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Abstract

The image acquisition process in the field of magnetic resonance imaging (MRI)

does not always provide high resolution results that may be useful for a clin-

ical analysis. Super-resolution (SR) techniques manage to increase the image

resolution, being especially effective those based on examples that determine a

correspondence between patterns of low resolution and high resolution. Deep

learning neural networks have been applied in recent years to estimate this as-

sociation with very competitive results. In this work, the starting point is a

convolutional neuronal network to which a regularly spaced shifting mechanism

over the input image is applied, with the aim of substantially improving the

quality of the resulting image. This hybrid proposal has been compared with

several SR techniques using the peak signal-to-noise ratio, structural similarity

index and Bhattacharyya coefficient metrics. The results obtained on different

MR images show a considerable improvement both in the restored image and

in the residual image without an excessive increase in computing time.
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1. Introduction

Super-resolution (SR) is the process whose aim is to generate a high-resolution

image (HR) from a single low-resolution image (LR) by means of post-processing

techniques. The objective is to improve the image quality taking into account

that the solution is not unique [1]. Besides its a classic applications in the com-5

puter vision field, SR is also of great interest for medical imaging. Improvements

in SR can be of critical importance, due to the need of obtaining more detailed

and realistic images when they are used for diagnostic purposes.

Despite advances in acquisition technology such as Computerized Tomogra-

phy (CT), Positron Emission Tomography (PET), Magnetic Resonance Imaging10

(MRI) or combined modalities (e.g. SPECT/CT), factors like the inherent noise

in the devices or blurring, are always present in each of these techniques, which

sets limits to the resolution and quality of the obtained images. MRI is no

exception to that, with a resolution of the order of millimeters, due to the mag-

netic properties of the tissues and varying as a function of the way the signal15

and noise are sampled and filtered. Hardware limitations, high signal-to-noise

ratios (SNR), practical limits to the acquisition time and patient movement also

contribute to limiting image resolution. All of this calls for the application of

SR techniques to the resulting images.

According to this need, in recent years there has been a growing interest in20

improving SR methods for MRI, linked to the development of machine learning

algorithms. Interpolation and spline-based methods are the traditional ways

to increase image resolution [2, 3]. However, these approaches estimate new

intermediate points assuming the homogeneity of a region, causing a blurring

perception in the image, especially in areas with edges or contrast changes. More25

successful proposals, such as the example-based methods, have become popular

as super-resolution techniques [4, 5]. Among them, some exploit the internal

similarities of the image [6, 7] and others learn mapping patterns between LR
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and HR images from external datasets [8, 9, 10, 11].

Recently, a super-resolution convolutional neural network (SRCNN) [12],30

which can be considered as an example-based method, has obtained great at-

tention because of its ability to learn an end-to-end mapping between LR

and HR images. In this way, it is not required to learn dictionaries or man-

ifolds to model the high-resolution space. Other recent works also incorporate

neural architectures based on deep learning to perform super-resolution tasks35

[13, 14, 15, 16, 14].

Convolutional neuronal networks (CNNs), inspired by the animal visual cor-

tex, have been one of the first deep learning architectures that have demon-

strated excellent performance in any field associated with the image and video

processing. Thanks to the power of the new graphical acceleration devices40

(GPU), CNNs have been successfully applied both detection and recognition of

objects[17, 18], classification of images or within recommender systems. Hun-

dreds of articles have been published in several areas [19, 20], including the field

of medical image analysis [21, 22], where the CNNs popularity is growing and

its use is progressively expanding.45

In the image medical analysis field, a 3D densely connected super-resolution

network for brain MRI data improvement was recently presented [23]. Its par-

ticularity is the use of dense layers instead of convolutional layers on its archi-

tecture. The expected high complexity of the method is mitigated because it

is a light-weight model with weight sharing and a very reduced number of pa-50

rameters. Another recent work presents a combination of a densely connected

network with a generative adversarial network (GAN) which seems to achieve

promising results [24]. Additionally, other interesting works which relate brain

MRI and deep learning architectures can be found in the literature [25, 26, 27].

In this work, a 3D convolutional neural network previously defined [28] (SR-55

CNN3D), is combined with a regularly space shifting mechanism to enhance

the quality of the high-resolution image. Thus, the combination of the network

output after testing several regularly shifted input images, will be significantly

improved the HR image quality. This technique has been satisfactorily applied
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to diverse brain MRI image datasets and has been compared with several state-60

of-the-art SR algorithms. Additionally, another previously published proposal

from our research group [29] has been included in the comparison.

The remaining of the paper is structured as follows. Section 2 describe the

proposed model, where in subsection 2.1 the convolutional neural network is

commented and in subsection 2.2 the regularly spaced shifting mechanism is65

explained. The explanation about how the results are obtained, the different

competitive methods and the image datasets analyzed, are outlined in Section

3 whereas the quantitative and qualitative results are displayed in Section 4.

To sum up, Section 5 discusses the results previously reported and Section 6

exposes the conclusions and future works of our approach.70

2. Theory

In this section deep learning super resolution is carried out on regularly

spaced shifted versions of the input image. This technique is proposed to en-

hance the quality of MR images. In Subsection 2.1 the base SRCNN method is

outlined. Then in Subsection 2.2 the regular shifting algorithm to produce the75

final estimation of the HR image from the LR one is detailed.

2.1. Convolutional neural network

The standard SR reconstruction is carried out through a CNN following

these two steps:

1. Given a LR image X, a spline interpolation I is performed in order to80

obtain a HR image Z = I(X).

2. A convolutional neural network is applied to restore the image.

The CNN is composed by three blocks of layers. The first two consist in a

convolutional layer followed by a Rectified Linear Unit (ReLU). The last layer

only performs a convolution, without any ReLU after the filter responses. If we

call g1, g2, g3 for each of these operations, the net computes a HR image

g = g3 ◦ g2 ◦ g1 (1)
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and the restoration based on a residual learning technique and computed mini-

mizing the Euclidean loss

f̃ = argming

∑
||Y − g(Z)||2 (2)

where Y is the HR image corresponding to X.

The first convolutional layer applies 64 filters of size 9 × 9 × 9, 32 of size

1× 1× 1 in the second, and one filter of size 5× 5× 5 in the last layer. Several85

overlapping patches per image are extracted from a set of HR reference images

in order to have enough samples to train the network, and feature maps are

computed. For each patch, a down-sampling and up-sampling is applied and a

relationship is established to learn an end-to-end mapping between LR and HR

images.90

This neural network was used as a base for the proposed model described

in the next section. It is called SRCNN3D and specific details about its imple-

mentation can be found in [28].

2.2. Regularly spaced shifting model

Our proposed regular shifting method is presented in this subsection. It95

consists in combining the outputs produced by the SRCNN network for shifted

versions of the original input image, where the shift vectors are varied according

to a regular rectangular pattern. The motivation for this approach is that each

shifted input image produces a slightly different output when processed by the

SRCNN network, so that a number of variants of the output are obtained as100

different shift vectors are considered. After that, the obtained output images can

be averaged in order to produce an ensemble output. This averaging operation

smooths out a certain amount of noise, thereby increasing the quality of the

final combined output image. As compared to our previous random shifting

approach [29], the regular shifting approach proposed here ensures that the set105

of considered shift vectors is balanced within the set of all possible shift vectors.

The regular shifting approach is based on numerical integration theory, while

our previous approach relies on statistical approximation theory.
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Figure 1: Scheme of the proposed algorithm.

Given an LR image X, the SRCNN model learns an approximation f̃ (X) of

the underlying HR image f (X):110

f (X) = f̃ (X) + ε̃ (X) (3)

where ε̃ (X) is the approximation error. Let us note:

V = [0, Z)× [0, Z)× [0, Z) (4)

where Z is a window size (in voxels). Shifted versions LR image can be con-
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sidered as inputs to the SRCNN, where a ∈ V is a shift vector. Therefore a

different approximation f̄a (X) of the underlying HR image f is obtained for

each shift vector a:115

f̄a (X) = f̃ (X� a)� λa (5)

ε̄a (X) = ε̃ (X� a)� λa (6)

f (X) =
(
f̃ (X� a) + ε̃ (X� a)

)
� λa =

(
f̃ (X� a)� λa

)
+ (ε̃ (X� a)� λa) =

f̄a (X) + ε̄a (X) (7)

where � and � stand for the image left shift and right shift operators, respec-

tively, and λ is the super-resolution zoom factor.

Given an LR image X, let ϕX be a constant function which takes the shift

vector a as argument:

ϕX (a) = f (X) (8)

Here it must be highlighted that the domain of ϕX is the set of valid values120

for a, i.e. a ∈ V. Moreover, from (8) we can write:

f (X) =
1

Z3

∫
V
ϕX (a) da (9)

For each a, from (7) and (8) we get an approximation for ϕX (a):

ϕX (a) = f̄a (X) + ε̄a (X) (10)
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Now the standard approximation (3) of the underlying function f by the

SRCNN model can be rewritten as follows:

f (X) = f̃ (X) + ε̃ (X) = ϕX (0) = f̄0 (X) + ε̄0 (X) (11)

This means that approximating f (X) by f̃ (X), which is what the origi-125

nal SRCNN does, amounts to a zeroth order approximation of ϕX (0) obtained

by taking a single noisy value f̄0 (X). We propose to estimate f (X) by ap-

proximating the integral in (9). In turn, the integral is estimated by averaging

approximations of ϕX (a) given by (10) and taken at regularly spaced values of

a:130

f̂ (X) =
1

M

M∑
j=1

f̄aj (X) (12)

where the aj are taken at regularly spaced values from V.

Now, it is reasonable to think that f̂ (X) is a better approximation to f (X)

than the original approximation f̄0 (X). On one hand, f̂ (X) is built as an

approximation of an integral from many regularly spaced noisy observations,

where the noise function ε̄a (X) in (10) is expected to be smooth and have zero135

mean with respect to a, i.e. Ea [ε̄a (X)] = 0, because f̄a (X) is the output of

the SRCNN as the input is shifted by a. Therefore, the noise might be partially

averaged out by the integral. On the other hand, f̄0 (X) is built as a zeroth

order approximation from a single noisy observation. Hence we propose to use

f̂ (X) as an approximator to f (X). In practice the aj are constrained to be140

integer vectors, so that fractional shifts are not necessary, since fractional shifts

would pose a difficult problem themselves.

The proposed algorithm reads as follows:

1. Given M , compute the following set of vectors:

SM = {am}m∈{1,...,M} (13)

am = (a(m), a(m), a(m)) ∈ N3 (14)
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where a(m) is obtained as:

a(m) = (m− 1)R (15)

with R being a tunable parameter of the algorithm which indicates the

spacing between consecutive shifts.145

2. For an input LR image X, compute M circularly image shifts:

{X� am, am ∈ SM} (16)

3. Apply the CNN to obtain a set of HR images:

{f̃(X� am), am ∈ SM} (17)

4. Recompose the images considering the super-resolution zoom factor to

obtain {f̄am(X), am ∈ SM}, and then compute the final restored HR

image f̄(X) following Eq. (12).

A schematic depiction of the operation of our algorithm is shown in Figure 1.

It must be noted that (15) corresponds to the following window size:150

Z = MR (18)

3. Material and Methods

Description of the experiments we have carried out, and also datasets and

algorithms are reported in this section. The LR image generation procedure,

the software and hardware that we have used, and the selected performance

metrics for comparison between methods are specified in Subsection 3.1. Then,155

the set of MR images are described in 3.2. The set of tuned parameters of our

proposal and the tuning experiments are explained in Subsection 3.3 and the

descriptions of the competing algorithms in Subsection 3.4.
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3.1. Methods

Firstly, we need to describe how the LR images are generated since we only160

have available the HR ones. Input data for each method were obtained following

this procedure:

1. HR images were cropped in relation to the zoom factor to be applied, in

order to avoid fractional values.

2. A three-dimensional Gaussian filter was applied, with standard deviation165

equal to 1.

3. Finally, the LR image is generated applying a cubic interpolation through

the imresize3 function of Matlab and its default parameters.

As the convolutional neural network used for the super-resolution step we

selected the SRCNN3D method. It has demonstrated a considerable effective-170

ness compared with other state-of-art deep learning methods. This is a CNN

method where a huge set of reference patches are extracted from each training

HR image and compared with the same set of downsampled and upsampled

patches in order to update the network weights.

An online available pre-trained model was used for the experiments. This175

network was trained over 470000 iterations, with 10 images from Kirby dataset

[30] for training the CNN (images 33-42), using momentum of 0.9, learning rate

of 0.0001 and batch size of 256. Stochastic gradient descent was used for model

optimization.

All the experiments described in this work were carried out on a 64-bit180

Personal Computer with an eight-core Intel i7 3.60GHz CPU, NVidia Titan X

GPU, 32 GB RAM and standard hardware, using Matlab R2017b. The deep

learning method network has been developed using the Caffe package [11] on a

Python framework.

Three different quality measures were used to evaluate and compare the185

proposed method:

• Peak Signal-to-Noise Ratio (PSNR), measured in (decibels) dB, which is

commonly used in medical image processing (higher is better).
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Figure 2: Evolution of the PSNR and SSIM metrics (higher is better) when varying the

number of shifts employed for the reconstruction. Five different spacing values are plotted.

Image 1 of the Kirby 21 dataset, image 80 of disc1 of the OASIS dataset and T1 noiseless

image of Brainweb were used for the analysis.

• Structural Similarity index (SSIM) [31], which focuses on structural simi-

larities between images (higher is better):

SSIM(x, y) =
(2µxµy)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(19)

where µxand µy are the mean value of images x and y, σx and σy are

the standard deviation of images x and y, σxy is the covariance of x and190

y, c1 = (k1L)2 and c2 = (k2L)2 (default values were used: L = 1 is the

dynamic range, k1 = 0.01 and k2 = 0.03).

• Bhattacharyya coefficient (BC) [32], which measures the closeness of the

two discrete pixel probability distributions P and P̂ corresponding to the

ground truth (GT) and modeled images with values in the range [0, 255]:

BC =

255∑
j=0

P (j)P̂ (j) (20)

where BC ∈ [0, 1] and higher is better.

Also, CPU time was measured for each method. In the case of the methods

based on the repetition of CNN testings as many times as shifted images were195

generated, we measured the processing time sequentially considering only one
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Table 1: Considered parameter values for our method

Parameter Value

Spacing R 3

Number of shifts M 47

GPU. Nevertheless, they could be parallelized in different GPUs to improve the

total execution time.

From a qualitative point of view, we compared the competing methods using

both restored and residual HR images. This residual image r was computed as

the difference between the original HR image h and the super-resolved one s:

r = h− s (21)

A darker residual image imply a better performance, as the differences between

the original HR image and the restored must be close to zero. Its values were200

subtracted to the positive constant 0.5 and color maps were adjusted for a better

visualization and discrimination between methods.

3.2. Datasets

Seven different images obtained from different datasets were considered in205

order to evaluate the results of the SR algorithms.

• Three T1-weighted MRI images of the Kirby 21 (images 5, 10 and 11)

[30]. These data were acquired using a 3-T MR scanner with a 1.0× 1.0×

1.2mm3 voxel resolution over an field-of-view (FOV) of 240×204×256mm

acquired in the sagittal plane. They are named as KKI2009XXMPRAGE.210

• Two T1 images of the OASIS dataset (images 1 and 2 of the cross-sectional

data) [33] . Data were acquired on a 1.5-T Vision scanner with a 1.0 ×

1.0× 1.25mm3 voxel resolution over an FOV of 256× 256mm. They are

named as OAS1 000X MR1 mpr1 anon.
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• One image of the IBSR public dataset [34]. It is named IBSR 07, it has215

image size 256× 256× 128, with 1.5× 1.0× 1.0mm3 voxel resolution.

• A T1-weighted image was acquired at the Medical Research Center of the

University of Málaga (CIMES)1 using a 3-T MR scanner with a 0.93 ×

0.93× 1.0mm3 voxel resolution over an FOV of 256× 256mm.

All these images are different from the CNN training dataset. Image 5 of Kirby220

21 was only analyzed with zoom factor 3.

3.3. Parameter selection

Our model depends on the tuning of two parameters: the spacing of the shift-

ing R and the number of shifts M . For this necessary prior task, we employed

three images different from those selected for the final experiments:225

• Image 1 of the Kirby 21 dataset: KKI2009-01-MPRAGE.

• Image 80 of the OASIS dataset: OAS1 0080 MR1 mpr-1 anon.

• A T1-weighted image from the Brainweb2 simulated database (slice thick-

ness 1mm, 0 % noise level and RF = 0).

The default values of the SRCNN3D model were used, so no tuning was needed.230

We computed the PSNR and SSIM measures for all these images and we plotted

the mean values for each spacing value R ∈ {1, 2, 3, 4, 5} varying the number

of shifts M between 0 and 50, where M = 0 corresponds to the base method

SRCNN3D. The evolution of these metrics displayed in Figure 2. Despite the

fact that the frequency of the oscillations in the performance measures raises as235

the number of shifts increases, a stabilization is observed above 30 shifts. The

performance values for R = 3 seem to be higher than those for other values of

R. According to these results, a parameter selection has been carried out. The

chosen parameters are reported in Table 1.

1www.cimes.es
2http://mouldy.bic.mni.mcgill.ca/brainweb/
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3.4. Competitors240

Seven SR algorithms were used to compare our proposal3, which was named

as SRCNN3D+RegSS :

• Spline: bicubic spline interpolation as implemented in Matlab (Mathworks

Inc.).

• NLMU (non-local means upsampling) [6]: recover some of high frequency245

information by using a data-adaptive patch-based reconstruction in com-

bination with a subsampling coherence constraint.

• LRTV (low-rank total variation) [35]: low-rank regularization and total

variation techniques were used to integrate both local and global informa-

tion for image reconstruction.250

• SRCNN3D [28]: three-dimensional convolutional neural network trained

with patches of HR brain images. Instead of learning the mapping directly

from the LR space to the HR one, it estimates a mapping from the LR

space to the missing high-frequency components.

• SRReCNN3D-10L [36]: A generalization of SRCNN3D where 10 blocks of255

Convolution+ReLU are used in the network architecture. A pre-trained

model available online was used. Only works for zoom factor 2, so exper-

iments with zoom 3 omit this competing method.

• SRReCNN3D-20L [36]: A generalization of SRCNN3D where 20 blocks of

Convolution+ReLU are used in the network architecture. A pre-trained260

model available online was used. Only works for zoom factors 2 and 3.

• VDSR [37]: very deep convolutional network with 20 layers based on resid-

ual learning with extremely high learning rates. Contextual information

is exploited by cascading small filters.

3https://bitbucket.org/icaiuma/srcnn3d_regss/
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• EDSR [38]: compact deep network which removes unnecessary modules265

from conventional ResNet architecture, also based on residual scaling tech-

niques.

• SRCNN3D+RndS [29]: A previous approach based on the use of a random

shifting technique.

The first three have been implemented in Matlab. The convolutional net-270

work called SRCNN3D, which is used by our proposal, and also SRReCNN3D-

10L and SRReCNN3D-20L have been developed using Caffe package [11] on a

Python framework. VDSR was created and integrated in Matlab. There are

versions in Torch and Pytorch of the EDSR network, so we used the last one4.

As both VDSR and EDSR networks were designed for 2D images, we applied275

a straightforward strategy combining results from coronal, axial, and sagittal

views by computing the average of this three image reconstructions [23, 28].

4. Experimental Results

A quantitative evaluation of the performance of the ten different methods

using zoom factor 2 is summarized in Figure 3. The mean and the standard280

deviation for each method are shown with horizontal error bars, for the six tested

images (all except image 5 of Kirby21), using a super-resolution zoom factor of

2. Traditional methods, i.e. Spline, NLMU and LRTV, perform clearly worse

than deep learning methods, both in mean and standard deviation values. We

can see that the LRTV method outperforms the other two in BC, but PSNR and285

SSIM values still remain similar. A second block of methods can be distinguish

from the others, composed by the SRCNN3D algorithm and its generalizations

SRReCNN3D-10L and SRReCNN3D-20L. An improvement of all the metrics

can be appreciated with respect to the conventional methods, reaching 29 dB

of PSNR and a SSIM value of 0.94. On the other hand, VDSR and EDSR290

networks do not reach good results with respect SRCNN3D.

4https://github.com/thstkdgus35/EDSR-PyTorch
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Figure 3: Comparison of the PSNR, SSIM, BC (higher is better) and CPU time for the ten

methods. Mean and standard deviation of the results for all the test images except image 5

of Kirby21 are displayed, using λ = 2.

A second amelioration of all the metrics can be seen when comparing the

shifting models with the isolated CNN-based methods. PSNR increases from

29 dB up close to 32 dB, and SSIM and BC are also improved, which indicates

that the local brain structures are restored in a better way. With the proposed295

regular spaced shifting model SRCNN3D+RegSS PSNR values of 33 dB are

achieved. Actually, better values of SSIM are reported reducing the standard

errors. BC values remains flat.

Figure 3 also shows the mean processing time (in a logarithmic scale) re-

quired for the execution of each method. The Spline method is the fastest300

one, followed by EDSR. However, LR images are poorly restored as seen before.

NLMU and LRTV need long times to process a single image and are also very

dependent on its dimensions. The higher the number of voxels, the more time

they use to generate the HR image. Our proposal and SRCNN3D+RndS also

require time, which depends on the number of shifts. CNN methods processes305
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Figure 4: Comparison of the PSNR, SSIM, BC (higher is better) and CPU time for nine

methods. Mean and standard deviation of the results for all the test images except image 5

of Kirby21 are displayed, using λ = 3.

an image between 8 and 12 seconds. SRCNN3D+RegSS takes around 3-4 min-

utes, which is less than LRTV but longer than the 53 seconds required by the

random shifting method.

In Figure 4 are shown the outcomes using λ = 3 for the same set of images.

SRReCNN3D-10L method is not displayed because the network was not trained310

for this zoom factor. In this case, LRTV and NLMU methods perform better,

reaching good values of SSIM. Actually, they outperform the CNN methods

SRCNN3D and SRReCNN3D-20L also for some BC values. Unlike the analysis

of zoom 2, the very deep networks VDSR and EDSR performs better, improving

sometimes our proposal for the SSIM measure, but with large variances in the315

outcomes for PSNR and BC. Analysing carefully the results, these discrepancies

are originated due to their bad performance with certain images (of Kirby 21

specially). The rest of outcomes are quite suited. The models based on a shifting

procedure still remain as the best ones. The highest values are obtained by the
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(a) Original HR image (b) LR image (c) Spline (d) NLMU

(e) LRTV (f) SRCNN3D (g) SRReCNN3D-10L (h) SRReCNN3D-20L

(i) VDSR (j) EDSR (k) SRCNN3D+RndS (l) SRCNN3D+RegSS

Figure 5: Qualitative results for KKI2009-11-MPRAGE T1-weighted image for each method,

applied with zoom factor 2. Three-dimensional images are shown, where the XY plane corre-

sponds to a slice of the axial view, XZ to a slice of the sagittal view and YZ to a slice of the

coronal view.

proposed SRCNN3D+RegSS. Finally, the ranking of the processing times is very320

similar to the previous ones.

In order to assess the methods from a qualitative point of view, in Fig-

ure 5 is depicted a three-dimensional representation of the Kirby 21 (image 11)

restoration. Middle slices of each plane are shown. The smoothest results are

generated by both Spline and NLMU, which do not correspond with the desired325

ideal HR image. This may indicate that they depend heavily on the degree of
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(a) Spline (b) NLMU

(c) LRTV (d) SRCNN3D (e) SRReCNN3D-10L (f) SRReCNN3D-20L

(g) VDSR (h) EDSR (i) SRCNN3D+RndS (j) SRCNN3D+RegSS

Figure 6: Residual images for KKI2009-11-MPRAGE T1-weighted image for each method,

applied with zoom factor 2. Three-dimensional images are shown, where the XY plane corre-

sponds to a slice of the axial view, XZ to a slice of the sagittal view and YZ to a slice of the

coronal view.

smoothness of the input LR image. LRTV is also quite different. The CNN

methods yield the best restorations, with the exceptions of EDSR, which looks

over smoothed. In order to evaluate the performance of each method and make

a better differentiation, residual images were also computed and the results are330

shown in Figure 6. Here we can distinguish the best outcomes watching those

images that display fewer brain structures. Raw deep learning methods yield

good results, but there are still visible dark parts. However, the residual images
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of the shifting methods are quite gray, and actually in SRCNN3D+RegSS the

skull is almost indistinguishable.335

An example of the result obtained using zoom factor 3 from both the quanti-

tative and qualitative points of view are shown in Figure 7, Figure 8 and Table 2,

using the image 5 of the Kirby21 dataset. As before, Spline and NLMU are

clearly worse seeing the restored image. Nevertheless, we have to focus on the

residuals to be able to distinguish among the others. Here is obvious that LRTV340

still does not behave well. Comparing CNN methods, there are not great dif-

ferences, but SRCNN3D+RndS and SRCNN3D+RegSS seem to yield a better

outcome where the brain distortion is not severe. Table 2 allows us to corrobo-

rate our assumptions. Deep learning techniques perform better that traditional

algorithms. The adaptation of VDSR and EDSR from 2D to 3D is not enough345

to outperform the other CNN methods. The inclusion of the shifting model

increases the quality of the restored HR image. In some cases the differences

are small, but our method yields better results in PSNR, SSIM and BC, which

demonstrate that our proposal is effective, with an acceptable processing time.

The real T1-weighted image from CIMES was processed in Figure 9 and350

Figure 9. Here we can observe the notable performance of our proposal. If

we focus on the residual images, we can extract two different conclusions. SR-

CNN3D+RndS and SRCNN3D+RegSS yield the most uniform gray residual,

which means that voxel intensities of the restored image are very similar with

respect to the original HR image. In addition to this, if we compare internal355

parts of the brain and even the neck (which is clinically irrelevant but useful for

comparison purposes), the gray intensities remain stable. CNN and traditional

methods have greater non uniform values of gray that could distort the original

brain structures and voxel intensities.

A sagittal slice of the super-resolved OAS1 0001 MR1 mpr-1 anon image is360

shown in Figure 11. Here the differences are almost imperceptible except in the

case of Spline NLMU, where there are visible smoother brain parts. Not too

many differences can be appreciated among the other methods apart from the

gray scale intensities shown in the residual images of Figure 12. in some regions
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(a) Original HR image (b) LR image (c) Spline

(d) NLMU (e) LRTV (f) SRCNN3D (g) SRReCNN3D-20L

(h) VDSR (i) EDSR (j) SRCNN3D+RndS (k) SR-

CNN3D+RegSS

Figure 7: Qualitative results for KKI2009-05-MPRAGE T1-weighted image for each method,

applied with zoom factor 3. Three-dimensional images are shown, where the XY plane corre-

sponds to a slice of the axial view, XZ to a slice of the sagittal view and YZ to a slice of the

coronal view.

of the brain. We can assure that CNN methods, including VDSR and EDSR,365

outperform the traditional methods. SRCNN3D+RegSS achieves to recover and

does not remove small black spots that are distorted by the others with respect

to the HR reference image.
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(a) Spline (b) NLMU (c) LRTV

(d) SRCNN3D (e) SRReCNN3D-20L (f) VDSR

(g) EDSR (h) SRCNN3D+RndS (i) SRCNN3D+RegSS

Figure 8: Residual images for KKI2009-05-MPRAGE T1-weighted image for each method,

applied with zoom factor 3. Three-dimensional images are shown, where the XY plane corre-

sponds to a slice of the axial view, XZ to a slice of the sagittal view and YZ to a slice of the

coronal view.

5. Discussion

It is important to recall that a representative metric for this kind of images370

is usually SSIM, because it focuses on the morphology of the brain, and not so

much on the intensity values. In this sense, our proposal obtains the best SSIM

values. Moreover, the high value (very close to 1) and small standard deviation

we have obtained in BC are also remarkable, so we can ensure that the restored
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Table 2: Results obtained for each method for the tested images with zoom factor 3 (higher

is better for PSNR, SSIM and BC).

KKI2009-05-MPRAGE PSNR SSIM BC CPU time (sec.)

Spline 20.1656 0.8118 0.9174 0.7436

NLMU 20.3356 0.8396 0.9167 78.8499

LRTV 20.1216 0.8324 0.9335 4308.1375

SRCNN3D 23.6425 0.8542 0.9599 7.7902

SRReCNN3D-20L 23.4603 0.8509 0.9432 12.9448

VDSR 20.7754 0.8412 0.9080 16.6636

EDSR 20.6961 0.8459 0.9305 2.0827

SRCNN3D+RndS 24.1791 0.8703 0.9624 53.1471

SRCNN3D+RegSS 24.3661 0.8771 0.9630 216.7438

image is close to the original HR image in terms of the distribution of intensity375

values.

About the required CPU time, our method is not the fastest one. Neverthe-

less, it should be considered that a single GPU was employed when using it. The

use of more GPUs simultaneously may decrease almost linearly the total time.

If there are N GPUs and we compute M shifts, with M ≤ N , it is expected a380

very similar performance compared to SRCNN3D, since the required time for

the shift operations is almost insignificant.

According to the Figure 3 and Table 2, it is remarkable the performance

difference between the proposed SRCNN3D+RegSS and the SRCNN3D-20L,

since the latter model has a larger number of layers on its architecture. As it is385

commented in Section 4.3 of [12], not always ”deeper is better”, since it depends

on the amount of data available for training and the number of epochs. In

addition to this, the reported results show that the proposed shifting technique

SRCNN3D+RegSS outperforms the compared state of the art methods and

the previous proposal SRCNN3D+RndS. This statement is also based on the390

qualitative results obtained from the residual images, which can be observed in
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(a) Original HR image (b) LR image (c) Spline (d) NLMU

(e) LRTV (f) SRCNN3D (g) SRReCNN3D-10L (h) SRReCNN3D-20L

(i) VDSR (j) EDSR (k) SRCNN3D+RndS (l) SRCNN3D+RegSS

Figure 9: Qualitative results for the T1-weighted image from CIMES for each method, ap-

plied with zoom factor 2. Coronal view is shown. Second and third row display the image

reconstructed by each algorithm.

Figures 6, 8, 10 and 12. The more homogeneous and gray the image, the better

the result and consequently the quality of the method. It is possible to observe

that our method improves the remaining ones over the datasets studied.
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(a) Spline (b) NLMU

(c) LRTV (d) SRCNN3D (e) SRReCNN3D-10L (f) SRReCNN3D-20L

(g) VDSR (h) EDSR (i) SRCNN3D+RndS (j) SRCNN3D+RegSS

Figure 10: Qualitative results for the T1-weighted image from CIMES for each method, applied

with zoom factor 2. Coronal view is shown. Residual images between the reconstructed and

the original HR image are displayed.

As described in Subsection 2.2, the advantage over the results obtained by395

a single application of the SRCNN3D comes from an image filtering which is

carried out on the three dimensional space of possible shifts a. The properties
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(a) Original HR image (b) LR image (c) Spline (d) NLMU

(e) LRTV (f) SRCNN3D (g) SRReCNN3D-10L (h) SRReCNN3D-20L

(i) VDSR (j) EDSR (k) SRCNN3D+RndS (l) SRCNN3D+RegSS

Figure 11: Qualitative results for OAS1 0001 MR1 mpr1 anon image for each method, applied

with zoom factor 2. Reconstructed sagittal slices by each algorithm are shown.

of this transformed space are worth being investigated in future works, since

it is possible that careful tuning of the filtering in the transformed space could

lead to even better results.400

5.1. Performance of adapted 2D models

In the present work we include comparisons with two recognised super-

resolution methods for natural images, such as VDSR and EDSR. These very

deep networks outperform most of the state-of-art SR algorithms, although they

were designed for bidimensional natural images. These fact translates on two405
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(a) Spline (b) NLMU

(c) LRTV (d) SRCNN3D (e) SRReCNN3D-10L (f) SRReCNN3D-20L

(g) VDSR (h) EDSR (i) SRCNN3D+RndS (j) SRCNN3D+RegSS

Figure 12: Qualitative results for OAS1 0001 MR1 mpr1 anon image for each method, applied

with zoom factor 2. Residual images between the reconstructed and the original HR image

are shown (sagittal slice).

important limitations: the range of values and the dimensionality.

Both networks work on a fixed, 8-bit quantized range of values, that is,

[0, 255]. In particular, in the case of VDSR, it performs the training and the

restoration of the images on the luminance channel of the Y CbCr color space,

which is nothing more than a linear transformation of the RGB color space. In410

the case of magnetic resonance images, the intensity values are not quantized nor

bounded, so to apply these kind of methods on these images, a normalization

is needed to transform the unbounded intensity values into the 256 possible
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(a) Image KKI2009-10-MPRAGE (λ = 2)
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(b) Image KKI2009-05-MPRAGE (λ = 3)

0 50 100 150
Slice

30

40

50

60
P

S
N

R

0

0.2

0.4

0.6

0.8

1

S
S

IM

VDSR EDSR SRCNN3D+RegSS

Figure 13: Analysis of the performance of VDSR and EDSR with respect to SR-

CNN3D+RegSS for both scale factors 2 and 3. PSNR (left y-axis) is shown with a solid

line and SSIM (right y-axis) with a dashed line (higher is better). Quality measures for all

slices are depicted. From right to left: traversing saggital, coronal and axial axes.

values of the RGB space. This transformation may produce a significant loss of

information that the networks cannot recover. Figures 5-10 shows the excessive415

smoothness of the SR images obtained by these two methods, which could have

been produced by this fact.

On the other hand, we need to deal with the application of this networks

on 3D images. Depending on the network, different procedures are applied. In

the case of VDSR, we followed the steps described in both Matlab5 and source420

code6 examples. We carried out an initial upsampling to reach the desired

image size and after that we apply the network restoration on each slice. EDSR

has a different methodology. The input of this network is the LR image and

5https://www.mathworks.com/help/images/single-image-super-resolution-using-deep-learning.

html
6https://cv.snu.ac.kr/research/VDSR/
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Table 3: Comparison of the image reconstruction of VDSR and EDSR with respect to SR-

CNN3D+RegSS analyzing the PSNR and SSIM (higher is better) of 3D SR image recon-

structed on each axis.

Image KKI2009-10-MPRAGE (λ = 2) KKI2009-05-MPRAGE (λ = 3)

Method X-axis Y-axis Z-axis X-axis Y-axis Z-axis

VDSR
26.4033/0.9313 26.7989/0.9345 26.1664/0.9318 20.9162/0.8396 20.8662/0.8395 21.2268/0.8433

27.4724/0.9390 20.7754/0.8412

EDSR
27.5119/0.9311 27.4537/0.9340 27.3726/0.9340 20.4648/0.8386 21.4813/0.8543 20.9599/0.8477

27.3822/0.9335 20.6961/0.8459

SRCNN3D+RegSS 32.7381/0.9527 24.3661/0.8771

the output is the HR image, so after the application on each slice, the sliced

dimension must be upsampled again. That is, if the LR image has size l×m×n425

and the HR has size l′×m′×n′, if we apply EDSR on each m×n slice, then we

obtain an anisotropic l ×m′ × n′ image. Then we apply bicubic interpolation

to restore the first dimension, i.e. to upsample from l×m′ × n′ to l′ ×m′ × n′.

In order to assess the correct application of these methods and study the

effect of the dimensionality, in Figure 13 the PSNR and SSIM measures obtained430

on each slice along the three dimensions during the restoration procedure are

shown. We depicted the performances for two different images and zoom factors,

comparing our proposal with VDSR and EDSR methods. The performance of

the three methods is very similar or even better for EDSR on boundary slices,

that are those one dominated by zero voxel values. However, as we enter into435

the central part of the image, both PSNR and SSIM values of the 2D methods

are worse than our 3D approach. In Figure 13b the differences are a bit smaller,

and they are in concordance with Table 2. VDSR achieves a better PSNR in

two of the three axes, while EDSR does the same in SSIM. We summarise the

quality of the 3D images obtained along each axis in Table 3. Also, in the central440

columns the final PSNR and SSIM of the final reconstructed image using the

straightforward strategy explained in Section 3 are shown.

Taking into account these analyses, the bad performance of the recognised

methods VDSR and EDSR is probably due to the fact that medical images

carry specific 3D structural information, and the reconstruction by a 2D model445
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is not a natural way to keep knowledge from the image. As an example, a brain

sulcus may be positioned near to the adjacent slice and also go slightly through

it. In this case, this small oscillation might be difficult to distinguish from noise

when a 2D model is applied, potentially resulting in noise enhancement in the

SR image.450

6. Conclusion

In this paper, a method for magnetic resonance image super-resolution is

presented. It is based on the combination of two different methodologies. Low-

resolution images are processed through a convolutional neural network to per-

form an image restoration in order to obtain a high-resolution image. The455

quality of the restored images is increased by applying a regular shifting model

to the input images and then recomposing them into a consensus. A variety of

images of different datasets were used to evaluate the efficiency of the algorithm,

obtaining successful results.

According to the used quality measures (PSNR, SSIM and BC), the proposed460

method has achieved better results comparing to the state of the art methods.

Moreover, SRCNN3D+RegSS has performed the most similar voxel intensities

to the original HR images, achieving the most uniform gray residuals, specially

in images from CIMES.

Quantitative results show that SRCNN3D+RegSS overcomes other state-465

of-art methods, enhancing really high values of BC and measures as PSNR or

SSIM, which indicates that the brain structures are not distorted. Experimental

results show our proposal restores the MR images qualitatively well for different

zoom factors, avoiding over-smoothing.

Future lines of research include the development of further tuned filtering470

methods carried out on the three dimensional shift space which has been pro-

posed in this work.
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