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i Executive summary 

The EU project SEAwise (https://seawiseproject.org/) endeavours to enhance existing multi-
stock multi-species Management Strategy Evaluation (MSE) models so that they can be used to 
define and evaluate fisheries management strategies that address broad Ecosystem-Based Fish-
eries Management (EBFM) objectives, including in particular identifying Harvest Control Rules 
(HCRs) that are robust to changes in productivity. 

The WKEcoMSE workshop was held to: (1) benchmark the approaches used or developed in the 
project to develop robust and consistent environment-productivity relationships for commercial 
stocks across selected case studies and integrate them in MSE models used by the SEAwise pro-
ject and by ICES; (2) to provide context for those approaches within the general field of “envi-
ronment-enriched” MSEs; and (3) to draw from the participants collective experience some gen-
eral guidelines about the integration of environmental impacts on stock productivity in MSE 
tools.  

23 presentations were given, both about the work carried out within SEAwise but also by inter-
national colleagues working toward similar objectives, and various topics were discussed over 
eight sessions designed to accommodate participants spread across Europe and Northern Amer-
ica. “Good practices” to incorporate environmental considerations in MSE modelling were then 
drafted collectively and have been summarized in the panels below. These rely on the experi-
ences of the WKEcoMSE participants and are not exhaustive.  

https://seawiseproject.org/


ICES | WKECOMSE   2024 | iii 
 

 

 

Figure 1: One possible process flow that MSE developers can follow when developing models of environment-
productivity relationships to use in MSE. The diagram outlines the typical steps needed (orange), more spe-
cific actions within these steps (green), conditions encountered during development (yellow), and the practices 
one may follow (blue). Where more than one practice (blue) is included within a condition (yellow) or action 
(green), either or both practices can be done. 
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Figure 2: One possible process flow MSE developers can follow when integrating environment-productivity 
relationships in MSE. 
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1 Introduction 

Management Strategy Evaluations (MSE) are most commonly conducted as single-species anal-
yses but can also address mixed fisheries objectives by using multi-stock and multi-fleet operat-
ing models. The EU project, SEAwise (https://seawiseproject.org/), endeavours to advance such 
multi-stock multi-species models, so that they can be used to define and evaluate fisheries man-
agement strategies or procedures that address Ecosystem-Based Fisheries Management (EBFM) 
objectives, including in particular identifying Harvest Control Rules (HCRs) that are robust to 
changes in productivity (e.g. in a climate change context). 

As a joint SEAwise-ICES initiative, this workshop was held to: (1) benchmark the approaches 
used or developed in the project to develop robust and consistent environment-productivity re-
lationships for commercial stocks across selected case studies and integrate them into MSE mod-
els used by the SEAwise project and by ICES; (2) to provide context for those approaches within 
the general field of “environment-enhanced” MSEs; and (3) to draw from the participants’ col-
lective experience some general guidelines about the integration of environmental impacts on 
stock productivity in MSE models. The co-chairs and participants acknowledge the existence of 
a rich documentation on MSE procedures and in particular the three previous ICES workshops 
WKGMSE, WKGMSE2, and WKGMSE3. The WKEcoMSE group had a fairly focused objective 
(integrating environment, mainly climate, in multi-species MSE models) and did not undertake 
a systematic review of all the existing work on this topic. 

The meeting was held by videoconference over four days (21-24 May), and was well attended: 
55 participants, 18 from SEAwise and 37 outside the project, spread across Europe and the US. 

Three topics (predictive models of recruitment, predictive models of growth, integrating envi-
ronment-productivity relationships in MSE models) were covered by two daily sessions, each 
including 2-4 presentations and a general discussion. The final day was dedicated to sub-group 
work on different sections to be included in the report, and to a general discussion on the final 
diagrams in Section 2.7 (Figures 1 and 2) The full workshop agenda can be found in Annex 3. 

Section 2 discusses the guidelines outlined above and Section 3 summarizes all the presentations 
given during the workshop. 
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2 Good practices for the integration of environmental 
impacts on stock productivity in MSE modelling 
tools 

Ecosystem-based fisheries management is becoming more and more important under the current 
climate change trajectory. Most of the advice currently provided to management is based on 
single species stock assessments that do not take into account the effect of environment or other 
ecological processes in the stock dynamics (Skern‐Mauritzen et al., 2016); however, ecosystem 
information is progressively being incorporated in the different steps of management advice 
(stock assessments, short-term forecasts, Management Strategy Evaluation) (e.g. in the ICES area 
see Trenkel et al., 2023; and in the U.S. see Dolan et al., 2016). Trenkel et al. (2023) estimated that 
ecosystem trends and/or variability were quantitatively accounted in some form in roughly 50% 
of MSE analyses surveyed from ICES fishing opportunities advice. Environmental and ecological 
drivers affect fish productivity through reproduction, recruitment, growth, maturity, and natu-
ral mortality. Representation of these life cycle components and population dynamics thus needs 
to evolve from stationary to non-stationary/dynamic processes and parameters in the models 
used in MSE. 

The wide range of alternative models and approaches available can be overwhelming, and the 
lack of a standardized framework for model development and model selection makes it difficult 
to navigate through all the options. Depending on the objectives of the study, the species/stock 
under examination, the data available, the processes of interest, and the user capacity, some ap-
proaches might be recommended over others. Also, the testing and validation methods available 
might not be conclusive on the most appropriate model to use, and the user experience will play 
an important role in the model choice.    

This report aims to provide some suggestions on the questions and the decisions one needs to 
correctly set up and evaluate these models. It does not aim to restrict one’s choices to what have 
been described here, but to collect a suite of approaches that have been used in different parts of 
the world with different objectives, and to highlight some of the main issues and solutions sug-
gested by the workshop participants. In particular, the focus of all approaches listed here was on 
processes linking environment to growth and reproduction.  

In the SEAwise project, multi-species multi-fleet models such as FLBEIA (Garcia et al., 2017) and 
BEMTOOL (Rossetto et al., 2015; Russo et al., 2017) were used. These are simulation models that 
take as input externally estimated parameters as opposed to internally estimating them (e.g.  as 
in integrated models used for stock assessment that simultaneously fit multiple data sources). 
The incorporation of environment-productivity relationship in these simulation models was a 3-
step process: (1) fitting one or several environment-productivity relationship(s) outside the op-
erating model (OM); (2) assessing predictive skill of those relationships for model selection; and 
(3) incorporating the selected one(s) in the existing OM of the MSE modelling framework and 
running the MSE, over several environment and fishing management scenarios (i.e. the ‘mecha-
nistic approach’ from Punt et al., 2014). The structure of the guidelines follows this sequence, but 
alternative approaches are also mentioned (including the ‘empirical approach’ from Punt et al., 
2014). 

In the text, an operating model (OM) is a mathematical representation of a given set of processes 
of stock and/or fisheries dynamics coded in a specific fashion. However,  the same term can also 
be used to differentiate alternative parameterizations of a single productivity process (e.g. stock-
recruitment), alternative fixed parameter values for a single parameterization, alternative 
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trajectories of an environmental covariate input to an environment-productivity relationship, or 
a combination of these. Thus, one OM represents a scenario of the unique combination of stock 
biology, fishing and environmental assumptions or conditions. In this context, “OM” and “sce-
nario” are either used interchangeably in the text or differentiated where necessary. 

Finally, some of the questions raised during the workshop remained unanswered. We have in-
corporated these into the report because the participants deemed them as important.  

2.1 Stock Data 

Two alternative sources of biological data may be used to analyse environmental effects on stock 
productivity: 

Survey data:  Includes individual data (i.e. weight-at-age, length-at-age, and weight-at-length) 
and abundance indices, in particular age 0 or age 1 indices for recruitment estimates. In the case 
of length-at-age data, these can also be back-calculated through the analysis of otolith growth 
increments (Presentation P10 in Annex 2). Potential biases include a lack of spatiotemporal rep-
resentativeness depending on the proportion of the stock covered by the survey(s) and an over-
estimation of weight-at-age for the individuals of the youngest ages caught (due to gear selectiv-
ity). Survey data also allow estimation of individual variability associated with the different bi-
ological traits (weight-at-age, length-at-age).  

Stock object data: Stock objects are defined here as stock assessment input and end products. 
These products typically contain observed biological data including information on removals 
(i.e. catches, landings, and discards), maturity, natural mortality, weight/length-at-age, and the 
results of an analytical assessment (i.e. estimates of abundance and mortality rates due to remov-
als). Stock objects therefore synthesize management’s perception of the stock under structural 
assumptions with all available inputs considered. The content of stock objects may vary depend-
ing on stock assessment groups’ procedures and documentation about the parameters, and con-
sequently lack important information for post-hoc analyses. For example, the origin of the data 
used might not always be documented or easily accessible (e.g. have the catch at age for all-time 
series been generated using a slicing method, or actual age readings?). Assessment results for 
multiple stocks can be standardized and centralized within dedicated databases. For example, 
the RAMS legacy (https://www.ramlegacy.org/) database is an extensive and publicly available 
resource, and it includes stocks from various parts of the world. However, it mostly only includes 
a subset of data and estimates from the original stock assessment. Another example is the data-
base associated with the state-space assessment model (SAM) project (https://stockassess-
ment.org) used to conduct assessments for many ICES stocks. It displays stock objects generally 
closer to those produced by the stock assessment groups, but it is limited to SAM applications. 

Ideally, analysis may be performed on both sources of data. 

When using stock data to investigate environment-productivity relationships, the number of 
years available from each source should be considered with respect to the longevity of the stud-
ied species. Also, analysing regime shifts requires more data to catch non-linear trend and inter-
polate step functions.  

 

Useful readings 

To navigate between age and length in stock objects: Fisher et al. (2021), Kell et al. (2022), Kell and Kell 
(2011) 
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2.2 Environmental Data 

2.2.1 Which environmental data to consider? 

A hypothesis-based approach, based on existing literature or preliminary studies, is generally 
preferred to a grid approach (where you systematically scan any available environmental driv-
ers). In particular, considerations on the spatial and temporal scales (also time lags) of environ-
mental drivers with regards to the biology and ecology of the stock considered helps avoid spu-
rious relationships (for examples see Bartolino et al., 2008; Tolimieri et al., 2018; Henriksen et al., 
2021). Also, similar covariates hypothesized to have different biological effects (e.g. surface and 
bottom temperatures affecting different life stages) might be preserved even if they show collin-
earity (see for example Morrissey and Ruxton, 2018). If after initial hypothesis-based variable 
selection there remains a large number of potential candidate variables (especially with different 
possible timings of the effect of the same covariate, including annual lags and seasonal influ-
ences), exploratory approaches such as machine learning can be considered (Kühn et al., 2021). 
Whichever approach is taken, it is necessary to keep in mind the potential non-stationarity of 
environment-productivity relationships. Proxies for a known driver may also be used when data 
about this driver is insufficient.  

The availability of data for environmental variables should also be considered before integrating 
them into the analysis. This includes future availability of the observations, model estimates or 
projections, which implies the ability to update the environment-productivity relationship 
should the MSE be used for management on a regular basis, or to explore the impact of climate 
change in a medium- or long-term perspective. 

Investigating relationships suggested by stakeholders can be useful to clarify what is caused by 
the fishery and what is due to the environment, as well as facilitate communication.  

2.2.2 Which type of environmental data to use for esti-
mating environmental-productivity relationships? 

Two types of environmental data may be available: observational data (e.g. in-situ, raw or ag-
gregated at different scales, historical or real-time) and forecast/model estimates (e.g. projections 
from climate models, such as the POLCOMS-ERSEM dataset). Both these types can be combined 
into composite or reanalysis products (e.g. https://climate.copernicus.eu/reanalysis-qas); such 
products usually integrate observations for a subset of variables (often when observations are 
available widely over the study area) and compare predictions to observations for some other 
variables (at wide or local scale in the study area). 

In all cases, these data need to be spatially aggregated, either through simple spatial averaging 
over the distribution area and bathymetric range of the considered stock, or using more sophis-
ticated dimension reduction methods like EOF/PCA (Empirical Orthogonal Function/Principal 
Component Analysis) analysis, EOT-analysis (Empirical Orthogonal Teleconnections) or spatial 
clustering (Kühn et al., 2021). For instance, spatial analyses such as EOF may be helpful to reflect 
changes affecting specific areas of the stock distribution that are key in the life cycle of the spe-
cies, hence with implications on the productivity of the stock.  

Both types of data (observation and model outputs) have pros and cons. Observational data may 
require careful scrutinization to make sense from a biological perspective, and model-based ag-
gregation is often still necessary. On the other hand, model predictions can provide useful trends 
at appropriate time and space scales, but they can fail at capturing important interannual signals 
at the scale of interest for a given stock, especially when they are not reanalyses or when no data 
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assimilation is performed for the variables of interest within these reanalyses. The appropriate-
ness of the model and specific model run(s) used should be discussed with oceanography mod-
ellers. 

In order to project such environment-productivity relationships in the future, methods to treat 
the (sometimes considerable) offset between historical and projected environmental data and 
climate are available (refer to section 2.5.1).  

Useful readings:  

Morrissey and Ruxton (2018) 

2.3 Fitting statistical environment-productivity models 

2.3.1 Models of the productivity process 

Two main types of models can be considered, descriptive and mechanistic models. Descriptive 
models include linear mixed models, generalized additive models, or machine learning, which 
focus on capturing trends and patterns in data, especially over time. Mechanistic models are 
derived from ecological theory (e.g. Von Bertalanffy or Gompertz for growth, Ricker or Beverton-
Holt for recruitment) and impose strong constraints on predictions from the fitted relationship. 
For long time series with high contrast, multiple approaches can be applied and compared, while 
mechanistic approaches might be preferable with shorter time series as they avoid the risk of 
overfitting to noise and having unreliable estimates. In all cases, descriptive models with shape-
constraint (limiting the response complexity by imposing a specific response shape, e.g. concav-
ity; Pya and Wood, 2015; Citores et al., 2020) might still be appropriate as they keep predicted 
responses close to physiology concepts (e.g. temperature optima), and to avoid predicting out-
side of the range of the environment covariate on which the models were fitted. Density depend-
ence might be tested systematically in addition to selected environmental covariates (Rindorf et 
al., 2022). 

Estimating individual relationships post hoc can introduce bias and inconsistencies by not fully 
accounting for the interconnectedness of stock dynamics (e.g. if process error is modelled by 
recruitment but generated by other processes such as natural mortality). Potential dependency 
between processes should therefore be explored before to introduce separate environment-
productivity process relations in an MSE model.  When working with estimation models, the 
environmental relationship may be fitted directly, which allows for the correlation between life 
history parameters and the propagation of uncertainty from the data and priors or fixed param-
eters, through to assessment outputs such as biomass and fishing mortality relative to target and 
limit reference points. It will also allow goodness of fit diagnostics to be evaluated, providing an 
objective framework for accepting or rejecting hypothesis, and for assigning weights to models 
within an ensemble of alternative operating models (see Section 2.6; Haltuch et al., 2019a; Punt et 
al., 2024). 

Generally, a model of the productivity process, especially recruitment, assumes the process is 
time-invariant. However, changes in productivity function itself have been shown to be common 
(Vert-pre et al., 2013; Szuwalski et al., 2015, 2019). These changes are interpreted as regime shifts 
that are environment-driven and may reflect broader ecological shifts. There are a number of 
methods that can be used to detect regime shifts. They range from change-point detection algo-
rithms (e.g. STARS, Rodionov, 2004; or PELT, Killick et al., 2012) to statistical models like random 
switching models (Munch and Kottas, 2009), Bayesian change point analyses (Perälä and Kupar-
inen, 2015; Perälä et al., 2017) or threshold GAMs (Blöcker et al., 2023).  Alternatively, time-
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varying stock-recruitment models can also track gradual changes in recruitment dynamics 
(Minto et al., 2014; Silvar-Viladomiu et al., 2023). 

Note that our focus is on descriptive and mechanistic models, but other models can be employed 
to project changes in productivity. In particular, individual-based models (IBM) can be used to 
predict temporal variation in size or recruitment in response to changes in environmental con-
ditions. In the European sea bass IBM developed within the SEAwise project, stock dynamics 
emerge from the concurrent evolution of a large number of individuals dictated by the dynamic 
energy budget theory (e.g. growth, fecundity, and survival; Melià et al., 2024). In other words, no 
explicit relationship between environment and recruitment is modelled, but predictions of re-
cruitment will be the output of the model when forcing it by climate projections. 

2.3.2 Models of the uncertainty 

The statistical model of the noise should at least incorporate an estimate of process error (e.g. the 
standard deviation and autocorrelation of recruitment deviates around a stock-recruitment rela-
tionship), and ideally measurement error as well (Crone et al., 2019; Maunder and Thorson, 2019). 
For example, environment-productivity relationships with state-space formulations (Maunder et 
al., 2015; Miller et al., 2016) or covariates “as data” (Schirripa et al., 2009; Crone et al., 2019) directly 
incorporated and fitted within stock assessment models not only estimate measurement error, 
but also integrate this error and all other data inputs to the stock assessment in the estimated 
environmental effect on productivity. Furthermore, accounting for covariate measurement error 
is considered good practice when modelling environment-productivity relationships to avoid 
regression attenuation. For example, a separate likelihood component that “fits” the covariate 
data with an estimate of that covariate (in a state-space framework; see for example Wildermuth 
et al., 2023) could be used. Finally, accounting for observation errors in weight/length-at-age 
should also be considered, depending on the variability of the sample size. 

2.3.3 Recruitment-specific considerations 

Recruitment variability emerges from multiple mechanisms, all possibly impacted by the envi-
ronment (e.g. see for example Henriksen et al. 2021; see also Section 2.2.1) and difficult to disen-
tangle. 
Comparisons between environment-Stock Recruitment Relationships (SRR) fitted on stock-re-
cruit estimates from stock assessment models (common approach) and SRR produced from in-
tegrated assessment models in which environmental relationships are directly incorporated (e.g. 
SS3, SAM, WHAM) might be useful when possible. 
Fisheries reference points are also strongly affected by density-dependent processes. Hence, it is 
important to incorporate density dependence to provide a more accurate estimation of reference 
points. 

2.3.4 Growth-specific considerations 

Changes in size have multiple consequences in the population dynamics of exploited popula-
tions, including changes in natural mortality (as bigger fish are thought to have lower M, e.g. 
Gislason and Lorenzen natural mortality models), reproductive capacity, selectivity at age, and 
price (when using socioeconomic models). 
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Testing trends in body condition is a useful addition to studying those in weight-at-age or length-
at-age to avoid false conclusions on the impact of one on the other. Similarly, correlations be-
tween growth and maturity can be complex and therefore assuming a simple correlation between 
each other can lead to errors. 

 

Useful readings:  

Kell et al. (2016) 

2.4 Model evaluation and validation 

Detecting relationships between environmental variables and biological responses is extremely 
difficult due to the multi-dimensionality aspect of ecological systems. Model selection is one 
method for seeking an understanding of ecological processes.  Failing to appropriately evaluate 
the models developed can lead to the identification of spurious correlations, inaccurate error 
estimates, poor predictive potential, failure to detect existing relationships, and so on. 

One of the key steps before selecting a model is to identify the modelling objectives because there 
is the risk that assumptions and model specifications which are reasonable for one particular 
model application are inadequate for another. There are three main objectives that these types of 
models are used for: (1) exploration; (2) inference; and (3) prediction (Tredennick et al., 2021).  

Explorative analyses are useful to describe patterns in the data and generate hypotheses. Usu-
ally, explorative analyses cover a wide range of models and correlations with many environmen-
tal covariates and bear the risk of encountering spurious relationships (Type I errors).  

The goal of inference is to test alternative prior hypotheses about how a system functions, which 
are formalized as alternative statistical models. In this respect, the prediction skill of the models 
is then of secondary importance, but validation with independent datasets and across a range of 
conditions should be performed.  

Models that achieve the goals of exploration and inference should produce models that give 
good predictions, but possibly not the best (see full explanation in Tredennick et al. 2021). It is 
important to highlight the fact that the best model for prediction often cannot be used for infer-
ence because, after doing model selection, P-values of terms in the selected model will be artifi-
cially low. Also, predictions from the same model with updated data can improve or worsen 
over time.  

Overall, fisheries management prioritizes the goal of prediction because it is key to understand-
ing how the system will behave in the future based on what is known about the past. 

Models with the goal of prediction require measures of predictive skill. Prediction skill is typi-
cally quantified as the error between the predicted mean (e.g. of a modelled distribution) and 
observation and can be obtained with hindcast cross-validation, which is closely related to fore-
cast evaluation. There are several types of cross validation, the choice of which primarily de-
pends on the size of the dataset. The k-fold cross validation method is more common for smaller 
datasets and randomly splits the dataset into multiple (k) groups, where k-1 groups are used for 
training and the remaining group is used as an independent test dataset. This procedure is re-
peated so that each group is used as a test set, with the remaining ones for training. The model 
is fit and selected based on the training data set and then used to make predictions of the test 
dataset, predictions that  are then compared to the actual observations (see details in Hewa-
malage et al., 2023). Increasing the numbers of folds (i.e. length of the time series you use for 
training vs predictions) too much might inflate the number of accepted variables, so there is a 
trade-off in the number of folds. In general, the performances of the cross validation depend on 
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the length of the time series. Artificial data sets can help in assessing your predictive skills eval-
uation method.  

How ever the predictive skill of a given model is calculated, it is important to compare this skill 
against that of a naїve model or forecast. For example, a naїve forecast can be equal to the last 
observed value (Kell et al., 2021) or to the mean over a range of years. There may be other ways 
to define “naїve” and the choice should consider how these predictions are used and communi-
cated. Additionally, the number of years to choose for the naїve model should be justified, espe-
cially considering the non-stationarity of the system under examination.  

If the planned MSE procedure includes only one OM then the model with the highest prediction 
skill should be preferred, and the uncertainties considered should be relevant to the specific 
management question investigated. Simulation tests are on the other hand flexible for setting 
alternative OMs and investigating “what if” scenarios. Note that if a model ensemble is preferred 
over a single model, this will affect the uncertainty included in the MSE. 

Regardless of the model objectives, it is key to make sure that the results are realistic for the 
stock/species under examination, given what is known about its ecology.  

It is also important to consider assessing the full distribution of the predictions and their uncer-
tainty, besides just the error of the predicted mean. It may be that the predicted means are similar 
across different models, but there exists variability between these models coming from the tails 
of their distributions. 

Finally, there are different types of errors that might affect results and conclusions, and one 
should be aware of those. Besides Type I (rejecting true hypothesis) and Type II (failing to reject 
wrong hypothesis) errors, one should be aware of Type III (arrive at the correct conclusion for 
the wrong reason) and Type IV (explaining your correct conclusion in the wrong way) errors as 
well. The last two are often overlooked. However, especially when the model is used for man-
agement advice or practical decisions, the outcomes could be very different. One way to prevent 
these is to have a good understanding of the system and of the data available. 
 

Unanswered questions: 

How do we assess the validity of a detected relationship? What if different models give contrasting rela-
tionships? 

What is an acceptable environment-productivity relationship? There are several rules of thumbs that might 
not necessarily apply. Also, the context within which an MSE is developed might require different scenar-
ios not necessarily supported from a statistical context (depending on how good your data are). 

Best practices for the choice of naїve model? 
When exploring the impact of environment on productivity processes, a way to define the naїve model 
could be to consider the model without environmental variables included (e.g. Classical formulations of 
Beverton and Holt, Ricker SRR, etc…). 

2.5 Projection of environment-productivity relationships in 
MSE 

This section presents alternative approaches and methods used for projecting future environ-
mental effects on productivity within a MSE. The projection of environment-productivity rela-
tionships has been an integral part of MSE research and development since MSE and similar risk 
analyses were first formally used for fisheries management. Previously published individual 
case studies (A’mar et al., 2009; Ianelli et al., 2011; Haltuch et al., 2019b), reviews (Haltuch et al., 
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2019a; Siple et al., 2021), and guidelines (Punt et al., 2016; ICES, 2019, 2020) have thus set prece-
dents on this topic. The following sub-sections generally reiterate these formerly established 
practices with more recent examples, while highlighting the common and important considera-
tions and methodologies that may serve as good practices. Two key tasks in MSE development 
are discussed: (1) projecting environment time series to evaluate environmental impacts on 
productivity (sections 2.5.1 and 2.5.2) and specifying alternative climate scenarios for projecting 
these relationships (Section 2.5.2); and (2) designing your operating model depending on the 
knowledge and data you have available. The latter point is treated with a specific example from 
a highly mixed fishery which uses a decision tree (Section 2.5.3; Section 3 - Presentation P19) to 
illustrate the typical choices a MSE developer must make and a potential strategy for making 
them. 

2.5.1 Projecting future environmental time series in the 
MSE 

Generally, perceptions of future environmental conditions for MSE rely on climate change pro-
jections. General Circulation Models (GCM) simulate the dynamics of major climate system com-
ponents (atmosphere, land surface, ocean, and sea ice) at a global scale and provide simulations 
of various climate evolution scenarios, typically Representative Concentration Pathways (RCP1) 
and Shared Socioeconomic Pathways (SSP2) scenarios (e.g. the Geophysical Fluid Dynamics La-
boratory (ESM2M), Hadley (HadGEM2-ES), Institut Pierre Simon Laplace (CM5A-MR), Euro-
pean Community Earth system model (EC-EARTH )). For marine ecology and fisheries science 
purposes, such global climate projections can then be downscaled using Regional Climate Mod-
els (RCM), i.e.  prediction models forced by specified lateral and ocean conditions from a GCM 
with a finer resolution and coupled with biogeochemical models (e.g. in Europe: NEMO-ME-
DUSA, POLCOMS-ERSEM, the 1st acronym being the RCM and the 2nd acronym being the bi-
ogeochemical model; in the US: ROMS)).  

Impacts of climate change on future stock productivity can thus rely on projections of environ-
mental covariates from one or more RCM. Alternative approaches exist, tailored to the stock- 
and management-specific scenarios. For example, in Wildermuth et al. (2023) climate signals 
from GCMs were passed to the OM from a model of intermediate complexity (DynaMICE 
Koenigstein et al., 2022), which reflected biological and spatiotemporal detail that could not be 
accounted for within the MSE modelling framework. 

The climate model projection can use a coarser resolution than that of the covariate used to fit 
the environmental-productivity relationship (e.g. observational time series), which requires the 
climate projected variable to be downscaled to the appropriate resolution. One may accomplish 
this statistically, by scaling variance and removing bias between the mean of climate projections 
and regional observation series. In addition, mean-bias correction (also known as ‘delta-correc-
tion’) or scaling of the entire distribution (e.g. via quantile mapping) over the historical period 
used to condition the OM is strongly recommended to ensure the scales of historical and pro-
jected covariates match (see Figure 3, which was extracted from this tutorial: 
https://figshare.com/articles/software/Tutorial_-_Ways_to_bias_correct_climate_projec-
tions/23514618) 

In any case, it is important to ensure the scale of the projected covariate time series derived out-
side the MSE reasonably matches that of the calibration period used to condition the OM.  

 
1 https://ar5-syr.ipcc.ch/topic_futurechanges.php 

2 https://www.ipcc.ch/report/ar6/syr/figures/csb-2-figure-1 
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Additionally, translation between climate projection units and forcing variables in the simulation 
should be explicitly addressed (e.g. converting modelled mass chlorophyll concentration 
(mg/m3) https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-MED-PUM-006-
008.pdf) to total chlorophyll-a (kg/m3), https://cds.climate.copernicus.eu/cdsapp#!/da-
taset/10.24381/cds.dcc9295c?tab=overview). 

 

Figure 3 : Bias correction of modelled environmental time series 

 

If a climate model is not readily available, it is still possible to obtain future time series of envi-
ronmental covariates using different approaches. Several related examples were presented and 
discussed during the workshop. A MSE analysis for Pacific halibut used a semi-Markovian 
model (where the next year depends on the current year) to simulate random, decadal changes 
in a binary environmental regime to mimic the cyclical nature of the Pacific Decadal Oscillation 
(PDO) and its relationship to average recruitment and movement (Presentation P8 and Section 
2.3.4 in Hicks and Stewart, 2022). The probability of changing regime was modelled as a function 
of the length of the current regime (i.e. the longer the current regime duration, the higher the 
probability of change), to ensure an average periodicity of approximately 30 years. A similar 
stochastic regime-shifting approach was used in MSE analyses for Iberian sardine (“two-regime 
random switching model” in presentations P5 and P13) with unique stock-recruitment models 
for each regime which, are modulated by the transition probabilities from one regime to the other 
(Munch and Kottas, 2009). 

The use of fixed shifts in recruitment regimes based on stock-recruitment fits to different histor-
ical periods was also noted. In a shortcut or desktop MSE analysis for pelagic stocks in the North-
east Atlantic (Presentation P12), shifts between two alternative regimes in the projection period 
were fixed at years corresponding to the relative timing of regime shifts in the historic period. 
Similarly, a hindcast MSE can be conducted, where the projection of both stock biology and en-
vironment is done over the historical period. A hindcast MSE uses the historical observed 
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environment without making strong assumptions about future environmental conditions or 
without trying to extrapolate future scenarios.  While this does not necessarily test the effective-
ness of management strategies under plausible future environmental conditions, it does provide 
some insights on how new proposed management strategies would have performed under past 
conditions. 

An environmental covariate and fully specified environment-productivity relationship is not 
necessary to project future environmental effects. In lieu of relying on a model that takes as input 
a time series of a covariate to predict effects on productivity, the effect is modelled directly in the 
projection. For example, the demographic variable can be modelled as an autoregressive process 
(AR-1) if the modelling platform allows random variables to be defined (e.g. the autocorrelated 
recruitment scenario in Wildermuth et al., 2023). Robustness scenarios of single-year “shocks” 
can model a short, but extreme event impacting stock productivity, such as a one-off increase in 
natural mortality to represent a mass mortality event; an example of estimating this effect within 
a stock assessment model can be found for Pacific herring in Prince William Sound, Alaska (Mu-
radian et al., 2017; Trochta and Branch, 2021). Similarly, extreme values of other productivity 
processes (e.g. low recruitment or slow growth) can be modelled with increasing frequency dur-
ing projections. These extreme, or “black swan” events can be modelled statistically with a Stu-
dent t distribution, which has wider tails in the extremes of the distribution, allowing otherwise 
unusually large (or small) values to happen with higher probability than a Gaussian distribution 
(Anderson et al., 2017). If long or continuous historical time series are not available to fit such a 
distribution, extreme values (either empirical or anecdotal) can be prescribed for one or more 
years to test the effect of shocks within the context of historical variability (e.g. observations from 
marine heatwave years, etc.). Some stocks also exhibit ‘spasmodic’ recruitment, such as Norwe-
gian spring-spawning herring, which are poorly represented by conventional parametric distri-
butions such as the log-normal as the frequency of these year-classes are poorly determined (i.e. 
too infrequently occurring given the scale of these year-classes) (presentations P7, P12, and P21). 
In such cases, it is more tractable to understand the impact of different fixed durations between 
spasmodic year classes across different MSE scenarios. 

Some stocks show trends in productivity during the recent historical period, or a modelled 
productivity process will trend during the projection period of the MSE because of a trending 
covariate. Caution needs to be exercised when extrapolating trends into the future within MSE. 
For example, changing the length of the projection period can help constrain a linear trend so 
that it does not reach unprecedented levels. As mentioned in 2.3.1, using non-linear environmen-
tal productivity relationships that force a shape constraint between environment (or time) and 
productivity parameters can also limit the range of projected productivity changes in MSE (e.g. 
Smith et al., 2022; Wildermuth et al., 2023).  Finally, trending productivity and/or an environmen-
tal covariate should be one of multiple scenarios tested in a MSE.  

Whether a climate projection from a GCM or alternative method for projecting environmental 
conditions is used as described above, propagation of uncertainty in the environmental covari-
ates should be accounted for in the projection period. To account for within-model variability of 
univariate climate projections, time series decomposition and a model of the resulting residuals 
(e.g. with AR1) may be used to simulate possible future realizations of an environmental time 
series. For spatial multivariate time series from a climate projection, a combination of a dimen-
sional reduction analysis (e.g. EOF) and multivariate time series model (e.g. Baysian vector au-
toregression models, or BVAR) fit to dimensionally reduced time series may be used to simulate 
future realizations of the environment (presentations P1 and P4; also see tutorial at: 
https://figshare.com/articles/software/Tutorial_-_Capture_uncertainty_of_climate_sig-
nals_via_Bayesian_Vector_Autoregression/23546127). 
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More generally, noise (i.e. generated from a parametric statistical distribution, or resampled from 
a historical series of estimated errors) could be simulated in the environmental covariate directly 
(presentations P13 and P15) or as proportional error around the environment-productivity rela-
tionship used to link the forcing covariate to system dynamics (e.g. see Presentation P16). This 
applies to both stationary and non-stationary (e.g. trends) environment-productivity relation-
ships. As mentioned in Section 2.3.2, noise should be ideally incorporated in the form of at least 
process and ideally observation error too.  

2.5.2 Specifying alternative climate scenarios based on 
available climate projections 

In general, researchers should include one or more scenarios to better contextualize the effect of 
climate change or other environmental covariates on the study system. In addition to different 
climate change scenarios (e.g. presentations P15 and P16), a null hypothesis OM, in which no 
climate trend exists, should be included. This can be defined by removing the future trend (me-
dian of all realizations) from the time series of the projected climate change scenario, resulting 
in an environmental time series with the same stationary stochasticity as the climate change run. 

For devising scenarios based on climate projections, researchers must be aware of the various 
models available, how they are used, and differences in their results. As mentioned earlier (Sec-
tion 2.5.1), two types of climate projections are available, either GCM outputs or RCM. Two series 
of scenarios are available, the RCP and SSP scenarios. There are seven RCP scenarios of green-
house gas concentration trajectories. The IPCC currently uses SSP scenarios to characterize the 
rate and magnitude of future warming, given the socioeconomic circumstances leading to vari-
ous levels of greenhouse gas emissions. These scenarios replace the previous RCPs but can still 
be compared to the RCPs through the numbering system identifying each climate scenario (e.g. 
SSP1-2.6: socioeconomic pathway 1 with radiative forcing of 2.6 W/m2, or paired with RCP 2.6). 
Depending on the region of the world, not all the RCP scenarios have been downscaled using 
RCM, and downscaled SSP are yet to become available, at least in Europe. 

Within climate science, it is a standard practice to use model ensembles to project future climate 
(e.g. a combination of multiple models). Care must be taken to address the structural and sce-
nario uncertainties engrained in these products when using them to project future productivity 
relationships. Multiple GCM and RCM model structures exist and are used in the global IPCC 
climate projections, but the magnitudes of change and spatiotemporal pattern of impacts esti-
mated by each GCM may differ at local to regional scales (e.g. Pozo Buil et al., 2021). Spatiotem-
poral model averages may be a valid method to reduce the number of alternative scenarios, but 
researchers should be aware of the implications of this simplification for their study region. Al-
ternatively, climate model structures producing contrasting trends in projected variables may be 
used to explicitly specify alternative OMs that bracket the range of uncertainty in future envi-
ronmental effects on productivity. Care should be taken to ensure all required physical and bio-
geochemical variables are available for OM forcing, given alternative climate model structures 
do not have the same outputs or resolution.  

Thus, researchers and stakeholders will have to identify the climate model structure and climate 
scenarios relevant and available for a given study. Combinations of models and scenarios can be 
selected to provide contrast (e.g. high vs. low emission scenarios), to attempt to represent the 
most likely outcomes (e.g. only using a model that performs best in the study region), or to assess 
worst-case scenarios (e.g. only analysing high emissions scenarios as in Wildermuth et al., 2023). 
Using downscaled model products leads to a much smaller range of available model/scenario 
combinations. To make up for this, a typical solution would be to use several realizations of the 
environmental variable and force the simulation model for a series of Monte Carlo simulations 
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(https://figshare.com/articles/software/Tutorial_-_Capture_uncertainty_of_climate_sig-
nals_via_Bayesian_Vector_Autoregression/23546127). Alternatively, noise can also be added as 
a random process, and/or through auto- and cross-correlation. 

2.5.3 Example decision tree for devising multi-species 
OMs with environment-productivity relationships 

As implied in the previous sections, determining which OMs to include in the final MSE poses a 
major challenge for researchers especially because of the trade-off between time and resource 
constraints, and the need to sufficiently address and/or model the different types of uncertainty. 
To better illustrate this unavoidable decision process, a decision tree was presented for a MSE 
for mixed fisheries in the Bay of Biscay (Figure 4 as presented in P19). This tree was built with 
the goal of projecting climate change effects on all stocks included in the model as much as pos-
sible. It can thus be seen as the terminal part, or a subsection of a broader decision tree that may 
help design the entire MSE. Additionally, this decision tree (and the associated table below) il-
lustrates decisions on how to conduct projections or how to perform extrapolations for one spe-
cific trait of a specific stock in our simulations. So, in this example of highly mixed fisheries, this 
sequence leading to a decision regarding the simulations would be potentially repeated for each 
trait for each stock for which we want to project climate change impact. Preliminary to that se-
quence of decisions are hence other decisions. The tree may also allow different applications to 
be compared, and individual case studies to be summarized.  
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Figure 4 : Decision tree for designing alternative OMs for projecting environmental-productivity relationships 
(called model in the figure and the table below) in a MSE. Each rectangle is either a condition to address or 
choice to be made when developing an OM, with the underlying branches representing two alternative out-
comes. The circles are end nodes with values identifying a set of potential scenarios to use and how to define 
them, as shown in Table 1.  
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Table 1: Cases corresponding to the end nodes of the decision tree in Figure 4, where each case defines a set 
of scenarios/OMs one may use based on the availability of data, model, and relevant model outputs for an 
environment-productivity relationship. 
 

 

 

2.6 Conducting and presenting MSE analyses with environ-
ment-productivity relationships 

As noted during the workshop, specific considerations should be made in other aspects of the 
MSE process when conducting MSE analyses with environment-productivity relationships. Gen-
eral MSE best practices (Punt et al., 2016) and specific guidelines based on experiential 
knowledge and expert consensus (ICES, 2019, 2020) should be followed as much as possible. This 
especially includes the process of stakeholder involvement that should occur before, during, and 
after MSE analyses, for which specific advice is also available (Feeney et al., 2019). The following 
section generally reiterates existing MSE practices and guidelines, focusing on how they are ap-
plied in the context of environment-productivity relationships. 

2.6.1 Performance metrics 

Performance metrics aim to reflect how well alternative management strategies meet manage-
ment objectives and their robustness in case of changes in productivity. During the workshop, 
we mostly focussed on performance metrics related to the status of, and fishing pressure exerted 
on, managed stocks. Several considerations related to the calculation of performance metrics 
should be made. As previously noted in Section 2.5.2, reference points used in performance met-
rics (e.g. virgin or unfished biomass (B0), biomass at maximum sustainable yield (BMSY), biomass 
below which recruitment declines (Blim)) should be OM/scenario-specific. With trending environ-
mental covariates and/or productivity in the projection period, performance metrics will be sen-
sitive to the choice of time period, particularly with too few years. Choosing a sufficiently long 
time period should provide a more robust performance metric. Furthermore, including appro-
priate reference models (without an environmental effect, or “status quo” productivity and 
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possibly fishing mortality; see Section 2.6.2) allows for benchmark performance metrics to be 
calculated and against which the metrics resulting from environmentally forced OMs may be 
contextualized (e.g. differentiating the effect of the environment from the effect of different man-
agement procedures on performance metrics). 

Environmental and especially climate change effects on productivity have implications for fish-
eries management performance beyond fishing and stock-related objectives. With the aim to op-
erationalize ecosystem-based fisheries management and further considering socio-ecosystems, 
ecological and socioeconomic objectives will likely become relevant. In particular, a MSE con-
ducted for Atlantic mackerel, used metrics related to nutritional objectives (Presentation P18). 
MSE frameworks using socio-ecosystem models as OM could explore combined effects of man-
agement scenarios and simultaneous productivity changes of multiple stocks on the population 
status of predators or on revenue distribution among fleet components. These types of objectives 
and performance metrics should be defined with stakeholders. 

2.6.2 Other considerations 

In general, many of the MSE analyses presented during the workshop used what are known as 
desktop or shortcut MSEs (ICES, 2019; Walter III et al., 2023). Shortcut MSEs circumvent the in-
clusion and fitting of an explicit estimation model (i.e. the stock assessment) within the MSE 
simulation loop to reduce run-times. Desktop MSEs execute the technical steps of an MSE, but 
do not involve the collaborative MSE process to incorporate decision-makers in development 
decisions. It was acknowledged desktop and shortcut MSEs may be useful initially (e.g. running 
sensitivity tests with MSE, reducing a large set of candidate HCRs, answering research ques-
tions), but should always be accompanied by a full MSE process for the final analysis presented 
to management and stakeholders (ICES, 2019). 

Alternatively, we encourage simulation testing of the use of empirical indicators of stock status 
in management procedures to replace a ‘full’ estimation model. An empirical indicator is directly 
computed from a survey(s) as generated by the observation model in a MSE, and subsequently 
input to the management procedure (e.g. directly into a HCR, Wildermuth et al. 2023). This 
should be tested alongside the currently used estimation model in a full MSE to compare perfor-
mance.  Furthermore, the implied data needs (and costs) are different between approaches, being 
simpler for indicators. Researchers and managers may also consider a hybrid-like approach in 
which a full stock assessment is conducted intermittently (i.e. at intervals determined from spe-
cies-specific life history) while indicators are used by the management procedure in the interim 
(Huynh et al., 2020). Researchers should discuss with management about the potential benefits 
and limitations of using empirical indicators and encourage their inclusion in MSE analyses.  

Ideally, an exceptional circumstances protocol would also be defined and can “trigger” a more 
complex analysis (a full stock assessment, benchmark, and/or OM reconditioning) sooner than 
in a normal process. It is important to be aware of the mismatch between the complexity of en-
vironmentally or ecosystem informed MSEs and management structures (i.e. that are inherently 
slow to adapt, cannot necessarily provide resources for the continuation of ecosystem infor-
mation) when communicating outcomes from analyses. Many applications of environmental in-
dices resulted in more precautionary advice (i.e. lower advised catches; e.g. Presentation P21), 
but these were typically in reference to externally identified reference points which are updated 
at a slower rate within the management process. The reality may be that if a more responsive 
management structure is adopted, the advice from environmentally informed assessments may 
not always be “lose-lose” outcomes. Therefore, when conducting MSEs with environmental or 
ecosystem information, researchers should clearly communicate the benefits of further investi-
gating environment-productivity links to encourage continued support from management. 
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The type of model(s) used to project environment-productivity relationships and its role(s) 
should be clearly communicated to stakeholders and fisheries managers. Modelling tools that 
account for biosocioeconomic processes (e.g. FLBEIA) or project ecosystem processes and dy-
namics (e.g. “end-to-end” models such as EwE or Atlantis) are used to understand the emergent 
outcomes and properties of these processes, set “directions” for research and policy, and are 
specified by a variety of inputs from different sources instead of conditioned by fitting data di-
rectly (i.e. strategic models; FAO, 2008; Plagányi et al., 2014). Models developed more specifically 
for stock assessment purposes  (e.g. SAM, Gadget, SMS, SS3, WHAM) estimate biological and 
fishing parameters internally from fitting directly to stock-specific data, use statistical diagnostic 
tools to evaluate model performance, and directly incorporate and estimate uncertainty (i.e. tac-
tical models; FAO, 2008; Plagányi et al., 2014). Each general class of models, and the specific 
models themselves, have their benefits, limitations, and intended uses that researchers should 
familiarize themselves with (e.g. all these tools either have publicly available manuals or GitHub 
repositories with tutorials and examples). 

There should also be careful consideration in the characterization of the sources of uncertainties 
incorporated in MSEs with environment-productivity relationships, and how they are incorpo-
rated. Specifically, while MSEs are often used for and communicated as uncertainty analyses, 
they may also be used as a sensitivity analysis, which focuses on how model outputs change 
accordingly with changes in different individual inputs. An example sensitivity analysis using a 
MSE simulation loop was presented for Norwegian spring-spawning herring and explored the 
impact on performance metrics of different assumptions regarding natural mortality (e.g. fixed 
M vs time-variant M vs time- and age-variant M; Presentation P21). An uncertainty analysis in 
contrast propagates through the uncertainty in inputs and assumptions to the modelled outputs, 
thus providing a more comprehensive understanding of potential management outcomes (e.g. 
modelling random regime shifts in recruitment between simulations), and thus integrates over 
this specific uncertainty. However, in fisheries this is seldom possible and so instead a sensitivity 
analysis is conducted where key parameters, or the assumed model structure, is varied to test its 
robustness or to prioritize research efforts. The choice between sensitivity and uncertainty anal-
ysis depends on the objectives of the study and the nature of the available data.  

Non-stationarity in environmental-productivity relationships (e.g. regime shifts in productivity 
parameters, changes in the link between the environmental covariate and environmental process 
it is assumed to represent) can never be completely represented in OMs as future changes may 
(and are likely) not repeat historical changes (i.e. the “unknown unknowns”). This also includes 
future changes in fishery behaviour, technical interactions, and trophic interactions between 
multiple species. These uncertainties should be at least addressed in an appropriate exceptional 
circumstances protocol (Punt et al., 2016). 

2.7 Process summary and steps for incorporating environ-
mental factors and quantifying ecological considera-
tions in MSE 

The following list presents one process flow a MSE developer may follow when incorporating 
environment-productivity relationships. The bullets outline the sequence of key decision points 
developers may likely encounter (primary decision node), the secondary choices likely to be 
made and questions to answer for each primary decision point (secondary decision node), and 
suggested actions a developer may take in accordance with the guidelines discussed during the 
workshop and described in the preceding sections. It is emphasized that while these steps and 
specific actions are derived from the collective experience of various MSE experts and case stud-
ies, they are not “hard” rules as developers may face circumstances not considered here and thus 
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need to adapt their approach accordingly. However, many of these suggested “good” practices 
should be applicable in a variety of MSE analyses and thus guide developers when needing to 
account for environment and/or ecosystem effects in their MSE. 

 

A., B., … Primary decision nodes 

a., b., … Secondary decision node 

i., ii., … Recommended considerations and suggested practices 

 
  

A. I have a hypothesis and need relevant data 
a. Do you know specific productivity processes likely to be affected and how? 

i. Yes - obtain historical time series of spatially and temporally relevant environ-
mental covariate representing hypothesis. 

ii. No - investigate literature, find likely hypotheses, and look for covariates re-
flective of variables/processes that may affect stock-specific productivity. Cau-
tionary note: Make sure covariate appropriately scales and co-occurs with 
productivity process (e.g. at the time and area where juvenile survival is criti-
cal when modelling an effect on recruitment). 

b. Work with oceanographers to identify data needs 
i. Devise method to approve models/variables/relationships 
ii. Avoid random investigations and spurious relationships 
iii. Identify data needs for the future especially in the context of the existing man-

agement procedure (e.g. potential changes in governance structures and sup-
port) 
 

B. I need a model(s) for environment-productivity relationship(s) 
a. I need to choose model types (try more than one if at all possible) 

i. Use a mechanistic model, especially for shorter time series (Growth VB, Gom-
pertz, Recruitment BH and Ricker; i.e. based on life history), as they may be 
more reliable if trying to extrapolate beyond observed range. 

ii. Use a descriptive model, especially for longer time series (GAMMS or LMMs; 
i.e. based on trends and patterns in data). Cautionary note: Generate predic-
tions with uncertainty from these models and compare against historical; dis-
card model if they are unreasonable (e.g. extend well beyond the range of his-
torical observations). 

b. I need to fit and evaluate my model(s) 
i. I want to choose reasonably good models and evaluate the strength of each 

model where the objective is prediction 
• Decide on a reasonable naive model for comparison 
• Choose between similar models/different covariates using 

some goodness of fit statistics (e.g. AIC) 
• Evaluate prediction skill using hindcast skill, cross validation 

and/or forecast evaluation 
ii. I want to use multiple plausible models weighted by their strength 

• Develop model ensemble using an appropriate weighting 
scheme (Dormann et al., 2018) - especially important for get-
ting the tails/variation right 
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c. I need to parameterize/represent/project unexplained variability around my environment-
productivity relationship(s) 
i. Characterize the shape of the distribution of residual errors, which can be the 

SD of a parametric distribution, resampled residuals or parametrically 
smoothed residuals. Also account for residual patterns (i.e. estimate autocorre-
lation or use AR models) 

d. Exceptional cases where alternative practice is needed 
i. No environmental variable has significant (statistical) or consequential (biolog-

ical) effect 
• Design plausible hypothetical "patterns" of future climate ef-

fect and use in alternative OM, for example, fixed trend, sin-
gle-year "shocks", more frequent extreme values, or fixed re-
gimes. 

ii. Productivity process exhibits unexplained variability poorly represented by 
parametric distribution (e.g. spasmodic recruitment that leads to fatter tails in 
the distribution, but the frequency of spasmodic good years is very poorly de-
termined)  

• Similar technique to exceptional case i.) immediately above. 
Additionally, a controlled resampling scheme for residuals 
(e.g. moving block bootstrap) may produce a representative 
distribution. 

 

C. I need to integrate and project my environment-productivity relationship in my 
MSE 

a. I need a future realization of my environmental time series to use in MSE 
i. There is a climate model that projects my time series 

• Pre-process projected time series as for historical data 
o Determine extent of projection time frame and stay 

within the not-too-distant future to avoid introducing 
too much uncertainty (keeping in mind the species life 
span) 

o Downscale (filter and average) 
o Mean-bias correction/QQ mapping 
o Dimension reduction 

• Consider surrogate time series to include uncertainty between 
models 

ii. There isn't a climate model that projects my time series 
• Is there a pattern in the time-series (trend, cyclic pattern, auto-

correlation, …)? 
a. Yes - extrapolate with noise and include as one sce-
nario among others. Use multiple extrapolated 
timeseries to encapsulate uncertainty in trend. Cau-
tionary note: carefully consider the time horizon of 
projection to ensure trend does not lead to unreasona-
ble outcomes, and discard if so. 
b. No 

i.Use a simple stochastic model (e.g. AR model) 
or resample - see above 2.3. for comments on 
variability between simulations 
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ii.If interannual environmental effect can sim-
plify to regimes (e.g. “good” and “bad”), a 
stochastic "shifting" procedure may be used 
(e.g. Markovian switching algorithm, 
resampling, or semi-Markovian models) 

b. I need to choose the number of operating models/scenarios to run 
i. Consider multiple reference models without any environmental-productivity 

relationship and/or a ‘status quo’ environmental effect, and OM(s) with envi-
ronmental effects (to benchmark comparisons)  

ii. Identify representative states of nature for between-model variability of future 
environmental scenarios. 

iii. If a process is influenced by both environmental data which are available and 
other data which are not available in projections, the number scenarios will in-
crease a lot, it can be helpful to eliminate very unlikely combinations. Probably 
the variability within a scenario is not needed as we agreed to stay in the not-
too-distant future.  

iv. Derive reference points from each alternative OM/scenario for use in the calcu-
lation of performance metrics. These reference points should differ with those 
used in the MP being tested. 

 

D. I need to run my MSE with environment-productivity relationships 
a. I need useful performance metrics 

i. Involve stakeholders and managers before MSE development to define objec-
tives 

ii. Consider socioeconomic and ecological performance metrics with stakeholders 
iii. Carefully consider the time period over which metrics are calculated under cli-

mate change, as projected environmental conditions may lead to trending per-
formance during projection - do not project into the very distant future, see 
above - possibly use 3 generations (for multi-stock MSEs, this could be 3 gener-
ations of your main target fish or longest-lived one) as in general MSE best 
practice 

b. What other considerations should I make with my MSE? 
i. Desktop/shortcut versus full MSE 

• Shortcut MSEs may be useful initially, but should be followed 
by full MSEs with stakeholder involvement 

• Consider using empirical indicators in the MP instead of 
shortcut MSE 

o Compare performance with full MSE (i.e. stock assess-
ment as estimation model) 

o Carefully think about what part of population an indi-
cator applies to 

o Consider using indicators as a trigger for a more com-
plex analysis (full assessment, recondition OM) sooner 
than in normal process 

ii. Pay attention to characterization of uncertainty 
• Clearly communicate whether MSE is used to conduct sensi-

tivity or uncertainty analysis 
iii. Address additional uncertainty due to non-stationarity (in environment, fish-

ery behaviour, or multispecies interactions) not adequately reflected in OMs 
• Develop appropriate exceptional circumstances protocol 
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iv. Include a model for reference point update procedures (e.g. benchmark pro-
cesses) in your MSE 

v. Account for any management lags in advice (e.g. include intermediate year if 
stock assessment in the current year results in advice for the following year(s)). 
Disregarding lags may decrease the accuracy of performance metrics based on 
predicted catches and Fs.   
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Figure 1: One possible process flow that MSE developers can follow when developing models of 
environment-productivity relationships to use in MSE. The diagram outlines the typical steps 
needed (orange), more specific actions within these steps (green), conditions encountered during de-
velopment (yellow), and the practices one may follow (blue). Where more than one practice (blue) is 
included within a condition (yellow) or action (green), either or both practices can be done. 
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Figure 2: One possible process flow MSE developers can follow when integrating environment-productivity 
relationships in MSE. 
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3 Presentations  

3.1 Input data 

P1 - Available climate data and various aspects relating to preparing climate data for statistical 
model fitting and forecasting within the MSE 

Bernhard Kühn and Marc Taylor - Thünen institute - SEAWise 

In order to explicitly integrate environmental data into MSE simulations different choices and 
pre-processing steps need to be done beforehand. The talk addresses several questions of what 
kind of data to use for the history and the future projections, trying to highlight the different 
properties of the data (ability to capture interannual trends vs. longterm climatological mean). 
An overview is given on ways to aggregate environmental data spanning the range of utilising 
simple spatial averages vs. dimension reduction algorithms, with their own pros and cons. As a 
further step in climate projection pre-processing, two ways of bias correction are presented, 
which are needed to correct for an offset or change in variance when dealing with historical and 
future data of different sources. Furthermore, the question is raised on how to incorporate vari-
ability of the climate projection as uncertainty in the MSE run and a way presented utilising 
Bayesian Vector Autoregressive Models (BVARs). Examples are given based on own past expe-
riences with data handling within the North Sea case study in SEAwise. For the bias correction, 
as a tool to join data of different sources, a tutorial was prepared that summarises the steps done 
in R: https://figshare.com/articles/software/Tutorial_-_Ways_to_bias_correct_cli-
mate_projections/23514618 Additionally, a similar tutorial is available to fit a BVAR-model 
to spatio-temporal data, that allows to generate artificial time series with the same trend, auto-
correlation and cross-correlation to other variables for the use in fisheries management projec-
tions: https://figshare.com/articles/software/Tutorial_-_Capture_uncertainty_of_cli-
mate_signals_via_Bayesian_Vector_Autoregression/23546127 

3.2 Predictive models of recruitment 

P2 - Recruitment of European hake, red mullet, and various shrimps in the Adriatic and west-
ern Ionian Seas  

Isabella Bitetto, Walter Zupa and Maria Teresa Spedicato - Fondazione COISPA ETS - SEAwise 

Exploring the processes that influence the recruitment of fish species is a challenging issue in 
fisheries science, especially in the Mediterranean Sea, where the time series of spawning stocks 
and recruitments are generally short and poorly contrasted. In the case study of Adriatic and 
Western Ionian Seas (GSAs17-18-19), the influence of the environmental covariates on the re-
cruitment process was explored on the key demersal stock of the GFCM Multi-Annual Manage-
ment Plan for demersal fisheries (European hake, red mullet, deep-water rose shrimp, giant red 
shrimp and blue and red shrimp). Sea surface temperature, bottom temperature, salinity, bottom 
salinity and net primary production were integrated in the Beverton-Holt, Ricker and hockey 
stick traditional parametric stock–recruitment formulations. For this purpose, the last stock as-
sessment results were used. In all cases, the inclusion of the environmental variables improved 
the precision or the prediction power of the models. In all the cases, the environmentally medi-
ated stock-recruitment relationship allowed to reduce the prediction error and improved the rel-
ative quality of the stock-recruitment model with respect to the formulation without environ-
mental covariates. Recruitment projections were carried out under RCP4.5 and RCP8.5 climate 
change scenarios. 

https://figshare.com/articles/software/Tutorial_-_Ways_to_bias_correct_climate_projections/23514618
https://figshare.com/articles/software/Tutorial_-_Ways_to_bias_correct_climate_projections/23514618
https://figshare.com/articles/software/Tutorial_-_Capture_uncertainty_of_climate_signals_via_Bayesian_Vector_Autoregression/23546127
https://figshare.com/articles/software/Tutorial_-_Capture_uncertainty_of_climate_signals_via_Bayesian_Vector_Autoregression/23546127
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 P3 - Environmental processes affecting fish recruitment in the North Sea  

Bernhard Kühn, Alexander Kempf and Marc Taylor - Thünen institute - SEAwise 

The North Sea as a highly productive fishing ground for several commercially important demer-
sal stocks, is also expected to change strongly under climate change. After an era of overexploi-
tation, successful fisheries management allowed various stocks to recover. Still the effects of cli-
mate change provide a challenge for future management, as productivity declines for some of 
the boreal demersal stocks in the North Sea are expected. Impacts of climate change are believed 
to affect the abiotic environment and the ecosystem of the North Sea through all trophic levels, 
which will eventually change how much yield fishermen can sustainably harvest. Incorporating 
explicit environmental influences on productivity could help to understand how the mixed de-
mersal fisheries of the North Sea are affected and what alternative management rules might work 
in the face of climate change. Therefore, we fitted environmentally-mediated stock recruitment 
relationships (EMSRRs) to eight commercially important stocks in the North Sea. We investi-
gated the effects of temperature, salinity, currents, chlorophyll and zooplankton on recruitment 
of cod, haddock, saithe, whiting, plaice, sole, sprat and herring using a semi-automated, machine 
learning framework. Using a cross-validation setting and an additional holdout period at the 
end of the time series, should allow the testing and evaluation of predictive capability to only 
allow models to be used in the MSE that showed some skill on the leftout data. Overall, the 
incorporation of environmental effects in stock-recruitment relationships improved recruitment 
predictions in five out of eight stocks.  

 

P4 - Dynamic factor analysis applied to 6 demersal stocks in the Celtic Seas  

Klaas Sys - ILVO 

In this work, we looked at the dynamics of stock recruitment relationships from a multivariate 
perspective which may be beneficial in the context of multi stock MSEs. A dynamic factor model 
was used to analyse trends in the stock recruitment relationships of 6 demersal fish stocks in the 
Celtic Sea ecoregion. For each of the stocks, a stock recruitment relationship was determined, 
either Beverton Holt or Ricker, and changes in productivity were described by the contribution 
of two dynamic factors. The results showed that the stock recruitment dynamics of the roundfish 
stocks were correlated, as well as those of the flatfish stocks considered in the model. The dy-
namic factor model does not allow to identify environmental drivers, but based on the trends of 
the factors, the model suggests that temperature and zooplankton abundance are the main driv-
ers of recruitment. In addition, the dynamic factor model showed better forecast skills compared 
to the stock recruitment models fitted to single species data.  

 

P5 - Environment-driven stock recruitment models in Western Waters  

Leire Ibaibarriaga, Andrés Uriarte, Leire Citores, Ixak Sarasua, Almudena Fontán, Sonia 
Sánchez-Maroño, Ane López de Gamiz and Dorleta Garcia - AZTI - SEAwise 

In this work we have studied the impact of environmental conditions in stock-recruitment mod-
els for twelve stocks in the Western Waters. For the Bay of Biscay anchovy, we have revisited 
past stock-recruitment-environment models and we have tested its validity with the inclusion of 
new observations. The results indicated that the upwelling and the turbulence indices remained 
as important predictive variables for anchovy recruitment. For the Iberian sardine, we have stud-
ied a variety of non-stationary stock-recruitment models, including models that accounted for 
abrupt regime shifts or models that have parameters smoothly changing along time. Although 
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the underlying mechanism and model assumptions were different, all the models confirmed the 
low productivity regime of Iberian sardine since 2006 onwards. Additional regime shifts, though 
of less intensity, were also identified around 1993 and 2015. All the selected models had better 
prediction skills than the naïve model based on the average of the time series, indicating poten-
tial to be transferred to WP6. For the other 10 stocks, we have explored the potential inclusion of 
environmental variables such as temperature, salinity, or general circulation pattern indices into 
their stock-recruitment models. The results indicated that for the Bay of Biscay sardine the min-
imum value of NAO index improved the initial stock-recruitment model; for black-bellied an-
glerfish the AMO index in the first quarter and the salinity; for northern hake the NAO index in 
the third quarter; for sole the minimum value of AMO index; for mackerel the AMO index in the 
first quarter non-linearly; and for blue whiting the maximum value of EA index. These models 
were considered as preliminary and need to be further studied.    

 

P6 - Ocean-climate effect on recruitment in blue whiting in the NE Atlantic  

Costanza Cappelli and Brian MacKenzie - DTUAqua 

Blue whiting, Micromesistius poutassou, is a key prey and predator in northeast Atlantic food 
webs and supports one of the largest commercial fisheries in the Atlantic Ocean (2024 quota = 
1.5 million tonnes). Production and survival of new juveniles (recruitment) varies up to 10-fold 
across years for unknown reasons, creating challenges for forecasting and sustainable manage-
ment. Here we focus on a key atmospheric driver of ocean variability, the wind stress curl (WSC), 
which may affect recruitment through several mechanisms, including meridional transport, ver-
tical mixing, and frontal positions. The location of the transition zone between cyclonic and an-
ticyclonic WSC in the Rockall region is a center of action of this atmospheric driver, and it coin-
cides with the location of the largest known blue whiting spawning area. We hypothesize that 
WSC variability affects environmental conditions (e. g., temperature, salinity) and drift patterns 
experienced by eggs and larvae, and ultimately regulates survival. Coupling spawner biomass-
recruit relationships to indices of WSC variability significantly increases explanatory power (up 
to ~42%) over a 40-year period, especially if recruit survival is lagged one year behind WSC var-
iations. The one-year lag is consistent with a literature-reported ca. one year response time of 
several ocean properties to WSC variations in this region. Model forecast skill with retrospective 
out-of-sample data had similar explanatory power. Major recruitment variations can now be 
predicted sooner and more reliably than previously possible.  This linkage suggests an underly-
ing mechanistic driver that can potentially inform sustainable and ecosystem-based manage-
ment practices for this important fishery resource. 

 

P7 – Mackerel predation effect on Norwegian spring-spawning herring recruitment with a 
simple overlap factor  

John Trochta - IMR 

Recruitment variability of Norwegian spring-spawning stock of Atlantic herring (Clupea ha-
rengus) has been previously associated with several environmental and ecosystem factors. A 
more recent potential factor is consumption by Atlantic mackerel (Scomber scrombrus), as sup-
ported by observed localized predation and increased spatiotemporal overlap with herring lar-
vae in part due to the northward range expansion of mackerel. The impact of mackerel predation 
on herring recruitment has been noted as a research priority for herring management in Norway 
(Huse et al. 2018). A MSE framework has been developed that tests the existing herring HCR 
against alternative models of reduced herring recruitment, with and without an explicit effect of 
mackerel. The first model considers a regime shift in recruitment, specifically a stepwise reduc-
tion in average recruitment, to explain less frequent strong cohorts and generally lower numbers 
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since the mid-2000s. The strong herring cohorts result in a recruitment distribution with a fatter 
upper tail, so these cohorts are explicitly modelled as a multiplicative factor on average recruit-
ment with all remaining variability captured by random lognormal variation. For MSE projec-
tions, this reduction in average recruitment is modelled in the last 40 years of an 80-year projec-
tion period, and the timing of strong cohorts is fixed according to the historical timing (i.e. using 
the same sequence of durations between historical strong cohorts). The second model considers 
both effects of mackerel biomass and larval drift. Specifically, a multiple linear regression is used 
to combine an effect of the difference between mackerel spawning biomass and herring larvae 
latitudinal centers-of-gravity (CoGs) with an effect of meridional drift velocities, and that are 
estimated with historical time series of these variables (recruitment variability explained was 
R2=0.66). For MSE projections, mackerel CoG is a function of mackerel SSB that is projected under 
the current mackerel HCR, while herring larvae CoG and drift use the historical values (i.e. as in 
a hindcast projection). Simulations shown that the HCR configuration currently used for herring 
management was risky under both recruitment models; however, alternative and similar config-
urations (i.e. Btrigger and Ftarget combinations in the ICES hockey-stick rule) were less risky 
under a stepwise reduction in recruitment while all alternatives still shown high risk with the 
explicit mackerel effect accounting for overlap. More generally, the relatively more complex 
model with a simple factor accounting for predator-prey overlap shown very different MSE re-
sults from the simpler recruitment model. This work demonstrates the importance of testing al-
ternative and increasingly complex OMs.  

Huse, G., Skern-Mauritzen, M., Bogstad, B., Sandberg, P., Ottemo, T., Veim, A. K., Sørdahl, E., et 
al. 2018. Muligheter og prioriteringer for flerbestandsforvaltning i norske fiskerier. Fisken og 
havet. Havforskningsinstituttet. 

  

P8 - Impact of the PDO on halibut’s recruitment: developing environmental relationships and 
incorporating uncertainty 

Allan Hicks and Ian Stewart - IPHC 

The Pacific halibut (Hippoglossus stenolepis) stock in the Northeast Pacific Ocean shows high 
variation in many life-history attributes, including recruitment. Past studies have found that the 
Pacific Decadal Oscillation (PDO) is a stronger predictor of recruitment than the spawning bio-
mass. It is clear that historically, average recruitment is higher in periods of a positive PDO, and 
the current stock assessment estimates a difference of approximately 1.5 times. Studies of egg 
and larval movement show considerable advection of larvae away from spawning grounds, but 
a clear mechanism has not been determined. An MSE framework for Pacific halibut has been 
developed and integrated over many different sources of variability. Recruitment variability is 
introduced through random lognormal variation around average recruitment, and average re-
cruitment dependent on simulated positive and negative PDO regimes. A semi-Markovian 
model is used to simulate cyclical PDO regimes where the probability of switching regime is an 
increasing logistic function based on the length of the current regime. It was found with longer 
PDO regimes (i.e. a lower probability of switching regime), 100-year simulations had not con-
verged to equilibrium, and the PDO regime was not fully integrated into an equilibrium state. 
With recent observations suggesting the potential for shorter PDO regimes, the probability of 
switching PDO regime was increased to encourage regimes typically between 10 and 30 years. 
This has resulted in a full integration of high and low PDO regimes which fully describes the 
uncertainty in average recruitment. Additionally, it is possible to examine simulation outcomes 
assuming persistent low PDO (i.e. low productivity) or persistent high PDO (i.e. high productiv-
ity), which are useful to understand the effect of the environment but are not used to explicitly 
evaluate management procedures. 
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3.3 Predictive models of growth 

P9 - Stock growth analysis in Baltic Sea, North Sea and Western Waters 

Mollie Brooks (DTUaqua), Luke Batts, Jochen Depestele, Leire Ibaibarriaga, Bernhard Kühn, Ma-
rie Savina, Klaas Sys, Marc Taylor, Morgane Travers - SEAwise 

We collected observed average cohort weights at age by year from FLStock objects and checked 
which were time-varying so that they would be appropriate to model. We omitted the plus-
group because the age composition varies by year. We also extracted the estimates of SSB from 
the FLStock objects. We also collected ORAS5 data averaged over each stock area, including tem-
perature (surface or bottom depending on the stock) and salinity. 

Our growth models looked at each cohort’s weight in the next year dependent on its weight in 
the current year and the environment (abiotic and biotic). We tried mechanistic models of length 
at age (Gompertz and Von Bertalanffy) by converting weights to lengths using coefficients from 
the FishBase website. In addition to mechanistic models, we used linear mixed models (LMMs) 
and generalized addative mixed models (GAMMs) because they are more flexible than mecha-
nistic models and make it easier to test the effects of multiple environmental variables. All mixed 
models (LMMs and GAMMs) included random efects of cohort and year to reduce the chance of 
selecting models containing spurious patterns. The global models of the LMMs which was then 
reduced was  

log(wt+1) ~ log(wt) + age + age2 + age3 + log(wt):age + 

salinity + SSB + temperature + temperature2 + 

log(wt):salinity + log(wt):SSB + log(wt): temperature 

However, this was later changed to omit the age3 term. The global model for the LMMs was 
either (1) fit using the R package glmmTMB and reduced by AICc or (2) fit by glmmLASSO and 
reduced by L1 penalization. In method (2), the penalization parameter was chosen either via K-
fold cross validation (https://github.com/mebrooks/cv.glmmLasso) or via BIC 
(https://github.com/bbolker/lmmen). When doing cross validation in method (2), we tried both 
10-fold and 5-fold. 

The global formula of the GAMMs which was reduced via AICc model selection was 

log(wt+1) ~ log(wt) + s(age, k=3) + log(wt):age + 

salinity + SSB + s(temperature, k=3) + 

log(wt):salinity + log(wt):SSB + log(wt): temperature + 

(1|cohortf) + (1|yearf) 

We conducted a large forecast evaluation on each of the modelling methods described above. 
First, we partitioned each stock’s data into a training set and a validation set, perfomed the model 
selection method on the training data, and compared observations to predictions for the valida-
tion data. We repeated this procedure 15 times for each data set, so that the validation data set 
was all lengths 1 to 15. For each partition, we made predictions for the entire validation dataset. 
For each method and stock combination, we calculated prediction skill as the mean squared error 
of all the predictions. We compared the prediction skill of our modelling methods to a naïve 
average of the last 3 years in the training data (a benchmark based on what might be done in a 
short-term forecast for setting an allowable catch). As we were not sure which time horizon 
would best summarise our needs, we looked at the prediction skill in three ranges: short horizons 
(1-3 years), long horizons (5-10 years), and the entire 15-year horizon.  

https://github.com/bbolker/lmmen
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We found that 15 out of 27 stocks had at least one method with better prediction skill than the 
naive 3-year average (i.e. forecast potential). For had.27.7a, sol.27.7e, and whg.27.47d, only the 
mechanistic models had forecast potential. For had.27.7b-k, sol.27.20-24, and whg.27.7b-ce-k, all 
methods had forecast potential. Results varied widely across stocks, with no single method 
standing out as the best. For some LMMs, the effect of SSB was estimated to be positive (the 
opposite of that hypothesized). It would be difficut to constrain the coefficient on SSB while au-
tomatically doing model selection, so future models will omit that term.  

 

P10 - Impact of environmental drivers on the growth and reproduction traits of several species 
in the south Adriatic Sea and North West Ionian Sea 

Pierluigi Carbonara, Walter Zupa, Matteo Chiarini, Neglia Cosmidano, Isabella Bitetto, 
Loredana Casciaro, Palmisano Michele - Fondazione COISPA ETS - SEAwise 

In order to investigate the impact of the environmental drivers on the growth and reproduction 
traits, they were analysed in the study areas (South Adriatic Sea GSA 18 and North West Ionian 
Sea GSA 19) size at first maturity (L50), condition factor (CF) and the otolith growth increment 
(OI). The environmental variables used are: Sea Surface Temperature (SST), bottom temperature 
(botT), salinity in water column (so), bottom salinity (botso) and net primary production (nppv). 
The data collected within the Data Collection Framework (DCF) was the main source of infor-
mation on maturation and growth for hake (Merluccius merluccius), red mullet (Mullus barba-
tus), deep-water rose shrimp (Parapenaeus longirostris), giant red shrimp (Aristeomorpha foli-
acea) and blue and red shrimp (Aristeus antennatus) in GSAs 18-19. 

In the study area (South Adriatic Sea GSA 18 and North West Ionian Sea GSA 19) has been high-
lighted a significant  impact of some environmental drivers (e.g. sst, botT, botso, nnpv) on the 
growth and reproduction traits, in term of size at first maturity (L50), condition factor (CF) and 
the otolith growth increment (OI). For the L50 was observed a decrease effect of the botT in deep 
rose shrimps and red mullet. For the CF was observed a decrease effect of the sst in red mullet. 
For the OI an increase effects of environmental variables (sst, botT, nnpv) for hake and red mul-
let. 

The growth pattern observed at individual level is the result of an interaction between potential 
growth defined by the genotype and the environmental conditions under which each individual 
fish lives. The otolith of red mullet (Mullus barbatus) from three areas of South Adriatic and 
Ionian Sea are used to assess the presence of spatial difference in red mullet growth. Several 
environmental parameters and years were considered in the analysis. Moreover, the Representa-
tive Concentration Pathways (RCP8.5) climate model scenario was used, in order to assess the 
changing of the red mullet growth pattern in medium (2048) and long term (2098). 

The results show that red mullet growth pattern display difference in the studies areas analysed 
(West South Adriatic [WestGSA18], East South Adriatic [EastGSA18], Ionian [GSA19]), with the 
East side of the South Adriatic Sea (GSA 18) and the north part of the West GSA18 that they show 
a higher red mullet growth pattern. The environmental covariate, among those analyzed (sea 
surface temperature, bottom oxygen, net primary production, bottom temperature, bottom sa-
linity), that explains much of the variability is the temperature (bottom and surface). 

Using climate change projections (RCP8.5) it was possible to analyze the changes in the growth 
pattern for red mullet in the three areas analysed (West South Adriatic, East South Adriatic, Io-
nian). The relative changes compared to the hindcast show an increase in the growth pattern in 
the medium term (2048) in different areas, while in the long term (2098) a generalized decrease 
is observed.  
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P11 - Shrinking body size of European anchovy in the Bay of Biscay 

Fernando G. Taboada, Guillem Chust, María Santos Mocoroa, Naroa Aldanondo, Almudena 
Fontán, Unai Cotano, Paula Álvarez, Maite Erauskin‐Extramiana, Xabier Irigoien, Jose Antonio 
Fernandes‐Salvador, Guillermo Boyra, Andrés Uriarte, Leire Ibaibarriaga (presenter, AZTI)  

https://doi.org/10.1111/gcb.17047 

Abstract (from the published paper):  Decreased body size is often cited as a major response to 
ocean warming. Available evidence, however, questions the actual emergence of shrinking 
trends and the prevalence of temperature-driven changes in size over alternative drivers. In ma-
rine fish, changes in food availability or fluctuations in abundance, including those due to size-
selective fishing, provide compelling mechanisms to explain changes in body size. Here, based 
on three decades of scientific survey data (1990–2021), we report a decline in the average body 
size—length and weight—of anchovy, Engraulis encrasicolus L., in the Bay of Biscay. Shrinking 
was evident in all age classes, from juveniles to adults. Allometric adjustment indicated slightly 
more pronounced declines in weight than in total length, which is consistent with a change to-
ward a slender body shape. Trends in adult weight were nonlinear, with rates accelerating to an 
average decline of up to 25% decade−1 during the last two decades. We found a strong associa-
tion between higher anchovy abundance and reduced juvenile size. The effect of density depend-
ence was less clear later in life, and temperature became the best predictor of declines in adult 
size. Theoretical analyses based on a strategic model further suggested that observed patterns 
are consistent with a simultaneous, opposing effect of rising temperatures on accelerating early 
growth and decreasing adult size as predicted by the temperature-size rule. Macroecological as-
sessment of ecogeographical—Bergmann's and James'—rules in anchovy size suggested that the 
observed decline largely exceeds intraspecific variation and might be the result of selection. Lim-
itations inherent in the observational nature of the study recommend caution and a continued 
assessment and exploration of alternative drivers. Additional evidence of a climate-driven re-
gime shift in the region suggests, however, that shrinking anchovy sizes may signal a longlasting 
change in the structure and functioning of the Bay of Biscay ecosystem. 

 

P12 - Growth analysis and MSE models for pelagic stocks off Norway  

John Trochta – IMR 

Density-dependence is prevalent in the growth dynamics of various fish stocks. Evidence for 
strong density dependent growth has been found for the three major pelagic stocks in the North-
east Atlantic, Atlantic mackerel (Scomber scrombrus), blue whiting (Micromesistius poutassou), 
and Norwegian spring-spawning herring (Clupea harengus). Because of the feeding dynamics 
of these stocks, density-dependent growth may be influenced by interspecific competition as 
well as intraspecific competition, and by different age groups within species because of changes 
in overlap throughout their life history. In this analysis, these different potential effects are 
uniquely specified in each species’ growth-condition model and evaluated for use in multi-
species MSE projections to account for interspecific competition. The effect of density-depend-
ence, represented as the aggregate abundance of a specific age group(s) within or across species, 
is modelled as a linear function on either the von Bertalannffy growth rate for each cohort, and/or 
the multiplicative factor in the allometric equation that converts length to mass. These models 
also estimate the variance of random effects by year and cohort and are fit to each species average 
mass-at-age. Across all species, model fitting and selection shown that average mass-at-age was 
best predicted by the model with only intraspecific density effects, not interspecific densities. 
Furthermore, the model-selected effects were separated by age-groups:  a cohort effect on the 
growth rate of the abundance at the age of recruitment and age immediately after, and a year 
effect on the multiplicative factor in the length-mass conversion of the abundance of all post-

https://doi.org/10.1111/gcb.17047
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recruitment ages. These density-dependent growth models were paired with alternative recruit-
ment scenarios (one with variability matching historical patterns, and one with variability match-
ing periods of low average recruitment) in MSE projections. Simulations shown that impacts of 
density-dependent growth on reference points were largely controlled by the assumptions about 
recruitment variability (e.g. assuming lower recruitment weakened density-dependent growth 
impacts).  

3.4 Integrating environment-productivity relationships in 
MSE models 

P13 - Integration of environment-productivity relationships for anchovy and sardine in 
FLBEIA - Bay of Biscay  

Sonia Sánchez-Maroño, Leire Ibaibarriaga, Dorleta García, Leire Citores and Marga Andrés 
-  AZTI - SEAWise 

Aimed at moving towards the ecosystem-based fisheries management (EBFM), we have worked 
on incorporating information on environmental impacts on stocks productivity for several fish 
stocks. Specifically, we have analysed the effect of abiotic and biotic variables for the recruitment 
and growth processes of anchovy in the Bay of Biscay and for the recruitment of Iberian sardine. 
Recruitment for anchovy was modelled as a Ricker stock-recruitment model including an 
upwelling index and a non-parametric term for turbulence in the third quarter of the year. Re-
cruitment for sardine was modelled as a two-regime random switching model (Munch and 
Kottas, 2009). This consists in two different Ricker stock-recruitment models for low and high 
productivity regimes, where the annual regime is defined by the transition probabilities from the 
low to the high and from the high to the low regimes. The weight-at-age for anchovy in the Bay 
of Biscay were based on the work by Taboada et al. (2023), where weight-at-age 0 was modelled 
as a function of the SSB, whereas weight-at-ages 1, 2 and 3+ depended on SSB and surface tem-
perature. 

This information was then incorporated into FLBEIA (Garcia et al., 2017) to evaluate the impact 
of the climate change on the inshore pelagic fisheries in the Bay of Biscay given the management 
strategies currently in place. From the three environmental indices included in the simulations 
(surface temperature, upwelling index and turbulence), only the temperature for the projection 
period was obtained from the POLCOMS-ERSEM model and from NEMO-MEDUSA model 
(Kay, 2020; Yool et al., 2015; results are only summarised here for POLCOMS-ERSEM RCP 8.5) 
for different IPCC representative concentration pathways (RCP) scenarios. The time-series of the 
projection period were bias-corrected using the quantile mapping approach as described by 
Kühn (2023). Alternatively, the upwelling index and turbulence for the simulation period were 
based on a time-series surrogate that accounted for the linear trend and the periodicity observed 
in the past. Uncertainty was not included in none of the environmental time-series. 

The impact of considering environmentally driven stock productivity models varied between 
stocks and fleets. For sardine, the incorporation of switching recruitment regimes led to higher 
abundance and increased mean age. While environmentally dependent growth led to similar or 
slightly higher biomass levels for the anchovy, the environmentally driven recruitment resulted 
into a faster reduction in the mean age when compared to the non-environmentally driven as-
sumptions. 

When including the environment-driven productivity models for both species at the same time, 
impacts on sardine were the same as observed when doing it in isolation, while the negative 
impacts on anchovy due to the environmental influence on recruitment were mitigated when 
also including the impacts on weights at age. In all the cases, the risks of stock collapse and 
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overfishing were higher for the scenarios where the environmental drivers were incorporated 
than when not taking them into account, and the economic indicators were worse for all the 
modelled fleets. However, the percentage of revenues from vessels of less than 24 m increased.  
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P14 - Integration of environment-productivity relationships for hake and red mullet in 
FLBEIA in the Eastern Ionian Sea 

Stavroula Tsoukali, Vasiliki Sgardeli, Marianna Giannoulaki, Georgia Papantoniou, Konstanti-
nos Tsagarakis, Vassiliki Vassilopoulou - HCMR - SEAwise 

The integration of environment-productivity relationships was investigated for European hake 
and red mullet in the Eastern Ionian Sea, by exploring how the relationship of spawning stock 
biomass and recruitment is affected by environmental variables. Regressions were implemented 
with modified Stock-Recruitment models (Ricker, Beverton-Holt) as well as GAMs, investigating 
the effect of one or two environmental covariates.  The SSB and recruitment data were retrieved 
from officially validated stock assessments, while the environmental data are derived from work 
performed within the CERES project (CERES, 2018) and were initially analysed in Task 3.2 of 
SEAWISE. The selection procedure ended up in an environmentally modified Ricker including 
microphytoplankton Chl, (in mg/m3) for both stocks. These were integrated in FLBEIA in order 
to improve the baseline FLBEIA model, which was developed during the WP6 of SEAWISE for 
the demersal fishery of the Eastern Ionian Sea. The baseline FLBEIA describes a demersal fishery 
that includes 2 fleets (Large Scale and Small Scale Fishery), and 5 main stocks (2 age-structured: 
HKE, MUT and 3 biomass dynamic: DPS, MUR and Others). A set of management scenarios 
were applied, where the constant effort was adjusted to achieve the respective F target of the 
management scenario. Three climatic scenarios (noCC, RCP4.5, RCP8.5) were integrated in 
FLBEIA to investigate whether the environmental changes affect the dynamics of the stocks in 
future projections. Finally, the uncertainty of stock assessments and of stock-recruitment was 
integrated in the FLBEIA projections through 300 iterations in a MC setting. Hake stock status 
appears to be affected by climatic changes (scenarios RCP4.5, RCP8.5), but further exploration of 
the effect of microphytoplankton Chl is needed. Under management scenarios that assume re-
duction of the biomass (SQ, PGY, Fcomb, compared to F01), the effect of the environment is more 
pronounced for HKE. When HKE biomass increases (F01, reduced fishing effort) the internal 
dynamics (density-dependence) of the population appear to drive the stock status. Regarding 

https://doi.org/10.1016/j.softx.2017.06.001
https://doi.org/10.24381/cds.dcc9295c
https://doi.org/10.6084/m9.figshare.23514618.v1
https://doi.org/10.1890/07-2116.1
https://doi.org/10.1111/gcb.17047
https://doi.org/10.1002/2015JC011167


34 | ICES SCIENTIFIC REPORTS 6:72 | ICES 
 

 

red mullet, all management scenarios result in higher SSB compared to the Status Quo, while 
there was no evidence that red mullet is affected upon climatic changes (RCP4.5, RCP8.5), across 
all management scenarios.  

Reference 
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P15 - Integration of environment-productivity relationships for various demersal stocks in 
FLBEIA in the North Sea 

Bernhard Kühn, Marc Taylor, and Alexander Kempf - Thünen institute - SEAwise 

Impacts of climate change are believed to affect the abiotic environment and the ecosystem of 
the North Sea through all trophic levels, which will eventually change how much yield fisher-
men can sustainably harvest. Understanding and modelling these productivity changes of the 
ecosystem and in particular on the most commonly exploited stocks is therefore crucial to inform 
management and allow the fishery to adapt to potential future changes. To test different man-
agement routines, we conducted a short-cut MSE simulation with the bioeconomic modelling 
framework FLBEIA applied to the demersal mixed fisheries of the North Sea. Productivity 
changes for four stocks (Cod, Saithe, Plaice and Whiting) were modelled explicitly incorporating 
climate effects from a regionally-downscaled ocean model POLCOMS-ERSEM under the Repre-
sentative Concentration Pathways RCP4.5 and RCP8.5 via an environmentally-driven stock-re-
cruitment relationship (EMSRR). Two different baseline runs, representing the current situation 
were caried forward – one representing the ICES benchmark implementation (bench.), the other 
one a noCC climate scenario with a detrended RCP4.5 run. Various harvest control rules were 
tested representing different degrees of implementation of the EU landing obligation, trying to 
capture the current imperfect implementation (Case Study scenario), a strict implementation 
(FMSY-Min) and a middle-way, where choking effects are somewhat relaxed allowing fishing in 
the upper FMSY-range if stocks are within sustainable limits (PGY-Min). A Status quo effort 
scenario was simulated as a baseline with no management. Results point towards decreasing 
recruitment for the gadoids Cod and Saithe, mixed results for Plaice and slight increases for 
Whiting, compared to the noCC baseline. Performance of management point showed tradeoffs, 
with PGY-Min presenting a middle-way of sustaining high biomass, while allowing for in-
creased catch. Remaining at the status quo effort for the whole simulation resulted in increased 
risk of falling below Blim, exacerbated by climate change for saithe. Additionally, we highlight 
that a reasonable choice of the baseline runs (e.g. noCC vs. bench.) is crucial for a meaningful 
comparison of scenario performance.  In a short-term perspective, benchmark scenarios with a 
status quo perception of recruitment (SRR fitted to the recent historical period) provide a reason-
able, conservative estimate of future stock development under climate change. 

 

P16 - Integration of environment-productivity relationships for various stocks in BEMTOOL 
in the Adriatic and western Ionian Sea  

Isabella Bitetto and Maria Teresa Spedicato - Fondazione COISPA ETS - SEAwise 

Under SEAwise a case study was developed on demersal fisheries operating in Adriatic and 
western Ionian Sea.The BEMTOOL bio-economic model, integrating the environmentally medi-
ated stock-recruitment relationship (EMSRR), is used to investigate the biological and socio-eco-
nomic impact of management measures under different climate change scenarios (No Climate 
Change, RCP4.5, RCP8.5). The alternative scenarios explored are the Fmsy (for the target stocks 
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of the GFCM Multi-Annual management  Plan, Rec.GFCM/43/2019/5) and a combined Fmsy 
used as proxy for PGY. According to the results, the projections of the stocks under the 3 man-
agement and the 3 climate change scenarios would not fall below the biomass reference point, 
when they are available. The integration of environmental variables in BEMTOOL highlighted 
for all considered stocks a decrease, less or more pronounced according to the stock, in produc-
tivity due to forecasted climate change. Among the investigated management measures, Fmsy 
scenario represents a valid option to mitigate the impact of climate change on stock productivity, 
allowing to reduce, for the overexploited stock (e.g European hake), the risk to fall below the 
reference point. On the other hand, considering that there are stocks in Adriatic and Western 
Ionian Seas that are exploited below or close to Fmsy, PGY scenario can represent an option to 
reduce the underutilization of these resources, activating possible compensation mechanisms for 
the fleets. 

 

P17 - Estimation and integration of time-varying reference points in MSE 

Marc Taylor, Bernhard Kühn, and Alexander Kempf - Thünen Institute - SEAwise 

The presentation outlined an approach for estimating future reference points given changes in 
environmentally mediated productivity. The motivation of this work is to simulate the periodic 
updating of reference points within the management procedure (e.g. benchmark assessments 
within ICES). The approach showed how time series of projected environmental covariates could 
be transformed to reflect changes over distinct periods of time, via detrending and offset, which 
could then be used to estimate equilibrium reference points over the full time series. Preliminary 
results from MSEs integrating environmentally-mediated stock recruitment relationships for 
four demersal stocks of the North Sea (cod, saithe, plaice and whiting) were presented, showing 
changes in reference points (e.g. Fmsy, MSY, Bmsy, Btrigger) over time. Finally, the presentation 
raised the question about how to address variables that may be influenced by the environmen-
tally-mediated process, which may also need to be updated; e.g. modelled weight-at-age changes 
are likely to affect mortality- and selectivity-at-age.  

 

P18 - Comparative Evaluation of Model-Based and Empirical Indicators under Climate 
Change Scenarios for Ecosystem-Based Fisheries Management 

Laurence Kell (Sea++), Massimiliano Cardinale, Iago Mosqueira, Christopher Griffiths 

This talk gave an overview of fundamental MSE concepts and practices, and proceeded with 
stock-specific examples of environmental and socioecological considerations in the various parts 
of the MSE, and not just the OM. Examples were provided in how the management procedure 
can incorporate such considerations (risk equivalence and Feco) and calculation of performance 
metrics (e.g. related to nutrition).The flexibility of the Fisheries Library in R (FLR) framework is 
important for modelling climate change impacts and conducting MSE. FLR's modular design 
allows for the integration of various data types and modelling approaches. FLR supports the 
development and testing of management strategies under different climate scenarios, facilitating 
robust decision-making processes. By enabling the incorporation of ecosystem-based manage-
ment principles and accommodating the uncertainties associated with climate change, FLR en-
hances the resilience and sustainability of fisheries management practices. 

 

P19 - Isis Fish in the Bay of Biscay  
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Pierre-Yves Hernvann (IFREMER), Sigrid Lehuta, Stéphanie Mahévas, Ian Pellet, Marie Savina-
Rolland, Morgane Travers-Trollet, Antoine Ricouard, Jean-Baptiste Lecomte, Louis Maillard, 
Audric Vigier, Olivier Le Pape - SEAwise 

By coupling stock assessment models with operating models that can integrate environment, 
and species or fleet interactions, management strategy evaluation (MSE) is a key tool for transi-
tioning towards an operational ecosystem-based fisheries management. In the Bay of Biscay 
(BoB), the sustainable management of the demersal fisheries is challenged by their highly mixed 
aspect, and even more in a context of climate change, which is expected to unequally affect the 
productivity of exploited stocks. Therefore, we adopted the fisheries spatially-explicit simulation 
model ISIS-Fish as the operating model of a climate-informed MSE in the BoB. The population, 
finely-resolved fleet and flexible management modules of ISIS-Fish make it particularly pertinent 
for testing management strategies while accounting for technical interactions in multistock, mul-
tigear fisheries. Due to the heterogeneity in the material available for our study, our MSE frame-
work was designed to implement either shortcut MSE or closed MSE loops. The closed loop was 
tested for common sole in the BoB, a commercially important and emblematic stock whose sus-
tainable exploitation is challenged by both the highly mixed nature of demersal fisheries and 
changes in stock productivity over recent decades. The loop connects ISIS-Fish (operating model) 
to the BoB sole stock assessment model used by the WGBIE. In particular, ISIS-Fish represents 
the environmental control on sole recruitment via a nursery habitat capacity model based on 
river flow. To investigate management procedures performing better than the MSY approach in 
a changing environment and mixed-fisheries context, we simulated over the historical period the 
effect of alternative management procedures incorporating environmental information at differ-
ent steps of the management cycle: in the stock assessment or in the harvest control rule using 
its output. In the former, the nursery habitat capacity model predicts next years’ recruitment 
from recent river flow measurements, then integrated into the short-term projections required 
for the advice; in the second, the harvest control rules use measurements of recent changes in 
river flows to scale up or down the total allowable catch based from the MSY approach. Our 
preliminary work highlighted the efficiency of environmentally-informed procedures to rebuild 
the stock of sole but also the need to account for their implications on mixed fisheries, especially 
regarding the variability in their revenue. In the next steps of this work, our MSE framework, 
which is developed within the SEAWise project, will integrate environment-productivity rela-
tionships for other species and test the robustness of various multispecies management proce-
dures within the MSE closed loop or shortcut framework, according to various scenarios of cli-
mate change. 

 

P20 - Accounting for environmental drivers of Pacific sardine recruitment through multivari-
ate analysis and MSE simulation testing 

R Wildermuth (University of California), Desiree Tommasi, Peter Kuriyama, Isaac Kaplan, James 
Smith, Charles Hinchliffe, Stefan Koenigstein, Andrew Thompson, Noelle Bowlin, Mercedes 
Pozo Buil, Michael G. Jacox, Steven J. Bograd, and Barbara Muhling  

Climate-driven changes in ocean temperatures, currents, or plankton dynamics may disrupt pe-
lagic forage fish recruitment. Being responsive to such impacts enables fisheries management to 
ensure continued sustainable harvest of forage species. We conducted a management strategy 
evaluation to assess the robustness of current and alternative Pacific sardine harvest control rules 
under a variety of recruitment scenarios representing potential projections of future climate con-
ditions in the California Current. The current environmentally-informed control rule modifies 
the harvest rate for the northern sardine subpopulation based on average sea surface tempera-
tures measured during California Cooperative Oceanic Fisheries Investigations (CalCOFI) field 
cruises. This rule prioritizes catch at intermediate biomass levels but may increase variability in 
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catch and closure frequency compared to alternative control rules, especially if recruitment is 
unrelated to ocean temperatures. Fishing at maximum sustainable yield and using dynamically 
estimated reference points reduced the frequency of biomass falling below 150,000 mt by up to 
17%, while using survey index-based biomass estimates resulted in a 14% higher risk of delayed 
fishery closure during stock declines than when using assessment-based estimates.  

P21 - Including temporal variability in natural mortality of the Norwegian spring spawning 
herring in a MSE 

Jessica Tengvall, Fabian Zimmermann, Katja Enberg, Anders F. Opdal, John T. Trochta - IMR  

Ignoring or oversimplifying important processes that determine stock dynamics, notably natural 
mortality and density-dependence, may increase the risk of inadequate fisheries management, 
as it can mean overlooking important population fluctuations. Here, we tested the sensitivity of 
the currently used ICES harvest control rule (current HCR) for Norwegian spring-spawning her-
ring (NSS herring) under alternative population models using a short-cut management strategy 
evaluation (MSE). We configured a base scenario with age-dependent natural mortality (SCbase) 
similarly to the ICES MSE for NSS herring. The alternative population scenarios included a) den-
sity-dependent growth and maturity (SC1), included in most alternative population scenarios, 
b) random-walk natural (SC2), c) increasing trend in natural mortality over 30 years (SC3), d) 
length-based natural mortality (SC4), e) indirect density-dependent effect in length-based natu-
ral mortality (SC5), f) direct density-dependent effect in age-based natural mortality (SC6). A 
grid of possible HCR control parameters (Ftarget and Btrigger) was tested for each scenario. Per-
formance was evaluated according to risk of SSB falling below an absolute Blim and relative Blim 
values based on the pristine biomass per scenario alongside interannual variability (IAV) in me-
dian catch and median catch. Results show that the current HCR is sensitive to the added bio-
logical complexity, particularly an increasing rate of natural mortality. However, the level of risk 
depends on the definition of Blim. A lower Ftarget and a higher Btrigger demonstrated lower risk 
without compromising catch compared to the current HCR across most population scenarios. 
Shortcut MSEs offer a more efficient initial exploration of sustainable long-term management of 
various population scenarios against several HCRs, facilitating a more comprehensive evalua-
tion of management performance before conducting a full MSE. 
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Annex 2: Terms of Reference 

A joint ICES - SEAwise workshop to quality assure methods to incorporate environmental 
factors and quantifying ecological considerations in Management Strategy Evaluation tools 
(WKEcoMSE)  

The Workshop to quality assure methods to incorporate environmental factors and quantifying 
ecological considerations in Management Strategy Evaluation tools (WKEcoMSE) will meet on 
21- 24 May 2024 online chaired by John Trochta CHAIR (Norway), Marie SAVINA-ROLLAND 
(France) and Piera Carpi (Norway).  

 

The WKEcoMSE will work to provide a powerful set of tools for scientists to develop harvest 
control options that align with management objectives. Most commonly conducted as single-
species analyses, MSEs can also address mixed fisheries objectives by using multi-stock and 
multi-fleet operating models. The EU project, SEAwise, endeavours to develop such multi-stock 
multi-species models further so that they can be used to define and evaluate fisheries manage-
ment strategies that address broad Ecosystem Based Fisheries Management (EBFM) objectives, 
including identifying HCRs that are robust to changes in productivity. As such, a key deliverable 
of this workshop is to develop robust and consistent environment�productivity relationships for 
commercial stocks across selected case studies, which potentially can be integrated in models 
used by ICES and the SEAwise project. The methods put forward in the workshop will be peer-
reviewed to ensure that they are scientifically robust and fit-for-purpose for the advisory frame-
works, policy, and management needs in FAO areas 27 and 37 (the ICES area (i.e. North Atlantic) 
and the Mediterranean Sea).  

Terms of reference 

1. Methods for consideration by the WK will be proposed by workshop participants, including 
those methods specifically examined by the SEAwise project.  

2. Review the proposed methods regarding their capacity to incorporate the impact of environ-
mental factors on the productivity of commercial stocks in the Fisheries Management Strategy 
Evaluation tools.  

3. Evaluate the guidelines for each of the different processes controlling productivity, i.e. recruit-
ment, growth and maturity, and survival, including: a. the biological and environmental datasets 
to be used and potential pre-processing procedures; b. the statistical models to use; c. methods 
and metrics to assess the predictive capacity of the statistical models developed; and, d. proce-
dures to assess the uncertainty added to the considered management tool.  

4. Review the proposed approaches and make recommendations to end users on whether the 
studied environment-productivity relationships should be considered or not. Recommend alter-
native, more generic approaches if the targeted approach is inconclusive 
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