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Abstract
Objective. Advances in brain–machine interfaces (BMIs) can potentially improve the quality of life
of millions of users with spinal cord injury or other neurological disorders by allowing them to
interact with the physical environment at their will. Approach. To reduce the power consumption
of the brain-implanted interface, this article presents the first hardware realization of an in vivo
intention-aware interface via brain-state estimation.Main Results. It is shown that incorporating
brain-state estimation reduces the in vivo power consumption and reduces total energy dissipation
by over 1.8× compared to those of the current systems, enabling longer better life for implanted
circuits. The synthesized application-specific integrated circuit (ASIC) of the designed
intention-aware multi-unit spike detection system in a standard 180 nm CMOS process occupies
0.03 mm2 of silicon area and consumes 0.63µW of power per channel, which is the least power
consumption among the current in vivo ASIC realizations. Significance. The proposed interface is
the first practical approach towards realizing asynchronous BMIs while reducing the power
consumption of the BMI interface and enhancing neural decoding performance compared to those
of the conventional synchronous BMIs.

1. Introduction

Over the past decade, researchers have studied the
activities of individual neurons with respect to their
neighboring neurons and their response to various
stimuli [1, 2]. Neurons communicate by means of fir-
ing electric pulses, called action potentials (APs) or
spikes. The electrical activity of neurons can be meas-
ured and recorded by multi-electrode arrays (MEAs)
in which each intracortical electrode implanted in the
motor cortex record cellular electrical activity from
a small population of neurons within a few hun-
dred micrometers of the neuron closest to the tip
of the electrode [3], with added ambient noise and
technical artifacts, such as electrode micro-motion or
instrumentation noise. Themeasured electrical activ-
ity inside the gray matter of the brain can be used for
muscle control, and also sensory perception, such as
seeing and hearing, speech, decisionmaking, and self-
control. In a brain–machine interface (BMI) system,
spikes are first detected from the background noise

by comparing the recorded and filtered voltage wave-
formswith a threshold, which is commonly estimated
as the scaled value of background noise. Neighboring
neurons often fire spikes of similar shape and amp-
litude, however, relative to their distances to an elec-
trode’s tip, the shape of spike waveforms may differ
among neurons. This fact allows the spiking activ-
ity of individual neurons to be separated through
the spike sorting process [4]. It has already been
verified that robust BMIs can also be implemented
without employing spike sorting [5–9]. In this case,
all threshold crossings (TCs) of the recorded and
filtered voltage waveforms associated with an elec-
trode (channel) are treated as spikes from one putat-
ive neuron. By considering the number of spikes over
a given time (spike count) as the feature of interest,
the transmission data rate is significantly reduced
compared to transmitting the spike waveforms [10].
Three types of signals can be obtained by intracortical
recordings: (a) local field potentials (LFPs), which
are extracted by low-pass filtering (<300Hz) of the
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Table 1. The in vivo BMI states and the in silico signal processing of the designed brain-switch scheme.

BMI states User’s activities Behavioral example In silico signal processing

‘Standby’ Non-BMI activities Sleeping Intention estimation
Eating

‘Active’ Only BMI activity Prosthesis control Neural decoding
BMI activity+ Non-BMI activities Prosthesis and eating

neural activity in the vicinity of an electrode tip;
(a) multi-unit activity (MUA), which is obtained
by high-pass filtering of the recorded neural activ-
ity and detecting APs from the ambient noise; and
(c) single-unit activity (SUA), which are the detec-
ted MUA APs clustered into different groups associ-
ated with putative neurons. Wireless transmission of
LFPs requires substantiallymore data rate, as LFPs are
continuous signals whereas SUA and MUA measure
the instances of single or an ensemble of spikes and
hence, can be represented as discrete events. For brev-
ity, the subsequent references to spikes refers to MUA
spikes rather than sorted SUAs. For example, con-
sider a 1000 channel neural recording system oper-
ating at 20 kS s−1 with 12 bits per sample. Transmit-
ting filtered neural signals would require a data rate
of 240Mbps, while transmitting only spike counts,
assuming up to one spike per millisecond per record-
ing channel, would reduce the data rate to only one
Mbps. The data rate can be even further reduced
by spike binning, i.e. transmitting spike counts over
a larger time intervals in the order of tens of mil-
liseconds. Assuming a wireless transmission energy
of 8.5 pJ bit−1 [11], the former requires 2mW of
power while the latter requires only 8.5µW, over 99%
reduction.

In synchronous BMIs the user’s neural activity is
processed within a predefined time frame, while in
asynchronous or self-paced BMIs, the user can inter-
act with the BMI at their leisure, which is more con-
venient in practical applications. When the user is
not actively engaged in a BMI task, the power con-
sumption of the in vivo interface can be reduced to
extend the operational lifespan of implanted devices.
Transitioning the BMI from a ‘standby’ state back to
the ‘active’ state requires the BMI to estimate and
differentiate between different mental states. In a
two state ‘brain-switch’ approach [12–14], the brain-
switch module continuously monitors neural signal
features to detect whether the user would like to
engage in the underlying BMI activity and hence, only
processing neural signals during the ‘active’ state.

Both non-invasive recordings, such as electro-
encephalography (EEG) and near-infrared spectro-
scopy, and invasive recordings, such as electro-
corticography (ECoG) and intracortical MEAs, have
been employed for the brain-switch scheme. The
non-invasive methods are more relaxed compared to
the invasive methods as they do not impose stringent

constraints on power consumption. In all the record-
ings, neural response patterns are used to differenti-
ate between the ‘standby’ and ‘active’ mental states.
In some cases, the neural signals are user modulated,
such as the imagined motor movements in the EEG-
based studies [15, 16], while in others the response
is driven by specific stimuli, such as the event-related
desynchronization in ECoG-based studies [12]. For
intracortical recordings, changes in both the spike fir-
ing rates and the spectral power of the LFPs have
been used for mental state estimation [13], however,
no practical in vivo realization of the brain-switch
scheme has been reported. Moreover, modulation of
neural activity unrelated to the BMI application can
be ignored to avoid spurious decoding outputs.

Table 1 lists the two considered BMI states, the
example of the user’s activities in each state, and in
silico signal processing operation. The ‘standby’ state
is related to when the user activity is not related
to the underlying BMI application, such as sleep-
ing or for example, if the BMI task is cursor con-
trol but the user is eating. The ‘active’ state is related
to the user-modulated neural activity for either only
the underlying BMI application or also consisting
of unrelated activities, such as the user controlling
a robotic prosthesis for eating. During the ‘standby’
mode, the in vivo BMImonitors a subset of recording
channels and the in silico signal processing executes
the intention-estimation algorithm. During the ‘act-
ive’ mode, the BMI processes all recording channels
using an in silico neural decoding. While the trans-
ition from the ‘standby’ to ‘active’ mode is estimated
using the designed brain-switch scheme, the trans-
ition from ‘active’ to ‘standby’ can be estimated using
the outputs of the neural decoder.

For example, consider a 1000-channel implanted
wireless BMI used to control assistive devices with
three possible configurations. In Configuration I, the
device is continuously detecting and transmitting the
binned spike counts from all channels, analogous to a
synchronous BMI system, which processes all recor-
ded signals within a predefined time frame. Config-
urations II.a and II.b both realize an asynchronous
BMI, in which a relatively small subset of channels
are used to realize the designed brain-switch scheme.
When the brain-switch algorithm detects BMI activ-
ities, the BMI transitions from ‘standby’ to ‘active’
state and all channels are enabled for spike detec-
tion and processing. Configuration II.a realizes the
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Table 2. The energy dissipation of three alternative wireless BMI configurations. Configuration I constantly detects and transmits MUAs
for all recording channels; Configuration II.a transmits and detects MUAs for a subset of channels for realizing a brain-switch algorithm
on an external device; Configuration II.b detects MUAs for a subset of channels and realizes a brain-switch algorithm in vivo.
Configurations II.a and II.b enable processing on all channels when the brain-switch algorithm denotes an ‘active’ mental state.

BMI Configuration I II.a II.b

‘Active’ detection power (mW)/energy (J) 30/2592 30/108
‘Standby’ detection power (mW)/energy (J) N/A 3/248.4
‘Active’/‘Standby’ transmission energy (J) 0.73/ N/A 0.03/0.07 0.03/0
Total energy (J) 2622.73 389.50 389.43
Detection energy savings (%) N/A 86
Transmission energy savings (%) N/A 86 96
Total energy savings (%) N/A 85.14 85.15

brain-switch algorithm in silico on a computer or
a portable computational device by processing the
received neural signals, however, Configuration II.b
realizes the brain-switch algorithm in vivo, which
reduces the power consumption of the wireless trans-
mission during the ‘standby’ mode, at the cost of the
power consumption and silicon area of the in vivo
brain-switch circuitry.

Table 2 gives the energy dissipation and sav-
ings of the three alternative configurations. Assum-
ing that the power consumption of the analog front
end (AFE) for amplifying and digitizing the recor-
ded neural signals are the same for both configur-
ations, the power consumption of the in vivo spike
detection and wireless transmission are compared.
Employing an analog-to-digital converter with 12–
16 bits resolution and sampling between 10 kHz–
30 kHz [17–20], the nominal power consumption
for the AFE circuitry ranges between 0.75µW and
7.3µW per channel. Assuming that detecting spikes
from 1000 channels requires 0.03mW of power per
channel [21], the power consumption of detecting
spikes for the implanted BMI interface is approxim-
ately 30mW, for each of the three configurations. If
the in vivo BMI interface transmits the spike counts
in 1ms intervals to represent the brain’s neural activ-
ities, the data rate is reduced to one Mbps with the
transmission energy of 8.5 pJ bit−1 [11]. For con-
figurations II.a and II.b, let us assume that 10% of
the channels are sufficient to detect the user’s inten-
tion and that they are engaged with the BMI for an
average of 1 h per day. Energy dissipated during ‘act-
ive’/‘standby’ BMI operation is given asP×∆t × 3.6 J
mW−1, where P denotes the power consumption (in
mW), and∆t denotes the amount of time (in hours)
over which the power is consumed. Data transmis-
sion energy dissipation during ‘active’/‘standby’ BMI
operation is given as η× fb ×∆t × 3600 JW−1, where
η denotes the transmission energy of 8.5 pJ bit−1

[11], and f b denotes the output data rate for a 1000-
channel system (1000 kbps). It can be noted that Con-
figuration II.b offers the highest potential energy sav-
ings. Moreover, it can be seen that for the TC-based
BMIs, themain source of power consumption is spike

detection. Given that the mean detection power of
Configuration I is 30mW, if an SAFT LS14250 battery
[22], which has a nominal capacity of 4.32 Watt-
hours, is used, the battery life for spike detection is
144 h. By applying spike detection to a smaller subset
of channels during ‘standby’ periods, themean detec-
tion power of Configurations II.a and II.b are reduced
to 16.5mW, a 45% decrease, extending the battery life
to 261 h, an 81% increase. Note that table 2 does not
account for the power consumption of the brain-state
estimation circuitry in Configuration II.b. Since the
power consumption difference between Configura-
tions II.a and II.b is negligible, we propose to realize
Configuration II.a for the BMI system and to estimate
the user’s intention in silico (i.e. in software running
on a personal computing device).

This article presents the power-efficient realiza-
tion of the in vivo interface for asynchronous BMIs
using a neural network-based brain-switch scheme.
The rest of this article is organized as follows.
Section 2 discusses the signal processing and altern-
ative brain-switch algorithms for detecting the user’s
mental states. The details of the designed asynchron-
ous spike detection module in hardware is discussed
in section 3. The estimated silicon area and power
consumption of the spike detection application-
specific integrated circuit (ASIC) is also presented. As
a proof-of-concept, a system-level realization of the
designed asynchronous BMI utilizing the designed
brain-switch scheme and the in silico neural decod-
ing is presented in section 4. Finally, section 5 makes
some concluding remarks.

2. Neural signals and brain-switches

To drastically reduce wireless data transmission
between the in vivo implanted circuitry and offline
software processing, various compression techniques
have been used, from relatively simple methods, such
as difference encoding [23], to more complex tech-
niques, such as compressed sensing [24, 25]. Wireless
data transmission can be further reduced by trans-
mitting neural information only when the user is
intending to engage in a BMI-related action. The data
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Figure 1. The block diagram of the designed
intention-aware in vivo BMI.

rate can further be reduced by only transmitting the
neural information for a subset of channels for estim-
ating when the user wants to engage with a BMI task,
as shown in figure 1.

Implementing a brain-switch effectively involves
the detection of a mental state transition from
‘standby’ to ‘active’ modes, which controls the
in vivo processing and wireless transmission of
neural signals. Threemental state estimation schemes
have been previously investigated [14]. The simplest
method is a threshold-based approach, in which a
specific neural signal or signal feature crossing a
threshold is interpreted as a mental state transition.
The threshold value is derived from the training data.
The second approach is a classifier-based threshold-
ing technique, in which the neural signals or features
are passed to a classification algorithm to produce a
continuous output signal, such as the probability of
transition, which is then compared to a pre-defined
threshold, as in the first scheme. Finally, in a classifier-
only-based approach, the output of a classification
algorithm is used directly. The output of the classi-
fier may indicate a discrete mental state, such as ‘idle’,
‘planning’, and ‘movement’, which can be used to dir-
ectly enable or disable further processing based on the
predicted mental state. All brain-switch algorithms
assume that neural signals exhibit different beha-
vior during mental state transitions. For example,
EEG-based brain-switches may detect an increase in
the 1Hz–4Hz frequency band power [15, 16], while
ECoG-based brain-switches may detect a change in
the power of the mu and beta frequency bands for
motor execution/imagery [12]. For spike-based sig-
nals, the number of SUA spikes during a time window
[26] as well as changes in the firing rates [13] have
been considered as the features for the brain-switch
algorithms. Therefore, we assume that a subset of
channels will exhibit enough variations in MUAs
that will allow a classification algorithm to relatively
reliably detect mental state transitions. We employ
two publicly available neural datasets. Datasets I
(I140703) and II (L101210) [27], which contain raw
recordings from the motor cortex (M1 region) of two

Figure 2. The probability distributions of correlation
coefficients between recording channels and the state
transitions over the trials in Datasets I and II.

Rhesus macaque monkeys employing a 96-channel
Utah Array. The recordings were sampled at 30 KHz
and then downsampled to 10KHz. Themonkeys per-
formed a cued reach and grasp task to displace an
object. During the experiments, the monkeys were
presented with a series of cues to indicate that a trial
was beginning and to specify one of four combina-
tions of grip and displacement forces to use. After the
cues were given, the monkeys released a switch on the
table to reach for the object. Upon a successful reach,
grasp, and displacement, the monkeys were rewar-
ded. For the active brain-state estimation, the switch
release time is considered as the ground-truth inten-
tion time. To identify which channels exhibit greater
changes during a state transition, a correlation ana-
lysis is performed. More specifically, following spike
detection, the correlation between the spike counts
and a known transition response (i.e. a signal that
transitions from zero to one at a pre-defined time)
is calculated. Then, the correlation between the spike
counts for all channels and the transition from a go
cue and the switch release event are calculated. Data-
set I and II consist of 153 and 149 trials, respectively.
A training subset consisting of the first 70% of the
trials are used to analyze the correlation coefficients
between the spike counts for each recording channel
and the state transition. The mean correlation coeffi-
cient over Dataset I and II were 0.15 (σ= 0.13) and
0.15 (σ= 0.11), respectively. The probability distri-
butions of correlation coefficients between recording
channels and the state transitions over the trials in
Datasets I and II are shown in figure 2. It can be seen
that correlation values equal to or greater than 0.30
and 0.25 for Datasets I and II, respectively, constitute
the top 15% percent and are considered highly correl-
ated to the ‘active’ brain-state.

After calculating the correlation coefficients for
each channel and trial, the mean correlation for the
N highest correlated subset of channels is calculated.
Since the state transition event is of interest, the
response of the correlated channels during this trans-
ition time is considered. To represent the activity of
the correlated channels, the sum of the correlated
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Figure 3. Generating an estimate of the correlated channel’s spike density. Binned spike counts are added per time step for a
subset of correlated channels, followed by centering and smoothing.

channels is computed per time step. The centering
via Z-scoring is applied followed by the Gaussian ker-
nel smoothing to estimate the spike density function
[28]. The described process is shown in figure 3,
where the correlated spike counts refer to the accu-
mulated spike counts of only theN highest correlated
channels and the smoothed spike counts represents
the estimated spike density function after applying the
centering and smoothing.

To reduce the power consumption of the in vivo
signal processing, it is preferable to enable as few cor-
related channels as possible. As shown in figure 4(a),
since the centering and smoothing operations per-
form a normalization of the signal, the response of
a smaller number of correlated channels will be sim-
ilar to that of a higher number of correlated chan-
nels. As shown in figure 4(a), the behavior of the
estimated spike density for the correlated channels
begins to deviate from the baseline during the switch
release event. Note that the activity of the correl-
ated channels during the BMI and non-BMI oper-
ation may impact the decoding performance, how-
ever, the brain-switch algorithm is only operating
during the non-BMI operations. Figure 4(b) shows
the boxplot of the estimated spike density for different
number of correlated channels. While the mean vari-
ability is similar over different number of channels,
it can be seen that the overall variability spread for
eight channels is smaller than that of a higher chan-
nel counts. Thus, eight highest correlated channels are
selected for the brain-switch algorithm. For Dataset
I, the mean correlation of the eight highest correlated
channels is 0.38 (std. 0.017) for the BMI period, and
0.25 (std. 0.016) during the non-BMI period, a 34%
decrease. For Dataset II, the mean correlation is 0.28
(std. 0.02) for the BMI period, and 0.20 (std. 0.005)
during the non-BMI period, a 28% decrease.

2.1. Brain-switch algorithms
For estimating the user’s intention, three alternat-
ive models are considered: the hidden Markov model
(HMM) [29], a feed-forward neural network (FNN),
and a recurrent neural network (RNN). The HMM
is a stochastic model that estimates the probability of
being in a particular state based on the input data and
the current state. The mental state can be modeled

Figure 4. (a) A sample from Dataset I of the smoothed spike
counts during the trials and (b) the smoothed spike count
variability during the non-BMI periods over both datasets.

as a two-state HMM, where one is for the ‘standby’
state while the other indicates that the user is in an
‘active’ state. The forward algorithm [29] then cal-
culates the likelihood of being in a Markov state Xi

after a sequence of n observationsO0(t0 = 0),O1(t1 =
1), . . . ,On(tn = n) as Pi(tn) =

∑M
j=1

[
Pj(tn−1)AijBij

]
,

where M denotes the total number of Markov states,
i and j denote the indices of Markov states, and
Pi(tn) denotes the probability of being in state Pi at
time t= tn. We also consider machine learning (ML)-
based methods using FNNs and RNNs for brain-
state estimation. Both FNNs and RNNs use artifi-
cial neurons that each compute an output y= f(z),
where z denotes an accumulated weighted input and
f(·) denotes a non-linear activation function. The
weighted input z is computed by multiplying the
inputs with a weight matrixWx that is obtained dur-
ing training. While FNNs process data in a forward
direction from the input layer to the output layer,
RNNs employ a self-recurrent connection which
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attempts to learn from temporal features in the data.
As a result, RNNs employ additional weight matrices
WR, denoting the self-recurrent weights, in addition
to the input weight matrix Wx. Both the FNN and
RNNs use the rectified linear unit (ReLU) activation
function at the output of the artificial neurons. The
RNN also employs the ReLU function in its recurrent
connections. The employed FNN and RNN models
for mental state estimation have eight artificial neur-
ons in a single hidden layer, with one unit at the out-
put. To quantify the accuracy of the employed brain-
state estimation schemes, the F-score and the Pearson
CC metric are assessed. The CC is given as:

CC=

∑
i(ti − t̄)(t̂i −¯̂t)√∑

i(ti − t̄)
√∑

i(t̂i −
¯̂t)
,

where t and t̂ denote the actual and estimated inten-
tion time, respectively, t̄ and ¯̂t denote the mean of
the actual and estimated intention time, accumulated
over i estimations, are assessed. The F-score and the
CC metrics can be interpreted as a measure of the
accuracy of detecting the intention and as the preci-
sion of detection, respectively. Note that in the con-
text of BMIs, an algorithm with a higher F-Score and
an acceptable CC is preferable over an algorithmwith
a relatively low F-Score and a high CC. A highly pre-
cise intention estimator, i.e. high CC, will be of no use
when the intention is not detected. Previous studies
among BCI users have shown that the overall system’s
reliability is far more important than it is speed [30].

For training the intention detectors, two-second
snippets of smoothed spike counts over various
animal reaches are extracted from the Datasets I and
II. For the intention-positive snippets, the switch
release time was aligned at one second. The out-
puts of the models were a zero, indicating no inten-
tion, or one, indicating the BMI-related intention.
The FNN has no temporal state and the two-second
reach datawas divided into sequences of three consec-
utive, non-overlapping smoothed spike counts. The
RNN accepts one input per time step per training
sample, while the FNN accepts three inputs per train-
ing sample. Both the RNN and FNN models were
trained using Python’s Tensorflow framework and to
avoid overfitting to training data, early stopping was
used to monitor the mean squared error metric and
stop training when the validation error was no longer
reduced. To evaluate the performance of the mod-
els after training, a 0.5 threshold was applied to the
ReLU outputs to generate the predicted state, e.g. an
output greater than or equal to 0.5 was interpreted
as an ‘active’ state and as a ‘standby’ state otherwise.
Table 3 gives the performance of the three developed
brain-state estimation schemes over Datasets I and II.
It is shown that both of the ML-based models out-
perform the HMM in detecting the state transitions.
The performance of the RNN is consistent over both

Table 3. The performance of alternative brain-state estimation
methods over two datasets.

Dataset Method F-Score (std.) CC (std.)

I HMM 0.47 (0.08) 0.83 (0.09)
FNN 0.72 (0.31) 0.93 (0.04)
RNN 0.83 (0.04) 0.89 (0.05)

II HMM 0.40 (0.02) 0.83 (0.12)
FNN 0.92 (0.02) 0.98 (0.02)
RNN 0.95 (0.03) 0.91 (0.05)

datasets while the FNN drops in performance has
a considerable drop in performance over Dataset I.
Thus, for estimating the brain-state, the RNN model
is employed.

3. Hardware implementation of the
designed intention-aware BMI

To detect the spikes of the individual neurons near
the tip of an electrode, the contribution of the LFPs
is first removed using a band-pass filter. A more
computationally-efficient approach to remove the
low-frequency components of the signal is employed
by subtracting the moving average of the signal, com-
puted over a reasonably short timing window, i.e.
x̃[n] = x[n]− x[n], where x[n] denotes the neural sig-
nal, k denotes the length of the timing window and
x[n] = 1

k

∑n−k
n x[n] [31]. The mean subtraction filter

does not require multiplications, which is a signific-
ant saving as in vivo spike detection is a continuous
operation. It was found that removing the mean of
the neural signal over a relatively small timing win-
dow of 800µs is sufficient for removing the LFPs.
With a sampling rate of fs = 10 kHz, this corresponds
to computing the average of eight samples, which
requires eight additions and one right shift opera-
tion per input sample per channel. Figure 5 shows an
example of the conventional bandpass filter and the
filtered recording using the mean subtraction filter.
It can be seen that the employed filter preserves the
spikes in the bandpass filtered signal while the low-
frequency oscillations are eliminated.

After applying the mean subtraction filter, spikes
are first emphasized by applying the absolute value
operation to the filtered signal. Then spikes are
detected by comparing the emphasized signal with a
threshold value, which is computed dynamically as a
scaled value of the estimated background noise. The
noise is estimated as the mean of the emphasized
signal over a one-second time window. The accur-
acy of the detection unit was measured using the F-
scoremetric as F= 2TP/(2TP + FN + FP) [32], which
accounts for true positives (TP), false positives (FP),
and false negatives (FN) spikes over the widely used
Wave_Clus datasets [33]. Compared to the energy-
based methods, such as the non-linear energy oper-
ator (NEO) and the root-mean-square (RMS) noise
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Figure 5. The raw neural signal, the bandpass filtered signal, and the mean subtraction filter outputs.

Figure 6. The top-level block diagram of the designed intention-aware in vivo BMI.

estimationwith an F-Score of 0.94 [34], the employed
method shows a comparable F-Score of 0.92 while
being less computationally-complex.

The top-level block diagram of the designed asyn-
chronous in vivo BMI is shown in figure 6. The raw
neural signals recorded by the MEA are amplified,
digitized by the AFE, and is passed to twelve Neural
Processing Cores (NPCs), where each contains a Fil-
tering unit to remove the LFPs and a Spike Detection
Unit to detect spikes in the form of TCs. Note that
the realization of the AFE is beyond the scope of this
paper and hence, our subsequent power and energy
estimations do not account for the AFE. The spikes
are then passed to the Spike Binning Unit, which counts
the number spikes over periods of 10ms. Each NPC
processes eight channels of interleaved recorded data
and the operating frequency of the system is f= 8×
fs = 80KHz. The NPCs interleaves data processing of
eight recording channels by employing the C-Slow
architectural transformation [35]. The eight highest
correlated channels are configured through the con-
figuration ports, which will enable or disable pro-
cessing based on the correspondingNPCs’ correlation
settings. The correlation settings for each channel
are obtained on a workstation prior to the system

configuration using labeled data collected during the
training process. Each NPC receives an 8-bit con-
figuration word indicating which of its eight inter-
leaved data channels are highly correlated to the user’s
intention.

To remove LFP components from the recor-
ded neural signals, the moving average of the sig-
nal over the previous eight values is subtracted from
the current value. To account for the interleaved
data, the outputs of every eighth register of a 64-
word shift register are used to compute the mean
of the current data channel using an adder tree
and an arithmetic right shift, as shown in figure 7.
To reduce the switching activity of the uncorrelated
channels, the propagation of new values are disabled
by de-asserting the enable signal EN_Channel. If an
NPC’s 8-bit configuration word is equal to zero, the
input register enable signal EN_Core is de-asserted
and no signals will propagate through the delay
elements.

The datapath of the Spike Detection Unit, as shown
in figure 8, consists of an absolute value unit, a cor-
relation shift register Corr. Shift Reg, an accumulation
and threshold memory Acc./Thr. Mem., which consists
of twomemorymodules, and a control unit CTRL. The
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Figure 7. The datapath of the LFP-removal moving average
filter.

Figure 8. The datapath of the spike detection unit.

Corr. Shift Reg is used to enable or disable the accu-
mulation of rectified filtered signals. The Corr. Shift
Reg is initialized after the training phase to determ-
ine the correlation settings for each of the channels
processed by the NPCs. The accumulation register
memory ARM stores the accumulated rectified signal
for the eight NPC channels. The threshold register
memory TRM stores the threshold values, updated
approximately every second (2⌊log2 fs⌋ × 1

fs
= 0.8192 s,

where f s denotes the sampling rate). The CTRL unit
enables the TRM to store the corresponding value from
the ARM after shifting it 10 bits to the right to compute
the scaled threshold value. To detect spikes, the recti-
fied filtered signal is compared to the current chan-
nel’s threshold value. The comparator output is gated
with two signals, the Corr. Shift Reg output, which
is used to disable transient spikes from uncorrelated
channels, and a channel refractory Chn. Ref signal,
which is used to prevent considering multiple output
spikes due to the same threshold crossing event.

The spike detection unit can operate in two
modes. The first mode of operation is during the
system initialization in which a threshold must be
derived for each channel processed by the NPC. Dur-
ing this period, amaster enable bit is used to allow the
processing of uncorrelated channels. This is also the
case for when the off-chip intention estimator detects
that the user intends to perform a BMI-related activ-
ity, where the neural recordings of all channels are
required. In the secondmode of operation, themaster
enable bit is de-asserted and only the highest correl-
ated channels are processed.

Figure 9. The datapath of the spike binning unit.

The spikes generated by the Spike Detection Unit
are then processed by the Spike Binning Unit shown
in figure 9, which accumulates the spikes detected by
each of the NPCs in the core count memory CCM.
The CCM stores eight 48-bit words of data, one for
each channel of an NPC. Each word is partitioned
into twelve 4-bit sections to store the spike counts
produced by the 12 NPCs. To compute the accumu-
lated spike counts of the correlated channels, the out-
put Core Counts from the CCM are added with the
masked summing units MSUs. The Bitmask Memory
stores correlated channel information in twelve-bit
words, which are used within the MSUs to mask the
spike counts of uncorrelated channels. The outputs of
the MSUs are then accumulated into the correlation
sum register CSR.

The synthesized ASIC layouts of Configurations I
and II.a, implemented in a standard 180 nm CMOS
process, is shown in figure 10. Synthesis was per-
formed using Synopsys Design Compiler and the
place-and-route was done using Cadence Innovus.
The designs were synthesized to support a 96-
electrode Utah Array by implementing 12 NPCs,
each processing eight channels. To optimize the area
and power consumption of the ASIC, we tested the
system-level accuracy of the system over various
numerical resolutions. Input data, and subsequent
internal digital signals, are represented using the
fixed-point (WI.WF) number format, where WI and
WF denote the number of integer and fraction bits.
In our design, data is represented using one integer
bit and F fraction bits, where F was between 11 and 2
bits.We found that the system-level accuracy dropped
significantly for values of F less than 7. Table 4 gives
the ASIC characteristics and implementation results
for various configurations of (WI.WF). The power
consumption of the 96-channel intention-aware cir-
cuitry and the power per active channel is approxim-
ately 59µWand 0.63µW, respectively. The power was
estimated by simulating the synthesized and routed
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Figure 10. The ASIC layout of the designed intention-aware BMI system employing a 96-electrode Utah Array with 12 spike
detection cores.

Table 4. The ASIC characteristics and implementation results of the intention-aware spike detection circuitry over various numerical
formats.

Circuit metric

(WI.WF)

(1.11) (1.9) (1.7) (1.5)

Core area (mm2) 4.49 4.00 3.50 3.01
Intention-aware circuitry power (µW) 85.8 71.9 59.6 49.5
Power per active channel (µW) 0.86 0.66 0.63 0.43
Mean system accuracy (CC) 0.81 0.80 0.80 0.75

Table 5. The ASIC characteristics and implementation results of the state-of-the-art spike detection circuits.

Work Ours [36] [37] [38] [39]

Technology (nm) 180 180 180 65 130
Supply voltage (V) 1.8 — 1.8 0.8 1.2
Number of channels 96 16 1 64 16
Normalized area per channel (mm2)a 0.03 — 0.03 0.05 1.21
Normalized power per channel (µW)a 0.63 4 1.5 4.6 210
Adaptive threshold Y N Y N Y
Intention-aware Y N N N N
Scaled active/‘standby’
power consumption (mW)ba 0.124/0.067 c 0.4 0.15 0.46 21
Scaled energy dissipation (J)da 0.611 3.04 1.14 3.496 159.6
Relative increased energy dissipation — 4.97× 1.86× 5.72× 261.21×
a Normalized to a 180 nm CMOS Process with a 1.8 V supply voltage, as described in [40].
b Assuming 100 channels and using 10 channels for brain-state estimation.
c Accounting for the power consumption of the brain-state estimation control circuitry.
d Assuming 30min of real-time operation over a two hour BMI session.

design, considering the switching activity of all nodes
in the design.

Table 5 gives the ASIC characteristics and imple-
mentation results for various spike detection systems.
For a fair comparison, the implementation results
have been scaled to a 180 nm CMOS process with
a 1.8 V supply voltage, as described in [40]. Also,
we compare the area and power consumption of the
spike detection circuitry, when able, for a fair com-
parison. The design in [36] is a 16-channel BMI with

a window-discriminator for spike detection. Win-
dow discriminators involve dual threshold values and
detect spikes when there is a crossing of both the
upper and lower threshold values. In [37], an analog
implementation of a NEO-based spike detection unit
is presented. In [38], the authors present a 64-channel
neural signal acquisition system that detects spikes
using the NEO-based pre-emphasis and a constant
threshold. In [41], a 64-channel neural signal acquis-
ition system is presented. Spikes are detected by an
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adaptive dual-threshold window comparator. Also,
their system supports extracting spike amplitude-
related features, such as the time between threshold
crossing and negative peak, the time between the neg-
ative and positive peak, and the time between the
positive peak and the return to baseline. In [39], the
authors present a 16-channel exponential component
and polynomial component (EC-PC) spike detection
system, which involves representing the neural sig-
nals in the Hilbert transformed space and predict-
ing occurrences of spikes by estimating the probabil-
ity that a data point is part of an action potential. The
implementation results in table 5 shows that ourASIC
design consumes the least power per channel, primar-
ily due to the fact that in an intention-aware BMI sys-
tem, it is only necessary to detect spikes of a relat-
ively small number of highly correlated channels for
the majority of the time. As given in table 5, assuming
that 10% of the channels are sufficient for providing
adequate brain-state estimation, and assuming one
hour of BMI activity in a day, it is clear that our design
offers significantly less energy dissipation, 1.8× less
power compared to the state of the art.

While it is shown that the proposed asynchron-
ous system effectively reduces the power consump-
tion of the in vivo interface, system-level power sav-
ing schemes may also be applicable for further power
reduction. For example, in a BMI system that a user
primarily interacts by controlling a cursor on a com-
puter screen, if eye-tracking cameras are used, the
BMI system can power down the in vivo recording
circuitry should the user not be paying attention to
the screen or if the user is asleep. Note that the results
given in table 5 assume that the system only estimates
the mental states during the ‘standby’ BMI mode and
transitions to the ‘active’ state for neural decoding if
the BMI-related activity is detected. While the sys-
tem employs the brain-switch estimation during the
‘standby’ state, whichmay involve non-BMI activities,
as demonstrated in the next section, the false brain-
switch estimation has a negligible impact on the over-
all decoding performance.

4. Intention-aware decoding

We integrated our designed intention-aware detec-
tion unit along with an ML-based neural decoder.
During an initial training phase, neural recordings
and their associated labeled events are processed
to generate training data for the ML-based brain-
state estimation and neural decoding algorithms. The
labeled training data is then used to determine which
channels are highly correlated to the BMI intention
and to power-down channels that are not highly-
correlated, reducing the power required to operate
in vivo spike detection when the user is not act-
ively engaged in the BMI activity. Figure 11 shows

Figure 11. The system-level block diagram of our designed
wireless BMI system for neural decoding applications.

the system-level block diagram of the designed wire-
less BMI system for a motor-cortex neural decoding
application. Neural activity is detected and accumu-
lated in 10ms bins per recording channel. During
the user’s ‘active’ mental state, multi-unit spikes are
detected on each recording channel, and during the
‘standby’ state, only the eight highest correlated chan-
nels are processed to detect the user’s mental state.
The designed system employs two ML-based mod-
els in silico. One is the RNN discussed in section 2
and the second is a temporal-convolutional network
(TCN) [42] used as a kinematic decoder to map
sequences of binned spike counts onto the intended
object displacement velocity. When the RNN iden-
tifies an ‘active’ mental state, the TCN is enabled
for two seconds to decode the user’s kinematics and
the RNN is disabled and it is internal memory is
cleared.

To evaluate the performance of the neural decod-
ing, the datasets described in section 2 are used. Dur-
ing the off-line training phase, the velocity of the
displaced object is calculated based on the object’s
displacement and is smoothed using a moving aver-
age filter to reduce instrumentation noise. To gener-
ate training data, spikes are counted over 10ms bins,
from the time of switch release to the time that a trial
ends. The spike counts are Z-scored and smoothed
with a Gaussian kernel before being passed to the
decodingmodel. The training data forDataset I and II
contain 138 and 98 trials, respectively, aligned to the
switch release time. Trials that were shorter in time
were paddedwith zeros tomatch the data lengths dur-
ing training, however, during BMI operation, both
the RNN and TCN models produce an output for
intention and kinematic estimations, respectively, per
input time step.

Similar to the ML-based intention estimator, the
TCN-based decoder was trained using the Tensorflow
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Figure 12. The outputs of the basic and intention-aware
TCN-based decoders and the estimated intention times
using the RNN-based intention estimator over the testing
subset of (a) Dataset I and (b) Dataset II.

framework, the RMSprop optimizer, and the root
mean square error loss metric. For evaluating regres-
sion performance, the CC metric was used. The
model was trained for up to 300 epochs and to reduce
overfitting, we employed early stopping when the
CC no longer increased. The designed TCN-based
decoder achieves a mean CC of 0.8 (std. 0.06) over
Datasets I and II. Sample outputs of the TCN-based
decoder and the estimated intention times from the
RNN-based intention estimator over Datasets I and
II are shown in figure 12. For reference, the out-
put of a basic decoder which continuously decodes
the neural signals is shown in figure 12. While the
basic decoder will generate spurious outputs among
trials, the intention-aware decoder will only gener-
ate outputs when the brain-switch algorithm enables
the TCN-based decoder. Over the test set shown in
figure 12, the F-score of the RNN-based intention
detector was 0.70 and 0.78 over Dataset I and II,
respectively. It was found that themean absolute error
of the intention-aware decoder is 0.21 and 0.35 over
Datasets I and II, respectively. It was also found that
the RNN-based intention detector is more likely to
produce a false positive rather than a false negative.
However, since the TCN-based decodingmodel is rel-
atively accurate, the overall performance of the sys-
tem is not considerably degraded. The primary goal
of the proposed design is to enable power savings by
decoding only during the ‘active’ mental state, which

Figure 13. The relative accuracy of the TCN-based decoder
over increasing values of SER.

will inevitably reduce spurious outputs. For Dataset I
and II, the error of the velocity decoding is considered
as the mean absolute error. It was found that the
mean absolute error of the basic velocity decoder is
0.26 and 0.51 over Datasets I and II, respectively. The
intention-aware decoder thus has 18.8% and 35%
smaller errors than the basic velocity decoder.

To evaluate the performance of the BMI system
in presence of spiking errors, the spiking error rate
(SER) metric [43], which represents errors that can
occur in the process of detecting spikes and the wire-
less transmission of spike counts, was used. To simu-
late SER, spikes were first detected using the designed
detection unit and binned into one millisecond inter-
vals. Due to a neuron’s refractory period imposed
by the spike detection units, it is assumed that in
each one millisecond bin at most one spike can be
detected per electrode. To inject errors into the bins,
bit-flips were applied to the bins. For example, for
an SER of 10−2, there is a 1% chance that a spike
or non-spike will be considered as its counterpart.
Figure 13 shows the performance degradation of the
TCN-based decoder over increasing values of SER.
It can be seen that the model offers relatively stable
performance for up to about 6% error. The robust-
ness of themodel can be further improved by increas-
ing the numerical resolution of signals (i.e. reducing
quantization noise during detection), or accounting
for spiking errors when the training the model itself,
for example, adding error into the spike counts.

5. Conclusion

The in vivo spike detection has become increas-
ingly challenging when employing high-density
multi-electrode arrays in the order of thousands of
recording channels. This article demonstrated that an
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intention-aware BMI system can drastically reduce
the power consumption of the in vivo spike detec-
tion. It was shown that the ML-based algorithms can
be used effectively to estimate the user’s intention
from a relatively small subset of highly-correlated
recording channels, which allows disabling the detec-
tion circuitry of the remaining uncorrelated chan-
nels. Moreover, since the user is mainly not engaged
in the BMI activity throughout the day, the impact of
the intention-aware BMI is even more effective. The
design and implementation of a 96-channel spike
detection unit in a standard 180 nm CMOS process
was estimated to occupy 0.03 mm2 of silicon area
and consumes 0.63µW of power per channel while
operating at 80 kHz. The designed in vivo BMI system
was used for neural decoding over two neural record-
ings. It was shown that the ML-based algorithms can
reliably detect the user’s intention in the presence of
up to 6% spiking errors. Additionally, it was shown
that compared to the state-of-the-art BMI systems,
incorporating intention awareness reduced the total
energy consumption by over 1.8×.
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