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Abstract—The individual consistency and the consensus degree
are two basic measures to conduct group decision making with re-
ciprocal preference relations. The existing frameworks to manage
individual consistency and consensus degree have been investigated
intensively and follow a common resolution scheme composed by
the two phases: the consistency improving process, and the consen-
sus reaching process. But in these frameworks, the individual con-
sistency will often be destroyed in the consensus reaching process,
leading to repeat the consistency improving process, which is time
consuming. In order to avoid repeating the consistency improving
process, a consensus reaching process with individual consistency
control is proposed in this paper. This novel consensus approach is
based on the design of an optimization-based consensus rule, which
can be used to determine the adjustment range of each preference
value guaranteeing the individual consistency across the process.
Finally, theoretical and numerical analysis are both used to justify
the validity of our proposal.

Index Terms—Consensus, consistency, group decision making
(GDM), optimization, preference relations.

I. INTRODUCTION

THE reciprocal preference relation (RPR) is one of the most
widely used preference representation structures in deci-

sion problems. Various types of RPRs have been proposed, such
as additive preference relations (also called reciprocal fuzzy
preference relations) [1]–[4], multiplicative preference relations
[5]–[9], and linguistic preference relations [10], [11]. In group
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decision making (GDM) problems with RPRs, there are the fol-
lowing two measures that have been considered before obtaining
a final solution [12].

1) Individual consistency. The individual consistency is ap-
plied to ensure that decision maker is being neither random
nor illogical in his/her pairwise comparisons.

2) Consensus. Consensus means that the group of decision
makers agreed to their preferences to some extent.

In order to effectively manage individual consistency and
consensus in the GDM with RPRs, Chiclana et al. [12] and
Herrera et al. [13] initiated the consensus framework for inte-
grating an individual consistency measure in GDM with additive
RPRs. This consensus framework deals with a two-step proce-
dure: consistency improving process and consensus reaching
process. Dong et al. [14] proposed a new automatic consen-
sus framework to address the GDM with multiplicative RPRs
by incorporating consistency and consensus measures into one
phase. Based on the framework presented in [14], Wu and Xu
[15] presented a consistency consensus based model for GDM
with additive RPRs. In recent years, these frameworks were
extended to interval-value preference relations [16], intuitionis-
tic preference relations [17], [18], hesitant preference relations
[19]–[21], and linguistic preference relations [22]–[26] to man-
age individual consistency and consensus in GDM.

Although the frameworks to manage individual consistency
and consensus have been investigated intensively, and they are
very useful in GDM, there still exist gaps that must be filled
because of the following reasons.

1) In GDM problems with RPRs, the individual consistency
improving process is applied before the consensus reach-
ing process [12], [13] and it could happen that the adjusted
preferences in the consensus process are not consistent.
Hence, the inconsistency of the individual preferences
leads to repeat the consistency improving process and the
consensus process again, which is time consuming.

2) The consensus frameworks that can simultaneously man-
age the individual consistency and consensus in one phase
without repeating consistency improving processes [14],
[15] are based on an automatic consensus process that
does not consider decision makers’ opinions during the
consensus reaching process.

In order to overcome previous shortcomings, this paper pro-
poses a novel consensus approach to manage individual con-
sistency and consensus in GDM with RPRs. This proposal is
carried out by the following points.
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1) An optimization-based consensus rule (OCR) is defined,
which is the core idea of this novel consensus approach.
The OCR can be used to determine the adjustment ranges
of each preference value and guarantee the individual con-
sistency of the RPRs adjusted in the adjustment ranges.
In order to obtain the optimum solution of the proposed
consensus rule, an approximate algorithm (Algorithm 1)
with an adjustment parameter is proposed. It provides a
good approximate performance.

2) We develop a consensus reaching process with indi-
vidual consistency control and provide an algorithm
(Algorithm 2) to describe this process. In this process,
the decision makers’ opinions are considered and the con-
sensus is achieved with the decision makers’ participation.
Besides, the theoretical analysis shows that the adjusted
RPRs are of acceptably consistency and acceptable con-
sensus in the consensus reaching process. Moreover, based
on Algorithm 2, we present Algorithm 3 to automatically
simulate the proposed consensus reaching process.

Finally, some experimental simulations regarding the consen-
sus convergence with the individual consistency are provided.
They show that the consensus improves for each iteration and
the individual consistency is guaranteed without repeating the
consistency improving process, which justifies the feasibility
and viability of the proposed consensus approach.

In order to develop our proposal, we consider the consistency
improving method proposed in [27] and the identification and
direction rules from the consensus approach presented in [28].

The remainder of this paper is organized as follows: Section II
introduces the background regarding the consistency and con-
sensus methods in GDM with RPRs. Section III presents the
motivation of this study: how to deal with both the consistency
and the consensus in GDM. Section IV develops a consensus
rule with individual consistency control via an optimization-
based model in GDM with RPRs and also presents the consen-
sus reaching process based on the proposed consensus rule.
Section V explores the use of the consensus reaching pro-
cess with individual consistency control by means of simu-
lation experiments. Finally, concluding remarks are included
in Section VI.

II. PRELIMINARIES

This section introduces some basic concepts about GDM
based on RPRs, measuring and improving individual consis-
tency and group consensus in GDM with RPRs.

A. GDM Based on RPRs

Let X = {x1 , x2 , . . . , xn}(n ≥ 2) be a finite set of alterna-
tives. When a decision maker makes pairwise comparisons us-
ing the preference values in [0, 1], he/she can construct a fuzzy
reciprocal preference relation (also called additive preference
relation) F = (fij )n×n , whose elements fij ∈ [0, 1] represent
the preference degree of alternative xi over xj . Fuzzy reciprocal
preference relations can be formally defined as follows.

Definition 1 ([4], [29]): A fuzzy reciprocal preference re-
lation F on a set of alternatives X = {x1 , x2 , . . . , xn} is

a fuzzy set on the product set X ×X , characterized by a
membership function μF : X ×X −→ [0, 1] fulfilling μF
(xi, xj ) + μF (xj , xi) = 1.

The preference relation may be conveniently represented by
the n× n matrix F = (fij )n×n with fij = μF (xi, xj ) ∈ [0, 1]
and fij + fji = 1 (∀i, j ∈ {1, 2, . . . , n}), where fij is inter-
preted as the preference degree or intensity of the alternative xi
over xj . fij = 1 indicates that the maximum degree of prefer-
ence of xi over xj and each value of fij in the open interval
(0.5, 1) indicates a definite preference of xi to xj with the in-
tensity of preference corresponding to the value of fij (a higher
value means a stronger intensity).

There are transformation functions between fuzzy reciprocal
preference relations and multiplicative preference relations [5],
[30]. In this paper, we focus our study on fuzzy reciprocal prefer-
ence relations, but the proposed results can be similarly applied
to multiplicative preference relations and linguistic preference
relations. In order to pursue generality, in this paper, fuzzy re-
ciprocal preference relations will be denoted as RPRs.

Let D = {d1 , d2 , . . . , dm}(m ≥ 2) be the set of decision
makers involved in the GDM problem and letFk = (fkij )n×n be
the RPR over the alternative setX = {x1 , x2 , . . . , xn}(n ≥ 2),
provided by a decision maker dk (k = 1, 2, . . . ,m). Tradition-
ally, a selection process is applied to a GDM problem to obtain a
ranking of alternatives and select the best one. It is divided into
two different phases: aggregation phase and exploitation phase
[31], [32].

1) In the aggregation phase, the individual RPRs are aggre-
gated into a collective RPR Fc = (fcij )n×n by using an
aggregation operator. There are different aggregation op-
erators that can be applied, such as the weighted average
(WA) [33], the ordered weighted average (OWA) [34], etc.
In this paper, without loss of generality, the WA operator
is used.

Definition 2: Let {f 1
ij , f

2
ij , . . . , f

m
ij } be the individual fuzzy

preference degrees of alternative xi over xj , i, j = 1, 2, . . . , n,
andW = {w1 , w2 , . . . , wm} be their associated weights. Then,
based on the WA operator, the collective fuzzy preference degree
fcij is obtained as follows:

fcij = WAW (f 1
ij , f

2
ij , . . . , f

m
ij ) =

m∑

k=1

wk · fkij , for i,

j = 1, . . . , n. (1)

2) The exploitation phase obtains the ranking of alternatives.
There are various approaches in the literature to rank al-
ternatives, such as the approaches based on dominance
and nondominance degrees of alternatives [29], [35].

B. Measuring and Improving Individual Consistency in GDM
With RPRs

In this section, we review the consistency index (CI) of RPRs
[29] and the optimization-based method to improve the con-
sistency of RPRs [27], which will be used as a basis of our
proposal.



LI et al.: CONSENSUS BUILDING WITH INDIVIDUAL CONSISTENCY CONTROL IN GROUP DECISION MAKING 321

Herrera-Viedma et al. [29] proposed the CI based on the
additive transitivity to evaluate the individual consistency of an
RPR F as follows:

CI(F ) = 1 − 2
3n(n− 1)(n− 2)

n∑

i,j,k=1

|fij

+ fjk − fik − 0.5|. (2)

The larger the value of CI(F ), the more consistent F . If
CI(F ) = 1, then F is a consistent RPR.

In general, in GDM problems, decision makers may establish
a consistency threshold CI for the consistency index of an RPR
F . When CI(F ) ≥ CI, F is considered of acceptable consis-
tency; otherwise, F is considered of unacceptable consistency.

Zhang et al. [27] presented an optimization-based consistency
improving model. In order to obtain the adjusted RPR F ′ =
(f ′ij )n×n , which is not only of acceptable consistency but also
preserves as much information as possible in the original RPR
F , the optimization-based model [27] minimizes the Manhattan

distance between F and F ′, i.e., min
∑n

i,j=1
|fi j −f ′

i j |
n2 .

Simultaneously, to guarantee that the adjusted RPR F ′ of
acceptable consistency, we have

CI(F ′) ≥ CI.
Moreover, based on the definition of an RPR (Definition 1),

we have
f ′ij + f ′j i = 1.
As a result, an optimization model to deal with inconsistency

in F can be constructed as follows:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
n∑

i,j=1

|fi j −f ′
i j |

n2

s.t. f ′ij + f ′j i = 1

CI(F ′) ≥ CI.

(3)

Note 1: In this paper, we use model (3) to automatically deal
with the inconsistency of RPRs. If we use other consistency
improving methods (e.g., [3] and [12]), our proposal, in this
paper, will be still valid.

C. Consensus Reaching Process for GDM With RPRs

The consensus reaching process is defined as a dynamic and
iterative group discussion. By computing the consensus degree,
we can find out the actual level of consensus among the decision
makers. If the consensus level (CL) is not acceptable, a feedback
process should be applied to improve the consensus. Otherwise,
the CL is acceptable and the selection process should be applied
to obtain the final consensus solution to the GDM problem. A
general consensus process is shown in Fig. 1.

Different consensus models have been proposed during re-
cent decades [36]–[45]. Generally, the computation of consen-
sus measure for GDM is often done by measuring the difference
between individual opinions and group opinion. The CL asso-
ciated with the decision maker dk is given by [12], i.e.,

CLk = 1 −
n∑

i,j=1;i �=j

|fkij − fcij |
n(n− 1)

. (4)

Fig. 1. General consensus reaching process scheme [36].

The CL among the RPRs Fk = (fkij )n×n (k = 1, 2, . . . ,m),
associated with all decision makers {d1 , d2 , . . . , dm}, is given
as follows:

CL(F 1 , F 2 , . . . , Fm ) =
1
m

m∑

k=1

CLk . (5)

Clearly, CLk ,CL ∈ [0, 1]. A larger CL value indicates
a higher consensus degree among all decision makers
{d1 , d2 , . . . , dm}. If CL(F 1 , F 2 , . . . , Fm ) = 1, then all deci-
sion makers {d1 , d2 , . . . , dm} are of fully consensus.

In practice, a consensus threshold CL is established
for defining the necessary consensus level CL. When
CL(F 1 , F 2 , . . . , Fm ) ≥ CL, the consensus has been achieved;
otherwise, another discussion round starts with the feedback
process to make RPRs closer to each other.

In the feedback process, some advice is generated to achieve
a solution with a higher degree of consensus. To do so, it is
necessary to identify which decision makers are farther from the
collective RPR and how they should change their preferences.
Therefore, the following two consensus rules are introduced
[28].

1) Identification rule. The identification rule identifies the
decision makers contributing less to reach a high degree
of consensus. Generally, the decision maker dr , where
CLr = min{CL1 , . . . ,CLm}, needs to change his/her
preferences.

2) Direction rule. The direction rule finds out the direction
to change the preferences of decision makers. To do this,
the following two direction rules are defined.

a) If frij is smaller than fcij , then the decision maker dr
should increase the evaluation associated with the
pairwise (xi, xj ).

b) If frij is larger than fcij , then the decision maker dr
should decrease the evaluation associated with the
pairwise (xi, xj ).

III. CONSISTENCY VERSUS CONSENSUS: HOW TO DEAL WITH

BOTH CONCEPTS IN GDM

As mentioned previously in Section I, in the existing studies,
there are two main problems:

1) Losing consistency during the consensus process
[12], [13].

2) Ignoring decision makers during the consensus reaching
process [14], [15].

According to the two problems, one question has been raised:
How to deal with both the consistency and the consensus in
GDM? In Sections III-A and III-B, we wish to emphasize the



322 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 27, NO. 2, FEBRUARY 2019

Fig. 2. Consensus framework with individual consistency [12], [13].

motivations of this paper and illustrate the above two problems
in details.

A. Individual Consistency and Consensus Reaching Process:
Separate Processes

In [12] and [13], the implementation of the consensus building
with individual consistency in the GDM deals with a two-step
procedure (see Fig. 2).

1) Consistency improving process. This process is used
to help the decision makers obtain the preferences
with acceptable consistency. There are a number of
approaches to improve the consistency of RPRs [3], [12],
[27], [29]. Without loss of generality, in this paper, an
optimization-based model is used to improve individual
consistency [27].

2) Consensus reaching process. Once all RPRs are of accept-
able individual consistency, the consensus reaching pro-
cess is applied to reach an acceptable consensus among
all decision makers involved in the GDM problem. Iden-
tification rule and direction rule provided in Section II-C
are widely used in consensus models to generate the sug-
gestions to improve the CL.

Finally, the selection process is applied to rank alternatives
based on the adjusted RPRs with acceptably consistency and
acceptable consensus.

In the consensus framework shown in Fig. 2, the individual
consistency will often be destroyed in the consensus reaching
process, which leads to repeat the consistency improving process
until the adjusted RPRs with the acceptably consistency and
acceptable consensus are obtained simultaneously. Example 1
shows this issue.

Example 1: Suppose a GDM problem in which four decision
makers are involved and they express their preferences over a
set of four alternatives. The four RPRs are taken from [12] as
follows:

F 1 =

⎛

⎜⎜⎝

0.5 0.2 0.6 0.4
0.8 0.5 0.9 0.7
0.4 0.1 0.5 0.3
0.6 0.3 0.7 0.5

⎞

⎟⎟⎠

F 2 =

⎛

⎜⎜⎝

0.5 0.7 0.9 0.5
0.3 0.5 0.6 0.7
0.1 0.4 0.5 0.8
0.5 0.3 0.2 0.5

⎞

⎟⎟⎠

F 3 =

⎛

⎜⎜⎝

0.5 0.3 0.5 0.7
0.7 0.5 0.1 0.3
0.5 0.9 0.5 0.25
0.3 0.7 0.75 0.5

⎞

⎟⎟⎠

F 4 =

⎛

⎜⎜⎝

0.5 0.25 0.15 0.65
0.73 0.5 0.6 0.8
0.85 0.4 0.5 0.5
0.35 0.2 0.5 0.5

⎞

⎟⎟⎠ .

Based on (2), the CIs of these RPRs are the following ones:
CI(F 1) = 1,CI(F 2) = 0.7667,CI(F 3) = 0.65, and CI(F 4)

= 0.8333.
Let CI = 0.9 be the consistency threshold, it can be seen

that the decision makers d2 , d3 , and d4 need to change their
preferences. Using the consistency improving method [i.e., (3)]
to deal with the inconsistency in F 2 , F 3 , and F 4 , the adjusted
RPRs of F 1 , F 2 , F 3 , and F 4 are F 1,0 , F 2,0 , F 3,0 , and F 4,0 as
follows:

F 1,0 = F 1

F 2,0 =

⎛

⎜⎜⎝

0.5 0.7 0.8 0.778
0.3 0.5 0.6 0.7
0.2 0.4 0.5 0.778

0.222 0.3 0.222 0.5

⎞

⎟⎟⎠

F 3,0 =

⎛

⎜⎜⎝

0.5 0.685 0.5 0.491
0.315 0.5 0.254 0.3
0.5 0.746 0.5 0.252

0.509 0.7 0.748 0.5

⎞

⎟⎟⎠

F 4,0 =

⎛

⎜⎜⎝

0.5 0.25 0.15 0.65
0.75 0.5 0.6 0.8
0.85 0.4 0.5 0.7
0.35 0.2 0.3 0.5

⎞

⎟⎟⎠

where CI(F 1,0) = 1,CI(F 2,0) = 0.9,CI(F 3,0) = 0.9, and
CI(F 4,0) = 0.9.

Based on (1), let W = { 1
4 ,

1
4 ,

1
4 ,

1
4 } be the weighting vector

used to aggregate the individual RPRs and obtain the collective
RPR Fc,0

Fc,0 =

⎛

⎜⎜⎝

0.5 0.459 0.513 0.58
0.541 0.5 0.588 0.625
0.487 0.412 0.5 0.508
0.42 0.375 0.492 0.5

⎞

⎟⎟⎠ .

The CLs associated with the decision makers dk (k =
1, 2, 3, 4) are computed by using (4), i.e., CL1,0 =
0.813, CL2,0 = 0.82, CL3,0 = 0.793, and CL4,0 = 0.83.
Then, according to (5), the CL among {d1 , d2 , d3 , d4} is
CL1 , 0 +CL2 , 0 +CL3 , 0 +CL4 , 0

4 = 0.814.
Let CL = 0.84 be the consensus threshold, since CL3 =

min
k

CLk = 0.793 < 0.84, based on the identification rule, we

can see that the decision maker d3 needs to change his/her
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preferences. The new preference relation F 3,1 is obtained by
following the direction rule

F 3,1 =

⎛

⎜⎜⎝

0.5 0.68 0.51 0.56
0.32 0.5 0.3 0.62
0.49 0.7 0.5 0.3
0.44 0.38 0.7 0.5

⎞

⎟⎟⎠ .

Because F 1,0 , F 2,0 , and F 4,0 are not modified in the
first round, we have F 1,1 = F 1,0 , F 2,1 = F 2,0 , and F 4,1 =
F 4,0 in the new round. Based on RPRs Fk,1(k = 1, 2, 3, 4),
we obtain the CL associated with dk by using (4), i.e.,
CL1,1 = 0.828, CL2,1 = 0.838, CL3,1 = 0.855, and CL4,1 =
0.85. According to (5), the CL among {d1 , d2 , d3 , d4} is
CL1 , 1 +CL2 , 1 +CL3 , 1 +CL4 , 1

4 = 0.843.
It is clear that the CL among the decision makers {d1 ,

d2 , d3 , d4} has improved in this round of consensus reaching.
However, based on (2), we obtain the consistency index

CI(F 3,1) = 0.827 < CI = 0.9, which means that the individual
consistency in the RPR F 3,1 has been damaged in the consen-
sus reaching process. As a result, a repeating of the consistency
improving process must be used to deal with the unacceptable
consistency in F 3,1 .

Naturally, the repeating consistency improving process leads
to start with the consensus process again and is very time con-
suming. The aim of this paper is to develop the consensus
reaching process with individual consistency control to avoid
the repetition of the consistency improving process.

B. Automatic Consensus Reaching Process With Individual
Consistency: Ignoring Decision Makers

In [14] and [15], the automatic consensus process is pro-
vided to assist the decision makers reach consensus. Let
Fk = (fkij )n×n (k = 1, 2, . . . ,m) be the individual RPRs and
Fc = (fcij )n×n be the collective RPR. The main step for the

automatic consensus process is to construct a new RPR Fk ac-
cording to Fk . When establishing the new preference relation,
the following strategy is adopted:

fkij = λfkij + (1 − λ)fcij where 0 < λ < 1. (6)

This strategy is adopted until all RPRs reach an acceptable
consensus or the maximum number of iterations is obtained.

In the automatic consensus process, the modified RPR has
an acceptable individual CI. However, the decision makers are
ignored during the consensus reaching process, they cannot
change their preferences freely. In other words, all elements
in the RPR are changed based on (6) without the participation
of decision maker. Example 2 shows this issue.

Example 2: Let Fk,0 (k = 1, 2, 3, 4) and Fc,0 be as in
Example 1. According to Example 1, CL3 = mink CLk =
0.793 < CL = 0.84, so the RPR F 3,0 needs to be modified
for reaching an established consensus level CL. Based on (6),
set λ = 0.4, then F 3,1

ij = 0.4 × F 3,0
ij + 0.6 × Fc,0

ij , for i, j =
1, 2, . . . , 4.

Fig. 3. Consensus framework with individual consistency control.

The new RPR F 3,1 is obtained as follows:

F 3,1 =

⎛

⎜⎜⎝

0.5 0.549 0.508 0.544
0.451 0.5 0.454 0.495
0.492 0.546 0.5 0.406
0.456 0.505 0.594 0.5

⎞

⎟⎟⎠

where CI(F 3,1) = 0.955.
LetFk,1 = Fk,0 for k = 1, 2, 4. The new collective RPRFc,1

is obtained as follows:

Fc,1 =

⎛

⎜⎜⎝

0.5 0.425 0.515 0.593
0.575 0.5 0.639 0.674
0.486 0.361 0.5 0.546
0.407 0.326 0.454 0.5

⎞

⎟⎟⎠ .

According to (4), we obtain the CLs associated with
dk (k = 1, 2, 3, 4) are 0.827, 0.826, 0.886, 0.848, respectively.
Based on (5), the CL among decision makers is obtained,
CL(F 1,1 , F 2,1 , F 3,1 , F 4,1) = 0.847.

In Section IV, we will propose a consensus reaching pro-
cess to overcome the previous two problems. In the proposed
process, we will develop a consensus rule via an optimization
model to guarantee the individual consistency and to support
the participation of the decision makers.

IV. CONSENSUS BUILDING WITH INDIVIDUAL

CONSISTENCY CONTROL

In order to overcome the shortcomings of the consensus
process provided in Section III, we propose a consensus rule
with individual consistency control, and following the consen-
sus scheme shown in Fig. 2, a novel approach of consensus
building with individual consistency control is provided (see
Fig. 3).

The proposed consensus framework consists of two pro-
cesses: consistency improving process and consensus reach-
ing process. The main difference from the consensus frame-
work shown in Fig. 2 is that the OCR is used in the consensus
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reaching process. The proposed consensus rule provides a con-
sensus adjustable range for each preference and avoids repeating
the consistency improving process in the consensus reaching
process. Besides, in the consensus process based on the con-
sensus rule, the decision makers can adjust their opinions freely
within the adjustable range.

Section IV-A presents the consensus rule with individual con-
sistency control via an optimization model, and Section IV-B
introduces an algorithm to obtain its approximate optimal so-
lution. Section IV-C provides the consensus reaching process
based on the consensus rule. Finally, an algorithm to automati-
cally revise the preference values is proposed in Section IV-D.

A. Optimization-Based Consensus Rule

In this section, we model the consensus rule with individual
consistency control. Let Fk = (fkij )n×n (k = 1, 2, . . . ,m) be
the individual RPR of the decision maker dk andFc = (fcij )n×n
be the collective RPR.

The basic idea of the proposed consensus rule with individual
consistency control is to get the adjustable range [lkij , u

k
ij ] for

decision maker dk and pairwise (xi, xj ), based on Fk and Fc .
When the preference value fkij is revised within the adjustable
range [lkij , u

k
ij ] in the consensus reaching process, the adjusted

RPRs satisfy the following two conditions.
1) The CL among all the decision makers {d1 , d2 , . . . , dm}

is improved.
2) The adjusted RPRs are of acceptable consistency.
According to the direction rule to improve the CL among all

the decision makers {d1 , d2 , . . . , dm}, if fkij is smaller than fcij ,
then the decision maker dk is suggested to increase the evalu-
ation associated with the pairwise (xi, xj ); if fkij is larger than
fcij , then the decision maker dk is suggested to decrease the eval-
uation associated with the pairwise (xi, xj ). In other words, in
order to achieve a consensus, the revised preferences, associated
with decision maker dk and pairwise (xi, xj ), are suggested to
be within the interval [min{fkij , f cij}, max{fkij , f cij}].

Let [lkij , u
k
ij ] be the adjustable range, in order to guaran-

tee the improvement of the CL among the decision makers
{d1 , d2 , . . . , dm}, the adjustable range [lkij , u

k
ij ] should be con-

tained in the interval [min{fkij , f cij},max{fkij , f cij}], i.e.,

[lkij , u
k
ij ] ⊆ [fkij , f

c
ij ] if fkij ≤ fcij (7)

and

[lkij , u
k
ij ] ⊆ [fcij , f

k
ij ] if fkij > fcij . (8)

Let Lk = (lkij )n×n and Uk = (ukij )n×n . Let ϕk = {Ak =
(akij )n×n |akij ∈ [lkij , u

k
ij ], a

k
ij + akji = 1, i, j = 1, 2, . . . , n, k =

1, 2, . . . ,m} be the set of RPRs based on Lk and Uk .
Example 3 illustrates the set ϕk .

Example 3: Let

Lk =

⎛

⎜⎜⎝

0.5 0.2 0.45 0.35
0.7 0.5 0.7 0.55
0.5 0.2 0.5 0.3
0.45 0.4 0.5 0.5

⎞

⎟⎟⎠

and

Uk =

⎛

⎜⎜⎝

0.5 0.3 0.5 0.55
0.8 0.5 0.8 0.6
0.55 0.3 0.5 0.5
0.65 0.45 0.7 0.5

⎞

⎟⎟⎠ .

Then, for any RPR Ak that satisfies the condition akij ∈
[lkij , u

k
ij ] and akij + akji = 1 for i, j = 1, 2, 3, 4, we have Ak ∈

ϕk , such as

Ak =

⎛

⎜⎜⎝

0.5 0.25 0.47 0.45
0.75 0.5 0.75 0.57
0.53 0.25 0.5 0.4
0.55 0.43 0.6 0.5

⎞

⎟⎟⎠ .

In order to guarantee the consistency of the adjusted RPRs
based on the [lkij , u

k
ij ], it is required that for any Ak ∈ ϕk , it

should be of acceptable consistency, that is,

min
Ak ∈ϕk

CI(Ak ) ≥ CI. (9)

Equation (9) guarantees that the consistency of any RPR Ak in
the set ϕk is no less than the consistency threshold CI.

Finally, the decision makers should have the maximum degree
of freedom to revise their preferences, i.e., the width of [lkij , u

k
ij ]

is maximal, namely

max
n∑

i=1

n∑

j=i+1

(ukij − lkij ). (10)

Based on (7)–(10), an optimization-based model to obtain the
adjustable range [lkij , u

k
ij ] can be constructed as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
n∑
i=1

n∑
j=i+1

(ukij − lkij )

s.t.

[lkij , u
k
ij ] ⊆ [fkij , f

c
ij ] if fkij ≤ fcij , i, j = 1, 2, . . . , n

[lkij , u
k
ij ] ⊆ [fcij , f

k
ij ] if fkij > fcij , i, j = 1, 2, . . . , n

min
Ak ∈ϕk

CI(Ak ) ≥ CI

(11)

where lkij , u
k
ij (i, j = 1, 2, . . . , n) are decision variables in

model (11).
Because minAk ∈ϕk CI(Ak ) in model (11) can be equivalently

transformed into the following linear programming model:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min
aki j,a

k
j z ,a

k
i z

(
1 − ∑

i<j<z

4
n(n−1)(n−2) |akij + akjz − akiz − 0.5|

)

s.t.

akij ∈ [lkij , u
k
ij ] i, j = 1, 2, . . . , n

akij + akji = 1 i, j = 1, 2, . . . , n
(12)



LI et al.: CONSENSUS BUILDING WITH INDIVIDUAL CONSISTENCY CONTROL IN GROUP DECISION MAKING 325

model (11) can be reorganized as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
n∑
i=1

n∑
j=i+1

(ukij − lkij )

s.t.

[lkij , u
k
ij ] ⊆ [fkij , f

c
ij ] if fkij ≤ fcij , i, j = 1, 2, . . . , n

[lkij , u
k
ij ] ⊆ [fcij , f

k
ij ] if fkij > fcij , i, j = 1, 2, . . . , n

min
aki j ,a

k
j z ,a

k
i z

(
1 − ∑

i<j<z

4
n(n−1)(n−2) |akij + akjz − akiz − 0.5|

)

≥ CI

akij ∈ [lkij , u
k
ij ] i, j = 1, 2, . . . , n

akij + akji = 1 i, j = 1, 2, . . . , n.
(13)

We call the method to obtain the adjustable range via the
optimization-based model (13) as the OCR and lkij , u

k
ij , a

k
ij

(i, j = 1, 2, . . . , n) are the decision variables in the OCR. In the
OCR, there exists a minimization model, and we will demon-
strate this problem in detail in the following section.

Solving the OCR yields the adjustable range [lkij , u
k
ij ]. When

the decision maker dk revises their preferences in the adjustable
range [lkij , u

k
ij ], the constraint conditions (7) and (8) guarantee

that the CL of the decision maker dk can be improved. The con-
straint condition (9) guarantees that the individual consistency
of the adjusted RPR associated with dk will not be damaged,
for the RPR Ak associated to [lkij , u

k
ij ], which has the worst

consistency, is of acceptable consistency.

B. Algorithm to the OCR

When implementing the OCR, a core problem is how to ob-
tain the optimal solution to the OCR. Particularly, in the con-
straint conditions of the OCR [model (13)], a linear program-
ming model [model (12)] is involved. The inclusion of model
(12) in the OCR leads to the difficulty to obtain the optimum
solution to the OCR. Therefore, we need to design an algorithm
that obtains an approximate optimal solution to the OCR.

In essence, model (12) is used to find out an RPR Ak =
(akij )n×n , whose CI is the smallest under the condition that
akij ∈ [lkij , u

k
ij ] and akij + akji = 1. When model (12) is used, we

have the following observation: if akij (i, j = 1, 2, . . . , n) are the
optimum solutions to model (12), then we find that in almost all
of the cases, there exist akij = lkij or akij = ukij . In other words,
some elements akij in the RPR Ak will be on the boundary of
the adjustable range [lkij , u

k
ij ]. Thus, we set ψk = {(i, j)|akij =

lkij or a
k
ij = ukij} and ψk �= ∅. Next, we provide Example 4 to

illustrate the set ψk .
Example 4: Let the matrices Lk and Uk be as in Example 3.

Based on model (12), we find out the RPR

Ak =

⎛

⎜⎜⎝

0.5 0.2 0.49 0.4
0.8 0.5 0.8 0.58
0.51 0.2 0.5 0.45
0.6 0.42 0.55 0.5

⎞

⎟⎟⎠

whose CI is the smallest under the condition that akij ∈ [lkij , u
k
ij ]

and akij + akji = 1 for i, j = 1, 2, 3, 4.
Then, it is clear that ak12 = lk12 , ak21 = uk21 , ak23 = uk23 and

ak32 = lk32 . So, we have ψk = {(1, 2), (2, 1), (2, 3), (3, 2))}.
Suppose (α, β) ∈ ψk and ukαβ − lkαβ = max(i,j )∈ψk (ukij −

lkij ). We may update the adjustable range [lkij , u
k
ij ] using the

following equations:

[lkij , u
k
ij ] = [lkij , u

k
ij ] for i, j �= α, β (14)

⎧
⎨

⎩
lkαβ = lkαβ + θ(ukαβ − lkαβ )

ukαβ = ukαβ

if akαβ = lkαβ (15)

and
⎧
⎨

⎩
lkαβ = lkαβ

ukαβ = ukαβ − θ(ukαβ − lkαβ )
if akαβ = ukαβ (16)

where [lkij , u
k
ij ] is the updated adjustable range, associated with

[lkij , u
k
ij ], θ ∈ {0, 1} is the adjustment parameter, and the larger

θ value implies the more adjustment amount.
Let [lkij , u

k
ij ] be the adjustable range for decision maker dk

with pairwise (xi, xj ) and let [lkij , u
k
ij ] be the updated adjustable

range based on (14)–(16). Then, we have a desired property for
(14)–(16).

Property 1: LetAk = (akij )n×n be the RPR with the smallest

CI under the condition akij ∈ [lkij , u
k
ij ] and letAk = (akij )n×n be

the RPR with the smallest CI under the condition akij ∈ [lkij , u
k
ij ]

and akij + akji = 1. Then, the consistency of Ak is greater than

or equal to the consistency of Ak , i.e., CI(Ak ) ≥ CI(Ak ).
Proof: According to model (12), CI(Ak ) = min(1 −∑
i<j<z

4
n(n−1)(n−2) |akij + akjz − akiz − 0.5|), where akij ∈

[lkij , u
k
ij ].

Since [lkij , u
k
ij ] ⊆ [lkij , u

k
ij ] and akij ∈ [lkij , u

k
ij ], we have

CI(Ak ) ≥

min

⎛

⎝1 −
∑

i<j<z

4
n(n− 1)(n− 2)

|akij + akjz − akiz − 0.5|
⎞

⎠ .

Thus, CI(Ak ) ≥ CI(Ak ).
This completes the proof of Property 1.
Property 1 shows that the worst consistency degree of the

RPRs can be improved by updating the adjustable range based
on (14)–(16).

Based on Property 1, we design an algorithm to obtain the
approximate optimal solution to the OCR. Initially, we set
[lkij , u

k
ij ] = [min{fkij , f cij},max{fkij , f cij}], and then update the

adjustable range based on (14)–(16). Follow this procedure
until CIAk ) ≥ CI and the obtained approximate optimal so-
lution to the OCR is [lkij , u

k
ij ]. The detailed algorithm noted as

Algorithm 1 is provided below.
Note 2: For the optimum solutions akij (i, j = 1, 2, . . . , n)

to model (12), we find that in almost all of the cases, there
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Algorithm 1 The Approximate Algorithm to the OCR.

Input. The established consistency threshold CI , the individ-
ual RPR Fk = (fkij )n×n with the acceptable consistency (i.e.,
CI(Fk ) ≥ CI), the collective RPR Fc = (fcij )n×n , the ad-
justment parameter θ and the established maximum number
of iterations M .
Output. The adjusted range [lkij , u

k
ij ] and the iteration number

t.
Step 1: Let t = 0, and [lk,tij , u

k,t
ij ] = [lk,0ij , u

k,0
ij ] =

[min{fkij , f cij},max{fkij , f cij}].
Step 2: Based on model (12), we find out a RPR Ak,t =
(ak,tij )n×n whose consistency index is the smallest under the

condition that ak,tij ∈ [lk,tij , u
k,t
ij ] and ak,tij +ak,tj i =1.

Step 3: IfCI(Ak,t) < CI and t < M , go to Step 4; Otherwise,
go to Step 5.
Step 4: Get [lk,t+1

ij , uk,t+1
ij ]. Suppose ψk,t = {(i, j)|ak,tij

= lk,tij orak,tij = uk,tij } and consider the following cases:
Case A: ψk,t �= ∅.

Let (α, β) ∈ ψk,t and uk,tαβ − lk,tαβ = max
(i,j )∈ψk , t

(uk,tij − lk,tij ).

Based on (14)–(16), we structure [lk,t+1
ij , uk,t+1

ij ] as
follows:

i) [lk,t+1
ij , uk,t+1

ij ] = [lk,tij , u
k,t
ij ] for i, j �= α, β

ii)

⎧
⎨

⎩
lk,t+1
αβ = lk,tαβ + θ(uk,tαβ − lk,tαβ )

uk,t+1
αβ = uk,tαβ

if ak,tαβ = lk,tαβ

iii)

⎧
⎨

⎩
lk,t+1
αβ = lk,tαβ

uk,t+1
αβ = uk,tαβ − θ(uk,tαβ − lk,tαβ )

if ak,tαβ = uk,tαβ

Case B: ψk,t = ∅.
Let uk,tαβ − lk,tαβ = max

i,j∈{1,2,...,n}
(uk,tij − lk,tij ). Then, we

structure [lk,t+1
ij , uk,t+1

ij ] as follows:

i) [lk,t+1
ij , uk,t+1

ij ] = [lk,tij , u
k,t
ij ] for i, j �= α, β

ii)

⎧
⎨

⎩
lk,t+1
αβ = lk,tαβ

uk,t+1
αβ = uk,tαβ − θ(uk,tαβ − lk,tαβ )

for i, j = α, β

Let t = t+ 1 and go to Step 2.
Step 5: Let [lkij , u

k
ij ] = [lk,tij , u

k,t
ij ]. Output the adjustable range

[lkij , u
k
ij ] as the approximate optimal solution to the OCR, and

output the iteration number t.

exist akij = lkij or akij = ukij . But, it is hard to prove this point
analytically. So, in Step 4 of Algorithm 1, we also consider
Case B, which will not change the essence of Algorithm 1.

An important problem of the approximate algorithm is its
approximate performance. The approximate performance re-
flects the degree of approximation between the approximate
solution and the optimal solution. Let [lkij , u

k
ij ] be the approx-

imate optimal solution to the OCR. Let [lk∗ij , u
k∗
ij ] be the opti-

mum solution to the OCR with Algorithm 1. According to the

theory of approximate algorithms [46], if
uk ∗i j −lk ∗i j
uki j −lki j

≤ ρ, then,

Algorithm 1 is considered to be a ρ-approximation algorithm.

Because uk∗ij − lk∗ij ≤ |fkij − fcij |,
uk ∗i j −lk ∗i j
uki j −lki j

≤ |f ki j −f ci j |
uki j −lki j

, so in this

paper, we set

ρ =
|fkij − fcij |
ukij − lkij

(17)

to measure the approximate performance of Algorithm 1.
Clearly, ρ ≥ 1. The smaller ρ value indicates a better perfor-
mance. When ρ = 1, [lkij , u

k
ij ] is the optimum solution to the

OCR. Section V will show the approximate performance of
Algorithm 1.

Example 5 illustrates the process of updating the adjustable
range [lkij , u

k
ij ] based on Algorithm 1.

Example 5: Suppose the consistency threshold CI = 0.85
and the adjustment parameter θ = 0.3. Consider the individual
RPR F 4,0 and the collective RPR Fc,0 provided in Example 1.

1) In the first iteration, let l4,0ij = min{f 4,0
ij , f

c,0
ij } and u4,0

ij =
max{f 4,0

ij , f
c,0
ij }. Solving model (12) obtains the RPR

A4,0

A4,0 =

⎛

⎜⎜⎝

0.5 0.459 0.15 0.58
0.541 0.5 0.588 0.8
0.85 0.412 0.5 0.508
0.42 0.2 0.492 0.5

⎞

⎟⎟⎠

where CI(A4,0) = 0.79.
Then, we have ψ4,0 = {(i, j)|i, j = 1, 2, 3, 4}. It is
clear that u4,0

13 − l4,013 = max(i,j )∈ψ 4 , 0 (u4,0
ij − l4,0ij ). Since

a4,0
13 = l4,013 , the range [l4,1ij , u

4,1
ij ] is updated as follows:

[l4,1ij , u
4,1
ij ] = [l4,0ij , u

4,0
ij for i, j �= 1, 3

and
{
l4,113 = l4,013 + 0.3(u4,0

13 − l4,013 )

u4,1
13 = u4,0

13 .

We have l4,113 = 0.2589 and u4,1
13 = 0.513. Based on

the new range [l4,1ij , u
4,1
ij ], solving model (12) obtains

CI(A4,1) = 0.836, where

A4,1 =

⎛

⎜⎜⎝

0.5 0.459 0.2589 0.58
0.541 0.5 0.588 0.8
0.7411 0.412 0.5 0.508
0.42 0.2 0.492 0.5

⎞

⎟⎟⎠ .

2) In the second iteration, let l4,1ij = min{f 4,1
ij , f

c,1
ij } and

u4,1
ij = max{f 4,1

ij , f
c,1
ij }.

We have ψ4,1 = {(i, j)|i, j = 1, 2, 3, 4}. It is clear
that u4,1

13 − l4,113 = max(i,j )∈ψ 4 , 1 (u4,1
ij − l4,1ij ) = 0.2541.

Since a4,1
13 = l4,113 , we update the range [l4,2ij , u

4,2
ij ] as

follows:
[l4,2ij , u

4,2
ij ] = [l4,1ij , u

4,1
ij ] for i, j �= 1, 3 and

{
l4,213 = l4,113 + 0.3(u4,1

13 − l4,113 )

u4,2
13 = u4,1

13 .
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We have l4,213 = 0.3351 and u4,2
13 = 0.513. Based on

the new range [l4,2ij , u
4,2
ij ], solving model (12) obtains

CI(A4,2) = 0.861, where

A4,2 =

⎛

⎜⎜⎝

0.5 0.459 0.3351 0.58
0.541 0.5 0.588 0.8
0.6649 0.412 0.5 0.508
0.42 0.2 0.492 0.5

⎞

⎟⎟⎠ .

C. Consensus Reaching Process Based on the OCR

In this section, a consensus reaching process with individual
consistency control is developed. The core of this approach is
based on the use of the OCR, which provides a powerful tool to
guide the decision makers to build the acceptably consistency
and acceptable consensus.

The proposed consensus reaching process includes the fol-
lowing two steps.

Step 1: We analyze the consistency degree of individual RPRs.
If the RPRs are not consistent enough, then the consistency im-
proving method is applied to generate the RPRs with acceptable
consistency.

Step 2: We analyze the CL among the decision makers
{d1 , d2 , . . . , dm}. If the decision makers are of unacceptable
consensus, then solving the OCR yields the adjustable range
[lkij , u

k
ij ], associated with the decision maker dk and the pairwise

(xi, xj ). Following this, decision makers dk (k = 1, 2, . . . ,m)
are suggested to revise their preferences under the adjustable
range [lkij , u

k
ij ] (i, j = 1, 2, . . . , n) to improve the CL. In other

words, the modified preferences regarding dk and (xi, xj )
should belong to the interval [lkij , u

k
ij ]. Follow this procedure

until the consensus is reached.
Algorithm 2 formally describes the consensus reaching pro-

cess with individual consistency control.
Note 3: In Step 4 of Algorithm 2, there exists the case

in which all decision makers do not adjust their preference
relations, i.e., Fk,h+1 = Fk,h (k = 1, 2, . . . ,m). In order to
avoid this issue, it is required that the pairwise preference
values with the biggest difference must be adjusted, i.e.,

if
∣∣fκ1 ,h
sτ − fκ2 ,h

sτ

∣∣ = max k1 ,k2 ∈{1,2,...,m}
i,j∈{1,2,...,n}

∣∣∣fk1 ,h
ij − fk2 ,h

ij

∣∣∣, then

fκ1 ,h+1
sτ ∈ (lκ1 ,h

sτ , uκ1 ,h
sτ ) and fκ2 ,h+1

sτ ∈ (lκ2 ,h
sτ , uκ2 ,h

sτ ).
Some desired properties of the consensus reaching pro-

cess with individual consistency control are explained in
Theorems 1 and 2.

Theorem 1: Let CI be the consistency threshold in
Algorithm 2. Let Fk,h = (fk,hij )n×n be the RPRs generated
by Algorithm 2 and CI(Fk,h) be the CI of Fk,h . Then,
CI(Fk,h) ≥ CI for k = 1, 2, . . . ,m;h = 0, 1, 2, . . . ,M .

Proof: In Algorithm 2, Fk,0 is the RPR with acceptable
consistency, i.e.,

CI(Fk,0) ≥ CI for k = 1, 2, . . . ,m. (18)

Because fk,h+1
ij ∈ [lk,hij , uk,hij ], where [lk,hij , uk,hij ] is the ad-

justable range obtained from the OCR, associated with the deci-
sion maker dk and the pairwise (xi, xj ). The constraint condi-
tion (9) guarantees that the individual consistency of the adjusted

Algorithm 2 The Consensus Reaching Process with Indi-
vidual Consistency Control.

Input. The individual RPRs Fk = (fkij )n×n (k = 1, 2, . . . ,
m), the weighting vector of the decision makers W =
{w1 , w2 , . . . , wm}, the established consistency thresholdCI ,
the established consensus threshold CL and the established
maximum number of iterations M .
Output. Adjusted RPRs Fk = (fkij )n×n (k = 1, 2, . . . ,m)
and the iteration number h.
Step 1: Calculate CI(Fk ). If CI(Fk ) ≥ CI for k =
1, 2, . . . ,m, go to Step 2; otherwise, apply the consistency
improving method (see Section II-B) to obtain the adjusted
RPRs with acceptable consistency (for the sake of simplicity,
they are still denoted as Fk ), and then go to Step 2.
Step 2: Let h = 0 and Fk,0 = Fk (k = 1, 2, . . . ,m).
Step 3: IfCL(F 1,h , F 2,h , . . . , Fm,h) ≥ CL or h > M , go to
Step 5; otherwise, go to Step 4.
Step 4: Aggregate the RPRs {F 1,h , F 2,h , ...., Fm,h} to obtain
the collective Fc,h . Then, based on Fk,h and Fc,h , we use the
Algorithm 1 to approximate the OCR to obtain the adjustable
range [lk,hij , uk,hij ], associated with the decision maker dk (k =
1, 2, . . . ,m) and the pairwise (xi, xj ) (i, j = 1, 2, . . . , n).
Next, for any decision maker dk (k = 1, 2, . . . ,m), she/he
can give the adjusted RPR Fk,h+1 = (fk,h+1

ij )n×n , where

fk,h+1
ij ∈ [lk,hij , uk,hij ]. Go to Step 3.

Step 5: Let Fk = Fk,h(k = 1, 2, . . . ,m). Output the ad-
justed RPRs Fk = (fkij )n×n (k = 1, 2, . . . ,m) and the iter-
ation number h.

RPR associated with dk will not be damaged, i.e., when h > 0

CI(Fk,h) ≥ CI for k = 1, 2, . . . ,m. (19)

Thus, CI(Fk,h) ≥ CI for k = 1, 2, . . . ,m;h = 0, 1, 2, . . . ,M .
This completes the proof of Theorem 1.
From Algorithm 2, the final adjusted RPRs Fk are obtained.

By Theorem 1, we have the following corollary.
Corollary 1: The consistency of the adjusted RPRs Fk is

greater than or equal to the consistency threshold CI, i.e.,
CI(Fk ) ≥ CI for k = 1, 2, . . . ,m.

Note 4: According to Theorem 1 and Corollary 1, the con-
sistency of the adjusted RPRs is higher than the consistency
threshold CI. To guarantee that the consistency of the adjusted
RPRs is not lower than the consistency of the original individual
RPRs, it should set CI as the largest consistency value of the
original RPRs.

Theorem 2: Let CL be the consensus threshold in Algo-
rithm 2. Let {Fk,h = (fk,hij )n×n |k = 1, 2, . . . ,m} be the ad-
justed RPRs sequence in Algorithm 2 and CL(F 1,h , F 2,h ,
. . . , Fm,h) be the CL among {F 1,h , F 2,h , . . . , Fm,h}. Then,
when setting CL = 1 and h→ ∞, we have lim

h→∞
(CL(F 1,h ,

F 2,h , . . . , Fm,h)) = 1.
Proof: Let f+ ,h

ij = maxk∈{1,2,...,m} f
k,h
ij and f−,hij =

mink∈{1,2,...,m} f
k,h
ij . Then, we have fk,h+1

ij ∈ [lk,hij , μk,hij ] ⊆
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[f−,hij , f+ ,h
ij ], for any i, j ∈ {1, 2, . . . , n} and k ∈ {1, 2,

. . . ,m}. So
[
f−,h+1
ij , f+ ,h+1

ij

]
⊆
[
f−,hij , f+ ,h

ij

]
. (20)

Meanwhile, if f+ ,h
sτ − f−,hsτ = max k1 ,k2 ∈{1,2,...,m}

i,j∈{1,2,...,n}
|fk1 ,h
ij −

fk2 ,h
ij | and f+ ,h

sτ − f−,hsτ =
∣∣fκ1 ,h
sτ − fκ2 ,h

sτ

∣∣, based on

L1,0 =

⎛

⎜⎜⎝

0.5 0.22 0.513 0.4
0.587 0.5 0.74 0.625
0.4 0.2 0.5 0.3
0.42 0.3 0.493 0.5

⎞

⎟⎟⎠

U 1,0 =

⎛

⎜⎜⎝

0.5 0.413 0.6 0.58
0.78 0.5 0.8 0.7
0.487 0.26 0.5 0.507
0.6 0.375 0.7 0.5

⎞

⎟⎟⎠

L2,0 =

⎛

⎜⎜⎝

0.5 0.459 0.5232 0.6079
0.3719 0.5 0.588 0.625
0.2948 0.4 0.5 0.508
0.222 0.3 0.3208 0.5

⎞

⎟⎟⎠

U 2,0 =

⎛

⎜⎜⎝

0.5 0.6281 0.7052 0.778
0.541 0.5 0.6 0.7
0.4768 0.412 0.5 0.6792
0.3921 0.375 0.492 0.5

⎞

⎟⎟⎠

L3,0 =

⎛

⎜⎜⎝

0.5 0.5125 0.5 0.491
0.337 0.5 0.4058 0.3404
0.487 0.4411 0.5 0.3592
0.42 0.5106 0.492 0.5

⎞

⎟⎟⎠

U 3,0 =

⎛

⎜⎜⎝

0.5 0.663 0.513 0.58
0.4875 0.5 0.5589 0.4894

0.5 0.5942 0.5 0.508
0.509 0.6596 0.6408 0.5

⎞

⎟⎟⎠

L4,0 =

⎛

⎜⎜⎝

0.5 0.25 0.3431 0.58
0.602 0.5 0.588 0.625
0.4089 0.4 0.5 0.5327
0.35 0.2226 0.3112 0.5

⎞

⎟⎟⎠

U 4,0 =

⎛

⎜⎜⎝

0.5 0.398 0.4911 0.65
0.75 0.5 0.6 0.7774

0.6569 0.412 0.5 0.6888
0.42 0.375 0.4673 0.5

⎞

⎟⎟⎠

Note 3, we have fκ1 ,h+1
sτ ∈ (lκ1 ,h

sτ , uκ1 ,h
sτ

) ⊆ (f−,hsτ , f+ ,h
sτ

)
and

fκ2 ,h+1
sτ ∈ (lκ2 ,h

sτ , uκ2 ,h
sτ

) ⊆ (f−,hsτ , f+ ,h
sτ

)
. So

[
f−,h+1
sτ , f+ ,h+1

sτ

] ⊆ (f−,hsτ , f+ ,h
sτ

)
. (21)

LetZh =
∑n

i=1
∑n

j=1;j �=i (f
+ ,h
ij − f−,hij ). Based on (20) and

(21), we have

Zh+1 < Zh. (22)

For any h, we have Zh ≥ 0. Thus, the sequence {Zh |h =
1, 2, . . .} is monotone decreasing and has lower bounds. Then,
we have limh→∞ Zh = inf{Zh |h = 1, 2, . . . }.

Suppose that inf{Zh |h = 1, 2, . . .} �= 0. Because CL(F 1,h ,
F 2,h , . . . , Fm,h) < CL = 1, Algorithm 2 will continue and the
Zh values will continue to decrease with the increase of h. This
contradicts the definition of infimum inf{Zh |h = 1, 2, . . .}. So,
when setting CL = 1, limh→∞ Zh = 0.

Because 1 ≥ CL(F 1,h , F 2,h , . . . , Fm,h) =

1
m

m∑

k=1

⎛

⎝1 −
n∑

i,j=1;i �=j

|fk,hij − fc,hij |
n(n− 1)

⎞

⎠ ≥ 1 − Zh

n
(n− 1),

therefore, limh→∞(CL(F 1,h , F 2,h , . . . , Fm,h)) = 1.
This completes the proof of Theorem 2.
Theorems 1 and 2 guarantee that the adjusted RPRs, obtained

by the proposed consensus reaching process, are of acceptable
consistency and consensus. We should point out that the consis-
tency improving method is only used in the first round because
of the use of the OCR. As shown in Theorem 1, the proposed
consensus reaching process can avoid repeating the consistency
improving process.

Example 6 illustrates the consensus reaching process with
individual consistency control.

Example 6: (Example 1 continuation): Same to Example 1
in Section III, let CL = 0.84 be the consensus threshold, let
CI = 0.9 be the consistency threshold and let F 1,0 , F 2,0 , F 3,0 ,
and F 4,0 be RPRs with acceptable consistency as Example 1.

As shown in Example 1, CL(F 1,0 , F 2,0 , F 3,0 , F 4,0) =
0.814 < CL, so we use the consensus reaching process with
individual consistency control (Algorithm 2) to improve the
consensus. Let [lk,0ij , u

k,0
ij ] be the adjustable range obtained

by using Algorithm 1. Suppose Lk,0 = (lk,0ij )4×4 and Uk,0 =
(uk,0ij )4×4 , k = 1, 2, 3, 4.

Based on Lk,0 and Uk,0 (k = 1, 2, 3, 4), the decision mak-
ers construct new RPRs Fk,1 = (fk,1ij )4×4 , where fk,1ij ∈
[lk,0ij , u

k,0
ij ], as follows:

F 1,1 =

⎛

⎜⎜⎝

0.5 0.3 0.55 0.45
0.7 0.5 0.8 0.65
0.45 0.2 0.5 0.4
0.55 0.35 0.6 0.5

⎞

⎟⎟⎠

F 2,1 =

⎛

⎜⎜⎝

0.5 0.6 0.7 0.61
0.4 0.5 0.6 0.65
0.3 0.4 0.5 0.55
0.39 0.35 0.45 0.5

⎞

⎟⎟⎠

F 3,1 =

⎛

⎜⎜⎝

0.5 0.55 0.51 0.54
0.45 0.5 0.41 0.4
0.49 0.59 0.5 0.5
0.46 0.6 0.5 0.5

⎞

⎟⎟⎠

F 4,1 =

⎛

⎜⎜⎝

0.5 0.39 0.49 0.62
0.61 0.5 0.59 0.71
0.51 0.41 0.5 0.55
0.38 0.29 0.45 0.5

⎞

⎟⎟⎠ .
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Based on (2), the consistency degrees of Fk,1(k = 1, 2, 3,
4) are obtained, i.e., CI(F 1,1) = 0.983, CI(F 2,1) = 0.953,
CI(F 3,1) = 0.97, and CI(F 4,1) = 0.97.

According to (1), and taking the weighting vector
{ 1

4 ,
1
4 ,

1
4 ,

1
4 }, the collective RPR Fc,1 is obtained as follows:

Fc,1 =

⎛

⎜⎜⎝

0.5 0.46 0.5625 0.555
0.54 0.5 0.6 0.6025

0.4375 0.4 0.5 0.5
0.445 0.3975 0.5 0.5

⎞

⎟⎟⎠ .

Based on (4) and (5), the CLs associated with dk are ob-
tained, i.e., CL1,1 = 0.896, CL2,1 = 0.928, CL3,1 = 0.908, and
CL4,1 = 0.938. The CL of {d1 , d2 , d3 , d4} is CL(F 1,1 , F 2,1 ,
F 3,1 , F 4,1) = 0.918.

Finally, let Fk = Fk,1(k = 1, 2, 3, 4) be the adjusted RPRs
with acceptably consistency and acceptable consensus. Com-
pared with the existing consensus model (see Example 1), our
proposal not only improves the CL among the decision mak-
ers greatly, but also maintains the individual consistency in the
adjusted RPRs, which avoid the repeating of the consistency
improving process.

D. Algorithm to Automatically Revise the Preference Values

In Section IV-C, we proposed Algorithm 2 to describe the
consensus reaching process with individual consistency con-
trol. In this section, based on Algorithm 2, we propose a
new algorithm (Algorithm 3) to automatically revise the de-
cision makers’ preference values in the consensus reaching
process.

Algorithm 3 will not change the essence of Algorithm 2,
and the aim of presenting Algorithm 3 is to explore the use
of the consensus reaching process with individual consistency
control by means of simulation experiments in Section V. In
Algorithm 3, we replace Step 4 from Algorithm 2 with Step 4’
as follows.

Step 4’: Aggregate the RPRs {F 1,h , F 2,h , . . . , Fm,h} to
obtain the collective Fc,h . If CLκ,h = mink∈{1,2,...,m} CLk,h ,
then using the OCR and Algorithm 1 obtains the adjustable
range [lκ,hij , uκ,hij ], associated with the decision maker dκ

and the pairwise (xi, xj ). Then, let Fκ,h+1 = (fκ,h+1
ij )n×n ,

where fκ,h+1
ij (i < j) is uniformly and randomly selected from

[lκ,hij , uκ,hij ] and fκ,h+1
j i = 1 − fκ,h+1

ij , and let Fk,h+1 = Fk,h

for k �= κ. Go to Step 3.
In Algorithm 2, the decision makers participate in the con-

sensus reaching process and modify their preferences according
to the adjustable range, whereas in Algorithm 3, the consen-
sus reaching process is automatic and the adjusted value is
uniformly and randomly selected from the adjustable range.
Algorithm 3 will not change the essence of Algorithm 2 and
it automatically simulates the consensus reaching process with
individual consistency control.

V. SIMULATION EXPERIMENTS

In this section, we explore the use of the consensus reaching
process with individual consistency control by means of sim-

Fig. 4. Process to improve the consensus based on Algorithm 3 using data
source 1. (a) CI = 0.84, (b) CI = 0.88, (c) CI = 0.92.

Fig. 5. Process to improve the consensus based on Algorithm 3 using data
source 2. (a) CI = 0.84, (b) CI = 0.88, (c) CI = 0.92.

ulation experiments based on Algorithm 3 from three aspects:
the CI, the CL, and the approximate performance.

In the simulation experiments, we use five case studies from
the existing literatures.
Case 1: Taken from Example 3, [12, Sec 3.3]. In this exam-

ple, four decision makers provide their RPRs over four
alternatives. The worst consistency and the best con-
sistency among the four RPRs are 0.65 and 1, respec-
tively. The CL among decision makers is 0.82.

Case 2: Taken from Example 4, [47, Sec. 3.2]. In this exam-
ple, four decision makers provide their RPRs over four
alternatives. The worst consistency and the best con-
sistency among the four RPRs are 0.7 and 0.97, re-
spectively. The CL among decision makers is 0.9.

Case 3: Taken from [48, Sec. 6.1]. In this case, four decision
makers provide their RPRs over four alternatives. The
worst consistency and the best consistency among the
four RPRs are 0.87 and 0.97, respectively. The CL
among decision makers is 0.86.

Case 4: Taken from Example 2, [49, Sec. 4]. In this example,
four decision makers provide their RPRs over four
alternatives. The worst consistency and the best con-
sistency among the four RPRs are 0.67 and 0.96, re-
spectively. The CL among decision makers is 0.81.

Case 5: Taken from [50, Example 1]. In this example, six deci-
sion makers provide their RPRs over four alternatives.
The worst consistency and the best consistency among
the six RPRs are 0.67 and 0.97, respectively. The CL
among decision makers is 0.81.

Following this, we set the consensus threshold CL = 0.99
(close to 1) and investigate the variation trends of the CI, the CL,
and the approximate performance under different consistency
thresholds CI (0.84, 0.88, and 0.92). They are illustrated in
Figs. 4–8, respectively.

From Figs. 4–8, the following observations can be drawn.
1) We can find that the CL can be improved rapidly by using

the consensus reaching process with individual consis-
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Fig. 6. Process to improve the consensus based on Algorithm 3 using data
source 3. (a) CI = 0.84, (b) CI = 0.88, (c) CI = 0.92.

Fig. 7. Process to improve the consensus based on Algorithm 3 using data
source 4. (a) CI = 0.84, (b) CI = 0.88, (c) CI = 0.92.

Fig. 8. Process to improve the consensus based on Algorithm 3 using data
source 5. (a) CI = 0.84, (b) CI = 0.88, (c) CI = 0.92.

tency control, and the number of the iterations depends on
the established consensus thresholds. For example, the CL
can reach 0.85 in about 2 iterations, reach 0.9 in about 4
iterations, and reach fully consensus (close to 1) in about
15 iterations. This shows that our proposal provides an
effective way to build consensus in the GDM with RPRs.

2) The CI in each iteration is not less than the consistency
threshold. Even the CI increases with the number of iter-
ations. This means that our proposal can avoid repeating
the consistency improving processes.

3) The largest value of the approximate performances ρ is
about 2 and rapidly decreases with the number of iter-
ations. The value of ρ is close to 1, not more than 8
iterations. This shows that Algorithm 3 can yield the so-
lution with a good approximate performance, although it
is difficult to obtain the optimum solution to the OCR.

Through the simulation experiments of the five case studies,
the above-mentioned observations show that by applying Algo-
rithm 3, the CL is improved and also the consistency of each
decision maker is guaranteed without repeating the consistency
improving process.

VI. CONCLUSION

In this paper, the consensus reaching process with individual
consistency control is proposed in the GDM with RPRs, and
its core part is based on the design of an optimization-based
consensus rule to determine the adjustment range of each pref-

erence value to guarantee the individual consistency in building
consensus. Compared with some existing studies, the consen-
sus reaching process with individual consistency control can
not only provide a new way to assist decision makers to reach a
consensus in the GDM with RPRs, but also avoid repeating the
consistency improving process, which is very time consuming.

In the future, we plan to work on the potential use of the
consensus reaching process with individual consistency control
for large-scale decision making [51]–[58] to handle large groups
with different preference representation structures.
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