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A B S T R A C T

This work addresses the need for robust approaches to estimate kinetic parameters in continuous anaerobic co-
digestion plants. Specifically, it outlines a procedure for including data from batch activity tests on digestate
samples, in addition to the poorly informative dataset from conventional monitoring of biogas facilities. To
profitably make use of activity tests, the estimation of the biomass composition in digestate samples is required to
improve parameter identifiability. To this purpose, an open-source tool (CalOpt) was developed and tested on a
pilot-scale co-digester, simultaneously using data from both conventional monitoring and lab-scale activity tests.
Targeting the prediction of volatile fatty acids (VFAs) concentrations in the digestate of the continuous co-
digester, the kinetic parameters of different microbial groups were selected for calibration based on parame-
ters importance ranking and collinearity index. The results demonstrate that the CalOpt tool significantly
improved the fitting of acetic, propionic, and butyric acid concentrations in digestate as well as the methane
flowrate from the digester. Furthermore, the study assessed the necessity of modifying the Monod kinetics to
account for substrate inhibition by incorporating the Haldane term in the VFAs uptake kinetic model, which
proved to be essential for better interpreting batch activity tests.

1. Introduction

The Anaerobic Digestion Model No. 1 (ADM1) published by the In-
ternational Water Association [1] is the most popular model providing a
comprehensive, albeit simplified, mathematical description of the
anaerobic digestion (AD) process. While the ADM1 does not cover all the
metabolic pathways involved in anaerobic systems, the need for more
accurate modelling has led to both systematic and specific modifica-
tions, which have been widely reviewed in dedicated works [2–4].
Currently, model application has become imperative in the biogas field,
to maximise the performances of AD facilities and to support the tran-
sition from biogas plants to biorefineries for the recovery of energy and
material [5].

In addition to an appropriate process description, a good mathe-
matical model requires accurate parameter values. Default values of
ADM1 parameters are available from literature (e.g., [1]) but they
commonly require further calibration; this has led to important vari-
ability in the range of values reported, in consequence of the variety of
approaches used for both modelling and calibration [4]. In the case of
the ADM1, parameter estimation can prove challenging, due to the large

and non-linear model structure resulting in low and/or highly correlated
sensitivities of parameters as well as to the difficulty to collect infor-
mative experimental datasets at full-scale facilities [6–8]. As for the
identifiability issue, while the structural identifiability of ADM1 has
been established [9], the practical identifiability of Monod parameters
remains problematic due to interactions between processes [8,10], and
to the correlation existing between parameters [11]. Consequently,
overfitting of data may result in a model that closely reproduces
experimental data, but with low predictive capability [12]. Regarding
data availability, except for pH and biogas flowrate/composition
commonly measured through on-line sensors, all the other data are off-
line measurements with low sampling frequency [13,14]. Since methane
production is commonly used as a key performance indicator in simu-
lations, among the numerous kinetic parameters involved in the model,
only a few are subject to calibration, typically hydrolysis and meth-
anogenesis parameters [15–17]. Multi-objective optimization, exploit-
ing off-line data and on-line methane production rate, is the common
approach to parameter identification [17]. It has the advantage of
providing better results than using the methane rate alone, despite still
not completely capturing the intermediary outputs (e.g., volatile fatty
acids, VFAs, concentrations) [18], or providing highly correlated
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Nomenclature

A Normalized scaled sensitivity matrix of columns ak
AP Normalized scaled sensitivity matrix computed for the

generic subset of parameters P
AD Anaerobic Digestion
ADM1 Anaerobic Digestion Model No. 1
Alk Total alkalinity
BMP Biochemical Methane Potential
CI Parameters confidence intervals
COD Chemical Oxygen Demand
COV(θ) Estimated covariance matrix
CSTR Continuous-flow Stirred Tank Ractor
DIG Dataset consisting of digester methane flowrate data
DIG+BAT Dataset consisting of methane flowrate data from digester

and from Batch Activity Tests
EY Expired Yogurt
FIM(θ) Fisher Information Matrix
Gj Covariance matrix of the measurement errors
HRT Hydraulic Retention Time
i Index for the experimental sampling time
IC Ionic strength (kmol⋅m-3)
ISR Inoculum to Substrate Ratio
j Index for experiments
J(θP) Cost function for the Nelder and Mead minimization

algorithm
k Index for parameters
Ki,H Haldane inhibition constant for the generic substrate S (kg

COD⋅m-3)
Ki,h2,c4 Hydrogen inhibitory concentration for C4 degrading

organisms (kg COD•m-3)
Ki,h2,pro Hydrogen inhibitory concentration for propionate

degrading organisms (kg COD•m-3)
KiH,ac Haldane inhibition constant for acetate degrading

organisms (kg COD•m-3)
KiH,bu Haldane inhibition constant for butyrate degrading

organisms (kg COD•m-3)
KiH,pro Haldane inhibition constant for propionate degrading

organisms (kg COD•m-3)
KiH,va Haldane inhibition constant for valerate degrading

organisms (kg COD•m-3)
kLa Gas-Liquid mass transfer coefficient (d-1)
kLabatch Gas-liquid mass transfer coefficient for batch tests reactors

(d-1)
km Maximum uptake rate for the generic substrate S (d-1)
km,ac Maximum uptake rate for acetate degrading organisms (d-

1)
km,c4 Maximum uptake rate for C4 degrading organisms (d-1)
km,h2 Maximum uptake rate for hydrogen degrading organisms

(d-1)
km,pro Maximum uptake rate for propionate degrading organisms

(d-1)
km,su Maximum uptake rate for sugar degrading organisms (d-1)
KS Half-saturation constant for the generic substrate S (kg

COD⋅m-3)
KS,ac Half-saturation constant for acetate degrading organisms

(kg COD•m-3)
KS,c4 Half-saturation constant for C4 degrading organisms (kg

COD•m-3)
KS,h2 Half-saturation constant for hydrogen degrading

organisms (kg COD•m-3)
KS,pro Half-saturation constant for propionate degrading

organisms (kg COD•m-3)
KS,su Half-saturation constant for sugar degrading organisms (kg

COD•m-3)

m Number of parameters
MARE Mean Absolute Relative Error
MS Mixed Sludge
N Total number of experimental observations used for

calibration
ne Number of experimental datasets (for continuous co-

digester and batch tests)
nt Number of experimental sampling times (for continuous

co-digester and batch tests)
OLR Organic Loading Rate
P Generic subset of p parameters
p Number of practically identifiable (calibrated) parameters
q Iterative step of the calibration algorithm
QCH4,dig Methane flowrate from the pilot-scale digester (NL CH4•d-

1)
r Specific substrate uptake rate (d-1)
rm Maximum specific substrate uptake rate in the absence of

inhibition (d-1)
Rq Percentage decrease of J(θP) from its initial value at the q-

th iterative step
rrSI Relative-relative sensitivity index of the k-th generic

parameter for the j-th generic experiment
S Scaled sensitivity matrix of elements si,j(ti)
S0 Initial substrate concentration (kg COD⋅m-3)
Saa Dissolved aminoacids concentration (kg COD•m-3)
Sac Acetic acid concentration (kg COD•m-3)
Sbu Butyric acid concentration (kg COD•m-3)
Sca Dissolved calcium concentration (kmol⋅m-3)
SCj Scale factors for the j-th experiment for computation of the

scaled sensitivity matrix
Sfs Dissolved fatty acids concentration (kg COD•m-3)
Sip Dissolved inorganic phosphorus (kmol⋅m-3)
SIP Soluble Inorganic Phosphorous
Smg Dissolved magnesium concentration (kmol⋅m-3)
Spro Propionic acid concentration (kg COD•m-3)
Ssu Dissolved sugars concentration (kg COD•m-3)
Sva Valeric acid concentration (kg COD•m-3)
tk Student t-value for the k-th parameter
TAN Total Ammoniacal Nitrogen
TIC Theil’s Inequality Coefficient
TS Total Solids
Vcum Cumulated methane volume from the batch activity tests

(NmL CH4)
VFAs Volatile Fatty Acids
Vj Absolute-absolute sensitivity matrix for the j-th experiment
VS Volatile Solids
Wj Weighting matrix for the j-th experiment
Xac Acetate degrading organisms concentration (kg COD•m-3)
Xc Complex particulate concentration (kg COD⋅m-3)
Xc4 C4 degrading organisms concentration (kg COD•m-3)
Xh2 Hydrogen degrading organisms concentration (kg

COD•m-3)
Xli Biodegradable particulate lipids concentration (kg

COD•m-3)
Xpr Biodegradable particulate proteins concentration (kg

COD•m-3)
Xpro Propionate degrading organisms concentration (kg

COD•m-3)
Xsu Sugar degrading organisms concentration (kg COD•m-3)
yj(ti) Response (simulated) variable from the j-th experiment at

time ti
yj

meas(ti) Experimental (measured) variable from the j-th experiment
at time ti

α Relative standard deviation of measurement errors
γP Collinearity index of the generic subset P of p parameters
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estimates of parameters related to acidogenesis fermentation [19].
Over the years, researchers have developed and tested a variety of

methodologies and approaches to tackle this issue. Recently [11],
knowledge of the microbial metabolic pathways in biochemistry and a
correlation-based approach were used to mechanistically estimate spe-
cific biokinetic parameters related to sulphate reduction, thus reducing
the number of parameters to be calibrated. In addition, model simpli-
fications of the ADM1, featuring a reduced number of implemented
process phases, characteristic components, and required parameters,
have been proposed. These simplified models have demonstrated
improved parameter identifiability and offer a viable alternative for
application in monitoring and control systems [20–25]. Lastly, machine
learning methods were demonstrated to be effectively integrated with
traditional mechanistic models to predict the ADM1 kinetic parameters
[26].

Parameter identifiability also depends on the experimental mode:
the main advantages and drawbacks of exploiting batch, continuous and
fed-batch experiments were reviewed by Nopens et al. [27] and Donoso-
Bravo et al. [13]. They pointed out that the application of specific
substrate pulses to continuously operated digesters would increase
parameter identifiability by decoupling biological processes [28,29],
but this methodology is not applicable at full-scale facilities. Conversely,
batch respirometric tests conducted on digestate samples collected from
full-scale facilities can segregate specific processes within the whole
degradation chain [14,30,31]. However, the main challenge of using
batch activity tests for accurate parameters identification lies in the
proper definition of initial conditions, particularly as for microbial
groups, being the latter extremely difficult to be quantified in AD pro-
cesses [11]. Batstone et al. [28] proposed the use of pulsed injections in
anaerobic sequencing batch reactors allowing the establishment of
initial conditions to evaluate parameters. Despite their effectiveness for
parameter estimation, the authors emphasized the heavy computational
requirements for multiple cycles implementation and still difficulties in
the definition of initial conditions. Flotats et al. [32,33] proposed the use
of simultaneous batch experiments with different initial conditions.
They applied a structural identifiability study and they concluded that it
is possible to determine univocally the kinetic parameter values for
specific microbial groups if the evolution of substrates or products is
measured.

A first attempt to combine batch experiments with continuous
reactor data to determine digestate characteristics was carried out by
Girault et al. [34], followed by the work by Catenacci et al. [35] who
manually tested an iterative procedure, exploiting the synergy existing
between data collected from batch experiments and from continuously
fed digesters. It provided more accurate estimates of initial conditions
for microbial groups in batch tests, thus improving model prediction
performances, but at the expense of a time-consuming manual imple-
mentation. Thus, to date, despite their ease of implementation and po-
tential for enhancing parameter identifiability, batch activity tests are
seldom utilized for the calibration of models describing full-scale di-
gesters. To address this limitation, an open-source tool (CalOpt) devel-
oped in the OpenModelica environment is here proposed. This novel tool
automates the estimation procedure and enables the efficient simulta-
neous use of batch activity tests and conventional monitoring data from
continuous anaerobic co-digesters. To evaluate its impacts on practical
parameters observability and model’s predictive performance, the tool
was tested on experimental data from a pilot plant co-digesting waste

sludge and expired yogurt, using an ADM1-based model. Moreover, with
the introduction of batch activity tests for parameter estimation where
inhibition may occur due to high initial substrate concentrations, the
suitability of the Haldane-Andrews (hereinafter referred to as Haldane)
kinetics was investigated to enhance the accuracy of VFAs concentration
predictions. Most importantly, practical identifiability of parameters in
a system including or excluding activity tests and thus exploiting or not
the CalOpt tool was explored and compared, and dictated the subse-
quent calibration phase.

2. Materials and methods

2.1. Experimental data collection

The pilot-scale continuous-flow stirred tank reactor, CSTR digester
(94 L reactor volume, 53 L average liquid volume) was equipped with a
valve for collection of digestate samples, a mechanical mixer, an auto-
mated PLC-controlled volumetric feeding pump, and a 30 L refrigerated
feeding tank where the feed was weekly replaced with a new and fresh
supply. Carbon dioxide was separated from biogas using absorption
units with 3 M NaOH. The methane gas flowrate was recorded through a
volumetric device, while the digester pH and temperature, the head-
space pressure and the weight of the feeding tank were on-line recorded
(Fig. S1, Supplementary Material).

The digestate used to inoculate the reactor and the mixed waste
sludge (primary and secondary waste sludge) used to feed the pilot plant
were collected at a full-scale wastewater treatment plant serving
600′000 population equivalents.

The digester, operated under mesophilic conditions (37 ◦C), was
semi-continuously fed 6 times per day for 97 days. During the start-up
phase, the hydraulic retention time (HRT) and the organic loading
rate (OLR) were set at approximately 17 days and 2.3 kg COD⋅m-3⋅d-1.
Afterwards they were varied in the range 12–43 days and 1.0–3.9 kg
COD⋅m-3⋅d-1, respectively. More specifically, mono-digestion with the
sole mixed sludge (MS) was initially implemented (Phase I: 0–70 days,
influent flowrate Qin,MS,m = 2.9 ± 0.6 L⋅d-1). Later, the digester was fed
in co-digestion mode (Qin,MS,c = 2.8 ± 0.1 L⋅d-1) with increasing flow-
rates of expired yogurt (EY) (Phase II: 71–84, Qin,EY,II=0.13± 0.01 L⋅d-1;
Phase III: 85–97, Qin,EY,III=0.32 ± 0.05 L⋅d-1).

Total (TS) and volatile solids (VS), total ammoniacal nitrogen (TAN),
total alkalinity (Alk), VFAs speciation, soluble inorganic phosphorous
(SIP), and pH were measured twice per week on the digestate. Once a
week, digestate, MS and EY samples were also characterized for their
chemical oxygen demand (COD), carbohydrates, proteins, and lipids
content, those parameters being measured on the total and soluble
(filtered at 0.45 μm) fractions. In addition, five Biochemical Methane
Potential (BMP) tests onMS and two on EYwere carried out to define the
unbiodegradable COD fraction. Average calcium and magnesium con-
centrations were derived from commercial labels for EY, and measured
on the soluble fraction for MS.

2.1.1. Batch tests
To supply additional experimental data for model calibration, the

effluent digestate was periodically collected and used as inoculum for
batch lab-scale assays (BMP and activity tests). Tests were run according
to Holliger et al. [36] under mesophilic conditions (37 ± 0.5 ◦C) in
continuously stirred 1 L reactors (800 mL working volume). A

Δθk Scale factors for the k-th parameter for computation of the
scaled sensitivity matrix

θ Initial vector of m parameters
θk Generic k-th parameter
θk,0 Initial estimate of the k-th parameter
θk* Optimal estimate of the k-th parameter

θP Vector of p parameters selected for calibration
θP* Vector of p optimal calibrated parameters
ρk Parameters importance index for the k-th parameter
σ2

j (ti) Variance of the response yj(ti), diagonal element of Gj
σk(θk*) Standard deviation of the optimal k-th parameter estimate

A. Catenacci et al. Chemical Engineering Journal 499 (2024) 155743 

3 



volumetric device equipped with a CO2-trap was used to measure the
methane produced from batch experiments. Before the beginning of
tests, the headspace was flushed with nitrogen gas to ensure anaerobic
conditions.

In BMP tests, digestate from the pilot-scale digester was used as
inoculum after a 5–7 days incubation for degassing. The inoculum to
substrate ratio (ISR) was in the range 1.9–2.8 gVS⋅gVS-1 and 1.9–4
gVS⋅gVS-1 for MS and EY, respectively. Activity tests were inoculated
with fresh digestate collected from the pilot-scale digester at different
operational days. As substrate, VFAs (acetate, propionate, butyrate, and
valerate) and glucose were dosed. Details of test settings are reported in
Table 1. All tests were performed (at least) in duplicate. As advised by
literature [14,33], different initial substrate and biomass concentrations
were tested. The experiments were stopped once the supplemented
substrate was fully consumed, as suggested by the change in the rate of
methane production.

2.1.2. Analytical methods
TS and VS were determined according to Standard Method (SM)

2540, total/soluble COD according to SM 5220 [37]. Total/soluble
carbohydrates and proteins were measured using the Dubois method
and the Bicinchoninic Acid method [35]. Total/soluble lipids were
determined according to SM 5520B, 5520E and 5520F [37]. Single VFAs
(acetic, propionic, isobutyric, butyric, isovaleric and valeric) concen-
trations were measured through a gas chromatograph (DANI Master GC)
coupled with a flame ionization detector (SM 5560, [37]). TAN and SIP
were measured using spectrophotometric kit tests (Hach-Lange) on 0.45
μm filtered samples. Total alkalinity was measured by automatically
titration with H2SO4 up to pH 4.3 (Hach Lange BIOGAS Titration
Manager). Calcium and magnesium were determined by ionic chroma-
tography. The pH of feeding substrates was measured by means of a
portable multi-probe meter (Hach-Lange, HQ40D).

2.2. Model description

The co-digestion model is fully described in Carecci et al. [38]. This
model was slightly modified in order to: (i) describe a variable-volume
operational mode [39]; (ii) include free ammonia gas/liquid mass
transfer; (iii) correct the mass transfer coefficient (kLa) for different
gases using their diffusivities [40]; (iv) given the high initial concen-
trations tested with batch activity test, introduce the Haldane kinetics
(eq. (1)) for the uptake of single VFAs [41–43], in comparison with the
original Monod equation in the ADM1 (see paragraph 2.4):

r =
rm

1+ KS
/

S + S
/
Ki,H

(1)

where r is the specific substrate (S) uptake rate, rm is the maximum value
in the absence of inhibition, KS is the half-saturation constant, Ki,H is the
Haldane inhibition constant which represents the degree of substrate
inhibition: the higher the value, the less severe the degree of inhibition.

The same model was used to simulate batch activity tests, with the
inclusion of nitrogen gas injection to accurately describe the initial
states of the batch reactor headspace.

Main extensions of the co-digestion model with respect to the orig-
inal ADM1 are briefly recalled in the following.

2.2.1. Biokinetic modifications
The original complex particulate variable Xc and the disintegration

process were removed. Decay products were directly re-allocated among
soluble/particulate undegradable and particulate degradable organic
matter [44].

Phosphorous transformations were added in the biokinetic model,
thus including P in the elemental composition of each component, bio-
logical dissolved inorganic phosphorus (Sip) assimilation/release, and P
limitation [44]. Temperature correction coefficients for mesophilic
conditions (30–40 ◦C) were assumed as in [45].

2.2.2. Physicochemical extensions
As suggested in the Generalised Physicochemical Model (PCM) [46],

activity coefficient corrections (Davies model) as a function of the ionic
strength (IC) were included for accurate prediction of pH, gas transfer,
and bioprocess rates. Accordingly, the model was also extended with all
acid/base equilibria of inorganic carbon and phosphorous and, due to
the co-digestion with EY, with dissolved calcium (Sca) and magnesium
(Smg) as components participating only to physicochemical processes.
Salts precipitation was neglected to reduce the computational time and
possible numerical issues during calibration with the CalOpt tool.

2.2.3. Influent COD fractionation
Fractionation of influent COD of MS was made according to the

procedure and outcomes by Catenacci et al. [35], thus assuming negli-
gible influent concentrations of sugars (Ssu), aminoacids (Saa) and fatty
acids (Sfa). As regards the COD fractionation of EY, all measured car-
bohydrates were found as dissolved and thus entered the model as Ssu.
Likewise, 11 % of total measured proteins were allocated as Saa and the
rest as degradable particulate proteins (Xpr). All lipids were included as
degradable particulate lipids (Xli).

Table 1
Activity tests setting and their use (calibration or validation).

Substrate Substrate con.
[g COD⋅L-1]

VS conc.
[g VS⋅L-1]

ISR [g COD⋅ g VS -1] Calibration or Validation Inoculum sampling day ID test

Acetate 0.77 9.1 11.8 C 10 HAc-A
3.5 9.8 2.8 C 10 HAc-B
1.4 2.6 1.9 C 10 HAc-C
0.5 4.5 9.0 V 18 HAc-D
1.6 5.1 3.2 C 18 HAc-E
1.6 6.1 3.8 V 42 HAc-F
1.4 5.2 3.7 V 74 HAc-G

Propionate 1.6 3.0 1.9 V 10 HPro-A
0.43 5.1 11.9 C 18 HPro-B
0.85 5.1 6.0 C 18 HPro-C
1.7 5.1 3.0 C 18 HPro-D
0.9 6.1 6.8 V 42 HPro-E
2.5 9.4 3.8 C 44 HPro-F
1.9 5.2 2.7 V 74 HPro-G

Butyrate 2.5 8.6 3.4 C 44 HBu-A
Valerate 2.5 8.6 3.4 C 44 HVa-A
Glucose 3.0 8.1 2.7 V 39 Glu-A

2.9 6.0 2.1 C 42 Glu-B
2.5 8.3 3.3 C 44 Glu-C
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2.3. Model implementation

The OpenModelica v. 1.21.0 (Modelica language) software was used
for the development of both the model and the CalOpt tool. Two
different blocks, based on the same mathematical description of the
process, were built, one for the digester (working as a CSTR) and one for
batch tests (working without influent and effluent liquid flowrates). The
“global model” includes one “digester block” and as many “batch tests
blocks” as the number of batch activity experiments to be simulated.

2.3.1. The CalOpt tool
The CalOpt tool exploits the Modelica built-in operator “reinit” in a

when-statement to reinitialize, at an event instant (the sampling time),
the state variables of the inoculum used in “batch tests blocks” with the
predicted values of the effluent digestate from the “digester block”. In
this way, the comprehensive calibration procedure is carried out cali-
brating one parameter set, using ne experimental datasets (one from the
continuous co-digester and ne − 1 from batch tests) obtained under
different input dynamics and interconnected by digestate state variables
in the different blocks.

2.3.2. Initial conditions and parameters
The initial conditions of the digester were defined exploiting the

characterization of the digestate used to inoculate the reactor. Biomass
concentrations were initialized to the steady-state values obtained from
the preliminary simulation of the full-scale digester where the inoculum
was collected.

The initial conditions of batch experiments were computed by the
model as mass balances in the code. Specifically, this was done by uti-
lizing the digestate concentrations predicted by the model at the sam-
pling time and specifying the volumes of substrate solution, dilution
water and inoculum dosed in each batch test. In this way, during cali-
bration, the model progressively updates initial conditions that can then
be removed by the vector of parameters requiring estimation.

The initial parameters were assumed as in [47], except for the Hal-
dane inhibition constants for VFAs, for which a wide range is reported in
the literature [48–51]. Indeed, to the best of author’s knowledge, there
is scarce information available on substrate inhibition kinetics during
the VFAs degradation stage. Some authors simplify the model by
grouping VFAs together, which are the substrate for methanogens, thus
leading to the adoption of a comprehensive inhibition constant that
encompasses a pool of VFAs [49,50]. Conversely, other researchers es-
timate the Haldane constant specifically for the methanogenesis of
acetic acid alone [41,42]. Those different modelling approaches result in
significant variability in Ki,H estimates. For this reason, the Haldane
inhibition constants for single VFAs were tested starting from two
extreme values, 1.5 and 10 kg COD⋅m-3, arbitrarily selected to cover a
wide but reasonable range of variability.

2.4. Parameters observability, calibration and model validation

2.4.1. General approach
A preliminary calibration phase to estimate hydrolysis kinetic con-

stants was made by fitting experimental BMP curves with a first-order
kinetic model, extensively proved to be suitable to interpret BMP
curves of many substrates, including sewage sludge [52].

The practical identifiability analysis was carried out with two main
objectives: to assess and quantify the increased identifiability of pa-
rameters when integrating conventional digester monitoring with batch
activity tests, and to select identifiable parameters for further calibra-
tion. Since the quality of data, in terms of accuracy, precision, and fre-
quency, is essential for parameter identification [7], sensitivity analyses
and model calibration were carried out using on-line methane flowrates
measured at the pilot-scale digester and during batch activity
experiments.

To demonstrate the importance of batch activity tests in model

calibration, two different datasets were compared: one consisting only
of methane flowrate data from the continuous digester (hereinafter
“DIG”, used for “conventional” calibration, 776 data), and one also
including methane flowrates measured in batch activity tests
(“DIG+BAT”, used for “CalOpt” calibration, 2245 data) (Fig. 1).

Activity tests were divided into two groups: 12 out of 19 batch tests
were used for calibration, while the remaining 7 tests were used for
validation (identified with letter “C” or “V” in Table 1). Previous studies
proved that Monod parameters are strongly correlated when tested at
low S0/KS ratios (being S0 the initial substrate concentration) [53] and
that the ISR affects the Monod parameter correlation [54]. Conversely,
the same authors observed that the degree of correlation between the
maximum uptake rate (km) and Ki,H becomes less severe as the S0/Ki,H
ratio is decreased [53]. For this reason, multiple tests with different
initial conditions have been performed and selected for calibration
purposes to cover a wide range of S0 and initial biomass concentrations.

To further clarify the role of substrate inhibition for VFAs degraders
and its importance when introducing batch activity tests, three model
structures to describe VFAs uptake were systematically investigated: the
absence of inhibition (hereinafter referred to as “Monod”), or the pres-
ence of substrate inhibition as described by the Haldane-type model; the
latter was assessed assuming both low and high first guesses for all the
four Haldane inhibition constants (hereinafter “Haldane (1.5)” and
“Haldane (10)”, respectively).

2.4.2. Parameter identifiability
Since batch activity tests were only conceived to determine the ki-

netic parameters of target substrate degraders, stoichiometric co-
efficients and inhibition constants for pH and ammonia were not
included in the initial vector θ of m selected parameters, that was thus
composed of: 10 kinetic parameters related to acetate, propionate,
butyrate/valerate, sugars and hydrogen degraders (km and KS for Xac,
Xpro, Xc4, Xsu and Xh2, the last one included due to hydrogen producing
metabolic pathways from propionate and glucose); 2 inhibition con-
stants of hydrogen on Xpro and Xc4; the gas–liquid mass transfer coeffi-
cient for batch tests reactors (kLabatch, whereas kLa was set at 150 d-1 in
the digester); 4 Haldane inhibition constants (only when considering the
Haldane kinetic for VFAs uptake).

To explore the practical identifiability of θ, the following quantities
of interest were computed: the local one-at-a-time relative-relative dy-
namic sensitivity function, rrSIj,k (eq. (2), [55]) and the correlation
matrix of parameters estimate, computed from the estimated covariance
matrix, COV(θ) (eq. (4)), in turn obtained by inverting the Fisher In-
formation Matrix, FIM(θ) (eq. (3)) [12,56,57]:

rrSIj,k =
θk

yj

∂yj

∂θk
(2)

FIM(θ) =
∑ne

j=1

∑nt

i=1

(∂yj(ti, θ)
∂θ

)T

Wj(ti)

(∂yj(ti, θ)
∂θ

)

=
∑ne

j=1
VT

j WjVj

= VTWV (3)

COV(θ) = FIM(θ)− 1 (4)

where: θk is the generic k-th parameter; yj is the vector of the dynamic
time-response (the methane production rate in this case) from the j-th
experiment (digester and batch tests); yj(ti, θ) is the θ-varying vector of
the response variable from the j-th experiment at time ti, (for a set of ne
experiments and nt sampling times); ∂yj(ti, θ)/∂θ are the absolute-
absolute sensitivity functions (computed using the finite difference
approximation) of the j-th sensitivity matrix Vj; Wj(ti) is the weighting
matrix where each element is the inverse of the covariance matrix of the
measurement errors (Wj = Gj

− 1). Assuming that this matrix is diagonal,
i.e. measurements are independent (not correlated) with each other,
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each element σ2
j (ti) (i.e., the variance of the response yj(ti)) in the di-

agonal of Gj was computed as in eq. (5) [54,58]:

σ2
j (ti) =

(
α⋅yj(ti)

)2
(5)

where α, the relative standard deviation of each measurement error, was
assumed equal to 5 %, i.e., the highest measured error among batch tests
replicates.

In addition, since the interpretation of the correlation matrix is not
straightforward nor easy to handle when more than two parameters are
to be estimated, parameters importance indices (ρk) and the collinearity
index (γP) were used to identify a subset of p practically identifiable
parameters, from a given set of observations [59]. Based on a scaled
sensitivity matrix S of elements sj,k(ti) (eq. (6)), parameters importance
indexes (Eq. (7)–(11)) were computed:

sj,k(ti) =
Δθk

SCj

∂yj(ti)

∂θk
(6)

ρmsqr
k =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ne

∑ne

j=1

1
nt

∑nt

i=1
sj,k(ti)

2

√
√
√
√ (7)

ρmabs
k =

1
ne

∑ne

j=1

1
nt

∑nt

i=1

⃒
⃒sj,k(ti)

⃒
⃒ (8)

ρmean
k =

1
ne

∑ne

j=1

1
nt

∑nt

i=1
sj,k(ti) (9)

ρmax
k = maxsj,k(ti) (10)

ρmin
k = minsj,k(ti) (11)

where: Δθk and SCj are scale factors for parameters and observations
assumed, in this study, equal to the initial estimate of the parameter
itself θk,0 and to the mean value of observations for each experiment
[59,60]. Note that the scaled sensitivities sj,k(ti) are different from the
rrSIj,k because of a different normalization factor.

Each column k-th of the scaled sensitivity matrix was then centred to
its Euclidean norm to obtain a normalized sensitivity matrix A with
columns ak (eq. (12)) and to further compute the collinearity index, γP
(eq. (13)) for each subset P of p parameters of the full initial parameter
vector θ [59,60]:

ak =
sk(ti)

‖sk(ti)‖
=

sk(ti)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑nt

i=1
|sk(ti)|

2

√ (12)

γP =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

min
[
eig

(
AP

TAP
) ]√ (13)

where sk is the column of the scaled sensitivity matrix S, and AP is the
normalized scaled sensitivity matrix computed for the generic subset P

Fig. 1. Comparison between the “conventional calibration” approach (a) and the “CalOpt calibration” approach through the CalOpt tool (b).
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of p parameters.
Based on results from the parameter identifiability analysis, a

reduced vector θP of p parameters that can be reasonably estimated was
defined: parameters with ρmsqr

k values down to approximately 10 % of
the maximum value and with γP below 10 were included in θP [59].

2.4.3. Calibration and confidence intervals of parameters
Parameter estimation was carried out with the simplex Nelder and

Mead minimization algorithm using, as a cost function J(θP), the sum of
weighted squares between experimental, ymeas

j (ti) and the corresponding
simulated values yj(ti, θP). Weights in eq. (14) were set to 1, having
observations from a single state (methane flowrate) [59].

J(θP) =
∑ne

j=1

∑nt

i=1

[

wj(ti)⋅
(

yj(ti, θP) − ymeas
j (ti)

)2
]

(14)

Calibration was implemented using a routine developed in Python
(JupyterLab) that directly runs the OpenModelica model for each
function evaluation. At each q-th iterative step the percentage decrease
of the cost function from the initial value was computed (Rq): calibration
was stopped after at least 50 iterations or when the difference between
Rq and Rq− 50 was below 0.1 %. Once the optimal parameter vector (θ*

P)
was estimated, the standard error σ

(
θ*k
)
associated to each parameter

was then computed as in Eq. (15) [12]:

σ
(
θ*

k
)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
FIM− 1)

k,k

√

(15)

Confidence intervals (CI) for the parameters were then obtained as in eq.
(16), for a confidence level of 95 % and t-values obtained from the
Student-t distribution [12]:

θ*
k ± tα;N− pσ

(
θ*

k
)

(16)

where N is the total number of experimental observations used for
calibration.

Statistical significance was tested by computing a Student t-value
(eq. (17)) for the k-th parameter [58]:

tk =
θ*

k

σ
(
θ*

k
) (17)

The t-value can be tested against a reference t-distribution with (N-p)
degrees of freedom. If the t-values exceed the reference values, the
estimation is deemed reliable. Conversely, t-values below the reference
indicate estimates with low statistical significance.

2.4.4. Quality of fit and validation
The Theil’s Inequality Coefficient (TIC) (eq. (18)) and the modified

Mean Absolute Relative Error (MARE) (eq. (19)) coefficients [61] were
used to assess ‘goodness of fit’ of the global model with θ*P for each
experimental datasets (continuous co-digester and batch tests).

TIC =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑nt

i=1

(
yj
(
ti, θ*

P
)
− ymeas

j (ti)
))2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑nt

i=1yj
(
ti, θ*

P
)2

√

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑nt
i=1ymeas

j (ti)
2

√ (18)

MARE =
1
nt

∑nt

i=1

⃒
⃒
⃒ymeas

j (ti) − yj
(
ti, θ*

P
) ⃒⃒
⃒

ymeas
j (ti) + φ

(19)

where the small correction factor φ (0.1) is applied to avoid division by
zero.

Both criteria quantify the difference between model predictions and
experimental values, normalizing them according to the magnitude of
the variable being considered. For both, a value closer to zero indicates
better model performance.

These performance indexes were computed for the methane flowrate
from the digester (QCH4,dig) and from all batch experiments, as well as
for digestate off-line experimental measures (pH, TAN, single VFAs, VS,
alkalinity) with particular focus on concentrations of single VFAs.

Validation by evaluating goodness of fitting criteria was assessed
using the “V” group of batch experiments along with all other mea-
surements collected from the pilot-scale digester, among which the
concentrations of VFAs. Contrary to what is commonly recommended in
the literature, the authors chose not to split the dataset from the digester
methane flow rate into separate periods for calibration and validation
[12]. Instead, the entire dataset, provided by the easy and cost-effective
online methane flow rate measurements from the digester, was used for
calibration. This validation approach enabled a more comprehensive
comparison between considering or not the information provided by
batch activity tests alongside data obtained from the operation of a
digester under dynamic conditions, where the system is not in a steady
state but is influenced by the co-digestion of MS with EY, at increasing
organic loading rates.

3. Results and discussion

3.1. Modelling of the continuous digester and of batch tests

The characterization of influent MS and EY is detailed in Table S1
(Supplementary Material). The anaerobic degradability of MS,
computed from BMP tests, ranged between 0.40 and 0.55, whereas EY
was found to be fully degradable. The first-order kinetic constant for the
hydrolysis of particulate organic matter, also retrieved from BMP data,
was 0.39± 0.03 d-1 and was equally set in the model for all hydrolysable
components.

Due to the different average COD fractionation of MS and EY
(Figure S2, Supplementary Material), the influent load varied during
digester operation (Figure S3, Supplementary Material): co-digestion
with EY allowed to test increased soluble sugar loads, which were
rapidly converted to VFAs, thereby introducing additional dynamic
conditions. Note that the variability in the input sludge, along with some
operational failures (e.g., gas/liquid tube clogging, leading to liquid
volume variations) have disturbed the operation of the plant, particu-
larly during the mono-digestion phase. This provided further dynamism,
though the corresponding increase in sensitivity remained limited.

Despite increasing the computational time, the introduction of ac-
tivity corrections (IC=0.14–0.19, with higher values associated with co-
digestion with yogurt) for ionic species in the model reduced the pre-
dicted value of pH in the digester by 0.10–0.15, and in batch tests
(IC=0.09–0.14) by 0.05–0.15, accordingly to literature observations
[38,62]. While the lower IC values in batch assays suggested that pH
correction could have been omitted [62], applying these corrections
actually improved pH predictions when compared to values manually
measured at the beginning and at the end of the tests (data not shown).
Furthermore, accurate pH prediction is crucial when modelling and
interpreting kinetics from batch activity tests, as pH significantly in-
fluences the methane production rate due to inhibition effects.

Another key aspect when modelling batch experiments is the initial
concentration of gaseous species in the liquid. Due to the handling of
digestate after sampling and mixing during bath tests preparation, the
initial values of gas components were not automatically computed with
mass balances by the CalOpt tool but they were set to negligible values.
This, along with appropriate estimates of the kLabatch, allowed for a more
precise description of the initial short lag-phase (up to 2–3 h) that was
observed experimentally.

3.2. Identifiability assessment

In the following, parameter identifiability is discussed considering,
for each case, two key aspects: the individual local parameter impor-
tance, outlining the magnitude of sensitivities, and the correlation
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among parameters, accounting for the self-cancelling effect of specific
combinations of parameter values (implying that different combinations
of parameter values can lead to nearly identical model outputs).

3.2.1. Relative-relative sensitivities
The relative-relative sensitivity index supported the comparison

between different parameters and experiments. Figures S4-S15
(Supplementary Material) show the dynamic rrSI for all parameters
across all experiments, utilizing the three different modelling ap-
proaches. To summarize the findings, Fig. 2 compares the maximum
absolute value reached by the rrSI function for each parameter and
experiment. For all parameters, the methane flowrate measured from
the digester exhibited a negligible rrSImagnitude compared to lab-scale
experiments, even under more dynamic conditions introduced by co-
digestion with EY (Figures S4-S6, Supplementary Material). When
considering batch activity tests, the increased amplitude of the rrSI was
particularly relevant for all km and KS, with the exception of KS,c4 and KS,

su. Batch tests conducted with butyrate, valerate, and glucose showed
maximum rrSI at least twice as high as those observed in pilot-plant
responses.

Batch assays using propionate allowed to increase the identifiability
of Ki,h2,pro, whereas a significant response to Ki,h2,c4 perturbation was
only displayed in the Glu-B test. Compared to the Glu-C test, an
increased initial glucose concentration and a reduced initial VS con-
centration proved to be particularly beneficial to increase the rrSI
amplitude for several parameters related to the degradation kinetic of
acetate, propionate, and hydrogen, besides sugar. This is likely

attributable to increased inhibition effects, particularly related to
hydrogen production during glucose degradation at low VS concentra-
tion (and thus lower active biomass). As such, the “reinit” operator fa-
cilitates the implementation of model-based experimental design,
enabling the selection of experimental conditions targeted to maximise
the identifiability of specific parameters.

The Haldane (1.5) approach increased the amplitude of the rrSI on
several parameters, reflecting the expected stronger inhibition dynamics
under the tested conditions, in contrast to inhibition constants set at 10
kg COD⋅m-3 which would require much higher initial concentration to
trigger process inhibition. In addition, maximum values of the rrSI
suggest that tests performed under low initial substrate conditions (tests
code: HAc-A, HPro-B, HPro-C) provided limited contribution to
parameter identifiability. Similarly, tests performed with intermediate
levels of butyrate and valerate were far less informative than those using
glucose as substrate. As for the ISR ratio, no univocal effects on
parameter identifiability were observed. Finally, according to maximum
values of the rrSI, the tested conditions were inadequate to provide
useful data for assessing the H2 inhibition effect on C4 bacteria and did
not significantly trigger valerate and butyrate inhibition, except in the
Haldane (1.5) approach.

3.2.2. Parameters importance ranking
Parameters importance indexes presented in Table 2 supplied addi-

tional insights into the signs and distribution of sensitivities. Across all
three modelling approaches, the DIG+BAT dataset showed more pro-
nounced differences between ρmsqr and ρmabs and between ρmax and ρmin.

Fig. 2. Maximum absolute value of the rrSI summed up for each “C” experiment to each parameter: comparison between the three model structures.
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Table 2
Parameter importance ranking for datasets DIG and DIG+BAT, at varying of the three modelling approaches. Underlined and in bold the highest value of ρmsqr for each case.

Monod Haldane (1.5) Haldane (10)

ρmsqr ρmabs ρmean ρmax ρmin ρmsqr ρmabs ρmean ρmax ρmin ρmsqr ρmabs ρmean ρmax ρmin

DIG km,ac 0.049 0.030 0.003 0.213 − 0.269 0.052 0.031 0.004 0.234 − 0.288 0.050 0.030 0.003 0.216 − 0.272
km,c4 0.006 0.004 0.002 0.057 − 0.022 0.006 0.004 0.002 0.056 − 0.021 0.006 0.004 0.002 0.057 − 0.022
km,h2 0.004 0.002 0.001 0.018 − 0.020 0.004 0.002 0.001 0.018 − 0.020 0.004 0.002 0.001 0.018 − 0.020
km,pro 0.010 0.005 0.002 0.060 − 0.052 0.010 0.005 0.002 0.061 − 0.052 0.010 0.005 0.002 0.060 − 0.052
km,su 0.117 0.050 − 0.008 0.585 − 0.393 0.116 0.050 − 0.008 0.576 − 0.394 0.117 0.050 − 0.008 0.584 − 0.393
Ki,h2,c4 4.7⋅10-4 2.3⋅10-4 6.9⋅10-5 0.002 − 0.003 4.6⋅10-4 2.3⋅10-4 6.9⋅10-5 0.002 − 0.003 4.7⋅10-4 2.3⋅10-4 6.9⋅10-5 0.002 − 0.003
Ki,h2,pro 0.002 7.6⋅10-4 1.6⋅10-4 0.009 − 0.010 0.002 7.7⋅10-4 1.6⋅10-4 0.009 − 0.010 0.002 7.7⋅10-4 1.6⋅10-4 0.009 − 0.010
KS,ac 0.028 0.018 − 0.003 0.148 − 0.114 0.028 0.018 − 0.003 0.153 − 0.121 0.028 0.018 − 0.003 0.149 − 0.115
KS,c4 0.005 0.003 − 0.002 0.018 − 0.053 0.005 0.003 − 0.002 0.018 − 0.052 0.005 0.003 − 0.002 0.018 − 0.053
KS,h2 0.004 0.002 − 0.001 0.019 − 0.017 0.004 0.002 − 0.001 0.018 − 0.017 0.004 0.002 − 0.001 0.019 − 0.017
KS,pro 0.006 0.003 − 0.002 0.033 − 0.037 0.006 0.003 − 0.002 0.033 − 0.037 0.006 0.003 − 0.002 0.033 − 0.037
KS,su 0.086 0.035 0.004 0.285 − 0.469 0.085 0.035 0.004 0.280 − 0.463 0.085 0.035 0.004 0.284 − 0.468
kLa − − − − − − − − − − − − − − −

KiH,ac − − − − − 0.002 8.2⋅10-4 3.3⋅10-5 0.009 − 0.010 2.5⋅10-4 1.2⋅10-4 4.3⋅10-6 0.001 − 0.002
KiH,bu − − − − − 1.5⋅10-5 6.6⋅10-6 1.8⋅10-6 9.7⋅10-5 − 9.0⋅10-5 2.4⋅10-6 1.0⋅10-6 2.8⋅10-7 1.5⋅10-5 − 1.4⋅10-5

KiH,va − − − − − 2.3⋅10-6 1.5⋅10-6 7.3⋅10-7 1.4⋅10-5 − 8.2⋅10-6 4.3⋅10-7 2.6⋅10-7 1.1⋅10-7 4.9⋅10-6 − 1.9⋅10-6

KiH,pro − − − − − 1.3⋅10-4 5.2⋅10-5 9.6⋅10-6 8.8⋅10-4 − 6.9⋅10-4 2.0⋅10-5 7.7⋅10-6 1.4⋅10-6 1.3⋅10-4 − 1.0⋅10-4

DIGþBAT km,ac 1.28 0.595 0.001 3.63 − 7.38 1.89 0.844 0.005 4.90 − 15.6 1.32 0.626 0.002 3.65 − 8.03
km,c4 0.346 0.069 0.003 2.80 − 3.06 0.730 0.185 0.003 3.83 − 6.71 0.430 0.109 0.003 2.84 − 3.28
km,h2 0.741 0.206 0.010 3.37 − 7.63 0.166 0.076 0.020 0.872 − 1.60 0.175 0.081 0.010 0.821 − 1.40
km,pro 1.10 0.408 0.001 2.74 − 10.1 1.60 0.591 0.116 4.69 − 19.2 1.19 0.486 0.001 2.96 − 10.6
km,su 0.257 0.068 − 0.006 1.72 − 3.13 0.306 0.089 − 0.008 2.17 − 3.20 0.247 0.069 − 0.007 1.51 − 2.92
Ki,h2,c4 0.033 0.010 0.002 0.227 − 0.234 0.036 0.011 0.002 0.189 − 0.29 0.033 0.010 0.002 0.213 − 0.234
Ki,h2,pro 0.150 0.061 2.5⋅10-4 0.401 − 1.32 0.138 0.055 0.011 0.428 − 1.50 0.152 0.061 2.9⋅10-4 0.401 − 1.36
KS,ac 0.309 0.157 − 0.002 2.32 − 1.05 0.337 0.160 − 0.004 2.86 − 1.25 0.301 0.156 − 0.002 2.21 − 1.03
KS,c4 0.060 0.019 − 0.002 0.448 − 0.438 0.059 0.020 − 0.001 0.481 − 0.37 0.056 0.018 − 0.002 0.412 − 0.397
KS,h2 0.158 0.067 − 6.0⋅10-5 1.42 − 0.396 0.143 0.061 − 0.010 1.56 − 0.42 0.153 0.066 − 1.1⋅10-4 1.33 − 0.392
KS,pro 0.161 0.075 − 0.001 0.926 − 0.414 0.152 0.070 − 0.009 0.887 − 0.39 0.155 0.074 − 0.001 0.828 − 0.402
KS,su 0.069 0.016 − 3.2⋅10-4 0.851 − 0.445 0.083 0.021 − 2.2⋅10-4 0.848 − 0.59 0.066 0.016 − 3.4⋅10-4 0.768 − 0.389
kLa 0.266 0.145 − 0.002 1.12 − 1.76 0.251 0.128 0.002 1.05 − 2.0 0.298 0.168 − 0.002 1.25 − 1.94
KiH,ac − − − − − 0.769 0.275 6.1⋅10-5 1.67 − 8.5 0.131 0.045 − 2.1⋅10-5 0.521 − 1.22
KiH,bu − − − − − 0.319 0.056 3.0⋅10-4 1.80 − 3.4 0.049 0.008 4.9⋅10-5 0.366 − 0.441
KiH,va − − − − − 0.176 0.033 2.5⋅10-5 1.08 − 1.7 0.029 0.005 2.1⋅10-6 0.241 − 0.233
KiH,pro − − − − − 0.727 0.215 0.047 2.08 − 9.5 0.129 0.041 8.0⋅10-5 0.339 − 1.36
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This indicates that batch activity tests, which stimulate biological pro-
cesses with higher initial substrate concentrations than those present in
the digester, have a more substantial impact on sensitivity to the
measured methane flowrate. In addition, a comparison between ρmabs

and ρmean revealed greater differences in the DIG+BAT case, demon-
strating increased variability in the sign of sensitivities. This variability
contributes to enhanced parameter identifiability.

According to Brun et al. [59], in the context of weighted least square
estimation, ρmsqr serves a suitable criterion for ranking individual
parameter importance. Using the criterion outlined in paragraph 2.4.2,
Table 2 reveals very low sensitivity of the model output to all kinetic
constants when continuous feeding is applied, except for km and KS for
acetate and sugar degraders (highlighted in bold in Table 2). This result
is expected due to the digester feeding mode: during Phases II and III, the
high sugar loads from EY enhanced the sensitivity to sugar degraders
kinetics, while acetate, that is directly converted to the measured
methane flowrate, was ultimately yielded by both MS and EY. The in-
clusion of BAT data broadened the spectrum of potentially identifiable
parameters, as evidenced by underlined bold values in Table 2.

In addition, the DIG+BAT dataset emphasized differences among the
three modelling approaches: the Haldane (1.5) case exhibited a different
parameter ranking compared to the Monod or Haldane (10) cases, as
previously suggested by the rrSI outcomes. Specifically, at low Haldane
inhibition constants, KS became less relevant compared to Ki,H and vice-
versa when considering the Haldane (10) case. This is expected, given
that sensitivities are influenced by the initial parameter estimates and
that the maximum substrate concentrations tested in batch experiments
(2.5 to 3 g COD⋅L-1) would cause greater inhibition with a Haldane in-
hibition constant of 1.5 g COD⋅L-1 than with 10 g COD⋅L-1. Furthermore,
the ρmsqr of all maximum uptake rates, except for km,h2, increased
significantly. This may be attributed to the slowed substrate uptake rate,
leading to prolonged high substrate concentrations in batch tests, where
both maximum uptake rates and the Haldane inhibition constants
become more influential. The ranking of km,c4 also increased in both the
Haldane (1.5) and the Haldane (10) cases, surpassing km,h2 in impor-
tance compared to the Monod case. It is worth mentioning that the
Haldane kinetics has not been applied to the hydrogen uptake rate,
which explains this observation and the aforementioned exception.

Moreover, testing of propionate and glucose as substrates in batch
tests raised the sensitivities also on parameters which are not directly
related to their degradation, such as the km of hydrogen degraders. It is
noteworthy that there are some discrepancies in the parameters ranking
when comparing the rrSI (Fig. 2) to the ρmsqr(Table 2). Indeed, ρk can be
very sensitive to the choice of the scale factor SCj, which differs from
that used in defining the rrSI (Section 2.4.2). This underscores the
importance of accurately setting scaling factors [59] and properly
interpreting the different criteria available for assessing individual
parameter importance.

3.2.3. Collinearity index
The COV(θ) matrix was used to determine the correlation matrix of

parameter estimation errors. High off-diagonal absolute elements in the
correlation matrix indicate strong pairwise dependencies among
parameter estimates, which generally results in higher estimated stan-
dard errors for those parameters [32,56]. Correlation matrixes are re-
ported in Tables S2-S4 (Supplementary Material). For all modelling
approaches, introducing batch experiments reduced parameter corre-
lations, thus supporting the importance of exploiting the information
from BAT to increase the number of parameters that can be indepen-
dently calibrated. For example, in the Monod case, there are 28 off-
diagonal elements with absolute values exceeding 0.50 when only the
DIG dataset is considered, compared to just 9 with the DIG+BAT dataset.

However, interpreting the correlation matrix becomes challenging
when applied to a multidimensional parameter estimation problem, and
relying solely on the pairwise interpretation of near-linear dependencies

of sensitivities may be misleading. Therefore, the collinearity index was
used to complement the information provided by correlation matrix and
support its interpretation. Collinearity indexes were calculated for all
possible subsets of the full parameter vector, from combinations of 2
parameters to the maximum size of θ. Results are shown in Fig. 3 for all
three case studies. As expected, the introduction of four additional pa-
rameters in the Haldane cases increased parameters collinearity.

Collinearity indexes ranged from 1 to a maximum of 480 using the
DIG dataset, where the maximum γP increased quickly with the size of
the parameter subset. This is expected as the DIG dataset is less infor-
mative than the DIG+BAT dataset, both quantitatively and qualitatively.
Conversely, γP significantly reduced with the DIG+BAT dataset, with
maximum values remaining below 50 for the Haldane (1.5) case and
below 20 and 30 for theMonod and the Haldane (10) cases, respectively.
By adopting this dataset, the collinearity in the Haldane (1.5) case
remarkably increased to values of 40–50 when including the Haldane
inhibition constants of valerate and butyrate in some parameters sub-
sets. This aligns with the correlation coefficient between the two pa-
rameters (0.99) reported in Table S3 (Supplementary Material).
However, despite high correlation coefficients among km, KS and Ki,H for
both acetate (0.85–0.99) and propionate (0.64–0.89), the collinearity
indexes for subsets including these parameters remained relatively low
in the Haldane (1.5) case (γP of approximately 11 for the triple related to
acetate and 13 for that of propionate) and below 10 (around 8 and 9 for
acetate and propionate, respectively) for the Haldane (10) case. This
further indicates that correlation coefficients alone may be insufficient
for selecting subsets of more than two parameters that can be uniquely
identified.

3.2.4. Identification of the parameter vector for calibration
Combining the information provided by γP with ρmsqr (Sections 3.2.2

and 3.2.3), a set of parameters for subsequent calibration was selected
for each of the three modelling approaches and considering the two
datasets (Table 3). By using the DIG dataset, similar conclusions were
reached, regardless of the kinetic model used for interpreting VFAs
uptake. Ultimately, it was not possible to identify all four parameters of
major importance selected using parameters ranking indexes (Table 2)
as collinearity issues would arise when including the estimation of km,ac
(γP in the range 16.5–17.9 depending on the modelling approach). Even
when considering subsets of 3 parameters, γP values above 10 (up to 14)
were always detected when km,ac was included. As reported in Table 3,
the only feasible way to maximise the number of parameters in the
reduced vector θP while minimizing collinearity was to waive the cali-
bration of km,ac despite its importance.

The analysis of γP and ρmsqr using the DIG+BAT dataset yielded
different results depending on the modelling approach. Considering the
Monod case, nine out of the ten most important parameters identified
based on ρmsqr values (Table 2) could be included in θP with a low
collinearity index (4.58). The half-saturation constant for hydrogen, KS,

h2, was excluded, but this was deemed acceptable due to its relatively
low ρmsqr(approximately 12 % of the maximum value observed for km,ac)
and because the execution of batch tests targeted to catch the dynamics
of hydrogen would be more appropriate for accurately estimating
hydrogen-related parameters. In the Haldane (1.5) case, acceptable
collinearity indexes were achieved when excluding from the parameter
set one of the three acetate-related parameters. An interesting subset of 9
parameters was selected, including all the Haldane constants but
excluding KS,ac despite its importance. Indeed, given the importance of
km,ac and the impossibility to rely on trustable values from literature of
the Haldane inhibition constant for acetate (Ki,H,ac), it was decided to
select a θP providing an acceptable value of γP (9.68) but excluding KS,ac.
Finally, for the Haldane (10) case, a subset of 12 parameters with an
acceptable collinearity index (9.82) was identified: of the most impor-
tant parameters selected with the ρmsqr, it excluded the KS for propionate
and hydrogen uptake, but it included all the Haldane inhibition con-
stants (despite the low relevance of Ki,H,bu and Ki,H,va) to facilitate the
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comparison with the previous case.

3.3. Parameter estimation

3.3.1. CalOpt tool stability
The implementation of CalOpt tool implies the automatic re-

initialization of batch activity test state variables at the sampling time,
as specified by the user. Especially when introducing activity corrections
for IC, difficulties may arise at initialization if the tentative value of pH
and IC provided to the Newton-Raphson algorithm are not close enough
to the actual solutions of the non-linear algebraic system. To tackle this
problem, it is recommended that, each time a “batch test block” is added
to the global model, the simulation should be run, and the pH and IC
values obtained at the start time of the batch test should be used as
initial guesses for subsequent model runs. This approach helps avoid
convergence errors at the time of test start, each time a “batch test block”

is added. Thus, the global model with the CalOpt tool proved to be stable
even under complex numerical conditions (e.g., activity corrections,
digester semi-continuous feeding and variable volume). This was
particularly true considering that, during the calibration phase, pa-
rameters change can significantly impact the (re)initial conditions of the
different model blocks. However, further evaluation is required to assess
CalOpt’s stability under additional conditions, such as when including
salts precipitation.

3.3.2. Parameter estimation
At the end of the calibration phase, the residual variance of the global

model significantly improved from about 10′200-11′300 (depending on
the modelling approach) with the DIG dataset to 3′300-3′500 with the
DIG+BAT dataset. Overall, the best performing scenario yielding the
lowest J(θP) and residual variance is the Haldane (10). This performance
benefit is partly due to the inclusion of 12 parameters in θP, compared to
only 9 parameters in the other two modelling approaches. Table 4 re-
ports estimates, standard deviations, 95 % confidence intervals and
statistical significance of parameters. The uncertainty of parameter es-
timates reflects both the quality of the dataset used for calibration and
the correlation between parameters in models with multiple parameters
[58]. Low statistical significance was observed for some parameters,
particularly the Haldane constants for butyrate and valerate and those
related to hydrogen uptake (highlighted in italic bold in Table 4),
although they still proved to be statistically significant at a level be-
tween 85 % and 95 %. All other parameters were statistically significant
at a 95 % level.

Parameters estimates were comparable across different modelling
approaches for the DIG dataset. Indeed, as noted in the sensitivity
analysis, the Haldane kinetics was negligibly solicited during the oper-
ation of the digester, particularly during Phase I when the concentration
of VFAs in digestate remained low. Consequently, the digester methane
flowrate used for calibration was only slightly affected by the inclusion
of the Haldane term.

When using the CalOpt tool with the DIG+BAT dataset, the choice of

Fig. 3. Collinearity indices for all parameter subset for dataset DIG (left) and for the expanded dataset DIG+BAT (right), for the three tested modelling approaches.
The y-axis of the three DIG dataset cases (left) is limited to a value of 50 for comparison with the DIG+BAT dataset.

Table 3
Selected parameter subsets and collinearity indexes, for each combination of
dataset and modelling approach.

Dataset Modelling
approach

Subset
size

Vector of parameters, θP Collinearity
index, γP

DIG Monod 3 KS,ac, km,su, KS,su 9.47
DIG Haldane

(1.5)
3 KS,ac, km,su, KS,su 9.33

DIG Haldane
(10)

3 KS,ac, km,su, KS,su 9.45

DIG+BAT Monod 9 km,ac, km,pro, km,c4, km,h2,
km,su, KS,ac, KS,pro, Ki,h2,

pro, kLa

4.58

DIG+BAT Haldane
(1.5)

9 km,ac, km,pro, km,c4, km,su,
Ki,H,ac, Ki,H,pro, Ki,H,bu, Ki,

H,va, kLa

9.68

DIG+BAT Haldane
(10)

12 km,ac, km,c4, km,h2, km,pro,
km,su, KS,ac, Ki,h2,pro, Ki,H,

ac, Ki,H,pro, Ki,H,bu, Ki,H,va,
kLa

9.82
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the modelling approach impacted parameter estimates. Specifically, km
values were consistently underestimated in the Monod case compared to
the two Haldane cases. This reflects the absence of a Haldane term that
would reduce the consumption rate at high substrate concentrations. As
further discussed in Section 3.4, a proper description of the kinetics that
were activated during batch assays is crucial for ADM1 parameters
estimation when introducing batch activity tests: as such, the intro-
duction of the Haldane term was essential in this case. As shown in
Figure S16 (Supplementary Material), the mathematical interpretation
of batch activity tests performed with initial concentrations up to 3 g
COD⋅m-3 was impacted by Haldane inhibition constant values up to 10 g
COD⋅m-3. Noteworthy, the Haldane (1.5) and Haldane (10) approaches
resulted in very similar final parameter estimates, reflecting the
improved identifiability of the applied methodology, in particular for
the Haldane constants. In addition, compared to butyrate and valerate,
the uptake of acetate and propionate was subject to a milder substrate
inhibition, but still important for a correct interpretation of batch ac-
tivity tests dynamics.

3.4. Goodness of fitting and validation

3.4.1. Batch tests
The CalOpt tool improved the fitting accuracy of all tests, including

those used for validation. Table S5 (Supplementary Material) reports the
goodness of fitting criteria (TIC and MARE coefficients) evaluated for
the methane flowrates across all batch activity tests: a comparison is
made between the results obtained with conventional calibration and
with the CalOpt tool. An example illustrating this improvement is shown
in Fig. 4 for the Haldane (10) case. TIC values, that were high for several
tests with propionate and for tests with butyrate and valerate reduced to
values below 0.3. Conversely, despite this significant fitting improve-
ment (with TIC and MARE criteria decreasing by an average of 30 %),
tests with glucose remained of difficult interpretation for the calibrated
model. Tests with glucose were found to be very informative for the
identification of many parameters, some even not directly related to the
uptake of monosaccharides (paragraph 3.2.1). Nevertheless, a more

accurate kinetic model of glucose uptake or an enhanced dataset for this
degradation pathway (including, for instance, direct measurements of
glucose, VFAs or dissolved hydrogen concentrations) is required, and
would certainly improve parameter estimation and model performance.
By comparing the results obtained with the CalOpt tool, all three optimal
parameters vectors (θ*P) obtained from the different modelling ap-
proaches appeared suitable, with slight improvements noted when using
the Haldane kinetics, particularly when interpreting acetate and propi-
onate tests. It is important to note that calibration was carried out
exploiting tests performed during Phase I (mono-digestion), whereas
two out of the seven tests used for validation, namely HAc-G and HPro-
G, were performed during Phase II. During this phase, the increased
loading rate from co-digestion with EY led to a significant (+20 %) in-
crease in the concentration of several microbial groups including Xac and
Xpro.

3.4.2. Pilot-scale digester
Tables 5 reports the TIC and MARE coefficients for both the digester

methane flowrate and the main digestate properties, across the six
different cases. Alkalinity, pH, TAN and VS were less affected by the use
of the CalOpt tool. This is because the dynamics of these measures is also
heavily influenced by the quality of the influent substrates character-
ization as well as by the hydrolysis process, which is not the main
calibration target in this study. Several studies [63–65] have already
highlighted this feature. Indeed, along with calibration, significant ef-
forts are needed to provide an affordable characterization of digester
feedstocks. In this context, it is important to emphasize that the CalOpt
tool is not primarily designed to improve model prediction at pseudo-
steady state, rather, it is specifically developed to address the system
response to dynamic conditions, i.e. when predictions are more heavily
influenced by precise estimates of kinetic parameters.

The prediction of the digester methane flowrate and of the concen-
trations of single VFAs was instead positively impacted by using a more
informative dataset. As shown in Table 5, it is evident that the inclusion
of the Haldane kinetics is essential to properly predict VFAs concen-
trations when using a vector of parameters calibrated with the support of

Table 4
Optimal k-th parameter estimates, standard errors, confidence intervals and Student t-values evaluated for the two datasets and across all modelling approaches.
Statistical significance below a 95% level is highlighted in italic bold.

Dataset −
Modelling
approach

Statistics Parameters
km,ac km,

c4

km,

h2

km,

pro

km,su Ki,

h2,

c4

Ki,h2,pro KS,ac KS,

c4

KS,

h2

KS,pro KS,su kLa,b KiH,

ac

KiH,

bu

KiH,

va

KiH,

pro

DIG − Monod θ*k − − − − 15.0 − − 0.205 − − − 1.54 − − − − −

σ
(
θ*k
)

− − − − 7.6 − − 0.004 − − − 0.92 − − − − −

CI − − − − 12.5 − − 0.007 − − − 1.52 − − − − −

tk − − − − 1.97 − − 51.3 − − − 1.67 − − − − −

DIG − Haldane
(1.5)

θ*k − − − − 15.0 − − 0.201 − − − 1.52 − − − − −

σ
(
θ*k
)

− − − − 7.7 − − 0.004 − − − 0.91 − − − − −

CI − − − − 12.7 − − 0.007 − − − 1.50 − − − − −

tk − − − − 1.95 − − 50.3 − − − 1.67 − − − − −

DIG − Haldane
(10)

θ*k − − − − 15.0 − − 0.207 − − − 1.53 − − − − −

σ
(
θ*k
)

− − − − 7.6 − − 0.004 − − − 0.91 − − − − −

CI − − − − 12.5 − − 0.007 − − − 1.50 − − − − −

tk − − − − 1.97 − − 51.8 − − − 1.68 − − − − −

DIG+BAT −

Monod
θ*k 6.22 7.44 69.2 9.74 20.8 − 5.24⋅106 0.119 − − 0.137 − 9.66 − − − −

σ
(
θ*k
) 0.37 0.84 42.0 3.86 1.3 − 4.68⋅106 0.017 − − 0.066 − 1.98 − − − −

CI 0.61 1.38 69.1 6.35 2.1 − 7.70⋅106 0.028 − − 0.109 − 3.26 − − − −

tk 16.8 8.86 1.65 2.52 16.0 − 1.12 7.00 − − 2.08 − 4.88 − − − −

DIG+BAT −

Haldane
(1.5)

θ*k 7.06 13.7 − 11.5 21.1 − − − − − − − 8.64 13.3 1.71 1.65 10.4

σ
(
θ*k
) 0.37 5.8 − 1.8 1.2 − − − − − − − 1.72 2.9 1.36 1.10 4.31

CI 0.61 9.5 − 3.0 2.0 − − − − − − − 2.83 4.8 2.24 1.81 7.09
tk 19.08 2.36 − 6.39 17.58 − − − − − − − 5.02 4.59 1.26 1.50 2.41

DIG+BAT −

Haldane
(10)

θ*k 7.30 13.9 39.7 10.9 21.4 − 4.01⋅106 0.183 − − − − 9.38 11.5 1.61 1.57 12.6

σ
(
θ*k
) 1.29 5.9 34.0 4.8 1.4 − 2.20⋅106 0.052 − − − − 1.94 4.6 1.54 1.39 6.1

CI 2.12 9.7 56.0 7.9 2.3 − 3.62⋅106 0.086 − − − − 3.19 7.6 2.53 2.29 10.0
tk 5.66 2.36 1.17 2.27 15.29 − 1.82 3.52 − − − − 4.84 2.49 1.05 1.13 2.07
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batch activity tests data. The Monod case significantly underestimates
the concentration of Sac while overestimating the concentration of the
other three acids (Fig. 5). Indeed, the calibration using the DIG+BAT
dataset and the Monod case resulted in considerably low estimates for
the km of acetate, propionate and C4-acids. This underestimation was
necessary to address the reduced consumption rates that is typically
detected at the beginning of the test, when the substrate concentration is
high, and substrate inhibition takes place. Consequently, the additional
information provided by batch tests was misinterpreted by the Monod

model, leading to a good fit of lab-scale batch tests, but to more pro-
nounced deviations from pilot-scale digester data.

When comparing the two Haldane modelling approaches, negligible
differences in the prediction of Spro, Sbu and Sva were detected due to very
similar parameters’ estimates (Fig. 5). Conversely, the fitting of Sac
concentrations significantly improved with the calibrated parameter
vector of the Haldane (10) approach. Indeed, this latter case included
the KS,ac which was calibrated to a higher value compared to the default
value used in the Haldane (1.5) case, thus limiting acetate consumption.

Fig. 4. Experimental vs. simulated data of the cumulated methane volume from batch activity tests: comparison between the simulation with default parameters
from the ADM1 (Nominal) and the two simulations using the parameter vector from conventional and CalOpt calibrations with the Haldane (10) approach. The text
in blue identifies validation tests.
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The concentration of valerate, which was often close to or below the
instrumental detection limit of 10 ppm, was mostly overestimated,
especially during the co-digestion with EY (Phases II and III). It is
important to note that valerate is produced solely through the acido-
genesis of amino acids, a process which was not subject to calibration in
this study. Furthermore, the ADM1 model assumes that valerate and
butyrate uptake is mediated by the same microbial group using

competitive kinetics, which may limit the predictive ability of the
model. Several researchers have encountered difficulties in accurately
predicting single VFAs concentrations, particularly under dynamic
conditions, prompting them to explore various modifications to the
ADM1 model. For instance, Bułkowska et al. [66] introduced new in-
termediate state variables, including glycerol, lactate, ethanol, and the
isomeric forms of butyrate and valerate. While this approach yielded

Table 5
TIC and MARE criteria evaluated for each modelling and calibration approach on the digestate characteristics of the continuous pilot-scale digester.

Dataset DIG (Conventional) DIG+BAT (CalOpt)

Modelling approach Monod Haldane (1.5) Haldane (10) Monod Haldane (1.5) Haldane (10)

QCH4,dig TIC 0.114 0.111 0.113 0.109 0.082 0.081
MARE 0.233 0.225 0.230 0.219 0.141 0.144

Sac TIC 0.096 0.105 0.099 0.197 0.173 0.078
MARE 0.164 0.181 0.169 0.320 0.282 0.131

Spro TIC 0.135 0.136 0.135 0.307 0.119 0.121
MARE 0.238 0.240 0.238 0.806 0.231 0.239

Sbu TIC 0.211 0.210 0.211 0.377 0.083 0.082
MARE 0.350 0.349 0.350 1.098 0.153 0.154

Sva TIC 0.175 0.175 0.175 0.436 0.161 0.156
MARE 0.253 0.253 0.253 1.306 0.299 0.287

pH TIC 0.005 0.005 0.005 0.005 0.005 0.005
MARE 0.007 0.007 0.007 0.007 0.008 0.008

Alkalinity TIC 0.056 0.056 0.056 0.056 0.056 0.056
MARE 0.095 0.095 0.095 0.095 0.095 0.095

TAN TIC 0.060 0.060 0.060 0.060 0.059 0.059
MARE 0.079 0.079 0.079 0.079 0.079 0.079

VS TIC 0.018 0.018 0.018 0.017 0.018 0.018
MARE 0.027 0.027 0.027 0.026 0.026 0.026

Fig. 5. Experimental vs. simulated data of VFAs: comparison between the simulation with default parameters from the ADM1 (Nominal) and the three simulation
using the parameter vector from CalOpt calibration under the different modelling approaches. Light and dark yellow areas indicate the two co-digestion feeding
phases (Phase II and Phase III, respectively).
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good predictions of VFAs concentrations with the calibration data, it
produced unsatisfactory results with two other data series, likely due to
the significant increase in the number of parameters that needed to be
identified. Other researchers have improved model predictability by
maintaining the number of state variables and introducing non-
competitive acetic acid inhibition in both acetogenesis and aceto-
clastic methanogenesis [67,68]. The decision to introduce Haldane-type
inhibition on VFAs uptake in the present work was based on the shape of
the methane production rate observed in batch activity tests. Although a
detailed comparison of different approaches to modelling VFAs uptake
inhibition is beyond the scope of this work, such an analysis could be
valuable for accurately predicting process instability or failure. In this
context, the CalOpt tool can be a worthwile resource as it enables the
integration of data from specifically designed batch tests aimed at
elucidating the actual mechanisms of inhibition.

Despite the promising results achieved, the authors believe that
further validation of the CalOpt tool is necessary to assess its effective-
ness in cases where system default occurs. The dataset used in this study
did not encompass cases of strong inhibition or system defaults,
although batch tests were designed in order to explore the response of
the system to overloading conditions. To evaluate if the tool is effective
for predicting severe inhibition dynamics, validation should involve a
dataset including continuous operation under overloading conditions.
Such an approach would strengthen the robustness of the findings and
confirm the validity of the CalOpt approach.

3.5. Comparison and perspectives

The CalOpt tool developed in this study enables an easy and rela-
tively fast calibration procedure, applicable for industrial plants as it is
cheap and does not require imposing disturbances to the full-scale
digester, unlike previous methods such as direct pulse injections [29]
or the costly operation of lab-scale sequential batch reactors [28].
Indeed, with the CalOpt tool, the possibility to exploit a more infor-
mative dataset created using cost-effective, state-of-the-art measure-
ments and equipment, significantly enhanced the predictive capability
of the ADM1 model and allowed for the identification of a broader set of
parameters that can be reasonably estimated while minimizing collin-
earity and overfitting issues. Nonetheless, particularly for substrates that
are not directly converted into methane, the results showed broader
confidence intervals compared to acetate, indicating that identifiability
issues are more pronounced in these cases. Measuring substrates or
products (e.g., VFAs) during batch experiments could improve identifi-
ability, but this would also increase costs and experimental complexity.
In addition, despite the use of specific tests for parameter calibration,
and the possibility to exclude from the vector of unknown parameters
the initial values of digestate state variables, identifiability issues
persist, particularly in estimating km/KS pairs, as highlighted by other
researchers who used batch activity tests for parameters calibration
[34]. Beyond model reduction approaches, which are always preferable
when applicable, and where the CalOpt tool could still play a useful role
in the calibration of remaining parameters [21,24], another promising
option could be coupling the CalOpt tool with the procedure proposed
by Ahmed and Rodríguez [11]. By exploiting a mechanistic approach for
estimation of some parameters, the reduced parameters set can be
identified through modelling of batch activity tests with the CalOpt tool,
potentially minimizing identifiability issues.

Regarding the strategies for selecting from an initial vector of pa-
rameters those that can be reasonably identified, current scientific
literature reports a variety of statistical methods and approaches
[5,11,14,59]. These methods could be tested in conjunction with the
CalOpt tool to determine which are most effective for improving
parameter identifiability and reducing confidence intervals. Specif-
ically, incorporating global sensitivity analysis tools could avoid testing
different initial parameters values to identify the optimal parameter
vector for calibration, as done in the present work.

The procedure proposed and the tool developed within this work
could also have great potentialities in combination with (optimal)
model-based design of experiment. While conventional calibration often
constrains the vector of identifiable parameters based on the available
dataset, the CalOpt tool could assist in designing experiments specif-
ically targeting a desired set of parameters, by properly configuring
batch activity tests. This could further aid in accurately studying the
degradation of specific compounds or the uptake rates of microbial
groups under inhibiting conditions.

4. Conclusion

Compared to conventional calibration, the CalOpt tool effectively
utilized a dataset that included methane flowrate measurements from
both the pilot-scale digester and lab-scale batch activity tests designed to
identify kinetic parameters impacting VFA predictions. Consequently,
the number of potentially identifiable parameters increased from 3 to 9
or 12, depending on the modelling approach used. It also enhanced the
model’s predictive ability for digester methane flowrate (28 % reduction
in the TIC coefficient) and for individual VFAs, with reductions of 21 %,
10 %, 61 %, and 11 % in the TIC coefficients for acetate, propionate,
butyrate, and valerate, respectively). However, appropriate modifica-
tions to the model, particularly to its kinetics, proved essential to avoid
misinterpretations of batch activity tests, which could lead to significant
deviations in model predictions when simulating continuously fed di-
gesters. Specifically, introducing the Haldane term to account for sub-
strate inhibition during VFAs degradation in batch tests enabled
accurate predictions of all VFAs concentrations.

Further validation of the CalOpt tool is needed to assess its appli-
cability under different boundary conditions, especially in cases when
poor quality of measurement available at full-scale facilities can hinder
robust parameters identification. Finally, the CalOpt tool could be easily
adapted for application to other complex biological processes beyond
the anaerobic ones, especially when numerous concomitant microbial
populations coexist and simultaneously affect measurable variables.
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