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Abstract A number of approaches have dealt with statistical assessment of self-
similarity, and many of those are based on multiscale concepts. Most rely on cer-
tain distributional assumptions which are usually violated by real data traces, often
characterized by large temporal or spatial mean level shifts, missing values or ex-
treme observations. A novel, robust approach based on Theil-type weighted regres-
sion is proposed for estimating self-similarity in two-dimensional data (images).
The method is compared to two traditional estimation techniques that use wavelet
decompositions; ordinary least squares (OLS) and Abry-Veitch bias correcting esti-
mator (AV). As an application, the suitability of the self-similarity estimate resulting
from the the robust approach is illustrated as a predictive feature in the classification
of digitized mammogram images as cancerous or non-cancerous. The diagnostic
employed here is based on the properties of image backgrounds, which is typically
an unused modality in breast cancer screening. Classification results show nearly
68% accuracy, varying slightly with the choice of wavelet basis, and the range of
multiresolution levels used.
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1 Introduction

High-frequency signals and high-resolution digital images common in real-life set-
tings often possess a noise-like appearance. Examples of such signals have been
found in a variety of systems and processes including economics, telecommunica-
tions, physics, geosciences, as well as in biology and medicine (1; 2; 3; 4; 5; 6).
Often, statistical descriptions of noise-like signals and images involve the degree of
their irregularity as a key statistical summary. Conditional on appropriate stochastic
structure of the signals, irregularity measures can be tied with measures of self-
similarity, fractality, and long memory.

High-frequency signals, whether naturally occurring or human-generated, usu-
ally show substantial self-similarity. Formally, a deterministic function f (t) is said
to be self-similar if f (t) = a−H f (at), for some choice of the exponent H, and for
positive dilation factors a. The notion of self-similarity has been extended to random
processes where the equality of functions is substituted by an equality in distribution
of random variables. Specifically, a stochastic process {X(t), t ∈ R} is self-similar
with scaling exponent (or Hurst exponent) H if, for any a ∈ R+,

X(at) d
= aHX(t), (1)

where d
= denotes equality of all joint finite-dimensional distributions.

Many methods (either defined in time or scale/frequency domains) for estimating
H in one dimension exist. For a comprehensive description, see (7). In particular, the
discrete and continuous wavelet transforms (8; 9) have proven suitable for model-
ing self-similar processes with stationary increments as fractional Brownian motion
(fBm) (10; 11; 12). Wavelet-based methods for estimating H have been proposed
in literature for the 1-D case (13; 14; 15). However, none of these methods take
into account violations in model assumptions usually presented by real data sets.
In particular, several real-life sources involve systematic frequency-dependent noise
which induces non-Gaussianity in the time domain, and consequently in the wavelet
domain as well. The presence of outlier multiresolution levels, inter- and between-
level dependencies and distributional contaminations make the robust estimation of
H an issue of interest. Some robust approaches for estimating self-similarity have
been recently examined in literature (16; 17; 18; 19).

In this paper, a robust approach in estimating H in self-similar signals is consid-
ered. Here the focus is on images as the selected application, but the methodology
applies to a multiscale context of arbitrary dimension in which a hierarchy of mul-
tiresolution subspaces can be identified as a generator of spectra. The approach is
based on a Theil-type weighted regression (20) where average multiresolution level
“energies,” that is, squared wavelet coefficients, are regressed against the level in-
dices. The performance of the robust approach is compared with two benchmark
approaches: ordinary least squares (OLS) and Abry-Veitch (AV) method. See (3)
and (15), respectively.
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As an application, the suitability of the proposed estimator as a predictive feature
in classification of digitized mammogram images as cancerous or non-cancerous is
demonstrated. Many medical images possess scaling characteristics that are dis-
criminatory. The proposed Theil-type estimator is applied as a possible predic-
tive measure for inclusion in screening technologies. Most of the references found
in literature dealing with automated breast cancer detection in mammography are
based on microcalcifications (21; 22; 23; 24; 25). A comparative overview of ma-
chine learning approaches in breast cancer diagnosis can be found in (26). Only
recently has scaling information found in background tissue come into considera-
tion (27; 28; 29; 30; 31). For this predictive measure, the focus is on the scaling
information from the entire image rather than localized features traditionally used.
Adding the proposed method to an existing battery of established tests has a poten-
tial to improve the overall accuracy of mammogram screening techniques.

This paper is organized as follows. Section 2 gives background on 2-D discrete
wavelet transforms with a review of wavelet-based spectra in the context of esti-
mating H for fractional Brownian motion. Section 3 is devoted to statistical estima-
tion of H. In Section 3.1 the benchmark non-robust approaches for comparison are
described. In Section 3.2 our robust approach is presented, with Section 3.3 illus-
trating the performance of the new technique on simulated data sets. In Section 4
the performance of our robust approach in differentiating between cancerous ver-
sus non-cancerous tissue in mammogram images is assessed. Finally, this paper is
concluded with remarks and recommendations for practical use of the methodology
and ideas for possible future directions of research. Technical details concerning the
newly introduced robust measure discussed in Section 3 are deferred to Appendix
A. Appendix B contains more extensive simulations, and for space considerations
is available online.

2 Background

2.1 The 2-D Discrete Wavelet Transform

A review of the 2-D discrete wavelet transform builds upon the 1-D orthogo-
nal wavelet decomposition, which can express any square integrable function X ∈
L2(R) in terms of shifted and dilated versions of a wavelet function ψ(t) and shifted
and dilated versions of a scaling function φ(t). A detailed introduction to wavelet
theory can be found in classic monographs such as (8) or (9). Many signals aris-
ing in practical applications are multidimensional, including our current application
of mammogram images. The 1-D wavelet transform is readily generalized to the
multidimensional case.

The 2-D wavelet basis atoms are constructed via translations and dilations of a
tensor product of univariate wavelet and scaling functions:
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φ(t1, t2) = φ(t1)φ(t2),

ψ
h(t1, t2) = φ(t1)ψ(t2),

ψ
v(t1, t2) = ψ(t1)φ(t2) and

ψ
d(t1, t2) = ψ(t1)ψ(t2). (2)

The symbols h,v,d in (2) stand for horizontal, vertical and diagonal directions, re-
spectively. Consider the wavelet atoms,

φ j,k(t) = 2 j
φ(2 jt1 − k1,2 jt2 − k2) and (3)

ψ
i
j,k(t) = 2 j

ψ
i(2 jt1 − k1,2 jt2 − k2), (4)

for i ∈ {h,v,d}, j ∈ Z, t = (t1, t2) ∈ R2, and k = (k1,k2) ∈ Z2. Then, any function
X ∈ L2(R2) (an image, for example) can be represented as

X(t) = ∑
k

cJ0kφJ0,k(t)+ ∑
i∈{h,v,d}

∑
j≥J0

∑
k

di
j,kψ

i
j,k(t), (5)

where the wavelet coefficients are given by

di
j,k = 2 j

∫
X(t) ψ

i(2 jt−k) dt,

and L2(R2) is the space of all real square integrable 2-D functions. In expression
(5), J0 indicates the coarsest scale or lowest resolution level of the transform, and
larger j correspond to higher resolutions.

2.2 The 2-D fBm: Wavelet Coefficients and Spectra

Consider a self-similar stochastic process {X(t), t ∈R} as in (1). Then, the resulting
detail coefficients satisfy

d jk
d
= 2− j(H+1/2)d0,k,

for a fixed level j and under L2 normalization (11; 32). If, in addition, the process
has stationary increments (i.e., X(t+h)−X(t) is independent of t), then E(d0k) = 0
and E

(
d2

0k

)
= E

(
d2

00
)
. Therefore,

E
(
d2

jk
)

∝ 2− j(2H+1), (6)

which provides a basis for estimating H by taking logarithms on both sides of the ex-
pression in (6). The sequence, S( j) = logE

(
d2

jk

)
, where j ∈Z, is called the wavelet

spectrum. Reference (15) explored in detail wavelet spectra and statistical estima-
tion of H under the assumption that the process X(t) is Gaussian. When the Gaus-
sianity is combined with H-self-similarity, as in (1), and independent increments,
the resulting stochastic process is unique. It is called fractional Brownian motion
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(fBm) and denoted as BH(t). This process is arguably the most popular model for
signals that scale.

The definition of the one-dimensional fBm can be readily extended to the multi-
variate case (33), and more recently, to the case of vector fields. A two-dimensional
fBm, BH(t), for t ∈ [0,1]× [0,1] and H ∈ (0,1), is a Gaussian process with station-
ary zero-mean increments, for which (1) becomes

BH(at) d
= aHBH(t).

The auto-covariance function is given by

E [BH(t)BH(s)] =
σ2

H
2
(
∥t∥2H +∥s∥2H −∥t− s∥2H) , (7)

where σ2
H is a positive constant depending on H, and ∥ · ∥ is the usual Euclidean

norm in R2. Because of the specific structure (7), it can be shown (32; 34) that the
expected values of the detail coefficients associated to the 2-D fBm satisfy

E
[∣∣di

j,k
∣∣2]= σ2

H
2

Vψ i2−(2H+2) j, (8)

where Vψ i depends only on the wavelet ψ i and exponent H, but not on the scale j.
Equivalently,

log2E
[∣∣di

j,k
∣∣2]=−(2H +2) j+Ci, (9)

which defines the two-dimensional wavelet spectrum Si( j), from which H can be
estimated. The next section will consider statistical estimation of H in a 2-D fBm,
from this spectrum.

3 Statistical Estimation in 2-D fBm

The form of wavelet spectra and the relationship between H and scale index j pro-
vide a natural way of estimating scaling. An overview is given of two benchmark ap-
proaches based on spectral regression that are typically used in practice — ordinary
least squares (OLS) and the Abry-Veitch (AV) method. The proposed Theil-type
(TT) estimator is then introduced.

3.1 Two Benchmark Approaches

Equation (9) points toward a linear regression procedure to estimate H from the

slope of the regression when log2E
[∣∣∣di

j,k

∣∣∣2] is regressed on the level j. The first tra-
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ditional estimate obtained using such an approach is ordinary least squares (OLS).
As detailed in (15), two main complications arise when considering the linear re-

gression in (9). The first is that E
[∣∣∣di

j,k

∣∣∣2] is not known but must be estimated. How-

ever, the near-decorrelation property (12; 35) of the wavelet coefficients (which also
holds for the 2-D coefficients, di

j,k) validates the use of the empirical counterpart

µ
i
j =

1
n j

∑
k
|di

j,k|2,

where the summation is made over all two-dimensional shifts k within the multires-
olution level j from the hierarchy i, and n j denotes the total number of coefficients
at that level. For example, for a square dyadic-side image, n j = 22 j.

The OLS regression defined on pairs(
j, log2 µ

i
j
)
, i = h,v,d, (10)

is typically used as a computationally inexpensive method which, for some cases,
has proven to work well in practice. See, for example, (28). Thus, it is used by many
for first-attempted estimations. According to this method, Ĥ =−(s+2)/2, where s
denotes the slope of the regression. Although OLS ignores the fact that regression
leading to estimation of H is heteroscedastic, our experience is that when the length
of a signal is large, the corrections for heteroscedasticity, dependence, and bias are
reasonably small compared to inherent noise in the simulations or real data.

As mentioned, the assumption of homoscedasticity of errors, tacitly assumed for
OLS, is violated. In addition, the logarithm for base 2 of µ i

j, taken as an estimator
of log2E(d2), is biased.

According to (15),

Var
(
log2 µ

i
j
)
∼ 2

n j log2 2
.

Since the variances vary with the level j, a weighted regression is thus more ade-
quate in this context. In (15), a bias correction term is proposed as well, by replacing
log2 µ i

j in (10) by log2 µ i
j +1/(n j log2).

Thus, the second traditional estimate of the H, the AV estimate, is obtained from
the slope of bias-corrected weighted linear regression with weights given by

w j ∝
n j log2 2

2
.

Although AV accounts for the differences in variances at each level, this method
still assumes that the errors are normally distributed at each level. In fact, log2 µ i

j is
distributed as the logarithm of a chi-squared variable, which is non-symmetric about
its location.
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3.2 Proposed Theil-type Estimator

Real-world signals (as network traffic traces) may be characterized by non-stationary
conditions such as sudden level shifts, breaks or extreme values; see for example
(18). The outlier levels in the observed data, often caused by the instrumentation
noise, would leave a bump or a “hockey stick” signature in the wavelet spectra, thus
violating the conditions assumed for theoretical benchmark processes, such as fBm.
Therefore, it is desirable to employ robust approaches while estimating scaling in-
dices. Recently, there has been an interest in such an approach (16; 17; 18; 19).
These works focus on the estimation of self-similar signals in one dimension and
adopt different approaches from the methodology proposed here to achieve robust-
ness.

In the rest of this section, a technique is introduced for robust estimation of H for
two dimensional signals (images) and its theoretical properties are derived on 2-D
fBm, as a calibrating process. The approach is based on the Theil-type estimator, a
method for robust linear regression that selects the weighted average of all slopes
defined by different pairs of regression points (20). This estimator is less sensitive
to outlier levels and can be significantly more accurate than simple linear regression
for skewed and heteroscedastic data. The main benefit is the case when the processes
are not exactly monofractal but contain outlier levels that affect the linearity of the
spectra, especially at coarse levels. On the other hand, this method is comparable to
non-robust regression methods for normally distributed data in terms of statistical
power (36).

In this paper, a weighting scheme is adopted under which each pairwise slope is
weighted by an inverse of the variance of the estimated slope for that pair, as in (37),
(38), and (39). Specifically, the slopes of the linear equations in (9) are assessed as
a weighted average of all pairwise slopes between levels i and j, {si j}, with weights
satisfying

wi j ∝ (i− j)2 ×HA
(
22i,22 j) ,

where HA is the harmonic average. Thus, the proposed estimator is robust with re-
spect to possible outlier levels and free of any distributional assumptions. As seen in
Appendix A, which contains their full derivation, weights for each pair are designed
to reduce the undue influence that outliers can have on estimates. Specifically, the
influence of the coarse levels that in reality show more instability is additionally
de-emphasized by weighting choices. Finally, the estimator of the overall slope (by
which the parameter H is estimated) is given by

∑
i< j

wi js∗i j

∑
i< j

wi j
,

where
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s∗i j = si j +
1

( j− i) log2

(
1

22 j −
1

22i

)
is the bias-corrected pairwise slope between ith and jth points. This new estimation
approach will be denoted as TT, short for Theil-type.

Remark 1. Although for the case of 2-D fBm, the slope s and consequently the Hurst
exponent H = −(s+ 2)/2, theoretically coincide for all three hierarchies of mul-
tiresolution spaces {d,h,v}, in practice we obtain the estimators of three slopes si,
i ∈ {d,h,v}. Consequently, there would be three estimators of H, Ĥi =−(si +2)/2.

From extensive simulations for isotropic fields, it is concluded that the estimator
Ĥd obtained from diagonal hierarchy often suffices in estimating H, and that estima-
tors Ĥh and Ĥv bring little new information. This agrees with findings in (28), (29),
and (30).

3.3 Simulations and Comparisons

To illustrate the performance of the robust method described in the previous sec-
tion, consider the next simulation example. A total of 100 realizations of one-
dimensional fBm of length 512 and 100 realizations of 2-D fBm size 512 × 512,
each characterized by Hurst exponents H ∈ {0,3, 0.4, 0.5, 0.6, 0.7}, were sim-
ulated. The one-dimensional fractional Brownian motion was simulated based on
the method of (40) and (41), and the two-dimensional fractional Brownian mo-
tion was simulated using Barriére’s Matlab code (42). The code can be found at
https://people.tamu.edu/˜brani/wavelet/.

A wavelet transform was then performed on the simulated data using Haar,
Coiflet 4 tap, Daubechies 6 tap, and Symmlet 8 tap wavelet filters. The estimated
Hurst exponents were obtained using the two standard methods described, OLS and
AV, and the robust method, TT.

To mimic realistic data that, in their wavelet decompositions, often show instabil-
ity at coarse levels of detail, the procedure is repeated with the same realisations but
contaminated at a coarse level. This is done by adding white noise of zero mean and
variance σ2

i j, where σ2
i j is the average variance of wavelet coefficients at direction

i ∈ {d,h,v} and level j. For this simulation, wavelet coefficients were contaminated
at level 3 and wavelet spectra was calculated from levels 3 through 7.

Tables 1 and 2 report the estimated values of H for H = 0.5, for the non-
contaminated and contaminated 1-D cases. Also, the mean squared errors (MSE),
as a sum of both the bias-squared and the variance of the estimates, are provided.
Cells with underlined values represent lowest bias, and the grayed cells indicate the
cases with lowest MSE.

From Table 1, it can be seen that TT estimates show the best performance with
respect to both MSE and bias alone. In the case of Table 2, where results have been
obtained under a contamination in the original realizations, it can be deduced that
AV and TT perform comparably well.
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Table 1 Estimations of H and MSEs for H = 0.5 under four different wavelet filters, in the non-
contaminated case. Cells with underlined values represent lowest bias, and the grayed cells indicate
the cases with lowest MSE

Haar Coiflet4 Daub6 Symmlet8

OLS H 0.434 0.455 0.460 0.456
MSE 0.011 0.009 0.010 0.010

AV H 0.424 0.401 0.446 0.425
MSE 0.011 0.015 0.007 0.010

TT H 0.454 0.446 0.479 0.462
MSE 0.007 0.008 0.005 0.006

Table 2 Estimations of H and MSEs for H = 0.5 under four different wavelet filters, in the con-
taminated case

Haar Coiflet4 Daub6 Symmlet8

OLS H 0.535 0.548 0.541 0.552
MSE 0.014 0.014 0.015 0.017

AV H 0.469 0.470 0.481 0.472
MSE 0.007 0.007 0.007 0.006

TT H 0.516 0.520 0.522 0.523
MSE 0.008 0.007 0.008 0.008

Tables 3 and 4 summarize the estimated H and MSE for 2-D realizations, in non-
contaminated and contaminated scenarios, respectively. Table 3 shows that the OLS
performs best, followed by TT, with respect to both MSE and bias. When the traces
are contaminated, TT outperforms both OLS and AV in most settings, as shown in
Table 4.

Note that simulation results of fBms generated with H = 0.5 are presented. Re-
sults for H ∈ {0.3,0.4,0.6,0.7} are not provided here because of space considera-
tions; the simulation results for these values of H can be found at Jacket’s Wavelets
Page: https://people.tamu.edu/˜brani/wavelet/datasoft/AppendixB.
pdf. The results are consistent when H < 0.5, where TT consistently outperforms
OLS or AV in both 1-D and 2-D cases. However, for H > 0.5, the results were
mixed.

4 Theil-type Estimation of Scaling in Breast Cancer Diagnostics

The scaling phenomenon has been found in many types of medical imaging and
extensive research has been done utilizing this scaling for diagnostic purposes. Nu-
merous references can be found at (43).

Despite an overall reduction in the number of breast cancer cases, breast cancer
still continues to be a major health concern among women. The National Cancer
Institute estimates that 1 in 8 women born today will be diagnosed with breast cancer
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Table 3 Estimations of H and MSEs for H = 0.5 from three directions; under four different
wavelet filters, in the non-contaminated case

Haar Coiflet4
diagonal horizontal vertical diagonal horizontal vertical

OLS H 0.446 0.481 0.481 0.488 0.484 0.481
MSE 0.004 0.002 0.002 0.001 0.001 0.001

AV H 0.385 0.467 0.466 0.439 0.384 0.388
MSE 0.014 0.002 0.002 0.004 0.015 0.015

TT H 0.404 0.473 0.472 0.453 0.395 0.397
MSE 0.009 0.001 0.001 0.002 0.013 0.012

Daub6 Symmlet8
diagonal horizontal vertical diagonal horizontal vertical

OLS H 0.484 0.473 0.474 0.488 0.485 0.482
MSE 0.002 0.002 0.002 0.001 0.001 0.001

AV H 0.436 0.456 0.456 0.440 0.401 0.401
MSE 0.004 0.002 0.002 0.004 0.011 0.011

TT H 0.451 0.463 0.463 0.454 0.409 0.409
MSE 0.003 0.002 0.002 0.002 0.009 0.009

Table 4 Estimations of H and MSEs for H = 0.5 from three directions; under four different
wavelet filters, in the contaminated case

Haar Coiflet4
diagonal horizontal vertical diagonal horizontal vertical

OLS H 0.549 0.571 0.568 0.584 0.583 0.588
MSE 0.004 0.007 0.007 0.008 0.009 0.009

AV H 0.399 0.476 0.477 0.455 0.403 0.394
MSE 0.011 0.001 0.001 0.002 0.011 0.013

TT H 0.429 0.490 0.493 0.480 0.423 0.415
MSE 0.005 0.001 0.001 0.001 0.008 0.009

Daub6 Symmlet8
diagonal horizontal vertical diagonal horizontal vertical

OLS H 0.591 0.571 0.572 0.586 0.583 0.585
MSE 0.010 0.006 0.007 0.009 0.008 0.009

AV H 0.447 0.470 0.468 0.452 0.412 0.416
MSE 0.003 0.001 0.001 0.003 0.009 0.008

TT H 0.473 0.487 0.486 0.476 0.430 0.434
MSE 0.001 0.000 0.001 0.001 0.006 0.006

during her lifetime (44). One of the most important challenges is the increase of
precision of screening technologies, since early detection remains the best strategy
for improving prognosis and also leads to less invasive options for both specific
diagnosis and treatment.
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4.1 Description of the Data Set

A collection of digitized mammograms for analysis was obtained from the Uni-
versity of South Florida’s Digital Database for Screening Mammography (DDSM).
The DDSM is described in detail in (45). Images from this database containing sus-
picious areas are accompanied by pixel-level “ground truth” information relating
locations of suspicious regions to what was assessed and verified through biopsy.
45 normal cases (controls) and 79 cancer cases scanned on the HOWTEK scanner
at the full 43.5 micron per pixel spatial resolution were selected. Each case con-
tains four mammograms from a screening exam, two projections for each breast:
the craniocaudal (CC) and mediolateral oblique (MLO). Only the CC projections
were considered, using either side of the breast image. Five subimages of size 1024
× 1024 were taken from the mammograms. An example of a breast image and lo-
cation of subimages is provided in Fig. 1. Black lines that compart the breast area
into 5 squares in a mammogram show how subimages are sampled from the original
image.

Fig. 1 Five subimages of size 1024×1024 are extracted from each breast image to capture tissues
from the designated locations

4.2 Estimation of H

For every subimage, the DWT using Haar and Symmlet 8-tap filters were performed
to observe sensitivity in results under different wavelet bases. The analysis was re-
peated with four different sets of levels used for the regression: 4 to 9, 5 to 9, 6 to 9,
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and 7 to 9. After each transform, OLS, AV, and TT estimation methods were used
to compute the directional Hurst exponents, Hd , Hh, and Hv.

A nested ANOVA was performed to test if the Hurst estimates have significant
differences based on the health condition of a patient,

Hi jk = µ +αi +β j(i)+ εi jk,

where i indicates the health status of a patient (i=1 for cancer, i=2 for normal), j(i)
indicates a patient nested in the status i, ( j(1) = 1, . . . ,45; j(2) = 1, . . . ,79), and
εi jk is an error term (k = 1, . . . ,5). Table 5 summarizes the results of the ANOVA
analysis on diagonal Hurst exponents (Hd) obtained using Symmlet 8 tap filter and
the TT method.

Table 5 ANOVA results on Hd using Symmlet 8 and the TT method

Source Sum Sq. d.f. Mean Sq. F p-value

Status 0.330 1 0.330 10.741 0.001
Patients(Status) 3.750 122 0.031 7.574 <0.001
Error 2.013 496 0.004

Total 6.093 619

Note that 5 images are taken for each subject. This gives a total number of images
(45+79)×5= 620. However, since the subjects had multiple images and were used
as blocks within the disease status, the nested ANOVA was necessary to correctly
analyze this data.

The ANOVA model used was also demonstrated to be appropriate by checking
for the normality and independence of residuals. The n = 620 residuals at each hi-
erarchy Hd , Hh and Hv conformed to a battery of standard goodness-of-fit and inde-
pendence tests. We were particularly focused on the deviations from the symmetry
of residuals, given non-robustness of standard ANOVA to alternatives of asymme-
try. To this end, the Lin-Mukholkar and Jarque-Bera tests were conducted and found
not significant. At first glance the independence is a non-issue here, since the obser-
vations could be freely permuted in each of the disease classes. This, however, is not
the case since the positions of subimages 1-5 are comparable within each mammo-
gram. The Durbin-Watson test of independence against the order of residuals was
found insignificant as well.

The p-values for disease factor from the ANOVA analysis were 0.001 for Hd (Ta-
ble 5), 0.003 for Hh, and 0.020 for Hv. Based on the ANOVA analysis, we conclude
that a patient’s health condition is a significant factor that affects Hurst exponents
in any of the three directions: diagonal, horizontal, and vertical. In the subsequent
classification procedure based on ANOVA estimators of disease status, it is shown
that these main effects are not only statistically significant, but also discriminatory.
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4.3 Classification of Images

To classify mammogram images as cancerous or non-cancerous, the values Hd and
pair (Hd ,Hh) for each subject were estimated using nested ANOVA. Operationally,
this is Hi j,d = µ +αi +β j(i).

Next, the subjects were classified by disease status using a logistic regression
with four fold cross validation. The classification was repeated 300 times and the
results were averaged over these 300 repetitions. A threshold of the logistic regres-
sion based on the maximum Youden index was chosen, which indicates the threshold
(i.e., 0.6057) providing the maximum true positive and true negative accuracy.

Table 6 Results of classification by logistic regression using Hd and Hd ,Hh

Predictors Hd Hd , Hh
Method Total Specificity Sensitivity Total Specificity Sensitivity

OLS 0.648 0.567 0.682 0.626 0.554 0.707
AV 0.652 0.511 0.733 0.640 0.502 0.747
TT 0.654 0.550 0.709 0.639 0.537 0.725

Table 6 summarizes the results of the classification based on Hd and (Hd , Hh),
for each estimation method. The first column provides total classification accuracy,
while the next two columns provide true positive and true negative rates. The best
classification rates were achieved with the TT and AV estimators, where the classifi-
cation error was around 35% for both methods. OLS was the worst performer, with
36% error.

Unlike the simulation cases where the monofractality of the signals were violated
by design, and where the TT method was clearly favored, for mammograms the AV
and TT methods performed comparably. This may be the consequence of the fact
that individual 1024×1024 subimages taken from the mammograms exhibited rea-
sonable isotropy and monofractality, with wavelet coefficients being approximately
Gaussian.

Figure 2 shows a receiver operating characteristic (ROC) curve of Hd (obtained
by TT) in differentiating between controls and cancer cases. The diagonal line rep-
resents a test with a sensitivity of 50% and a specificity of 50%. This shows the
ROC curve lying significantly to the left of the diagonal, where the combination
of sensitivity and specificity are highest. The area under the ROC curve, which is
proportional to the diagnostic accuracy of the test, is 0.678.

5 Discussion & Conclusions

In this paper, a novel wavelet-based Theil-type (TT) robust estimator of scaling was
presented, with theoretically optimal weights for pairwise slopes that depend on
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Fig. 2 ROC curve for the logistic regression:logit(p) = 5.027−7.968×Hd

the harmonic average of sample sizes from the two multiresolution levels defining
the pair. This estimator is free of distributional assumptions for the underlying re-
gression, and robust with respect to possible outlier levels. An extensive simulation
study demonstrated that the TT estimator was comparable, and in many scenarios
superior, to the commonly used ordinary least squares (OLS) and Abry-Veitch (AV)
estimators. This superiority is reflected in both less bias and smaller mean-squared
error.

In the context of mammogram classification, the TT method was found to be
comparable to AV and superior to OLS methods. This closeness of TT and AV
could be explained by apparent relative spatial homogeneity and monofractality of
the mammogram subimages used in the analysis.

For all three estimators considered, adding spectral indices from directional hier-
archies other than the diagonal did not always improve the diagnostic performance.
Index Hd by itself was strongly discriminatory and the most parsimonious clas-
sifying summary. Furthermore, the results of classification using all three spectra
(Hd ,Hh, and Hv) did not always perform better, on average, than that with only one
or two spectral indices.

The diagnostic use of information contained in the background of images is often
an ignored modality. It allows for the use of information from the entire image,
rather than focusing primarily on irregular shapes, masses, or calcifications.

Recently, many studies have proposed fractal-based modeling to describe and de-
tect the pathological architecture of tumors. For example, the authors in (46) demon-
strated breast cancer screening using fractal and stochastic geometric approaches
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such as random carpets, Quermass-interaction process, and complex-wavelet based
self-similarity measures.

Although medical images exhibit high heterogeneity attributing to their multi-
fractality, the use of the robust estimator proposed in this paper has proven that
the monofractal self-similarity measure can be a promising classifier to differentiate
malignant images from benign. As it is important to combine several instruments
for cancer testing, this paper provides a quick and robust quantitative measure to
strengthen existing mammogram classification procedures. Although the accuracy
rates could be argued to be relatively low, even classifiers that are “slightly better
than flipping a coin” can improve diagnostic accuracy when added to a battery of
other independent testing modalities.

The future work on improving the proposed TT method can proceed in two di-
rections. First, we intend to replace the approximations in (11) and (12) with exact
values by leveraging the distribution of the logarithm of a chi-squared random vari-
able and subsequently determining the exact mean and variance. The moments of
the logarithm of the chi-squared random variable follow explicit expressions in-
volving special functions. Caution is necessary, as the distribution is conventionally
calculated using the natural logarithm, whereas, for the purpose of finding spectral
slopes, the logarithm for base 2 is required.

The second direction of future research is to develop a model for the level aver-
age energies in a more realistic manner. Wavelet transforms are decorrelating, and
for many tasks involving wavelet domains, the independence of wavelet coefficients
is assumed. This assumption is often reasonable and leads to efficient procedures,
especially in the tasks of wavelet shrinkage. However, in a general case, wavelet
coefficients are not decorrelated, and the correct distribution of the average wavelet
energy is equal to the distribution of a sum of correlated chi-squared random vari-
ables.

Acknowledgements This research is partially supported by research grants and projects PID2022-
137818OB-I00/AEI/10.13039/501100011033/FEDER and TED2021-130216A-I00 (funded by MCIN/AEI/10.13039/501100011033
and European Union NextGenerationEU/PRTR). Brani Vidakovic was supported by NSF-DMS
1613258 award and the National Center for Advancing Translational Sciences of the National In-
stitutes of Health under award UL1TR000454.

Appendix A: Derivation of the Weights of the TT Approach

Let d j = d jk be an arbitrary (wrt k) wavelet coefficient from the jth level of the
decomposition of the m-dimensional fractional Brownian motion BH(ω, t), t ∈Rm,

d j =
∫
Rm

BH(ω, t)ψ∗
jk(t)dt,

for some fixed k = (k1, . . . ,km). Here ψ∗
jk(t) = ∏

m
i=1 ψ∗

jki
(ti) where ψ∗ is either ψ or

φ , but in the product there is at least one ψ. It is well known that
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d j
d
= 2−(H+m/2) j d0,

where d0 is a coefficient from the level j = 0, and d
= means equality in distributions.

Coefficient d j is a random variable with

Ed j = 0 and Vard j = Ed2
j = 2−(2H+m) j

σ
2,

where σ2 = Vard0.
The fBm BH(ω, t) is a Gaussian m-dimensional field, thus

d j ∼ N (0,2−(2H+m) j
σ

2).

The coefficients d j within the level j are typically considered approximately inde-
pendent. The covariance decays with the distance between the coefficients and the
rate of decay depends on H and the number of vanishing moments for the wavelet
ψ, N. References (32) and (47) showed that for m = 1,

Ed jk1d jk2 ≤C|k1 − k2|2(H−N),

where C depends on j. Although, for small |k1 − k2| this covariance may not be
small, it decays to 0 as long as N > H. To ensure short memory of d jk, k ∈ Z, the
convergence of

∑
k
E |d jk1d jk2 |

is needed, for which it is required that N > H +1/2.
The rescaled “energy”

2(2H+m) j

σ2 d2
j ∼ χ

2
1 ,

while, assuming the independence of d jk’s,

2(2H+m) j

σ2 ∑
k∈ jth level

d2
jk =

2(2H+2m) j

σ2 d2
j ,

has χ2
2m j distribution. Here, d2

j is the average energy in jth level.
Thus,

d2
j

d
= 2−(2H+2m) j

σ
2
χ

2
2m j .

From this,

Ed2
j = σ

22−(2H+2m) jEχ
2
2m j = 2−(2H+m) j

σ
2,
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and

Vard2
j = σ

42−(4H+4m) j ×2×2m j = 2−4H j−3m j+1
σ

4.

Recall that if X has EX and VarX finite and ϕ is a function with finite second
derivative at EX , then

Eϕ(X)≈ ϕ(EX)+
1
2

ϕ
′′(EX)×VarX ,

and

Varϕ(X)≈ (ϕ ′(EX))2VarX .

When ϕ is logarithm for base 2, then

E log2 d2
j ≈ log2Ed2

j +
1

2log2

−
Vard2

j(
Ed2

j

)2


= log2

(
2−(2H+m) j

σ
2
)
− 1

2log2
2−m j+1

= −(2H +m) j− 1
2m j log2

+ log2 σ
2. (11)

Note that − 1
2m j log2 is the Abry-Veitch bias term, and it is free of H and σ2. This bias

is a second order approximation. Veitch and Abry show that the exact bias involves
digamma function Ψ , and in this context is

Ψ(2m j−1)

log2
− log

(
2m j−1) .

Also,

Var log2 d2
j ≈

(
1

σ2 2−(2H+m) j log2

)2

×σ
4 2−4H j−3m j+1

=
2

2m j(log2)2 . (12)

Finally,

Var

(
log2 d2

j − log2 d2
i

j− i

)
=

2
(log2)2 × 1/2m j +1/2mi

( j− i)2 .

Since weights wi j are inverse-proportional to the variance, then
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wi j ∝ (i− j)2 ×HA(2mi,2m j),

where HA is the harmonic average.
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