and can improve the design of instructional systems that better support 463 

learning across the lifespan to prevent us from mistaking goats for sheep with ever greater 464 

confidence.  465 
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Outstanding questions 466 

What exactly is the quantitative relationship between representation-to-task alignment and 467 

learning? How does this relate to different sources of the problem, e.g. poor extraction of 468 

relevant features versus good feature extraction, but poor cluster separation? How does this 469 

relate to different timescales, e.g. short-term learning to direct attention versus long-term 470 

representational change? 471 

How much representation-to-task alignment is needed for unsupervised learning to help?  472 

How can we measure representation-to-task alignment? How can we incorporate 473 

representation-to-task alignment into computational models of learning? 474 

Does representation-to-task alignment affect supervised and unsupervised learning differently?  475 

How is self-reinforcement implemented by the brain? Which role does meta-cognition play in 476 

this? Is it affected by brain development? 477 

Does self-reinforcement affect supervised learning too? 478 

How do supervised and unsupervised learning interact? Are they fundamentally different or can 479 

they be unified?  480 

How does learning from other feedback signals, like reward, compare with supervised and 481 

unsupervised learning? 482 

How does unsupervised learning compare in humans and animals? Are there differences 483 

between implicit / subconscious and deliberate / conscious unsupervised learning? 484 

Which other factors related to the presence and absence of supervision, like motivation, affect 485 

learning? 486 

How does the sequential order (e.g., blocked supervised and unsupervised exposure) affect 487 

unsupervised learning? 488 

 489 

  490 



21 
 

Glossary  491 

Learning algorithm: The specific algorithm used to maximize a task objective which can be supervised or 492 

unsupervised. A supervised algorithm (e.g., a standard neural network) learns an input / stimulus to 493 

output / response mapping and uses supervision to improve its predictions. Apart from solving 494 

supervised learning problems, supervised algorithms can also be used to tackle unsupervised learning 495 

problems by adapting the task objective (e.g., self-supervised learning). An unsupervised algorithm (e.g., 496 

a standard Bayesian Graphical Model) extracts information from the inputs / stimuli without accessing 497 

ground-truth supervision. Unsupervised algorithms are designed to solve unsupervised problems but 498 

can also be adapted to tackle supervised learning problems. 499 

Learning problem: The type of learning problem that is partially defined by the data, especially whether 500 

supervision is available or not (i.e., supervised or unsupervised learning problem). 501 

Learning task: The specific task (or task objective) that is defined within a learning problem and which 502 

can be supervised or unsupervised. In experimental studies, the task objective derives from the 503 

experimenter-defined stimulus-response-mapping. 504 

Representation-to-task alignment: The degree to which the internal representations of a learning 505 

system create a similarity space that suggests an input / stimulus to output / response mapping that is in 506 

agreement with the objective mapping defined by the task. 507 

Self-reinforcement: A mechanism by which a system learns from its own predictions in lieu of ground-508 

truth supervision. This has the effect that existing predictions from inputs / stimuli to outputs / 509 

responses are strengthened. This mechanism can, in principle, be implemented both by supervised and 510 

unsupervised algorithms. This mechanism is popular in semi-supervised machine learning and called 511 

self-training or pseudo-labelling. 512 

Self-supervised learning: A machine learning approach that solves an unsupervised learning problem by 513 

turning it into a supervised task so that a supervised algorithm can be applied. Since no external 514 

supervision is available, supervision is created directly from the unsupervised data. 515 

Semi-supervised learning: Learning in a problem / task that offers a mixture of supervised and 516 

unsupervised inputs / stimuli. 517 

Supervised learning: Learning in a problem / task that requires the learning of an input / stimulus to 518 

output / response mapping and in which ground-truth supervision is available.  519 
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Supervision / Feedback: In machine learning, supervision is defined as the delivery of ground-truth 520 

outputs (e.g., labels) following some inputs (e.g., images). In human learning studies, supervision more 521 

often refers to the delivery of corrective feedback (e.g., correct / incorrect response) on their response 522 

to some preceding stimulus. 523 

Unsupervised learning: Learning in a problem / task without supervision, simply through extraction of 524 

information from the observation of inputs / stimuli. 525 
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