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Analysing the positional accuracy of GNSS multi-tracks obtained from 

VGI sources to generate improved 3D mean axes 

The sharing of Global Navigation Satellite System (GNSS) tracks on the Internet 

is increasing enormously. Every day a great number of users capture routes using 

different devices, such as navigators or smartphones, and share these data. 

Individually these tracks present a poor positional accuracy because these devices 

obtain positions with accuracy of about 5-10 metres. In addition, they are usually 

captured for navigation purposes and not for surveying. However, we can take 

advantage of the great quantity of tracks of the same linear element in order to 

obtain a more accurate solution. This study analyses this possibility using a wide 

set of tracks obtained from a circuit of roads in known conditions. More 

concretely, we emulated those tracks obtained by Volunteered Geographic 

Information (VGI) users and we compared the mean axis obtained using all 

tracks with others obtained from a more accurate source. Additionally, we 

analyse the displacement of other axes obtained by varying several parameters 

such as the number of tracks and their length or by dividing the route into 

sections in function of sinuosity, slope, type of road, etc. The results have shown 

an improved 3D mean axis and as a consequence the viability of the method 

proposed in this study in order to use axes obtained from several tracks in maps 

at certain scales. 
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1. Introduction 

In recent years data acquisition and the use of geographic information (GI) has 

experienced a great revolution. We can highlight two main causes, the global access to 

GI given by the Internet applications along with the evolution and worldwide 

distribution of devices using GI, such as smartphones, GPS navigators, etc. As an 
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example, Google Earth was launched in 2005 allowing users access to worldwide 

images and GI, opening up to the general public some of the more straightforward 

capabilities of the Geographic Information Systems (GIS) (Goodchild 2007). In this 

sense Google Earth has been called ‘the democratization of GIS’ (Butler 2006). In 

addition, the development of Spatial Data Infrastructures (SDIs) provides GI shared on 

the Internet by institutions and enterprises using web services, such as those 

standardized by the Open Spatial Consortium (OGC). Secondly, a new paradigm of data 

acquisition is appearing. From geographic data exclusively obtained by institutions and 

enterprises, a user-based data acquisition has appeared and been developed. As an 

example, Open Street Map (OSM) allows users to create and distribute free geographic 

data on the Internet (OSM 2018). Goodchild (2007) proposed the term Volunteered 

Geographic Information (VGI) to reference user-generated geographic data.  

Until now, one of the GI datasets most widely acquired and shared on the 

Internet by VGI users has been GNSS tracks (VGI-GNSS tracks). These tracks were 

collected using GNSS navigators or smartphones along a determined route. As an 

example, GNSS tracks can be derived from vehicle trajectories on roads, bicycles 

following tourist routes, etc., capturing positions (longitude, latitude and height) at a 

certain frequency (usually 1Hz). So tracks are composed of positions (p1, p2, …, pn) 

spaced at a certain time interval. We have to note that other information can be 

available at each position, such as the dilution of GNSS precision (DOP) (based on 

satellite geometry), speed, etc. However, VGI users do not usually share this 

information because applications focus on the geographical position of the vehicle at a 

certain timestamp (which is sufficient for navigation purposes). There are several sites 

that allow sharing VGI-GNSS tracks on the Internet (as examples, OSM, Wikiloc, 

Bikemap, Ridewithgps, JustGoRide, etc.). Until now, several studies have used tracks 



from VGI for different purposes. As examples, there are several studies on obtaining 

and assessing trajectories using data mining techniques (Cao and Krumm 2009; Liu et 

al. 2012; Basiri et al. 2016a; Basiri et al. 2016b), detecting anomalous behaviours in 

trajectories (Huang et al. 2014; Ivanovic et al., 2016), detecting problems of tracks 

obtained from VGI (Gil de la Vega et al. 2016), and which analyse the behaviour of 

vehicles using GNSS tracks from OSM (Mozas-Calvache 2016). Huang et al. (2013) 

described a more detailed analysis of VGI trajectories based on GPS. In addition, other 

studies described the use of GNSS tracks in map inference. As an example, Biagioni 

and Eriksson (2012) described a survey and comparative evaluation of map inference 

algorithms based on the k-means (Edelkamp & Schrödl 2003), trace merging (Cao & 

Krumm 2009) and kernel density estimation (Davies et al. 2006). 

One important aspect of GI, and consequently of VGI, is that final users demand 

reliable data. In recent times there has been an increase of interest in the quality of VGI 

data. ISO (1999) described several quality components of GI (positional accuracy, 

thematic accuracy, temporal accuracy, logical consistency and completeness). Some 

studies have analysed these components of VGI data (Cooper et al. 2011; Antoniou and 

Skopeliti 2015; Senaratne et al. 2017). Among others, the positional component of 

quality has a great importance in GI and more concretely in GNSS tracks obtained by 

VGI users because of the necessities of correct positioning. This component is difficult 

to analyse in shared tracks because of the diversity of acquisition procedures and data. 

As examples, there are a great variety of devices with different technical specifications 

and configuration possibilities, managed by non-professional users for non-surveying 

purposes. Additionally, data could be shared in different applications using several 

formats (GPX, KML, etc.), with several levels of privacy, etc. Finally, as indicated by 



Gil de la Vega et al. (2016), another problem is that there is not always a great 

availability of traces of the same route.  

The GNSS devices usually used by VGI contributors have a positional accuracy 

of about 5-10 metres (Haklay and Weber 2008; Zhang et al. 2010). This value is 

sufficient for navigation purposes because applications include map-matching 

algorithms that correct the position captured on a defined route (White et al. 2000). 

However, this accuracy is not sufficient for using tracks for other purposes such as 

mapping (at scales higher than 1:20000 [ASPRS 1990]) or controlling maps. Thus 

GNSS tracks shared by VGI contributors present a priori a low positional accuracy. 

However, we can take advantage of the large number of tracks of the same linear 

element shared by VGI contributors in order to obtain a more accurate solution. A large 

number of low accurate values could derive into a more accurate mean value. 

To summarize, our assumption is that a mean track derived from a set of tracks 

will provide a more accurate (positional) solution than each individual track. This 

hypothesis is based on the fact that the variance of the average of n independent 

measurements is l/n of the variance of an individual measurement. Our goal is not to 

demonstrate the last relationship exactly. Our objective is to demonstrate empirically 

that there is a reduction and, from there, determine the number and length of the set of 

tracks or sections of tracks to be used. So we have developed an observational study 

under known conditions where we emulate the surveys carried out by VGI users in 

capturing a large number of tracks of a selected road and compare several mean axes, 

determined using different parameters, with a more accurate one. The main goals are to 

demonstrate the above-mentioned assumption and establish these parameters (the 

number and length of the tracks) considering the accuracy of the axis obtained. In 

addition, this study was applied to different types and conditions (sinuosity, slope) of 



roads in order to analyse their possible influence on the accuracy achieved. Considering 

this accuracy, the axes obtained using VGI-GNSS tracks could be used to update 

cartography, control maps, etc. 

This document is structured as follows. Firstly, a description of the method 

implemented and its application to real data is defined in section 2. The main results 

obtained and the discussion of them are shown in section 3. Finally, section 4 describes 

the main conclusions of this study and future work derived from it. 

2. Method and application 

The method is conditioned by the observational study, and the design is focussed on 

accomplishing our hypothesis and objectives. Prior to the presentation of the method, 

some definitions and clarifications are necessary: 

• GNSS tracks (t1, t2, …, tm) of a route are considered as linear elements 

composed of a sequence of edges (e1, e2, …, en-1) defined by vertexes (v1, v2, …, 

vn). The vertexes are related to those positions ([x1, y1, z1], [x2, y2, z2], …, [xn, 

yn, zn]) captured by GNSS devices during the route, ordered by acquisition time. 

A GNSS track section Si is a continuous part of a complete track determined by 

a sectioning criterion. Additionally, tracks and sections can be assigned 

attributes (e.g. slope, sinuosity, road type) that can be used to make selections.  

• Sample of tracks. In our study the population of interest are the tracks 

(understood as complete tracks or as sections of a complete track). This 

population is infinite and is estimated by a sample of tracks obtained under 

known conditions. 



• Reference axis. This is a linestring that corresponds to the axis of the roads used 

in this study. This axis has been surveyed using more accurate methods and is 

considered as the ground truth for our study. 

• Variable of interest (response). In our study the variable of interest is the 

positional accuracy of the mean of a set of tracks/sections. The response is 

measured by the comparison of mean axes derived from the sets of 

tracks/sections versus a source of greater positional accuracy (the reference 

axis). The accuracy is measured using the Vertex Influence Method (VIM) 

(Mozas and Ariza-López 2011, Mozas and Ariza-López 2015). Mean and 

deviations are computed in order to describe the accuracy achieved. 

• Factors (or inputs to the process). Factors are all the several aspects which we 

consider can influence the results. In our case the factors to be considered are: 

number of tracks/sections, length of tracks/sections (by sectioning original 

tracks), slope of tracks/sections and sinuosity of tracks/sections. 

• Levels (settings of each factor in the study). In our study the levels are the 

following: 

o For the quantity, we considered nine levels [5, 10, 15, 20, 25, 30, 40, 50, 

60] 

o For the length, we considered four levels [1000, 2000, 5000, 10000] 

o For the slope, we considered three levels (Low, Medium and High) [L, 

M, H] 

o For the sinuosity, we considered three levels (Low, Medium and High) 

[L, M, H] 

2.1. Method 



In this study, we develop five analyses that have a common method part. These analyses 

are: 

A1. Analysis of the positional accuracy achieved by the mean axis calculated from 

the set of all the complete tracks. The objective is to generate a mean axis using 

the greatest and most complete possible sample. 

A2. Analysis of the positional accuracy achieved by the mean axis calculated from a 

certain number n = [5, 10, 15 ...] of complete tracks. In this case, a bootstrap 

process is applied (resampling with replacement). The objective is to see how 

positional accuracy varies according to the number of tracks. 

A3. Analysis of the positional accuracy achieved by the mean axis calculated from 

homogeneous sections for different criteria (e.g. slope, sinuosity, etc.). The 

objective is to learn whether these aspects (e.g. slope, sinuosity, etc.) have an 

influence on positional accuracy. 

A4. Analysis of the positional accuracy achieved by the mean axis calculated from a 

certain number n = [5, 10, 15 ...] of homogeneous sections for different criteria 

(e.g. slope, sinuosity, etc.). In this case, a bootstrap process is applied 

(resampling with replacement). The objective is to know how the positional 

accuracy varies depending on the number of tracks for each type of criterion. 

A5. Analysis of the positional accuracy achieved by the mean axis calculated from a 

certain number n = [5, 10, 15 ...] of sequences of sections of a given total length 

lt = [1000, 2000, 5000 ...]. In this case, a bootstrap process is applied 

(resampling with replacement). The objective is to know how positional 

accuracy varies according to the total length of the set of sections. 

The five analyses mentioned above share the calculation method. The method is 

summarized in Figure 1. This figure shows the calculation method (in grey) and the 



criteria and parameters that are established on the data (GNSS sections) for each of the 

five analyses. In the case of bootstrapping, the number of iterations is 100. As can be 

seen, all analyses are performed against the reference data. Below the calculation 

process will be explained in more detail in a general way (valid for the five analyses). 

 

Figure 1. Method developed in this study 

The procedure for obtaining a mean axis from several tracks/sections is 

described below. Firstly, we obtained a mean linestring from the selected tracks/sections 

developed in the go direction and another mean linestring using the tracks/sections of 

the return direction. In this case, we used the K-means algorithm (MacQueen 1967; 

Edelkamp & Schrödl 2003) that consists of the determination of some cluster seeds 

along the element to be determined. The vertexes of all tracks/sections were assigned to 

each cluster depending on their distance to the seeds and afterwards the cluster seeds 

were recalculated using all the vertexes that compose each cluster. This procedure is 

repeated until all vertexes are definitively assigned to one cluster and there are no 



changes in the assignation. The mean linestring will be composed of the collection of 

the centre of the clusters obtained (Go Mean Vertexes [GMV] and Return Mean 

Vertexes [RMV]). The selection of K-means algorithm was based on the characteristics 

of tracks shared by VGI contributors. Thus these tracks are usually very heterogonous, 

with variable density (captured at different frequencies), interruptions, differences in 

starting and ending points, etc. These conditions imply using algorithms based on 

clustering in contrast to those based on the sequence of vertexes of tracks. 

Secondly, once there are two mean linestrings defined by GMV and RMV (go 

and return), we obtain the final axis of the track/section using the Condensation Method 

(Mozas-Calvache and Ariza-López 2017). For two linestrings this method consists of 

the determination of the vertexes of the mean axis (Mean Axis Vertexes [MAV]) by 

ordering all the crosses between both lines and the middle points of the lines that 

connect each vertex of one line to another and vice versa. After that, a filtering process 

based on a minimum distance between consecutive vertexes could be carried out in 

order to reduce the quantity of vertexes that composes the axis obtained. The final axis 

(FAV) is composed of the MAVs that are not removed after this filtering procedure. So 

far, two averages have been calculated. The first is to obtain each of the vertices of the 

GMV and RMV axes. These vertices are the centroids of the clusters. In each of them 

different quantities of cases (n = [5, 10, ...]) intervene. Therefore, an estimate of its error 

is 𝜎𝜎2 𝑛𝑛⁄ ; And the second is to obtain each one of the vertexes of the MAV. Here only 

two vertices of the previous type intervene. For this reason, the error is 𝜎𝜎2 2𝑛𝑛⁄ . As 

indicated previously, our goal is not to demonstrate the last relationship exactly but 

demonstrate empirically that there is a reduction and, from there, determine the number 

and length of the set of tracks or sections of tracks to be used. 



Finally, the FAV derived from the considered set of tracks/sections was 

compared to the reference axis. This comparison was based on the determination of the 

positional differences using the Vertex Influence Method (VIM) both in 2D and in 3D. 

This method consists of the determination of the distances from the vertexes of the more 

accurate linestring (reference) to the linestring to be controlled (FAV). The mean 

displacement is obtained by weighting all distance values by the length of the adjacent 

segments (reference linestring) to the implicated vertex. 

2.2. Data and application 

2.2.1 Data 

The application of this method was developed using a field survey based on a GNSS 

device capturing positions of several roads that emulate those captured by VGI 

contributors. More concretely, we selected a closed circuit of about 12136 metres 

composed of two types of roads (main and local) with great variability in sinuosity and 

slope (Figure 2a and Figure 2c). Table 1 describes the main aspects of the roads used in 

this study. The N323 main road (Figure 2a) was located along a valley, the JV3231 

local road connected this main road to several villages and the JV2227 local road was 

an old road used infrequently (Figure 2b). This circuit was surveyed 69 times using a 

GNSS navigator (Columbus V-990) (Figure 3a) such as those commonly used by VGI 

contributors. The main characteristics of the sample of GNSS tracks used in this study 

are shown in Table 2. 

Table 1. Characteristics of the roads used in this study 

 Width Road 

shoulder 

Sinuosity Slopes Roadside 

vegetation 



N323 7 m 1.5 m Low Low Abundant 

JV3231 6 m No Low-

Medium 

High Occasional 

JV2227 5 m No High High Occasional 

 

Table 2. Main characteristics of the sample of GNSS tracks used in this study. 

 Go Return 

Device Columbus V990 Columbus V990 

Accuracy 3m CEP; 5m CE (95%) 3m CEP; 5m CE (95%) 

Number of complete 

tracks 

69 69 

Number of kilometres 837 837 

Number of positions 55200 55800 

Mean distance between 

positions 

15.1 m 15.0 m 

Average capture speed 55 km/h 55 km/h 

 

The procedure for obtaining a mean linestring using more than two tracks was carried 

out using the K-means algorithm (Edelkamp and Schrödl 2003). We used the vertexes 

of the tracks with lower displacements (using VIM) with respect to the other tracks as 

seeds. In addition, a maximum distance of 20 metres (about four times the value of 95% 

CE) was used as filtering in each cluster calculation to avoid the inclusion of 

undesirable values. After that, an axis was determined using pairs of linestrings from 

both directions (go and return) through the Condensation Method. Finally, we compared 

these cases to another axis obtained from a more accurate source that was used as 



control using VIM. 

The base data for the reference axis were obtained through a GNSS accurate 

survey developed using a geodetic-surveying GNSS system. More concretely, we used a 

Leica System 1200+ GNSS device with 10mm+1ppm and 20mm+1ppm both in 

horizontal and vertical components for kinematic post-processing accuracy. The GNSS 

processing was developed using data downloaded from the UJAEN GNSS reference 

station located 18 kilometres from the study zone (Berrocoso et al. 2006). The GNSS 

observation data were captured at 1Hz, surveying both edges of the roads using a device 

that guaranteed the levelling and height of the GNSS antenna (Figure 3b) (Ariza-López 

et al. 2015). The GNSS surveying was carried out by one operator walking along the 

edge of the roads, and as a consequence the number of points captured presented a great 

density. After GNSS processing, two linestrings referring to both edges of the roads 

were obtained. The reference axis of the road was calculated using the Condensation 

Method. After filtering, more than 11300 vertexes composed the final reference axis, 

which supposed a mean value of 1 metre between contiguous vertexes. Both the GNSS 

tracks dataset and the accurate GNSS dataset used in this study are available in Ariza-

López et al. (2018). 



 

Figure 2. Zone of study: a) roads used in this study (background: PNOA orthoimage 

provided by Instituto Geográfico Nacional of Spain); b) views of roads (views provided 

by Google Earth); c) longitudinal profile of the route. 

 

Figure 3. GNSS surveys: a) GNSS navigator used in tracks survey; b) Leica GNSS 

1200+ used in the accurate survey. 

2.2.2 Application 

After obtaining both the sample of GNSS tracks and the reference axis (Figure 4a and 

Figure 4c), we applied the previously-described method using the complete sample of 



tracks/sections and several resamples, depending on the analysis case. All the studies 

were developed in order to analyse the positional accuracy achieved with the FAV 

(which is a mean axis) derived from the data under analysis versus the reference axis. 

Below are some details of each of the analyses (A1, A2…A5). 

A1. Firstly, we obtained a mean axis using all Columbus GNSS tracks (69 of go 

and return) (Figure 4b). The linestrings obtained from go and return surveys derived a 

FAV that is compared to the reference axis using VIM.  

A2. Secondly, we used a random selection with replacement of 5, 10, 15, 20, 25, 

30, 40, 50 and 60 GNSS tracks of all routes, obtaining an FAV for each case. These 

axes were compared to the reference axis. This process was repeated 100 times, 

obtaining 100 values of displacements both in 2D and in 3D. 



 

Figure 4. Examples of datasets used in this study: a) Columbus GNSS tracks (69 of go 

direction and 69 of return direction); b) Columbus go and return linestrings and mean 

axis for 69 tracks; c) Leica accurate survey and mean reference axis obtained. 

(Background: PNOA orthoimage provided by Instituto Geográfico Nacional of Spain). 



A3. Thirdly, we divided the route into homogeneous sections (Table 3) by 

considering three types of road (N323, JV3231, JV2227), three classes of average slope 

(low, medium and high slope, <2%, 2-6% and >6% respectively) and three classes of 

sinuosity (low, medium and high sinuosity). The slope and sinuosity classes definition 

were based on the obtaining of similar sets in length. The selection of sections based on 

slope and sinuosity was performed by dividing the route into sections of 50 metres of 

length and computing the average slope and sinuosity of these sections. The calculation 

of sinuosity was carried out using the “Calculate Sinuosity” ArcGIS plugin, selecting 

values in the interval (0.9994, 1] for the Low Sinuosity class, (0.997; 0.9994] for the 

Medium Sinuosity class and values lower than 0.997 for the High Sinuosity class.  

A4. Fourthly, as in the analysis A1, we applied this 100 times to the random 

selection with replacement of 5, 10, 15, 20, 25, 30, 40, 50 and 60 homogeneous 

sections. 

Table 3. Characteristics of datasets used in the analysis by sections of the route 

Case Initial K.P. Final K.P. Length (m) 

N323 0 3508 3508 

JV3231 3508 6281 2773 

JV2227 6281 12136 5855 

Low slope (%) (<=2) - - 3850 

Medium slope (%) (2, 6) - - 4250 

High slope (%) (>=6) - - 4036 

Low sinuosity (0.9994, 1]) - - 4150 

Medium sinuosity (0.997, 0.9994] - - 3986 

High sinuosity (≤0.997) - - 4000 

 



A5. Fifthly, in order to analyse the influence of the length of the tracks we 

selected several sets of sections of tracks whose characteristics are displayed in Table 4. 

The set of sections are composed by 10, 20, 50, 100 randomly selected sections of 100 

m length; 2, 4, 10, 20 randomly selected sections of 500 m length and 1, 2, 5, 10 

randomly selected sections of 1000 m length. The main goal was to determine whether 

the length of the track presented any influence on the accuracy obtained. As in previous 

analysis, we applied this 100 times to the random selection with replacement of 5, 10, 

15, 20, 25, 30, 40, 50 and 60 tracks from which the random section of the sets of 

sections is performed. 

Table 4. Definition of cases for the analysis by length. 

Case Number of sections Length of each 

section (m) 

Total length (m) 

L10x100 10 100 1000 

L2x500 2 500 1000 

L1x1000 1 1000 1000 

L20x100 20 100 2000 

L4x500 4 500 2000 

L2x1000 2 1000 2000 

L50x100 50 100 5000 

L10x500 10 500 5000 

L5x1000 5 1000 5000 

L100x100 100 100 10000 

L20x500 20 500 10000 

L10x1000 10 1000 10000 



3. Results and discussion 

The results of each of the analyses performed in this study are described below. The 

results are shown in graphs that display the displacements obtained (vertical axis of the 

graph) with respect to the number of tracks/sections (horizontal axis of the graph), both 

in 2D and in 3D. This type of graph was previously used in other studies such as Ariza-

López et al. (2011) in order to analyse the influence of the sample size in positional 

assessments based on lines. We have to note that the 2D and 3D graphs present the 

vertical axis displaced but equally scaled. 

3.1. Mean axis of all elements (analysis A1) 

First, we obtained the mean value of VIM displacement between the reference axis and 

that derived from all Columbus tracks (69 tracks of each go and return direction) for the 

full route of 12136 metres. The mean value of displacement was 1.28 m in 2D (VIM2D) 

and 3.71 m in 3D (VIM3D). This 2D value supposes that this axis could be used for 

planimetric purposes at scales lower than 1: 7000. The Columbus GNSS device used in 

this study presented an a priori accuracy of about 3 metres in horizontal positioning 

(50% CEP) (Columbus V990 specifications). By using a more accurate and independent 

reference for the calculation of positional accuracy, these results have demonstrated our 

main hypothesis related to the possibility of obtaining a more accurate mean axis from a 

set of GNSS tracks with respect to that derived from individual tracks.  



 

Figure 5. Examples of the comparison of axes obtained (reference axis vs. Columbus 

axis [using 69 GNSS tracks]): a) road N323; b) road JV3231; c) road JV2227. 

(Background: PNOA orthoimage provided by Instituto Geográfico Nacional of Spain). 

Figure 5 shows some examples that compare the reference axis and the axis 

obtained from the sample of 69 GNSS tracks. These examples show clear differences 

depending on the sinuosity of the route and the type of road. In this sense, the greatest 

displacements appeared in narrow roads and in zones of curves mainly based on 



capturing problems derived from occlusions. In addition, driving behaviour is another 

aspect to consider in curve zones. In these zones, there is a clear tendency for drivers to 

increase the radius of curves (see examples in Figure 5). 

Figure 6 shows some examples of individual differences (distances) obtained 

between the vertexes of the reference axis with respect to the FAV obtained using 69 

GNSS tracks. These examples shows that the greatest differences mainly appear in 

curve zones with high sinuosity (XY case) and built-up areas (Z case). 

 

Figure 6. Examples of XY and Z differences obtained between vertexes of reference 

axis and Columbus axis: a) and b) XY differences; c) and d) Z differences (Background: 

PNOA orthoimage provided by Instituto Geográfico Nacional of Spain). 

3.2. Number of complete tracks (analysis A2) 

Second, the mean results for the case A2 analysis are displayed in Figure 7. 

These results shows curves of mean displacements that approached the results of the full 



sample (69 tracks) and dispersions that were reduced with the increase of the number of 

tracks. However, there were great differences between 2D and 3D, mainly in 

dispersions. The results have shown that it is not necessary to use 69 tracks. As Figure 7 

reflects, a very similar accuracy can be achieved using a reduced number of GNSS 

tracks (mainly in 2D). Based on this graph, we could select a lower number of tracks 

considering the purpose and accuracy requirements of the mean axis. As a general 

suggestion we recommend using a minimum of 15 tracks in order to limit the variability 

to the order of ±0.1metre in the 2D case. In the 3D case, the dispersions are greater than 

in the 2D case. Thus, the dispersion achieves 0.60 metres using 15 tracks. To reduce the 

dispersions of the 3D case we suggest using a large number of tracks (e. g. with 50 

tracks the variability is in the order of ±0.2 metres). To establish this value we must 

consider that the Z accuracy (using GNSS) is usually worse than the X and Y 

accuracies. 

 

Figure 7. Results of VIM displacements (2D and 3D) of complete tracks depending on 

the number of tracks: Mean VIM value of all tracks (69) on yellow line (as reference), 

mean value of VIM displacement on continuous black line and the dispersion given by 

the standard deviation values on discontinuous black lines. 

3.3. Homogeneous sections (analysis A3) 

The results obtained after dividing the tracks into homogeneous sections considering 

several parameters are shown in Table 5 (69 GNSS tracks). They correspond to mean 



values of displacement between the reference axis and the FAV axes of these sections. 

These results show differences between the displacements obtained both in the 2D and 

in 3D cases. 

Table 5. VIM displacements for each homogeneous section.  

Criteria Case 2D (m) 3D (m) 

Complete sample Complete tracks 1.28 3.71 

Type of road N323 1.01 3.64 

JV3231 1.18 2.37 

JV2227 1.50 4.39 

Slope Low slope (%) (≤2) 1.21 3.86 

Medium slope (%) (2, 6) 1.29 3.68 

High slope (%) (≥6) 1.33 3.60 

Sinuosity Low sinuosity (0.9994, 1]) 1.19 4.11 

Medium sinuosity (0.997, 0.9994] 1.33 3.56 

High sinuosity (≤0.997) 1.31 3.44 

3.4. Homogeneous sections and quantity (analysis A4) 

Figure 8 shows the mean results of obtaining 100 axes using samples of 5, 10, 15, 20, 

25, 30, 40, 50 and 60 tracks selected randomly with replacement considering these 

sections.  

The analysis by the type of road (Figure 8a) shows that the main road N323 

presented the lowest displacement and the local road JV2227 shows the greatest values 

in 2D while the local road JV3231 shows the best behaviour in 3D. In the 3D case, there 

were greater differences between all cases. In this case, the JV2227 shows the greater 

displacements. 



The study by slopes (Figure 8b) shows similar displacements in 2D but with an 

increase of the differences with the slope. The lowest displacements were related to the 

lowest slopes and the highest to the highest slopes. In the 3D case, the results show 

inverse tendencies with respect to the 2D case. Thus, the highest slopes show the lowest 

differences and the lowest slopes show the greatest differences. 

Finally, the analysis by sinuosity (Figure 8c) also shows differences between 2D 

and 3D cases. In the 2D case, the results show the lowest displacements in the low 

sinuosity case (0.9994, 1]. In contrast, the 3D case show that the sections with the 

highest sinuosity (≤0.997) presented lower displacements with respect to the sections of 

lower sinuosity. 

 



Figure 8. Results of VIM displacements (2D and 3D) by sections and depending on the 

number of tracks. 

The analysis of the results of displacements of several sections of the route 

shows differences between 2D and 3D. In the 2D case, the results of mean displacement 

show that the N323 road presented the best behaviour while the JV2227 road had 

greater values of displacements. This is coherent if we take into account the possible 

influence of occlusions in positioning. Occlusions are more probable in narrow roads 

(JV2227). However, the slope and sinuosity showed lower influence in the 2D case. 

Therefore, the main factor is related to the type of road and more concretely, the 

presence (or not) of occlusions. On the other hand, the case of 3D displacements shows 

some differences with respect to the 2D cases. In the case of JV2227 the displacements 

were the greatest, as occurred in the 2D case. However, there was a great reduction of 

displacement in the JV3231 case. These results of slope and sinuosity were opposite in 

the 3D case with respect to the 2D case. The best behaviour was obtained in the highest 

slopes and the highest sinuosity cases. Despite the differences in horizontal and vertical 

accuracies of GNSS devices, we have detected anomalous behaviours depending on the 

section analysed between 2D and 3D displacement. We suppose that these results and 

differences between 2D and 3D results were widely conditioned by the presence of 

occlusions and multipath effects. 

3.5. Total length of a sequence of sections (analysis A5) 

The results of the analysis by total length of sections are displayed in Figure 9. In all 

cases, graphs show more stable curves with the increase in length and number of 

sections. More concretely, the variability of curves is greater in 3D (cases of lengths of 

1000 metres and 2000 metres) (Figure 9a and Figure 9b). The analysis of the total 

length of the sections shows some variability in the cases of 1000 metres and 2000 



metres (more clearly in 3D), but we cannot establish clear differences in order to 

determine a minimum number of tracks. Therefore, we consider that this aspect is 

independent in selecting a sample of sections.  

 



Figure 9. Results of VIM displacements (2D and 3D) by length of tracks and depending 

on the number of tracks. 

4. Conclusions 

This study has analysed the positional accuracy of mean axes of roads obtained from 

GNSS tracks such as those acquired and shared on the Internet by VGI contributors. 

The analysis has been based on the comparison of these axes with respect to another 

axis obtained from a more accurate source. In addition to the method used, the great 

amount of data and the analysis developed, the main novelty of this study has been the 

application both in 2D and in 3D. More concretely, the method, which has been applied 

on a large sample of GNSS tracks, has demonstrated the possibility of increasing the 

positional accuracy of the result by using a mean axis obtained from a set of tracks 

instead of individually. This aspect is very important considering the new paradigm of 

GI where users have become active contributors. Moreover, this study has also analysed 

the consequences from the perspective of the positional accuracy results of using 

several parameters in the determination of the axes, such as the number (sample size) 

and the length of sections, and the variability of the displacements related to some 

aspects such as the type of road, slopes, sinuosity of the route, etc. 

In conclusion, the results of applying the method proposed in this study have 

demonstrated our assumptions, allowing us to suggest a minimum number of about 15 

tracks for general purposes in 2D. The results also confirm that height data obtained 

from GNSS tracks presented discrepancies up to 3 times greater than horizontal 

components. In addition, we obtained more variability in mean displacements of 3D 

case. We suggest a minimum number of about 50 tracks for general purposes in 3D. 

Another important aspect to take into account is related to the surveying of data. 

The type of the road and the presence of occlusions have a great influence on the results 



obtained. In addition, driving behaviour is also important because the usual trend of 

drivers is to increase the radius of curves. Finally, the analysis of the length of GNSS 

sections has not shown important differences. In this case, we do not consider it a 

relevant parameter to be taken into account. 

Future work will focus on the specific analysis of the aspects suggested in this 

study that could affect the positional accuracy of the original GNSS tracks, such as the 

presence of occlusions caused by vegetation or road cut-slopes. The application to urban 

areas is another interesting study to be developed due to the potential increment of 

issues derived from occlusions and multipath effects. Additionally, we could analyse the 

improvements in accuracy derived from the appearance of new GNSS devices that 

include new positioning systems (Galileo, etc.). 
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Figure captions: 

Figure 1. Method developed in this study. 

Figure 2. Zone of study: a) roads used in this study (background: PNOA orthoimage 

provided by Instituto Geográfico Nacional of Spain); b) views of roads (views provided 

by Google Earth); c) longitudinal profile of the route. 

Figure 3. GNSS surveys: a) GNSS navigator used in tracks survey; b) Leica GNSS 

1200+ used in the accurate survey. 

Figure 4. Examples of datasets used in this study: a) Columbus GNSS tracks (69 of go 

direction and 69 of return direction); b) Columbus go and return linestrings and mean 

axis for 69 tracks; c) Leica accurate survey and mean reference axis obtained. 

(Background: PNOA orthoimage provided by Instituto Geográfico Nacional of Spain). 

Figure 5. Examples of the comparison of axes obtained (reference axis vs. Columbus 

axis [using 69 GNSS tracks]): a) road N323; b) road JV3231; c) road JV2227. 

(Background: PNOA orthoimage provided by Instituto Geográfico Nacional of Spain). 

Figure 6. Examples of XY and Z differences obtained between vertexes of reference 

axis and Columbus axis: a) and b) XY differences; c) and d) Z differences (Background: 

PNOA orthoimage provided by Instituto Geográfico Nacional of Spain). 

Figure 7. Results of VIM displacements (2D and 3D) of complete tracks depending on 

the number of tracks: Mean VIM value of all tracks (69) on yellow line (as reference), 

mean value of VIM displacement on continuous black line and the dispersion given by 

the standard deviation values on discontinuous black lines. 

Figure 8. Results of VIM displacements (2D and 3D) by sections and depending on the 

number of tracks. 

Figure 9. Results of VIM displacements (2D and 3D) by length of tracks and depending 

on the number of tracks. 
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