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Abstract

The maintenance of road pavements is an essential task to prevent major deterio-
ration and to reduce accident rates. In this task, the detection and classification of
different types of cracks on the roads is usually considered. However, in most cases
these tasks are not fully automated and they need to be supervised by an expert in
order to make repair decisions. This work focuses on the automatic classification of
the most common types of cracks: longitudinal cracks, transverse cracks, and alli-
gator cracks. Our proposal combines, firstly, computer vision techniques for crack
segmentation and secondly, an ensemble model (composed of different rule–based
algorithms) for the classification. This approach achieves an average precision and
recall values greater than 94% for three analyzed datasets improving the results in
comparison to other approaches.
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1 INTRODUCTION

Road pavement condition plays a fundamental role in the safety
of vehicles (and in the future, with the self–driving vehi-
cles (Foss, 2017)). In fact, this aspect has key implications
in the acceleration and stability of vehicles (Bella, Calvi, &
D’Amico, 2012). One of the key factors that directly affects
pavement condition, is climate conditions (Schweikert, Chi-
nowsky, Espinet, & Tarbert, 2014). Low temperatures (Chai,
van Staden, Guan, Kelly, & Chowdhury, 2016; Galbraith RM,
2005) favor the appearance of alligator cracks, transverse
cracks, longitudinal cracks, potholes, etc. In addition, another
factor is the increase in traffic density (Mills, Tighe, Andrey,
Smith, & Huen, 2009). Notice that in 2016, the number of
motor vehicles throughout the world was greater than 2.1
billion (The World Health Organization, 2018). Hence, the
maintenance of pavements could be an effective solution to
solve the deterioration problem. Indeed, roads with adequate

maintenance show a lower frequency of accidents (Lee, Nam,
& Abdel-Aty, 2015).

Nevertheless, road pavement maintenance is expen-
sive (Babashamsi, Yusoff, Ceylan, Nor, & Jenatabadi, 2016;
Qiao, Chen, Alinizzi, & Labi, 2018) in economic terms and
the tools for inspection and maintenance decision–making
tasks are still far from automated. Recent studies (Radopoulou
& Brilakis, 2017) show that the data acquisition of road
maintenance can be performed automatically but the task of
detection and classification of the defects remains a man-
ual task by an expert in 99.6% of the cases, making this a
time–consuming process.

In this context, computer vision (Rafiei & Adeli, 2017;
Spencer, Hoskere, & Narazaki, 2019) provides useful meth-
ods that can be applied to road maintenance. These meth-
ods allow an image to be taken and then processed. For
example, some techniques involve image enhancement (Long,
2008), illumination modification (Song & Cosman, 2018),
edge detection (James, 2016), background subtraction (Nayy-
eri, Hou, Zhou, & Guan, 2018). These techniques can provide
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a new data output from images that can feed machine learn-
ing algorithms. For example, algorithms such as unsupervised
tools (Gutierrez Soto & Adeli, 2017; Rafiei & Adeli, 2018b),
prediction tools (Rafiei & Adeli, 2018a; Rafiei, Khushefati,
Demirboga, & Adeli, 2017), classification tools (Ibrahim et
al., 2019; Z. Li, Cheng, Kwan, Tong, & Tian, 2019) or rule–
based tools (Soto-Hidalgo, Alonso, Acampora, & Alcala-Fdez,
2018) that traditionally were carried out only by experts.

In the wide range of machine learning algorithm types,
ensemble models (Zhou, 2012) take advantage of the use of
several models so improving the classification task compared
to the use of separate machine learning models. These mod-
els have not been widely exploited previously in pavement
road crack classification. Also, ensemble models have been
successfully applied to other fields in civil engineering prob-
lems (Prayogo, Cheng, Wu, & Tran, 2019; Sun, Li, & Adeli,
2013).

Hence, the main contribution of this paper is the applica-
tion of an ensemble method composed of different rule–based
algorithms and decision trees to improve current proposals
in road pavement crack classification. The ensemble method
carries out the classification of cracks into their most com-
mon types: transverse cracks, longitudinal cracks, and alligator
cracks (Garber & Hoel, 2008). In order to provide the inputs
to the proposed ensemble model, computer vision algorithms
to extract the main features (without the necessity of previous
training steps) are applied.

This paper is organized as follows: Section 2 shows differ-
ent proposals focused on crack detection and classification.
Section 3 describes the computer vision algorithms and the
ensemble model (along with the algorithms that compose the
ensemble) used to extract features of the cracks and their sub-
sequent classification. The results and comparison with other
authors are analyzed and discussed in Section 4. Finally, the
main conclusions and future research are presented in Section
5 and Section 6 respectively.

2 STATE OF THE ART

The crack detection and classification problem has taken
on great importance, as the survey of Ragnoli, Blasiis, &
Benedetto (2018) highlights. We have divided and struc-
tured different proposals into three different groups depending
on their target. The first group is ’Road crack segmenta-
tion’(subsection 2.1) where all the proposals are focused on
the segmentation of the different types of cracks. The second
group ’Single machine learning algorithm for road crack clas-
sification’(subsection 2.2) is focused on the use of computer
vision and single machine learning to classify the different

types of cracks. The last group ’Multiple machine learn-
ing algorithm models for road crack classification’(subsection
2.3) shares the same target as the previous group, although,
these proposals use more than one machine learning algorithm
to perform the classification task.

2.1 Road crack segmentation
Crack segmentation has been researched using image process-
ing along with machine learning approaches to identify the
region to obtain a mask image (or binary image) where the
cracks are defined by positive values. An example of this is pro-
posed by T. Wang, Gopalakrishnan, Smadi, & Somani (2018).
Their work is focused on the detection of longitudinal and
transverse cracks based on the Potential Crack Components in
an image (PCrCs). This analysis is carried out by filtering the
intensity values between the pavement and the crack, delet-
ing any non–connected components. Once the small elements
have been eliminated, a crack is defined by a large connected
area. To identify the crack and the background, the Shape Met-
ric (SM), defined by the authors, is used. Compared to other
methods such as Support Vector Machines (SVM), the authors
obtain improved accuracy and a lower false positive rate.

Deep learning approaches have also been used in the crack
detection problem to identify where a crack appears in an
image, as in the proposal of Cha, Choi, & Büyüköztürk (2017).
Their deep learning method is based on a Convolutional Neural
Network architecture (CNN) with eight layers covering differ-
ent steps from convolution, pooling, linear rectification, and
softmax. However, their work is focused on the segmentation
of concrete pavement cracks and does not extract the crack
itself but generates a region of interest that includes the crack.

An alternative solution based on deep learning techniques is
developed by Bang, Park, Kim, san Yoon, & Kim (2018) using
a deep residual network with transfer learning. Their model is
composed of 152 layers and performs a pixel–based classifi-
cation of cracks and non–cracks. A similar approach is carried
out by Cheng, Xiong, Chen, Gu, & Li (2018). The authors per-
form another pixel–based identification using a special type
of CNN called U–NET. U–NET (Ronneberger, P.Fischer, &
Brox, 2015) is defined as a type of convolutional net with fully
connected layers, where part of the net is used as an encoder
and the rest, as a decoder. Their work is focused on binary
classification of crack or non–crack of each pixel in the image.

Notwithstanding, pixel–based classification is not exclusive
to deep learning approaches. Ai, Jiang, Kei, & Li (2018) carry
out this task using image processing in combination with sup-
porting vector machines. The authors focus on determining if
a pixel of an image is a component of a crack or non–crack.
They use a data fusion method with probability maps based on
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pixel intensity, and probability maps based on neighborhood
information of each pixel.

A different approach of crack detection is presented
by B. Wang et al. (2019) where the Extreme Learning Machine
(ELM) model is applied. The advantage of this approach is
that the parameters of the hidden layers are initialized and
randomly selected. This makes ELM more flexible without
requiring any expert knowledge. It takes less processing time
in the training stages than conventional neural network models.

As the previously described proposals show, 2D images
have been used in the crack segmentation task. Nevertheless,
other researchers have utilized the advantages of data fusion.
For example, Xu, Chen, Wu, & Li (2018) use a mixture of 2D
images together with the use of four linear lasers to detect the
cracks. Their proposal provides, in some cases, errors smaller
than 0.78 mm in the recovery of the cracks. As the authors
conclude, their work provides “application potentials in the
vision–based pavement inspection”.

2.2 Single machine learning algorithm for
road crack classification
The road crack classification problem is an important factor
which, if a crack is identified in time, can help reduce the cost
of pavement repairs (Babashamsi et al., 2016). This problem
has been analyzed using a single machine learning model from
two classes (Kim, Ahn, Shin, & Sim, 2018) to multiple classes.

An example of binary classification is proposed by Kim et
al. (2018). This proposal comprises two stages: the calcula-
tion of Concrete Crack Regions (CCR) and the classification
of binary images obtained from the CCR. The calculation
of the CCR is based on a binarization of the image consid-
ering that the dark areas may be candidates for cracks, and
the lighter ones, the background. A comparison between the
SURF–based (Speeded Up Robust Features) classification and
CNN is carried out.

Several proposals are focused on the analysis and compar-
ison of different machine learning algorithms. For instance,
Hoang & Nguyen (2018) analyze the cracks in pavements
using steerable filters based on Gaussian filters and the sec-
ond derivative of the image, obtaining binary images. The
projections of binary images are calculated to reduce the data
employed in the image classification. To detect alligator, longi-
tudinal, and vertical cracks, the authors compare three different
classification algorithms, Artificial Neural Networks (ANN),
SVM, and Random Forest (RF). SVM models provide the most
accurate results.

Another work that deals with the analysis of different clas-
sification algorithms is the proposal of Z. Li et al. (2019),
where Low altitude Unmanned Aerial Vehicle Light Detection
And Ranging systems (UAV LiDAR) are used. The authors

obtain point clouds that are treated and applied as inputs for
different classification algorithms such as SVM, RF, and Max-
imum Likelihood Classification (MLC). The authors analyze
the damage to the pavement by classifying the deterioration
of the pavement into cracks, potholes, subsidence, or rutting
problems. The results show that the use of RF is the best option.

Deep learning approaches have been researched as the work
of B. Li, Wang, Zhang, Yang, & Wang (2018) shows. Their
research uses Convolutional Neural Networks (CNN) to detect
longitudinal, transverse, block, and alligator type cracks. The
authors use 3D images obtained by the PaveVision 3D sys-
tem (Luo, Wang, Li, Li, & Moravec, 2014). The raw images
are divided into smaller areas with a size of 512 × 512 pixels
and are used directly as Neural Network inputs.

Fuzzy classification algorithms are also analyzed by Ibrahim
et al. (2019). The authors perform a detection and classifi-
cation of transverse and longitudinal cracks based on image
processing algorithms and machine learning algorithms. Their
proposal consists of a four–step process: image acquisition,
image enhancement, feature extraction, and image classifi-
cation. The authors use the K–Nearest Neighbors algorithm
(KNN) in the classification step and a variant of this called
fuzzy–KNN (Shang et al., 2005). Nevertheless, the image
processing step is based on a threshold that must be fixed
manually.

2.3 Multiple machine learning algorithm
models for road crack classification
Few proposals based on the use of multiple models can be
found in the literature, although promising results can be seen
in crack classification.

For instance, Cubero-Fernandez, Rodriguez-Lozano, Villa-
toro, Olivares, & Palomares (2017) present a system to detect
and classify the longitudinal, transverse, and alligator cracks.
Their work is based on edge detection using computer vision
for processing crack images. After the processing, an induc-
tion tree model based on C4.5 is used. A C4.5 model is created
to classify transverse cracks or non–cracks, and another C4.5
model to classify longitudinal cracks or non–cracks. Alliga-
tor cracks are classified using the information from these two
models when longitudinal and transverse cracks are detected
simultaneously.

Another approach for crack classification is proposed by
L. Li, Sun, Ning, & Tan (2014). In the detection task, com-
puter vision algorithms are used to correct the illumination
obtaining a binary image of the crack. This image is used in
the classification task to label each crack as linear or alligator
type. Once the linear cracks are detected, they are separated
into longitudinal and transverse cracks. A Back–propagation
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Neural Network (BNN) algorithm and a decision rule are used
in the classification stages.

The previous proposals in the field of road pavement cracks
are focused on the use of deep learning methods for the seg-
mentation task. In the classification task, the majority of the
proposals use a single classification method and only a few of
them use multiple classification models. However, to the best
of our knowledge, ensemble methods have not been used pre-
viously in the pavement crack classification task. Hence, the
following sections detail a methodology to extract the features
of images needed as inputs to an ensemble method composed
of rule–based algorithms and decision trees.

3 METHODOLOGY

This section explains the combination of computer vision
methods to provide a crack segmentation along with machine
learning algorithms to perform the crack classification. In con-
sequence, this section is divided into three main groups. The
first group (subsection 3.1) details how to process the input
images of road pavements to obtain the input features used by
the machine learning algorithms and the proposed ensemble
model. The second group (subsection 3.2) covers the learning
algorithms used to classify each type of crack. The last group
(subsection 3.3) details how to combine the previous machine
learning algorithms into an ensemble model. Figure 1 illus-
trates the proposed methodology. Finally, the evaluation met-
rics to compare the different algorithms with the proposed
model and other proposals are detailed in subsection 3.4.

3.1 Feature extraction
The starting point of this approach is focused on data reduction
in order to compute only useful information and to acquire the
required inputs for the machine learning algorithms to classify
different types of pavement deformations. The main steps of
this block are detailed in Algorithm 1.

Algorithm 1 Feature extraction stage.
1: procedure FEATURE_EXTRACTION_METHOD(image)
2: gray_img ← color_transformation (image)
3: enhanced_img ← image_enhancement (gray_img)
4: edge_img ← edge_detection (enhanced_img)
5: modified_img←morphology_modifications

(edge_img)
6: New_features ← projections (modified_img)
7: return New_features
8: end procedure

Feature extraction

Decision tree

 (C4.5)

Images

Result

Logistic Model

Tree

(LMT)

Repeated

 Incremental

 Pruning to Produce

 Error Reduction

(RIPPER)

Ensemble Model

Learning Algorithms

FIGURE 1 Proposed scheme.

The following subsections explain the purpose of each step
of Algorithm 1.

3.1.1 Color space transformation
The obtained images from a color camera are usually in
RGB (Red–Green–Blue) space color with 8–bits per chan-
nel, as Figure 2 –a shows. However, there are three channels
to represent a crack in the pavement and all colors are not
needed. Hence, the RGB image is converted into a grayscale
image (Kirk & Hwu, 2016).

This step also helps to mitigate the effect of any grass
which may grow inside a crack (Figure 2 –a), and the effect of
different illumination conditions (Figure 2 –b).

3.1.2 Image enhancement
The next step is to enhance the grayscale image. This phase
allows us to avoid false positives in future steps, applying
contrast enhancement and a spatial filter.

The image enhancement is composed of three sequentially
applied methods:
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Longitudinal Crack                Transverse Crack                        Non-Crack                              Mesh Crack

a)

b)

c)

d)

e)

f)

FIGURE 2 Results of image processing applied to Longitudinal crack, Transverse crack, Non–crack, and Alligator crack. a)
Color images; b) Grayscale images; c) Logarithmic transformation; d) Bilateral filtering; e) Edge detection; f) Morphological
closing.
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• First, each pixel value in the grayscale image is replaced
with its negative.

• The logarithmic transformation (Deng, Cahill, & Tobin,
1995) is applied to the negative image. This transfor-
mation achieves an improvement in the illumination of
the image. It is possible to emphasize the cracks if they
exist in the image and to attenuate the background. Two
parameters (𝛼 and 𝛽) are required by the logarithmic
transformation. Let 𝛽 be the value to modify the sharp-
ness of the image, and 𝛼 the parameter used to change
the dynamic range of the image. The values used in
this research are shown in Section 4. The results of the
negative and logarithmic transformation are shown in
Figure 2 –c.

• Once the illumination has been improved, it is neces-
sary to use a method for denoising the image keeping
the main features of the crack, if this exists. Hence,
it is not possible to use a linear filter to achieve this
functionality. The Bilateral Filter (Tomasi & Manduchi,
1998) is applied because it is a non–linear filter which
denoises the image without affecting the edges. Again,
two parameters (𝜎𝑆 and 𝜎𝑟) are required by the bilat-
eral filter. Let 𝜎𝑆 be the spatial parameter that controls
the smoothing of the image and 𝜎𝑟 the range parameter
which establishes the minimum amplitude of an edge.
The values of these parameters are shown in Section 4.
The result of the bilateral filter is shown in Figure 2 –d.

3.1.3 Edge detection
Once the image has been enhanced, it is time to apply an edge
detection algorithm to extract the main features of the cracks.
The Canny method (Canny, 1987) is used to obtain the edges
of the cracks. The Canny algorithm can be summarized in the
following steps:

1. Gradient: calculating the derivatives in the 𝑥 and 𝑦 axes
of the image using the Sobel filter (Sobel & Feldman,
1968).

2. Non–maximum suppression: the gradient produces
edges that do not have maximum values and several false
positive edges. These edges are suppressed.

3. Thresholding: in order to erase those elements that are
not edges, a double threshold is used. A lower threshold
𝑡ℎ1 is used to reject all pixels below this threshold. An
upper threshold 𝑡ℎ2 is used to accept all pixels with a
value above this threshold.

4. Hysteresis: once the possible strong and weak edges
have been detected, each edge is tracked. If an edge is
not connected to a strong edge, the pixel is labeled as
a false edge. The result of this algorithm is shown in
Figure 2 –e.

These threshold values (𝑡ℎ1 and 𝑡ℎ2) can be difficult to set
manually. Hence, in order to automatically select the value of
these parameters, the Otsu method (Yu, Dian-ren, Yang, & Lei,
2010) is applied.

The Otsu method splits the pixels of a grayscale image into
two classes, and calculates the threshold value 𝑡 which mini-
mizes the weighted within–classes variance. This value is used
to set the threshold values of the Canny method, where 𝑡ℎ2 = 𝑡
and 𝑡ℎ1 = 0.5 ⋅ 𝑡.

3.1.4 Morphological modifications
In the previous step, the majority of the edges in the image are
detected. However, sometimes the edges are broken by several
pixels, which were not detected by the Canny operator. To fix
this, morphological operators (Davies, 2012) are used. These
operators let us modify the shape of the binary edges of the
previous step.

The closing operator, as Figure 2 –f shows, allows the con-
nection of those pixels of a crack that are unconnected. This
operator consists of two sequentially applied steps: a dilatation
and an erosion.

The dilatation operator 𝜑(𝐼) expands the edge content in the
image according to Equation (1).

𝜑(𝐼) = {𝑖 + 𝑠|𝑖 ∈ 𝐼 ∧ 𝑠 ∈ 𝑆} (1)
Let 𝑖 be a pixel of the image 𝐼 and 𝑆 a structure of a cer-

tain size (in this work a matrix of 3 × 3 elements centered in
the middle, with all values set to 1). Assuming that a pixel
to 1 represents an edge and a pixel to 0 does not represent
an edge. Equation (1) expresses the following condition: if, at
least, one pixel of 𝑆 is equal to 1, pixel 𝑖 is assigned a value of
1, otherwise, 0.

The opposite process of the dilatation 𝜑(𝐼) is the erosion
𝜁 (𝐼). In this case, the edges of an image are contracted. Let us
consider the same parameter set of the previous equation, the
erosion operator is expressed by Equation (2).

𝜁 (𝐼) = {𝑖|∀𝑠 ∈ 𝑆, 𝑖 + 𝑠 ∈ 𝐼} (2)
Where Equation (2) expresses the following condition: if all

pixels of 𝑆 are equal to 1, pixel 𝑖 is assigned a value of 1,
otherwise, 0.

3.1.5 Projections
Once the cracks are represented by their edges, there are many
0 values that populate the image and which do not provide
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useful information. Hence, in order to compress the data, pro-
jections are calculated. Vertical and horizontal projections
allow us to represent the features of the crack with less infor-
mation than the complete binary image. In fact, with only
these two projections the cracks analyzed in this work (alli-
gator, transverse and longitudinal cracks) can be completely
described.

The vertical projection (Φ(𝐼𝑗)) of an image is calculated
following Equation (3).

Φ(𝐼𝑗) =
𝐶−1
∑

𝑖=1
𝐼(𝑖, 𝑗); ∀𝑗 = 0, ..., 𝑅 − 1 (3)

Let 𝐼(𝑖, 𝑗) be a pixel of the image, 𝑖 an iterator for the
columns (represented by 𝐶), 𝑗 the iterator for the rows of the
image (represented by 𝑅).

Alternatively, let us consider the same parameter set of
Equation (3), the horizontal projection (Θ(𝐼𝑖) ) is calculated
using Equation (4).

Θ(𝐼𝑖) =
𝑅−1
∑

𝑗=1
𝐼(𝑖, 𝑗); ∀𝑖 = 0, ..., 𝐶 − 1 (4)

At the end of this step, each image is represented as an
instance {Θ,Φ} which describes the main features of a crack,
and it is used as the inputs for the different learning algorithms
in the next section.

3.2 Learning algorithms
This section covers the description of three machine learn-
ing algorithms based on decision trees and rule–based sys-
tems. These types of methods have been chosen based on the
previous analyzed works in subsection 2.3. Hence, the next
subsections explain the basic concepts of the decision trees
using the C4.5 method (subsection 3.2.1), the Logistic Model
Trees (LMT) method (subsection 3.2.2), and the rule induc-
tion method Repeated Incremental Pruning to Produce Error
Reduction (RIPPER) (subsection 3.2.3).

Notice that in order to feed the inputs of the learning algo-
rithms every image is represented by {Θ,Φ, 𝐶𝑙𝑎𝑠𝑠}. Let Θ
and Φ be the output of the feature extraction step and 𝐶𝑙𝑎𝑠𝑠
the label that corresponds to each type of crack in the range
[0; (𝑛𝑢𝑚𝐶𝑙𝑎𝑠𝑠 − 1)].

3.2.1 Decision trees (C4.5)
Decision trees are machine learning algorithms which have
been used in different scientific areas providing an analogy
of human knowledge in the classification problem (Sharma
& Kumar, 2016). One famous decision tree is The C4.5
algorithm (Quinlan, 1993)

The C4.5 is a method based on discrimination between
classes. This algorithm manages two different type of nodes:

leaves (which represent a class), and decision nodes (which are
the elements that branch the tree). The decision tree is built
using the depth-first strategy. The algorithm considers all pos-
sible “tests” that can divide the dataset and selects the test
which results in the highest information gain (Quinlan, 1993).
In this case, since the used projections to represent a crack are
continuous values, a discretization of the attributes based on
the minimum entropy (Quinlan, 1996) is applied to split the
data to obtain discrete variables.

The main steps of the C4.5 algorithm are listed below:
1. If each instance belongs to the same class, the algorithm

returns a leaf labeled by that class.
2. Compute for every attribute the gain information, and

choose the best one based on the highest information
gain value.

3. Create a decision node with the best–selected attribute
in the previous step.

4. Splitting the instances based on the values of the selected
attribute.

5. The above steps and the splitting process are repeated
recursively until all the instances in a subset belong to
the same class.

3.2.2 Logistic model trees (LMT)
Logistic Model Trees (LMT) (Landwehr, Hall, & Frank, 2005)
are a special type of tree that combines induction trees (Kot-
siantis, 2013) with regression models. In fact, this algorithm
has a standard decision tree structure with decision nodes
(similar to the C4.5 algorithm) that split the data. The leaf
nodes consist of logistic regression functions that allow the
classification of each instance.

The logistic regression models are built using the Log-
itBoost algorithm (Landwehr et al., 2005). The number of
iterations needed by the LogitBoost algorithm is calculated
using a cross–validation approach (Stone, 1976). This num-
ber of iterations prevents training data from overfitting. LMT
uses the CART cost–complexity metrics (Breiman, Friedman,
Olshen, & Stone, 1984) to prune the tree impeding its growth.

The general steps of the LMT algorithm are the following:
• The root node (the first node of the tree) is divided

into two groups. The division into two classes uses the
LogitBoost algorithm.

• The child root nodes are then split using the Logit-
Boost algorithm. This step continues splitting all the
child nodes until the C4.5 stopping criteria based on
information gain is reached.
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• Finally, the tree is generated using the pruning CART
cost–complexity metric.

3.2.3 Repeated Incremental Pruning to
Produce Error Reduction (RIPPER)
Repeated Incremental Pruning to Produce Error Reduction
(RIPPER) (Cohen, 1995) is a rule induction algorithm (Lang-
ley & Simon, 1995) which uses a divide–and–conquer iterative
method in order to build the rules. These rules are generated
for each class from the least frequent class to the most frequent
class. This feature is desirable when the training datasets are
unbalanced.

The main steps of the RIPPER algorithm are explained
below:

1. A loop iterates for each class from the minority class to
the majority class.

2. Building stage: The training set is split into a growing
set and a pruning set. This step has two tasks that are
repeated until no more instances of a class are available
in the growing set, or the error of the rules exceeds 50%.

• New rules to classify a class are created by adding
new conditions until a rule is 100% accurate. Every
condition is selected using the gain information in
the same way as in the C4.5 algorithm.

• As a rule grows, the algorithm applies a prune,
deleting those attributes that are unnecessary. The
rule growth stops when it reaches 50% error. The
error (Qabajeh, Thabtah, & Chiclana, 2015) is
calculated as 2𝑝∕(𝑝 + 𝑛), where 𝑝 are positive
examples and 𝑛 are negative examples.

3. Optimization stage: In this stage, two variants are gen-
erated for each rule. The first variant is generated from
an empty rule and the second is generated by adding
attributes to the original rule. The Decision Length met-
ric (DL) (Cohen, 1995) is applied to calculate which
rules are longer than others. The rule with the minimum
DL value is selected. At the end of this stage, if there are
any positive examples in the growing set, the Building
stage is computed again.

4. Cleaning up stage: The DL is again calculated for the
whole rule set, and all the rules that increase the DL are
removed from the rule set.

3.3 Ensemble models
Ensemble models are considered in the literature as
committee–based learning classifiers as Zhou (2012) explains
in his book.

Ensemble model mechanics can be seen as a moderator and
the machine learning algorithms, as experts in a subject. A
moderator asks the experts about a topic (classification into
crack types). The final response is the result of the combina-
tion of each solution provided by the experts. The moderator
may consider that the opinion of one expert is more relevant
than the opinion of others. Therefore, the main advantage of
ensemble models compared to only one learning algorithm is
fault tolerance. For instance, if an expert makes an inaccurate
prediction of a class, but the majority of the others make accu-
rate predictions, then, the result of the ensemble model is an
accurate prediction.

Hence, an ensemble is composed of a minimum of two
models. These models can be different algorithms (heteroge-
neous ensemble) or the same algorithm with different models
(homogeneous ensemble). In fact, there is no unique approach
to build an ensemble model (Gomes, Barddal, Enembreck, &
Bifet, 2017; Sagi & Rokach, 2018). Since there are multiple
variants to build an ensemble model (Zhou, 2012), the majority
voting approach is selected in this work. With majority voting
it is possible to use existing trained models that provide an out-
put without changing the ensemble algorithm. Theoretically,
the probability of making the right decision in an ensemble
model based on the majority voting is detailed in Equation (5)
based on (Brown, Wyatt, Harris, & Yao, 2005).

𝑀𝑜𝑑𝑒𝑙𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑚
∑

𝑥> 𝑚+1
2

𝑚!
(𝑚 − 𝑥)! ⋅ 𝑥!

⋅𝑝𝑥 ⋅ (1−𝑝)(𝑚−𝑥) (5)

Let 𝑝 be the independent probability of making the right
decision of a single component algorithm, 𝑚 the number of
learning algorithms that compose the ensemble to vote for a
decision, and 𝑥 the iterator of the summation (considering 𝑚
is odd). Therefore, if Equation (5) is applied in the case of an
ensemble of three models (voters), varying the probability of
guessing from 0 to 1, it is possible to graphically represent the
reliability of an ensemble as shown in Figure 3 . This figure
shows in the x axis the probability of making the right decision
(𝑝) in intervals of 0.1, and the model reliability in the y axis
with the same intervals. Also, this figure represents the relia-
bility of a single model (dotted line) in comparison with the
reliability of an ensemble model with three voters (continuous
line). It can be seen that when the probability value of making
the right decision is lower than 0.5 (𝑝 < 0.5), the ensemble
model theoretically behaves worse than an individual model.
However, when 𝑝 > 0.5 the ensemble model improves the
results compared to a simple model. This demonstrates theoret-
ically that an ensemble model with three voters provides more
accurate results than its components can provide individually.
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FIGURE 3 Reliability of a single model compared to an
ensemble model with three components.

Algorithm 2 shows how to build the ensemble model with
the outputs of the previous learning methods described in
Section 3.2.

Algorithm 2 Ensemble model decision procedure.
1: procedure MAJORITY_VOTING(𝑅𝑙𝑎)
2: 𝑅← 0; ⊳ Class result.
3: 𝑖← 0; ⊳ Iterator.
4: 𝐶𝑙𝑎𝑠𝑠_𝑛𝑢𝑚𝑏𝑒𝑟← 4; ⊳ Number of classes.
5: 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝐶𝑙𝑎𝑠𝑠𝑖; ⊳ where 0 ≤ 𝑖 < 𝐶𝑙𝑎𝑠𝑠_𝑛𝑢𝑚𝑏𝑒𝑟.
6: while 𝑖 < 𝐶𝑙𝑎𝑠𝑠_𝑛𝑢𝑚𝑏𝑒𝑟 do
7: for j=0: number of algorithms do
8: if 𝑅𝑙𝑎𝑗 equal to i then
9: 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝐶𝑙𝑎𝑠𝑠𝑖 ← 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝐶𝑙𝑎𝑠𝑠𝑖 + 1

10: end if
11: end for
12: end while
13: 𝐻𝑖𝑔ℎ𝑒𝑠𝑡𝑉 𝑜𝑡𝑒𝑑 ← 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝐶𝑙𝑎𝑠𝑠0; ⊳ Aux. variable.
14: 𝑖← 1
15: while 𝑖 < 𝐶𝑙𝑎𝑠𝑠_𝑛𝑢𝑚𝑏𝑒𝑟 do
16: if 𝐻𝑖𝑔ℎ𝑒𝑠𝑡𝑉 𝑜𝑡𝑒𝑑 < 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝐶𝑙𝑎𝑠𝑠𝑖 then
17: 𝑅← 𝑖
18: 𝐻𝑖𝑔ℎ𝑒𝑠𝑡𝑉 𝑜𝑡𝑒𝑑 ← 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝐶𝑙𝑎𝑠𝑠𝑖
19: end if
20: end while
21: return 𝑅;
22: end procedure

The steps of Algorithm 2 are the following:

• Once each learning model has predicted its solution, it
is stored in the variable called 𝑅𝑙𝑎.

• The classification labels are denoted by an integer from
0 to 𝐶𝑙𝑎𝑠𝑠_𝑛𝑢𝑚𝑏𝑒𝑟 − 1.

• For each class, a counter called 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝐶𝑙𝑎𝑠𝑠 is incre-
mented if it is equal to the value of 𝑅𝑙𝑎 for each
algorithm.

• Once all the different results of each learning algorithm
have been counted, a search to find the highest voted
class is carried out.

• The class with highest score is assigned to the result (𝑅)
of the ensemble model. If all the voters have selected a
different class for a pattern (no majority is achieved), the
result of C4.5 is selected as the correct class, because it
has been tested empirically that this algorithm obtains
accurate results.

3.4 Evaluation metrics
The computation of the performance of the learning algo-
rithms is based on precision and recall metrics to fully evaluate
the effectiveness of a model. These metrics are detailed in the
following list:

• Precision (P): this measures the ratio between all pre-
dicted patterns of a class and the total number of pat-
terns of that class. In other words, it is the relationship
between True Positives (TP) and False Positives (FP), as
Equation (6) shows:

Precision (P) = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(6)
• Weighted Average Precision (WAP): this represents pre-

cision (P) but regarding all the classes (𝑛𝑢𝑚𝐶𝑙𝑎𝑠𝑠).
This metric represents the precision of the algorithm.
Equation (7) shows this formulation:

WAP =
𝑛𝑢𝑚𝐶𝑙𝑎𝑠𝑠
∑

𝑖

𝑛𝑖
𝑛𝑡𝑜𝑡𝑎𝑙

⋅
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(7)

Let 𝑛𝑖 be the number of patterns in class 𝑖, and 𝑛𝑡𝑜𝑡𝑎𝑙 the
number of patterns in all the classes.

• Recall (R): this measures the instances of a class
which are effectively classified in that class. It is the
relationship between TP and True Negatives (TN), as
Equation (8) shows:

Recall (R) = 𝑇𝑃
𝑇𝑃 + 𝑇𝑁

(8)
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• Weighted Average Recall (WAR): this represents the
relationship between TP and TN considering all the
classes. Equation (9) shows this formulation, where
𝑛𝑢𝑚𝐶𝑙𝑎𝑠𝑠, 𝑖, 𝑛𝑖, 𝑛𝑡𝑜𝑡𝑎𝑙 are the same parameters as previ-
ously detailed:

WAR =
𝑛𝑢𝑚𝐶𝑙𝑎𝑠𝑠
∑

𝑖

𝑛𝑖
𝑛𝑡𝑜𝑡𝑎𝑙

⋅
𝑇𝑃

𝑇𝑃 + 𝑇𝑁
(9)

4 EXPERIMENTS AND RESULTS

This section details the experiments carried out to analyze
the performance of the proposed ensemble model detailed in
Section 3.3. Hence, this section is divided into four subsec-
tions. Subsection 4.1 details the datasets used to carry out
this work. Subsection 4.2 contrasts the results of the proposed
ensemble model with its single components. Subsection 4.3
compares the proposed ensemble with the proposals of other
authors. Finally, general considerations are stated in Subsec-
tion 4.4.

4.1 Dataset composition and experiment
settings
Three datasets were used in order to analyze the behavior
with different patterns for the proposed ensemble of mod-
els and each of its components, as well as the proposals of
other authors. The first dataset (’A’) is composed of the images
used in the work of Cubero-Fernandez et al. (2017). The sec-
ond dataset (’B’) is the combination of the previous dataset
with 1856 new images collected from different road surfaces
acquired for this work (each image was manually labeled as one
of the analyzed types of cracks in this work). The last dataset
(’C’) is generated from dataset (’B’), performing data augmen-
tation resulting in 19648 images. For all the labeled images,
the number of patterns of each dataset is detailed in Table 1 .
These images cover a wide number of cases and allow us to
test the behavior of each algorithm with different data. Also,
it can be observed for datasets ’B’ and ’C’ that the number of
labeled images as non–cracks is higher. This is due to the fact
that in real scenarios the number of cracks is lower than the
non–crack patterns. This feature provides valuable informa-
tion about how each algorithm is able to classify the minority
classes. The dataset images are available on (The Advanced
Informatics Research Group, 2019) for research purposes.

The parameters used by the computer vision algorithms
(Section 3.1) have been selected empirically using 50 itera-
tions in which the values of the parameters were changed, and

TABLE 1 Dataset composition.
Data Alligator Longitudinal Transverse Non
set cracks cracks cracks cracks
A 100 200 200 100
B 380 590 558 928
C 3040 4720 4464 7424

validated the obtained results visually. The values for the log-
arithmic transformation are 𝛼: 0.9 and 𝛽: 1.1, with 𝜎𝑆 : 35 and
𝜎𝑟: 16 for the bilateral filter.

Regarding the design of the experiments a 10–fold cross–
validation approach (Browne, 2000) was carried out for
Table 2 , Table 3 and Table 4 . Also, the precision and
recall metrics are computed by Equation (6) and Equation (8)
respectively, to provide metrics about the performance in each
class.

4.2 Comparison with single models
This section contrasts the results of the different machine learn-
ing algorithms explained in Section 3.2 with the proposed
ensemble model detailed in Section 3.3.

The results of the comparisons for each dataset are shown
in Table 2 . This table shows that all the classification mod-
els are able to classify the different types of cracks with high
precision values (No results below 80% are found). In the case
of dataset ’A’, LMT has the maximum precision for alligator
cracks with a value of 94.9%. However, the reliability of a clas-
sification model cannot be based only on its precision. It is
necessary to consider the recall metric to know how reliable
the decisions of the generated models are. Therefore, although
the proposed ensemble model provides a slightly lower preci-
sion result in the alligator crack type (94%), the recall has a
value of 98%. This means that the ensemble model is slightly
better in terms of recall and, thus, in terms of reliability than
the LMT proposal. In the rest of classes for dataset ’A’, the
proposed ensemble method provides the highest scores.

For the case of dataset ’B’, LMT provides slightly higher
scores in alligator cracks in terms of recall than the proposed
ensemble method (0.5% lower). However, in the rest of the
classes (longitudinal, transverse, and non–cracks), the pro-
posed model obtains the highest scores, as Table 2 shows. It
can be observed that the class with the lowest values in general
terms on precision and recall is the longitudinal cracks. This
occurs because, unlike dataset A, these new data are more diffi-
cult to classify due to the presence of cracks with many arches
in their path.

Finally, for dataset ’C’ which corresponds to the augmented
data, the proposed ensemble is less sensitive to the physical
position of a crack in the image obtaining values up to 93%



This is the peer reviewed version of the following article: [ Rodriguez-Lozano FJ, León-García F, Gámez-Granados JC, Palomares JM, Olivares J. Benefits of ensemble mod-
els in road pavement cracking classification. Comput Aided Civ Inf. 2020; 35: 1194–1208. https://doi.org/10.1111/mice.12543], which has been published in final form at
[https://doi.org/10.1111/mice.12543]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.
This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legisla-
tion. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing
or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.

PEER REVIEWED VERSION
Rodriguez-Lozano ET AL 11

in terms of recall and precision. Comparing the results for this
dataset with the previous datasets, where the LMT algorithm
produced the highest values of precision and recall, the pro-
posed ensemble method improves the results in alligator cracks
by 1.5%. In the case of longitudinal cracks this value increases
in the ensemble model with a result 4.4% over LMT. Further-
more, the second most precise model is C4.5. For this reason,
as was detailed in Section 3.3, it was taken as the most reliable
result when there is no majority agreement between the voters.

Considering the last column of Table 2 , it can be observed
that empirically, overall the proposed ensemble in terms of pre-
cision and recall provides more accurate results than the indi-
vidual component algorithms for the three analyzed datasets,
similar to the representation in Figure 3 .

4.3 Comparison with other proposals
This section compares the performance of the proposed model
to other proposals of Section 2, as Table 3 and Table 4 show.
These were selected because they all use the same technology
(2D images) and are focused on the classification of the same
type of cracks analyzed in this work. Also, two of them use
several classification models. In order to make a quantitative
comparison, Equation (6) and Equation (8) are used to compute
the precision and recall per class.

Table 3 contrasts our proposal with the works of Cubero-
Fernandez et al. (2017) and Hoang & Nguyen (2018) for each
dataset. As Table 3 shows, in the case of dataset ’A’, our
proposed ensemble model obtains higher scores in the classi-
fication of longitudinal cracks and non–cracks. The ensemble
model increases the precision for longitudinal cracks by 31.5%
and for transverse cracks by 25.6%, with respect to the results
obtained by Cubero-Fernandez et al. (2017). However, for alli-
gator cracks, the result is only 3% lower. These percentage
increments are the effect of the combination of horizontal and
vertical projection on the same instance, instead of separate
projections to classify as in the proposal of Cubero-Fernandez
et al. (2017). However, although the precision of the ensemble
model for alligator cracks is slightly lower, the recall is 19.2%
higher.

Analyzing the results of the proposal of Hoang & Nguyen
(2018) for dataset ’A’, it can be highlighted that compared to
the use of a single learning model, the proposed ensemble
model obtains improved results. In fact, our proposal shows
(see Table 3 ) an increase of 10% in precision and 11% in recall
when there are no cracks. For the rest of the types of cracks,
the precision results of our proposal are higher than those of
Hoang & Nguyen.

In the case of dataset ’B’ our proposal provides higher
classification results for transverse, longitudinal, and alligator
crack types compared to the other authors. Only in the case

of non–cracks is the proposed method lower in terms of pre-
cision compared to Hoang & Nguyen (2018) and in recall
compared to Cubero-Fernandez et al. (2017). However, tak-
ing into consideration the remaining classes, it can be seen that
the ensemble method is capable of maintaining results above
86.6%, which is not the case in the other proposals.

The proposals of Hoang & Nguyen (2018) and Cubero-
Fernandez et al. (2017) show an increase of 1% and 2.5%
respectively in terms of precision compared to our proposed
method for dataset ’C’. However, as was detailed for the
previous experiments the precision metric needs to be accom-
panied by the recall metric. In terms of this second metric, the
proposed ensemble obtains the highest results. The only excep-
tion where the proposed method does not provide the highest
results is in the classification of non–crack patterns where in
terms of recall it is slightly lower (0.7%). In this case, although
the recall is lower, the precision increases by up to 6.6% com-
pared to Cubero-Fernandez et al. (2017). Hence, as Table 3
shows, the proposed ensemble (for the unbalanced datasets ’B’
and ’C’) is less sensitive to the majority and minority classes
without penalizing the classification of the other classes.

The comparison with the proposal of L. Li et al. (2014)
cannot be detailed in Table 3 because the number of types
of cracks analyzed is not the same. Hence, Table 4 shows
comparisons with their proposal. Since L. Li et al. (2014).
do not classify the non–crack type, the patterns of this class
were not used to make the comparison. For dataset ’A’, in the
classification of alligator cracks and linear cracks, both propos-
als work in the same way, achieving maximum precision and
recall (100%). However, in the classification of the type of lin-
ear cracks into transverse cracks and longitudinal cracks, the
ensemble model increases the precision by 16.3% and 10.9%,
respectively. Also, the proposed model provides more accu-
rate results for recall in the classification of transverse and
longitudinal cracks, improving this metric by 17.5% and 10%
respectively.

For datasets ’B’ and ’C’ where the classes are unbalanced
the proposed ensemble model provides the highest precision
and recall values in the classification of alligator cracks and
linear cracks. The exception is in the case of the dataset ’B’
where the proposed method obtains 0.5% less in the recall
value. However, the precision in dataset ’B’ is the highest.
Analyzing the results with the patterns of longitudinal cracks
and transverse cracks, the proposal of L. Li et al. (2014)
obtains the highest values. This is probably because in dataset
’B’ the features that represent the crack have connected com-
ponents which are used as the inputs in the method used by
L. Li et al. (2014). However, as observed in the case of dataset
’C’, where cracks are spatially located in different places and
components become disconnected, the ensemble provides bet-
ter recall results for longitudinal cracks and better precision
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TABLE 2 Results of the single models and the proposed ensemble model.

Set Method
Alligator Longitudinal Transverse Non Weighted

cracks cracks cracks cracks Average
Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

A
C4.5 93.8% 92% 95.1% 94.5% 96.6% 96.5% 92.7% 94% 94.6% 94.2%
LMT 𝟗𝟒.𝟗% 97% 93.6% 90% 92.1% 95% 99% 96% 94.9% 94.5%

RIPPER 91.8% 91% 96% 94.5% 95.1% 96% 92.3% 92% 93.8% 93.4%
Proposed model 94% 𝟗𝟖% 𝟗𝟖.𝟓% 𝟗𝟓% 𝟗𝟕.𝟔% 𝟗𝟗.𝟓% 𝟗𝟗.𝟏% 𝟗𝟕% 𝟗𝟕.𝟑% 𝟗𝟕.𝟒%

B
C4.5 86.7% 86.8% 84.2% 82.7% 97.4% 98.5% 89.8% 86.8% 89.5% 89.1%
LMT 89.1% 𝟗𝟏% 83.6% 85.2% 97.4% 97.5% 91.1% 86.7% 90.3% 90.1%

RIPPER 80.7% 89.5% 85.6% 82.4% 97.3% 98.4% 89.4% 89.1% 89.8% 89.8%
Proposed model 𝟗𝟎.𝟐% 90.5% 𝟖𝟔.𝟔% 𝟖𝟕.𝟒% 𝟗𝟖.𝟐% 𝟗𝟖.𝟓% 𝟗𝟐.𝟑% 𝟖𝟗.𝟒% 𝟗𝟏.𝟖% 𝟗𝟏.𝟓%

C
C4.5 93.2% 92.3% 86.7% 83.6% 92.7% 92.2% 93.8% 96.6% 91.7% 91.8%
LMT 92.9% 93% 84.5% 81.7% 91.7% 89.8% 93.5% 96.7% 90.8% 90.9%

RIPPER 92.2% 92.3% 87.2% 81.6% 92.4% 92.8% 93.3% 96.8% 91.5% 91.5%
Proposed model 𝟗𝟒.𝟒% 𝟗𝟒.𝟔% 𝟖𝟖.𝟗% 𝟖𝟓.𝟗% 𝟗𝟒.𝟔% 𝟗𝟒% 𝟗𝟒.𝟕% 𝟗𝟕% 𝟗𝟑.𝟐% 𝟗𝟑.𝟑%

TABLE 3 Comparisons with other authors, with complete datasets considering all types of cracks.

Set Method
Alligator Longitudinal Transverse Non

cracks cracks cracks cracks
Precision Recall Precision Recall Precision Recall Precision Recall

A
Cubero-Fernandez et al. (2017) 𝟗𝟕% 78.8% 67% 81.7% 72% 81% 85% 80.1%

Hoang & Nguyen (2018) 91.6% 98% 97.5% 𝟗𝟔% 97% 96.5% 88.7% 86%
Proposed model 94% 𝟗𝟖% 𝟗𝟖.𝟓% 95% 𝟗𝟕.𝟔% 𝟗𝟗.𝟓% 𝟗𝟗.𝟏% 𝟗𝟕%

B
Cubero-Fernandez et al. (2017) 61.28% 80.11% 80.89% 57.43% 91.77% 68.10% 81.47% 𝟗𝟖.𝟐𝟎%

Hoang & Nguyen (2018) 90% 87.4% 76.3% 78.6% 89.7% 88.9% 𝟗𝟑.𝟕% 93.5%
Proposed model 𝟗𝟎.𝟐% 𝟗𝟎.𝟓% 𝟖𝟔.𝟔% 𝟖𝟕.𝟒% 𝟗𝟖.𝟐% 𝟗𝟖.𝟓% 92.3% 89.4%

C
Cubero-Fernandez et al. (2017) 72.4% 84.3% 84.8% 70.6% 𝟗𝟕.𝟏% 85.5% 88.1% 𝟗𝟕.𝟕%

Hoang & Nguyen (2018) 𝟗𝟓.𝟒% 92.8% 83% 79.3% 93% 91.9% 91.3% 95.6%
Proposed model 94.4% 𝟗𝟒.𝟔% 𝟖𝟖.𝟗% 𝟖𝟓.𝟗% 94.6% 𝟗𝟒% 𝟗𝟒.𝟕% 97%

TABLE 4 Comparisons with other authors, with reduced datasets without considering non–cracks.

Set Method
Alligator Linear Longitudinal Transverse

cracks cracks cracks cracks
Precision Recall Precision Recall Precision Recall Precision Recall

A L. Li et al. (2014) 100% 100% 100% 100% 86.6% 81% 82.2% 87.5%
Proposed model 𝟏𝟎𝟎% 𝟏𝟎𝟎% 𝟏𝟎𝟎% 𝟏𝟎𝟎% 𝟗𝟕.𝟓% 𝟗𝟖.𝟓% 𝟗𝟖.𝟓% 𝟗𝟕.𝟓%

B L. Li et al. (2014) 92% 69.5% 90.7% 𝟗𝟖% 𝟗𝟖% 𝟗𝟒.𝟐% 𝟗𝟒.𝟖% 𝟗𝟖%
Proposed model 𝟗𝟐.𝟏% 𝟖𝟖.𝟗% 𝟗𝟔.𝟒% 97.5% 91.9% 92.9% 92.4% 91.4%

C L. Li et al. (2014) 91.1% 69.4% 90.6% 97.7% 𝟗𝟕.𝟖% 94.9% 94.8% 𝟗𝟕.𝟕%
Proposed model 𝟗𝟓.𝟗% 𝟗𝟑.𝟖% 𝟗𝟕.𝟗% 𝟗𝟖.𝟕% 94.7% 𝟗𝟓.𝟗% 𝟗𝟓.𝟔% 94.3%

results for transverse cracks. The method of L. Li et al.
(2014) provides more accurate values if only the two classes
(longitudinal/transverse cracks) are analyzed separately. How-
ever, in the classification of non-crack patterns (generally the

most common pattern) this method cannot classify them. Also,
the recall for alligator cracks of their proposal obtains lower
results.
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4.4 Research highlights
Once the behavior of the ensemble model is compared to
the individual models (Subsection 4.2) and contrasted with
other proposals (Subsection 4.3) for the different datasets, the
following facts can be highlighted:

• The ensemble model provides better results on average
in terms of accuracy and recall compared to the use of
individual models.

• In the presence of datasets that include cases of major-
ity and minority classes, the ensemble model is more
sensitive, providing a classification for majority classes
without penalizing minority classes as opposed to the
other proposals.

• Combining models in an ensemble provides better
results than multi–stage classification with the indepen-
dent models proposed by other authors when all the
classes are analyzed simultaneously.

5 CONCLUSIONS

In this work, a method for the classification of non–cracks, lon-
gitudinal, transverse, and alligator cracks has been proposed.
The method is composed of two stages: the first is based on
computer vision algorithms to extract the fundamental charac-
teristics of the cracks, and the second stage is the proposal of
a new ensemble model based on decision trees and rule–based
algorithms.

In terms of performance, the proposed ensemble model pro-
vides on average a crack classification higher than 94% with
respect to the precision and recall metrics for the three ana-
lyzed datasets. Comparing the results to the individual com-
ponents of our proposed ensemble (C4.5, LMT, and RIPPER),
our approach provides in general, the highest values of preci-
sion and recall for the analyzed classes in each dataset. Also,
the ensemble provides the highest weighted average precision
and recall values.

In comparison with other authors, our model obtains in
general, the highest values in precision and recall when all
the classes are analyzed simultaneously. In those cases where
one of these two metrics is slightly lower, the other metric is
the highest. In the case of binary classification (alligator/lin-
ear crack classification) for the largest analyzed dataset, the
improvement in results of our proposal is up to 24.4% and 4.8%
better in terms of recall and precision respectively than the
proposals of other authors.

Finally, our proposal has demonstrated that the use of
ensemble models, taking as individual experts decision trees
and rule–based algorithms, can work effectively in the problem

of crack classification producing promising results. Also, our
proposal mitigates the effect of miss–classifications when the
datasets are unbalanced. Hence, it opens a new world of possi-
bilities for the combination of different classification models.

6 FUTURE RESEARCH

This work has focused on the classification of the most com-
mon types of cracks in pavement road surfaces. To achieve this,
computer vision for road crack segmentation and an ensem-
ble model was proposed. However, there are some issues that
could be addressed in future research. Firstly, the analyzed
cracks in this work could be expanded with new types of
defects, such as viscoplastic deformations (for instance, pot-
holes) or surface defects (such as skidding effect or aggregate
pollution (Ragnoli et al., 2018)). Secondly, it would be inter-
esting to compare the road crack segmentation with proposals
based on deep learning. Also, the incorporation of new learn-
ing algorithms to exploit the advantage of the ensembles in
terms of scalability and adaptability (Sun et al., 2013) could be
addressed.

Finally, this work is exclusively focused on road pavements.
However, it would be interesting to explore the research pre-
sented in this paper for use in different civil engineering sce-
narios in which cracks may appear, such as tunnels or concrete
structures.
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