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a b s t r a c t

Hyperspectral image registration is a relevant task for real-time applications such as environmental
disaster management or search and rescue scenarios. The HYFMGPU algorithm was proposed as a
single-GPU high-performance solution, but the need for a distributed version has arisen due to the
continuous evolution of sensors that generate images with finer spatial and spectral resolutions. In
a previous work, we simplified the programming of the multi-device parts of an initial MPI+CUDA
multi-GPU implementation of HYFMGPU by means of Hitmap, a library to ease the programming
of parallel applications based on distributed arrays. The performance of that Hitmap version was
assessed in a homogeneous GPU cluster. In this paper, we extend this implementation by means of new
functionalities added to the latest version of Hitmap in order to support arbitrary load distributions
for multi-node heterogeneous GPU clusters. Three different load balancing layouts are tested, which
prove that selecting a proper layout affects the performance of the code and how this performance is
correlated with the use of the GPUs available in the cluster.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

Image registration is the task of estimating the translation,
otation and scaling parameters of a given image with respect
o a second take of the same scene, obtained at different times,
iewpoints, and/or lighting conditions. During the last few years,
ifferent hyperspectral image registration techniques have been
roposed, but most do not focus on time performance. However,
any real-time applications, such as the management of natu-

al disasters or surveillance operations, depend on hyperspectral
mages being processed in real-time. GPUs were used to boost
lassification, target detection or segmentation of this kind of
mages, but few efforts were made to achieve a real-time im-
lementation of a hyperspectral registration algorithm. Ordóñez
t al. introduced in [25] a sequential CPU implementation of
YFM [29], a Fourier–Mellin algorithm for hyperspectral image
egistration. That work was followed by HYFMGPU, a single-GPU
UDA-based version whose performance makes it suitable for use
n real-time environments [26]. As hyperspectral sensor technol-
gy improves, images have finer resolutions in both spatial and
pectral domains. Because of that, more computational power
nd more memory space, this latter being a limited resource
n GPUs, are needed. We presented in [12] a coarse-grained
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distributed multi-GPU implementation of HYFM that follows a
hybrid MPI+CUDA programming approach which was proven to
satisfy such present and future needs. That work also revealed
the programming complexities of MPI when combined with an
accelerator programming model such as CUDA, mixing work re-
distributions with data movements between host and devices,
and calls to external scientific libraries. As a solution to those
issues, a more abstract programming approach was introduced
in [11]. This approach is based on Hitmap [17], a library de-
signed to ease the task of programming parallel applications by
means of its capabilities of automatic partitioning and mapping
of distributed arrays with arbitrary granularity. It was proven to
achieve not only a reduction in the overall programming com-
plexity of the multi-GPU implementation of HYFM, but also an
unexpected speed-up in the wall time of the algorithm when
tested in a single-node homogeneous multi-GPU cluster. This
homogeneity allows an easy balancing of the workload by pro-
cessing the same amount of data on each accelerator [6], but
the need for a more sophisticated load balancing mechanism is
expected to arise when distributing the work among different
kinds of accelerators in a heterogeneous GPU cluster.

In this paper, we present an extension of our previous HYFM
multi-GPU implementation, introducing a mechanism that adapts
the workload to the GPUs available in a cluster, improving its
performance. This mechanism is supported by the new weight-
distributed arrays included in the latest versions of Hitmap [5].1

1 https://trasgo.infor.uva.es/hitmap/.

https://doi.org/10.1016/j.jpdc.2021.02.014
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2021.02.014&domain=pdf
mailto:jorge@infor.uva.es
mailto:arturo@infor.uva.es
mailto:diego@infor.uva.es
https://trasgo.infor.uva.es/hitmap/
https://doi.org/10.1016/j.jpdc.2021.02.014


J. Fernández-Fabeiro, A. Gonzalez-Escribano and D.R. Llanos Journal of Parallel and Distributed Computing 151 (2021) 86–93

d
r
l
G
t
i
i
s

2

s
p
b
p
s
o
t
n
t
l
h
o
s
s
G
a
s
o
s
i
l

s
t
s
t
b
c
m

g
m
m
a
a
d
m
t

An experimental study to assess the impact of a proper load
balancing in terms of performance has been conducted on a
cluster composed of two nodes that host five NVIDIA GPUs of
different capabilities and generations. Five pairs of hyperspectral
images of different sizes have been registered, distributing the
work according to three different data layouts. By means of
profiling the usage of each device, it has also been checked to
what extent each layout is really balanced or not in terms of GPU
time. The results reveal that the fastest option tested is a layout
that distributes the load according to the performance differences
observed when executing a single and small test case on each
different GPU family. This fastest layout option presents a good
and stable load balance since its standard deviation is barely
6.25% over the average GPU time. The results also show that the
bigger the inputs are, the larger the impact that a proper load
balancing layout has in the performance of this code.

The rest of this paper is organized as follows: we start by
iscussing some related research in Section 2 and providing the
eader with an overview of the Hitmap distributed programming
ibrary in Section 3. Section 4 recalls the Hitmap-based multi-
PU implementation of the HYFM algorithm and introduces how
he load balancing techniques of the library are applied to extend
t. The results obtained by this extended approach are introduced
n Section 5, and finally Section 6 presents the conclusions and
ome feasible research lines for the future.

. Related work

GPU offloading is quite a common approach used in remote
ensing to boost the implementation of the algorithms. For exam-
le, GPU-accelerated methods for geospatial change detection for
oth civilian [18,20] and military [34] fields have recently been
resented, as well as for undersea image reconstruction [31] or
ynthetic aperture radar imaging in marine surfaces [19]. Many
f these works also remark the sustained improvement of sensor
echnology and how it increases both computing and memory
eeds of any algorithm that manipulates data obtained in real-
ime from sensors embedded in unmanned vehicles or satel-
ites. There are interesting research lines focused on exploiting
eterogeneous devices in order to accelerate the relevant stages
f such tasks. For instance, Martel et al. introduce in [22] some
trategies to reach latency-efficient implementations of dimen-
ionality reduction algorithms in a GPU and a Field Programmable
ate Array (FPGA). FPGAs are also used to accelerate such tasks
s real-time target and anomaly detection [32] or image recon-
truction from incomplete data [33]. Other works exploit highly-
ptimized GPU-based deep learning techniques to implement
uch remote sensing tasks as image-based crop health monitor-
ng [28], cloud segmentation for weather prediction [10], or urban
and segmentation and classification [16].

Algorithms that benefit from GPU offloading require an unrea-
onably long compute time on a single device, or are too large
o fit into its memory. In such cases, work scattering among
everal GPUs is a common solution to overcome these limita-
ions. However, depending on the properties of the algorithm
eing distributed, this approach may also require implementing
omplex domain decompositions [7,15] based on native program-
ing interfaces such as MPI or CUDA.
Hitmap [17] is a compiler-agnostic library with a plain-C lan-

uage API that offers an intermediate abstraction layer to tackle
any of these issues, halfway between the manual program-
ing of distributed data structures on message-passing models,
nd PGAS languages (Partitioned Global Address Space), such
s Chapel [8] or UPC [21]. It provides a simple way to create
istributed arrays that map to local address spaces, with explicit
echanisms for the construction of reusable communication pat-

erns at runtime. These patterns adapt to the data partition,
87
creating a low number of aggregated communications when mov-
ing data across the global space. This leads, for example, to
a performance efficiency comparable to UPC, with a reduced
programming complexity and development effort. Hitmap ex-
tends and generalizes the memory-hierarchy creation and data-
partition functionalities of other libraries or distributed arrays
models, such as HTAs [13] or Parray [9]. It allows the use of
transparent partition policies, either regular or irregular, defined
as interchangeable modules with a common interface. This hides
for the programmer the decisions about granularity and synchro-
nization across hierarchical levels. Hitmap has also been extended
to support data structures such as sparse matrices, or graphs,
using the same methodology and interface [14]. Hitmap is also
the portable library used to provide a common interface for trans-
parent data management in the Controller model [24], an abstract
entity that allows programmers to easily manage the communi-
cations and kernel launching details, on multiple heterogeneous
devices, including GPUs and multi-core CPUs [23]. Regarding its
application in specific use cases, Hitmap has been presented
in [30] as a programming interface to transparently map agents
to processes in a multi-agent pedestrian simulator.

3. Overview of the Hitmap library

Since this work is an extension of the Hitmap-based multi-
GPU implementation of the HYFM algorithm presented in [11], let
us provide the reader with an overview of that distributed pro-
gramming library. Hitmap [17] is a library for the partition, map-
ping, and management of hierarchically distributed data struc-
tures at runtime. It was originally designed for dense arrays, and
has also been extended to support sparse data structures, such
as sparse matrices or graphs, using the same methodology and
interface [14]. It is based on an SPMD (Single Program Multiple
Data) model and the message-passing paradigm. Hitmap defines
several abstractions to write parallel programs using distributed
data structures. The functions in the library are grouped in three
main modules.

Tiling functions. They allow the definition and management of
hierarchically tiled data structures. These functionalities can be
used independently of the rest of the library to improve locality
on sequential code. They define classes to represent domains of
indexes in a compact form. A class named HitTile represents
the association between the elements of the indexes-domain
space and the actual data, allowing the access to data with the
same efficiency as manually developed codes that do not use the
tile abstraction. A process can declare and allocate a subspace of
the original domain to create a distributed data structure.

Mapping functions. These include interchangeable modules
that implement policies to automatically part and map domains
in terms of the processes of a virtual topology. The virtual topolo-
gies are also generated by another class of policy modules at
runtime. Neighbor relations across processes are established by
these policies. The partitions are represented by objects named
HitLayout that can be queried to obtain the indexes subdomain
mapped to the local, a neighbor, or any other remote virtual
process. Along with other partitions such as block, cyclic, or
dimension-based, which were already supported in Hitmap, a
number of weighted partitions [5] have been added to the latest
versions of the library. These new partitions allow programmers
to balance the workload among the processes in a topology,
in order to match the capabilities of each computing device in
a distributed heterogeneous system. Moreover, new distributed
array constructors to directly map and allocate distributed arrays
in terms of the selected topology and layout function names have
also been added.
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Fig. 1. HYFM scheme for registration of two hyperspectral images.
Source: Adapted from [26].
Communication functions. These are an abstraction of the
message-passing model for tiles or tile parts across virtual pro-
cesses. They allow the creation of HitCom objects that store
he information needed to marshall/unmarshall and exchange
elected tile data across processes. Several interfaces for differ-
nt types of point-to-point and collective communications are
vailable. More complex patterns composed of multiple commu-
ication operations, involving one or more tiles (several HitCom
bjects), are implemented as HitPattern objects. The construc-
or functions use the HitLayout objects associated to the dis-
ributed arrays to automatically determine what to communicate
o which processes. Thus, these objects are transparently adapted
n construction time to the target platform details and the actual
ata distribution selected. These communication objects have a
ethod that can be called at any time, and as many times as
eeded, to execute the communications. Internally, these ob-
ects exploit efficient MPI techniques such as derived datatypes,
synchronous communications, etc.

. Hitmap-based distributed HYFMGPU

The HYFM algorithm expects a pair of hyperspectral images
reference and target) as inputs. The goal is to register the target
image. This means computing how it is rotated, shifted and scaled
with respect to the reference image. This procedure was first
implemented in CUDA by Ordóñez el al. to be run in single
NVIDIA GPUs [26] and then distributed among several devices,
as we presented in [12]. In this section, we offer an overview
of the coarse-grain parallelization process followed to reach the
distributed version of the algorithm implemented with Hitmap
and presented in [11], describing also the modifications needed to
adapt that code to a heterogeneous GPU cluster. In order to help
the reader to gain a better understanding of the computation and
communication phases of the algorithm, the rest of the section is
organized according to the four main steps depicted in Fig. 1.

4.1. Initialization

Both the reference and the target images must be scattered
among the GPUs in groups of rows. Hitmap provides a hitDis-
tribTile() constructor to create tiles which are automatically
distributed among the processors. This function receives the input
native datatype, the shape of the global buffer to distribute, the
name of a topology function that groups the processors to create
neighbor relations, and the name of a layout defining the desired
type of partition and distribution.

Since the Hitmap version of the algorithm presented in [11]
was devoted to run in a single-node homogeneous multi-GPU
cluster, the input images were sliced in equally distributed groups
of rows. This is achieved by storing these images in distributed
arrays according to a Blocks layout built on top of a topology
that projects the processors along the rows dimension of the im-
ages (ArrayDimProjection(HIT_ROWSDIM)). The code snippet
88
from Fig. 2a shows how these arrays are defined for both refer-
ence and target input images. The satisfactory results obtained
in this previous work stem in part from the aforementioned GPU
homogeneity. However, this kind of blocked equal distributions
are very likely to lead to a quite uneven load balancing when
run in heterogeneous clusters composed of host nodes and GPU
devices with different computing capabilities and memory sub-
systems. A new weighted data partition has been introduced
to balance the number of row-based slices sent to each GPU.
Namely, it can be done by replacing the Blocks layout with a
DimWeighted_Copy one, as shown in Fig. 2b. The constructor
of this kind of layout needs to know the dimension along which
the array will be distributed (in this case HIT_ROWSDIM, the rows
dimension of the image) and a HitWeights object encapsulating
the weights to apply. The code in Fig. 3 shows how to create such
an object: first an array of weights must be declared, which is
passed to a hitWeights constructor along with the number of
processes. Ratios for data distribution are computed internally by
dividing each weight by the sum of the array, taking into account
the following two conditions: (1) if the weights array is longer
than the number of processes, the excess values are discarded,
(2) if it is shorter, then the array is completed with zeros and the
corresponding processes will not receive data.

4.2. Preprocessing

This step is composed of three different parts, on which both
reference and target images are first filtered using a Blackman
window, then normalized, and finally shrunk to a reduced num-
ber of bands by means of a principal component analysis (PCA). In
this distributed approach, the GPU commanded by each process
takes the reference and target images slices loaded in Step 1 and
filters them. Remember that these slices are stored in HitTile
objects that were allocated in the host memory space of each
process, so they must be previously copied to the global memory
space of each GPU. Once filtered, they must be normalized by
centering the value of each pixel with relation to the mean
value of all the pixels of its band. Since each GPU only keeps its
corresponding group of rows, an all-reduce operation is needed so
that all the processes could have the full summation of each band
of the input images, and then compute the mean values used
to center their image slices. These filtering and centering stages
are the first point on which the load balancing of the distributed
arrays defined in Fig. 2b plays a role, since the higher the number
of rows assigned to each process , the higher the requirements of
the GPU in terms of memory and computing power.

The principal component analysis of a filtered and centered
input image is composed of several stages. First, a correlation
matrix of the input is calculated. This task involves a matrix
product whose column size depends on the number of rows
assigned to each process (thus, the load balancing of the dis-

tributed arrays also plays a role here) and an all-reduce operation
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Fig. 2. Definition of row-distributed tiles in Hitmap for input images.
Fig. 3. Example of Hitmap weight arrays definitions. Weight arrays must have as many elements as processes in the corresponding topology. Ratios for data
distribution are computed by dividing each weight by the sum of the full weights array.
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used to accumulate the partial results of that product and then
broadcast the matrix to all the processes. More details of how
this matrix is obtained in parallel are given in [12]. Second, each
GPU uses cuSOLVER [3] to compute a private copy of the singular
value decomposition (SVD) of the full correlation matrix, one of
the matrices obtained from this decomposition being a trans-
formation operator used by the GPU to get a band-reduced and
principal-component ordered version of its row-sliced input. Each
process retrieves the result of that transformation from its GPU
and stores it for each image in the distributed tiles created by the
code from Fig. 4. The same im_tileRows_hitweights object
rom Fig. 3 must be used to define the tiles for the row-sliced
CA results, as they are transformations of the corresponding
eighted row-sliced inputs with the same number of rows. So
his is the third point of this step at which the row-based load
alancing is relevant. According to the algorithm, the result is
estricted to a small number of bands given by a parameter
amed PCAS. In order to keep just the first PCAS bands, an
dditional HitShpView transformation is needed. The last part
f the PCA calculation consists of a redistribution of the band-
educed input images, sketched in Fig. 5. By now, each process k
as, for each image, a slice of c columns × rk rows × eb bands,
ith eb = PCAS and rk being the number of rows computed for
he process k from the im_tileRows_hitweights object. How-
ver, each GPU is expecting as inputs for Step 3, a group of ebk
ull bands, each one being composed of r × c elements. This
equirement is fulfilled by rearranging the row-sliced PCA results
nto band-sliced distributed arrays. Fig. 6 shows how these
and-sliced arrays are created. In this case, the processors of the
nderlying topology are projected along the bands dimension
f the images (ArrayDimProjection(HIT_BANDDIM)), and the
imWeighted_Copy layout includes a different HitWeights
bject (im_tileBands_hitweights) that will set how many
ands will be received by each process. The rearrangement opera-
ion is performed by means of the
it_patternDoRedistribute() function of Hitmap, which
mplements a transparent mechanism to rearrange the data of
distributed HitTile into another tile with a different mapping
nd only expects the input and output tiles as arguments.
89
.3. Band processing and composition

In this step, each GPU loops over its ebk pairs of reduced bands
f c columns and r rows, performing a high-pass filtering, a mul-
ilayer fractional Fourier transform (MLFFT) [27] and a log-polar
oordinate transformation in both reference and target bands on
ach pair, which are then merged into a phase-correlated map
Stages II to IV in Fig. 1). Some of these operations are computed
y cuFFT [2] routines. At the end of the iteration, the map is
ccumulated into an ancillary buffer, so the buffer will contain
he partial log-polar map corresponding to the ebk reduced bands
omputed by the GPU at the end of the loop. Here lies the
elevance in terms of computing demands of the load balancing
f the distributed arrays defined in Fig. 6. Finally, in Stage V, the
um of all these partial maps is reduced to the master process
leader in Hitmap terminology) of the algorithm.

.4. Peak processing

In the first part of this step, the leader process uses Thrust [4]
o generate a host-side ordered indexes vector from the GPU-
tored final average map. Due to the data sizes involved, this
s more efficient than issuing a distributed sort. Both arrays
re broadcast to the rest of the processes along with the first
CA component from both reference and target images, since all
hese data structures are needed to process the peaks pointed
y a number of the top elements of the ordered indexes vector.
hen, every process cyclically traverses the top subset of the
rdered indexes array to obtain a partial maximum peak. The
nformation from these partial peaks is on structures that are
acked as custom Hitmap datatypes and then gathered in the
eader process. Finally, this process inspects the partial peaks
eceived and computes the expected outputs of the rotation angle,
cale factor and cartesian shift shown in Fig. 1. The description of
his step is included to make a comprehensive coverage of the
lgorithm, although all these operations are performed only in
he leader process and all the weight-distributed arrays have been
reviously released.
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Fig. 4. Definition of weight-distributed tiles in Hitmap for row-sliced PCA results.
Fig. 5. Workflow of rows-to-bands group redistribution among n processes. Row-distributed slices (left) have c columns × rk rows × eb bands. Band-distributed
slices (right) have c columns × r rows × ebk bands.
Fig. 6. Definition of weight-distributed tiles in Hitmap for band-sliced PCA results after rows-to-bands redistribution.
. Experimental study

Single-node multi-GPU experiments described in [11] proved
ow a Hitmap-based implementation of the HYFM algorithm
mproved both the programmability and the performance of a
revious MPI+CUDA version. In this section, we extend those re-
ults by introducing a distributed multi-GPU experimental study
n which several pairs of hyperspectral images are registered,
istributing the work using three different distribution policies
n a heterogeneous cluster with two nodes that host five NVIDIA
PUs of three different generations and capabilities. Table 1 sum-
arizes the main properties of the heterogeneous GPU cluster
sed for this experimental study. Four GPUs are two Tesla K40c,
nd two Titan Black GPU devices of Compute Capability 3.5, con-
ected to a node (named hydra, also referred to as H1) powered
y an Intel Xeon 2014Q3 E5-2609v3 processor. K40c GPUs have
2 Gb of global memory, while Titan Black GPUs have only 6 Gb of
lobal memory. The last GPU is a high-end Tesla V100 of Compute
apability 7.0 hosted by a server with two Intel Xeon 2017Q3
latinum 8160 processors (node named manticore, also referred

as H2) with a total of 48 cores and 96 hardware threads. Both

nodes are linked by a Gigabit Ethernet network fabric technology.

90
Regarding the load balancing scenarios, three work distribu-
tions have been defined by means of the DimWeighted_Copy
layout: (a) blocks, that mimics the equal distribution of the
Blocks layout used in [11], (b) memory, whose weights are set
according to the global memory available in each GPU, and (c)
timeperf, that tries to adapt the work distribution to the real
computing capabilities of each GPU. Table 2 shows the weights
set for both row-sliced and band-sliced distributed tiles in each
load balancing scenario. For the blocks scenario, all weights are
set to the same value (e.g. 1.0) for all the GPUs in both groups of
distributed arrays in order to mimic the behavior of the original
Blocks layout. For the memory scenario, the weights used to
distribute the input arrays and the row-sliced PCA result arrays
match the global memory size of each GPU in GB, as shown in
Table 1. These weights are approximated with a configuration
of integer numbers (1, 1, 1, 1, 4), whose sum matches the value
of the PCAS parameter that determines the number of bands
in the band-sliced PCA results array. The PCAS = 8 value was
experimentally determined in [26]. For the timeperf scenario,
the weights used to distribute the input arrays and the row-
sliced PCA result arrays match a normalized performance metric

ρi = T/ti, where i represents each different GPU model. We
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Table 1
Main properties of the testbed used for the experimental study.

hydra (H1) manticore (H2)

CPU (host) 2× Intel Xeon E5-2609v3
1.9 GHz, 6 cores each
64 GB of RAM

2× Intel Xeon Platinum 8160
2.1 GHz, 48 cores each
256 GB of RAM

GPU (devices)

2×NVIDIA GTX TITAN Black

1×NVIDIA Tesla V100
GV100 architecture (CC 7.0)
5120 CUDA cores, 32 GB RAM

GK110B architecture (CC 3.5)
2880 CUDA cores, 6 GB RAM

2×NVIDIA Tesla K40c
GK180 architecture (CC 3.5)
2880 CUDA cores, 12 GB RAM

CUDA environment nvcc and device-side libraries from CUDA Toolkit 10.0CUDA driver 410.48

MPI implementation mpich-3.2.1

Network fabric Gigabit Ethernet
Table 2
Weights arrays for blocks, memory and timeperf load balancing layouts. H1 and
H2 are the two nodes that make up the cluster.
Load
balancing

Weighted
distribution

H1 H2

TB TB K40 K40 V100

blocks Row-based 1 1 1 1 1
Band-based 1 1 1 1 1

memory Row-based 6 6 12 12 32
Band-based 1 1 1 1 4

timeperf Row-based 0.25 0.25 0.20 0.20 1
Band-based 1 1 1 1 4

Table 3
Normalized performance metrics used to set the timeperf weights array for the
ow-sliced distributed tiles. TB stands for NVIDIA GTX TITAN Black, K40 stands
or NVIDIA Tesla K40c, and V100 stands for NVIDIA Tesla V100.
GPU Single-device

wall time (ti)
Baseline time
(T = min(ti))

Normalized perf.
(ρi = T/ti)

TB 16.15 s – 3.87/16.15 ∼ 0.25
K40 20.79 s – 3.87/20.79 ∼ 0.20
V100 3.87 s 3.87 s 3.87/3.87 = 1.00

experimentally measure ti by executing the whole algorithm in
single GPU of model i, with a pair of small reference images
ith sizes 512 × 4096 × 224. This is the size of the largest

test case run for a single GPU in [12]. Then, we normalize these
times with the fastest performance time T = min(ti). In our
xperimental platform, this is the execution time obtained using
he Tesla V100 GPU. Table 3 summarizes how these weights have
een obtained. The weights for the band-sliced PCA results array,
ith a small number of bands (PCAS = 8), are approximated as

n the memory scenario.
Table 4 contains, for each pair of cols × rows × bands input

images, the average (x̄) and the standard deviation (σ ) of the
all time after 10 runs of the algorithm, distributing the work
mong the five GPUs available according to the blocks, memory
nd timeperf load balancing layouts. The HYFM algorithm prop-

erties allow the use of random inputs for performance evaluation
purposes, as its performance is non-sensitive to translation, rota-
tion, scale, and noise in the input images [29]. Thus, all the tests
have been run using randomly generated matrices as synthetic
hyperspectral images. We have chosen a number of 224 bands,
since it can be considered a representative value for very high
spectral resolution images [1]. For all the test cases, we choose
a number of 4096 rows to be distributed among GPUs. It is the
number of rows in the largest images included in [11], which
have a size of 1024 × 4096 × 224. The number of columns
chosen ranges from 1024 to 4096 in increments of 1024, to
create increasing workloads to be distributed. We now compare
91
the three distribution policies or layouts in terms of their load
balancing, stability and GPU usage properties. The GPU usage is
measured as the sum of GPU kernel times and host-to-device,
device-to-host and device-to-device transfers, obtained by means
of the nvprof CUDA profiler, for each of the five GPUs available
in the cluster. Table 5 shows the GPU time for each device, along
with the corresponding average time and its standard devia-
tion. These times were obtained for a pair of random images
of size 4092 × 4096 × 224. It is the largest input size that
does not exhaust the global memory of any of the 5 GPUs, for
any load balancing layout, when running the code instrumented
with the nvprof tools. For completeness, this additional test case
was also run with no profiling activity and was hence included
as a separate row in Table 4. Both the blocks and the memory
layouts show a relevant load unbalance. When blocks is applied,
all the GPUs must perform the same amount of work, which
leads the high-end V100 to clearly outperform the rest of the
devices, whose capabilities are much more modest and are thus
overloaded. The V100 GPU is idle and waiting for the others at
each synchronization point. A standard deviation of 4.54 (43.61%
over the average GPU time) proves those differences. Regarding
the memory layout, it increases the amount of work performed
by the V100 and thus alleviates the load for the other GPUs
(a V100 has 2.6× more memory than a K40 and 5.2× more
than a TB). Thus, the average GPU time decreases from 10.41 s
for blocks to 8.39 s. However, it is not enough to compensate
the computing capabilities of the V100, as shown by the high
standard deviation of 3.33 (39.65% over the average GPU time).
Nevertheless, such a redistribution could be useful to compute
inputs that are too large to be processed using the blocks layout,
but can be fitted in the global memory of all the GPUs. By contrast,
the GPU times achieved when applying the timeperf layout prove
that it really does provide a quite balanced work distribution. The
average GPU time has fallen to 5.59 s and the standard deviation
becomes almost negligible (0.35, barely 6.25% of the average).
Thus, trying to adapt the work distribution to the computing
capabilities of each GPU seems to be a good technique for the
distributed multi-GPU implementation of the HYFM algorithm. As
the detailed descriptions included in [11,12] show, the distributed
implementation of the algorithm requires many synchronization
points and data transfers among processes. A balanced GPU work
distribution contributes to a smooth progress of the execution,
as it is expected to minimize the wait times of processes at such
points.

The results obtained for all the test cases show the trend that
the bigger the inputs, the larger the impact that the configuration
of a proper load balancing layout has in performance terms, for
the distributed multi-GPU implementation of the HYFM algo-
rithm. As expected, the timeperf layout, which was intended to
adapt the work distribution to the computing capabilities of each

GPU, arises in all the test cases as the fastest option.
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Table 4
Performance results (mean wall time x̄ and standard deviation σ , with N = 10 runs for each test case) for blocks,
memory and timeperf load balancing layouts. These times include CPU processing, network communication costs,
and device times. Device times are further analyzed in Table 5.
Input images size (cols × rows × bands) N = 10 runs each test case

blocks memory timeperf

x̄ σ x̄ σ x̄ σ

1024 × 4096 × 224 12.81 s 0.70 12.18 s 0.49 11.94 s 0.32
2048 × 4096 × 224 17.41 s 1.28 15.77 s 0.33 15.17 s 0.57
3072 × 4096 × 224 20.01 s 0.76 19.50 s 0.25 19.20 s 0.88
4096 × 4096 × 224 27.48 s 1.96 27.68 s 0.72 23.45 s 0.88
4092 × 4096 × 224 26.06 s 1.47 24.25 s 0.29 19.26 s 0.41
Table 5
Comparison of load balance achieved by blocks, memory and timeperf layouts for inputs of size 4092× 4096× 224. Each row shows
the device time (sum of memory transfers and computing) consumed by each GPU for a layout, along with the corresponding mean
x̄ and standard deviation, both in absolute terms (σ ) and in percentage (%) of x̄.
Load balancing layout H1 H2 x̄ σ (%)

TB TB K40 K40 V100

blocks 11.67 s 13.21 s 11.85 s 12.92 s 2.38 s 10.41 s 4.54 (43.61%)
memory 7.52 s 5.60 s 10.96 s 12.72 s 5.16 s 8.39 s 3.33 (39.65%)
timeperf 5.83 s 5.99 s 5.11 s 5.39 s 5.62 s 5.59 s 0.35 (6.25%)
t
6. Conclusions

In this paper, we present an extension of the distributed
mplementation of the HYFM hyperspectral image registration
lgorithm from [11,12]. The main feature added to this extended
ersion consists of a load balancing mechanism to make the code
ble to adapt its performance to the capabilities of a hetero-
eneous multi-GPU cluster. We review the main functionalities
ffered by the Hitmap library used in the implementation to
anage distributed arrays, including the new ones that support
eighted distributions of data among processes. Then, we recall
ow the work of each step of the algorithm is divided among
everal GPUs, explaining how the new weight-distributed arrays
f Hitmap are used to support the aforementioned load balancing
echanism. An experimental study to assess the impact that a
roper load balancing has on the performance of the distributed
ersion of the code has been conducted. This study consists of
egistering pairs of random hyperspectral images with sizes up
o 4096 × 4096 × 224 on a heterogeneous cluster composed
y two nodes with different Intel Xeon CPU families and hosting
ive NVIDIA GPUs of different capabilities and generations. The
orkload is distributed following three different data layouts: (a)
locks, that applies a blocked equal distribution, (b) memory, that
roportionally assigns more work to those GPUs equipped with
ore global memory, and (c) timeperf, that tries to distribute

he workload according to the computing capabilities of each
evice. The results show that the bigger the inputs, the larger the
erformance impact of a proper load balancing layout has in this
ode. A comparison of these three layouts was also proposed to
heck to what extent each one is really balanced or not in terms
f GPU usage. This comparison confirmed the blocks layout as
uite unbalanced (σ = 4.54, 43.61% over the average GPU time).
he memory one was revealed as insufficient to compensate the
erformance differences among GPUs (σ = 3.33, 39.65% over
he average). By contrast, the timeperf layout indeed provides
load-balanced scenario among the 5 GPUs (σ = 0.35, 6.25%
ver the average). The adaptation of the work distribution to
he computing capabilities of each GPU therefore seems to be
good load balancing technique for the distributed multi-GPU

mplementation of the HYFM algorithm. A balanced GPU work
istribution contributes to a smooth progress of the execution,
s it is expected to minimize the wait times of processes at
ynchronization points and in collective data transfers. For all the
92
est cases, the timeperf layout obtained the best execution wall
time.

Finally, some future research lines are proposed. Improve-
ments in the distributed implementation of some parts of the
algorithm, such as the principal component analysis (PCA) or
the band processing stages based on cuFFT operations, will re-
duce the number of synchronization points and data transfer
operations among processes, which is expected to increase the
relevance that a well-balanced GPU usage has in the algorithm
wall time. Additionally, the integration of Hitmap with the Con-
trollers model [23] for generic accelerator programming could
also simplify the programming and portability of the GPU code.
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