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Abstract: Schizophrenia is a frequently debilitating and complex mental disorder affecting approxi-
mately 1% of the global population, characterized by symptoms such as hallucinations, delusions,
disorganized thoughts and behaviors, cognitive dysfunction, and negative symptoms. Traditional
treatment has centered on postsynaptic dopamine antagonists, commonly known as antipsychotic
drugs, which aim to alleviate symptoms and improve functioning and the quality of life. Despite
the availability of these medications, significant challenges remain in schizophrenia therapeutics,
including incomplete symptom relief, treatment resistance, and medication side effects. This opinion
article explores advancements in schizophrenia treatment, emphasizing molecular mechanisms, novel
drug targets, and innovative delivery methods. One promising approach is novel strategies that target
neural networks and circuits rather than single neurotransmitters, acknowledging the complexity
of brain region interconnections involved in schizophrenia. Another promising approach is the
development of biased agonists, which selectively activate specific signaling pathways downstream
of receptors, offering potential for more precise pharmacological interventions with fewer side effects.
The concept of molecular polypharmacy, where a single drug targets multiple molecular pathways, is
exemplified by KarXT, a novel drug combining xanomeline and trospium to address both psychosis
and cognitive dysfunction. This approach represents a comprehensive strategy for schizophrenia
treatment, potentially improving outcomes for patients. In conclusion, advancing the molecular
understanding of schizophrenia and exploring innovative therapeutic strategies hold promise for
addressing the unmet needs in schizophrenia treatment, aiming for more effective and tailored
interventions. Future research should focus on these novel approaches to achieve better clinical
outcomes and improve the functional level and quality of life for individuals with schizophrenia.

Keywords: schizophrenia; treatment; animal models; receptors; biomarkers

1. Introduction

Schizophrenia is a debilitating and complex mental disorder that affects approxi-
mately 1% of the global population [1]. Characterized by a wide range of symptoms,
including hallucinations, delusions, cognitive dysfunction, and negative symptoms [2–4],
schizophrenia poses significant challenges to patients, their families, and the healthcare
system [5,6]. For decades, postsynaptic dopamine antagonists, commonly also known as
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“antipsychotic” drugs, have been the cornerstone of schizophrenia treatment, aiming to
alleviate distressing symptoms and improve the quality of life for affected individuals [7].
However, despite the availability of these medications, there are still significant gaps and
challenges in schizophrenia therapeutics [8]. This article delves into the evolving landscape
of the development of drugs for psychosis and schizophrenia [9], focusing on the molecular
mechanisms, novel drug targets, and innovative delivery methods that hold promise in
addressing these challenges.

2. Schizophrenia Treatment Gaps and Challenges
Terminology: From “Anti-psychotic” to “Drugs for Psychosis”

The terminology used to describe medications for schizophrenia has evolved over
time [10,11]. The term “antipsychotic” has been traditionally used to describe drugs that
alleviate psychotic symptoms, such as hallucinations and delusions [12]. While this term
accurately reflects the primary action of these drugs, it can be limiting in capturing the
broader scope of their effects. To address this limitation and emphasize the underlying
mechanisms [13] (Table 1), a more neuroscientific nomenclature has been proposed: “drugs
for psychosis” [14,15].

Table 1. Molecular mechanisms involved in schizophrenia.

Mechanism Variation Outcome

Dopamine Dysregulation
Hyperactivity in Mesolimbic Pathway Positive Symptoms

Hypoactivity in Mesocortical Pathway Negative Symptoms

Glutamate Hypofunction NMDA Receptor Dysfunction and
Cortical Excitability

Cognitive Deficits and
Negative Symptoms

Serotonin Imbalance 5-HT2A Receptor Overactivity and
Dopamine Release Positive and Negative Symptoms

Genetic Factors DISC1, NRG1, and DTNBP1 Genes
and Synaptic Function

Neuroinflammation Microglial Activation and
Synaptic Pruning

This shift in terminology highlights the fact that these medications [16] primarily
target the neural mechanisms underlying psychosis, rather than simply treating the symp-
toms [17–19]. Understanding the molecular pathways and neural circuits involved in
psychosis is crucial for the development of more effective treatments [20].

3. “Anti-psychotic” vs. Anti-Schizophrenia Treatments

Schizophrenia is not a monolithic condition solely characterized by psychosis [21]. It
encompasses a spectrum of symptoms, including negative symptoms [22] (such as anhe-
donia and social withdrawal) [23], cognitive dysfunction (such as impaired memory and
executive function), and affective symptoms (such as depression and anxiety) [24]. Tradi-
tional postsynaptic dopamine antagonist “antipsychotic” drugs primarily target psychosis-
related symptoms by modulating neurotransmitter systems, particularly the dopamine
system [25,26] (Table 1). However, there is a growing recognition of the need for treatments
that address the broader spectrum of schizophrenia symptoms [27].

The term “anti-schizophrenia treatments” is emerging to encompass therapies that
target multiple symptom domains, including positive, negative, cognitive, and affective
symptoms. These treatments aim to provide comprehensive relief for individuals with
schizophrenia and improve their overall functioning and quality of life [28–30].

4. Problems and Opportunities of Animal Models and Drug Effects
Animal Models of Schizophrenia

One of the challenges in schizophrenia research lies in the translation of findings from
animal models to human patients [31]. Animal models, typically rodents, have been in-
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strumental in understanding the neurobiology of schizophrenia and testing potential drug
candidates [32,33]. However, these models have limitations in capturing the complexity
of the human condition [34,35]. Schizophrenia is a uniquely human disorder, and animal
models can only simulate certain aspects of the disease [36,37]. Thus, while animal models
can provide valuable insights into the neurobiology and potential therapeutic interven-
tions [38], they cannot fully replicate the intricate interplay of genetic, environmental, and
developmental factors that contribute to schizophrenia in humans [39–41] (Table 1).

Animal models are essential for understanding the neurobiological mechanisms of
schizophrenia and developing new therapies [37]. Among the most commonly used models
are those based on the pharmacologic stimulation of “psychosis-like” disorganized cogni-
tive or behavioral symptoms with dopamine agonists or NMDA antagonists and genetic
manipulation, such as mice with mutations in the DISC1, NRG1, and DTNBP1 genes, which
replicate some neurophysiological and behavioral characteristics of schizophrenia [41].
Other models include prenatal exposure to infections or stress, mimicking environmental
risk factors associated with the disease [42]. Despite their utility, these models have signifi-
cant limitations. The complex cognitive and symptomatic features of human schizophrenia,
such as hallucinations and delusions, cannot be fully replicated in animals [43]. Moreover,
differences between the human brain and those of laboratory animals make it challenging
to translate findings directly to clinical settings [44]. These limitations highlight the need to
develop more sophisticated models and to combine data from animal studies with human
research for a more comprehensive understanding of schizophrenia.

5. “Anti-psychotic” Drug Effects in Animal Models

Understanding the effects of drugs for psychosis in animal models is crucial for drug
development. These models help researchers assess the efficacy and safety of potential
medications before advancing to human clinical trials. However, translating the effects
observed in animals to human outcomes can be challenging [45]. Researchers face the
dilemma of selecting appropriate animal proxies for schizophrenia symptoms. The choice of
behavioral assays and endpoints can significantly impact the interpretation of drug effects.
Innovative approaches, such as “smart box screening”, are being explored to address these
challenges. Smart box screening involves the use [46] of sophisticated behavioral assays
and monitoring systems to assess a drug’s impact on specific receptor systems and neural
circuits [47].

6. Established and Emerging Drug Discovery Approaches: Hypothesis-Free
Rapid Screening

To address the gaps in schizophrenia therapeutics, researchers are exploring novel
drug discovery approaches [48]. The hypothesis-free rapid screening of compounds is one
such approach. This method involves systematically testing a wide range of compounds
for their effects on specific receptor systems and neural circuitry targets [49]. By using a
hypothesis-free rapid screening approach, researchers can identify promising candidates
without preconceived notions about their mechanisms of action. This strategy can accelerate
drug discovery by identifying compounds that exhibit the desired effects on psychosis-
related neural circuits.

7. Reducing Preclinical to Clinical Translation Failures

One of the critical challenges in drug development is the failure to translate promising
preclinical findings into successful clinical outcomes [50]. To mitigate these translation
failures, researchers are working to establish robust predictive biomarkers and improve the
validity of animal models [51–56]. The development of reliable biomarkers that correlate
with treatment response in schizophrenia patients can aid in patient stratification and the
early identification of responders and non-responders [57,58]. This approach can reduce
the variability observed in clinical trials and increase the likelihood of success.
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8. Lessons Learned from “Anti-psychotic” Drug Development Failures

The history of the development of drugs for psychosis and schizophrenia is marked by
both successes and failures. Understanding the reasons behind the failures can guide future
research efforts. Some common pitfalls in drug development include the following [9,59]:

1. Lack of specificity: Many drugs currently approved for schizophrenia target multiple
receptors, leading to a range of side effects. Identifying more selective drug candidates
can improve tolerability [60].

2. Overemphasis on the dopamine system: While dopamine dysregulation plays a role
in psychosis, it is not the sole contributor to schizophrenia. Expanding the focus to
other neurotransmitter systems is essential [61].

3. Neglect of cognitive and negative symptoms: Traditional “antipsychotic” drugs as
studied in people with schizophrenia primarily target positive symptoms (halluci-
nations and delusions) but often have limited efficacy for cognitive and negative
symptoms. Developing treatments for these domains is crucial [62].

9. Beyond Neurotransmitter–Receptor Dyads: Intracellular Signaling as
Antipsychotic Targets
Biased Agonism as an Example of Complexity

Schizophrenia’s pathophysiology is not solely reliant on neurotransmitter–receptor
interactions. Intracellular signaling pathways within neurons play a crucial role in shaping
the disease’s manifestations [63]. One intriguing concept is biased agonism, which refers
to the selective activation of specific signaling pathways downstream of a receptor [64,65].
Biased agonists can modulate intracellular signaling in unique ways, offering the potential
for more precise and nuanced pharmacological interventions [66–70]. By targeting specific
intracellular pathways associated with schizophrenia, researchers may develop drugs with
improved efficacy and fewer side effects [71].

10. Novel Approaches to Treat Psychosis and Schizophrenia: Targeting Neural
Networks and Circuits
Moving Beyond Single Neurotransmitters and Receptors

Traditional antipsychotic drugs primarily focus on modulating single neurotransmit-
ters (e.g., dopamine) and receptors (e.g., D2 receptors) [72]. However, recent advances
in neuroscience have revealed the complexity of neural networks and circuits involved
in schizophrenia [73]. Rather than targeting isolated neurotransmitters, researchers are
exploring interventions that modulate entire neural networks [74]. This holistic approach
recognizes the interconnectedness of brain regions and their contributions to schizophrenia
symptomatology [75]. By targeting specific circuits, researchers aim to achieve more precise
and effective treatments.

11. Molecular Polypharmacy: One Drug, Multiple Targets—KarXT:
A Promising Example

Molecular polypharmacy is an emerging concept in drug development, where a
single drug targets multiple molecular pathways implicated in a complex disorder like
schizophrenia [76,77]. One promising example is KarXT, a novel drug that simultaneously
addresses psychosis and cognitive dysfunction [78]. KarXT combines xanomeline, which
targets the muscarinic acetylcholine system, with trospium, an anticholinergic agent [79].
This combination demonstrates the potential of polypharmacy in one pill, providing a
comprehensive approach to schizophrenia treatment [80]. By simultaneously addressing
different aspects of the disorder, such as positive symptoms and cognitive deficits, KarXT
represents a promising advancement in the development of drugs to treat psychosis and
schizophrenia (as well as likely symptom domains and disorders beyond that involve
presynaptic hyperdopaminergia and/or an imbalance between excitation and inhibition
related to GABA and glutamate transmission and interaction [79,81,82].
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12. Known and Emerging Molecular Targets for Specific Symptoms
Positive Psychotic Symptoms

Positive psychotic symptoms, such as hallucinations and delusions, have long been associ-
ated with dysregulated dopamine transmission in the brain [83]. While this neurotransmitter–
receptor dyad remains a critical target, researchers are exploring additional molecular
targets to improve treatment efficacy and reduce side effects [84,85].

1. Presynaptic vs. postsynaptic dopamine modulation: Traditional drugs targeting
psychosis and schizophrenia primarily act by blocking postsynaptic dopamine D2
receptors. However, the presynaptic modulation of dopamine release is also under
investigation as a potential target to fine-tune dopamine transmission [86–89].

2. GABA and glutamate systems: The dysregulation of the gamma-aminobutyric acid
(GABA) and glutamate systems has been implicated in schizophrenia. Novel drugs
targeting these systems may offer alternative treatment options [90].

3. Muscarinic acetylcholine system: The muscarinic acetylcholine system plays a role
in cognitive function. Drugs that modulate this system, such as xanomeline, are being
explored to address cognitive deficits in schizophrenia [91,92].

4. Trace amine-associated receptor 1 (TAAR1): TAAR1 is a receptor involved in mod-
ulating dopamine and other neurotransmitters. Targeting TAAR1 may provide a
unique approach to regulating neurotransmitter systems in schizophrenia [93].

5. Excitation–inhibition imbalance: Schizophrenia is characterized by an excitation–
inhibition imbalance in neural circuits. Modulators that restore this balance are under
investigation [94–96].

13. Molecular Underpinnings and Targets for Negative Symptoms

Negative symptoms in schizophrenia, including social withdrawal, anhedonia, and
apathy, pose significant challenges in treatment. Identifying the molecular underpinnings
and targets for these symptoms is crucial for improving the quality of life for affected
individuals [97].

1. Dopamine receptors: While positive symptoms are associated with excess dopamine
activity, negative symptoms may result from deficits in dopamine transmission. Bal-
ancing dopamine receptor activity is a potential approach [98].

2. Glutamate and NMDA receptors: The glutamate system, particularly N-methyl-D-
aspartate (NMDA) receptors, has been implicated in negative symptoms. Enhancing
NMDA receptor function is under investigation [99] (Table 1).

3. Oxytocin receptors: Oxytocin, a neuropeptide, has shown promise in alleviating
negative symptoms [100]. Drugs targeting oxytocin receptors may improve social
functioning [101].

14. Molecular Underpinnings and Targets for Cognitive Dysfunction

Cognitive dysfunction is a pervasive and debilitating aspect of schizophrenia. Im-
paired memory, executive function, and attention significantly impact daily functioning.
Identifying the molecular underpinnings and targets for cognitive deficits is crucial for
enhancing patients’ cognitive abilities [102].

1. Glutamate and AMPA receptors: Enhancing glutamate signaling, particularly through
AMPA receptors, is a potential strategy to improve cognitive function [103] (Table 1).

2. Cholinergic systems: The cholinergic system, including nicotinergic and muscarinic
receptors, plays a role in cognitive processes. Drugs targeting these receptors may
enhance cognitive abilities [104].

3. Neuroplasticity: Promoting neuroplasticity, the brain’s ability to reorganize and adapt, is
another avenue of research for addressing cognitive deficits in schizophrenia [105–107].
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15. Molecular Underpinnings and Targets for Improved Reward System Functioning

The reward system in the brain is implicated in motivation, pleasure, and goal-directed
behavior. The dysregulation of this system can lead to anhedonia and reduced motiva-
tion [108], common negative symptoms in schizophrenia [109–111]. Identifying molecular
targets to restore normal reward system functioning is essential.

1. Dopamine pathways: Modulating dopamine pathways involved in reward pro-
cessing may help restore motivation and pleasure in individuals with schizophre-
nia [112,113].

2. Opioid receptors: Opioid receptors are also involved in reward processing. Targeting
these receptors may offer therapeutic potential [114].

3. Serotonin receptors: Serotonin receptors, particularly the 5-HT2A subtype, have been
implicated in reward dysfunction and may be targeted to restore normal function-
ing [115] (Table 1).

16. Molecular Underpinnings and Targets for Improved Illness Insight

One of the challenges in schizophrenia treatment is anosognosia, a lack of insight
into the illness. Individuals with schizophrenia may not recognize their symptoms or the
need for treatment. Identifying molecular targets to improve illness insight is essential for
enhancing treatment engagement [116].

1. Dopamine and prefrontal cortex: Dysregulated dopamine signaling in the prefrontal
cortex is associated with impaired insight. Targeting this circuitry may help individu-
als gain a better awareness of their illness [117].

2. Glutamate and cognitive functioning: Improving cognitive function, particularly in
areas related to self-awareness, may contribute to increased illness insight [118].

3. Neuroplasticity: Promoting neuroplasticity and cognitive flexibility may enhance
individuals’ ability to understand and accept their condition [119].

17. Molecular Underpinnings and Targets of Treatment-Resistant Schizophrenia

Treatment-resistant schizophrenia (TRS) presents a formidable challenge [120–122]. Some
individuals with schizophrenia do not respond adequately to available treatments [123–127].
Identifying the molecular underpinnings and targets specific to TRS is critical for develop-
ing interventions that can break through the treatment resistance barrier.

1. Dopamine dysregulation: While traditional drugs targeting psychosis and schizophre-
nia primarily target the dopamine system, novel approaches to modulate dopamine
pathways are under investigation [9,128].

2. Glutamate dysfunction: Restoring glutamate balance, particularly through NMDA
receptor modulation, is a focus in TRS research [129].

3. Cholinergic systems: The cholinergic system, particularly the muscarinic receptors,
regulate GABA and glutamate as well as dopamine, and each may be involved in TRS.
Drugs targeting these receptors may enhance cognitive abilities [87,130].

4. Inflammatory mechanisms: Inflammation in the brain has been implicated in TRS [131–
133]. Targeting neuroinflammatory pathways may provide new treatment avenues [134]
(Table 1).

18. Molecular Targets for Disease Modification

Beyond symptom management, there is a growing interest in developing treatments
that modify the course of schizophrenia. These disease-modifying interventions aim to
address the underlying pathophysiological processes and potentially slow down or halt
disease progression.

1. Synaptic pruning: Excessive synaptic pruning during adolescence is believed to
contribute to schizophrenia development. Interventions that regulate this process are
under investigation [135].
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2. Neuroinflammation: Chronic neuroinflammation is associated with schizophrenia.
Modulating immune responses, microglial activation, and synaptic pruning in the
brain may have disease-modifying effects [136] (Table 1).

3. Neuroplasticity: Promoting neuroplasticity and neural repair mechanisms may help
mitigate the long-term consequences of schizophrenia [137].

19. Molecular Targets for Improved Safety and Tolerability

Currently, medications approved to treat schizophrenia often come with a range of
side effects, including sedation/somnolence and agitation or insomnia, prolactin elevation
and sexual dysfunction, neuromotor symptoms, and weight gain and metabolic distur-
bances [138–140]. Identifying molecular targets to avoid adverse effects and enhance
the safety and tolerability of agents targeting psychosis and schizophrenia is crucial to
improving treatment adherence and overall patient well-being. Balancing efficacy and
effectiveness with safety and tolerability is essential. Strategies to reduce weight gain,
dyslipidemia, and insulin resistance are actively being explored, as these are among the
strongest contributors to the life-shortening features of schizophrenia [141,142] that are
partly inherent to the illness, partly related to an unhealthy lifestyle, and partly related to
adverse effects of treatments targeting schizophrenia [143].

1. Dopamine receptor subtypes: Selectively targeting specific dopamine receptor sub-
types may reduce side effects while preserving efficacy for psychosis [144].

2. Serotonin receptors: Modulating serotonin receptors can influence side effect profiles.
Balancing dopamine and serotonin interactions is a focus of research [145].

3. Metabolic pathways: Understanding the metabolic effects of drugs targeting psy-
chosis and schizophrenia and developing interventions to mitigate these adverse
effects are crucial. This can involve added molecular activity as part of a drug with
efficacy for positive, negative, and/or cognitive symptoms or adding self-standing
medications to currently approved antidopaminergic drugs and other treatments
targeting psychosis, such as metformin of GLP-1 agonists [146,147].

4. Neuroprotection: Developing neuroprotective agents that shield the brain from the
adverse effects of medications targeting psychosis and schizophrenia is a promising
avenue. These agents may help prevent structural and functional changes associated
with long-term antidopaminergic use or stimulate BDNF or other neurotrophic and
antiapoptotic processes [148].

20. Combination Treatments to Minimize Side Effects

Combining multiple medications with complementary mechanisms of action is another
strategy to minimize side effects while preserving therapeutic efficacy. This approach can
help offset the adverse effects associated with individual drugs, resulting in a more tolerable
treatment regimen.

1. Olanzapine plus samidorphan: Olanzapine is an effective medication for schizophre-
nia, but it is associated with weight gain. Samidorphan, an opioid receptor antagonist,
is combined with olanzapine in an attempt to mitigate this side effect, providing a
more tolerable treatment option [149,150].

2. Xanomeline plus trospium: A s previously mentioned, KarXT combines xanomeline,
which targets the muscarinic acetylcholine system, with trospium, an anticholiner-
gic agent. This combination minimizes the cholinergic side effects associated with
muscarinic agonists [151,152].

These combination treatments exemplify the concept of molecular polypharmacy,
where multiple drugs with distinct molecular targets work together synergistically to
enhance therapeutic outcomes while minimizing side effects.
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21. Novel Modes of Delivery for Medications Targeting Psychosis and Schizophrenia

In addition to innovative drug targets, researchers are exploring novel modes of drug
delivery to improve the precision, convenience, and adherence of treatments targeting
psychosis and schizophrenia. Some of these approaches include the following:

1. Subcutaneous delivery: Subcutaneous injections offer a more controlled and sus-
tained release of medication compared to oral formulations. This mode of delivery
can help minimize fluctuations in drug levels and improve adherence [153–155].

2. Transdermal patches: Transdermal patches provide a non-invasive and potentially
convenient method of drug delivery. They can ensure the steady absorption of
medication over an extended period, reducing the need for frequent dosing and
improving the pharmacokinetic properties of some drugs [156,157].

3. Intranasal administration: Intranasal sprays and powders allow for rapid drug
absorption through the nasal mucosa. This mode of delivery can lead to a faster onset
of action, particularly important in managing acute psychotic episodes [158,159].

4. Viral vector-based delivery: Advanced techniques involving viral vectors can be used
to target specific brain regions or neural circuits. This precision allows for localized
drug delivery, minimizing systemic side effects [160–163].

These novel delivery methods hold promise in tailoring treatments to individual
patient needs, enhancing treatment efficacy, and reducing the burden of daily medica-
tion regimens.

22. Pharmacokinetic Mechanisms to Speed Up or Extend Drug Effects

Pharmacokinetic strategies aim to optimize the absorption, distribution, metabolism, and
elimination of drugs targeting psychosis and schizophrenia to achieve specific treatment goals.
Depending on the clinical scenario, these mechanisms can either speed up drug delivery for
rapid release and relief or extend the duration of drug effects to enhance adherence.

1. Rapid-acting drugs for psychosis and schizophrenia: For the management of acute
agitation and psychosis, rapid-acting antipsychotic formulations are crucial. Short-
acting intramuscular, inhalable, or intranasal administration can provide rapid relief
within minutes [159,164,165].

2. Long-acting gastrointestinal delivery: Slowing down the intestinal transit of oral
medications can potentially lead to a once-weekly oral depot whereby patients with
difficulties with adherence would only require once weekly reminders or supervi-
sion [166].

3. Long-acting injectable drugs for psychosis and schizophrenia: To improve treatment
adherence, long-acting injectable “antipsychotics” (LAIs) postsynaptic antidopamin-
ergic medications offer extended drug release over weeks or months. LAIs ensure
that patients receive consistent treatment without the need for daily dosing, reducing
the risk of relapse. Administrations routes include intramuscular and subcutaneous
administration [167,168].

23. Conclusions

Schizophrenia remains a complex and challenging mental disorder that affects millions
of individuals worldwide. While postsynaptic antidopaminergic drugs have been the
cornerstone of treatment for decades, there is still much to discover and improve upon in
the field of schizophrenia therapeutics.

Advancements in understanding the molecular mechanisms underlying schizophre-
nia and the development of novel drug targets offer hope for more effective treatments.
Targeting specific symptom domains, such as positive and negative symptoms, cogni-
tive dysfunction, and impaired insight, allows for a more comprehensive approach to
schizophrenia management.

Innovative strategies, such as molecular polypharmacy, combination treatments, and
novel drug delivery methods, aim to improve treatment efficacy while minimizing side
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effects. Additionally, pharmacokinetic mechanisms can tailor drug effects to meet the
unique needs of individual patients.

The ongoing pursuit of a better understanding of the molecular underpinnings of
schizophrenia and the development of innovative treatment approaches provide hope for
improved outcomes and a higher quality of life for individuals living with this challeng-
ing disorder.
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