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Abstract. A universal KP-like equation in 2+1 dimensions, which models general nonlin-
ear wave phenomena exhibiting p-power nonlinearity, dispersion, and small transversality, is
studied. Special cases include the integrable KP (Kadomtsev-Petviashvili) equation and its
modified version, as well as their p-power generalizations. Two main results are obtained.
First, all low-order conservation laws are derived, including ones that arise for special powers
p. The conservation laws comprise momenta, energy, and Galilean-type quantities, as well as
topological charges. Their physical meaning and properties are discussed. The topological
charges are shown to give rise to integral constraints on initial data for the Cauchy problem.
Second, all line-soliton solutions are obtained in an explicit form. A parameterization is
given using the speed and the direction angle of the line-soliton, and the allowed kinematic
region is determined in terms of these parameters. Basic kinematical properties of the line-
solitons are also discussed. These properties differ significantly compared to those for KP
line-solitons and their p-power generalizations. A line-shock solution is shown to emerge
when a special limiting case of the kinematic region is considered.

1. Introduction

Numerous kinds of nonlinear wave phenomena exhibiting weak nonlinearity and dispersion
for waves that have a small transverse component in 2+1 dimensions — such as shallow water
waves [18, 1], matter-wave pulses in Bose-Einstein condensates [16], ion-acoustic waves in
plasmas [17], and ferromagnets [23] — can be modelled by the Kadomtsev-Petviashvili (KP)
equation [18].

Higher nonlinearities arise naturally in various nonlinear phenomena [27, 19, 17], leading
to a generalization of the KP equation with a p-power form [32, 11]

(ut + αupux + βuxxx)x + γuyy = 0, p > 0, (1.1)

called the gKP equation, with constant coefficients α, β, γ. The lowest-power nonlinearity
p = 1 produces the KP equation, and this is the only case in which it is known that the gKP
equation is an integrable system. It reduces to the p-power KdV equation when u has no
dependence on y.
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Recently, a general modified KP-like equation has been derived in Ref. [28] by considering
phase modulations of travelling waves in a universal nonlinear system in 2+1 dimensions.
The resulting wave equation is given by

(ut + αu2ux + εuuy + κux∂
−1
x uy + βuxxx)x + γuyy = 0 (1.2)

with constant coefficients α, ε, κ, β, γ. This equation can be expected to model general non-
linear wave phenomena exhibiting cubic nonlinearity, dispersion, and small transversality in
2+1 dimensions. (See Ref. [30, 12, 14, 31, 28, 34] for physical applications). In particular,
it is the most general KP-like equation that shares the same scaling symmetry group as the
p = 2 case of the gKP equation:

x→ λx, y → λ2y, t→ λ3t, u→ λ−1u (λ 6= 0). (1.3)

Compared to the gKP equation for p = 2, the modified equation (1.2) contains two extra
terms: uuy and ux∂

−1
x uy, which change sign under reflection y → −y. When u has no

dependence on y, these terms vanish and this equation reduces to the modified KdV equation.
When the coefficient of the extra local term uuy is zero, the resulting equation is known

to be an integrable system if

κ2 = −2αγ/|β|, sgn(γ/β) = −sgn(α/β) = 1, ε = 0, (1.4)

which corresponds to the mKP equation [21].
Some basic aspects of the wave equations (1.1) and (1.2) are variational structures, line-

soliton solutions, conservation laws, and symmetries. These have been studied in Ref. [13,
10, 5] for the gKP equation, and in Ref. [15, 22, 25, 35, 6] for the integrable mKP equation.
No work of this kind has yet been done on the general modified equation (1.2).

In the present paper, we consider a p-power generalization of the general modified KP-like
equation (1.2), given by

(ut + αupux + εu
p
2uy + κu

p
2
−1ux∂

−1
x uy + βuxxx)x + γuyy = 0, p > 0 (1.5)

which we call the modified gKP equation. Like the gKP equation and the general modified
KP equation, it has a scaling symmetry and it reduces to the latter equation (1.2) when
p = 2. It will have applications in modelling wave phenomena that are characterized by
higher nonlinearity, dispersion, and small transversality in 2+1 dimensions.

Apart from physical applications, there are two general motivations for studying such a
p-power family. One motivation is that the interactions of line-solitons depend sensitively
on the value of p, and specific integrability features such as asymptotic preservation of the
shape and the speed of the line-solitons in collisions can be expected to break down for
higher powers, particularly p > 2. Another motivation involves studying the stability of
line-solitons as well as well-posedness of the Cauchy problem. Stability typically requires
the existence of conserved mass and energy integrals and holds for p not exceeding a critical
value determined by their scaling invariance.

Our main goals here will be to determine the line-soliton solutions and the low-order
conservation laws of the modified gKP equation (1.5) for all nonlinearity powers p > 0. In
particular, our analysis will identify any special powers p and special coefficient values α, ε,
κ, β, γ for which either extra conservation laws are admitted or special kinematical features
occur for the line-solitons.
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We will show that a line-shock solution emerges in a limiting case with α/β < 0. Line-
shocks decay to zero in one asymptotic spatial direction while in the opposite direction they
asymptotically approach a non-zero value. Such solutions do not exist for the gKP equation
and thus are new phenomena produced by the extra two terms u

p
2uy and u

p
2
−1ux∂

−1
x uy.

We will also find that, due to these extra terms, non-symmetrical bright/dark pairs of line-
solitons arise when p/2 is odd, whereas only symmetrical bright/dark pairs are supported
by the gKP equation.

Further goals will be to study the kinematical features of the line-solitons and the line-
shocks and how they depend on the power p and the coefficients α, ε, κ, β, γ, as well as
to investigate the physical and analytical properties of the conservation laws. Interestingly,
when α/β < 0, line-solitons and line-shocks cannot propagate purely in the x-direction —
namely, they must have some transverse component of velocity — in contrast to the KP-
like case α/β > 0. Moreover, they exhibit an asymmetry when the sign of their angle of
propagation with respect to the x axis is reversed.

For both types of line solutions, their speed and direction angle are found to be determined
entirely by their height and width, in contrast to the situation for KP line-solitons. Unlike
typical approaches in the literature, we use a physical parameterization of the solutions,
which enables a better analysis of their properties.

The kinematically allowed region in the parameter space of speed and angular direction is
determined by separating the analysis into four distinct cases given by the signs of α/β ≷ 0
and αγ ≷ 0. A significant qualitative difference in the resulting kinematic regions is found.
For line-solitons, the size of the regions is independent of the coefficients of the terms u

p
2uy

and u
p
2
−1ux∂

−1
x uy when α/β > 0, but has a sensitive dependence on these coefficients when

α/β < 0. For line-shocks, the regions shrink to curves. Additionally, when γ/β > 0, the
speed is non-negative, whereas when γ/β < 0, the speed can have either sign.

The admitted conservation laws, for arbitrary p, are found to consist of the L2 norm and
the mass, as well as an energy and a y-momentum in the case when the equation has a local
Lagrangian structure. There is rich structure of additional conservation laws when p = 1
and p = 2. In the case p = 1, a Galilean momentum and a Galilean energy are admitted. In
the case p = 2, both an energy and a linear combination of the x-moment of mass and the
y-moment of momentum are admitted when the equation has no local Lagrangian structure;
two additional Galilean-like momentum quantities are admitted in the Lagrangian case. The
sign properties of the energy will be determined, and the critical powers for scaling invariance
of the energy and the L2 norm will be found.

The modified gKP equation also possesses spatial flux conservation laws in all of the cases
just mentioned. Their global form describes vanishing topological charges given by a line-
integral around any closed curve in the (x, y)-plane. Some of these topological charges have
an interesting relationship to the L2 norm, energy, and y-momentum, which will be discussed.
In particular, integral constraints are shown to arise on initial data for the Cauchy problem,
generalizing the well-known mass constraint [24] on initial data for the KP equation.

All of these results are new. The rest of the paper is organized as follows.
First, in section 2, the modified gKP equation (1.5) is formulated as a local PDE by use of

the potential w given by u = wx. The conditions on the coefficients for existence of a local
Lagrangian structure will be determined and contrasted with the local Lagrangian known
[5] for the gKP equation.
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Then, in section 3, all low-order conservation laws of the modified gKP equation in poten-
tial form are derived by the multiplier method. Computational aspects are summarized in
an appendix. The physical meaning of each conservation law is described, and the integral
constraints are derived from those conservation laws that yield topological charges, following
a method introduced recently in Ref. [8].

Next, in section 4, the line solutions u = U(x + µy − νt) of the modified gKP equation
are derived for p > 0, where the parameters µ and ν determine the direction and the speed
of the line wave. The derivation uses the conservation laws of the equation to obtain a
direct symmetry reduction to a separable ODE, by applying a new multi-reduction method
developed in Ref. [7].

In section 5, the main kinematical properties of the line-solitons and line-shocks are dis-
cussed, by considering a physical parameterization given by the speed and angular direction
of these solutions.

Finally, a few concluding remarks and goals for future work are made in section 6.

2. Potential form

The modified gKP equation (1.5) is equivalent to a local PDE system

ut + αu2qux + εuquy + κuq−1uxv + βuxxx + γvy = 0, vx = uy (2.1)

where we have renamed the nonlinearity power

q = 1
2
p > 0 (2.2)

for convenience in the subsequent analysis with p fixed to be a positive integer. Consequently,
q will be either a positive integer or a positive half-integer.

This system (2.1) can be expressed as a single PDE by the introduction of a potential w
given by

u = wx, v = wy, (2.3)

yielding

wtx + αw2q
x wxx + εwqxwxy + κwq−1

x wxxwy + βwxxxx + γwyy = 0, q > 0. (2.4)

The potential w has gauge freedom w → w + χ(t, y) given by an arbitrary function χ(t, y).
Using this freedom, we can formally express w in terms of u by

w(t, x, y) = ∂−1
x u(t, x, y) = 1

2

(∫ x

x1

u(t, ζ, y) dζ −
∫ x2

x

u(t, ζ, y) dζ
)

(2.5)

where x1 and x2 can be chosen such that w satisfies a specified asymptotic condition as
x→ ±∞. For example, x2 = x1 = ±∞ implies w → 0 as x→ ±∞; x2 = −x1 =∞ implies
w → ±

∫∞
−∞ u(t, x, y) dx as x→ ±∞.

The modified gKP equation in potential form (2.4) possesses the scaling symmetry

x→ λx, y → λ2y, t→ λ3t, w → λ1− 1
qw (λ 6= 0). (2.6)

By applying a general scaling transformation

t→ λ1t, x→ λ2x, y → λ3y, w → λ4w, (2.7)
4



where λ1, λ2, λ3, λ4 6= 0, we can fix three of the five coefficients α, ε, κ, β, γ in equation (2.4).
Specifically, the coefficients transform as

α→ λ1λ
2q
4 λ
−(2q+1)
2 α, ε→ λ1λ

q
4λ
−q
2 λ−1

3 ε, κ→ λ1λ
q
4λ
−q
2 λ−1

3 κ, β → λ1λ
−3
2 β, γ → λ1λ2λ

−2
3 γ,
(2.8)

whence we can put

|α| = |γ| = β = 1 (2.9)

without loss of generality.
Note that in the case ε = κ = 0 we could further put sgn(α) = 1 when q is a half-integer

(namely, p is an odd integer). But this is not possible if ε 6= 0 or κ 6= 0 because in this
case the terms wqx or wq−1

x would contain square roots that require w ≥ 0 with a subsequent
restriction λ4 > 0 in the scaling.

Hereafter, we will consider the modified gKP potential equation in the scaled form

wtx + (σ1w
2q
x + awq−1

x wy)wxx + bwqxwxy + wxxxx + σ2wyy = 0, σ1, σ2 = ±1, q > 0 (2.10)

where a, b are arbitrary constants such that a 6= 0 or b 6= 0, and where q is either a positive
integer or a positive half-integer. The corresponding form of the equation in terms of u looks
like

ut + (σ1u
2q + auq−1∂−1

x uy)ux + buquy + uxxx + σ2∂
−1
x uyy = 0, (2.11)

which is an integrated form of equation (1.5). Note that the KP equation and the mKP
equation are respectively given by (in scaled form)

q = 1
2
, a = b = 0, σ1 = 1; (2.12)

q = 1, a2 = 2, b = 0, σ1 = −1, σ2 = 1. (2.13)

If we allow analytic continuations (specifically, y → iy and u→ iu), then the conditions on
σ1 and σ2 in mKP case can be relaxed to σ1σ2 = −1.

In the modified gKP equation (2.11), we will refer to σ1 = 1 as the focussing case, and
σ1 = −1 as the defocussing case, in analogy with the mKdV equation. This distinction will
be significant when line-soliton solutions are considered.

We will call σ2 = 1 the normal dispersion case and σ2 = −1 the sign-changing dispersion
case, since for small amplitude solutions w(x, t) ' A exp(i(k1x+k2y−ωt)), with |A| � 1, the
dispersion relation takes the form ω = −k3

1 + σ2k
2
2/k1 which yields ∂k1ω = −(3k2

1 + σ2k
2
2/k

2
1)

giving the group velocity in the x direction. We see that, when σ2 = 1, the group velocity
has a single sign, whereas when σ2 = −1, the sign of the group velocity changes when
|k2| =

√
3|k1|2.

2.1. Variational structure. A wave equation of the form wtx = F (w,wx, wy, . . .) will be
an Euler-Lagrange equation of a local Lagrangian in terms of w iff the Helmholtz conditions
[26, 2] are satisfied. These conditions state that the Frechet derivative of the wave equation
needs to be self-adjoint. It is straightforward to show that Frechet derivative of the term wtx
is self-adjoint, and hence the existence of a local Lagrangian depends solely on whether the
Frechet derivative of the term F (w,wx, wy, . . .) is self-adjoint.

As shown in Ref. [5], the gKP equation has a local Lagrangian, and this structure corre-
sponds to a Hamiltonian formulation when the gKP equation is expressed as an evolution
equation for u.
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The situation for the modified gKP equation, including the mKP equation, is quite differ-
ent. The Frechet derivative of the potential form (2.10) of the equation is given by

DtDxP + ((σ12qw2q−1
x + a(q − 1)wq−2

x wy)wxx + bqwq−1
x wxy)DxP

+ awq−1
x wxxDyP + (σ1w

2q
x + awq−1

x wy)D
2
xP + bwqxDxDyP + σ2D

2
yP +D4

xP
(2.14)

where P = P (t, x, y). The adjoint Frechet derivative is obtained via multiplication by
Q = Q(t, x, y) followed by integration by parts, yielding P times

DtDxQ−Dx(((σ12qw2q−1
x + a(q − 1)wq−2

x wy)wxx + bqwq−1
x wxy)Q)

−Dy(aw
q−1
x wxxQ) +D2

x((σ1w
2q
x + awq−1

x wy)Q) +DxDy(bw
q
xQ) + σ2D

2
yQ+D4

xQ
(2.15)

modulo total derivatives. For the Frechet derivative to equal its adjoint, expression (2.14)
minus expression (2.15) with Q = P must vanish identically for all P (t, x, y). This yields
the following necessary and sufficient condition for existence of a local Lagrangian.

Proposition 2.1. The modified gKP equation (2.10) possesses a local Lagrangian in terms
of the potential w iff

a = 1
2
bq. (2.16)

The Lagrangian, L, is given by

L = −1
2
wtwx − 1

(2q+2)(2q+1)
σ1w

2q+2
x − 1

2q+2
bwq+1

x wy − 1
2
σ2w

2
y + 1

2
w2
xx. (2.17)

Note that the case a = b = 0 corresponds to the gKP equation (1.1) (up to scaling) whose
Lagrangian was obtain in Ref. [5]. Also note that the case a 6= 0 and b = 0 when the modified
gKP equation (2.10) does not possess a local Lagrangian structure in terms of w includes
the case of the mKP equation (2.13).

The implication of this result for existence of conservation laws is fully discussed in the
next section.

When the Lagrangian exists, there is a corresponding Hamiltonian structure

ut = Dx(δH/δu) (2.18)

where

H =

∫
R2

(
1
2
u2
x − 1

2
σ2(∂−1

x uy)
2 − 1

2(q+1)
buq+1∂−1

x uy − 1
2(q+1)(2q+1)

σ1u
2q+2

)
dxdy (2.19)

is the Hamiltonian functional, and Dx is a Hamiltonian operator.

3. Conservation laws

Conservation laws are important in the analysis of nonlinear evolution equations by pro-
viding physical, conserved quantities as well as conserved norms needed for studying well-
posedness, stability, and global behaviour of solutions.

For the modified gKP potential equation (2.10), a local conservation law is a continuity
equation

DtT +DxX +DyY = 0 (3.1)

holding for all solutions w(x, y, t) of equation (2.10), where T is the conserved density,
and (X, Y ) is the spatial flux, which are functions of t, x, y, w, and derivatives of w.

6



Note that wtx and all of its derivatives can be eliminated from T,X, Y through expressing
wtx = −

(
(σ1w

2q
x + awq−1

x wy)wxx + bwqxwxy + wxxxx + σ2wyy
)

from equation (2.10).
When solutions w(x, y, t) are considered in a given spatial domain Ω ⊆ R2, every local

conservation law yields a corresponding conserved integral

C[w] =

∫
Ω

T dx dy (3.2)

satisfying the global balance equation

d

dt
C[w] = −

∫
∂Ω

(X, Y ) · n̂ ds (3.3)

where n̂ is the unit outward normal vector of the domain boundary curve ∂Ω, and where
ds is the arclength on this curve with clockwise orientation. This global equation (3.3) has
the physical meaning that the rate of change of the quantity (3.2) on the spatial domain is
balanced by the net outward flux through the boundary of the domain.

A conservation law is locally trivial [26, 9, 2] if, for all solutions w(x, y, t) in Ω, the
conserved density T reduces to a spatial divergence DxΨ

x + DyΨ
y and the spatial flux

(X, Y ) reduces to a time derivative −Dt(Ψ
x,Ψy) modulo a spatial curl (DyΘ,−DxΘ), since

then the global balance equation (3.3) becomes an identity. Likewise, two conservation laws
are locally equivalent [26, 9, 2] if they differ by a locally trivial conservation law, for all
solutions w(x, y, t) in Ω. We will be interested only in locally non-trivial conservation laws.

Because the modified gKP potential equation (2.10) in general has no Lagrangian struc-
ture, Noether’s theorem cannot be applied to derive conservation laws. Instead, its conser-
vation laws arise from multipliers [26, 4, 9, 2] as follows.

Any non-trivial conservation law (3.1) can be expressed in an equivalent characteristic form
[26, 9, 2] which is given by a divergence identity holding off of the space of solutions w(x, y, t).
For the modified gKP potential equation (2.10), conservation laws have the characteristic
form

DtT̃ +DxX̃ +DyỸ = (wtx + (σ1w
2q
x + awq−1

x wy)wxx + bwqxwxy + wxxxx + σ2wyy)Q (3.4)

where T̃ , X̃, Ỹ , and Q are functions of t, x, y, w, and derivatives of w, and where the
conserved density T̃ and the spatial flux (X̃, Ỹ ) reduce to T and (X, Y ) when restricted to
all solutions w(x, y, t) of equation (2.10). This divergence identity is called the characteristic
equation for the conservation law, and the function Q is called the conservation law multi-
plier. In general, Q will be non-singular when it is evaluated on any solution w(x, y, t). As
a consequence, the characteristic equation of a conservation law is locally equivalent to the
conservation law itself.

It will be useful to note that pure leading derivatives of the modified gKP potential equa-
tion (2.10) consist of wyy or wxxxx. If either leading derivative, and all of its differential
consequences, have been eliminated from T,X, Y , then Q will not contain those eliminated
variables [26, 9, 2] and there will be a one-to-one correspondence between non-trivial con-
servation laws (up to equivalence) and non-zero multipliers.

All multipliers Q can be determined from the characteristic equation (3.4) by use of the
Euler operator [26, 9, 2] Ew with respect to w, where this operator annihilates a function of
t, x, y, w, and derivatives of w iff the function is given by a total divergence. In particular,
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multipliers Q are the solutions of the determining equation

Ew
(
(wtx + (σ1w

2q
x + awq−1

x wy)wxx + bwqxwxy + wxxxx + σ2wyy)Q
)

= 0 (3.5)

holding off of solutions of equation (2.10). This determining equation has a natural split-
ting with respect to either of the pure leading derivatives wyy or wxxxx and its differential
consequences. The splitting yields a determining system that consists of the adjoint of the
determining equation for symmetries [26, 9, 2] plus additional determining equations analo-
gous to Helmholtz-type equations [2]. Consequently, multipliers have a characterization as
adjoint-symmetries satisfying certain Helmholtz-type conditions [9, 2].

When Q is specified to have any chosen form, with its differential order fixed with respect
to w and with no dependence on either of the pure leading derivatives wyy or wxxxx and
its differential consequences, then the determining equation (3.5) can be solved in a similar
way to the symmetry determining equation, by splitting it with respect to all variables that
do not appear in Q so as to obtain an overdetermined system of equations on Q. Thus,
multipliers can be found by similar computational steps used to find symmetries.

In the case (2.16) when the modified gKP potential equation (2.10) has a variational
structure, every conservation law corresponds to a variational symmetry X = τ∂t + ξx∂x +
ξy∂y + η∂u of the Lagrangian (2.17) through Noether’s theorem. Here the components τ ,
ξx, ξy, η of the symmetry generator are functions of t, x, y, w, and derivatives of w. The
Noether correspondence states that the multiplier is given by the characteristic form of the
symmetry:

Q = η − τut − ξxux − ξyuy. (3.6)

In particular, the determining system for multipliers can be shown to coincide with the
determining system for variational symmetries.

For any given multiplier Q, the corresponding conserved density T̃ and spatial flux (X̃, Ỹ )
can be obtained straightforwardly through a repeated integration process [33, 9, 2] applied to
the terms in the righthand side of the characteristic equation (3.4). This method can some-
times be lengthy or awkward, depending on the complexity of the righthand side expression.
A more direct method is to use a homotopy integral formula that inverts the Euler operator
Ew. The simplest version of this formula appears in Ref. [9, 2]; a more complicated general
version (in the context of the variational bi-complex) is given in Ref. [26]. Alternatively,
since the modified gKP potential equation (2.10) possesses a scaling symmetry, there is an
algebraic scaling formula [3, 9, 2] which can be used to obtain an explicit expression for
T̃ , X̃, Ỹ whenever the corresponding conserved integral (3.2) is not scaling invariant. How-
ever, both the scaling formula and the homotopy integral formula have the drawback that
they do not directly yield the lowest possible differential order (up to equivalence) for the
conserved density T , whereas the integration by parts method can be applied in a way that
does this.

Typically, for wave equations, all multipliers that correspond to physical conservation laws
such as energy and momentum are of a lower differential order than the given equation, while
multipliers of higher differential order are most often connected with integrability features
of the given equation.

Here we will explicitly find all low-order conservation laws of the modified gKP potential
equation (2.10) for p 6= 0 by determining all multipliers with a differential order of less than
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four. This class of multipliers has the general form

Q(t, x, y, w, ∂w, ∂2w, ∂3w) (3.7)

where ∂ = (∂t, ∂x, ∂y). Note that any expression of this form (3.7) is necessarily non-singular
when it is evaluated on any w(x, y, t) satisfying equation (2.10). For the gKP case a = b = 0,
q 6= 0, all low-order conservation laws have been obtained in Ref. [6]. Computational remarks
are provided in the appendix.

Proposition 3.1. All low-order multipliers (3.7) admitted by the modified gKP potential
equation (2.10) with q 6= 0, a2 + b2 6= 0, σ2

1 = 1, σ2
2 = 1 are given by

Q(1) = wx, (3.8)

Q(2) = f(t), (3.9)

where f(t) is an arbitrary function.
All cases q 6= 0 and a2 + b2 6= 0 for which the modified gKP potential equation (2.10) admits
additional low-order multipliers (3.7) consist of:

(i) a = 1
2
bq

Q(3) = wt, (3.10)

Q(4) = wy; (3.11)

(ii) q = 1
2
, a = 1

4
b

Q(5) = 3twt + xwx + 2ywy + w; (3.12)

(iii) q = 1
2
, a = 0

Q(6) = x− σ1twx; (3.13)

(iv) q = 1, a = 1
2
b

Q(7) = bx− 4
3
σ1ywx + (8

3
σ1σ2 − b2)twy; (3.14)

(v) q = 1, b2 = a2 + 2σ1σ2

Q(8) = (a+ b)wt + 2
3
(2a− b)σ1w

3
x + (a2 + ab− 2σ1σ2)wxwy + 2(2a− b)wxxx; (3.15)

(vi) q = 1, b = 1
2
(a+ 2σ1σ2/a)

Q(9) = x− aσ2ywx; (3.16)

(vii) q = −2, a = −b
Q(10) = ywx − 2σ2twy; (3.17)

and, with an arbitrary function f(t),
(viii) a = bq

Q(11) = f(t)y; (3.18)

(ix) q = 1

Q(12) = f ′(t)y + (a− b)wxf(t); (3.19)

(x) q = 1, a = 1
2
b, b2 = −8

3
σ1σ2

Q(13) = wyf(t) + ( 3
16
σ1σ2bx− 1

4
σ2wxy)f ′(t)− 3

32
σ1by

2f ′′(t); (3.20)
9



(xi) q = 1, b = 0, a2 = −2σ1σ2

Q(14) = (ywx + 1
2
σ1ax)f(t)− 1

4
σ1σ2ay

2f ′(t), (3.21)

Q(15) =(3
4
σ1wt + 3

2
σ1awxwy + w3

x + 3σ1wxxx)f(t)− 3
4
axwxf

′(t)

+ 3
8
σ2(σ1y

2wx + axy)f ′′(t)− 1
16
ay3f ′′′(t).

(3.22)

These multipliers determine all non-trivial conservation laws of low order admitted by the
modified gKP potential equation (2.10). A summary of the computation is provided in the
appendix.

Theorem 3.1. All low-order local conservation laws admitted by the modified gKP potential
equation (2.10) with q 6= 0 and a2 + b2 6= 0 are given by (up to equivalence)

T(1) =1
2
w2
x, (3.23a)

X(1) =wxwxxx − 1
2
w2
xx + 1

2
(σ1/(q + 1))w2(q+1)

x + (a/(q + 1)wq+1
x wy − 1

2
σ2w

2
y, (3.23b)

Y(1) =σ2wxwy − (a− b− bq)/((q + 1)(q + 2))wq+2
x ; (3.23c)

T(2) =wxf(t), (3.24a)

X(2) =
(
wxxx + (a/q)wqxwy + (σ1/(2q + 1))w2q+1

x

)
f(t)− wf ′(t), (3.24b)

Y(2) =
(
σ2wy − (a− bq)/(q(q + 1))wq+1

x

)
f(t); (3.24c)

All cases q 6= 0 and a2 + b2 6= 0 for which the modified gKP potential equation (2.10)
admits additional local conservation laws consist of:

(i) a = 1
2
bq

T(3) =1
2
w2
xx − 1

2
σ2w

2
y − 1

2
(b/(q + 1))wq+1

x wy − 1
2
(σ1/((q + 1)(2q + 1)))w2(q+1)

x , (3.25a)

X(3) =wtwxxx − wtxwxx + 1
2
w2
t + (σ1/(2q + 1))w2q+1

x wt + 1
2
bwqxwtwy, (3.25b)

Y(3) =σ2wtwy + 1
2
(b/(q + 1))wq+1

x wt; (3.25c)

T(4) =1
2
wxwy, (3.26a)

X(4) =wywxxx − wxywxx + b
2
wqxw

2
y + (σ1/(2q + 1))w2q+1

x wy + 1
2
wtwy, (3.26b)

Y(4) =1
2
w2
xx + 1

2
σ2w

2
y − 1

2
(σ1/((q + 1)(2q + 1)))w2(q+1)

x − 1
2
wtwx; (3.26c)

(ii) q = 1
2
, a = 1

4
b

T(5) =
(

3
2
w2
xx − 1

2
σ1w

3
x − bw3/2

x wy − 3
2
σ2w

2
y

)
t+ 1

2
xw2

x + ywxwy, (3.27a)

X(5) =
(
3wtwxxx − 3wtxwxx + 3

2
w2
t + 3

2
bw1/2

x wtwy + 3
2
σ1w

2
xwt
)
t

+
(
wxwxxx − 1

2
w2
xx + 1

3
σ1w

3
x + 1

6
bw3/2

x wy − 1
2
σ2w

2
y

)
x

+
(
bw1/2

x w2
y + σ1w

2
xwy + wtwy + 2wywxxx − 2wxywxx

)
y

+ wwxxx − 2wxwxx + 1
2
σ1ww

2
x + 1

2
bw1/2

x wyw + wwt,

(3.27b)

Y(5) =
(
bwtw

3/2
x + 3σ2wtwy

)
t+
(

1
3
bw5/2

x + σ2wxwy
)
x

+
(
w2
xx − 1

3
σ1w

3
x + σ2w

2
y − wtwx

)
y + 1

3
bww3/2

x + σ2wwy;
(3.27c)

10



(iii) q = 1
2
, a = 0

T(6) =− 1
2
σ1tw

2
x + xwx, (3.28a)

X(6) =
(

1
2
σ1w

2
xx − 1

3
w3
x + 1

2
σ1σ2w

2
y − σ1wxwxxx

)
t+
(

1
2
σ1w

2
x + wxxx

)
x− wxx, (3.28b)

Y(6) =−
(
σ1σ2wxwy + 2

5
σ1bw

5/2
x

)
t+
(
σ2wy + 2

3
bw3/2

x

)
x; (3.28c)

(iv) q = 1, a = 1
2
b

T(7) =(4
3
σ1σ2 − 1

2
b2)twxwy + bxwx − 2

3
σ1yw

2
x, (3.29a)

X(7) =(8
3
σ1σ2 − b2)

(
wywxxx − wxywxx + 1

2
wtwy + 1

3
σ1w

3
xwy + 1

2
bwxw

2
y

)
t

+
(

2
3
σ1w

2
xx + 2

3
σ1σ2w

2
y − 1

3
w4
x − 1

3
σ1bw

2
xwy − 4

3
σ1wxwxxx

)
y

+ b
(
wxxx + 1

3
σ1w

3
x + 1

2
bwxwy

)
x− bwxx,

(3.29b)

Y(7) =(8
3
σ1σ2 − b2)

(
1
2
w2
xx − 1

2
wtwx − 1

12
σ1w

4
x + 1

2
σ2w

2
y

)
t+ b

(
σ2wy + 1

4
bw2

x

)
x

−
(

4
3
σ1σ2wxwy + 1

3
bσ1w

3
x

)
y;

(3.29c)

(v) q = 1, b = 1
2
a+ σ1σ2/a

T(8) =− 1
2
aσ2yw

2
x + xwx, (3.30a)

X(8) =
(

1
2
σ2aw

2
xx − 1

4
σ1σ2aw

4
x − 1

2
σ2a

2w2
xwy + 1

2
aw2

y − σ2awxwxxx
)
y

+
(

1
3
σ1w

3
x + awxwy + wxxx

)
x− wxx,

(3.30b)

Y(8) =
(
σ2wy − 1

4
(a− 2σ1σ2/a)w2

x

)
x−

(
1
3
σ1w

3
x + awxwy

)
y; (3.30c)

(vi) q = 1, b2 = a2 + 2σ1σ2

T(9) =3
2
(b− a)w2

xx + 1
4
σ1(a− b)w4

x − 1
2
σ2(a+ b)w2

y − σ1σ2w
2
xwy, (3.31a)

X(9) =(2a− b)
(
w2
xxx + 2

3
σ1w

3
xwxxx + (a+ b)wxwywxxx + 2σ2wxxwyy + σ2w

2
xy

+ (a− b)(1
2
wyw

2
xx − 2wxwxywxx) + 1

9
w6
x + 1

2
a(a+ b)w2

xw
2
y

)
+ (a+ b)

(
wtwxxx + 1

2
w2
t + 1

3
σ1wtw

3
x + awtwxwy

)
+ 3(a− b)wtxwxx

+ 1
12

(a(7a+ b)σ1 − 6σ2)w4
xwy + 1

6
(2σ1 − a(a+ b)σ2)w3

y,

(3.31b)

Y(9) =(2a− b)
(

1
2
(a− b)wxw2

xx − 2σ2wxywxx − 1
3
(a2 − b2)w3

xwy
)

− 1
2
(a2 − b2)wtw

2
x + σ2(a+ b)wtwy + 1

12
(3a(b− a)σ1 − 2σ2)w5

x

+ 1
2
(a(a+ b)σ2 − 2σ1)wxw

2
y;

(3.31c)

(vii) q = −2, a = −b

T(10) =1
2
yw2

x − σ2twxwy, (3.32a)

X(10) =
(

2
3
σ1σ2wyw

−3
x − σ2(2wywxxx − 2wxywxx + wtwy + bwyw

−2
x )
)
t

+
(
wxwxxx − 1

2
w2
xx − 1

2
σ2w

2
y + bwyw

−1
x − 1

2
σ1w

−2
x

)
y,

(3.32b)

Y(10) =
(
σ2(wtwx − w2

xx)− w2
y + 1

3
σ1σ2w

−2
x

)
t+ σ2ywxwy; (3.32c)

and, with an arbitrary function f(t),
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(viii) a = bq

T(11) =ywxf(t), (3.33a)

X(11) =
(
wxxx + bwqxwy + (σ1/(2q + 1))w2q+1

x

)
yf(t)− wyf ′(t), (3.33b)

Y(11) =σ2

(
ywy − w

)
f(t); (3.33c)

(ix) q = 1

T(12) =1
2
(a− b)w2

xf(t), (3.34a)

X(12) =(a− b)
(
wxwxxx − 1

2
w2
xx + 1

4
σ1w

4
x + 1

2
aw2

xwy − 1
2
σ2w

2
y

)
f(t)

+
(
wxxx + 1

3
σ1w

3
x + awxwy + wt

)
yf ′(t),

(3.34b)

Y(12) =
(
(1

6
(a− b)(2b− a)w3

x + σ2(a− b)wxwy
)
f(t) +

(
1
2
(b− a)w2

x + σ2wy)y − σ2w
)
f ′(t);
(3.34c)

(x) q = 1, a = 1
2
b, b2 = −8

3
σ1σ2

T(13) =1
2
wywxf(t) + σ2( 3

16
σ1bwxx− 1

8
w2
xy)f ′(t), (3.35a)

X(13) =
(
wywxxx − wxywxx + 1

2
bw2

ywx + 1
3
σ1wyw

3
x + 1

2
wtwy

)
f(t)

+
(
− 3

16
σ1σ2bwxx + ( 3

16
σ1σ2bwxxx + 1

16
σ2bw

3
x − 1

4
wxwy)x

+ (1
8
σ2w

2
xx − 1

16
σ2σ1w

4
x − 1

16
σ2bw

2
xwy + 1

8
w2
y − 1

4
σ2wxwxxx)y

)
f ′(t)

+
(
− 3

32
σ1b(wt + wxxx)− 1

32
bw3

x + 1
8
σ2wywx

)
y2f ′′(t),

(3.35b)

Y(13) =
(

1
2
w2
xx + 1

2
σ2w

2
y − 1

12
σ1w

4
x − 1

2
wtwx

)
f(t)

+
(
( 3

16
σ1bwy − 1

8
w2
x)x+ (−1

4
wxwy − 1

16
σ2bw

3
x)y
)
f ′(t)

+
(
( 3

16
σ1σ2bw)y − ( 3

32
σ1σ2bwy − 1

16
σ2w

2
x)y

2
)
f ′′(t);

(3.35c)

(xi) q = 1, b = 0, a2 = −2σ1σ2

T(14) =
(

1
2
w2
xy + 1

2
σ1awxx

)
f(t), (3.36a)

X(14) =
(
−1

2
aσ1wxx + (1

6
aw3

x − σ2wxwy + 1
2
σ1awxxx)x

+ (wxwxxx − 1
2
w2
xx + 1

4
σ1w

4
x + 1

2
aw2

xwy − 1
2
σ2w

2
y)y
)
f(t)

−
(

1
4
σ2σ1awt + 1

12
σ2aw

3
x − 1

2
wxwy + 1

4
σ2σ1awxxx

)
y2f ′(t),

(3.36b)

Y(14) =
(

1
2
σ2(σ1awy + w2

x)x+ (σ2wxwy − 1
6
aw3

x)y
)
f(t)

+
(

1
2
σ1awy − 1

4
(σ1awy + w2

x))y
2
)
f ′(t);

(3.36c)

T(15) =
(
−9

8
σ1w

2
xx + 3

16
w4
x + 3

8
σ1(aw2

xwy − σ2w
2
y)
)
f(t)− 3

8
w2
xxf

′(t)

+
(

3
16
σ1σ2w

2
xy

2 − 3
8
σ2awy

)
f ′′(t),

(3.37a)
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X(15) =
(

3
2
σ1w

2
xxx + (3

4
σ1wt + w3

x + 3
2
aσ1wywx)wxxx + 3

4
σ1aw

2
xxwy + 3

2
σ1σ2w

2
xy + 3

8
σ1w

2
t

+ (3σ1σ2wyy − 3
2
aσ1wxwxy + 9

4
σ1wtx)wxx + (3

4
σ1awywx + 1

4
w3
x)wt

− 1
4
σ1σ2aw

3
y + 1

6
σ1w

6
x + 5

8
aw4

xwy − 3
2
σ2w

2
yw

2
x

)
f(t)

+
(

3
4
σ1(−wxwxxx + 2w2

xx + wxwxx) + (3
8
σ1σ2w

2
y − 3

8
σ1aw

2
xwy − 3

16
w4
x)x
)
f ′(t)

+
(
−3

8
σ2awxxy + (1

8
σ1σ2aw

3
x + 3

8
σ2a(wxxx + wt)− 3

4
σ1wxwy)yx

+ ( 3
16
σ1σ2(2wxwxxx − w2

xx + aw2
xwy)− 3

16
σ1w

2
y + 3

32
σ2w

4
x)y

2
)
f ′′(t)

+
(
− 1

48
σ1aw

3
x + 1

8
σ1σ2wxwy − 1

16
a(wxxx + wt)

)
y3f ′′′(t),

(3.37b)

Y(15) =
(

3
4
σ1awxw

2
xx − 3σ1σ2wxxwxy + 3

4
σ1σ2awxw

2
y + σ2w

3
xwy − 1

8
aw5

x

+ (3
4
σ1σ2wy − 3

8
σ1aw

2
x)wt

)
f(t) +

(
− 3

4
σ1σ2wxwy + 1

8
σ1aw

3
x

)
xf ′(t)

+
(
−3

8
awx(3

8
awy + 3

8
σ1w

2
x)xy + (3

8
σ1wxwy − 1

16
σ1σ2aw

3
x)y

2
)
f ′′(t)

+
(

3
16
σ2awy

2 − ( 1
16
σ2awy + 1

16
σ1σ2w

2
x)y

3
)
f ′′′(t).

(3.37c)

The physical meaning and properties of these conservation law will be discussed next.
Each conservation law corresponds to a conserved integral (3.2) holding in any given spatial
domain Ω ⊆ R2 for all solutions u(t, x, y) of the modified gKP equation (2.11). Recall that
the potential w can be formally expressed in terms of u via the relation (2.5).

3.1. Conserved integrals in the non-variational case. We will first consider the con-
servation laws (3.23), (3.28), (3.30), (3.31), which hold without the need for any variational
structure, namely when a 6= 1

2
bq, and which do not contain f(t).

The first conservation law (3.23) yields the conserved integral

P [u] = 1
2

∫
Ω

u2 dx dy. (3.38)

This is a momentum quantity, in analogy with the same conserved integral for the mKdV
equation. It shows that the L2-norm of solutions u(t, x, y) is conserved.

From conservation law (3.28), we obtain a similar conserved integral

G[u] = 1
2

∫
Ω

(
xu− σ1tu

2
)
dx dy, q = 1

2
, a = 0. (3.39)

This is a Galilean momentum quantity. It is related to the momentum (3.38) by G = X−σ1tP
where

X [u] = 1
2

∫
Ω

xu dx dy (3.40)

is an x-moment of mass. Up to boundary terms, we have

d

dt
X [u] = σ1P [u], (3.41)

showing that the x-momentum of mass undergoes free particle motion. A similar relation is
well known to hold for the KdV equation.

The other two conservation laws (3.30) and (3.31) yield the respective conserved integrals

C[u] = 1
2

∫
Ω

(xu− σ2ayu
2) dx dy, q = 1, b = 1

2
a+ σ1σ2/a, (3.42)
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and

E [u] = (b− a)

∫
Ω

(
3
2
u2
x − 1

4
σ1(u2 − (a+ b)∂−1

x uy)
2
)
dx dy, q = 1, b2 = a2 + 2σ1σ2. (3.43)

This quantity (3.43) is an energy, while the first quantity (3.42) is a linear combination of
the x-moment of mass and the y-moment of momentum

Y [u2] = 1
2

∫
Ω

yu2 dx dy. (3.44)

As a consequence, we have
d

dt
Y [u2] = σ1σ2P/a, (3.45)

whereby the y-moment of momentum undergoes the same motion (up to a constant factor)
as the x-moment of mass.

The mass itself appears to be missing here, but it turns out to be a special case of a more
general conservation law involving f(t), which we will discuss later.

3.2. Conserved integrals in the variational case. We will next consider the conservation
laws (3.25)–(3.27), (3.29), (3.32), which hold only when the modified gKP equation (2.11)
has a variational structure, namely a = 1

2
bq, and which do not contain f(t). The associated

multipliers (3.10)–(3.12), (3.14), (3.17) correspond to variational symmetries leaving the
Lagrangian (2.17) invariant modulo a total divergence.

Conservation laws (3.25) and (3.26) yield conserved integrals for energy and y-momentum

Evar.[u] = 1
2

∫
Ω

(
u2
x − 1

(q+1)(2q+1)
σ1(uq+1 + b(2q+1)

2
∂−1
x uy)

2 − (σ2 + b2(2q+1)2

4
)(∂−1

x uy)
2
)
dx dy,

(3.46)

Pyvar.[u] = 1
2

∫
Ω

u∂−1
x uy dx dy. (3.47)

The associated multipliers (3.10) and (3.11) correspond to a time-translation symmetry and
a y-translation symmetry.

From conservation law (3.27), we obtain the conserved integral

Gvar.[u] =

∫
Ω

(
t(3

2
u2
x − 1

2
σ1u

3 − bu3/2∂−1
x uy − 3

2
σ2(∂−1

x uy)
2) + 1

2
xu2 + yu∂−1

x uy
)
dx dy, q = 1

2
,

(3.48)
which is a Galilean energy quantity. It can be expressed as Gvar.[u] = 3tEvar.[u] + X [u2] +
2Y [u∂−1

x uy] in terms of the x-moment of momentum X [u2] and the y-moment of y-momentum
Y [u∂−1

x uy]. In particular, up to boundary terms, we have

d

dt

(
X [u2] + 2Y [u∂−1

x uy]
)

= −3Evar.[u]. (3.49)

A similar relation is well known to hold for the mKdV equation. The associated multiplier
(3.12) corresponds to a scaling symmetry.

The two other conservation laws (3.29) and (3.32) yield analogous conserved integrals

Cvar.[u] =

∫
Ω

(
bxu− 2

3
σ1yu

2 + (4
3
σ1σ2 − 1

2
b2)tu∂−1

x uy
)
dx dy, q = 1

= 2bX [u]− 4
3
σ1Y [u2]− (8

3
σ1σ2 − b2)tPyvar.[u],

(3.50)
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and

Cvar.[u] =

∫
Ω

(
1
2
yu2 − σ2tu∂

−1
x uy

)
dx dy, q = −2

= Y [u2]− 2σ2tPyvar..

(3.51)

which can be expressed in terms of the x-moment of mass (3.40) and the y-moment of
momentum. Up to boundary terms, they respectively yield the similar relations

d

dt
Y [u2] = 3

2
bP [u]− (2σ2 − 3

4
σ1b

2)Pyvar.[u] (3.52)

after use of the Galilean momentum relation (3.41), and

d

dt
Y [u2] = 2σ2Pyvar.[u]. (3.53)

Their associated multipliers (3.14) and (3.17) respectively correspond to a boost in the (x, y)-
plane along a parabola y2 + 4σ2tx = const., and a similar boost along y2− (3

2
b2−4σ1σ2)tx =

const. combined with a boost to a moving frame with speed b, namely, by− (b2− 8
3
σ1σ2)tu =

const., with u viewed as the wave speed.

3.3. Conserved topological charges and integral constraints for the Cauchy prob-
lem. The conservation laws (3.24) and (3.33)–(3.37) involve an arbitrary function f(t). As
shown by the general results in Ref. [8], each of these conservation laws turns out to be
locally equivalent to a spatial flux conservation law f(t)(DxX + DyY ) = 0 holding for all
solutions u(x, y, t) of the modified gKP equation (2.11). Note that f(t) can then be dropped
without loss of generality. The resulting conserved integral thereby has the form

Q[u] =

∮
∂Ω

−Y dx+X dy = 0 (3.54)

where ∂Ω is the closed boundary curve of a given spatial domain Ω ⊆ R2. This line in-
tegral holds without any boundary conditions on u and it is unchanged under continuous
deformations of the boundary curve. Therefore, it describes a conserved (time-independent)
topological charge.

Any conservation law that involves f(t) can be specialized by taking f(t) to be a specific
function of t. This will yield a specific conservation law that is locally equivalent to a spatial
flux conservation law. Hereafter we will choose the constant function f(t) = 1 .

Conservation law (3.24) with f(t) = 1 yields the conserved integral

M[u] =

∫
Ω

u dx dy =

∮
∂Ω

∂−1
x u dy, (3.55)

which is the mass of u. The equivalent topological charge is given by∮
∂Ω

(
a−bq
q(q+1)

uq+1 − σ2∂
−1
x uy

)
dx+

(
1

2q+1
σ1u

2q+1 + uxx + a
q
uq∂−1

x uy + ∂−1
x ut

)
dy = 0. (3.56)

Similarly, conservation law (3.33) with f(t) = 1 yields the y-moment of mass

Y [u] =

∫
Ω

yu dx dy =

∮
∂Ω

y∂−1
x u dy, a = bq (3.57)
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whose conservation is equivalent to the topological charge∮
∂Ω

(
σ2(∂−1

x u−y∂−1
x uy)

)
dx+

(
1

2q+1
σ1u

2q+1+uxx+bu
q∂−1
x uy+∂

−1
x ut

)
dy = 0, a = bq. (3.58)

Conservation laws (3.34) and (3.35) are more interesting. For f(t) = 1, they yield the
momentum (3.38) and the y-momentum (3.47), respectively. They are each equivalent to a
topological charge,∮

∂Ω

(
(b− a)(σ2u∂

−1
x uy + 1

6
(2b− a)u3)− σ2∂

−1
x ut + y((b− a)uut + σ2∂

−1
x uty)

)
dx

+
(
(a− b)(1

4
σ1u

4 − 1
2
u2
x + uuxx + 1

2
au2∂−1

x uy − 1
2
σ2(∂−1

x uy)
2)

− y((σ1u
2 + a∂−1

x uy)ut + au∂−1
x uty + ∂−1

x utt + utxx)
)
dy = 0, q = 1,

(3.59)

and∮
∂Ω

(
−1

2
u2
x + 1

12
σ1u

4 − 1
2
σ2(∂−1

x uy)
2 + 1

2
u∂−1

x ut + x(1
4
uut − 3

16
σ1b∂

−1
x uty)

+ y(( 3
16
σ2bu

2 + 1
4
∂−1
x uy)ut + 3

16
σ1σ2b∂

−1
x utt + 1

4
u∂−1

x uty)

+ y2(1
8
σ2(u2

t + uutt)− 3
32
σ1σ2b∂

−1
x utty)

)
dx

+
(

1
2
u2
x − 1

12
σ1u

4 − 1
2
∂−1
x utu+ 1

2
σ2(∂−1

x uy)
2 + x(1

4
uut − 3

16
σ1b∂

−1
x uty)

+ y(( 3
16
σ2bu

2 + 1
4
∂−1
x uy)ut + 1

4
u∂−1

x uty + 3
16
σ1σ2b∂

−1
x utt)

+ y2(1
8
σ2(u2

t + uutt)− 3
32
σ1σ2b∂

−1
x utty)

)
dy = 0, q = 1, a = 1

2
b, b2 = −8

3
σ1σ2.

(3.60)
From the equivalence, the following integral relations can be shown to hold for all solutions
u(t, x, y):

(a− b)P [u] = 1
2
(a− b)

∫
Ω

u2 dx dy

=

∮
∂Ω

(
y(1

2
(b− a)u2 + σ2∂

−1
x uy)− σ2∂

−1
x u
)
dx

−
(
y(uxx + 1

3
σ1u

3 + au∂−1
x uy + ∂−1

x ut)
)
dy, q = 1,

(3.61)

and

Py[u] = 1
2

∫
Ω

u∂−1
x uy dx dy

=

∮
∂Ω

(
−x(1

8
u2 + 3

16
σ2b∂

−1
x uy)− y( 1

16
σ2bu

3 + 1
4
u∂−1

x uy − 3
16
b∂−1

x ut)

− y2(1
8
σ2uut + 3

32
b∂−1

x uty)
)
dx

−
(

3
16
bux + x( 1

16
σ2bu

3 − 3
16
buxx − 1

4
u∂−1

x uy − 3
16
b∂−1

x ut)

+ y( 1
16
u4 + 1

8
σ2u

2
x − 1

4
σ2uuxx − 1

16
σ2bu

2∂−1
x uy + 1

8
(∂−1
x uy)

2)

+ y2(( 3
32
bu2 − 1

8
σ2∂

−1
x uy)ut − 3

32
σ2butxx

− 3
32
σ2b∂

−1
x utt − 1

8
σ2u∂

−1
x uty)

)
dy, q = 1, a = 1

2
b, b2 = −8

3
σ1σ2.

(3.62)
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Thus, both the momentum and the y-momentum are line-integral quantities which involve
the values of ∂−1

x u, ∂−1
x ut, and their spatial derivatives evaluated only at the domain boundary

∂Ω. This is a surprising result.
A similar result can be derived for the energy (3.43) and for the moment-quantity (3.42).

when they are specialized to the case b = 0 in which the modified gKP equation (2.11)
reduces to a slightly generalized version of the mKP equation with σ1σ2 = −1. The two
conservation laws (3.36) and (3.37), which hold in this case, give rise to topological charges
that are respectively equivalent to the energy and the moment-quantity. This equivalence
can be shown to yield the integral relation

E [u] =

∫
Ω

(
3
2
u2
x + 1

4
σ2(u2 − a∂−1

x uy)
2
)
dx dy

=

∮
∂Ω

(
x(a(−1

6
u3 + 1

2
σ2∂

−1
x ut) + σ2u∂

−1
x uy) + xy(uut − 1

2
σ2a∂

−1
x uty)

+ y2(−1
4
σ2au

2ut + 1
2
ut∂

−1
x uy + 1

2
u∂−1

x uty + 1
4
a∂−1

x utt)

+ y3(1
6
σ2u

2
t + 1

6
σ2uutt − 1

12
a∂−1

x utty)
)
dx

+
(
uux + x(1

4
σ2u

4 + 1
2
u2
x − uuxx + σ2(∂−1

x uy)
3 − 1

2
au2∂−1

x uy)

+ y(1
2
autx) + xy(−1

2
σ2au

2ut + 1
4
utxx + ut∂

−1
x uy + u∂−1

x uty + 1
4
∂−1
x utt)

+ y2(1
2
u3ut − σ2(uxxut − uxutx + uutxx)− σ2a(1

2
uut∂

−1
x uy + 1

4
u2∂−1

x uty)

+ 1
2
∂−1
x uy∂

−1
x uty) + y3( 1

12
a(2σ2uu

2
t − u2utt + σ2uttxx − ∂−1

x uttt)

+ 1
6
σ2(utt∂

−1
x uy + 2ut∂

−1
x uty + u∂−1

x utty))
)
dy, q = 1, b = 0, a2 = −2σ1σ2

(3.63)
which holds for all solutions u(t, x, y).

These integral relations (3.61), (3.62), (3.63) hold in the case q = 1, which corresponds to
the general scaled form of the universal modified KP-like equation (1.2):

ut + (σ1u
2 + a∂−1

x uy)ux + buuy + uxxx + σ2∂
−1
x uyy = 0. (3.64)

Hereafter we take Ω = R2. By examining the asymptotic conditions on u(t, x, y) for which
the integrals on the both sides of each relation will vanish, and using the general argument
shown in Ref. [8], we obtain the following conclusions about the initial-value problem on R2.

First, the y-momentum relation (3.62) gives rise to an integral constraint Py[u] = 0 on
initial-value solutions with spatial decay u(t, x, y) = O(x−3y−3) as |x|, |y| → ∞.

Second, the momentum relation (3.61) gives rise to an integral constraint P [u] = 0 on
initial-value solutions with spatial decay u(t, x, y) = O(x−2y−2) as |x|, |y| → ∞. When
b 6= a, this constraint implies that ‖u‖L2 = 0, whereby u = 0 would be the only possible
solution. Thus, in this case the initial-value problem is ill-posed in L2. When b = a, the
constraint requires that u(t, x, y) = O(x−2y−2) as |x|, |y| → ∞, since otherwise the initial-
value will be ill-posed in L2.

Third, the energy relation (3.63) gives rise to an integral constraint E [u] = 0 on initial-
value solutions with spatial decay u(t, x, y) = O(x−3/2y−4) as |x|, |y| → ∞. In the case
σ2 = 1, the energy integral (on the left side) is non-negative, and thus the constraint leads to
u = 0. As a result, the initial-value problem is ill-posed in the energy space. In the opposite
case σ2 = −1, since the energy integral has indefinite sign, well-posedness for solutions with
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the decay u(t, x, y) = O(x−3/2y−4) as |x|, |y| → ∞ requires that the initial data has zero
energy.

Proposition 3.2. For the universal modified KP-like equation (3.64):
(i) Well-posedness of solutions with spatial decay u|t=0 = O(x−3y−3) as |x|, |y| → ∞ can
hold only if the initial data satisfies the constraint

∫
R2 u∂

−1
x uy dx dy = 0.

(ii) Well-posedness can hold in L2 only if b = a and only if initial data has the spatial decay
u|t=0 = O(x−2y−2) as |x|, |y| → ∞.
(iii) Well-posedness can hold in the energy space only if σ1 = −σ2 = 1 and only if the initial
data has zero-energy and spatial decay u|t=0 = O(x−3/2y−4) as |x|, |y| → ∞.

3.4. Critical powers and sign properties. Since conserved energy quantities play a cru-
cial role in the global analysis of solutions, we will examine the sign property of the energy
(3.46) in the variational case and the energy (3.43) in the non-variational case. From these
expressions, we see that E [u] ≥ 0 if σ1 = −1 and Evar.[u] ≥ 0 if σ1 = σ2 = −1. Hence the
non-variational energy is non-negative in the defocussing case, while the variational energy
is non-negative in the defocussing case with sign-changing dispersion.

Another important feature of the energy is its behaviour under the scaling symmetry (2.6)
of the modified gKP equation (2.11).

In general, when a conserved integral (3.2) is scaling homogeneous, it will have a scaling
weight d defined by C[u] → λdC[u] under the symmetry (2.6). If d < 0 or d > 0, then the
conserved integral is said to be subcritical or supercritical, respectively. The critical case
d = 0 corresponds to the conserved integral being scaling invariant. Typically, global (long-
time) existence of solutions to the Cauchy problem can be established for all initial data
without any condition on the size of the energy in the subcritical case, and at least for initial
data with sufficiently small energy in the critical case.

The scaling weight and criticality of the momentum (L2 norm) and the energies is shown
in table 1. We see that the momentum is subcritical for q < 2

3
, while the energy is subcritical

for q < 2. Therefore, when q is an integer or a half-integer, global existence can be expected
to hold in L2 only for q = 1

2
and in the energy space only for q = 1

2
, 1, 3

2
, 2.

Table 1. Scaling properties of momentum and energy

Conserved integral q Scaling weight Criticality

momentum P [u] > 0 3− 2/q q = 2
3

energy Evar.[u] > 0 1− 2/q q = 2
energy E [u] 1 −1 subcritical

4. Line-soliton and line-shock solutions

A line travelling wave in two dimensions has the form

u = U(ξ), ξ = x+ µy − νt (4.1)

where the parameters µ and ν determine the direction and the speed of the wave. The
amplitude of a line travelling wave is translation-invariant in the perpendicular direction. If
the amplitude exhibits exponential asymptotic decay for large |ξ|, then the travelling wave
is a line-soliton.
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As noted previously in Ref. [5, 6], a more geometrical form for a line travelling wave is
given by writing x+µy = (x, y) ·k with k = (1, µ) being a constant vector in the (x, y)-plane.
The travelling wave variable can then be expressed as

ξ = |k|(k̂ · (x, y)− ct) (4.2)

where the unit vector
k̂ = (cos θ, sin θ), tan θ = µ (4.3)

gives the direction of propagation of the wave, and the constant

c = ν/|k|, |k|2 = 1 + µ2 (4.4)

gives the speed of the wave. We will take the domain of θ to be −1
2
π < θ ≤ 1

2
π, since the

direction of propagation stays the same when both the direction angle is changed by ±π and
the sign of the speed is reversed.

We will now derive the explicit line-soliton solutions (4.1) for the modified gKP equation
in the scaled form (2.11) when p = 2q is a positive integer. As main results, the nature of
the solutions is shown to depend essentially on whether q is an even integer, an odd integer,
or a half-integer: symmetrical bright/dark pairs of line-solitons are admitted in the even
case; non-symmetrical bright/dark pairs of line-solitons are admitted in the odd case when
α/β > 0; single line-solitons are admitted in the odd case when α/β < 0 and also in the
half-integer case. A line-shock solution is shown to arise under a certain condition relating
µ, ν, q, and the coefficients in the equation.

4.1. Derivation. It will be convenient to use the coordinate expression for the travelling
wave variable ξ = x + µy − νt, so thus ux = U ′, uy = µU ′, ut = −νU ′, and so on, while
∂−1
x uy = µ∂−1

x U ′ depends on the choice of asymptotic condition on U through the constants
x1 and x2 in the relation (2.5) which defines ∂−1

x .
We will be interested in travelling waves whose amplitude U vanishes as ξ → −∞. Thus,

we take x2 = x1 = −∞, whereby

∂−1
x uy = µ∂−1

x U ′ = µ

∫ ξ

−∞
U ′(x) dx = µU. (4.5)

Substitution of the line-soliton expression (4.1) into equation (2.11) yields a nonlinear
third-order ODE

(σ2µ
2 − ν)U ′ + (σ1U

2q + (a+ b)µU q)U ′ + U ′′′ = 0. (4.6)

This ODE can be integrated to quadrature by starting from the conservation laws (3.23) for
momentum and (3.24) for mass of the equation (2.11). The method is based on symmetry
multi-reduction [7] utilizing the travelling wave symmetries generated by X1 = (µ2 + 1)∂t +
ν∂x + νµ∂y and X2 = µ∂x − ∂y. These two symmetries form an abelian algebra whose
invariants are ξ and u. In particular, reduction of equation (2.11) under this symmetry
algebra yields the ODE (4.6). Reduction of the momentum and mass conservation laws
is given by (X + µY − νT )|u=U(ξ) = C = const., where (T,X, Y ) are expressions (3.23)
and (3.24). This gives two, functionally independent first integrals of this ODE. When the
asymptotic conditions U,U ′, U ′′ → 0 as |ξ| → ∞ are imposed, the first integrals yield the
separable ODE

U ′2 = (ν − σ2µ
2)U2 − 1

(q+1)(2q+1)
σ1U

2q+2 − 2
(q+1)(q+2)

(a+ b)µU q+2. (4.7)
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There are several different types of solutions to the ODE (4.7). To obtain the line-soliton
solutions, we need to derive necessary and sufficient conditions on coefficients in the ODE
so that |U(ξ)| has a single peak |U∗| at a finite value ξ = ξ0 and decays exponentially to 0
for large |ξ|. This is readily carried out by applying a standard energy method in which we
write the ODE in the nonlinear oscillator form

U ′2 + V (U) = 0 (4.8)

where U ′2 is viewed as the kinetic energy term, and where

V (U) = −AU2 +BU2q+2 + 2CU q+2 (4.9)

is viewed as the potential energy term, with

A = ν − σ2µ
2, (4.10)

B = 1
(q+1)(2q+1)

σ1, (4.11)

C = 1
(q+1)(q+2)

(a+ b)µ. (4.12)

For later, we let

∆ = C2 + AB =
σ1(q + 1)(q + 2)2(ν − µ2σ2) + (2q + 1)(a+ b)2µ2

(2q + 1)(q + 1)2(q + 2)2
. (4.13)

A straightforward analysis of the oscillator equation (4.8) for U → 0 and U → U∗ 6= 0 gives
the following conditions.

Proposition 4.1. A line-soliton solution U(ξ), with a single peak |U∗| at ξ = ξ0 and with
exponential decay U → 0 for |ξ| → ∞, arises iff the potential (4.9) has the properties:

1. V (U) ' −AU2 for |U | � 1, with A > 0, so that |ξ| ' O(ln |U |) as U → 0;

2. U = U∗ 6= 0 is a root of V (U) with V ′(U∗) > 0, so that ξ ' O(1) as U → U∗.

If property 2 is changed to V (U∗) = V ′(U∗) = 0, so that |ξ| ' O(ln |U −U∗|) as U → U∗ 6= 0,
then U(ξ) will be a line-shock solution.

Property 1 is established by noting: U ′2 ' AU2 ⇐⇒ ln |U | ' ±
√
Aξ ⇐⇒ |U | '

exp(±
√
Aξ). Similarly, property 2 is established by noting: U ′2 ' V ′(U∗)(U∗ − U) ⇐⇒√

U∗ − U ' 1
2
V ′(U∗)(ξ − ξ0) ⇐⇒ U ' U∗ +O((ξ − ξ0))2.

The resulting solution U(ξ) will describe a bright line-soliton if U∗ > 0 or a dark line-soliton
if U∗ < 0, and likewise in the limit of a line-shock.

To apply Proposition 4.1, we first examine the roots of V (U), with A > 0. By factoring,
we obtain

V (U) = 1
B
U2((BU q + C)2 −∆), (4.14)

whence the non-zero roots of V (U) are determined by U q
∗ = (±

√
∆ − C)/B, ∆ ≥ 0. The

nature of these roots depends on whether the power q = 1
2
p is an odd or even integer when

p is an even integer, or is a half integer when p is an odd integer.
If q is an odd integer then we have

U∗ =
(
(±
√

∆− C)/B
)1/q

. (4.15)
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Hence, V (U) has 0, 1, 2 roots when ∆ < 0, ∆ = 0, ∆ > 0, respectively. The two properties
in Proposition 4.1 for existence of a line-soliton solution are satisfied only in the case ∆ > 0,
A > 0.

When B < 0, both of the roots (4.15) have the same sign. This implies that the line-
soliton is either bright if the roots are positive, or dark if the roots are negative. The peak
is given by the root closest to 0.

In contrast, when B > 0, the roots (4.15) have opposite signs, and then there are pair
of bright/dark line-solitons. Their respective peaks are given by the positive root and the
negative root.

In the case ∆ = 0, A > 0 and B < 0, a line-shock solution arises instead, because V (U)
has a repeated root. The line-shock is either bright if the root is positive, or dark if the root
is negative.

If q is an even integer then the roots have a different, more complicated form which depends
on the signs of B and C, in addition to the ∆.

When B > 0, V (U) has two roots with A > 0 iff ∆ > 0. The roots are given by

U∗ = ±
(
(
√

∆− C)/B
)1/q

. (4.16)

In this situation, Proposition 4.1 shows that there will be a symmetrical pair of bright/dark
line-solitons.

In contrast, when B < 0, V (U) has four roots with A > 0 for ∆ > 0. The roots are given
by

U∗ =
(
(
√

∆− C)/B
)1/q

,−
(
(
√

∆− C)/B
)1/q

, (4.17)

which comprise two symmetrical pairs. Proposition 4.1 again shows that there will be a
symmetrical pair of bright/dark line-solitons. Their peaks are given by the two roots closest
to 0.

For ∆ = 0 and B < 0, V (U) instead has two repeated roots with A > 0 iff C < 0. The
roots are a symmetrical pair given by

U∗ = ±
(
− C/B

)1/q
. (4.18)

In this situation, Proposition 4.1 shows that a symmetrical pair of bright/dark line-shock
solutions arises.

Finally, if q is a half-integer then the situation is the same as the odd integer case with
the restriction that U∗ > 0. In particular, when B < 0, a line-soliton solution exists only for
∆ > 0, A > 0, C > 0, where U∗ is given by expression (4.15), with the peak being the root
closest to 0. When B > 0, a line-soliton solution exists for A > 0, where the root is given by

U∗ =
(
(
√

∆− C)/B
)1/q

. (4.19)

In the case ∆ = 0, A > 0, B < 0 and C > 0, a line-shock solution exists.
We will next obtain the explicit form of the preceding solutions by integration of the

separable ODE (4.8) using the factorized form (4.14) for V (U).

Theorem 4.1. All line-soliton and line-shock solutions u = U(ξ) of the modified gKP equa-
tion (2.11) when the power p = 2q is a positive integer consist of:

(i) q is an even integer
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If σ1 = sgn(B) = 1, then

U =
±A1/q

(C +
√
C2 + AB cosh(q

√
Aξ))1/q

, A > 0 (4.20)

is a symmetrical pair of bright/dark line-solitons. If σ1 = sgn(B) = −1, then

U =
±A1/q

(C +
√
C2 − A|B| cosh(q

√
Aξ))1/q

, C > 0, C2/|B| > A > 0 (4.21)

is a symmetrical pair of bright/dark line-solitons;

U =
±A1/q

(C(1 + exp(−q
√
Aξ)))1/q

, C > 0, A = C2/|B| (4.22)

is symmetrical pair of bright/dark line-shocks.
(ii) q is an odd integer

If σ1 = sgn(B) = 1, then

U =
A1/q

(C ±
√
C2 + AB cosh(q

√
Aξ))1/q

, A > 0 (4.23)

is a pair of bright/dark line-solitons. They are symmetrical iff C = 0. If σ1 = sgn(B) = −1,
then

U =
sgn(C)A1/q

(|C|+
√
C2 − A|B| cosh(q

√
Aξ))1/q

, C2/|B| > A > 0 (4.24)

is a line-soliton;

U =
sgn(C)A1/q

(|C|(1 + exp(−q
√
Aξ)))1/q

, A = C2/|B| > 0 (4.25)

is a line-shock. These solutions are bright or dark according to whether sgn(C) is +1 or −1.
(iii) q is a half-integer

If σ1 = sgn(B) = 1, then

U =
A1/q

(C +
√
C2 + AB cosh(q

√
Aξ))1/q

, A > 0 (4.26)

is a line-soliton. If σ1 = sgn(B) = −1, then

U =
A1/q

(C +
√
C2 − A|B| cosh(q

√
Aξ))1/q

, C > 0, C2/|B| > A > 0 (4.27)

is a line-soliton;

U =
A1/q

(C(1 + exp(−q
√
Aξ)))1/q

, C > 0, A = C2/|B| > 0 (4.28)

is a line-shock. All of these solutions are bright.
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We remark that Theorem 4.1 can be extended to situation when p is rational number as
follows: case (i) holds with q being a rational number with an even numerator; case (ii)
holds with q a rational number with an odd numerator and an odd denominator; case (iii)
holds with q a rational number with an odd numerator and an even denominator.

We also remark that for the case C = 0 the line solitons in Theorem 4.1 reduce to the
ones found in Ref. [5] for the gKP equation with an arbitrary power p > 0. In particular,
in this case the pairs of bright/dark line-solitons (4.20) and (4.23) coincide with the gKP
line-solitons when p is an even integer; and the single bright soliton (4.26) corresponds to
the gKP line-soliton when p is an odd integer.

Consequently, hereafter we will restrict attention to the modified gKP case where C 6= 0.

4.2. Kinematical properties of line-solitons and line-shocks. We will next discuss the
main kinematical properties of the modified gKP line-soliton and line-shock solutions: their
speed and direction, width, and height.

With respect to the x axis, the angle of the (tilted) line of motion of the line solutions is
given by

θ = arctanµ, (4.29)

while the speed of the line solution along this tilted line is given by

c = ν/
√

1 + µ2, (4.30)

with the sign of ν specifying the direction of propagation. Note that the two parameters
(µ, ν) need to obey conditions corresponding to the conditions on A,B,C in Theorem 4.1.
The explicit form of these conditions will be presented in the next subsections.

The width of the line solutions is proportional to

w = 1/(q
√
A). (4.31)

Their heights/depths are given by

h = A1/q/(|C|+
√
C2 − A|B|)1/q (4.32)

for the single bright/dark line-solitons (4.24);

h = A1/q/(C +
√
C2 + σ1A|B|)1/q (4.33)

for the bright line-solitons (4.26)–(4.27) and for the symmetrical pairs of line-solitons (4.20)–
(4.21);

h± = A1/q/|C ±
√
C2 + AB|1/q (4.34)

for the non-symmetrical pair of line-solitons (4.23);

h = (A/|C|)1/q (4.35)

for the bright/dark line-shocks (4.25) and (4.28); and

h = (A/C)1/q (4.36)

for the symmetrical pair of line-shocks (4.22).
To discuss the profile shapes, we will examine the line-solitons first, and the line-shocks

last.
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4.3. Line-soliton profiles. We will use the height and the width to parameterize the line-
soliton profiles, as well as their speed and the direction angle.

Theorem 4.2. In terms of height h > 0 and width w > 0, the profiles of the line-solitons
(4.24), (4.26), (4.27), the symmetrical pairs of line-solitons (4.20)–(4.21), and the non-
symmetrical pair of line-solitons (4.23) have the form

|U | = h

((1 + σ1(whq/l)2) cosh(ξ/(2w))2 − σ1(whq/l)2)1/q
, (4.37)

where

l2 = (2q + 1)(q + 1)/q2. (4.38)

In the focussing case σ1 = 1, there are no conditions on h and w, while in the defocussing
case σ1 = −1, they must obey the condition

whq < l (σ1 = −1) (4.39)

so that U is non-singular. In both cases, the direction angle and the speed are given by

|θ| = arctan

(
m2|1− σ1w

2h2q/l2|
2|a+ b|w2hq

)
(4.40)

and

c =
σ2q

2m4(1− σ1w
2h2q/l2)2 + 4(a+ b)2w2h2q

2(a+ b)q2w2hq
√
m4(1− σ1w2h2q/l2)2 + 4(a+ b)2w4h2q

, (4.41)

where

m2 = (q + 1)(q + 2)/q2. (4.42)

(Information about the sign of θ will be given in section 5.)
The profile (4.37) for fixed w and h differs in the cases σ1 = 1 and σ1 = −1 but is

qualitatively similar for all values of q. Plots are shown in Figs. 1 and 2.

Figure 1. Line-soliton profile in the defocussing case. q = 1; h = 1 (left), 2.5
(middle), 4 (right); w = 1

10
(dots), 1

5
(dashes), 1

2
(dot-dashes), 1 (long-dashes),

w ≈ 0.90wmax (solid).
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Figure 2. Line-soliton profile in the focussing case. q = 1; h = 1 (left), 2.5
(middle), 4 (right); w = 1

10
(dots), 1

5
(dashes), 1

2
(dot-dashes), 1 (long-dashes),

2 (solid).

4.4. Line-shock profiles. We will use the height and the width to parameterize the line-
shock profile, as well as their speed and the direction angle. In contrast to line-solitons, there
is no restriction on h and w for line-shocks.

Theorem 4.3. In terms of height h > 0 and width w > 0, the profiles of the symmetrical
pair of line-shocks (4.22), and the single line-shocks (4.25) and (4.28) have the form

|U | = h

(1 + exp(−ξ/w))1/q
, σ1 = −1. (4.43)

The direction angle and the speed are given by

θ = arctan

(
m2hq

l2(a+ b)

)
(4.44)

and

c =
k2l4 + σ2q

2m4w2h2q

(a+ b)q2l2w2
√

(a+ b)2l4 +m4h2
, (4.45)

where l2 and m2 are given by expressions (4.38) and (4.42).

The profile (4.43) for fixed w and h is qualitatively similar for all values of q. Plots are
shown in Fig. 3.

Figure 3. Line-shock profile. q = 1; h = 2 (left), 4 (middle), 6 (right); w =
1
10

(dots), 1
4

(dashes), 1
2

(dot-dashes), 1 (long-dashes), 2 (solid).

5. Kinematics features in terms of the speed and the angle

We will examine in detail the properties of the modified gKP line solutions in Theorem 4.1
by using a physical parameterization given by their speed c and direction angle θ.
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5.1. Kinematics of line-solitons. In every line-soliton solution, the parameters µ and ν
must satisfy the condition

ν > σ2µ
2 (5.1)

corresponding to A > 0. The additional conditions C > 0 and C2 > A|B| required for
existence of some of the line-soliton solutions correspond to

(a+ b)µ > 0 (5.2)

and

ν < (σ2 + l2

m4 (a+ b)2)µ2 (5.3)

respectively. These conditions can be expressed in terms of the speed and the angle, via
inverting the relations (4.29)–(4.30).

Proposition 5.1. The speed c and the direction angle θ of all line-soliton solutions of the
modified gKP equation (2.11) obey the kinematic condition

c > σ2 sin2 θ/ cos θ, −1
2
π < θ ≤ 1

2
π. (5.4)

No further conditions are required by the symmetrical pair of bright/dark line-solitons (4.20),
the non-symmetrical pair of bright/dark line-solitons (4.23), and the bright line-soliton
(4.26), all of which have σ1 = 1. The single bright/dark line-soliton (4.24) requires an
additional kinematic condition

c < (σ2 + k2) sin2 θ/ cos θ, σ1 = −1 (5.5)

where

k =
√

2q+1√
q+1(q+2)

(a+ b). (5.6)

This condition (5.5) and another kinematic condition

sgn θ = sgn k (5.7)

are required by both the other bright line-soliton (4.27) and the other symmetrical pair of
bright/dark line-solitons (4.21).

Since these kinematic conditions depend on both σ1 and σ2, we will organize the subsequent
discussion into four cases: focussing and defocussing cases, σ1 = +1,−1; normal and sign-
changing dispersion cases, σ2 = +1,−1. The KP-like cases are σ1 = 1, σ2 = ±1; the
mKP-like cases are σ1 = −σ2 = 1 and σ1 = −σ2 = −1.

5.1.1. Focussing with normal dispersion. When σ1 = σ2 = 1, the kinematical parameters
(ν, µ) satisfy 0 ≤ µ2 < ν <∞. From Proposition 5.1, there is a minimum speed

cmin(θ) = sin2 θ/ cos θ, (5.8)

which is positive for all directions −π
2
< θ < π

2
, while the maximum speed is unbounded.

Interestingly, as the direction becomes more transverse, the minimum speed is higher.
For a fixed speed c > cmin(θ), the direction angle has the range −ϑ(c) < θ < ϑ(c), where

ϑ(c) = arctan
√

1
2
c(
√
c2 + 4 + c) (5.9)

is the angle determined by c = cmin(θ). The kinematically allowed region in (c, θ) is plotted
in Fig. 4. Note that this region is independent of the nonlinearity power p.
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Figure 4. Kinematically allowed region in (c, θ) for line-solitons in the case
of focussing with normal dispersion.

The modified gKP line-solitons for θ 6= 0 can be expressed in terms of c and θ as

u =
s((q + 1)(2q + 1))

1
2q ((c/cmin(θ)− 1) tan |θ|)

1
q(

s̃k +
√
k2 − 1 + c/cmin(θ) cosh

(
q
√
c/cmin(θ)− 1 tan |θ| (x+ tan θ y − c sec θ t)

)) 1
q

(5.10)
where s and s̃ are signs for the 3 types of line-solitons shown in Table 2.

Table 2. Signs in the line-solitons: focussing case

Type q s̃ s sgn θ

bright/dark symmetrical pair even sgn θ ±1 ≷ 0
bright/dark non-symmetrical pair odd ±sgn θ ±1 ≷ 0

bright half-integer sgn θ 1 ≷ 0

The width and height are given by

w =
1

q
√
c/cmin(θ)− 1 tan |θ|

, (5.11)

h =
(
(q + 1)(2q + 1)

) 1
2q
(∣∣√c/cmin(θ) + k2 − 1− s̃k

∣∣ tan |θ|
) 1

q . (5.12)

At a fixed speed c > cmin, the width is symmetrical under θ → −θ but the height is
asymmetrical.

At a fixed direction angle θ with |θ| < ϑ(c), the width decreases and the height increases
as the speed c increases and as the nonlinearity power q increases. In the limiting case of
the minimum speed, the line-soliton flattens to u = 0 when the angle has the sign given by
s̃ = sgn k. An interesting question that we will explore elsewhere is what the limit of u looks
like when the angle has the opposite sign.
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5.1.2. Defocussing with normal dispersion. When −σ1 = σ2 = 1, the kinematical parameters
(ν, µ) satisfy µ2 < ν < (k2 + 1)µ2. From Proposition 5.1, the minimum speed is the same as
in the focussing case, but the maximum speed is finite

cmax(θ) =
(
1 + k2

)
sin2 θ/ cos θ, (5.13)

which depends on k. As a consequence, for a fixed speed cmin(θ) < c < cmax(θ), the angular
range of the direction is ϑ(c/(1 + k2)) < |θ| < ϑ(c), where ϑ is the angle (5.9). The
kinematically allowed region in (c, θ) is plotted in Fig. 5. Note that the mKP case is given
by k = 1√

3
.

Figure 5. Kinematically allowed region in (c, θ) for line-solitons in the case
of defocussing with normal dispersion. k2 = 1

8
(black), 1

3
(dark grey), 2 (grey),

10 (light grey); lighter regions overlap with all darker regions.

The modified gKP line-solitons for θ 6= 0 can be expressed in terms of c and θ as

u =
s((q + 1)(2q + 1))

1
2q ((c/cmin(θ)− 1) tan |θ|)

1
q(

|k|+
√

(k2 + 1)(1− c/cmax(θ)) cosh
(
q
√
c/cmin(θ)− 1 tan |θ| (x+ tan θ y − c sec θ t)

)) 1
q

(5.14)
where s is a sign for the 3 types of line-solitons shown in Table 3.

Table 3. Signs in the line-solitons: defocussing case

Type q s sgn θ

bright/dark symmetrical pair even ±1 sgn k
bright/dark odd sgn(kθ) ≷ 0

bright half-integer 1 sgn k

The width has the same expression (5.11) as in the previous case, but the height is given
by

h =
(
(q + 1)(2q + 1)

) 1
2q

(∣∣√(k2 + 1)(1− c/cmax(θ))− |k|
∣∣ tan |θ|

) 1
q
. (5.15)
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At a fixed speed, both the width and the height are symmetrical under θ → −θ.
At a fixed direction angle θ, with ϑ(c/(1 + k2)) < |θ| < ϑ(c), the width decreases and the

height increases as the speed c increases to cmax and as the nonlinearity power q increases.
In the limiting case of the maximum speed, u approaches a step-like function whose width
increases logarithmically with cmax− c. In the opposite limiting case of the minimum speed,
u flattens to 0.

5.1.3. Focussing with sign-changing dispersion. When σ1 = −σ2 = 1, the kinematical param-
eters (ν, µ) satisfy −µ2 < ν <∞. From Proposition 5.1, the maximum speed is unbounded
while the minimum speed is negative, and so the line-soliton can move forward or backward,
or remain stationary, relative to the x-direction.

The minimum speed is given by

cmin(θ) = − sin2 θ/ cos θ. (5.16)

For a fixed negative speed, the direction angle has the range ϑ(|c|) < |θ| < 1
2
π, where ϑ is the

angle (5.9). For a fixed non-negative speed, the direction angle has the range 0 ≤ |θ| < 1
2
π.

The kinematically allowed region in (c, θ) is plotted in Fig. 6. Note that this region is
independent of the nonlinearity power p and hence coincides with the kinematically allowed
region for the mKP equation.

Figure 6. Kinematically allowed region in (c, θ) for line-solitons in the case
of focussing with sign-changing dispersion.

The modified gKP line-solitons for θ 6= 0 can be expressed as

u =
s((q + 1)(2q + 1))

1
2q ((1 + c/|cmin(θ)|) tan |θ|)

1
q(

s̃k +
√
k2 + 1 + c/|cmin| cosh

(
q
√

1 + c/|cmin(θ)| tan |θ|(x+ tan θ y − c sec θ t)
)) 1

q

(5.17)
where the signs s and s̃ are given in Table 2. This expression (5.17) differs from the line-
soliton (5.10) in normal dispersion case by the change in sign of the minimum speed (5.16).
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Similarly, the width and height are given by

w =
1

q
√

1 + c/|cmin(θ)| tan |θ|
, (5.18)

h =
(
(q + 1)(2q + 1)

) 1
2q
(∣∣√k2 + 1 + c/|cmin(θ)| − s̃k

∣∣ tan |θ|
) 1

q . (5.19)

At a fixed speed, the width is symmetrical under θ → −θ while the height is asymmetrical.
At a fixed direction angle θ, with ϑ(c/(1 + k2)) < |θ| < ϑ(c), the width decreases and

the height increases as the speed c increases and as the nonlinearity power q increases. The
limiting case of the minimum speed is similar to what occurs for focussing with normal
dispersion.

5.1.4. Defocussing with sign-changing dispersion. When −σ1 = −σ2 = 1, the kinematical
parameters (ν, µ) satisfy −µ2 < ν < (k2 − 1)µ2 and µ > 0. From Proposition 5.1, the
minimum speed is the same as in the previous case, while the maximum speed is given by

cmax = (k2 − 1) sin2 θ/ cos θ, (5.20)

which is positive, negative, or zero, depending on whether k is larger, smaller, or equal to 1.
Hence, for a fixed speed cmin < c < cmax, when k < 1 the angular range is ϑ(|c|) <
|θ| < ϑ(|c|/(1 − k2)), where ϑ is the angle (5.9). Instead when k ≥ 1 the angular range is
ϑ(|c|) ≤ |θ| < 1

2
π if c ≤ 0 and ϑ(c/(k2−1)) < |θ| < 1

2
π if c > 0. These different kinematically

allowed regions in (c, θ) are plotted in Figs. 7, 8, and 9.

Figure 7. Kinematically allowed region in (c, θ) for line-solitons in the case
of defocussing with sign-changing dispersion. k2 = 1

5
(black), 1

2
(dark grey), 2

3

(grey), 5
6

(light grey); lighter regions overlap with all darker regions.

The modified gKP line-solitons for θ 6= 0 can be expressed as

u =
s((q + 1)(2q + 1))

1
2q ((1 + c/|cmin|) tan θ)

1
q(

|k|+
√

(k2 − 1)(1− c/cmax) cosh
(
q
√

(1 + c/|cmin|) tan θ (x+ tan θ y − c sec θ t)
)) 1

q

(5.21)
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Figure 8. Kinematically allowed region in (c, θ) for line-solitons in the case
of defocussing with sign-changing dispersion. k2 = 1.

Figure 9. Kinematically allowed region in (c, θ) for line-solitons in the case
of defocussing with sign-changing dispersion. k2 = 3

2
(dark grey), 5 (grey), 10

(light grey); lighter regions overlap with all darker regions.

where the sign s is given in Table 3. The width has the same expression (5.18) as in the
previous case, but the height is given by

h =
(
(q + 1)(2q + 1)

) 1
2q

(∣∣√(k2 − 1)(1− c/cmax)− |k|
∣∣ tan |θ|

) 1
q
. (5.22)

At a fixed speed, both the width and the height are symmetrical under θ → −θ.
At a fixed direction angle θ, the width decreases and the height increases as the speed

c increases to cmax and as the nonlinearity power q increases. The limiting cases of the
31



minimum speed and maximum speed are similar to what occurs for defocussing with normal
dispersion.

5.2. Kinematics of line-shocks. Similarly to Proposition 5.1, we have the following kine-
matic properties for all of the line-shock solutions.

Proposition 5.2. The speed c and the direction angle θ of all line-shock solutions of the
modified gKP equation (2.11) obey the kinematic condition

c = (σ2 + k2) sin2 θ/ cos θ, σ1 = −1. (5.23)

No further conditions are required by the single bright/dark line-shock (4.25). The bright
line-shock (4.28) and the symmetrical pair of bright/dark line-shocks (4.22) each require the
additional kinematic condition (5.7).

In particular, line-shock solutions exist only in the defocussing case, σ1 = −1. These
solutions can be expressed as

u =
s̃((q + 1)(2q + 1))

1
2q (sk tan θ)

1
q(

1 + exp
(
q|k| tan |θ| (x+ tan θ y − (σ2 + k2) tan2 θ t)

)) 1
q

(5.24)

where s and s̃ are signs for the 3 types of line-shocks shown in Table 4.

Table 4. Signs in the line-shock

Type q s s̃ sgn θ

bright/dark symmetrical pair even 1 ±1 sgn k
bright/dark odd 1 1 ≷ 0

bright half-integer 1 1 sgn k

We will divide the subsequent discussion into the two cases: defocussing with normal and
sign-changing dispersion, σ2 = +1,−1.

5.2.1. Defocussing with normal dispersion. When σ2 = 1, the speed is given by

c(θ) =
(
1 + k2

)
sin2 θ/ cos θ ≥ 0, (5.25)

which is non-negative and increases with k. As a consequence, for a fixed speed c > 0, the
direction angle is θ = ϑ(c/(1 + k2)), where ϑ is the angle (5.9).

The kinematically allowed curve in (c, θ) is plotted in Fig. 10. Note that the mKP case is
given by k = 1√

3
.

The width and height of the line-shocks are given by

w =
1

q|k| tan |θ|
=
√

2(k2+1)
q|k|

/√
c(
√
c2 + 4(k2 + 1)2 + c), (5.26)

h =
(
(q + 1)(2q + 1)

) 1
2q
(
|k| tan |θ|

) 1
q

=
(

(q+1)(2q+1)k2

2(k2+1)
c(
√
c2 + 4(k2 + 1)2 + c)

) 1
2q
.

(5.27)

Both expressions are symmetrical under θ → −θ.
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Figure 10. Kinematically allowed curve in (c, θ) for line-shocks in the case of
defocussing with normal dispersion. k2 = 0 (solid), 1

6
(dashed), 1

3
(dot-dashes),

2 (dots), 10 (dot-spaces).

As the speed c increases and as the nonlinearity power q increases, the width decreases
and the height increases. In the limiting case of the minimum speed c = 0, the line-shock
flattens to u = 0.

5.2.2. Defocussing with sign-changing dispersion. When σ2 = −1, the speed is given by

c(θ) =
(
k2 − 1

)
sin2 θ/ cos θ, (5.28)

which has the sign sgn c(θ) = sgn(|k| − 1). The different kinematically allowed curves in
(c, θ) for |k| < 1 and |k| > 1 are plotted in Figs. 11 and 12.

Surprisingly, for k2 = 1, the speed vanishes at all direction angles, and thus the line-shock
is stationary.

For all values of k, the width and height of the line-shocks are given by

w =
1

q|k| tan |θ|
=
√

2|k2−1|
q|k|

/√
|c|(
√
c2 + 4(k2 − 1)2 + |c|), (5.29)

h =
(
(q + 1)(2q + 1)

) 1
2q
(
|k| tan |θ|

) 1
q

=
(

(q+1)(2q+1)k2

2|k2−1| |c|(
√
c2 + 4(k2 − 1)2 + |c|)

) 1
2q
.

(5.30)

Both expressions are symmetrical under θ → −θ and c→ −c.
As the absolute speed |c| increases and as the nonlinearity power q increases, the width

decreases and the height increases. In the limiting case of the minimum speed c = 0, the
line-shock flattens to u = 0.

6. Concluding remarks

We have studied several fundamental aspects of a recently derived general modified KP-
like equation (1.2) and its p-power generalization (1.5) which we refer to as the modified
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Figure 11. Kinematically allowed curve in (c, θ) for line-shocks in the case
of defocussing with sign-changing dispersion. k2 = 1

5
(dot-spaces), 1

2
(dots), 2

3

(dot-dashes), 5
6

(dashes), 0.98 (solid).

Figure 12. Kinematically allowed curve in (c, θ) for line-shocks in the case
of defocussing with sign-changing dispersion. k2 = 1.05 (solid), 3

2
(dashes), 2

(dot-dashes), 5 (dots), 10 (dot-spaces).

gKP equation. The general modified KP-like equation arises as the governing equation for
phase modulations of travelling waves in a universal nonlinear system in 2+1 dimensions. As
a consequence, it is expected to model general nonlinear wave phenomena exhibiting cubic
nonlinearity, dispersion, and small transversality in 2+1 dimensions. Its p-power generaliza-
tion is natural to consider from the viewpoint of analysis and will have physical applications
in modelling wave phenomena that are characterized by higher nonlinearity.
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Compared to the gKP equation (1.1), which is a p-power generalization of the KP equation,
the modified gKP equation contains two extra terms that essentially involve the y-derivative
of the wave amplitude u. Interestingly, this modified equation possesses a local variational
structure only when the coefficients of these two terms satisfy a certain relation, in contrast
to the situation for the gKP equation.

Our main results focus on conservation laws and line-soliton solutions.
We have derived all low-order conservation laws, including ones that are admitted only

for special powers p. An interesting result is that, apart from the variational case where
Noether’s theorem yields a conserved energy and conserved momenta, in the non-variational
case an energy is admitted only for the modified KP-like equation (1.2) and not for its
p-power generalization (1.5). Another interesting result is that in both variational and non-
variational cases these equations possess spatial flux conservation laws that yield topological
charges given by line integrals on arbitrary closed curves in the (x, y)-plane. We show that
these charges give rise to integral constraints on initial data for the Cauchy problem. This
sets the stage for investigating well-posedness and related questions such as global (long-
time) existence of solutions.

We also have derived all line-soliton solutions and compared them to the gKP line-
solitons. Due to the two extra terms in the modified gKP equation (1.5), we find that
non-symmetrical bright/dark pairs of line-solitons are supported when p is even, whereas
only symmetrical bright/dark pairs arise for the gKP equation. Moreover, the kinematically
allowed region in the parameter space of speed and angular direction is significantly different
for the modified gKP equation (1.5) and has qualitatively distinct features in the cases of
focussing/defocussing, normal/sign-changing dispersion. In particular, for both types of dis-
persion in the defocussing case, the kinematically allowed region has an essential dependence
on the coefficients of the two extra terms.

At the boundary of the kinematically allowed regions in the defocussing case, we also find
that a line-shock solution is supported. Such solutions do not exist for the gKP equation
and thus are new phenomena produced by the extra terms in the modified gKP equation
(1.5).

For future work, it will be interesting to investigate the stability of the line-soliton and
line-shock solutions and to determine how their stability may depend on the nonlinearity
power p and the size of the non-KP terms in the equation. It will also be interesting to
study the well-posedness of the Cauchy problem and determine the conditions under which
long-time solutions exist.

Acknowledgements

S.C.A. is supported by an NSERC research grant and thanks the University of Cádiz for
additional support during the period when this work was initiated.

Appendix

Here we summarize computational aspects underlying the classification of conservation
laws for the modified gKP equation in Proposition 3.1 and Theorem 3.1.

The determining equation (3.5) for multipliers (3.7) with differential order less than four
has a splitting with respect to the set of variables {∂4w, ∂5w, ∂6w}. Note this set excludes
the leading derivative wxxxx and its differential consequences. The choice of this leading
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derivative rather than the other two possibilities wtx and wyy allows us to find multipliers
that would otherwise appear at a higher differential order, as explained in a general context
in Ref. [33].

We have carried out the setting up and splitting of the determining equation (3.5) by using
Maple. This yields an overdetermined system consisting of 3356 equations to be solved for
Q as well as for k 6= 0 and q 6= 0, with σ2

1 = σ2
2 = 1. Solving the system is a nonlinear

problem because Q appears linearly in products with k while q appears nonlinearly. We use
the Maple package ‘rifsimp‘ to find the complete case tree of solutions. For each solution case
in the tree, we solve the system of equations by using Maple ’pdsolve’ and ’dsolve’, and we
check that the solution has the correct number of free constants/functions and satisfies the
original overdetermined system. Finally, we merge overlapping cases by following the method
explained in Ref. [29]. This yields the classification of multipliers listed in Proposition 3.1.

For each of the multipliers, we derive the corresponding conserved density T and spatial
flux (X, Y ) by applying the repeated integration process [33, 9, 2] to the righthand side of
the characteristic equation for each multiplier. This method has the advantage that we can
obtain T , up to equivalence, so that it has the lowest possible differential order. We do all
integrations with respect to spatial derivatives of w first, whereby the remaining integrations
with respect to wt will always yield terms of minimal differential order in T . This yields the
form for T , X, Y shown in Theorem 3.1.
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