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A multivariate data analysis approach to tablet sticking on an industrial scale: a
qualitative case study of an ibuprofen-based formulation
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aDepartment of Chemical and Biotechnological Engineering, Universit�e de Sherbrooke, Sherbrooke, Quebec, Canada; bPfizer Canada, Kirkland,
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ABSTRACT
Objectives: Sticking is one of the most common and damaging issues that occur during tablet manufactur-
ing. Sticking is the adhesion of powder onto tooling surfaces during compression. Because of the numerous
factors involved in its occurrence, understanding tablet sticking requires the simultaneous investigation of
these factors to clarify their possible interactions. However, conducting such a study experimentally can pre-
sent a significant financial and technical burden. In this study, we aimed to leverage the large amount of
data that is usually generated during industrial manufacturing to gain insights into sticking.
Methods: This was achieved by collecting and analyzing a total of 71 historical batches that used an ibu-
profen-based formulation. We associate each batch with a hundred parameters, including a qualitative
descriptor of sticking, and employ a predefined methodology based primarily on multivariate
data analysis.
Results and Conclusions: Our results highlight the role of lubrication, water content, and the low melt-
ing point of ibuprofen in its sticking tendency. Based on these findings, we propose and discuss an indus-
trial manufacturing data analysis approach to sticking and its associated systematic methodology,
consisting of collection, exploration, and data modeling.
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1. Introduction

Tablets are the most prevalent form of medication (Tita-Goldstein
2013; Chattoraj et al. 2018). This is primarily due to their physical
and chemical stability under various conditions, as well as their
ease of use and manufacturing (Boussaoud 2003; Santos and
Sousa 2008; Iqubal et al. 2014). Tablet production consists of com-
pressing a defined quantity of powder formulation on a tablet
press. The formulation is a powder blend of an active pharma-
ceutical ingredient (API) and excipients that are often dried or
wet-granulated to enhance their compressibility and compactabil-
ity. Compression involves the application of a uniaxial force on
the formulation powder that is embedded in the die cavity of the
tablet press. Under pressure, the density of the powder blend is
increased by expelling air from between the particles (Saniocki
2014; Thomas 2015). The powder then consolidates via a series of
plastic and elastic deformations and particle fragmentations, lead-
ing to the formation of bonds between them (Kadiri 2004;
Saniocki 2014).

One of the most common issues that arise during this process
is the adhesion of powder onto the surfaces of the press tooling
(die and punches); this is referred to as sticking (Chattoraj et al.
2018). This phenomenon can occur at any stage of drug manufac-
turing, but it is more prevalent and damaging during the indus-
trial production phase, during which, possible changes to the
formulation and process are limited (Chattoraj et al. 2018). When
sticking appears at this stage, it causes tablet defects and reduces
quality and yield. Operators generally stop the press and then
remove, clean, and polish the tooling before continuing

production. Thus, sticking significantly affects manufacturing costs
and production times. It also limits the age of compression tools
because of premature wear (Kadiri 2004; Saniocki 2014). Because
of these serious consequences for productivity, research has been
performed on powder sticking, especially the adhesion of powder
to the punch surface (referred to as punch sticking).

Sticking was first described as the result of two opposing
forces: first, the adhesive forces between the formulation pow-
der and punch surfaces, and second, the inner cohesive forces
between the particles of the formulation powder (Tita-Goldstein
2013; Chattoraj et al. 2018). This simple model states that par-
ticles detach from the powder bed and stick onto the punch
surface when the strength of the adhesive forces between par-
ticles and the surface exceeds that of cohesive forces between
the formulation powder particles.

In 2017, another model for sticking was introduced (Paul,
Taylor, et al. 2017a). They assert that a model involving two
opposing forces cannot explain several well-established observa-
tions about sticking: multiple layers of powder accumulate on
punch surfaces and API particles make up a high proportion of
the powder in these layers (Waimer et al. 1999a; Saniocki et al.
2013; Paul, Taylor, et al. 2017a). Based on their experimental
results, (Paul, Taylor, et al. 2017a) propose a more complete
model that involves two kinds of sticking and three forces. The
first type of sticking (type I) corresponds to light sticking, in which
only one layer of powder builds up on the punch surfaces, while
the second type (type II) refers to major sticking, with several
layers of accumulation. These two kinds of sticking arise from the
interplay of three forces, designated as F1, F2, and F3. F1
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represents the strength of adhesive forces between API particles
and punch surfaces, while F2 is the strength of inner cohesive
forces between API particles, and F3 denotes the strength of
adhesive forces between API particles and the excipients matrix
(Paul, Taylor, et al. 2017a). Sticking only occurs if F1 is greater
than the sum of F2 and F3, when the adhesive forces of API par-
ticles to the punches predominates . The occurrence of light stick-
ing (type I) or severe sticking (type II) would then depend on the
strength ratio between F2 and F3. Accordingly, light sticking is
observed if F2 is weaker than F3, in which case a single layer that
is rich in API would cover punch surfaces. Severe sticking is
observed when F2 is greater than F3. The intensity of these three
forces is determined by various interactions, such as van der
Waals forces, electrostatic interactions, capillary bonds, and mech-
anical locking, which all depend on the chemical and structural
properties of the particles in the formulation (API and excipients)
and the compression conditions, such as the properties of
punches surfaces, the compression force, the compression speed,
and the environmental conditions. Furthermore, the ratio between
the three forces is dynamic and constantly evolving. Therefore,
sticking is a complex phenomenon that involves various factors,
particularly to evaluate the severity or level of sticking.

A broad range of factors have been investigated to eluci-
date the sticking mechanism, and clear effects have been
found for some. Several studies with different methodologies
and formulations have shown that sticking is primarily depend-
ent on the API particles (Kakimi et al. 2010; Saniocki et al.
2013; Paul, Taylor, et al. 2017a; Paul and Sun 2018). In many
ways, such findings are predictable, as excipients are chosen
for their suitability in manufacturing (mechanical, electrical, and
chemical properties), whereas the API is chosen largely for its
pharmacological properties. Paul, Taylor et al. (2017a) studied
the sticking kinetics of 24 API formulations, finding that the
stickiest formulations containing 10% API resulted in a stuck
crust containing a 93–96% concentration of API. Similar conclu-
sions with other APIs and methodologies have been reported
(Mcdermott et al. 2011; Saniocki et al. 2013). These observa-
tions were attributed primarily to the specific physical, chem-
ical, and electrostatic properties of the API particles
(Mcdermott et al. 2011; �Supuk et al. 2012; Saniocki et al. 2013;
Paul, Taylor, et al. 2017a; Paul and Sun 2018). The results
show that—due to their polarity, generally small size, and
hydrophobic behavior—API particles are susceptible to tribo-
electric charging during handling, mixing, and compression
(�Supuk et al. 2012; Ghori et al. 2014). This electrostatic behav-
ior, especially the slow dissipation of charge, has been identi-
fied as a key factor promoting sticking (Ghori et al. 2014;
Samiei et al. 2017). Because of their more suitable electrostatic
behavior, excipients can enhance the electrostatic behavior of
the whole formulation, thereby reducing sticking relative to API
particles alone (�Supuk et al. 2009; �Supuk et al. 2012). In add-
ition to the central role of API particles in sticking, compres-
sion speed and duration can promote sticking (Waimer et al.
1999a; Kakimi et al. 2010; Bunker et al. 2011; Paul, Taylor,
et al. 2017b; Al-Karawi et al. 2017).

Despite these clear findings, no root causes of sticking have
been identified (Al-Karawi 2018; Chattoraj et al. 2018; Costa et al.
2020). The reason is simple: sticking is multifactorial and involves
several interactions between the parameters, which can also
change over time. For instance, lubrication with magnesium stear-
ate is known to help decrease sticking for numerous formulations
(such as mannitol, pozanicline, and macrogol), but increases it for
ibuprofen-based formulations (Sendall and Staniforth 1986;

Toyoshima et al. 1988; Roberts et al. 2003; Roberts et al. 2004).
Another example is the effect of compression force. An increase
in the compression force leads to increased sticking for celecoxib
or sorbitol-based formulations, but it decreases sticking in acetyl-
salicylic acid-based formulations (Waimer et al. 1999a; Kakimi
et al. 2010; Paul, Wang, et al. 2017). In addition, for ibuprofen-
based formulations, the effect of compression force also changes
according to the properties of punch surfaces (Toyoshima et al.
1988; Waimer et al. 1999b; Saniocki et al. 2013; Al-Karawi et al.
2017; Al-Karawi and Leopold 2018).

Therefore, recent studies have focused on the simultaneous
study of several parameters to understand sticking (Al-Karawi
2018; Costa et al. 2020). Paul, Taylor, et al. (2017a) simultaneously
assessed the effect of powder properties and compression param-
eters on the sticking of 24 different API formulations. They identi-
fied the surface area of the API particles, tablet tensile strength,
ejection force normalized by particle size, take-off force normal-
ized by tablet tensile strength, and the die wall pressure. Studies
by Roberts (Roberts et al. 2003; Roberts et al. 2004) and Al-Karawi
(Al-Karawi et al. 2017; Al-Karawi and Leopold 2018) also illuminate
the role of compression forces in sticking for ibuprofen-based for-
mulations. These studies describe the significant interactions
between the compression force and several properties of the
punch surface. An increase in the compression force led to more
sticking when the punch surface was smooth, while no effect on
sticking was observed when the punch surface was rough
(Roberts et al. 2003; Roberts et al. 2004). Punch coating only
appears to influence sticking for low compression forces, where
uncoated or hard chromium-coated punches generated more
sticking than punches coated with titanium nitride or chromium
nitride, whereas no difference in their sticking propensity was
observed for high compression forces (Schumann and Searle
1992; Roberts et al. 2003; Roberts et al. 2004; Uemura et al. 2007;
Al-Karawi et al. 2017; Al-Karawi and Leopold 2018). This inter-
action was attributed to the increased internal cohesive forces
induced by the high compression force, which subsequently over-
come the specific adhesive forces between powder particles and
each coating (Roberts et al. 2003; Roberts et al. 2004; Bunker
et al. 2011).

More multivariate studies that simultaneously investigate the
effects of various parameters are necessary to fully understand tab-
let sticking. However, performing a dedicated experimental study
can present a significant technical and financial burden. Indeed,
increasing the number of parameters under study inevitably
requires a greater number of experiments. Some parameters are
also more difficult to obtain and test experimentally, such as punch
age and wear, long compression times, high compression speeds,
and low dwell times. Nevertheless, substantial data is usually gener-
ated during industrial-scale tablet manufacturing, where sticking is
inherently prevalent. Accounting for all this data comprehensively
may provide insights into the causes of tablet sticking.

In this study, we introduce an industrial data analysis approach
to examine tablet sticking. We present a qualitative case study,
followed by a deep discussion on the overall approach and meth-
odology. In the case study, we investigate the sticking of an ibu-
profen-based formulation by collecting and analyzing industrial
manufacturing data. A total of 104 variables were gathered from
the production of 71 historical batches, for which sticking behav-
ior was assessed directly as a categorical variable (with either the
presence or absence of sticking during compression). Our meth-
odology is based primarily on multivariate data analysis (MVDA)
techniques. The specific objectives of this work are expressed
as follows:
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1. Identifying the key parameters contributing to the occur-
rence of sticking using an ibuprofen-based formulation.

2. Developing a classification model to predict the occurrence
of sticking on a batch during its compression.

3. Discussing the industrial data analysis approach and method-
ology to provide insights into tablet sticking.

2. Materials and methods

2.1. Formulation

The active pharmaceutical ingredient of the formulation is ibupro-
fen, a common non-steroidal anti-inflammatory drug. The other
substances present in the formulation include aspartame, manni-
tol, microcrystalline cellulose, colloidal silicon dioxide, magnesium
stearate, modified corn starch, natural and artificial flavors, sodium
starch glycolate, and coloring agents. Tablets are manufactured
through a direct compression process involving mixing and siev-
ing operations before compression using a tablet press. Due to
confidentiality concerns, no further details regarding the manufac-
turing process are provided.

2.2. Data collection and preparation

During the industrial manufacture of these confidential-formula-
tion tablets, copious volumes of data regarding the processing
steps are generated. For this study, we collected this data from
various sources such as master batch record files, certificates of
analysis for raw materials, and the records on temperature and
relative humidity in the operating rooms and warehouses. A total
of 104 variables were gathered for 71 historical batches.

The raw data were cleaned and prepared before analysis. First,
some variables were found to be nearly constant or to present a
high proportion of missing data (> 50%). Therefore these were dis-
carded. For quantitative variables, the coefficient of variation (ratio
of the standard deviation to the mean) was employed to set a low
variation criterion (1%). Thus, quantitative variables displaying a
coefficient of variation of less than 1% were discarded from the
data. For qualitative variables, the low variation criterion was set as
the presence of a maximum of two observations among all batches
with modalities different from the mode of the concerned variable.

Second, after the cleaning operations, only a few missing val-
ues remained in the data. Notably, the main analysis algorithms
employed in this study—namely, the principal component ana-
lysis (PCA) and partial least squares-discriminant analysis (PLS-
DA)—can be adapted to account for the presence of missing
data, and thus, the few missing values were imputed from the
mean of the corresponding variable when necessary.

The final dataset consists of 71 batches described by a set of 46
variables, referred to herein as V1 to V45, plus a qualitative y vari-
able describing the sticking behavior of each batch. This y variable
separates the 71 batches into two classes consisting of batches that
were not affected by sticking and those that were affected. The first
class is composed of batches for which no sticking was observed
during compression, and the second class consists of batches for
which sticking issues were observed during compression. Except for
the qualitative y variable, all the remaining 45 variables were quan-
titative. These can be divided into five different groups:

� Group 1: V1–8 are related to materials (APIþ excipients).
� Group 2: V9–16 give information about the mixing step,

including the cleaning methods used on machines and the
durations of various mixing operations.

� Group 3: V17–36 relate to the environmental conditions in
different rooms where manufacturing operations, from dis-
pensing to compression, take place.

� Group 4: V37–39 represent the tablet dimensions and weight.
� Group 5: V40–45 relate to the parameters of compres-

sion operations.

During the collection campaign (encompassing 71 batches),
environmental conditions variables (V17–36) were unavailable for
some batches (batches 1–46). To study the impact of these envir-
onmental variables, two datasets were generated: dataset1 and
dataset2. Dataset1 includes all batches and all variables except
those related to the environmental conditions while dataset2 only
comprises batches for which data was available for all variables
including environmental conditions. The resulting sizes of both
datasets were 71 batches � 26 variables (dataset1) and 25
batches � 46 variables (dataset2). These were scaled and centered
to unit variance prior to analysis.

2.3. Analysis methodology

Both dataset1 and dataset2 were analyzed in three main steps, using
the Python programming language (version 3.7) along with MVDA
software, namely SIMCA (version 16.0.2.10561) from Sartorius.

The first step involves univariate and bivariate analysis of both
datasets to determine whether any single variable could signifi-
cantly explain or predict the observed sticking behavior. For this
purpose, scatter plots of input variables are colored according to
the occurrence of sticking.

The second step consists of a multivariate investigation of
both datasets using PCA to check for the presence of clusters of
observations representing sticking. PCA is a well-established multi-
variate method employed to reduce the dimensionality of large
datasets by capturing the highest amount of variation in the data-
sets in a few orthogonal components. It facilitates the visualiza-
tion and investigation of similarities between observations,
following linear combinations of the input variables along the
principal components. PCA was well-described and discussed by
(Eriksson et al. 2001; Johnson and Wichern 2002; Shaffer 2002).

The third step consists of discriminant analysis (DA). Linear dis-
criminant analysis (LDA) is applied to dataset1, while the DA ver-
sion of partial least squares regression (PLS-DA) is used for
dataset2. These analyses use a supervised approach to yield
insights into sticking.

LDA is a classification technique that allows for the develop-
ment of multivariate models to classify observations among
modalities of a qualitative y variable. It is aimed at finding a
linear combination of the original predictive variables that sep-
arate the different modalities of the y variable. This modeling
technique is generally referred to in the literature as factorial
DA or canonical DA (when the objective is strictly descriptive).
For predictive purposes, LDA modeling provides a classification
function for predicting the membership of a new batch among
the modalities of the qualitative y variable. Both descriptive
and predictive attributes of LDA have been reviewed and dis-
cussed previously (Johnson and Wichern 2002; Xing et al. 2003;
Lammertyn et al. 2004; Huberty and Stephen 2006;
Rakotomalala 2020).

For dataset2, there are more variables than the number of
observations available, which precludes the use of LDA because
the degree of freedom is too low to proceed, also owing to the
risk of multicollinearity issues (Yendle and MacFie 1989; R€annar
et al. 1995; Naes and Mevik 2001; Nørgaard et al. 2006; Dormann
et al. 2013). Instead of LDA, we employ PLS-DA, a different
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technique for discrimination. Broadly speaking, this technique has
the same objective as LDA, but the extracted components for the
descriptive model and the independent variables used for predict-
ive modeling are different. PLS-DA employs latent variables
extracted from the original predictor matrix by PLS, a well-known
multivariate procedure. These latent variables facilitate the visual-
ization and description of the discrimination as per descriptive
outcomes of LDA. However, the latent variables are also used as
predictors in PLS-DA predictive modeling, instead of the original
variables for LDA. PLS-DA has been extensively described previ-
ously (Eriksson et al. 2001; Johnson and Wichern 2002; Huberty
and Stephen 2006).

3. Results and discussion

3.1. Sticking data

When sticking occurs during the compression of a batch, opera-
tors generally stop the press, note the cause of the interruption,
assess the situation, and fix the issue before restarting. Since the
operators did not specifically report the severity of individual
sticking events, we utilized their notes to set up a qualitative y
variable to assess the sticking behavior of batches. According to
this qualitative y variable, batches were split into two classes:
batches unaffected by sticking and batches that were affected by
sticking (as assessed by the operators). Table 1 presents a break-
down of the number of observations in both datasets.

3.2. Univariate data analysis

3.2.1. Dataset1
Scatter plots of the input variables were color-coded according to
the presence of sticking during the compression (y variable). An
excerpt of this representation is given in Figure 1. These variables
(V8 and V13) were chosen because they exhibit the highest correl-
ation with the y variable.

Examining the scatter plots of individual variables reveals no
clear trend of discrimination between batches affected or
unaffected by sticking (Figure 1). Thus, no single variable—nor
any of the bivariate combinations assessed—can explain the
occurrence of sticking. Furthermore, univariate data analysis is
used to check for outliers from each variable. To this end, we
identified several possible outliers. However, after evaluating dif-
ferent raw data sources, no data reporting error was noted, and
all of the values were compliant with reglementary standards
when needed. Therefore, no action has been taken to treat or
remove them. This decision is also motivated by the fact that
none of these outliers were physically unreasonable considering
the reality of a day-to-day tablet manufacturing processes.

3.2.2. Dataset2
For dataset2, only scatter plots of variables representing environ-
mental conditions (V17 to V36) were considered, since the
remaining input variables were already assessed in dataset1. As
with dataset1, no clear trend of discrimination was observed
between the batches affected by sticking and those unaffected by
sticking. Thus, no single variable related to environmental condi-
tions can explain the occurrence of sticking. Several possible out-
liers were identified, but after verification of the raw data, they
were also kept in data for the same reasons described
for dataset1.

The results of the univariate analyses may be expected
because sticking is known to be a highly multivariate phenom-
enon (Al-Karawi 2018; Chattoraj et al. 2018). Consequently, com-
bined information from several variables is required. However, it

Table 1. Repartition of the number of batches following the qualitative y vari-
able modalities.

Datasets

Modalities of the qualitative y variable

TotalBatches unaffected by sticking Batches affected by sticking

Dataset1 51 71.8% 20 28.2% 71
Dataset2 18 72% 7 28% 25

Figure 1. Scatter plot of input variables in dataset1 colored according to the presence of sticking (y variable). This excerpt corresponds to V8 and V13, which are the
actual quantity of lubricant dispensed and mixing step duration, respectively.
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remains important to systematically use univariate data analysis
to fully understand the data and to treat eventual outliers when
they reflect errors or could induce noise in the data. To yield fur-
ther insights regarding sticking, we employed MVDA techniques,
beginning with PCA followed by DA.

3.3. Principal component analysis

3.3.1. Dataset1
The first PCA model was built on dataset1. According to an ana-
lysis of the scree plot, a total of 10 components were exploited.
These account for approximately 70% of the variance in dataset1.
Figure 2 displays the score plot of the two first components of
this PCA model.

In the score plot, the batches affected and unaffected by stick-
ing overlap (Figure 2). The same conclusion can be drawn from
the analysis of the subsequent eight PCA components. Therefore,
this first PCA model does not reveal any clear discrimination
according to the observed sticking in dataset1. This does not
mean that dataset1 cannot be used to explore sticking. It simply
means that these first components explain other phenomena that
account for more variance within the data than sticking.

3.3.2. Dataset2
A PCA model was also built on dataset2, including all available
information. A total of eight components were retained according
to the analysis of the scree plot, but no clear trend regarding
sticking was found in dataset2.

The failure of PCA to explain the observed sticking is unsur-
prising. PCA is an unsupervised learning technique that tends to
reveal spontaneous clusters for successive components that are
decreasingly extracted following the most important dimension of
variance in the data (Shaffer 2002). Therefore, PCA components
describe the sticking phenomenon only if it represents one of the
most important dimensions of variance retained. This was not the
case for either dataset1 or dataset2. To overcome this limitation,
we employ supervised learning techniques, particularly DA, in
which the qualitative y variable (the occurrence of sticking)
guides component extraction.

3.4. Linear discriminant analysis of dataset1

3.4.1. Descriptive outcomes
The first descriptive DA model was developed for all variables and
observations in dataset1 (71 batches x 25 variables). The corre-
sponding score, loading, and variable importance plots are
depicted in Figure 3.

The significance of an LDA model is evaluated using Wilks’
lambda, a well-known statistical parameter (Johnson and Wichern
2002; Rakotomalala 2020). This statistical value represents the
overall quality of discrimination results. It allows for the simultan-
eous comparison of several averages by assessing the part of
intraclass inertia in the total variance. It corresponds to the ratio
between the determinant of the intraclass variance-covariance
matrix and the determinant of the total variance-covariance
matrix. In this way, Wilks’ lambda always varies between 0 and 1,
where 0 represents more reliable discrimination because of a bet-
ter interclass separation. A test with a null hypothesis, positing
equality of the class averages, is performed to assess the signifi-
cance of the observed Wilks’ lambda value with regard to the
number of observations, variables, and classes of the target vari-
able. Wilks’ lambda follows a complex distribution and, generally,
a transformation is first computed to approximate more common
distributions. The transformed statistic (RAO transformation and
Bartlett transformation of Wilks’ lambda) is then compared to a
Fisher distribution and v2 distribution (Johnson and Wichern
2002; Huberty and Stephen 2006).

The first DA model built on dataset1 relies on one canonical
component, with a Wilks’ lambda value of 0.7424, which is insig-
nificant with a p value over .8 (Figure 3(A)). Therefore, the discrim-
inating power highlighted by this first model does not lead to a
significant separation between the batches affected by sticking
and those unaffected by sticking. Although the separation is insig-
nificant, the batches affected by sticking exhibited a slightly lower
score, along with component 1, than batches unaffected by stick-
ing (Figure 3(A)). The corresponding loading plot (Figure 3(B))
indicates that the batches affected by the sticking cluster, aside
from those unaffected by sticking, based on their relatively high
values for V6, V13, and V45 and their relatively low values for V8
and V44. V3, V9, V10, V14, V16, and V37, may also be important.

Figure 2. The score plot of the PCA model built on dataset1.
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The importance of each variable is given by the variable
importance graphic (Figure 3(C)). This graphic displays the vari-
ation induced in the initial Wilks’ lambda of the model by the
removal of each variable, thereby preventing the misinterpret-
ation that can sometimes arise with a direct lecture of low load-
ings, as observed in Figure 3(B). As Wilks’ lambda increases with
the withdrawal of a specific variable, that variable becomes more
relevant for discrimination. Following this graphic, some variables
are relevant while many others account for nothing in the model.
These results suggest that there is some information in dataset1
that is useful in distinguishing the two groups of batches,
although its significance is probably masked by the presence of
several variables that account for little or nothing in the discrimin-
ation. For instance, the Wilks’ lambda value of the model does
not change when some variables, such as V2 or V4, are discarded
from the model; in contrast, it increases when V8, V41, or V44 are
removed (Figure 3(C)).

Thus, we executed a well-known backward variable-selection
strategy to optimize the LDA model (Johnson and Wichern 2002;
Huberty and Stephen 2006; Rakotomalala 2020). We computed
the first LDA model, including all of the variables, and calculated
the initial Wilks’ lambda value. The model was then optimized by
recursively removing the variable contributing least to the Wilk’s
lambda value. Thus, seven variables were selected, and a second
LDA model was then built with these variables. The correspond-
ing score, loading, and variable importance plots are depicted in
Figure 4.

Unlike the first LDA model, a clear trend of discrimination is
now observed in the score plot (Figure 4(A)), even if an overlap is
still observed in the center of the graph, albeit to a lesser extent
than in the first model (Figure 3(A)). Moreover, discrimination is
observed using only seven variables, as opposed to using 25 vari-
ables in the first LDA model. Consequently, this second optimized
model results with a slightly higher Wilks’ lambda value of 0.8044,
which is still significant with a p value below .05. This indicates
the existence of relevant information in dataset1 that distin-
guishes the batches affected by sticking from those unaffected by
sticking. According to the loading plot in Figure 4(B), the LDA
component—along which several batches affected by sticking
stand out from some unaffected by sticking on the score plot—is
positively correlated with V8 and V44 and negatively correlated
with V13 and V37. The variable importance plot in Figure 4(C)
illustrates that all seven variables in the optimized model are
important for achieving the observed discrimination. Nevertheless,
only two of them significantly contribute to the separation. These
are V8 (corresponding to the total quantity of lubricant dispensed
in the formulation) and V44 (the total duration of stops during
the compression of the whole batch). The influences of V8 and
V44 indicate that a batch is more likely to be affected by sticking
when there is less lubricant dispensed (V8) in the formulation and
when there are fewer stops during compression (V44). Similar
results were obtained when using the PLS-DA method (Appendix
A). The effects of these two variables on sticking occurrences are
discussed in detail in section 3.6. For the other variables that

Figure 3. Score (A), loading (B), and variable importance (C) plots of the first descriptive LDA model developed on dataset1. The frame on the score plot (A) indicates
the overlapping.
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were identified as important but not significant, more data are
necessary to confirm their role in sticking.

Although some insights regarding sticking were found, only a
small portion of the difference between affected and unaffected
batches is explained by the presented models, since the high val-
ues of Wilks’ lambda (0.7424 and 0.8044) in both models indicate
a low interclass variance in dataset1. This is probably because
some important factors contributing to sticking are not included
in dataset1. Furthermore, since the data were obtained from his-
torical batches, data on some variables that are potentially
important for the occurrence of sticking were unavailable. These
variables include punch surface conditions, several specific prop-
erties of materials at defined steps of the process (such as the
water content, the electrostatic properties, and particle size), and
several compression parameters that are not systematically
recorded, such as the actual compression force over time.
Moreover, no variables related to environmental conditions at the
manufacturing plant are present in dataset1, exacerbating the
lack of potential information that can help explain the observed
sticking. Data collection that addresses more variables may yield
more complete and precise interpretations.

However, unlike the PCA model, the LDA model does provide
insights about sticking, even if these do not account for the most
important portion of the total variance in this specific data. This is
due to the way that DA extracts its components. Instead of
extracting the components with the greatest variance in data one
after another, DA searches for the dimensions that maximize the

separation between the centers of two classes. This has been
achieved here, even if only a small portion of the phenomenon
was captured.

3.4.2. Predictive outcomes
A classification function is associated with the LDA models devel-
oped before and after optimization. The performances of these
two classification models in predicting sticking during compres-
sion are presented in Figure 5.

According to these results, the first LDA model (computed
before optimization) classifies the 71 batches with error rates of
23% and 46% in calibration and validation, respectively (Figure 5).
This indicates overfitting, as the model is better at classifying
batches when they are included in its construction (calibration)
than when they are excluded (validation). Strong overfitting is an
indicator of variables in the dataset that contribute little or noth-
ing to the actual explanation and prediction of the studied phe-
nomenon, following the descriptive model discussion. After
optimization, the new model led to a slightly lower error rate in
calibration, with a 20% misclassification rate. However, the cross-
validation error rate decreases significantly from 46% to 23%,
which is closer to the new calibration error (Figure 5). Therefore,
unlike the first model, the optimized model predicts both the
batches used in its construction and new batches.

The optimized model possesses the necessary performance to
predict sticking in production, or for providing an early indication.
However, a detailed examination reveals that the prediction error

Figure 4. Score (A), loading (B), and variable importance (C) plots of the optimized descriptive LDA model developed on dataset1. The frame on the score plot (A)
indicates the overlapping. (�) indicates the statistical significance of the change induced in Wilks’ lambda by the withdrawal of corresponding variables (C).
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rate of the model depends on the class of batches, indicating the
existence of bias. Moreover, batches affected by sticking are sys-
tematically the worst-classified batches, with an error rate of
65–81%, compared to an error rate of 0–30% for batches
unaffected by sticking (see Figure 5).

In light of the results and raw data, the observed bias appears
to be understandable. This is probably due to the very definition
of batches affected by sticking. We found that 60% of these
batches involve only one sticking event reported during their
whole compression. Based on the importance of these single
sticking events, some of these batches may be regarded as
unaffected by sticking. However, without any other information
on the importance of the single sticking events, sorting is not
possible. Therefore, all of these were classified as affected by
sticking, which probably prevents the models from correctly pre-
dicting batches affected by sticking. Thus, the developed models
have trouble distinguishing some batches affected by sticking
from those unaffected by sticking. The overlap observed in the
center of the score plots in explicative models (Figures 3(A) and
4(A)) is probably related to this issue.

This fine line between sticky and not-sticky batches constitutes
a major limitation of our study on two levels. First, since some of
the batches affected by sticking are difficult to separate from
those unaffected by sticking, variables identified as significant
contributors to sticking may just be artifacts caused by the outly-
ing behavior of a few sticking batches. Fortunately, this can be
assessed by analyzing the raw data on the identified variables.
The results of this analysis are presented in a dedicated section of
this paper (see section 3.6). Second, such a bias definitively pre-
vents the developed model from determining whether a new
batch is likely to have sticking issues, potentially making multiple
false predictions for batches affected by sticking. To overcome
this limitation, stickier batches can be gathered and included in
the study, thereby preventing confusion between the two classes.
Furthermore, a quantitative y variable with a large range of stick-
ing behavior may be a more effective means for preventing the
observed bias. Using several distinct profiles of sticking in the
data may prevent eventual bias due to categorization. Moreover,

it can be more informative because the relationships between
input variables and sticking events can be described from mul-
tiple perspectives. Another means of preventing the observed
bias is to perform planned data collection, where a systematic
evaluation of sticking event intensity is conducted. This can be
achieved in several ways. For instance, an intensity scoring meth-
odology can be developed and adopted by manufacturers.
Moreover, a procedure that allows operators to quickly take a
photo of the punch surface before cleaning it—or even to pre-
serve the stuck powder for subsequent analysis—could be
implemented.

3.5. Partial least squares-discriminant analysis of dataset2

3.5.1. Descriptive outcomes
The first PLS-DA model was built on dataset2, including all
batches and variables available (25 batches � 45 variables). For
simplicity, the outcomes of this first PLS-DA model are not pre-
sented here. Like the first LDA model, the first PLS-DA model con-
sists of one latent component that was also subject to overfitting
according to classification errors. Therefore, a variable-selection
strategy was also conducted to optimize the model. The
employed strategy is quite different from the one conducted for
the LDA models with dataset1. The PLS-DA model is optimized
based on the variable importance in the projection (VIP), which is
a well-known statistic in partial least squares procedures (Eriksson
et al. 2001; Mehmood et al. 2020). VIP is a dimensionless param-
eter that enables estimation of the importance of each variable in
the projection along with the latent variables extracted by the
PLS procedures. A threshold value of 0.8 or 1 for VIP is generally
accepted as heuristic of a particular variable’s importance. This
parameter is often used to perform variable selection when PLS-
based models are overfitted (Eriksson et al. 2001; Shaffer 2002;
Mehmood et al. 2020). The strategy excludes variables exhibiting
a VIP value significantly lower than a predefined threshold.
Because of their low contribution to the projection on latent
structures, these variables are probably just modeling noise and

Figure 5. Histogram of the classification error rate for the predictive LDA models. Model 1 and Model 2 represent the model before optimization (71 batches � 25
variables) and the optimized model (71 batches � 7 variables), respectively. The validation error rate corresponds to the result of a seven-folds cross-valid-
ation procedure.
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data, rather than representing physics, leading to a good perform-
ance in calibration but poor performance in validation.

The VIP-based selection strategy was computed to optimize
the first PLS-DA model. The first selection was operated by filter-
ing all variables exhibiting a VIP score lower than 0.8. Then, a
new PLS-DA model was built on the remaining variables. This
model also exhibits overfitting issues. Thus, a second variable-
selection operation was conducted by filtering out all of the varia-
bles that failed to display a VIP score significantly greater than
0.8. This led to the selection of a set of 10 variables (V8, V11, V13,
V21, V22, V29, V33, V34, V42, and V44). Using these 10 variables
and the 25 observations available in dataset2, we built an opti-
mized PLS-DA model. The corresponding score, loading, and VIP
plots are presented in Figure 6.

The optimized PLS-DA model distinguishes batches affected by
sticking from those unaffected by sticking, even if an overlap is
observed in the center of the score plot (Figure 6(A)). This model
allows for discrimination with an overall multiple analysis of vari-
ance p value of .01. According to the score and loading plots
given in Figure 6, some batches affected by sticking stand out
from many batches unaffected by sticking, which is based on
their relatively high values for V29 and V33, as well as their low
values for V34. The VIP plot for more precision (Figure 6(C)) shows
that all 10 variables are important for explaining the observed dis-
crimination, although only seven of them, depicted in green, are
identified as contributing significantly to sticking (in order of
importance: V33, V29, V22, V34, V42, V21, and V44). Their effects
are discussed in detail in section 3.6. For V8, V11, and V13, which
were identified as important but not statistically significant, more
data are needed to confirm their impact on sticking.

3.5.2. Predictive outcomes
The predictive performances in the calibration and validation of
the optimized PLS-DA model are presented in Figure 7.

The optimized PLS-DA model misclassifies 24% and 28% of
batches in calibration and validation, respectively. These reason-
able performances suggest that they can be useful in industrial
production to predict sticking during the compression of a new
batch, or at least to give an early indication of sticking. However,
a detailed examination of the calibration and validation scores
highlights the same bias observed in the prediction of affected
batches by the LDA-optimized model. The PLS-DA model also
made more errors predicting the affected batches versus
unaffected batches, with error rates of 57% and 71% for affected
batches in calibration and validation, respectively, versus an error
rate of 11% for unaffected batches (Figure 7). This leads to the
same bias as discussed with the optimized LDA model. Therefore,
using the optimized PLS-DA model as a predictive tool carries a
high risk of misprediction of batches affected by sticking. In add-
ition, the sharp gap between the error rates in calibration (57%)
and validation (71%) also suggests overfitting for these batches.
This is probably due to the low number of batches affected by
sticking in dataset2, potentially leading to a lack of generalization.

3.6. Discussion of the significant insights identified

Our analyses of dataset1 and dataset2 have identified a total of eight
variables (V8, V21, V22, V29, V33, V34, V42, and V44) as significantly
contributing to sticking in the ibuprofen-based formulation. Due to
the observed bias in the developed models, the importance of these
variables may be artifacts, resulting from the presence of outliers in

Figure 6. Score (A), loading (B), and VIP (C) plots of the optimized PLS-DA model. (�) indicates the statistical significance (95%) of the VIP scores (C).
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the data or the low number of batches affected by sticking in data-
set2. To evaluate these possibilities, the raw data for the identified
variables are represented in Figures 8–11 to assess the differences
more precisely between the two classes and detect the potential
bias. In this section, the identified variables are also discussed in
regard to findings reported in the literature.

3.6.1. The quantity of lubricant dispensed in the formulation (V8)
The quantity of lubricant dispensed in the formulation was identified
through the analysis of dataset1 as a significant contributor to stick-
ing. It was also identified as important in the analysis of dataset2,
although this relationship was not significant (p> .05). A box plot
highlighting the mean comparison of this variable for affected
batches versus unaffected batches is depicted in Figure 8.

The examination of the raw data (Figure 8) confirms that slightly
less lubricant is dispensed in the formulations for batches affected

by sticking, with a statistically significant difference of approximately
20g of lubricant on average (p value of .047). No outlying behavior
appears in the box plot, indicating that V8 is not impacted by the
observed bias. Therefore, the actual quantity of lubricant probably
plays an important role in the occurrence of sticking in the ibupro-
fen-based formulation. Moreover, this effect is largely confirmed by
other studies. Sendall and Staniforth (1986), Toyoshima et al. (1988),
and Mcdermott et al. (2011) reported on the benefits of lubricants in
mitigating sticking issues with various kinds of formulations, such as
pozanicline, acid acetylsalicylic, and macrogol. It is generally estab-
lished that magnesium stearate, a common lubricant used in formu-
lations, reduces sticking occurrences by covering API particles in the
formulation, thus making them less available for adhesion to the
punch surface (Toyoshima et al. 1988; Mcdermott et al. 2011).
However, some studies using ibuprofen-based formulations revealed
the opposite effect, especially for magnesium stearate, where an

Figure 7. Histogram of the classification error rate for optimized PLS-DA (25 batches � 10 variables). The validation error rate corresponds to the result of a seven-
folds cross-validation procedure.

Figure 8. Box plot of mean comparison between batches affected by sticking and those unaffected by sticking for the actual quantity of lubricant dispensed in the
formulation (V8) in Kg. (�) indicates the statistical significance (95%) of the Student’s t-test.
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increase in its proportion leads to more sticking (Gordon et al. 1984;
Roberts et al. 2003; Roberts et al. 2004). It may be interesting to
experimentally investigate why and how lubrication enhanced stick-
ing behavior for the ibuprofen-based formulation studied in this
work. Moreover, the average difference between the two classes of
batches in this study was quite small. This represents �0.1% of the
targeted lubricant weight added to the formulation. Such levels of

accuracy might not be addressable at an industrial scale and are
practically irrelevant to prevent sticking on their own. The literature
also revealed that the lubricant effect depends on punch surface
properties (Al-Karawi et al. 2017). Therefore, an experimental valid-
ation assessing the lubricant effect in coordination with the other
parameters may be valuable to support further improvements or
new formulation development efforts.

Figure 9. Box plots of mean comparison between affected batches and unaffected batches for the environmental-related parameters V21, V22, V33, V34, and V29 pre-
sented in A, B, C, D, and E, respectively. (�) indicates the statistical significance (95%) of the Student’s t-test.
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3.6.2. Average temperatures and relative humidity (V21, V22, V29,
V33, and V34)
Five of the variables identified as significantly contributing to
sticking relate to the environmental conditions of manufacturing.
V21 and V22 are the averages of the temperature and relative
humidity, respectively, in the mixing room during mixing. V33
and V34 represent the same parameters in the compression room
during compression. The final environmental variable is V29, the
temperature average in the storage room during the storage of
intermediate materials before compression. Figure 9 presents box
plots displaying the comparison of these five variables for affected
batches versus unaffected batches.

As shown in the DA models, high temperatures in the mixing,
compression, and storage rooms (V21, V33, and V29, respectively)
are associated with more sticking, and the opposite relationship is
observed for relative humidity in the mixing and compression
rooms (V22 and V34, respectively) (Figure 9). Some moderate out-
liers are identified regarding V21, V22, and V29, although these
may only induce misinterpretation for V21, where three batches
appear to contribute to the direction of discrimination (Figure 9).
For this variable, more data or an experimental study are neces-
sary to confirm that the relationship with sticking is not an artifact
induced by the three outlying batches, which would not be repre-
sentative of general observations. For V22 and V29, the observed
outliers even tend to oppose the mean difference, so they are not
problematic in terms of bias (Figure 9). Therefore, except for V21,

all the other environmental variables identified (V22, V29, V33,
and V34) probably play important roles in sticking, even if some
are not statistically different on average—especially V34, with a p
value of .096. This simply indicates that the effect of V34 alone is
insufficient to explain a significant part of the difference between
sticky and not-sticky batches, highlighting the power of MVDA.
Moreover, V34 probably interacts with other important parame-
ters to better explain sticking.

Notably, temperature and humidity are interdependent param-
eters. Previous reports clearly state that exposition of powders,
even to low relative humidity values, can favor the increase of its
water content, which was subsequently correlated with sticking
(Aoki and Danjo 1998; Shimada et al. 2003; Bunker et al. 2011;
Mullarney et al. 2012). Danjo et al. showed that sticking increases
with the water content of pharmaceutical powder up to 3% (w/w)
and then decreases with further increases in water content, where
it starts to behave as a lubricant at the interface between particles
and punch surfaces (Danjo et al. 1997). For the formulation
studied here, it is then probable that the slightly higher tempera-
ture, favoring a slightly lower relative humidity induces the water
uptake necessary to give a specific level of water content, which
promotes sticking according to processing times. Experiments are
necessary to elucidate the postulated mechanism of action.
Herein, the slight difference in temperature and relative humidity
observed between the affected and unaffected batches may not
be exploitable to mitigate sticking issues at the industrial scale.

Figure 10. Box plots of the mean comparison between affected and unaffected batches for the average disintegration time (V42). Figure 10(A,B) uses the information
from dataset2 and dataset1, respectively.

Figure 11. Box plots of the mean comparison between affected and unaffected batches for the total duration of stops during compression, in minutes (V44). Figure
11(A,B) uses the information from dataset1 and dataset2, respectively. (�) indicates the statistical significance (95%) of the Student’s t-test.
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Therefore, clarifying the mechanism may help identify a practical
level of environmental conditions addressable by HVAC systems
that can subsequently mitigate sticking of the formulation.

Additionally, environmental conditions measured during com-
pression can be more of a consequence than a cause. For
example, the low melting point of ibuprofen promotes sticking if
an important increase in temperature occurs in the powder bed
during compression (Gordon et al. 1984; Roberts et al. 2003;
Roberts et al. 2004; Al-Karawi and Leopold 2018). Thus, the
slightly higher temperature measured during compression, trans-
lating into the slightly lower relative humidity may be indicative
of a high cadence of operations inducing a local increase of tem-
perature above the melting point of ibuprofen, promoting stick-
ing. This hypothesis is corroborated by the total duration of stops
during compression. For instance, less time was spent stopping
during the compression of batches that were affected by sticking,
which may also indicate a higher operational cadence with a
higher probability of localized temperature increase at the inter-
face between the powder bed and punch surface.

3.6.3. Average disintegration time (V42)
Although it was included in dataset1, the average tablet disinte-
gration time (V42) was identified as an important contributor to
sticking only in the analysis of dataset2. Thus, the observation of
this effect may be due to the lower number of observations in
dataset2, especially for batches affected by sticking, which are
also subject to the bias observed in the developed models. To
assess this aspect, two box plots displaying the comparison of the
average disintegration time between affected and unaffected
batches are presented in Figure 10. The first plot utilizes data pre-
sent in dataset2 and the second plot presents the same compari-
son for dataset1.

As indicated by the DA models, the average disintegration
time for dataset2 appears to be associated with sticking (Figure
10(A)). However, it may be a consequence, rather than a cause,
because batches affected by sticking may yield tablets with lower
internal cohesion, thus lowering their disintegration time. But an
examination of this variable with a greater number of observa-
tions in dataset1 reveals a potential bias. Distributions for the two
classes are quite similar in dataset1 (Figure 10(B)), indicating that
the average disintegration time is probably identified as a factor
in sticking due to the small number of observations in dataset2.
Moreover, even fewer batches are affected by sticking in dataset2.
This is highlighted by the change in the average values between
the two datasets. The average disintegration time for batches
unaffected by sticking is similar between dataset1 (81.47 s) and
dataset2 (77.83 s), while it is significantly different for batches
affected by sticking—81.55 s in dataset1 versus 66.43 s in dataset2
(Figure 10). Therefore, the average disintegration time may be an
artifact, induced by both the subsampling operated to study
environmental conditions variables and the inherent observed
bias in the models. An experimental study may help to clarify the
effect of sticking on the tablet disintegration time.

3.6.4. The total duration of stops during compression (V44)
The total duration of stops during compression was identified as
a significant contributor to sticking, which was apparent in the
analyses of dataset1 and dataset2. Figure 11 presents two box
plots displaying the comparison of the total duration of stops dur-
ing compression between affected and unaffected batches for the
two datasets.

Our examination of the raw data concerning the total duration
of stops during compression confirms the relevance of this

variable’s relationship to sticking, both in dataset1 and dataset2
(Figure 11). The batches are not affected by sticking when the
tablet press spends more time stopped (1296 and 1852min on
average) and the batches are affected when less time is spent
stopping (526 and 471min, on average). Notably, the total dur-
ation of stops during compression does not include the stop time
due to sticking. It only accounts for sporadic stops due to differ-
ent breaks of operators and other activities necessary for monitor-
ing the manufacturing process. Because this condition differs
significantly from one batch to another, several outliers in its dis-
tribution are identified for the affected and unaffected batches
(Figure 11). Considering the nature of V44, the presence of out-
liers cannot be considered an indicator of artifacts. In addition, we
observe a highly similar distribution for V44 across both datasets
(Figure 11). Furthermore, the difference in the average for V44
between affected and unaffected batches remains significant,
with a p value always below .05 in dataset1 and dataset2. This dif-
ference even persists when all batches that appear to be outliers
are removed. Therefore, the total duration of stops due to sticking
probably plays an important role in sticking.

No work in the literature has reported such a direct link. A
potential explanation may be an indirect correlation involving the
influence of temperature in sticking for the ibuprofen-based for-
mulation. Several authors have reported on the low melting point
of ibuprofen particles and a potentially sharp temperature
increase in the powder bed during compression, which could lead
to the sticking of particles onto punch surfaces (Gordon et al.
1984; Roberts et al. 2003; Roberts et al. 2004; Al-Karawi and
Leopold 2018). The high cadence and duration of a continued
compression would result in temperature increases in the powder
bed, and more time stopped during compression would have a
cooling effect on tooling, thus mitigating sticking occurrences on
ibuprofen-based formulations. This postulated mechanism aligns
well with the discussions about temperature and relative humidity
measures during compression. A detailed experiment is necessary
to confirm the hypothesis. If this is supported, it is worth men-
tioning that the intentional introduction of more stops during
compression is not a viable solution from an industrial perspec-
tive, but cooling down the tablet press (especially the die cavity
and the surfaces of punches) may be an interesting approach to
mitigate sticking.

3.7. A new approach to studying tablet sticking and its related
systematic methodology

This study validates a new approach to evaluate tablet sticking,
consisting of collecting and analyzing industrial manufacturing
data. This approach presents two main advantages. First, it allows
the simultaneous assessment of numerous factors for their impli-
cations in sticking, to a greater extent than experimental studies.
For instance, this study involves up to approximately 50 variables
after data cleaning, even though only six of these were found to
significantly contribute to sticking. Since sticking is known to be a
multifactorial phenomenon, this approach may greatly enhance
our understanding of sticking, or at least enable the informed
selection of a few factors to assess in subsequent experimental
studies. Second, another benefit of the industrial data analysis
approach is the emphasis on actual factors that primarily contrib-
ute to sticking. One challenge in sticking studies is observing or
reproducing this phenomenon on an experimental scale
(Chattoraj et al. 2018; Costa et al. 2020). Many factors usually do
not appear until the formulation is scaled up to the industrial
stage (Saniocki 2014). Thus, an analysis based on this scale is
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likely to be more informative. Moreover, many factors have tight
tolerances and are strictly controlled during industrial manufactur-
ing, allowing for a focus on variables for which sticking is
very sensitive.

Based on our experiences conducting this study, we propose a
systematic methodology to proceed with the new approach. This
methodology is based on MVDA techniques. These are adequate
tools for the new approach’s purpose because of the limited num-
ber of batches performed at an industrial scale and the commonly
large number of factors. Such datasets generally lack degrees of
freedom to facilitate the correct use of common regression and
classification techniques directly with original variables.
Furthermore, they often lack enough observations to perform
more complex modeling, such as artificial intelligence models like
neural networks. Therefore, MVDA is the best fit, particularly for
dimensionality reduction techniques such as PCA and partial least
squares regression.

The proposed methodology involves three major steps: data
collection and preparation, followed by an exploratory step, and
then explicative and predictive modeling. The first step involves
gathering, cleaning, and preparing relevant variables regarding
the manufacturing process and tablet sticking. Special attention
must be devoted to the choice of the y variable(s) for assessing
the sticking behavior of the batches because this predetermines
all eventual outputs. For this first step, well-planned and detailed
data collection can be more informative (when it is possible) than
a historical study. Regardless of the collection mode, data must
be cleaned and prepared prior to analysis. This involves handling
missing data, feature engineering, evaluating multicollinearity,
and standardizing methods.

The resulting dataset from the first step is then assessed using
univariate data analysis methods and PCA. Univariate data analysis
reveals whether sticking is dependent on any single variable,
although it also helps in finding, investigating, and processing
eventual outliers, thereby completing data cleaning. PCA finalizes
the investigation on a multivariate stage. The existence of spon-
taneous clusters according to the observed sticking is assessed,
and the most important dimensions of variance in the data are
analyzed to detect eventual multivariate outliers and ensure that
there is no other phenomenon captured in the data that could
impact sticking. If clear clustering with sticking is observed on the
PCA components, there is effectively no need to proceed to the
third step of the proposed methodology. The loading and contri-
bution plots of these components will be sufficient to identify the
important contributors to sticking. They can also be used in con-
junction with multivariate linear regression to develop a predict-
ive model. In contrast, if no clear trend regarding sticking is
apparent after PCA, the final step of the proposed methodology
must be performed, consisting of supervised learning techniques.
These modeling techniques will definitively provide explicative
and predictive models that may assist in understanding the
observed sticking, even if they rely on a limited part of the data.
This systematic methodology can be adapted and employed for a
broad range of cases by integrating any other necessary analysis
techniques at each stage.

However, two major limits related to this proposed approach
remain. Since this entire approach is based on data analysis, there
must be relevant and sufficient data. This is the most important
limit because when data do not contain relevant information
about sticking, no analysis method would reveal helpful informa-
tion. This occurred partially in this study because only a small por-
tion of the observed sticking can be explained, probably due to
missing data regarding important variables. The proposal of a

well-planned and detailed data collection may be useful for miti-
gating this limitation. The second limitation is related to the
inability to fundamentally describe the observed relationship
between sticking and the identified variables. Future experimental
studies should be considered to address this deficiency. For
instance, researchers can implement a design that includes the
identified variables along with potentially important variables that
were not included in this data analysis approach. Such a study
may yield a more complete and useful multivariate understanding
of tablet sticking. Furthermore, integrating the results of several
such studies involving different formulations may further assist
the effort to generalize results and establish the root causes of
tablet sticking.

4. Conclusion

The purposes of this study were to introduce, assess, and discuss
a manufacturing data analysis approach to gain insights into tab-
let sticking on the industrial scale.

In the first step, we obtained industrial manufacturing data on
approximately 100 variables, encompassing information about
raw materials, processing machines, tablet properties, environ-
mental conditions during production, and processing parameters.

Second, the relevance of the proposed approach in studying
tablet sticking by directly assessing industrial data was deter-
mined. Using a predefined methodology based largely on MVDA,
a total of six variables were identified as significant contributors
to sticking for the proprietary ibuprofen-based formulation.
Among these variables, the average temperatures during com-
pression and storage of intermediate materials before compres-
sion were found to be positively correlated with sticking.
Specifically, higher temperatures are associated with enhanced
sticking. The actual quantity of lubricant dispensed in the formu-
lation, the relative humidity in the mixing and compression rooms
during these steps, and the total duration of stops during com-
pression were found to be negatively correlated with sticking.
Specifically, increases in these parameters mitigated sticking.
These insights point out the role of lubrication, water content,
and the low melting point of ibuprofen in its sticking tendencies.
Therefore, the proposed approach is suitable to identify the
impact of variations within closely defined tolerances, as observed
in industrial pharmaceutical manufacturing processes.

Third, because of a large bias in the developed models for
batches affected by sticking, these models were not suitable for
predicting sticking. The descriptive outcomes exploited to identify
important variables were also affected, since only a small portion
of interclass separation could be explained, and several variables
turned out to be artifacts. A study including batches with more
severe sticking may prevent confusion between the two classes
and address this limitation. Furthermore, a continuous y variable
relying on a large range of sticking behavior may definitively pre-
vent this kind of bias. Moreover, this can help describe the effects
of variables on sticking, allowing for further determination of an
optimal operating range for the identified parameters.

Finally, based on our experiences in conducting this work, we
have proposed and discussed a systematic methodology for
industrial manufacturing data analysis. We suggested a plan for
data collection and an experimental design after data analysis to
create a more complete description and multivariate understand-
ing of tablet sticking.
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Appendix A
Summary of the results from dataset1 using LDA and PLS-DA

PLS-DA was also used to analyze dataset1 and similar results as per LDA was obtained. Below are the results.

Error rates of both LDA and PLS-DA models using dataset 1.
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Variables importance plot for PLS-DA model

Both LDA and PLS-DA models provide similar results in terms of predictive and descriptive outcomes. LDA model has slightly better
performance in classification of about 3–5%. This is probably due the difference in final set of variables selected throughout the two
different optimization processes.
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