

Muscle-to-Brain communication in the context of obesity: impact of physical exercise?

A. Delpierre (1), A. Villers (2), C. Deroux (2), L. Ris (2), A-E. Declèves (3), A. Legrand (1) and A. Tassin (1) (1) Lab. of Respiratory Physiology and Rehabilitation, UMONS (2) Lab. of Neurosciences, UMONS (3) Lab. of Metabolic and Molecular Biochemistry, UMONS

Day 0	Day 1	: Day 2	: Day 3	Day T	
Discovery		Learning		Test	
				·	

Exercise training (ET) has been shown to be beneficial in managing **obesity**-related disorders. ET was reported to have positive effects on the brain. Our project aims to define the role of irisin in this context. Irisin is an exercise-induced myokine also expressed in the hippocampus, an essential brain area for learning and memory.

UMONS

protein level. Irisin plasmatic level is also enhanced by not-voluntary ET and high-fat diet. In muscles, FNDC5 protein level is increased by ET in mice with enrichment and low-fat diet. Further studies are now necessary to better understand the contribution of Irisin in ET benefits on brain function.

Aknowledgements

We thank the Research Institute for Health Sciences and Technology, UMONS, for its financial support.

Prof. Legrand | Lab. of Respiratory Physiology and Rehabilitation, UMONS | antoine.delpierre@umons.ac.be