
Computational Materials Science 246 (2025) 113432

A
0

Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier.com/locate/commatsci

Full length article

Exploring design space: Machine learning for multi-objective materials
design optimization with enhanced evaluation strategies
Felix Conrad a,∗, Julien Philipp Stöcker b, Cesare Signorini c, Isabela de Paula Salgado c,d,
Hajo Wiemer a, Michael Kaliske b, Steffen Ihlenfeldt a

a TUD - Dresden University of Technology, Institute of Mechatronic Engineering, Dresden, Germany
b TUD - Dresden University of Technology, Institute for Structural Analysis, Dresden, Germany
c TUD - Dresden University of Technology, Institute of Construction Materials, Dresden, Germany
d United Nations University, Institute for Integrated Management of Material Fluxes and of Resources, Dresden, Germany

A R T I C L E I N F O

Dataset link: https://github.com/fc-tud/materi
al-optimization

Keywords:
Machine learning in materials design
Automated machine learning
Multi-objective optimization
Splitting methods for performance evaluation

A B S T R A C T

Discovering optimal material designs in the design space can be significantly accelerated by leveraging
machine learning (ML) models for screening candidates. However, the quality of these designs depends on
the prediction accuracy of the ML models and the efficiency of the optimization algorithms used. This study
comprehensively compares different ML modeling strategies, optimization algorithms and evaluation strategies.
Thereby, automated ML, tree-based ML models and neural networks were compared. Various optimization
algorithms were analyzed, including random search, evolutionary and swarm-based methods. In addition,
different strategies for evaluating the predictive performance of the ML models were investigated, which is
particularly important as these models are expected to predict design parameters that deviate significantly
from the known designs in the training data throughout the optimization. Our results highlight the capability
of the proposed workflow to discover material designs that significantly outperform those within the training
database and approach theoretical optima. Overall, this research contributes to advancing the field of material
design optimization by providing a versatile and practical workflow that introduces automated ML into material

design optimization and new model error assessment strategies tailored explicitly to optimization tasks.
1. Introduction

In the development of materials, the pursuit of optimized designs
is crucial to meet the ever-increasing demands for efficiency, robust-
ness and sustainability. The use of machine learning (ML) models to
predict material properties is steadily increasing [1,2], especially for
concrete [3,4] and polymers [5]. ML models that capture material
behavior are particularly well suited to material optimization as they
can quickly predict many different variants from the feature space.
Thus, integrating machine learning (ML) techniques has proven to be
a promising strategy for optimizing material designs, known as the
"inverse material design" problem [6].

1.1. Multi-objective optimization in materials-design

Solving the inverse material design problem with multiple objec-
tives yields many optimal solutions, as the best design parameters
for the different properties are different. These solutions, regarded to
as ‘‘Pareto-optimal solutions’’, represent interlinked design parameters
where enhancing one target property inevitably compromises another,

∗ Corresponding author.
E-mail address: felix.conrad@tu-dresden.de (F. Conrad).

which is schematically illustrated in Fig. 1(b). Numerous research stud-
ies have investigated multi-criteria optimization in materials design.
Here, we adopt the classification proposed by Hanaoka [7] to classify
these approaches.

The strategy, termed ‘‘few solution inverse designs’’, does not de-
termine the entire Pareto front. This method often uses scalarization
functions that convert multiple objective properties into a single ob-
jective value that can be optimized using any single objective method.
Among these functions, the weighted summation of multiple objective
properties is the most widely used. An alternative strategy referred to
as ‘‘many solution inverse designs’’ aims to obtain the entire Pareto front.
From this, the most suitable design for the application in question is se-
lected. In the ‘‘find goal design’’ approach, optimization targets (multiple
for multi-objective scenarios) are defined, and the optimization process
concludes as soon as the goal is reached, even if the Pareto optimum
has not yet been achieved.

In the scope of ‘‘few solution inverse designs’’, Sun et al. [8]
utilized scalarization with a weighted sum of objectives to transform
the multi-objective task into a single objective task. They optimized
https://doi.org/10.1016/j.commatsci.2024.113432
Received 8 July 2024; Received in revised form 26 September 2024; Accepted 30 S
vailable online 17 October 2024
927-0256/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a
eptember 2024

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/commatsci
https://www.elsevier.com/locate/commatsci
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
https://github.com/fc-tud/material-optimization
mailto:felix.conrad@tu-dresden.de
https://doi.org/10.1016/j.commatsci.2024.113432
https://doi.org/10.1016/j.commatsci.2024.113432
http://creativecommons.org/licenses/by/4.0/

F. Conrad et al.

t
f
o
i
S
t
t
r
w
m
q
v
g

Computational Materials Science 246 (2025) 113432
concrete mixtures to minimize costs and CO2 emissions, integrating
the Analytic Hierarchy Process (AHP) to determine the weights in
the scalarization of the optimization objectives. Wang et al. [9] also
used a multi-objective approach via a weighted scalarization func-
tion and evolutionary optimization for three material properties of
polystyrene/polyacrylonitrile fibers. Diao et al. [10] optimized the
elongation and tensile strength of carbon steels via scalarization by
multiplying both target properties for a single metric. Their study
utilized feed-forward neural networks (FFNN), random forests (RF), and
support vector regression (SVR) models, with optimization conducted
through the efficient global optimization method.

Various methodologies have been employed for ‘‘many solution
inverse designs’’. In several studies, Zhang et al. explored various
swarm-based optimization techniques to optimize concrete formula-
tions in terms of mechanical properties and sustainability. In partic-
ular, they proposed the multi-objective particle swarm optimization
(MOPSO) [11], the multi-objective firefly algorithm (MOFA) [12] and
the multi-objective bat algorithm (MOBAS) [13]. From the resulting
Pareto front, they selected the best design using the technique for order
preference by similarity to an ideal solution (TOPSIS). Likewise, Huang
et al. [14] optimized steel fiber-reinforced concrete mixtures for cost
and compressive or flexural strength using support vector regression
and MOFA optimization. They employed an efficiency ratio that divided
the cost increase by the strength improvement to obtain the best design
from the Pareto front. Feng et al. [15] optimized the mechanical and
corrosion properties of aluminum alloys using various ML models,
including FFNN, SVR and GBM, as well as evolutionary algorithms for
the optimization. Moreover, Motoyama et al. introduced PHYSBO, i.e. a
Bayesian optimization tool tailored for multi- and single-output opti-
mization tasks [16]. Built upon Gaussian Processes regression, PHYSBO
identifies inputs with the highest probability of yielding improved
output values, thus facilitating many solution inverse design endeavors.
This methodology was applied to maximize band-gap (𝐸𝑔) and the
dielectric constant of semiconductors.

In ‘‘find goal design’’, Hanaoka [7] demonstrated the effective-
ness of Bayesian optimization using Gaussian processes as ML models
to optimize the material properties of polystyrene/polyacrylonitrile
(PS/PAN) fibers. Remarkably, the search for the optimal material pa-
rameters was more than 1000 times faster than the random search.
A hybrid strategy combines aspects of ‘‘find goal design’’ and ‘‘many
solution inverse designs’’. By setting constraints on all but one of the
optimization objectives and optimizing the remaining objective, the
Pareto front can be determined incrementally. Golafshani et al. [17]
conducted a thorough comparison of various tree-based models, such
as XGBoost, CatBoost and Random Forest, combined with the swarm-
based optimization algorithms grey wolf optimizer [17]. Their ap-
proach focuses on a single optimization goal while restricting the
others to predefined objectives. Similarly, Asadishamsabadi et al. [18]
studied the optimization of concrete formulations including recycled
aggregates, targeting cost and environmental impact indicators while
complying with specific strength requirements. They achieved an ef-
ficient multi-objective optimization by employing extreme gradient
boosting machines as ML models and evolutionary algorithms.

These studies collectively embody the diverse methodologies and
considerations in optimizing materials and structural designs, empha-
sizing the integration of ML models for efficient multi-objective opti-
mization. They employ various ML models, predominantly FFNN and
tree-based models, alongside various optimization algorithms, mainly
from swarm-based, evolutionary and Bayesian optimization classes.
These findings align with the recent review by Stergiou et al. [19] on
predicting and optimizing process and material designs. Common to all
studies is the manual approach to model selection and hyperparameter
optimization, with the best ML model chosen based on randomly
splitting the data for training and testing. However, this conventional
approach to evaluating model error can be misleading for optimization
purposes, as the samples considered in the optimization process may

differ significantly from the known designs in the training data. P

2
1.2. Assessment of the prediction error of ML models

Prediction accuracy in materials design relies heavily on the avail-
able data volume [20,21]. However, it is essential to acknowledge that
the prediction accuracy may vary across the feature space, particularly
concerning small datasets. Consequently, understanding and address-
ing the inherent uncertainty of ML models is essential, especially in
scenarios with limited data.

Various methods for deep learning approaches, such as those based
on generative adversarial models [22,23], DiscoNets [24] or the deep
ensemble method [25], offer promising results. However, these method-
ologies are not considered within the context of this study, which
instead focuses on experiment-intensive research with relatively small
data volumes (< 1000 data points) due to cost and resource constraints.

Gaussian Process Regressor (GPR) can effectively represent the un-
certainty of its predictions [26]. Vasseur et al. [27] conducted a com-
parative analysis of various methods for quantile regression, highlight-
ing the superior performance of tree-based Gradient Boosting Machines
(GBM) with pinball loss. However, the "No Free Lunch" theorem [28]
states that no single model universally outperforms others, and a tai-
lored evaluation for each ML model is needed to identify the most
suitable one for optimization and error estimation purposes.

Traditionally, test data is randomly drawn from the entire dataset to
estimate model prediction errors using global error metrics. Nonethe-
less, global prediction metrics might not be optimal for discerning
which model excels in predicting promising new design variants [29].
Alternative methods, such as cluster sampling [30] or density-biased
sampling [31], attempt to maintain equal representation in training
and test datasets. However, these methods often overestimate model
performance [32] and are unsuitable for comprehensive evaluation. To
enhance the assessment of predictive accuracy for optimized solutions,
Rosario et al. [29] proposed a split of training and test data based on
the Pareto front, facilitating a more robust evaluation of model errors
in predicting new optimized designs.

1.3. Overview of approach for ML-based optimization

This paper addresses two identified gaps. Firstly, it conducts a
comprehensive comparative analysis of ML models, optimization algo-
rithms, and performance evaluation strategies. This analysis aims to
identify the most effective methods for materials design optimization
and provides an in-depth discussion of their implications. Thereby, it
introduces novel strategies for performance evaluation of ML models
specifically designed for the performance evaluation in an optimizing
task. Secondly, incorporating automated machine learning (AutoML)
into optimization processes for materials design represents an approach
that aims to improve usability in line with the principles of usable AI
proposed by Wiemer et al. [33]. The integration of AutoML techniques
aims to streamline and automate the optimization process, making it
more accessible and usable.

The general approach to materials design optimization presented in
this paper is illustrated in Fig. 1(a). While running through a step n can
ake hours for simulations and often even days for experiments, a step m
or ML models can be run through in less than 1 s. Initially, a database
f material designs and their properties is established, either by exper-
mental methods or simulations or an existing database can be used.
ubsequently, this database is utilized to train an ML model, which is
hen employed to optimize the optimal design parameters. Validation of
he found design parameters is essential since the optimization results
ely solely on the ML model’s predictions. These must be confirmed
ith the real-world results of the found design parameters. Once the ML
odel is obtained, exploring the entire Pareto front becomes feasible, as

uerying the ML model for the properties of a material design requires
ery few resources. Therefore, this paper emphasizes a hybrid of ‘‘find
oal design’’ and ‘‘many solution inverse designs’’ to achieve the entire

areto front in a predefined region and step size. The final design

F. Conrad et al. Computational Materials Science 246 (2025) 113432
Fig. 1. Workflow for multi-objective optimization and candidate ranking in a multi-objective optimization setting. Two points cannot outperform each other if they are alternately
dominant for different objectives. Pareto-optimal points are not strictly dominated by any other and form the Pareto front.
can then be selected based on the entire Pareto front, considering the
prioritization of individual optimization objectives for the given use
case.

The subsequent chapters describe the details in the following or-
der: First, the implementation of the workflow is presented, which
includes ML modeling, evaluation strategies and multi-objective op-
timization. Additionally, the applied use cases of a simulation of
polystyrene/polyacrylonitrile (PS/PAN) fiber properties and a simula-
tion of a cantilever beam made of textile-reinforced concrete (TRC)
are described in detail. Second, a performance comparison for the
optimization workflow is presented. For this purpose, the optimization
workflow is applied to the use cases. Third, the observations and their
implications are discussed, and lastly, conclusions and prospects are
presented. Information about data and code availability is appended.

2. Methods

2.1. ML models

A comparative approach for ML modeling was implemented by
evaluating different modeling methods. Following the benchmark of
Conrad et al. [21], we use AutoSklearn in version 0.15.0 [34], which
has shown the best performance of the analyzed automatic ML tools
in predicting material properties. Autosklearn outperformed manually
created models from the reference studies by up to 20% in terms of
prediction performance. In addition, we use the tree-based algorithms
CatBoost in version 1.2.3 [35] and XGBoost in version 2.0.3 [36].
Tree-based methods have proven to be high-performing models in
many different application areas, often outperforming FFNN for tabular
data [37]. XGBoost and CatBoost, in particular, performed well in the
study of Bentejca et al. [38], where they were the two best-performing
gradient-boosting algorithms. Furthermore, we use PyTorch version
2.2.0 to create FFNN. This covers a wide range of conventional ML
modeling techniques for the comparison of different ML models in this
study.

2.2. Error estimation

It is intended to enable a more accurate estimation of model per-
formance when points from outside the known distribution are to be
predicted, as is usual in optimization tasks. In addition to random
splitting into train and test data, the following three splitting methods,
‘Euclidean-distance’ (E-dist), ‘extrapolation’ and ‘Pareto-front’, were
3
used. An example of the train-test split for each of the four methods
is shown in Fig. A.1.

The splitting strategy referred to as ‘Euclidean-distance’ uses princi-
pal component analysis (PCA) to reduce dimensionality. This involves
converting the original variables into a new set of orthogonal variables,
called principal components, which capture the maximum variance in
the data. In this way, complex datasets can be simplified while retaining
the most important information and allowing the data to be represented
in fewer dimensions. This representation is used to split the data so
that the training data represents the known distribution of the dataset
and the test set represents the out-of-distribution data. The procedure
is presented in Algorithm 1.

Algorithm 1: Splitting dataset into training and test data with the
Euclidean-distance method.
𝑋_𝑑𝑎𝑡𝑎 ← 𝑑𝑎𝑡𝑎𝑠𝑒𝑡[𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠]
𝑋′ ← PCA(𝑋_𝑑𝑎𝑡𝑎)
for 𝑥𝑖 in 𝑋′ do

for 𝑥𝑗 in 𝑋′ do
𝐸[𝑗] ← euclidean_distance(𝑥𝑖, 𝑥𝑗)

end
𝐷[𝑖] ← sum(sorted(𝐸)[∶ 10])

end
𝑡𝑟𝑎𝑖𝑛_𝑖𝑛𝑑𝑖𝑐𝑒𝑠, 𝑡𝑒𝑠𝑡_𝑖𝑛𝑑𝑖𝑐𝑒𝑠 ← arg(sorted(D)[∶ 𝑛train_data]),
𝑎𝑙𝑙_𝑖𝑛𝑑𝑖𝑐𝑒𝑠 ⧵ 𝑡𝑟𝑎𝑖𝑛_𝑖𝑛𝑑𝑖𝑐𝑒𝑠

𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎, 𝑡𝑒𝑠𝑡_𝑑𝑎𝑡𝑎 ← 𝑑𝑎𝑡𝑎𝑠𝑒𝑡[𝑡𝑟𝑎𝑖𝑛_𝑖𝑛𝑑𝑖𝑐𝑒𝑠], 𝑑𝑎𝑡𝑎𝑠𝑒𝑡[𝑡𝑒𝑠𝑡_𝑖𝑛𝑑𝑖𝑐𝑒𝑠]

The splitting strategy called ‘extrapolation’ involves dividing the
dataset based on the quantiles of the label. Specifically, the 𝑥 percent
lowest and 𝑥 percent highest values of the label are allocated as test
data, while the remaining values constitute the training data. We divide
the dataset into training and test data:

𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎 = {𝑑𝑎𝑡𝑎𝑠𝑒𝑡 ∣ 𝑙𝑎𝑏𝑒𝑙 ∈ [𝑞low, 𝑞high]}

𝑡𝑒𝑠𝑡_𝑑𝑎𝑡𝑎 = {𝑑𝑎𝑡𝑎𝑠𝑒𝑡 ∣ 𝑙𝑎𝑏𝑒𝑙 ∉ [𝑞low, 𝑞high]}
(1)

, where qlow and qhigh represent the 𝑥 percent quantile and (100 −
𝑥) percent quantile of the label, respectively. This splitting strategy
allows for evaluating extrapolation quality and assessing the model’s
performance beyond the range of observed data.

The methodology proposed by del Rosario et al. [29] is used for the
Pareto-front splitting. In this scheme, the test data comprise the Pareto
frontiers, while the training data comprises the remaining points. When

F. Conrad et al.

m

𝑃

t
t
𝐿

p
i
s
C
m

f

e
b

s
d

n
f
d
c
c

s

Computational Materials Science 246 (2025) 113432
dealing with a group of candidates denoted as 𝑌 ⊆ R𝐷, we define
the Pareto frontier as the collection of points within 𝑌 that are not
dominated by any other point in 𝑌 . This frontier, denoted as 𝑃 (𝑌), is

athematically expressed as:

(𝑌) = {𝑦′ ∈ 𝑌 ∣ {𝑦′′ ∈ 𝑌 ∣ 𝑦′′ ≻ 𝑦′, 𝑦′ ≠ 𝑦′′} = ∅} (2)

This definition implies that each point 𝑦 in the Pareto frontier
represents a unique combination of objective values that cannot be
improved by any other point 𝑦′ in 𝑌 without worsening at least one
of the objectives. We used the concept of levels to expand the test set
to include additional points near the Pareto frontier. These levels are
recursively defined as follows: The first level, 𝐿1, corresponds to the
Pareto frontier, as described by 𝑃 (𝑌). Subsequent levels, denoted as 𝐿𝑠,
are determined iteratively by considering the set 𝑌 without the points
in the previous level 𝐿𝑠−1 and then calculating the Pareto frontier of
his remaining set. This process continues until the desired amount of
est data is reached.

1 = 𝑃 (𝑌)

𝐿𝑠 = 𝑃 (𝑌 ⧵ 𝐿𝑠−1) for 𝑠 = 2, 3,…
(3)

To robustly evaluate the performance of our models, we used nested
cross-validation as recommended by Conrad et al. [32], which is pre-
sented in Algorithm 2. This approach involved performing a 10-fold
inner cross-validation for the hyperparameter optimization (HPO) to
ensure the robustness and performance of the HPO process as recom-
mended in [32]. For all models except AutoSklearn, hyperparameters
were optimized with Optuna version 3.5.0 using the Tree-structured
Parzen Estimator (TPE) algorithm with 200 runs, which allowed a
thorough exploration of the hyperparameter space. The specifications
of this space, described for CatBoost in Table A.1, for XGBoost in
Table A.2 and for FFNN in Table A.3, aimed to ensure comprehensive
coverage of potential configurations. AutoSklearn automatically solves
the combined algorithm selection and hyperparameter optimization (CASH)
roblem [39]. For this purpose, 10 splits are also performed for the
nner cross-validation to solve the CASH problem. The budget for
olving the CASH problem was set to 15 min of training time with 8
PU cores (Intel(R) Xeon(R) Gold 6136 CPU @3.00 GHz). Finally, the
odel with the best hyperparameters is retrained on the entire dataset.

Algorithm 2: Nested cross-validation
generate_outer_cv_splits(data = 𝑑𝑎𝑡𝑎𝑠𝑒𝑡, mode= ’random’, ’ E-dist’,
’extrapolation’ or ’Pareto-front’)
oreach outer_cv_split in outer_splits do

generate_inner_cv_splits(data = 𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎_𝑜𝑢𝑡𝑒𝑟_𝑠𝑝𝑙𝑖𝑡,
mode=’random’)
for n in HPO_Budget do

model.define_hyperparameter()
foreach inner_cv_split in inner_splits do

model.train(data = 𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎_𝑖𝑛𝑛𝑒𝑟_𝑠𝑝𝑙𝑖𝑡)
model.predict(data = 𝑣𝑎𝑙_𝑑𝑎𝑡𝑎_𝑖𝑛𝑛𝑒𝑟_𝑠𝑝𝑙𝑖𝑡)

end
end
best_model = get_best_model(scoring=RMSE)
best_model.predict(𝑡𝑒𝑠𝑡_𝑑𝑎𝑡𝑎_𝑜𝑢𝑡𝑒𝑟_𝑠𝑝𝑙𝑖𝑡)

nd
est_model.retrain(data = 𝑑𝑎𝑡𝑎𝑠𝑒𝑡)

2.3. Multi-objective optimization

The aim of systematic material property optimization is to deter-
mine the Pareto front uniformly in a predefined region. The following
transformation is employed to tailor the multi-objective optimization
(MOO) towards a step-wise single-objective optimization (SOO), facili-
tating the customization of the region and steps within the Pareto front.
4
This adaptable transformation designates one target variable as the
objective for optimization while the remaining target variables serve
as constraints. Thus, if these constraints are not met, the performance
is determined by the aggregated deviation of the constrained variables
from their respective boundaries. Let 𝑀 represent the model, 𝑌𝑡 repre-
ent the model output corresponding to the objective variable, and 𝑌𝑏𝑛
enote the other outputs of the model. 𝐵𝑛 denotes the corresponding

boundary conditions for the model output 𝑌𝑏𝑛. The negation of both
is used for boundary conditions that represent a maximum acceptable
value. The scoring function 𝑆 is defined as follows:

𝑆 =

{

𝑌𝑡 if 𝑌𝑏𝑖 ≥ 𝐵𝑖 for all 𝑖 = 𝑛,
∑

𝑖∈𝐼 ∣𝑌𝑏𝑖<𝐵𝑖
(𝑌𝑏𝑖 − 𝐵𝑖) otherwise

(4)

The negation of the scoring function was used for the implementa-
tion, leading to:

Minimize 𝑓 (𝑥) = −𝑆(𝑀𝑛(𝑥), 𝐵𝑛) (5)

Nevergrad in version 1.0.2, [40] and skopt in version 0.9.0 were used to
perform the optimization tasks with different optimization algorithms.
Within Nevergrad, the following four optimizers were utilized: parti-
cle swarm optimization (PSO), differential evolution algorithm (DE),
covariance matrix adaptation evolution strategy (CMA) and random op-
timization. The PSO [41] maintains a population of candidate solutions
(particles) that move through the search space, adjusting their positions
based on their own best-known position and the global best-known
position found by any particle. The DE [42] iteratively improves a pop-
ulation of candidate solutions. It consists of four phases. The first is the
initialization of the population, which is a one-time process. Afterward,
mutation plus recombination of the current population and selection of
the best solutions are repeated. The CMA is an evolutionary algorithm
that dynamically adapts a multivariate normal distribution to model the
search space. It iteratively updates the mean and covariance matrix of
the distribution based on the performance of candidate solutions [43].
Furthermore, random optimization, where the candidate solutions are
randomly selected, is used for the comparative evaluation of optimiza-
tion algorithms. Additionally, for the optimization of the Sim-TRC, the
Bayesian optimization implemented with skopt, was employed due to
its efficacy in low iteration scenarios. This choice was made because
each simulation required 2–12 CPU hours.

2.4. Use cases

To demonstrate the application of inverse design in this study for
realistic materials design problems, virtual materials design experi-
ments were conducted using two simulation models as a substitute for
time-consuming real experiments, as outlined in Fig. 1(a).

The first use case, named ‘‘Sim-PAN’’ in the following, is based
on the investigations by Wang et al. [9] on multi-criteria optimiza-
tion of materials, in which electrospun polystyrene/polyacrylonitrile
(PS/PAN) fibers are investigated. These fibers can be used as a potential
absorbent for marine oil spills to minimize the ecological damage
caused by oil spills, especially in aquatic environments such as the
sea. For optimal performance, materials with high water contact angles
(WCA), excellent oil sorption capacity (S) and high tensile strength
(𝜎𝑡) are considered favorable. Seven design parameters, displayed in
Table 1, can be adjusted to achieve these goals. These design pa-
rameters include three factors related to the material composition,
which are PS:PAN ratio, mass fraction of solute (𝜔 solute), and SiO2
anoparticle mass fraction in the solute (𝜔 SiO2 in solute) and four
actors related to the manufacturing process, namely feed rate, pick-up
istance, applied voltage, and needle inner diameter. 𝜎𝑡The simulation
an lead to nonphysical results, so the negative S and 𝜎𝑡 values were
ut off at 0.

The second use case, referred to as ‘‘Sim-TRC’’, is based on the
imulation of a concrete cantilever beam. A steel plate is added on top

F. Conrad et al. Computational Materials Science 246 (2025) 113432
Table 1
Description of features and labels from the design space of the PS/PAN fibers simulation, labels are based on the dataset with size 200.

Features Labels

PS:PAN ratio 𝜔 solute 𝜔 SiO2 in solute feed rate pick-up distance Applied voltage Inner diameter WCA S 𝜎𝑡
Unit [–] [–] [–] [mL/h] [cm] [kV] [mm] [◦] [g/g] [MPa]
Min 3/7 2/3 0 0.35 0.5 4/7 0.311 85.5 0 0
Max 1 1 1 1 1 1 1 178.1 174.0 6.54
m
e
f
𝑥
t
t
o
d

3

3

(
i
d
3
m
w
i
i
T
W
U
w
4
v
T
s
t
b
v
s
t
c
o
𝐴
7

a
d
m

3

p
s
a
w
t
s
P
e

Table 2
Description of features and labels from the design space of the TRC cantilever beam
simulation.

Features Labels

𝑥1 𝑥2 𝑥3 𝑦1 𝑦2 𝑦3 𝑓res 𝐴beam

Unit [mm] [mm] [mm] [mm] [mm] [mm] [kN] [mm2]
Min 1 1 1 0 1 0 1.50 1
Max 9 9 9 3 3 3 111.71 61

of the cantilever beam for better load introduction. The optimization
goal is maximal load-bearing capacity (𝑓res) with minimal material
utilization (𝐴beam). Six variable design parameters related to the beam’s
cross-section are introduced for this purpose. The cross-section is di-
vided into three rectangular elements, each possessing its own width x□
and height y□, where the subscript denotes the cross-section element
number. A schematic depiction of the beam and its cross-section is
provided in Fig. 2(a). The ranges for the design parameters from the
set of natural numbers N0 are provided in Table 2. It should be noted
that the cross-section element denoted by subscript 2 necessarily exists.
The center of this block is always aligned with the center of the top
plate. Elements 1 and 3 are always connected to element 2. However,
those elements might not exist if their height is set to 0. The y□ values
are also set to 0 if x□ is 0 during ML modeling and optimization. This
results in the following number of possible variations

93 ⋅ 33
⏟⏟⏟

3 blocks present

+ 2 ∗ 92 ⋅ 32
⏟⏞⏞⏟⏞⏞⏟

2 blocks present

+ 9 ⋅ 3
⏟⏟⏟

1 block present

= 21168. (6)

According to the maximum possible dimensions of the cross-section,
the dimensions of the top steel plate are set to 9 mm in the x- and 𝑦-
direction and 0.5 mm in the 𝑧-direction. Overall, the beam, including
the plate, has a length of 𝑙beam = 18.5 mm. A fixation in all spatial
dimensions is applied at 𝑧 = 0 mm, while an eccentric displacement
load is applied at the steel plate at 𝑧 = 18.5 mm. The eccentricity, given
as distances in x- and 𝑦-direction from the center of gravity of the steel
plate in Fig. 2(a), are set to 𝑥𝑒 = 𝑦𝑒 = 2.5 mm.

The textile-reinforced concrete (TRC) constitutive model of the can-
tilever beam is obtained from Platen et al. [44], utilizing a microplane
material model to capture the induced anisotropy of the concrete. To
avoid localization phenomena when material degradation, i.e., soften-
ing behavior, is encountered, a nonlocal field with implicit gradient
enhancement is utilized. Table A.4 presents the material parameters
utilized in this study. Their purpose and implementation within the
material model are beyond the scope of this study but can be obtained
from Platen et al. [44]. The steel plate is assumed to behave linearly
elastic.

The load is applied as a prescribed displacement at the aforemen-
tioned load introduction point on the steel plate. In order to take into
account the different stress distributions in cross-sections of different
sizes and the resulting different displacements at the start of degrada-
tion, the maximum applied displacement is defined as a function of the
cross-sectional area. The function is obtained as a linear interpolation
between the displacements required for 90% material degradation for
the smallest and largest possible cross-sectional area, reading

d□ = 𝑙beam ⋅ 0.003 ⋅ (−0.01 ⋅ 𝐴beam + 1.01). (7)

Here, 𝐴beam denotes the cross-sectional area of the cantilever beam,
computed as the sum of the areas of the elements 1 through 3. The
 d

5
displacement is applied in all three coordinate directions with the
scaling factors 𝑑𝑥 = 𝑑𝑦 = 𝑑𝑧 ⋅ 10. It linearly increased from 0 to the

aximum displacement d□ throughout 100 simulation time steps. An
xemplary force–displacement relation is shown in Fig. 2(b), obtained
rom a simulation with the design parameters randomly chosen as
1 = 𝑥2 = 6.0 mm, 𝑥3 = 𝑦1 = 𝑦2 = 3.0 mm and 𝑦3 = 1.0 mm, according
o their denomination in Fig. 2(a). The displacements are measured at
he load introduction point, whereas the reaction forces are summed
ver the fixed boundary. To calculate 𝑓res, the reaction forces in all 3
irections are aggregated, and the maximum is taken.

. Results

.1. Dataset creation and optimization targets

The Sim-PAN dataset was created using Latin Hypercube Sampling
LHS) to extract 200 data points from the parameter space described
n Table 1. This sample size was determined following the recommen-
ations in the benchmarking study [21], which suggests that around
0 samples per feature are required to ensure robust performance for
achine learning models in materials design. Latin hypercube sampling
as chosen due to its proven robustness in various scenarios, as shown

n [45]. In addition, a reduced dataset with 50 data points using LHS
s created for comparative analysis with the work of Hanaoka [7].
he optimal performance of PAN fibers is characterized by a high
CA, maximum oil sorption capacity and high mechanical strength.
sing Eq. (4), the objective 𝜎𝑡 served as the optimization target 𝑂𝑡,
ith the oil sorption capacity set as the first constraint, evaluated in
0 steps from 80 g/g to 200 g/g, while the WCA maintained a constant
alue of 160◦, resulting in 40 individual SOO tasks. Similarly, for Sim-
RC, using LHS, 100 data points were selected from the parameter
pace described in Table 2. The reduction in dataset size compared to
he benchmark recommendation of 30 samples per feature is justified
y the nature of the design space, in which only natural numbers are
alid, limiting the possible combinations, as shown in Eq. (6). In the
imulation of the TRC cantilever beam, the optimization objective is
o maximize the load-bearing capacity while minimizing the material
onsumption to reduce the environmental impact. Using Eq. (4), the
bjective 𝑓res served as the optimization objective 𝑂𝑡, with the area
beam serving as the constraint, which was evaluated in 74 steps from
to 80 mm2, resulting in 74 individual SOO tasks.

For comparing the evaluation strategies across varying data avail-
bility scenarios, additional dataset sizes ranging from 50 to 1000
ata points were generated for the use cases using LHS and used for
odeling and optimization.

.2. ML model performance across evaluation strategies

The performance of all models for Sim-PAN with 200 and 50 data
oints and Sim-TRC with 100 data points is presented in Table 3,
howing that Autosklearn performs best for these prediction tasks
nd evaluation strategies. CatBoost and XGBoost performed similarly,
ith CatBoost performing slightly better in most settings. In contrast,

he FFNN consistently demonstrates the weakest performance. It only
urpasses XGBoost in predicting 𝜎𝑡 in Sim-PAN when evaluated with the
areto-front split strategy. Random splits consistently deliver the lowest
rrors across all models and prediction tasks, except Sim-PAN with 50
ata points. They are followed in most cases by the Euclidean-distance

F. Conrad et al.

s
s
t
f
s
u
i
a
n

c
t
b

R

A
s
o
o
u

b
d
F
P
p
t
w
e
s
o
a
s

m
d
c
P
a
t
c
c
s
T
e
t
f
s
b

Computational Materials Science 246 (2025) 113432
Fig. 2. Illustration of the textile reinforced concrete (TRC) cantilever beam simulation.
3

g
p
m
0
o
0

n

plit strategy. Conversely, the extrapolation and Pareto-front splitting
trategies lead to higher prediction errors, with extrapolation having
he highest RMSE in most cases. The standard deviation is only given
or the random splitting. This is due to the ability to generate different
plits based on the same dataset. In contrast, the other strategies
se fixed allocation techniques that produce consistent splits at each
teration. The Pareto-front split, for example, ensures that the test set
lways contains the Pareto-optimal points, so variations in splits are
ot possible with this strategy.

To compare the evaluation strategies, a relative score is used to
ompare the prediction error assessed by the evaluation strategies with
he prediction error in the optimized designs. This relative score is
ased on the RMSE and defined as

MSErel = RMSEevaluation strategy∕RMSEoptimized designs. (8)

relative score of 1 indicates that the error estimated by the evaluation
trategy matches the error observed in the optimized designs. A value
f 2 means the evaluation strategy overestimates the error by a factor
f two, while a value of 0.5 indicates that the evaluation strategy
nderestimates the error by half.

In the Table 3, highlighted in orange are the cases with RMSErel
elow 0.5 and in blue for RMSErel above 2. The RMSE for the optimized
esigns of Sim-PAN with 200 and 50 data points are displayed in
ig. 5(b) and for SIM-TRC with 100 data points in Fig. 6(b). For Sim-
AN with 50 data points, all splitting strategies fail to estimate the
rediction accuracy of the ML models in the optimization. Excluding
he Sim-PAN use case with 50 data points and comparing the frequency
ith which the splitting strategies overestimate or underestimate the
rror by more than a factor of 2, the following picture emerges. Random
plitting underestimates the prediction error four times and never
verestimates it. The Euclidean-distance split underestimates it twice
nd overestimates it three times. The extrapolation and Pareto-front
plit never underestimate it and overestimate it five times.

Fig. 3 compares the different evaluation strategies across all used
odels and datasets ranging from 50 to 1000 data points. For all
ataset sizes, the RMSErel shows a clear trend, with random splitting
onsistently yielding the lowest median RMSErel, followed by E-dist,
areto-front and extrapolation, which yields the highest median. There
re significant differences for the smallest data set size of 50 compared
o the other data set sizes, with random having the median RMSErel
losest to 1. For all other data set sizes, random splitting has a median
lose to 0.5, which means that the error estimation of the random
plitting is twice as low as the observed error in the optimized designs.
he E-Dist split provides a significantly better estimate of the expected
rror than random splitting across all dataset sizes starting at 100. It has
he best estimate of all strategies from a data set size of 200. Pareto-
ront splitting strategies generally overestimate the error. Extrapolation
trongly overestimates the error in all cases with median RMSErel

etween 2 and 3.5.

6
.3. Performance of the optimizers

In order to compare the effectiveness of various optimization al-
orithms in finding optima from the objective function, a normalized
erformance metric is employed, see Eq. (9). This metric, derived by
in–max normalization, scales the achieved optima to a range between
and 1. Here, 1 represents the best performance achieved by an

ptimizer for the specific underlying model at maximum budget, while
equates to a score of 0 in the objective function.

ormalized performance =
𝑦optimizer

max(𝑦all optimizers)
(9)

In Fig. 4, the normalized performance for all 40 optimization objectives
of the Sim-PAN use case for the Simulation model, AutoSklearn and
CatBoost is summarized. The simulation model shows the complexity
of the optimization objective, as no optimal solution is found after
300 000 random runs, with a median normalized performance of 0.953.
It is noteworthy that PSO shows weak performance and even under-
performs random search. Moreover, with an increasing budget, PSO
shows minimal performance improvement. CMA and DE are the most
effective methods for these optimization problems, with CMA showing
slightly better performance. In particular, CMA converges faster to
the optimum and achieves a mean normalized score of 0.998 after
50 000 iterations compared to 0.967 for DE. In addition, there are
fewer downward outliers for CMA for all budgets. Similar results can
be observed for AutoSklearn, but here, the PSO has a higher median
normalized performance than the random search. For CatBoost, both
CMA and DE exhibit slower convergence rates, with DE showing no
significant improvement after 100 000 iterations.

For the Sim-TRC use case, the investigation of the optimizer shows
similar trends to Sim-PAN, as shown in Fig. A.2. Hence, CMA and
DE are the best methods for optimizing these problems, with CMA
showing slightly better performance. In addition, PSO shows only a
slight increase in performance as the budget increases and is generally
less efficient than the other methods.

3.4. Optimization performance of the ML models

A normalized performance metric is also used to compare the
optimization performance of the ML models. This metric considers the
optima already present within the dataset, see Eq. (10). The normalized
performance is determined through min–max normalization, ranging
from 1 to 0. In this scale, a value of 1 represents the Pareto optimal
solution, while 0 denotes the best performance observed within the
dataset.

normed performance gain =
𝑦 − max(𝑦dataset)

𝑦Pareto optimum − max(𝑦dataset)
(10)

The Pareto-optimal solution is determined based entirely on the sim-

ulation results. Results from the simulation are always referred to as

F. Conrad et al.

t
M

P
o
a
t
f
t
s

Computational Materials Science 246 (2025) 113432
Table 3
Performance of the ML models for the individual prediction tasks for the random (rand), Euclidean-distance (E-dist), extrapolation
(extra) and Pareto-front (Pareto) splitting strategies. For the RMSErel the standard deviation over 5 outer splits is given. Highlighted
in orange if the RMSErel is below 0.5 and in blue if the RMSErel is above 2.

Use case Task [unit] Metric AutoSklearn CatBoost XGBoost FFNN AutoSklearn
Dataset size 200 50

Sim-PAN

WCA [◦]

RMSErand 0.284 ± 0.315 6.857 ± 0.980 8.03 ± 1.36 11.5 ± 1.86 6.42 ± 4.52
RMSEE−dist 0.310 12.923 12.7 18.5 16.0
RMSEextra 2.15 19.71 20.14 26.06 29.06
RMSEPareto 2.20 18.0 17.4 23.4 4.00

S [g/g]

RMSErand 1.22 ± 1.01 17.7 ± 1.23 20.5 ± 1.41 27.1 ± 2.98 11.88 ± 10.1
RMSEE−dist 4.027 24.5 28.5 33.9 26.0
RMSEextra 35.64 53.08 60.23 60.67 55.02
RMSEPareto 8.88 48.0 49.1 54.3 30.05

𝜎𝑡 [MPa]

RMSErand 0.06 ± 0.008 1.47 ± 0.310 1.86 ± 0.140 2.28 ± 0.614 1.34 ± 1.63
RMSEE−dist 0.285 2.35 3.15 3.36 1.71
RMSEextra 0.594 3.70 4.27 4.69 0.743
RMSEPareto 0.582 4.44 4.63 4.55 0.762

Dataset size 100

Sim-TRC 𝑓𝑟𝑒𝑠 [kN]

RMSErand 3.49 ± 0.89 5.40 ± 0.92 6.57 ± 1.65 11.73 ± 0.94
RMSEE−dist 6.62 9.08 10.08 16.22
RMSEextra 9.14 8.67 8.33 21.13
RMSEpareto 6.14 6.73 9.06 18.11
Fig. 3. RMSErel of the evaluation strategies for all prediction tasks in relation to the dataset size. All evaluation strategies are employed on the same dataset size marked by E-dist,
with the variants displayed next to each other. Outliers and the evaluation strategy extrapolation were excluded for better visualization. Marked with the dashed orange line is a
RMSErel of 0.5 and the blue dashed line with RMSErel of 2.
Fig. 4. Comparison of the optimizer on normalized performance for the Sim-PAN use case.
rue values in the following. Conversely, the values predicted by the
L models are always referred to as predicted values.

The results for the Sim-PAN use case are presented in Fig. 5. The
areto optimum shown in Fig. 5(a) was determined by a rigorous
ptimization process in which the simulation was optimized with CMA
t 300 000 iterations for each configured SOO (see Section 2.3). This
horough approach ensures that the Pareto optimum is adequately
ound. The Pareto front predicted by various machine learning models,
he true values of these designs, and the training dataset are also

hown. Additionally, Fig. 5(b) shows the normalized performance gain

7
across all SOO steps for both the predicted and true optimized material
designs, along with the RMSE between them.

Compared to the existing data points, the tree-based models and
AutoSklearn exhibit significantly enhanced designs, as depicted in
Fig. 5(a). AutoSklearn, in particular, significantly outperforms the other
models and generates new material designs that come close to the
Pareto-optimal solution with a budget of only 200 data points. The
predicted solutions achieved a normalized performance gain of 0.95,
while the true designs scored even higher with 0.98. The smallest

error between predicted and true values for new designs underlines

F. Conrad et al.

t
t
X
t
i
o
d
C

Computational Materials Science 246 (2025) 113432
Fig. 5. Results of Sim-PAN optimization, based on 40 SOO. Pareto optimal solutions were achieved with 300 000 iterations of CMA optimizer.
T
t
t
t

𝜎
t
t

he superiority of AutoSklearn. All designs achieved the true value for
he WCA of at least 160◦. Among the tree-based methods, CatBoost and
GBoost perform similarly. On the Pareto front of the true values for

he new designs, CatBoost performs better in some areas and XGBoost
n others. CatBoost’s true values reached a normalized performance
f 0.57, compared to 0.55 for XGBoost, with XGBoost showing more
ownward outliers. The predicted values show a similar behavior. All
atBoost designs achieved a true WCA of at least 158.0◦, while XGBoost

designs achieved at least 156.5◦. FFNN were omitted in Fig. 5(a) as
they cannot generate designs that fulfill the predefined conditions of
WCA ≥ 160◦. However, Fig. 5(b) illustrates that both predicted and
actual designs failed to achieve satisfactory performance even without
the WCA restriction. Overall, AutoSklearn performs by far the best in
this use case. CatBoost and XGBoost also perform well, with CatBoost
slightly outperforming XGBoost.

The results for the Sim-TRC use case are depicted in Fig. 6. The
Pareto optimum shown in Fig. 6(a) was determined by an extensive
optimization of the simulation using Bayesian optimization with 300
iterations for each configured SOO (see Section 2.3) to ensure the
Pareto optimum is reached. In addition, the figure shows the Pareto
front of the true values of the material designs found using the ML
models, as well as the training dataset itself. The ML model predictions
were not included for visualization purposes and can be found in
Fig. A.4. Additionally, Fig. 6(b) shows the normalized performance gain
across all SOO steps for both the predicted and true optimized material
designs, along with the RMSE between them.

Compared to the existing data points, the tree-based models and
AutoSklearn demonstrate significantly improved designs, as shown in
Fig. 6(a). Among these, AutoSklearn provides the best-optimized de-
signs with the predicted solutions achieving a median normalized
performance gain of 1.0, while the true values of the designs achieve
a median of 0.89, as shown in Fig. 6(b). AutoSklearn also exhibited
the smallest prediction error between predicted and true values for
new designs, with an RMSE of 5.27 for 𝑓res. For the tree-based meth-
ods, CatBoost and XGBoost performed similarly, achieving a median
normalized performance gain of around 1.1 for the predicted values.
However, CatBoost outperformed XGBoost in the normed performance
gain of the true designs, achieving a median value of 0.80 compared
to XGBoost’s 0.47. The RMSE for 𝑓res between predictions and true

values remained close, with 9.61 for CatBoost and 9.18 for XGBoost.

8
As in the Sim-PAN use case, FFNN exhibited the lowest performance,
with a median normed performance gain for the true values of −0.35.

his reveals that FFNN-optimized designs often performed worse than
hose already in the dataset. This can also be seen in Fig. 6(a), where
he designs optimized with FFNN are mainly below the best values of
he existing dataset. Nevertheless, for small areas up to 30 mm2 and

large areas over 70 mm2, FFNN found better designs than those in the
dataset and even reached the Pareto optimum for 6 cases. Despite this,
FFNN showed the largest error between predicted and true values for
the newly found designs. Overall, the performance ranking of the ML
models here remains identical to the Sim-PAN use case, although the
advantage of Autosklearn is considerably smaller.

The Sim-PAN and Sim-TRC use cases illustrate the potential of data-
driven multi-objective optimization for improving material designs.
AutoSklearn was characterized by the fact that it generated designs
close to the Pareto front with minimal data. CatBoost and XGBoost
performed well, with CatBoost slightly ahead. FFNN performed poorly
in comparison.

4. Discussion

4.1. General performance

The workflow demonstrates strong overall performance, yielding
good-performing designs even with limited resources. The solutions
notably surpass the best designs within the dataset and often approach
Pareto-optimal designs, achieved only after numerous optimization
iterations in the simulations.

In the Sim-PAN scenario, the optimization challenge becomes ap-
parent with the random optimizer. Even after 300 000 iterations, the
Pareto optimum is only found in some optimization tasks. Thus, even
an extensive set of 300 000 randomly selected experiments can hardly
find Pareto-optimal solutions. In contrast, the presented workflow with
AutoSklearn and a database of only 50 experiments surpasses 300 000
random experiments. Comparatively, in a study by Hanaoka et al. [7],
only 20 experiments were required to achieve a material design meet-
ing the predefined targets of WCA = 160.0◦, S = 100.0 g/g and
𝑡 = 8.0 MPa. In our approach, with just 50 experiments, our optimiza-
ion enables exploration in all directions. Thus, a design can be found
hat achieves WCA = 161◦, S = 102 g/g and 𝜎 = 13.4 MPa, as well as a
𝑡

F. Conrad et al.

d

Computational Materials Science 246 (2025) 113432
Fig. 6. Results of Sim-PTRC optimization, based on 74 SOO. Pareto optimal solutions were achieved with 300 iterations of Bayesian optimizer.
esign that achieves WCA = 160◦, S = 173 g/g and 𝜎𝑡 = 8.2 MPa. More-
over, designs can be found for any weighting of the target parameters,
compare Fig. 5(a). The presented workflow demonstrates the ability to
optimize in all directions without necessitating additional experiments.

In the Sim-TRC use case, the complexity of the problem becomes
evident as even 10 000 random iterations fail to reach the optimum
in all cases. Our workflow with AutoSklearn and a database of just
100 experiments successfully identifies better designs than those in the
original dataset in 72 out of 74 cases. Notably, in 15 of the 74 cases, it
finds the Pareto optimal solution, as shown in Fig. 6(a).

This study is limited to simulations, but the methodology holds sig-
nificant potential for application to experimental datasets. Simulations
were crucial for exploring and comparing various ML models, optimiza-
tion algorithms, and evaluation strategies within a controlled environ-
ment while ensuring manageable resource demands. They provide an
ideal platform for refining methods in a reproducible and accessible
manner. The code for reproducing these simulations is available to sup-
port future research and enable cross-study comparisons. Future work
could apply this methodology to experimental datasets, enabling more
comprehensive validation of the performance in experiment-driven
research.

4.2. Comparison of optimizers

In this study, evolutionary algorithms are the most powerful for
optimizing ML models, with CMA showing superior performance com-
pared to DE. In Sim-PAN, CMA consistently identifies higher optima,
while DE occasionally has difficulties finding designs that meet all
constraints. For Sim-TRC, no optimizer can find the optimum even
with more than 1000 iterations. Therefore, Bayesian optimization is
used for the direct optimization of the Sim-TRC due to the lengthy
computing time of the Sim-TRC between 2 and 12 CPU-hours. In
contrast to the other methods, Bayesian optimization invests a lot of
computing resources to determine the next candidate to arrive at an
optimal solution with fewer iterations [46]. Although this trade-off
can be less favorable for fast ML models, it becomes advantageous
9
for expensive simulations like Sim-TRC. There is a break-even point
where the higher cost per iteration of Bayesian optimization becomes
more cost-effective compared to faster optimizers, such as CMA, which
require more iterations. This point is unknown beforehand but tends
to favor rapid optimizers and more iterations for fast ML models.
Fig. A.3 illustrates this by comparing the mean normalized performance
of AutoSklearn optimization across all Sim-PAN tasks over computation
time, using CMA with 300 000 iterations and Bayesian optimization
with 5000 iterations. Despite CMA using 60 times more iterations than
Bayesian optimization, both methods have similar total computation
times. CMA shows higher overall performance, highlighting its superior
effectiveness with fast-computing ML models.

Although swarm-based algorithms have shown exemplary perfor-
mance in the literature, they do not perform well in this study. Often,
they do not find a solution that fulfills the constraints but only comes
very close. The swarm-based algorithms get trapped in a local minimum
using the optimization function presented here. As a result, they often
perform worse than random search in this study.

Notably, all optimization strategies converge slower with tree-based
methods than with the other models. The prediction behavior of the
tree-based methods possibly hinders optimization. Data points located
close to each other can be sorted into the same leaves in all trees,
resulting in the same prediction result. As a result, there is no gradient
and, therefore, no direction for the optimization algorithm to search
for better solutions. This difference is particularly pronounced in the
Sim-PAN use case but is also present in Sim-TRC. Since only natural
numbers are allowed in Sim-TRC, the minimum distance between 2
possible points is greater, thus decreasing the likelihood that the same
value is predicted for two neighboring points with tree-based models.

4.3. Comparison of ML models

AutoSklearn found the models with the smallest prediction error,
demonstrating the superiority of AutoML for small tabular data in ma-
terials design, which is also found in a previous study [21]. Moreover,

AutoSklearn can provide the best material designs for both use cases.

F. Conrad et al. Computational Materials Science 246 (2025) 113432
In the Sim-PAN use case, AutoSklearn selected an ensemble of support
vector machines and Gaussian process model as the optimal choice for
predicting water contact angle and oil sorption capacity and a support
vector machine for predicting tensile strength. Meanwhile, in the Sim-
TRC use case, AutoSklearn identified an ensemble of Gaussian process
model and Automatic Relevance Determination (ARD) Regression as
the best-performing model.

The tree-based models used, XGBoost and CatBoost, can solve op-
timization tasks in the dataset’s range, which is underlined by their
good performance in the Sim-TRC use case. Optimization far beyond
the known space, as with Sim-PAN, is more difficult for these models,
where they perform significantly worse than AutoSklearn. Although
tree-based models are generally effective, they reach their limits regard-
ing extrapolation, as emphasized and vividly illustrated by Numata and
Tanaka [47]. Regression trees are limited to the range of the training
data and cannot provide results beyond the highest or lowest data
points. Extreme Gradient Boosting in CatBoost and XGBoost allows
predictions beyond the training label range by using gradients rather
than the actual labels during training. However, this extrapolation is
only feasible in high-dimensional spaces and remains limited overall.
As soon as the optimal combination of the last leaves in the trees is
reached, further increases or decreases in the prediction are no longer
possible. This extrapolation limitation directly affects optimization re-
sults. For Sim-PAN, XGBoost cannot predict 𝜎𝑡 higher than 6 MPa and
S exceeding 166 g/g, as seen in Fig. 5(a) the model predictions are cut
off at these values. CatBoost encounters similar issues, with maximum
predictions of 𝜎𝑡 at 7.8 MPa and S at 190 g/g. The true values exceed
the model’s predicted ranges, slightly improving their usability but
leading to significant errors between predictions and actual results. One
potential strategy to overcome these limitations is adapting tree-based
models for better extrapolation capabilities. Quinlan [48] introduced
the M5 model tree, which uses linear functions in the leaves of the
tree to enable extrapolation. This approach is extended by Numata and
Tanaka [47] for tree-based ensembles by a probabilistic determination
of the threshold values for the leaf splitting during tree creation. In
this way, randomness is introduced into the threshold selection and
smooth prediction curves are possible, even in regions with sparse
data. Although gradient boosting with classification and regression
trees (CART) has become standard in many GBM libraries, improving
these techniques to facilitate extrapolation for optimization tasks seems
promising.

Autosklearn does not use tree-based methods in the use cases shown
here, so it does not have the extrapolation problem of XGBoost and
CatBoost. However, since tree-based methods are often effective across
various settings, AutoSklearn frequently utilizes them [21]. For better
extrapolation in optimization tasks, AutoSklearn’s model space can be
restricted. For this purpose, it is recommended that tree-based models
be excluded from the model space during AutoSklearn training, or even
more restrictively, model selection can be limited to SVM, Gaussian
Process, and ARD Regression. They have shown excellent optimization
performance in this study and can generalize beyond the training data
more effectively. SVM also showed the second-best performance in the
benchmark of Shmuel et al. [49], but behind an unrestricted AutoML
framework. So, excluding tree-based methods may enhance extrapo-
lation capabilities, but it could compromise the model’s performance
within the data’s original range, where tree-based models tend to excel.
Therefore, choosing to exclude them should be carefully considered
based on the characteristics of the practical use case.

The poor performance of FFNN could be due to the relatively small
and tabular datasets in this study, as FFNN generally perform poorly on
small datasets and especially struggle with tabular datasets, as observed

by Grinsztajn et al. [37].

10
4.4. Comparison of evaluation strategies

In this study, the order in which the errors of the ML models were
observed during training consistently corresponds to the performance
of the true values of the proposed designs. The necessity of the nested
cross-validation is underlined by the partly high standard deviations in
the random split. Thus, the random split is essential for each analysis,
as the other splitting strategies do not allow such validation. The other
splitting strategies must be applied to a randomly reduced dataset to
generate other train test splits. Otherwise, every split would be equal.
However, the difference between the size of the training dataset and
the application would be more significant, distorting the statements
on model accuracy after training for the application. However, the
difference between the size of the training dataset during evaluation
and retraining with the full data set for the optimization would be
more significant, distorting the statements on model accuracy in the
evaluation.

All splitting methods face limitations when applied to the smallest
datasets with only 50 data points. With such a data set, an 80/20 split
of training and test leaves only 10 points for the test, which severely
limits an accurate performance assessment, especially without nested
cross-validation. This difficulty is also reflected in the high standard
deviation for different random splits, which shows the high variability
with small test datasets. Therefore, a random split is recommended for
such small data sets to allow nested cross-validation.

For larger datasets, starting from 100 data points, the random
splitting method has difficulties accurately estimating the expected
errors for optimized designs. This is because the test set does not reflect
extrapolation into unknown areas. In 80% of this study’s prediction
tasks with datasets of at least 100 data points, random splitting un-
derestimates the model error, assuming a model accuracy that cannot
be achieved in the optimization. This discrepancy between expected
and actual model accuracy is occasionally extensive, as shown by the
prediction of 𝜎𝑡 in Sim-PAN using AutoSklearn, where an RMSE of
0.06 ± 0.008 contrasts sharply with the actual error of 0.489, which
is eight times higher.

The alternative splitting strategies underestimate errors less fre-
quently but occasionally overestimate them. One reason for overes-
timation is that, when retraining on the entire dataset, models for
the optimization process had 20% more training data. In addition,
not all objectives may be exhausted to their limits in multi-objective
optimization. For example, material designs with a minimum WCA of
160◦ were searched for in the Sim-PAN use case, while the dataset
provides values between 85.5◦ and 178.1◦. Thus, the extrapolation
splitting on the WCA label examines areas irrelevant to the optimization
in this case.

No splitting strategy can deliver the best results for all cases, so
a combination is recommended. The random split should be used to
estimate the model’s stability, and the Euclidean-distance or Pareto-
front split should be used to estimate the prediction accuracy for
the optimized designs. The Euclidean-distance split tends to be more
accurate but risks underestimating the error. In contrast, the Pareto
front split is more restrained, and the upper limit of the error can be
estimated. Notably, the Euclidean-distance split performs particularly
well for datasets of 200 or more data points, where the Pareto-front
split significantly overestimates the expected error.

5. Conclusion and outlook

In summary, two simulation use cases were used to demonstrate the
performance of ML model-based materials design optimization. For this
purpose, four different ML models and four optimization algorithms
were compared, and four evaluation strategies were used to assess
the model’s performance. The observations show the following three

points:

F. Conrad et al.

O
i

e
t
s
t
d
s
e
t
s
r
p
a
i
c
c
t
p

C

M :
W
W
I
t
a
F

Computational Materials Science 246 (2025) 113432
• AutoSklearn is the best-performing model, consistently exhibiting
the lowest prediction error and the best optimization capabilities.

• The covariance matrix adaptation evolution strategy proved to be
a highly effective approach in tackling the inverse material design
problem using ML models.

• Introducing novel evaluation strategies in training ML models
provides a more robust evaluation of the expected model accuracy
in optimization. Combining random splitting for stability estima-
tion and splits based on Euclidean distance between data points,
respectively, the Pareto-front in the dataset provides a balanced
approach that avoids overestimating the expected performance.

verall, these results underline how robust the presented workflow is
n identifying new optimized material designs.

Based on these results, three main directions for future research
merge. First, adapting the training process of the ML models by using
he proposed data splits in the inner splits of the nested cross-validation
eems promising. Doing so could increase the prediction accuracy of
he optimized designs and thus bring the performance of the found
esigns even closer to the Pareto optimum. Furthermore, the workflow
hould be transferred from the simulated test environments to actual
xperimental datasets for validation and usability in real-world applica-
ions. Simulations allowed for a comprehensive comparison of different
trategies. Applying the workflow to real-world data will offer a more
obust evaluation of its practicality for materials design and opening
athways for highly optimized and resource-saving material designs. In
ddition, as sustainability considerations become increasingly crucial
n materials design, future research efforts should aim to extend the
urrent workflow to encompass additional sustainability metrics. These
ould include those defined by life cycle assessment analyses, aiming
o achieve optimal solutions from the perspectives of required material
erformance and environmental friendliness.

RediT authorship contribution statement

Felix Conrad: Writing – original draft, Visualization, Software,
ethodology, Investigation, Conceptualization. Julien Philipp Stöcker
riting – original draft, Software, Methodology. Cesare Signorini:
riting – review & editing, Project administration, Conceptualization.
sabela de Paula Salgado: Writing – review & editing, Conceptualiza-
ion. Hajo Wiemer: Writing – review & editing, Supervision, Funding
cquisition. Michael Kaliske: Writing – review & editing, Supervision,
unding acquisition. Steffen Ihlenfeldt: Writing – review & editing,

Supervision, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The data and code used in this study are available on GitHub:
https://github.com/fc-tud/material-optimization.

Acknowledgments

The financial support of the German Research Foundation (Deutsche
Forschungsgemeinschaft, DFG) within the Research Training Group
(Graduiertenkolleg, GRK) 2250 ‘‘Mineral- bonded composites for en-
hanced structural impact safety’’ (grant nr. 287321140) and the tran-
sregional collaborative research center (SFB/TRR) 339, Sub-Project B04
(grant nr. 453596084), as well as the financial support of the Federal
Ministry of Education and Research (BMBF) within project KIOptiPack

grant nr. 033KI129 is gratefully acknowledged.

11
Appendix A

A.1. Hyperparameter space

Table A.1
Hyperparameter space for the tunning of CatBoost models.

Hyperparameter Min Max Type

Number estimators 250 1500 Integer
Maximum depth 2 10 Integer
Learning rate 0.001 1 Float, log
Bagging temperature 0 100 Float
L2 regularization 0 100 Float

Table A.2
Hyperparameter space for the tunning of XGBoost models.

Hyperparameter Min Max Type

Number estimators 250 1500 Integer
Maximum depth 2 10 Integer
Learning rate 0.001 1 Float, log
L1 regularization 0 100 Float
L2 regularization 0 100 Float

Table A.3
Hyperparameter space for the tunning of the FFNN.

Hyperparameter Min Max Type

Number hidden layers 1 3 Integer
Neurons layer 1 5 35 Integer
Neurons layer 2 5 35 Integer
Neurons layer 3 5 35 Integer
Optimizer [‘‘Adam’’, ‘‘RMSprop’’, ‘‘SGD’’] String
Learning rate 1*e−5 1*e−1 Log
Step size 10 1000 Integer
Gamma 0.1 1 Float
Weigth decay 1*e−7 1*e−2 Log
Dropout 0 0.5 Float
Epochs 50 1000 Integer

A.2. Material parameters in textile-reinforced concrete simulation

Table A.4
Cantilever beam material parameters.

Parameter TRC Steel

𝜅 [MPa] 17 220.0 210 000.0
𝜇 [MPa] 12 917.0 140 000.0
𝑘𝑟 [–] 8.182 –
𝑒𝑚𝑖𝑐 [MPa] 0.00 –
𝑔𝑚𝑖𝑐 [MPa] 0.00 –
A [–] [0,0,1] –
B [–] [0,1,0] –
𝛼 [–] 0.98 –
𝛽 [–] 1000.0 –
𝛾0 [–] 2.8E−4 –
𝑐 [–] 1.0 –

A.3. Splitting strategies

(see Fig. A.1.)

A.4. Optimizer comparison

(see Figs. A.2 and A.3.)

A.5. Model comparison

(see Fig. A.4.)

https://github.com/fc-tud/material-optimization

F. Conrad et al.

Fig. A.1. Comparison of the 4 splitting strategies for the SIM-TRC data set in two-dimensional PCA space and for the target parameters maximum load-bearing capacity and area.

Fig. A.2. Comparison of optimizer for AutoSklearn and CatBoost in the use case Sim-TRC.

Computational Materials Science 246 (2025) 113432

12

F. Conrad et al.

R

Computational Materials Science 246 (2025) 113432
Fig. A.3. Comparison of CMA with 300 000 iterations and Bayesian optimization with 1000 iterations for optimizing AutoSklearn across all tasks within the SIM-PAN use case
over time.
Fig. A.4. Paretofront of the model predictions of the optimization task, achieved through 74 SOO.
eferences

[1] D. Morgan, R. Jacobs, Opportunities and challenges for machine learning in
materials science, Annu. Rev. Mater. Res. 50 (1) (2020) 71–103, http://dx.doi.
org/10.1146/annurev-matsci-070218-010015.

[2] K. Guo, Z. Yang, C.-H. Yu, M. J. Buehler, Artificial intelligence and ma-
chine learning in design of mechanical materials, Mater. Horiz. 8 (4) (2021)
1153–1172, http://dx.doi.org/10.1039/D0MH01451F.

[3] M. Mohtasham Moein, A. Saradar, K. Rahmati, S.H. Ghasemzadeh Mousavinejad,
J. Bristow, V. Aramali, M. Karakouzian, Predictive models for concrete properties
using machine learning and deep learning approaches: A review, J. Build. Eng.
63 (2023) 105444, http://dx.doi.org/10.1016/j.jobe.2022.105444.

[4] F. Kazemi, T. Shafighfard, D.-Y. Yoo, Data-driven modeling of mechanical
properties of fiber-reinforced concrete: a critical review, Arch. Comput. Methods
Eng. (2024) http://dx.doi.org/10.1007/s11831-023-10043-w.

[5] T.B. Martin, D.J. Audus, Emerging trends in machine learning: a polymer
perspective, ACS Polym. Au 3 (3) (2023) 239–258, http://dx.doi.org/10.1021/
acspolymersau.2c00053.
13
[6] J. Wang, Y. Wang, Y. Chen, Inverse design of materials by machine learning,
Materials 15 (5) (2022) 1811, http://dx.doi.org/10.3390/ma15051811.

[7] K. Hanaoka, Bayesian optimization for goal-oriented multi-objective inverse
material design, iScience 24 (7) (2021) 102781, http://dx.doi.org/10.1016/j.isci.
2021.102781.

[8] C. Sun, K. Wang, Q. Liu, P. Wang, F. Pan, Machine-learning-based comprehensive
properties prediction and mixture design optimization of ultra-high-performance
concrete, Sustainability 15 (21) (2023) 15338, http://dx.doi.org/10.3390/
su152115338.

[9] B. Wang, J. Cai, C. Liu, J. Yang, X. Ding, Harnessing a novel machine-
learning-assisted evolutionary algorithm to co-optimize three characteristics
of an electrospun oil sorbent, ACS Appl. Mater. Interfaces 12 (38) (2020)
42842–42849, http://dx.doi.org/10.1021/acsami.0c11667, Publisher: American
Chemical Society.

[10] Y. Diao, L. Yan, K. Gao, A strategy assisted machine learning to process multi-
objective optimization for improving mechanical properties of carbon steels, J.
Mater. Sci. Technol. 109 (2022) 86–93, http://dx.doi.org/10.1016/j.jmst.2021.
09.004.

http://dx.doi.org/10.1146/annurev-matsci-070218-010015
http://dx.doi.org/10.1146/annurev-matsci-070218-010015
http://dx.doi.org/10.1146/annurev-matsci-070218-010015
http://dx.doi.org/10.1039/D0MH01451F
http://dx.doi.org/10.1016/j.jobe.2022.105444
http://dx.doi.org/10.1007/s11831-023-10043-w
http://dx.doi.org/10.1021/acspolymersau.2c00053
http://dx.doi.org/10.1021/acspolymersau.2c00053
http://dx.doi.org/10.1021/acspolymersau.2c00053
http://dx.doi.org/10.3390/ma15051811
http://dx.doi.org/10.1016/j.isci.2021.102781
http://dx.doi.org/10.1016/j.isci.2021.102781
http://dx.doi.org/10.1016/j.isci.2021.102781
http://dx.doi.org/10.3390/su152115338
http://dx.doi.org/10.3390/su152115338
http://dx.doi.org/10.3390/su152115338
http://dx.doi.org/10.1021/acsami.0c11667
http://dx.doi.org/10.1016/j.jmst.2021.09.004
http://dx.doi.org/10.1016/j.jmst.2021.09.004
http://dx.doi.org/10.1016/j.jmst.2021.09.004

F. Conrad et al. Computational Materials Science 246 (2025) 113432
[11] J. Zhang, Y. Huang, Y. Wang, G. Ma, Multi-objective optimization of concrete
mixture proportions using machine learning and metaheuristic algorithms, Con-
str. Build. Mater. 253 (2020) 119208, http://dx.doi.org/10.1016/j.conbuildmat.
2020.119208.

[12] J. Zhang, Y. Huang, F. Aslani, G. Ma, B. Nener, A hybrid intelligent system for
designing optimal proportions of recycled aggregate concrete, J. Clean. Prod.
273 (2020) 122922, http://dx.doi.org/10.1016/j.jclepro.2020.122922.

[13] J. Zhang, Y. Huang, G. Ma, B. Nener, Mixture optimization for environmental,
economical and mechanical objectives in silica fume concrete: A novel frame-
work based on machine learning and a new meta-heuristic algorithm, Resour.
Conserv. Recy. 167 (2021) 105395, http://dx.doi.org/10.1016/j.resconrec.2021.
105395.

[14] Y. Huang, J. Zhang, F. Tze Ann, G. Ma, Intelligent mixture design of steel fibre
reinforced concrete using a support vector regression and firefly algorithm based
multi-objective optimization model, Constr. Build. Mater. 260 (2020) 120457,
http://dx.doi.org/10.1016/j.conbuildmat.2020.120457.

[15] X. Feng, Z. Wang, L. Jiang, F. Zhao, Z. Zhang, Simultaneous enhancement in
mechanical and corrosion properties of Al-Mg-Si alloys using machine learning,
J. Mater. Sci. Technol. 167 (2023) 1–13, http://dx.doi.org/10.1016/j.jmst.2023.
04.072.

[16] Y. Motoyama, R. Tamura, K. Yoshimi, K. Terayama, T. Ueno, K. Tsuda, Bayesian
optimization package: PHYSBO, Comput. Phys. Comm. 278 (2022) 108405,
http://dx.doi.org/10.1016/j.cpc.2022.108405.

[17] E.M. Golafshani, A. Behnood, T. Kim, T. Ngo, A. Kashani, A framework for
low-carbon mix design of recycled aggregate concrete with supplementary
cementitious materials using machine learning and optimization algorithms,
Structures 61 (2024) 106143, http://dx.doi.org/10.1016/j.istruc.2024.106143.

[18] E. Asadi Shamsabadi, M. Salehpour, P. Zandifaez, D. Dias-da-Costa, Data-driven
multicollinearity-aware multi-objective optimisation of green concrete mixes,
J. Clean. Prod. 390 (2023) 136103, http://dx.doi.org/10.1016/j.jclepro.2023.
136103.

[19] K. Stergiou, C. Ntakolia, P. Varytis, E. Koumoulos, P. Karlsson, S. Moustakidis,
Enhancing property prediction and process optimization in building materials
through machine learning: A review, Comput. Mater. Sci. 220 (2023) 112031,
http://dx.doi.org/10.1016/j.commatsci.2023.112031.

[20] Y. Zhang, C. Ling, A strategy to apply machine learning to small datasets in
materials science, NPJ Comput. Mater. 4 (1) (2018) 1–8, http://dx.doi.org/10.
1038/s41524-018-0081-z, Number: 1 Publisher: Nature Publishing Group.

[21] F. Conrad, M. Mälzer, M. Schwarzenberger, H. Wiemer, S. Ihlenfeldt, Benchmark-
ing AutoML for regression tasks on small tabular data in materials design, Sci.
Rep. 12 (1) (2022) 19350, http://dx.doi.org/10.1038/s41598-022-23327-1.

[22] S. Mohamed, B. Lakshminarayanan, Learning in implicit generative models, 2017,
http://dx.doi.org/10.48550/arXiv.1610.03483.

[23] M. Mirza, S. Osindero, Conditional generative adversarial nets, 2014, http:
//dx.doi.org/10.48550/arXiv.1411.1784.

[24] D. Bouchacourt, P.K. Mudigonda, S. Nowozin, DISCO nets : Dissimilarity coef-
ficients networks, in: Advances in Neural Information Processing Systems, Vol.
29, Curran Associates, Inc., 2016.

[25] T. Sanchez, B. Caramiaux, P. Thiel, W.E. Mackay, Deep learning uncertainty
in machine teaching, in: 27th International Conference on Intelligent User
Interfaces, IUI ’22, Association for Computing Machinery, 2022, pp. 173–190,
http://dx.doi.org/10.1145/3490099.3511117.

[26] C.E. Rasmussen, Gaussian processes in machine learning, in: O. Bousquet, U. von
Luxburg, G. Rätsch (Eds.), Advanced Lectures on Machine Learning: ML Summer
Schools 2003, Canberra, Australia, February 2 - 14, 2003, Tübingen, Germany,
August 4 - 16, 2003, Revised Lectures, in: Lecture Notes in Computer Science,
Springer, 2004, pp. 63–71, http://dx.doi.org/10.1007/978-3-540-28650-9_4.

[27] S.P. Vasseur, J.L. Aznarte, Comparing quantile regression methods for prob-
abilistic forecasting of NO2 pollution levels, Sci. Rep. 11 (1) (2021) 11592,
http://dx.doi.org/10.1038/s41598-021-90063-3.

[28] D.H. Wolpert, The Lack of a priori distinctions between learning algorithms,
Neural Comput. 8 (7) (1996) 1341–1390, http://dx.doi.org/10.1162/neco.1996.
8.7.1341.

[29] Z. del Rosario, M. Rupp, Y. Kim, E. Antono, J. Ling, Assessing the frontier:
Active learning, model accuracy, and multi-objective candidate discovery and
optimization, J. Chem. Phys. 153 (2) (2020) 024112, http://dx.doi.org/10.1063/
5.0006124.
14
[30] P. Zador, Asymptotic quantization error of continuous signals and the quan-
tization dimension, IEEE Trans. Inform. Theory 28 (2) (1982) 139–149, http:
//dx.doi.org/10.1109/TIT.1982.1056490.

[31] V.R. Joseph, A. Vakayil, SPlit: an optimal method for data splitting, Technomet-
rics (2021) 1–11, http://dx.doi.org/10.1080/00401706.2021.1921037.

[32] F. Conrad, E. Boos, M. Mälzer, H. Wiemer, S. Ihlenfeldt, Impact of data sampling
on performance and robustness of machine learning models in production
engineering, in: M. Liewald, A. Verl, T. Bauernhansl, H.-C. Möhring (Eds.),
Production at the Leading Edge of Technology, in: Lecture Notes in Production
Engineering, Springer International Publishing, 2023, pp. 463–472, http://dx.doi.
org/10.1007/978-3-031-18318-8_47.

[33] H. Wiemer, D. Schneider, V. Lang, F. Conrad, M. Mälzer, E. Boos, K. Feldhoff,
L. Drowatzky, S. Ihlenfeldt, Need for UAI–anatomy of the paradigm of usable
artificial intelligence for domain-specific AI applicability, Multimodal Technol.
Interact. 7 (3) (2023) 27, http://dx.doi.org/10.3390/mti7030027.

[34] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, F. Hutter,
Efficient and robust automated machine learning, in: C. Cortes, N.D. Lawrence,
D.D. Lee, M. Sugiyama, R. Garnett (Eds.), Advances in Neural Information
Processing Systems 28, Curran Associates, Inc., 2015, pp. 2962–2970, http:
//dx.doi.org/10.5555/2969442.2969547.

[35] L. Prokhorenkova, G. Gusev, A. Vorobev, A.V. Dorogush, A. Gulin, CatBoost:
Unbiased boosting with categorical features, 2019, http://dx.doi.org/10.48550/
arXiv.1706.09516.

[36] T. Chen, C. Guestrin, XGBoost: a scalable tree boosting system, in: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2016, pp. 785–794, http://dx.doi.org/10.1145/2939672.2939785.

[37] L. Grinsztajn, E. Oyallon, G. Varoquaux, Why do tree-based models still
outperform deep learning on typical tabular data? Adv. Neural Inf.
Process. Syst. 35 (2022) 507–520, URL https://proceedings.neurips.cc/
paper_files/paper/2022/hash/0378c7692da36807bdec87ab043cdadc-Abstract-
Datasets_and_Benchmarks.html.

[38] C. Bentéjac, A. Csörgő, G. Martínez-Muñoz, A comparative analysis of gradient
boosting algorithms, Artif. Intell. Rev. 54 (3) (2021) 1937–1967, http://dx.doi.
org/10.1007/s10462-020-09896-5.

[39] F. Hutter, L. Kotthoff, J. Vanschoren (Eds.), Automated Machine Learning:
Methods, Systems, Challenges, in: The Springer Series on Challenges in Machine
Learning, Springer International Publishing, Cham, 2019, http://dx.doi.org/10.
1007/978-3-030-05318-5.

[40] J. Rapin, O. Teytaud, Nevergrad - a gradient-free optimization platform, 2018,
https://GitHub.com/FacebookResearch/Nevergrad.

[41] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN’95
- International Conference on Neural Networks, Vol. 4, IEEE, Perth, WA,
Australia, 1995, pp. 1942–1948, http://dx.doi.org/10.1109/ICNN.1995.488968.

[42] R. Storn, K. Price, Differential evolution – a simple and efficient heuristic for
global optimization over continuous spaces, J. Global Optim. 11 (4) (1997)
341–359, http://dx.doi.org/10.1023/A:1008202821328.

[43] N. Hansen, S.D. Müller, P. Koumoutsakos, Reducing the time complexity
of the derandomized evolution strategy with covariance matrix adaptation
(CMA-ES), Evol. Comput. 11 (1) (2003) 1–18, http://dx.doi.org/10.1162/
106365603321828970.

[44] J. Platen, I. Zreid, M. Kaliske, A nonlocal microplane approach to model textile
reinforced concrete at finite deformations, Int. J. Solids Struct. 267 (2023)
112151, http://dx.doi.org/10.1016/j.ijsolstr.2023.112151.

[45] X. Xu, F. Conrad, X. Xing, O. Loeprech, M. Moeckel, Comparative analy-
sis of small data acquisition strategies in machine learning regression tasks
addressing potential uncertainties, Int. J. Adv. Softw. 16 (3 & 4) (2023) 243–
253, URL https://www.thinkmind.org/library/Soft/Soft_v16_n34_2023/soft_v16_
n34_2023_11.html.

[46] G. Lan, J.M. Tomczak, D.M. Roijers, A.E. Eiben, Time efficiency in optimiza-
tion with a Bayesian-evolutionary algorithm, Swarm Evol. Comput. 69 (2022)
100970, http://dx.doi.org/10.1016/j.swevo.2021.100970.

[47] K. Numata, K. Tanaka, Stochastic threshold model trees: a tree-based ensemble
method for dealing with extrapolation, 2020, http://dx.doi.org/10.48550/arXiv.
2009.09171.

[48] J.R. Quinlan, et al., Learning with continuous classes, in: 5th Australian
Joint Conference on Artificial Intelligence, Vol. 92, World Scientific, 1992, pp.
343–348.

[49] A. Shmuel, O. Glickman, T. Lazebnik, A comprehensive benchmark of machine
and deep learning across diverse tabular datasets, 2024, http://dx.doi.org/10.
48550/arXiv.2408.14817.

http://dx.doi.org/10.1016/j.conbuildmat.2020.119208
http://dx.doi.org/10.1016/j.conbuildmat.2020.119208
http://dx.doi.org/10.1016/j.conbuildmat.2020.119208
http://dx.doi.org/10.1016/j.jclepro.2020.122922
http://dx.doi.org/10.1016/j.resconrec.2021.105395
http://dx.doi.org/10.1016/j.resconrec.2021.105395
http://dx.doi.org/10.1016/j.resconrec.2021.105395
http://dx.doi.org/10.1016/j.conbuildmat.2020.120457
http://dx.doi.org/10.1016/j.jmst.2023.04.072
http://dx.doi.org/10.1016/j.jmst.2023.04.072
http://dx.doi.org/10.1016/j.jmst.2023.04.072
http://dx.doi.org/10.1016/j.cpc.2022.108405
http://dx.doi.org/10.1016/j.istruc.2024.106143
http://dx.doi.org/10.1016/j.jclepro.2023.136103
http://dx.doi.org/10.1016/j.jclepro.2023.136103
http://dx.doi.org/10.1016/j.jclepro.2023.136103
http://dx.doi.org/10.1016/j.commatsci.2023.112031
http://dx.doi.org/10.1038/s41524-018-0081-z
http://dx.doi.org/10.1038/s41524-018-0081-z
http://dx.doi.org/10.1038/s41524-018-0081-z
http://dx.doi.org/10.1038/s41598-022-23327-1
http://dx.doi.org/10.48550/arXiv.1610.03483
http://dx.doi.org/10.48550/arXiv.1411.1784
http://dx.doi.org/10.48550/arXiv.1411.1784
http://dx.doi.org/10.48550/arXiv.1411.1784
http://refhub.elsevier.com/S0927-0256(24)00653-0/sb24
http://refhub.elsevier.com/S0927-0256(24)00653-0/sb24
http://refhub.elsevier.com/S0927-0256(24)00653-0/sb24
http://refhub.elsevier.com/S0927-0256(24)00653-0/sb24
http://refhub.elsevier.com/S0927-0256(24)00653-0/sb24
http://dx.doi.org/10.1145/3490099.3511117
http://dx.doi.org/10.1007/978-3-540-28650-9_4
http://dx.doi.org/10.1038/s41598-021-90063-3
http://dx.doi.org/10.1162/neco.1996.8.7.1341
http://dx.doi.org/10.1162/neco.1996.8.7.1341
http://dx.doi.org/10.1162/neco.1996.8.7.1341
http://dx.doi.org/10.1063/5.0006124
http://dx.doi.org/10.1063/5.0006124
http://dx.doi.org/10.1063/5.0006124
http://dx.doi.org/10.1109/TIT.1982.1056490
http://dx.doi.org/10.1109/TIT.1982.1056490
http://dx.doi.org/10.1109/TIT.1982.1056490
http://dx.doi.org/10.1080/00401706.2021.1921037
http://dx.doi.org/10.1007/978-3-031-18318-8_47
http://dx.doi.org/10.1007/978-3-031-18318-8_47
http://dx.doi.org/10.1007/978-3-031-18318-8_47
http://dx.doi.org/10.3390/mti7030027
http://dx.doi.org/10.5555/2969442.2969547
http://dx.doi.org/10.5555/2969442.2969547
http://dx.doi.org/10.5555/2969442.2969547
http://dx.doi.org/10.48550/arXiv.1706.09516
http://dx.doi.org/10.48550/arXiv.1706.09516
http://dx.doi.org/10.48550/arXiv.1706.09516
http://dx.doi.org/10.1145/2939672.2939785
https://proceedings.neurips.cc/paper_files/paper/2022/hash/0378c7692da36807bdec87ab043cdadc-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/0378c7692da36807bdec87ab043cdadc-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/0378c7692da36807bdec87ab043cdadc-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/0378c7692da36807bdec87ab043cdadc-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/0378c7692da36807bdec87ab043cdadc-Abstract-Datasets_and_Benchmarks.html
http://dx.doi.org/10.1007/s10462-020-09896-5
http://dx.doi.org/10.1007/s10462-020-09896-5
http://dx.doi.org/10.1007/s10462-020-09896-5
http://dx.doi.org/10.1007/978-3-030-05318-5
http://dx.doi.org/10.1007/978-3-030-05318-5
http://dx.doi.org/10.1007/978-3-030-05318-5
https://GitHub.com/FacebookResearch/Nevergrad
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1162/106365603321828970
http://dx.doi.org/10.1162/106365603321828970
http://dx.doi.org/10.1162/106365603321828970
http://dx.doi.org/10.1016/j.ijsolstr.2023.112151
https://www.thinkmind.org/library/Soft/Soft_v16_n34_2023/soft_v16_n34_2023_11.html
https://www.thinkmind.org/library/Soft/Soft_v16_n34_2023/soft_v16_n34_2023_11.html
https://www.thinkmind.org/library/Soft/Soft_v16_n34_2023/soft_v16_n34_2023_11.html
http://dx.doi.org/10.1016/j.swevo.2021.100970
http://dx.doi.org/10.48550/arXiv.2009.09171
http://dx.doi.org/10.48550/arXiv.2009.09171
http://dx.doi.org/10.48550/arXiv.2009.09171
http://refhub.elsevier.com/S0927-0256(24)00653-0/sb48
http://refhub.elsevier.com/S0927-0256(24)00653-0/sb48
http://refhub.elsevier.com/S0927-0256(24)00653-0/sb48
http://refhub.elsevier.com/S0927-0256(24)00653-0/sb48
http://refhub.elsevier.com/S0927-0256(24)00653-0/sb48
http://dx.doi.org/10.48550/arXiv.2408.14817
http://dx.doi.org/10.48550/arXiv.2408.14817
http://dx.doi.org/10.48550/arXiv.2408.14817

	Exploring design space: Machine learning for multi-objective materials design optimization with enhanced evaluation strategies
	Introduction
	Multi-objective optimization in materials-design
	Assessment of the prediction error of ML models
	Overview of approach for ML-based optimization

	Methods
	ML models
	Error estimation
	Multi-objective optimization
	Use cases

	Results
	Dataset creation and optimization targets
	ML model performance across evaluation strategies
	Performance of the optimizers
	Optimization performance of the ML models

	Discussion
	General performance
	Comparison of optimizers
	Comparison of ML models
	Comparison of evaluation strategies

	Conclusion and outlook
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A
	Hyperparameter space
	Material parameters in textile-reinforced concrete simulation
	Splitting Strategies
	Optimizer Comparison
	Model Comparison

	References

