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A B S T R A C T   

In aging water supply systems, many components have exceeded their service life. Consequently, tools are 
needed to efficiently manage the failures in these systems. This work describes the development and imple
mentation of a web tool for the management of breakdowns in water transmission networks. The proposed tool, 
called wAIter, consists of a network of wireless water pressure sensors that send real-time data to an IoT plat
form. The core of the platform consists of a rule-based decision algorithm, which detects and classifies failures 
based on the recorded pressure values and then sends an alert to repair them. In addition, wAIter uses the 
mathematical model of the hydraulic network to estimate the maximum repair time without causing supply 
interruptions. This information is key in the decision-making process to repair breakdowns and facilitate repair 
work management. Finally, the results of the implementation in a real water transmission network are presented.   

1. Introduction 

The current growth of the world’s population requires the careful 
management of available resources. The United Nations predicts that up 
to 6.5 billion people will live in urban areas by 2050. This upward trend 
in population density in large cities increases exposure to extreme 
weather events (Herrera, Ferreira, Coley, & De Aquino, 2016) and 
longer periods of drought are alerting researchers to the importance of 
good water resource management (Butler et al., 2014). 

The age of many water distribution systems considerably affects their 
operation. These systems have been in service for more than 50 years, so 
a significant number of their components (pipes, valves and pumps) 
have exceeded their lifespan, in addition to being manufactured with 
obsolete materials. Consequently, the frequency of failures tends to in
crease over time (Winkler, Haltmeier, Kleidorfer, Rauch, & Tscheikner- 
Gratl, 2018). This has a negative impact on the performance of water 
supply networks which, together with the increasing trend of energy 
prices, makes the modernization of these infrastructures essential 
(Hernandez & Kenny, 2010). 

The operation of water transmission networks (WTN) that convey 
water from sources to regulation tanks in municipalities is conditioned 

by their dispersion in the territory. These networks are made up of long 
pipes (tens of kilometers in length) located in non-urban areas, which 
makes it difficult to monitor all the key points of the network on site 
daily. In addition, given the large diameter of the pipes to adequately 
transport large flows, leaks in WTNs result in the loss of substantial 
volumes of water. 

Numerous techniques have been developed to improve the perfor
mance of large water supply networks. In addition to the traditional 
techniques of periodic acoustic measurements (Cody, Tolson, & Or
chard, 2020; Fuchs & Riehle, 1991) and minimum night flow analysis 
(McKenzie & Seago, 2005), there are techniques to analyze data from 
the SCADA data acquisition system in real time and detect leaks 
(Romano, Kapelan, & Savić, 2014; Wu, Sage, & Turtle, 2010) or 
compare real data to the data generated by hydraulic models (Al-Kho
mairi, 2008; Shao, Li, Zhang, Chu, & Liu, 2019). The optimal placement 
of sensors in hydraulic networks to maximize fault detection in the 
network has also been studied (Soldevila, Blesa, Tornil-Sin, Fernandez- 
Canti, & Puig, 2018). 

However, these techniques have important limitations to implement 
them in real systems. On numerous occasions the technology has only 
been validated in the laboratory (Fereidooni, Tahayori, & Bahadori- 
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Jahromi, 2020). The implementation costs are high, since they require a 
large number of sensors to ensure acceptable results. In addition, to 
apply current machine learning techniques, historical data series are 
needed at several points in the network. 

The development of new telecommunication systems based on low 
power wide area networks (LPWANs) is driving the development of 
telemetry and data acquisition systems to collect large amounts of in
formation (Lalle, Fourati, Fourati, & Barraca, 2019). Systems based on 
the Internet of Things (IoT) are enabling the decentralized monitoring of 
large hydraulic networks and providing access to information in real 
time from any point with an internet connection (Apostol, Truică, Pop, & 
Esposito, 2021; Narayanan, Sankaranarayanan, Rodrigues, & Lorenz, 
2020). To efficiently manage these large hydraulic infrastructures, their 
digitization is essential. Digitization is the only way to apply Big Data 
techniques to the recorded data and facilitate the daily management 
tasks of this type of facilities, thus making them safer and more resilient 
to adverse situations (Makropoulos & Savic, 2019). 

This paper describes the development and implementation of an IoT 
platform aimed at fault detection in drinking water transmission net
works using open-source software. The core of the platform is a rule- 
based decision algorithm, which detects and classifies faults using 
only the pressure data recorded by the linked network of low-cost 
wireless pressure sensors. Upon detection of a fault, the system sends 
alerts and estimates the maximum repair time without causing supply 
outages, facilitating the management of repair works. The applicability 
of the proposed system has been tested in a real WTN. 

The rest of this article is organized as follows. Section 2 describes the 
architecture of the IoT platform for WTNs. Section 3 explains the func
tions of the different modules of the platform. Section 4 presents a case 
study of the implementation of the platform. Section 5 discusses the 
results and Section 6 concludes. 

1.1. IoT platform architecture 

The architecture of the IoT platform proposed in this work is orga
nized into three independents but connected layers (Fig. 1). The plat
form is called wAIter, a combination of the words “water” and “artificial 
intelligence”. The wAIter platform architecture allows adding, deleting, 

or updating the modules and components of the layers without affecting 
the system architecture. These layers are described below. 

1.2. Layer 1: Data collection 

Layer 1 contains the IoT sensors that record the required variables in 
WTNs. The sensors are controlled by Arduino-type microprocessors and 
send the information to the cloud using LPWAN technology. Each device 
has a unique identifier that allow the elements in the other layers of the 
platform to identify the sensor that captured each data. 

1.2.1. Pressure sensor network 
This level contains the sensors that transform the hydraulic variables 

involved in failure detection (e.g., pressure) into electrical signals. Ad- 
hoc communication nodes have been developed for this research 
(Pérez-Padillo, Morillo, Ramirez-Faz, Roldán, & Montesinos, 2020). 
These nodes can read different types of signals (4–20 mA, analogue 
signal, digital signal, I2C signal) and can also be powered in three ways: 
with batteries, with a small photovoltaic module or by connecting the 
device to the conventional electrical network (Fig. 2). 

Each device is equipped to host an Arduino MKR family hardware 

Fig. 1. Architecture of the pressure monitoring system.  

Fig. 2. Communication node components.  
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board. These boards are composed of an Atmel SAMD21 microcontrol
ler. All of them have the same input and output layout and are 
compatible with the rest of the electronics of the measurement device. 
The Arduino microcontroller collects hydraulic data at different periods 
and disconnects the system between measurements to save battery 
power. This helps to reduce the energy consumed in each reading cycle 
and increase the autonomy of the device. 

The communication node acquires and periodically transmits the 
pressure data recorded by the pressure transducer. The pressure records 
are used to characterize the operation of the system. Thus, pressure 
values out of the normal range indicate system malfunctions. 

1.2.2. Wireless communication network 
The expansion of IoT systems is driving the development of LPWANs. 

Due to the range and power consumption of these networks, they are 
ideal for communicating scattered points in large and often difficult to 
access territories, where WTN monitoring systems are often located 
(Singh, Puluckul, Berkvens, & Weyn, 2020). The most widely used 
LPWAN communication networks are Sigfox (Purnama & Nashiruddin, 
2020), LoRaWAN (Cesana & Redondi, 2017; Semtech Corporation. Lora 
Overview, n.d.) and NB-IoT (Chen et al., 2017), whose main features are 
shown in Table 1. 

The selection of the most suitable communication technology de
pends on each application case. The IoT sensor described in the previous 
section is versatile, so it can communicate with any of the LPWANs in 
Table 1 using the corresponding microcontroller. The Arduino MKR 
family has different boards, each of which is adapted to a communica
tion system: LoRa (Arduino MKR 1300), Sigfox (Arduino MKR 1200), 
Wifi (Arduino MKR 1000), GSM (Arduino MKR 1400), and Narrow Band 
IoT (Arduino MKR 1500). 

1.3. Layer 2: Backend 

The backend layer provides the platform services and contains the 
utilities for sensor control, data analysis and storage, notification, 
application programming interfaces that conform to the constraints of 
representational state transfer architectural style (REST API) allowing 
for interaction with REST web services (Kumar Polu, 2018), and the 
failure identification algorithm. The development of the backend in the 
cloud allows new services to be added without affecting the system ar
chitecture, as well as to scale and/or replicate the platform on other 
servers and connect it to any client or service with their own interface. 

In this work, the Amazon Web Service (AWS) platform has been 
chosen to offer PaaS (Platform as a Service) type services, thus avoiding 
the need to manage the web infrastructure (hardware and operating 
systems). This feature facilitates platform development and imple
mentation. The architecture has been developed to easily add or remove 
modules, thus ensuring the scalability of the system. The modules that 

form the backend are:  

• LPWAN-Backend: the measurement devices are connected to the 
LPWAN cloud where the values arrive in hexadecimal format. The 
call-backs that redirect the sensor value through the Hypertext 
Transfer Protocol (HTTP) to the backend of the platform are 
configured from the LPWAN cloud. This system allows managing 
several devices together, which facilitates the process.  

• IoT service: in addition to storing sensor data in the cloud, this 
element permits processing a variety of data in an easy manner. The 
service facilitates the management of large amounts of information, 
such as tools for developers, data security, administration tools, data 
analysis, etc.  

• Functions: This element manages and redirects the data transferred 
from the LPWAN to the different cloud services: database and 
calculation algorithms. Each pressure value has an identifier asso
ciated with the sensor that registered it.  

• Database: The DB Dynamo database (NoSQL type) stores both the 
data recorded by the sensors and the results of the calculation al
gorithms. This database was selected due to its ease of integration 
with other cloud services.  

• Failure Detection Algorithm: This algorithm detects possible faults in 
the WTN and analyzes the pressure data to determine whether the 
values are within the normal operating range of the pipe. If the 
values are not within the normal range, it sends an alert command to 
the notification module which is also stored in the database. This 
algorithm is described in Section 3.1.  

• Notification services: This module sends failure alerts to the platform 
users. 

• Failure repair management module: The availability of the mathe
matical model of the network is required for using this module. It 
contains an ad-hoc algorithm written in Python programming lan
guage (Python Software Foundation. Python Language Reference. 
Version 3.6.11 Available at https://www.python.org, n.d.) that is 
connected to the EPANET open-source hydraulic simulator (Ross
man, 2000) as a calculation engine to analyze the behavior of the 
system during different failure scenarios. The algorithm is hosted in a 
cloud server and accessed through a REST API created with the 
Django open-source framework (Django, 2020). The API was 
configured to receive HTTP calls through a POST method that sends 
the necessary parameters for the algorithm execution (Kumar Polu, 
2018). A detailed description of this module is given in section 2.4. 

1.4. Layer 3: Frontend 

The frontend layer contains the platform’s graphical interface for the 
user and establishes the connection between the database, the user, and 
the calculation algorithms. It enables users to operate the platform and 
visualize all its functionalities in a simple and efficient manner. The 
frontend interacts with the REST API (backend) by the HTTP protocol 
for the user to make requests for information to the database and the 
analysis algorithms hosted in the backend. 

To develop the interface, the open source ReactJS library for creating 
single-page web applications (SPA) was used (Gackenheimer, 2015). 
This library allows the platform utilities to be divided into components, 
each with its own logic and independent operation. 

Depending on their category, users can use the frontend functions 
described in section 3. The user categories are administrator, who has 
access to all the functions, and qualified and basic users, who are 
permitted different levels of accessibility to the platform functions. The 
access levels are given in the description of the functions. 

The role of administrator is reserved for the platform developers, 
who are the only ones that can add and remove users and manage da
tabases. Administrators have full access to the functions allowed to users 
in the other categories. WTN managers have the role of qualified users. 
They are enabled to create, remove sensors, and edit the pressure range 

Table 1 
Comparison of low power wide area networks.  

Attribute NB-IoT LoRa SigFox 

Operation frequencies 
[MHz] 

700–900 868 868 

Band Cellular, 
licensed 

ISM, unlicensed ISM, unlicensed 

Transmit power [dBm] 23/35 14 14/27 
Bandwidth [kHz] 180 125 0.1/0.6 
Range (km) <15 9 km (Urban) 50 

km (Rural) 
10 km (Urban) 50 
km (Rural) 

Data rate DL 50 kbps DL 50 kbps DL 600 bps 
UL 50 kbps UL 980 bps UL 100 bps 

Infrastructure 
deployment 

No Yes No 

Expansion Low High High 
Compatible Arduino 

microcontroller 
MKR NB 
1500 

MKR FOX 1200 MKR WAN 1310  
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of each sensor. Finally, maintenance staff are basic users. They can view 
the sensor data and query flow and pressure values of damaged pipes, as 
well as calculate maximum repair times automatically from the infor
mation recorded in the system. 

2. wAIter function modules 

The proposed platform facilitates the comprehensive management of 
failures in WTNs, enabling the analysis of each incident from different 
points of view and estimates of the time available to carry out repairs. Its 
functional modules are described next. 

2.1. Failure detection module 

This module analyzes sensor pressure data to detect failures in real 
time in branched WTNs with a single water supply source. Likewise, no 
pumps may be in operation in the sector(s) where the pressure sensors 
are installed. Moreover, when data logging is started, the WTN must be 
operating correctly. The type of pressure deviation incidents and the 
failure detection algorithm are described next. 

2.1.1. Type of incidents 
There are four typical pressure variation incidents in WTNs as 

described below.  

a) Incident 1: Sensor failure. This incident occurs when some data 
sending cycles are not performed correctly for any reason. Pressure 
data transmission failures cause erroneous pressure fluctuations that 
must be analyzed. Although situations of this type are rare in robust 
data logging devices, it is important to be aware that they may occur. 
Even if the duration of a fault is short, it must be identified as a sensor 
failure to avoid generating a false failure alert. This type of incident 
can be easily detected because the pressure fluctuation is associated 
with a fluctuation of the device battery (Fig. 3). This incident does 
not cause water losses.  

b) Incident 2: Supply cut-off. A cut-off in water supply in the sector 
where the sensor is located causes the water to drop (Fig. 4). These 
interruptions of supply are necessary to perform cleaning and 
maintenance operations in the network. When the shut-off valve 
located upstream from the sensor closes, the pressure line shows a 
sudden drop in pressure from normal values to zero pressure. After 
maintenance is completed, the valve reopens, and the pressure 
returns to its normal range of values. As in the previous case, this 
incident does not involve water losses.  

c) Incident 3: Leaks/breaks downstream from the sensor. This incident 
is characterized by the evolution of pressure over time when a leak 
occurs downstream from the pressure measuring device. Fig. 5 shows 
four distinct periods in the evolution of pressure data. In the first 
stage, the pressure is within the normal operating range and ends 
with a sudden drop in pressure when the leak/break occurs. In the 

next period, the pressure stabilizes at a lower pressure value than 
normal until the repair begins. The duration of this phase determines 
the amount of water losses caused by the leak/break in the pipe. 
Once the problem is detected, the upstream shut-off valve is closed 
and the repair period begins. The repair period ends when the 
pipeline is put back into service. The locations of the shut-off valve 
and the sensor, as well as the topology of the damaged pipe, deter
mine the minimum pressure recorded by the sensor during the repair 
period. As shown in Fig. 5, the pressure returns to normal values once 
the fault has been fixed and the shut-off valve has been reopened.  

d) Incident 4: Occurrence of leaks/breaks upstream from the sensor. 
This type of incident is detected in a similar manner to the previous 
one (Fig. 6). In this case, leak/break is detected by a sudden drop in 
pressure values, which continue to decrease progressively as the flow 
rate in the damaged pipe is reduced due to water losses. The repair 
period begins with the shutdown of the supply by closing the cor
responding shut-off valve. The locations of the shut-off valve and the 
sensor, as well as the topology of the damaged pipe, determine the 
minimum pressure recorded by the sensor. As in the above type of 
incident, the pressure record values return to normal levels after 
reopening the shut-off valve once the leak/break has been fixed. 

2.1.2. Rule-based decision algorithm for failure detection 
A rule-based decision algorithm has been developed to detect failures 

in WTNs using pressure data analysis. This type of algorithm has a 
similar structure to that of a decision tree. Its behavior is based on 
making decisions related to the values of the input data. This method
ology is a supervised self-learning algorithm for solving classification 
problems (Safavian & Landgrebe, 1991). Fault detection is a binary 
classification problem whose solution determines whether the fault ex
ists or not. 

The proposed algorithm has tree-like flowcharts in which an internal 
node represents a feature (or attribute), the branch represents a decision 
rule, and each child node represents the decision (Breiman, 2001). The 
nodes in the tree act as a test case for some attribute, and each branch 
descending from those nodes corresponds to one of the possible re
sponses to the test case. Finally, the terminal nodes of the tree indicate 
the final classification. Logical structures of this type convert complex 
decisions into a set of several simpler decisions. 

The flowchart shown in Fig. 7 is designed to determine the type of 
failure that occurs in a WTN due to deviations of pressure values from 
normal values. In the figure, the orange elements represent the nodes, 
the green ones represent the branches, and the blue ones represent the 
terminal nodes. In this case, as four possible incidents have been 
considered, the blue nodes identify the type of failure in the pressure 
records described in the previous section. The pressure and the battery 
of the measuring device are the attributes considered to define the 
branches starting from each node. 

This algorithm is executed each time the database receives new data 
(pi(t), pressure at time t). After the algorithm is executed, the data are 

Fig. 3. Sensor failure incident.  
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stored in the database. Subscript i identifies the sensor that recorded the 
data. Likewise, pi(t-1) is the pressure data before time t stored in the 
database of sensor i; pi(t + 1) is the pressure data after time t recorded by 
sensor i; bi(t) is the battery level of the measuring device i at a given 
time, t: bi(t-1) is the battery of sensor i at the instant immediately before 
time t. 

The algorithm starts by checking whether pi(t) is below a certain 
pressure threshold, which is calculated in each time step (described in 
section 3.1.2.1). If it is under this value, it is checked whether this sit
uation had occurred for pi(t-1). Thus, if pi(t-1) is higher than the 
threshold, the battery condition is checked, otherwise the failure 
detection process finishes. When bi(t) is not equal to bi(t-1), the sensor is 
not operating properly (incident 1). Then pi(t) is rejected and not stored 
in the database to avoid false data being recorded and no alert is sent to 
the WTN managers. This type of failures does not occur continuously 
and are of a short duration. Otherwise, if the failure occurs repeatedly, 
the algorithm can detect it and alerts the users to repair it. 

Conversely, when bi(t) equals bi(t-1) (the sensor performance is 
correct) and pi(t) equals 0, the algorithm identifies that water is not 

circulating through the pipe because of the supply cut-off upstream of 
the sensor (incident 2). An alert is then generated and sent through the 
alert module (section 3.2) and the algorithm ends. 

Finally, leaks and breaks (incidents 3 and 4) can be detected when pi 
(t) is not equal to 0. The algorithm sends a first notification that a leak 
has occurred. In the next data sending cycle, the algorithm determines 
whether the leak/break has occurred downstream (incident 3) or up
stream (incident 4) of the sensor by comparing pi(t) to pi(t + 1). If pi(t) is 
almost equal to pi(t + 1), incident 3 is detected. However, if pi(t) is 
lower than pi(t + 1), then the leak/break has occurred upstream of the 
sensor location. Once the failure has been classified, a second notifica
tion is sent to the WTN managers informing them if the leak/break is 
located upstream or downstream of the sensor. 

In addition, the algorithm detects that the pressure has returned to its 
ordinary values after the failure has been fixed when pi(t-1) is below the 
threshold, but pi(t) is above it. At that time, an alert is sent indicating 
that the pressure values have returned to their normal levels. In this way, 
the WTN managers are informed in real time when the network is back 
to its normal operation. 

Fig. 4. Supply cut-off incident.  

Fig. 5. Occurrence of leaks/breaks downstream of the sensor.  

Fig. 6. Occurrence of leaks/breaks upstream of the sensor.  
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The algorithm described can be applied with a single sensor, but the 
denser the pressure sensor network, the easier it is to locate WTN failure 
points. 

2.1.2.1. Threshold definition. The pressure threshold is the key param
eter (attribute) for the performance of the rule-based decision algorithm 
described above. This parameter defines the lowest pressure limit for 
detecting failures in WTN when the recorded pressure is below this limit. 
The accuracy of the incident classifier depends on the precision of the 
pressure threshold determination, as it is the decision-making attribute 
of the first node. 

The pressure changes over the year and time of day (Fig. 8). There
fore, the pressure threshold is a dynamic parameter. The threshold value 

is calculated as the mean of the last n pressure values recorded in the 
database weighted with a safety factor, SF, ranging from 0 to 1, ac
cording to Eq. (1). The shape of the threshold time evolution curve is 
similar to the pressure curve, since the threshold value depends on the 
last received pressure values, thus adapting to changes in the WTN 
loading conditions. 

threshold(t) =
[∑t− n

i=t− 1pi(t)
n

]

xSF (1) 

The values of n and SF are estimated based on the pressure variability 
at the monitoring points. Each sensor in the network is defined by a 
different SF and n. Hence, the threshold is adapted to the pressure 
conditions at each specific measurement point. The value of n depends 

Fig. 7. Flowchart of the leak detection algorithm.  
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on the type of network to be studied. In a network with sudden pressure 
changes, it is necessary to set a relatively low value of n, to quickly adapt 
the threshold to the changes. In networks with constant pressures, a 
higher value of n can be set to avoid false positives of network failures. 
The choice of the optimal SF is a complex process that is mainly based on 
the performance of the algorithm (measured by the confusion matrix 
and the calculation of the mean detection time, MDT). This parameter is 
key for adapting the fault detection algorithm to the network. 

The accuracy of the algorithm that calculates the SF and n parameter 
is evaluated by the confusion matrix as it is a classification algorithm 
(Fig. 9) (Fawcett, 2006; Sokolova & Lapalme, 2009). The rows of the 
matrix indicate the actual class and the columns indicate the predicted 
class. The elements that form the confusion matrix are: true positives, 
TP, which are the number of times the algorithm correctly detects in
cidents; false positives, FP, which are the number of times the algorithm 
detects non-existent incidents; true negatives, TN, which are the number 
of times the algorithm does not detect incidents because they have not 
occurred; and false negatives, FN, which refers to the number of times 
the algorithm does not detect real incidents. 

The last aspect to evaluate is the mean detection time (MDT) of the 
incidents (Eq. (2)). MDT is the period from the beginning of any incident 
until it is detected by the algorithm. This parameter indicates how 
quickly the algorithm detects incidents in the network and is directly 
proportional to SF. An increase in SF will decrease the threshold that 
determines the occurrence of an incident and consequently increases the 
average time that the algorithm takes to detect it. 

MDT =

∑N
i=1

(
tj
d − tp

)

Nd
(2) 

Where tj
d is the exact time that the measurement device j takes to 

detect an incident; tp is the exact time the incident occurs; and Nd is the 

number of total incidents. High MDT values indicate delayed detection 
of faults. When these faults are leaks/breaks, significant amounts of 
water can be lost in an uncontrolled manner. Therefore, it is important 
to adjust the threshold value to minimize the number of false negatives 
and reduce MDT. 

To calculate the SF parameter, an iterative process is followed 
starting with a value close to 0 and increasing this parameter according 
to the results of the confusion matrix (TP, TN, FN and FP) and MDT. The 
user can define minimum requirements (TPreq, TNreq, FNreq, FPreq 
and MDTreq) that stop the algorithm when it exceeds them. Once the SF 
is optimized, the previous results are improved by performing a similar 
process, but this time by modifying the value of the parameter n. The 
objective is to improve the previous results of the confusion matrix (TP1, 
TN1, FN1 and FP1) and MDT (MDT1) with an optimal value of param
eter n. 

These two parameters, SF and n, are updated weekly to learn from 
new failures that occur during that period and thus optimize the 
calculation of the threshold. The optimization process of the parameters 
involved in the calculation of the threshold (SF and n) is explained in the 
flowchart in Fig. 10. 

Fixed thresholds require a relatively large dataset to fix their value 
and do not detect small leaks linked to small drops in pressure records 
(Venkatasubramanian, Rengaswamy, Kavuri, & Yin, 2003). The pro
posed threshold is a dynamic threshold that updates its value with each 
new data sending cycle, thus adapting to the evolution over time of the 
WTN loading conditions (Fig. 11). With the dynamic threshold, the fault 
detection algorithm proposed in this work can detect small leaks that 
would not otherwise be detected if a fixed threshold were considered. 

Fig. 11 shows the evolution of pressure and threshold during a 
pressure variation incident. For the duration of the incident, the 
threshold value remains constant at the value it had at the time of the 
incident. This prevents the threshold from taking excessively small 
values, which would not allow the identification of failures resulting 
from smaller pressure variations. 

2.1.2.2. Algorithm performance evaluation. The parameters precision, 
recall, accuracy and F1score, which are calculated from the elements of 
the confusion matrix, are used to complete the evaluation of the algo
rithm (van Rijsbergen, 1979). Recall is the fraction of the true positive 
values that are predicted to be positive (Eq. (3)). Precision is the fraction 
of positive predictions that are positive (Eq. (4)). Accuracy is the ratio of 
correct predictions to all predictions (Eq. (5)). F1score measures the 
accuracy of the proposed classification algorithm as a function of pre
cision and recall (Eq. (6)). F1score is used to minimize false positives and 
false negatives in unbalanced datasets. 
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Fig. 8. Real pressure data from the ad-hoc pressure measuring device.  

Fig. 9. Confusion matrix.  
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Recall =
TP

TP + FN
(3)  

Precision =
TP

TP + FP
(4)  

Accuracy =
TP + TN

TP + TN + FN + FP
(5)  

F1score =
2Â⋅precisionÂ⋅recall

precision + recall
(6)  

2.2. Alert module 

This module receives the results of the fault detection module when 
it detects a fault and generates the corresponding alert message via SMS/ 
email. Its purpose is to allow users to visualize the results of the failure 
detection module as soon as the failure occurs and to act accordingly. 

This is a selective alert sending module. Alert messages are only sent 
to the staff responsible for the area affected by the fault. To do this, the 
module integrates a database with information about the maintenance 
personnel responsible for each sector in which a sensor has been 
installed. To perform this process, the sensors are georeferenced so that 
when the fault detection module triggers an alert, the module identifies 
the appropriate staff. 

Fig. 10. Flowchart for the estimation of SF and n.  
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Each alert message sends information about date and time of failure 
detection, recorded pressure value, type of incident and location of the 
sector where the failure has been detected (Fig. 12). 

2.3. Failure repair management module 

The purpose of this module is to determine the maximum repair time 
of a failure, MRT, or the duration of a maintenance task. MRT is 
equivalent to the interval between the time the failure is detected and 
the time users (inhabitants of a municipality) are unable to meet their 
demands because of the supply failure. This concept is the basis for the 
optimal management of the human and material resources needed to 
resolve failures. Once MTR is known, the WTN manager makes the 
necessary arrangements to carry out the repair, which must be solved in 
less time than MRT. 

The consumption nodes of a WTN are the tanks that supply drinking 
water to the municipalities. When a supply network fails, the time to 
empty these tanks determines the value of MRT. To estimate MRT, it is 
necessary to have a hydraulic model of the WTN, which is a set of 
mathematical equations that simulate the behavior of the network. The 
hydraulic model reproduces the evolution of tank levels over time using 
an extended simulation period approach (Paez & Filion, 2020). 

The Django Rest Framework (DRF) open-source tool is used to 
implement the REST API. The design of the REST API is based on three 
essential components: serializers, views and routers (Fig. 13). These 
components connect the frontend and the EPANET core. Because the 
frontend and the repair module are written in different programming 
languages, serializers are used to transform the data from EPANET into 

the JSON format used by DRF so that the data can be visualized using 
ReactJS. Views is the module in charge of the logic and manages all the 
communications between the API and the EPANET core. The routers 
define the API URLs. There is one router per view, which takes as pa
rameters the name of the view and the URL of the API created. The 
computing procedure was developed in Python to use the EPANET hy
draulic simulator (open-source software) as a calculation engine. A 
description of the hydraulic simulation process is given below. 

2.4. MRT calculation mode 

WTN managers can analyze the behavior of the network under 
different fault scenarios by manually entering the input data to perform 
the MRT calculation and simulate hypothetical fault situations in the 
WTN. 

This calculation option is complex and requires minimal knowledge 
of hydraulic modelling. The only requirement to implement this option 
is to have the hydraulic model of the WTN. The user must manually 
enter the pipe affected by the failure, the level of each tank at the time of 
the failure and the demand of the affected municipalities. Then, using 
the extended period calculation of EPANET (Rossman, 2000), the 
maximum time available to avoid disrupting the supply of the most 
critical tank in the simulation scenario can be calculated. 

2.5. Business solution 

This section describes the design of the graphic interface of the 
wAIter platform. The platform includes the functionalities of the three 
modules explained above. A simple and intuitive interface has been 
designed to facilitate its replication for any water service. 

In the first tab (Fig. 14), the sensors are set up to display the infor
mation they record. There is a specific button to add, edit and delete the 
sensors. It is necessary to enter basic information for each sensor: 
geographic coordinates, password to access its database, type of instal
lation and altitude. This option is only available to the platform 
administrator, who is responsible for managing the sensors’ basic set
tings. To have a background map with the layout of the georeferenced 
pipe network, it is necessary to upload a file with a shapefile extension 
containing this information. 

Fig. 15 shows the location of the pressure sensors in the WTN. The 
platform provides users the latest recorded data of the selected mea
surement device by clicking on the sensor displayed on the map. With 
just a glance, it is possible to know the pressure in real time at the WTN 
monitoring sites. 

Knowledge of the water pressure evolution over time in WTNs is 
important to gain a better understanding of how these systems operate. 
In many cases, historical data series are needed to analyze past time 
periods. The wAIter platform permits data to be consulted for a selected 

Fig. 11. Pressure and threshold evolution during a pressure variation incident.  

Fig. 12. Example of alert message.  
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date interval (Fig. 16). This information can be used for the advanced 
calculation mode of MRT under different operational scenarios. Data can 
be downloaded in different formats (CSV, PDF and PNG) to adapt the 
query to the user’s needs. 

This tab configures the key parameters for the failure detection al
gorithm (SF and n) to calibrate the failure detection module (Fig. 17). 
There are two setup procedures. For sensors that have recently been 
installed in a location with no previous records, SF and n are entered 
manually. The automatic update button is for sensors that have been 
operating for a minimum period and have detected failures in their 

sector. SF and n are recalculated to take into account the last failures. 
Like the Sensor Setup tab, this option is only available to administrators. 

The Data labelling tab has been created to label the pressure data and 
store detailed reports of every event occurring in the network. Data 
labelling is essential for fine-tuning the dynamic threshold to improve 
the performance of the failure detection algorithm. This way, the algo
rithm learns from past incidents and will self-adjust to the behavior of 
each network. The parameters defining the dynamic threshold (n and 
SF) are updated weekly according to the new data entered in the sys
tem’s event database. 

Fig. 13. Communication between the frontend and the EPANET core.  

Fig. 14. Sensor configuration tab.  
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To describe an incident, it is necessary to enter the starting date and 
time, the duration of the failure from start to full repair and the type of 
incident (based on the classification shown in section 2.1.1) (See 
Fig. 18). 

The alerts tab collects information about faults detected by the sys
tem (Fig. 19). This tab is divided into two sections. The upper part of the 
screen contains the failure register in real time (i.e., based on the latest 
data collected from each sensor). The lower part of the screen contains a 
failure history. The platform displays the failures of the selected sensor 
for the selected period. This option allows users to carry out advanced 
studies on the recurrence of failures in the same sector. 

The MRT tab is suitable for users with some knowledge of hydraulic 
modelling (Fig. 20). To use this function, a text file with the hydraulic 
model must first be created in EPANET.inp format and then uploaded by 
clicking on the lower right button. To create several loading conditions 
scenarios for each incident detected in the WTN, the hydraulic model of 
the network must be uploaded previously. Data on the pipeline, the level 
of the affected tanks and the base demand of the consumption nodes 
must be entered manually. 

3. Results 

3.1. Study area 

The proposed methodology has been implemented in a WTN oper
ated by EMPROACSA, the provincial water supply company of Cordoba, 
southern Spain (Fig. 21). The network covers an area of around 600 km2 

and supplies drinking water to ten municipalities with populations 
ranging from 140 to 9,635 inhabitants. The three largest municipalities 
account for 60% of the total population (44,200 inhabitants). 

The Martín Gonzalo reservoir (280 masl) is the water source of this 
WTN. The water is purified in a water treatment plant with a capacity of 
25,920 m3/day. The population varies seasonally as many of the houses 
in the area are used for recreational purposes. The main industrial ac
tivity of the area is olive oil extraction, whose maximum water demand 
occurs during the olive harvesting period (November to February), 
although it only accounts for 3% of the total water consumption (Gua
dalquivir, 2015). 

The average daily water demand is 250 l/hab/day. The mean annual 

Fig. 15. Real time data tab.  

Fig. 16. Historical data tab.  
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consumption per municipality ranges from 12,733 m3/year to 681,572 
m3/year and reaches the highest values in summer (July to September). 

The topology of the network is branched and consists of a main 
pipeline with three secondary and several tertiary pipelines. The 
network is made up of pipes of different materials and diameters with a 
total length of 88.79 km. Water is pumped through 4 pumping stations 
with horizontal centrifugal pumps between 69 masl and 180 masl. The 
municipal water supply networks are fed by the 18 tanks of the WTN 
with capacities between 80 m3 and 7,500 m3. 

3.2. Sensor network 

Due to the state of the WTN, the Sigfox communication network has 
been chosen and consequently the microcontroller of the IoT sensor is 
Arduino MKR 1200 (Arduino, 2019). Sigfox has a range of 50 km and 
does not require the installation of a communications network as it can 
be accessed by paying the connection service with an annual fee per 
device. These features make Sigfox the most suitable LPWAN alternative 
for monitoring WTNs scattered over large territories at a low cost. A one- 
way communication is established between the sensor and the LPWAN 

network, so only the sensor readings are transmitted. This communi
cation system is limited to a maximum of 140 messages per day and a 
payload of a maximum of 12 bytes. This is a sufficient frequency to 
monitor the water pressure and obtain data approximately every 11 min. 

Eight pressure measurement devices were installed in the network. 
The location has been conditioned by the coverage of the Sigfox network 
and by the proximity to sectors with a high failure rate. The entire WTN 
has been covered by installing a pressure sensor in each branch of the 
pipe system. The technical characteristics of the pipes (diameter and 
material) where the sensors have been installed are varied, but have not 
affected the quality of the pressure records. 

The core of the sensors is the pressure transducer, which measures 
the water pressure inside the pipes. This device converts the pressure 
into a voltage signal ranging from 0.33 V to 2.97 V. The supply voltage 
of the transducers is 3.3 V with a current consumption of 4 mA and is 
fully compatible with the output voltage of the microcontroller used 
(Arduino MKR FOX 1200). In addition, transducers have an IP69K de
gree of protection, which provides them protection against water and 
avoids damage. To improve the accuracy of the pressure measurement, 
two transducers with a different full scale (0–17.23 bar and 0–34.47 bar) 

Fig. 17. Threshold setup tab (1).  

Fig. 18. Threshold setup tab (2).  
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have been used. Thus, the pressure transducer that best suits the oper
ating range of each monitoring point has been chosen. 

3.3. Pressure threshold calculation of the failure detection algorithm 

Using the sensor network described above, pressure data were 
collected from the study area over a period of 12 months. To show a 
more concrete case, the results will focus on one of the pressure sensors 
mounted on the WTN. Thus, the procedure can be extrapolated to the 
other sensors. In this series of pressure data recorded by this represen
tative sensor, a total of 40 incidents (20 incidents of type 1, 5 incidents of 
type 2, 9 incidents of type 3 and 6 incidents of type 4) have been 
detected. Each of the failures is described according to its pressure, date, 
time and duration, location and type of incident. As an example, Fig. 22 
shows how an incident can be detected by studying the evolution of the 
pressure. Table 2 shows how some of the incidents during the study 
period have been labelled to include them in the database that feeds the 
fault classification algorithm. 

One of the key parameters in calculating the threshold of each sensor 
is the safety factor (SF). The data in Fig. 23 show that the optimal SF is 
close to 30%. This study has been carried out with data collected for 12 
months, accounting for the number of false positives, false negatives and 

true positives with each of the SFs considered. The dashed line indicates 
the actual incidents that have occurred during the period analyzed. For 
this study, sensor failures have not been considered, as they are 
considered irrelevant and because these failures are due to a problem of 
the sensor electronics rather than the malfunctioning of the WTN. 

False positives are represented by the number of times the algorithm 
considers an incident that has not occurred. With a low SF, there will be 
a high number of false positives because any small variation in pressure 
will be considered an incident. Conversely, a high SF implies a low rate 
of false positives. True positives and false positives behave symmetri
cally, i.e., as one increases, the other decreases proportionally. As the SF 
increases, the true positives decrease. This is because the threshold de
creases, and the pressure drop must be greater to be detected by the 
algorithm. The rate of false negatives will behave in the opposite way. 

The MDT, which is an important parameter for measuring the per
formance of the algorithm, has also been evaluated (Fig. 22). A decrease 
in the response times leads to a rapid action on any leak or fault and 
hence an improvement in the overall performance of the network. 

The SF may change over time depending on the type of variable of 
interest to the user. For example, if the user wants to decrease the 
response time in summer due to water scarcity, the SF should be 
decreased. In contrast, false positives will increase. In addition, the 

Fig. 19. Warning tab.  

Fig. 20. Advanced MRT tab.  
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algorithm learns from new incidents and the SF will be modified to adapt 
to new types of failures. An SF of 28% was chosen for this study as it 
detects the maximum number of incidents and provides an acceptable 
response time. 

3.4. Performance analysis of the failure detection algorithm 

Fig. 24 shows the results confusion matrix. The low rate of FN shows 
that few incidents were not detected by the algorithm. The high rate of 

TP and TN is a measure of the robustness of the algorithm and indicate 
that the system has not generated unnecessary alarms. 

The evaluation of the algorithm performance parameters is shown in 
Table 3. 

As can be seen in Table 3, the high value of Recall (0.95) indicates 
that the number of false negatives is very low. A Precision of 0.974 in
dicates that the number of predictions that are false positives is very low. 
The Accuracy value (0.999) indicates that the algorithm’s predictions 
are almost 100% correct. The F1score is also considered since the classes 

Fig. 21. Location and layout of the WTN and the sensors.  

Fig. 22. Pressure evolution in July in a representative sensor.  
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are not balanced (only 40 events in 12 months of data). The F1score 
(0.962) is close to 1, showing that the algorithm is working properly. 

3.5. Business solution cost for the case study 

The cost of the platform and the associated sensor network has been 
determined considering the sensor cost and platform maintenance cost. 
The research and development costs of the platform and the sensor 
network installation have not been considered. 

Each IoT pressure sensor was developed using low-cost technologies 
and open-source software. The total cost of each sensor was €125 for the 
communication node and €83 for the pressure transducer. 

The number of pressure monitoring devices depends on the topology 
of the WTN, as well as the financial resources of the corresponding water 
service. The system described in this work allows for the progressive 
incorporation of sensors if the monitoring network is implemented in 

Table 2 
Example of incident characterization.  

Failure label Type Start Date (day/month/year) Start Time (h:min) Duration (min) Location 

ID Diameter (mm) Pipe Material 

1 Incident 3 02/12/2019 14:12 1348 p512 150 Asbestos cement 
2 Incident 3 23/08/2020 7:02 1137 p822 150 Cast iron 
3 Incident 4 19/01/2020 14:26 272 p1019 400 Cast iron 
4 Incident 4 08/07/2020 7:46 459 p77 350 Asbestos cement 
5 Incident 2 08/06/2020 12:44 389 p263 150 Asbestos cement 
6 Incident 2 26/08/2020 10:48 229 p471 350 Cast iron 
7 Incident 1 29/08/2020 8:18 10 p512 150 Asbestos cement 
8 Incident 1 23/09/2020 18:25 10 p368 150 Asbestos cement  

Fig. 23. Threshold safety factor and the mean detection time estimation.  

Fig. 24. Dataset confusion matrix.  

Table 3 
Performance parameters of the failure detection algorithm.   

Recall Precision Accuracy F1score 

Failure Detection Algorithm  0.950  0.974  0.999  0.962  

Table 4 
Annual system maintenance costs.  

Concept Price (€/year) 

Sigfox (8 un.)  128.80 
Database  5.60 
Frontend  9.30 
Servers  84.00 
SMS Alert system  11.75 
Total cost  239.45  
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phases. 
The maintenance costs of the monitoring network and the platform 

are shown in Table 4. In this case, the sensor communication costs 
correspond to the system used, Sigfox. The annual connection of each 
device costs a maximum of €16.10, which can be reduced depending on 
the number of devices to be connected. On the other hand, the main
tenance costs of the web infrastructure include the databases, the fron
tend, the servers where the hydraulic model is stored and the service for 
sending SMS alerts. 

The total acquisition cost of the 8-sensor network and wAiter 
installed in the studied WTN was €1664 and the annual maintenance 
cost was €239.45. This amount is a low percentage of the annual 
maintenance costs of the WTN. Compared to other commercial alter
natives, the cost of the system is 25–35% lower than the average price. In 
this case study, the payback period of the wAIter system is one year after 
its implementation due to the reduction in the network failure time. This 
has been calculated considering only a reduction in the volume of water 
lost in breaks. 

4. Conclusions 

The web platform presented in this work is a comprehensive support 
tool to manage failures occurring in WTNs. The most relevant function 
of this platform is the detection and classification of incidents in the 
network. The main elements of the proposed tool use open-source 
software, so water companies can control all the stages of the failure 
detection process (data collection, storage, analysis, visualization and 
warning) without the support of an external service. The platform has 
been successfully applied to the studied WTN during a one-year trial 
period. 

The monitoring system linked to the web platform is fully scalable 
and allows increasing/decreasing the number of data collection nodes 
that gather information on water pressure according to the size of the 
WTN. Each node operates independently, so that the failure of one node 
does not affect the correct operation of the rest. The communication 
node is designed to host different communication technologies 
depending on the microcontroller used. The microcontroller Arduino 
MKR family has different boards with different communication systems, 
which ensures that the system will not become obsolete in the short- 
medium term. The platform allows accessing data from any point with 
an internet connection and shows the results in an intuitive and user- 
friendly way. 

The core of the platform failure detection function is a rule-based 
decision algorithm. The detailed characterization of typical incidents 
in WTNs has allowed the development of a simple rule-based decision 
algorithm that efficiently detects failures in this type of hydraulic net
works, as corroborated by the results obtained. The algorithm has been 
successfully used to classify pressure data and detect failures in the case 
study WTN. The performance of the algorithm depends on a dynamic 
pressure threshold to classify pressure records. Each pressure measure
ment point is defined by a different threshold. In this way, the system 
ensures optimal adaptation to detect pressure variations. Furthermore, 
the threshold is considered dynamic as the parameters defining the 
threshold (SF and n) can be updated to improve the detection of faults 
based on the faults occurring up to that moment. The proposed dynamic 
threshold has proven to be more reliable than traditional fixed thresh
olds. For the case study, the high accuracy of the fault detection algo
rithm (recall = 0.950, precision = 0.974, accuracy = 0.999, f1score =
0.962) was obtained with SF and n values of 0.28 and 17, respectively. 
Both parameters are necessary to calculate the dynamic threshold. 

The MRT calculation is a useful tool for planning leakage repairs. 
This platform function allows optimal planning of the resources needed 
to carry out the repair. In this way, technical staff can simulate actual 
and hypothetical demand scenarios to evaluate the evolution of the tank 
level. When the MRT is known, it is possible to establish the maximum 
period for repairing faults to manage the necessary resources and 

prevent users from being left without supply. The proposed algorithm 
can be applied to WTNs with similar characteristics to the studied 
network, although its adaptation to other types of networks (looped 
networks, pumping, distribution networks, etc.) needs to be studied. 

When working with real datasets of water transmission network 
pressure, it is time consuming to collect long series of incidents. So far, 
good results have been obtained with the existing data, although the 
system will be improved with the addition of new failure records. wAiter 
has great potential for future developments such as incorporating flow 
and level sensors in the tanks and the addition of a decision-making 
module based on the analysis of historical failure records to determine 
pipe renewal criteria according to the frequency and magnitude of 
failures. 
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