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ABSTRACT
Abnormal airway dilatation, termed traction bronchiectasis, is a typical feature of idiopathic pulmonary 
fibrosis (IPF). Volumetric computed tomography (CT) imaging captures the loss of normal airway tapering 
in IPF. We postulated that automated quantification of airway abnormalities could provide estimates of 
IPF disease extent and severity. We propose AirQuant, an automated computational pipeline that takes 
an airway segmentation and CT image as input and systematically parcellates the airway tree into its 
lobes and generational branches, deriving airway structural measures from chest CT. Importantly, 
AirQuant prevents the occurrence of spurious airway branches by thick wave propagation and removes 
loops in the airway-tree by graph search, overcoming limitations of existing airway skeletonisation 
algorithms. Tapering between airway segments (intertapering) and airway tortuosity computed by 
AirQuant were compared between 14 healthy participants and 14 IPF patients. Airway intertapering 
was significantly reduced in IPF patients, and airway tortuosity was significantly increased when com
pared to healthy controls. Differences were most marked in the lower lobes, conforming to the typical 
distribution of IPF-related damage. AirQuant is an open-source pipeline that avoids limitations of existing 
airway quantification algorithms and has clinical interpretability. Automated airway measurements may 
have potential as novel imaging biomarkers of IPF severity and disease extent.
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1. Introduction

We present a clinical tool AirQuant for the comprehensive 
evaluation of airway structure on volumetric Computed 
Tomography (CT) imaging of the lungs. We apply AirQuant to 
quantify traction bronchiectasis in idiopathic pulmonary fibro
sis. Taking as input the CT image and a detailed airway seg
mentation, AirQuant outputs quantitative metrics on each 
airway segment, indexed by lung lobe and airway generation.

1.1. Bronchiectasis

Airways are tubular branching structures originating centrally 
from the trachea and extending to the lung periphery. Airways 
transport gases between the external air and the alveolar sacs 
at the airway terminus where oxygen exchange into the alveo
lar capillaries occurs. An airway segment is defined as 
a continuous tube running between two airway branching 
points. From the major bronchi that arise from the trachea, 
each new division of airway branches can be considered 

a new airway generation. In a healthy individual, airway seg
ments narrow or taper in diameter as they run from the central 
to the peripheral lung. Tapering occurs both along an airway 
segment and with respect to the segment of the preceding 
airway generation Weibel and Gomez (1962).

Bronchiectasis describes a structural airway disease in which 
the airways lose their healthy tapered structure and become 
abnormally dilated within a segment. Various lung diseases are 
associated with bronchiectasis, including those driven by infec
tion and or inflammation in the airway wall. In fibrosing lung 
diseases, of which idiopathic pulmonary fibrosis (IPF) is the 
hallmark fibrosing lung disease Hansell et al. (2009) the airways 
are pulled open by fibrosis and contraction of the surrounding 
connective tissue and airway dilatation is termed ‘traction 
bronchiectasis’.

Bronchiectasis is typically evaluated by a radiologist follow
ing visual inspection of a chest CT scan. Evaluation of the extent 
and degree of dilatation of bronchiectatic airways allows the 
characterisation of lung disease severity and extent. In IPF for 
example, the prognostic importance of airway dilatation has 
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influenced current diagnostic guidelines. The presence of trac
tion bronchiectasis in an appropriate distribution is now used 
to classify a CT as demonstrating a probable usual interstitial 
pneumonia pattern Raghu et al. (2018).

The classical morphological signs of bronchiectasis include 
a) the visualisation of airways within 1 cm of the lung periphery, 
b) a lack of tapering of the airway, c) an airway diameter greater 
than the diameter of the accompanying pulmonary artery 
Hansell et al. (2008). However, solely relying on the comparison 
of the airway to its adjacent pulmonary artery can be mislead
ing. Living at high altitude Kim et al. (1997) and normal ageing 
Matsuoka et al. (2003) can result in non-pathological airway 
dilation, which can be confused with bronchiectasis. 
Furthermore, there are pathological mechanisms that can 
result in changes to the size of the pulmonary artery such as 
smoking Diaz et al. (2017) and hypoxia-induced pulmonary 
vasoconstriction as a result of chronic lung disease Dunham- 
Snary et al. (2017). Typically, the visual markers of bronchiecta
sis are assessed for severity on an ordinal scale and on a lobar 
basis Bhalla et al. (1991). However, these scoring systems lack 
sensitivity, are time consuming to apply and are associated 
with disagreement between radiologists. Consequently, they 
are not used in routine clinical practice or research. Moreover, 
ordinal scores conflate disease extent (number of involved 
lobar segments) and severity (degree of abnormal airway dila
tation) which could potentially dilute the prognostic signal 
attributable to disease extent or severity individually.

Computational image analysis of lung CT imaging may allow 
the derivation of objective robust quantitative measures of 
abnormal airway dilatation extent and severity by quantifying 
dilatation to the nearest millimetre. The precise quantification 
of airway damage, may identify IPF patients at risk of rapid 
disease progression. Identification of such patients would be 
an important cohort enrichment strategy for recruitment into 
clinical trials of novel IPF therapies Johannson et al. (2015); 
Collard et al. (2015).

1.2. Idiopathic pulmonary fibrosis

IPF is a lung disease characterised by excessive fibrosis in the 
structural framework of the lung. The fibrotic process charac
teristically causes traction bronchiectasis in the lung periphery. 
There are 80,000 new cases of IPF diagnosed every year across 
Europe and the United States Hutchinson et al. (2015) with 
patients typically surviving only 3–5 years following diagnosis 
Spencer et al. (2021).

1.3. Previous works

Acquiring tapering measurements involves executing an air
way measurement algorithm at a perpendicular plane to 
the airway centreline at regular intervals, as demonstrated 
in Figure 1(a). This can be achieved after airway lumen 
segmentation and centerline extraction. The full width at 
half maximum edge cued segmentation limited (FWHMESL) 
technique considers a one-dimensional profile through the 
airway wall from inside the airway lumen to outside. The 
airway wall traces a bell-shaped curve. The boundary edges 
lie at the half-maximum value Kiraly et al. (2005); Odry et al. 

(2006). Other methods for estimating the airway wall edge 
exist but require manual parameter tuning Petersen et al. 
(2014); Weinheimer et al. (2008).

There have been efforts to compare airway metrics 
derived from an airway tree, such as tapering, both between 
individuals and between specific disease groups. Quan et al. 
(2018) considered a solitary individual airway path, defined 
as a contiguous path through the airway tree from carina to 
the most distal point in the segmentation. They presented 
a log-tapering index defined as the slope of fitted arc length 
to log-area curve along the individual airway. Whilst the 
study showed that individual bronchiectatic airways and 
normative airways differed by their log tapering index, the 
limitation of the methodology was that only a single path in 
the airway tree was ever considered. Weinheimer et al. 
(2017) demonstrated YACTA, a graph-based airway tree ana
lysis software. They classified airways by lobe and generation 
and considered an airway taper index per segment which 
was compared to the preceding segment. They found mod
erate correlation with visual scoring in 36 patients with CF 
assessed at multiple timepoints. They also acknowledged the 
importance of lobe and lingula segment distinction though 
they did not detail their adapted lobe classification metho
dology. The measure of airway (inter)taper index described 
in the study required an unvalidated assumption on the 
nature of airway intertapering, namely that it was linear 
across generations. Kuo et al. (2020) similarly derived the 
airway tree by a graph-based method. Airways were 
matched with adjacent arteries, dividing airways into groups 
based on size of arteries into ‘large’, ‘regular’ and ‘small’ 
though the method did not localise airways by lobe. Across 
these three size groupings, measures of intertapering (rela
tive change in average diameter of an airway segment com
pared to its parent segment), intratapering (change in 
diameter within airway) were shown to differ in 12 children 
with bronchiectasis compared to normal scans. Measures 
were expressed using median values and were therefore 
agnostic to the underlying distribution of disease. 
Unfortunately, the study did not demonstrate the extent of 
airway segmentations achieved by the method. 
A disadvantage of classifying airways according to the size 
of the paired pulmonary artery is that this ignores the lobar 
location of the airway. Many lung diseases are geographi
cally localisedfor example, IPF localises to the base of the 
lower lobes, whilst cystic fibrosis localises to the upper lobes. 
This makes lobar localisation of damage a crucial determi
nant for disease diagnosis and in turn, estimation of disease 
severity. Furthermore, classifying airways according to the 
size of the accompanying pulmonary artery assumes that 
the artery itself is not modified in its size by the presence 
of disease.

The methodology presented in this manuscript can be 
applied to a CT after any existing airway tree segmentation 
algorithm. The presented airway segmentation is based on 
recent practices and we do not claim the presented method 
as novel. AirQuant is a graph-based airway tree analysis frame
work that exists distinct to the airway segmentation process 
that utilises and expands on methods laid out in Quan et al. 
(2018).
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Figure 1. Example of how tapering measures are derived for a given airway. Here the left major bronchus is demonstrated. (a) The airway is outlined with a solid line 
with its segmentation-derived centreline represented by a dashed line. An airway segment is typically bounded by nodes which represent splitting of airways or end 
points. The airway diameter is measured at regular intervals between nodes along the segment, shown here as bold rings. (b) Our technique uses the reformatted CT 
interpolated along the airway segment’s centreline between nodes. Diameters corresponding to the airway positions in (b) are measured using the presented pipeline, 
AirQuant (c). The 10 percent trimmed-mean, i.e. uses the central 90% of diameter measures to derive the mean, highlighted in red.
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1.4. Presenting AirQuant

In this paper, we adapt existing skeletonisation methods to 
reliably extract airway centrelines and branching tree-like struc
tures. To replicate lung lobar classification systems used in 
standard radiological assessment, we have adapted an auto
mated lobar classification system that delineates the lingula 
(nominally part of the left upper lobe) as a distinct lobe. We 
consider inter-branch tapering (intertapering) and airway tor
tuosity between disease groups. We consider the median of 
these measures in any airway segment group so as to not make 
assumptions on an underlying distribution of airway 
segmentation.

We propose a computational pipeline that takes as input 
an airway segmentation and CT image and provides an 
objectively derived end-to-end measure of airway morphol
ogy. It requires little to no manual input, making it 
a feasible clinical tool to measure airways in order to sup
port clinical assessment. A novel graphical abstraction of 
the airway tree to its fundamental morphology is also pre
sented. Our methodology is released as an open source and 
documented framework for the development of airway tree 
analysis.

The lungs are classified by lobe and by airway generation 
allowing easy localisation of focal airway abnormalities. We 
describe various quantitative expressions of airway morpholo
gical abnormality in IPF patients that delineate the extent and 
severity of fibrosis-related airway damage. We contrast findings 
in IPF with airway metrics in healthy volunteers and provide the 
first quantitative measurement of airway tortuosity which has 
only previously been qualitatively considered in the context of 
pulmonary fibrosis Westcott and Cole (1986).

2. Methods

Following automated airway segmentation based on 
a trained dilated 2D-UNet combined with region-growing, 
the proposed AirQuant pipeline to process a chest CT is 
shown in Figure 2. The centreline is first extracted by thinning 
(Figure 2(a)) and a network graph is derived. The airway tree 
is parcellated into its individual branching segments where 
graph edges and splitting/end points are represented by 
nodes. (Figure 2(b)). Cubic splines are then fitted to each 
segment’s associated centreline points, allowing sub-voxel 

interpolation along the airway segment ((Figure 2(c)). By tak
ing the tangent to the spline at intervals, CT patches in the 
plane perpendicular to the airway centreline can be cubically 
interpolated (Figure 2(d)). From these patches, the airway 
luminal diameter is measured using the (FWHMESL) techni
que by Kiraly et al. (2005), implemented by Quan et al. (2018), 
which has been further refined to improve robustness of 
airway measurement (Figure 2(e)). Using the set of luminal 
diameter measurements and total arc-length by spline fitting, 
metrics can be derived that describe each individual airway 
segment.

All code was written and executed in MATLAB, available at 
https://github.com/ashkanpakzad/airquant.

2.1. Study data

We consider 14 healthy never-smokers (from Mayo Clinic, 
Rochester, Minnesota, USA) and 14 IPF patients with varying 
levels of disease severity from two centres (11 from St Antonius 
Hospital, Utrecht, the Netherlands and 3 from Ege University 
Hospital, Izmir, Turkey). Lung function measures obtained 
included forced vital capacity (FVC) in all subjects and diffusing 
capacity of the lungs for carbon monoxide (DLCO) in the IPF 
group alone. Lung function measurements were obtained 
within 90 days of CT scan acquisition. Visual CT scores of inter
stitial lung disease (ILD) extent and traction bronchiectasis was 
performed on IPF scans by an experienced radiologist (Joseph 
Jacob). Further details of the study data are included in Table 1. 
None of the cases analysed in this study were used to train or 
test the airway segmentation algorithm mentioned in sec
tion 2.2.1.

Approval for this retrospective study of pulmonary function 
and CT data was obtained from the local research ethics com
mittees and Leeds East Research Ethics Committee: 20/YH/ 
0120. The requirement for informed consent was waived by 
local research ethics committees for the IPF patients. The study 
of healthy volunteers was approved by the Mayo Clinic 
Institutional Review Board and informed consent was obtained 
from all study participants.

2.2. Automated airway segmentation

As an airway segmentation is required to measure airway taper
ing, we implement an ensemble method using a trained 2D 

Figure 2. Demonstrating the AirQuant pipeline graphically from left to right for a given airway lumen segmentation through to the end where the lumen boundary is 
established.
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dilated UNet model Yu and Koltun (2016) combined with 
a region growing algorithm with explosion control using the 
software tool, Pulmonary ToolKit (PTK) Doel (2014) .1 The two 
methods are executed on each case in parallel, with the results 
combined by logical union operation. A filter is then applied to 
only keep the largest 26 voxel connected binary object, result
ing in a fully connected main airway tree. Where the deep 
learning-based segmentation algorithm identifies more periph
eral branches, the PTK-based region growing segmentation 
identifies the trachea and larger branches well for 
a contiguous airway tree from the trachea towards the bronch
ioles. The combination of data-driven and rule-based algo
rithms are intended to maximise segmentation performance.

2.2.1. 2D UNet segmentation
The dilated U-Net model is an improved version of the 
original U-Net model that replaces standard convolution 
layers with dilated convolution layers Yu and Koltun (2016). 
The addition of dilated convolution layers allows the perfor
mance of local convolutional operations on a larger region 
without any increased computational cost but importantly 
maintains image resolution. Using this methodology pro
vides greater pixel-wise context during training and at infer
ence. Our model was trained on manually segmented airway 
trees performed in-house under the supervision of an experi
enced chest radiologist (J. Jacob). The training and valida
tion/testing dataset used in the development of the dilated 
UNet model comprised six normal CTs in healthy never- 
smoker volunteers, two normal cases from the EXACT09 
competition data set Lo et al. (2012) and 17 IPF cases, 
totalling 25 volumetric CTs. The images used in these 

datasets were mutually exclusive. The axial slices of all CTs 
were amalgamated, randomised and split 80–20 into training 
and validation datasets, respectively. None of the images 
used to train/validate/test the dilated U-NET model were 
analysed in the current clinical study. As a 2D input model, 
the dilated U-NET only considered one axial CT slice at 
a time, without the context of the rest of the CT volume. 
Training was implemented using Adam optimiser Kingma 
and Ba (2014), minimising the combined binary cross 
entropy Goodfellow et al. (2016) and dice similarity coeffi
cient loss functions Dice (1945). The learning rate was initi
ally set to 1e-5, reducing to 1e-6 upon loss plateau over 
three consecutive training epochs. The model achieved 
a training and validation dice score of 88:5% and 87:2%, 
respectively. Implementation was in Tensorflow Martín 
et al. (2015) and Keras Chollet et al. (2015) with Python.

The data were preprocessed by limiting intensity levels to 
a standard lung window, level −500 Hounsfield Units (HU) and 
width 1500 HU, and then normalising to a range from 0 to 1. 
The slice size was limited to 512� 512 pixels. Larger raw CT 
slices were downsampled by cubic interpolation to pass 
through the fixed-size model and inferred labels upsampled 
to the original size by nearest-neighbour interpolation. All 
analyses were conducted on the original image size. At infer
ence, we input each axial slice from a single CT case into the 
model, and combine the individual slice results to generate 
a 3D segmentation result.

2.2.2. Pulmonary toolkit segmentation
The Pulmonary Toolkit (PTK) Burrowes et al. (2017) implements 
airway segmentation by region growing from a tracheal seed. 

Table 1. Technical details of the CT data used in this study. Values shown as median (inter quartile range) across cases 
where applicable. Age, FVC and number of lobe segments were compared by mann-whitney U test. Sex was compared by 
chi-squared test. Significance of each comparison shown * p< 0:05, * p< 0:01, *** p< 0:001 and **** p< 0:0001. We 
denote the left lingula segments as the left middle lobe. IPF = idiopathic pulmonary fibrosis; ILD = interstitial lung 
disease; FVC = forced vital capacity; DLCo = diffusing capacity of the lungs for carbon monoxide.

Feature Normal IPF

Number of cases 14 14
Age (years)** 45.50 (33.50–54.50) 59.0 (57.35–69.00)
Sex (male/female)* 7/7 13/1
FVC (%)**** 103.83 (99.68–107.89) 75.34 (64.57–85.12)
DLCo (%) 47.63 (41.56–55.59)
Mean ILD extent 0.00 (0.00–0.00) 24.58 (19.06–30.00)
Traction bronchiectasis score

Right upper lobe 0.00 (0.00–0.00) 2.50 (2.00–3.00)
Left upper lobe 0.00 (0.00–0.00) 1.50 (1.30–2.00)
Right middle lobe 0.00 (0.00–0.00) 2.00 (2.00–2.00)
Left middle lobe 0.00 (0.00–0.00) 2.00 (1.63–2.00)
Right lower lobe 0.00 (0.00–0.00) 3.00 (2.50–3.00)
Left lower lobe 0.00 (0.00–0.00) 3.00 (2.25–3.00)

Slice pixel size (mm) 0.74 (0.70–0.74) 0.72 (0.68–0.73)
Slice thickness (mm) 1.00 (1.00–1.00) 0.75 (0.70–0.80)
Reconstruction diameter (mm) 371 (357–279)
Reconstruction kernels Bv49d C, YC, BONE, EC, YB, L, STANDARD, B18f
Manufacturer Philips, Siemens, GE Medical Systems
Peak voltage (kV) 120 (120–120)
X-ray current (mA) 200 (154–301)
Total airway segments 128.50 (117.50–148.75) 160.50 (139.50–191.25)

Right upper lobe 28.00 (26.25–30.00) 31.00 (27.25–38.50)
Left upper lobe 20.00 (17.00–21.75) 21.50 (13.00–25.00)
Right middle lobe*** 9.50 (7.00–11.75) 15.50 (13.00–24.00)
Left middle lobe 7.00 (5.00–8.00) 7.50 (7.00–12.00)
Right lower lobe* 34.50 (30.25–38.00) 47.50 (42.50–53.00)
Left lower lobe 32.00 (24.00–42.00) 40.50 (31.75–47.50)
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The algorithm starts by thresholding the CT to air voxel density 
(less than −775 HU). It then identifies the trachea in the upper 
superior section of the CT as the largest connected component 
of air voxels and chooses pixels towards the top of the structure 
to form the tracheal seed. A wave-front propagates from the 
tracheal seed and travels through the thresholded air mask, 
classifying the volume traversed as part of the airway tree. 
Complete splitting of a wave-front indicates new airway 
branches, with the resultant wave-fronts becoming indepen
dent of each other. Wave-fronts maintain a thickness of multi
ple voxels in larger airways, which prevents splittings that 
would likely result in spurious branches due to CT partial 
volume artefact. Sudden increases in volume of wave growth 
indicate parenchymal leakage of the wave-front. Leakage is 
controlled by an explosion multiplier, set such that if the number 
of new voxels in a wave front are more than the factor of the 
explosion multiplier of the previous wavefront. The wave-front 
defaults to its previous iteration and grows no-more. The 
default PTK settings used to avoid parenchymal leakage were 
implemented i.e. explosion multiplier was set to 7 and wave- 
fronts were not allowed to grow beyond 15 generations.

2.3. Centreline extraction

PTK’s full skeletonisation method Doel (2012) is used here on 
the final airway segmentation. This is a thinning algorithm 
based on Palágyi et al. (2006). It first identifies airway endpoints 
by re-running the same wave propagation step as the airway 
segmentation algorithm described above 2.2.2, without explo
sion control or generational limit. The thick wave-propagating 
component helps to delineate false airway branches from real 
branches, thereby identifying true airway endpoints. The tra
chea is marked as an airway endpoint from the outset. The 
binary object bounded by all endpoints is then iteratively 
reduced to its topological centreline. Although false branches 
are robustly removed, airway loops may have occurred at this 
stage, as topological thinning does not reflect the true anato
mical tree structure of the airways.

A key innovation of PTK’s skeletonisation method is a post- 
processing step which removes inner loops by retracing out the 
whole skeleton voxel-by-voxel, parsing branch segments in 
a depth-first-search style. Starting from the top of the trachea, 
it considers the 27-connected neighbour skeleton voxels of the 
last traced voxel to determine which voxel should be added to 
grow the airway segment. Upon reaching the end of a segment, 
i.e. a bifurcation point, it has fully parsed the current segment 
and starts parsing one of two (or more) new child-branches. In 
doing so, it acknowledges the discovery, though does not 
immediately parse that child-branch’s sibling(s). It holds in 
memory the first voxel of every new segment it discovers. If 
a candidate skeleton voxel is found to match the first voxel of 
a discovered non-parsed segment, then it identifies that the 
whole candidate segment forms a loop. The offending segment 
is then terminated and removed from the final skeleton.

2.4. Airway parcellation

To facilitate analysis, the airway tree is divided into airway 
segments. This definition enables direct conversion of the 

airway centreline into a graphical network representation 
Kollmannsberger et al. (2017), where graph edges become 
airway segments and airway division points or airway end
points become graph nodes (Figure 2(b)). The graph is con
verted into a digraph (directional graph), edges are 
orientated to direct away from the highest point node, the 
top of the trachea. As a digraph, the carina (point of division 
of the main bronchi from the trachea) can be identified as 
the node with the greatest outcloseness graph centrality 
metric. It is the closest node to reach all nodes in both the 
left and right lungs. This digraph orientation means that 
airway segments are point from the central lungs outwards. 
Setting a direction in the graph facilitates subsequent steps 
in the pipeline, dictates the direction in which the spline is 
sampled and supports airway generation classification and 
lung lobe classification. Each individual airway segment has 
a cubic spline (piecewise polynomial function) fitted to its 
collective centreline points which is smoothed by a moving 
average along the segment starting from the proximal seg
ment and moving distally. The spline is sampled at equidi
stant intervals, tracking the tangent of the spline at these 
points to calculate the airway’s perpendicular plane for dia
meter measurements. The limit of resolution for the change 
in airway diameter is considered to be no less than half the 
shortest voxel diameter. All interpolation sampling sizes are 
set individually for each given CT image at half the shortest 
voxel diameter.

2.5. Airway measurement

The CT image is interpolated at spline sample points perpendi
cular to the tangent of the spline such that the resultant image 
produces a slice along the natural long axis of the airway 
(Figure 2(d)). The interpolation pixel size is dynamically set to 
half the shortest voxel diameter of the given CT. Diameter 
measurements are made on these airway-perpendicular slices 
at spline sampling intervals.

On the airway-perpendicular slices, several radial density 
profiles that are uniformly spaced originate from the lumen 
centre, sampling the change in HU; a technique known as 
raycasting. These radial profiles of the airway wall typically 
appear as a Gaussian curve, due to the nature of CT imaging 
of thin structures Weinheimer et al. (2008). It is approximated 
that the wall centre falls at the Gaussian maximum and that the 
inner and outer boundary fall at the FWHM points, i.e. the half- 
intensity points either side of the curve. However, due to the 
nature of CT imaging and proximity of lung vessels to the 
airways, the radial profile does not always appear as a smooth 
Gaussian. In reality, these HU density profiles can appear noisy 
with several maxima. The airway segmentation is also interpo
lated at the same points as the CT. The nearest local maxima to 
the boundary of the airway segmentation is considered the wall 
peak. This method is known as the FWHMESL technique as 
described by Kiraly et al. (2005), and implemented and vali
dated by Quan et al. (2018) on phantoms down to 2:5mm. The 
inner airway lumen boundary is therefore identified as the first 
half-maximum. The second half-maximum relating to the outer 
wall boundary is often found to be more susceptible to noise, 
as the outer airway wall may have a structure with similar 
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contrast and density obscuring its boundary, e.g. a blood ves
sel. Thus we only consider the accurately determined inner 
boundary (Figure 2(e)).

As a perpendicular section through the long axis of an air
way forms an ellipse, an ellipse is fitted Fitzgibbon et al. (1996) 
to the inner wall boundary points. The ellipse total area, AE is 
calculated and a generalised diameter DG derived for that point 
in the airway segment. 

DG ¼ 2

ffiffiffiffiffi
AE

π

r

Where our methodology differs from Quan et al. (2018) is that 
we employ an outlier detection mechanism improving robust
ness of airway boundary delineation, demonstrated in Figure 3. 
The distance of each inner lumen point to the centre point is 
calculated. If this spans greater or less than 3 times the Mean 
Absolute Deviation (MAD) compared to all other points then it 
is considered an outlier. To support this, we choose to increase 
the number of raycast radial density profiles from 50 (every 7.2 
degrees of rotation) to 180 (every 2 degrees of rotation). The 
greater the number of raycasts, the more robust outlier detec
tion becomes, particularly for larger airways where the distance 
between lumen boundary points will be larger for a given 
number of raycasts.

Ultimately, an accurate intertapering value relies on accu
rate average measurements of the current and parent airway 
segment. By sampling the airway diameter at less than half 
the smallest CT voxel dimension for each case, we ensure 
that we get the most accurate diameter measurements these 
methods can obtain from the CT image. Figure 1(b,c) demon
strates a series of diameter measurements on a single airway 
segment.

2.6. Phantom study

The same phantom created and considered in Quan et al. 
(2018) has been used here to evaluate the accuracy of the 
measurement method described above. Hollow 3D printed 
tubes were designed to mimic the airways which are sur
rounded by rice mimicking the lung parenchyma. Four straight 

50 mm long tubes with fixed diameters of 2.12, 3.52, 4.92 and 
6.32 mm are considered. A similar set of curved phantom air
ways, with radius of curvatures of 10, 15, 20, 25 and 30 mm each 
with a fixed diameter of 2.12 mm are also considered.

The phantom underwent CT scanning and was reconstructed 
using a lung kernel. The in-plane voxel size was 
0:625� 0:625 mm and axial size 1:00 mm. The straight tubes 
were roughly parallel to the axial direction of the scan. The spline 
and interpolation patch size was therefore 0.3 mm. The ground 
truth measures of the phantoms were made on higher resolution 
micro-CT scans.

2.7. Airway lobe classification

Airway lobe classification is based on the method described 
and evaluated against expert annotations on 300 COPD 
patients by Gu et al. (2012). The classification algorithm takes 
the graphical representation of the airway tree described in 
section 2.4. Out-edges (airway segments themselves) of classi
fied nodes inherit their classification immediately. As described 
in algorithm 1, it considers the positional coordinates of nodes 
(see Figure 4) starting from the carina node to identify the main 
left and right bronchi as well as the left upper (LUL) and lower 
lobes (LLL). The lingula lobe (left middle lobe (LML)) was iden
tified as the lower branch in the left upper lobe thereby 
mimicking the lobar classification used in clinical radiological 
lung assessment. The addition of the LML lobe is our chief 
adaptation, the remainder of the proposed algorithm follows 
Gu et al. (2012).

The right upper lobe (RUL) is the first division of the right 
main bronchus. The processing with which to classify the right 
middle lobe (RML) and right lower lobe (RLL) is described in 
algorithm 2. The remaining non-classified right lung is taken as 
a subset of the overall airway graph and the difference in axial 
to lateral position of every end node is calculated. The most 
extreme nodes are considered to originate from the RML and 
the least extreme from the RLL. Tracing back the paths of these 
two nodes to the carina identifies the set of branches belong
ing to the RML. Finally the remaining unclassified airways are 
assigned to the RLL.

Figure 3. Airway measurement slices of the same perpendicular airway slice. Dots represent inner airway boundary detection of each raycast point. The ellipse is fitted 
to these points to derive final diameter measurements. (a) original method by Quan et al. (2018) and (b) with our increased number of ray points and addition of outlier 
removal mechanism. Note that in (a) the ellipse is poorly fitted to the boundary due to raycast points that prematurely stop due to image noise. In (b) these false 
boundary points are classified as outliers and are therefore removed before fitting the ellipse.

COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 7



We suggest a quality control check where the reclassification 
of airways to specific lobes may be required because of anato
mical variations of the airways tree. For example the presence of 
a tracheal bronchus, the most common airway tree variant with 
a prevalence of 1 percent in the general population Dave et al. 
(2014) would result in a simple manual reclassification of the 
right upper lobe bronchi. Since only the final analysis is depen
dent on the lobe classification, reclassification can be done at the 
end with no consequence to the pipeline. We implemented 
high-level functions that allow easy reclassification by indicating 
the most central airway segment or node for a given lobe. 

Algorithm 1 Lobe classification for airways adapted from Gu et al. (2012). For 
upper, middle and lower left lobe and right upper lobe.

Given directed graph of airways, GðN; AÞ with N nodes and A edges, n 2 N and 
e 2 A. Arranged in tree like structure from the carina node nC . N has positional 
information associated (x,y,z) in ascending order towards (left, posterior, 
superior) orientation respectively.
½n1; n2� ¼ EoðnCÞ ⊳out-edges of carina node
if n1ðxÞ> n2ðxÞ then

nL  n1                                                                     ⊳right lung node
nR  n2                                                                       ⊳left lung node

else if n2ðxÞ> n1ðxÞ then
nL  n2
nR  n1

end if
½n3; n4� ¼ EoðnLÞ

if n3ðzÞ> n4ðzÞ then
nLUA  n3                                                           ⊳Left upper area node
nLLL  n4                                                            ⊳Left lower lobe node

else if n4ðzÞ> n3ðzÞ then
nUAL  n4
nLLL  n3

end if
½n5; n6� ¼ EoðnUALÞ

if n5ðzÞ> n6ðzÞ then
nLUL  n5                                                           ⊳Left upper lobe node
nLML  n6                                                         ⊳Left middle lobe node

else if n4ðzÞ> n3ðzÞ then

(Continued)

Algorithm 1 Lobe classification for airways adapted from Gu et al. (2012). For 
upper, middle and lower left lobe and right upper lobe.

nLUL  n6
nLML  n5

end if
⊳Left lung now fully classified into lobes

½n7; n8� ¼ EoðnRÞ
if n7ðzÞ> n8ðzÞ then

nRUL  n7                                                         ⊳Right upper lobe node
else if n4ðzÞ> n3ðzÞ then

nRUL  n8
end if

Algorithm 2 Lobe classification for airways from Gu et al. (2012) for the right 
middle and lower lobes.

Given that upper, middle and lower left lobe and right upper lobe nodes have 
been classified make subgraph of remaining nodes, GsðNs; AsÞ with Ns nodes 
and As edges, m 2 Ns and e 2 bs . edges have weight of 1. Carina node, nC is 
known. Endpoint nodes are nodes with no out edges, mep.
Vz� y ¼ ½mepðzÞ� � ½mepðyÞ� ⊳Compute based on position.
mep

RML  argmaxðVz� yÞ ⊳Assigns node based on maximum value index.
mep

RLL  argminðVz� yÞ ⊳Assigns node based on minimum value index.
nep

RML  mep
RML                                ⊳Assigns same index in G from subgraph.

nep
RLL  mep

RLL
pRML  shortestpathðG; nC ; nep

RMLÞ ⊳find shortest path through G.
pRLL  shortestpathðG; nC ; nep

RLLÞ

pRML  reverseðpRMLÞ ⊳reverse order of shortest path.
pRLL  reverseðpRLLÞ

VI  intersectððpRMLÞ; ðpRLLÞÞ ⊳get index of first intersect.
nRML  pRML½VI � 1� ⊳node before intersect is first node of RML.
nRLL  nunclassified                  ⊳RLL assigned to remaining unclassified nodes.

2.8. Metrics

The two key airway-based metrics that have been computed 
from the derived data using the analytic pipeline are the airway 

Figure 4. Schematic showing typical airway lobe structure used to automatically classify airways into their lobes. Key airway-tree nodes that are identified in the 
automated lobe classification algorithm are labelled. The airways arising after a given lobe node are classified into that lobe. Hollow nodes are end-points at the 
extreme of the airway-tree. Solid lines indicate two nodes that are connected by one airway segment. Dashed lines indicate multiple airway segments between two 
given nodes. Arrows indicate airways that extend beyond the boundaries of the schematic. Gs represents the airways considered in algorithm 2 to identify the right 
middle and right lower lobes. nC , carina node; nR , right lung node; nRML , right middle lobe node; nRMLep , right middle lobe end point; nRLLep , right lower lobe end point; 
nL , left lung node; nLUA , left upper area node; nLUL , left upper lobe node; nLML, left middle lobe node; nLLL , left lower lobe node.
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inter-tapering gradient and airway tortuosity. Intertapering 
(Equation 1) describes the difference in average diameter, �d of 
an airway to its parent airway �dp, divided by the average 
diameter of the parent airway. 

intertapering ¼
�dp � �d

�dp
(1) 

Where average diameter �dp is derived from the consecutive dia
meter measurements from the airway segment described in sec
tion 2.5.

Airway tortuosity (Equation 2) describes the arc-length of an 
airway segment, La expressed as a ratio of its euclidean seg
mental length, Le. 

tortuosity ¼
La

Le
(2) 

Where euclidean segmental length Le is derived from taking the 
euclidean (straight line) distance between the start and end 

nodes of the airway segment. Both measures are 
dimensionless.

2.8.1. Normal generational range
This first evaluation aims to disentangle disease severity 
and disease extent, to just focus on disease severity. This 
was done by initially considering the frequency of all air
ways generations within each lobe in the group of healthy 
subjects. The range of airway segments in the 25th-75th 
percentile range were retained. The aim was to exclude the 
most extreme generations of airways from the analysis and 
quantify the amount of damage seen in the most frequently 
segmented airway generations. Henceforth, this 50% airway 
generational range is referred to as the ‘normal generation 
range’. For each lobe, the normal generation range was 
found to be RUL: 4–6; LUL: 4–5; RML: 3–5; LML: 3–5, RLL: 
4–7, LLL: 4–6.

The airways conforming to the normal generation range 
were evaluated in IPF patients and healthy volunteers in two 

Table 2. Intertapering of every investigated airway within the normal generation range.

Lobe

Normal Idiopathic pulmonary fibrosis

n Median IQR n Median IQR p-value

RUL 323 35.66 15.09 336 32.53 16.59 0.00007
LUL 165 36.89 21.20 160 32.76 18.19 0.00372
RML 111 37.28 16.84 155 28.95 19.07 <0.00001
LML 84 39.75 17.13 99 32.23 15.94 0.00039
RLL 374 37.09 21.09 412 30.00 20.57 <0.00001
LLL 308 40.38 20.26 276 31.81 21.19 <0.00001

Table 3. Tortuosity of every investigated airway within the normal generation range.

Lobe

Normal Idiopathic pulmonary fibrosis

n Median IQR n Median IQR p-value

RUL 323 1.03 0.02 336 1.03 0.03 0.00124
LUL 165 1.02 0.02 160 1.03 0.03 0.00131
RML 111 1.03 0.02 155 1.03 0.02 0.03380
LML 84 1.03 0.02 99 1.03 0.03 0.02630
RLL 374 1.03 0.02 412 1.03 0.03 <0.00001
LLL 308 1.03 0.02 276 1.03 0.03 <0.00001

Table 4. Median lobar intertapering per case within the normal generation range.

Lobe

Normal Idiopathic pulmonary fibrosis

n Median IQR n Median IQR p-value

RUL 14 36.58 4.34 14 32.74 7.23 0.05560
LUL 14 37.79 7.23 14 34.23 6.34 0.16400
RML 14 37.19 7.93 14 30.03 7.30 0.00416
LML 14 40.26 5.24 14 33.34 8.67 0.00027
RLL 14 38.17 3.97 14 29.94 4.93 0.00208
LLL 14 39.94 5.19 14 32.08 8.26 0.00021

Table 5. Median lobar tortuosity per case within the normal generation range.

Lobe

Normal Idiopathic pulmonary fibrosis

n Median IQR n Median IQR p-value

RUL 14 1.029 0.005 14 1.031 0.006 0.19400
LUL 14 1.024 0.007 14 1.031 0.009 0.00173
RML 14 1.025 0.010 14 1.031 0.007 0.21000
LML 14 1.026 0.010 14 1.036 0.015 0.03500
RLL 14 1.027 0.002 14 1.032 0.008 0.00173
LLL 14 1.027 0.005 14 1.033 0.004 0.00143
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ways: namely at the airway level and then the patient level. For 
the airway-level analysis, all individual lobar airways within the 
normal generation range were compared between IPF patients 
and healthy volunteers for both the airway intertapering gra
dient (Table 2) and airway tortuosity (Table 3). For the patient- 
level analysis, the median lobar inter-tapering gradient 
(Table 4) and airway tortuosity values (Table 5) were calculated 
at an individual patient level and compared between IPF 
patients and healthy volunteers.

2.8.2. Central and peripheral ranges
Two final analyses compared airways at the patient level, 
but categorised the airways according to their generational 
level. The first analysis compared the median lobar airway 
intertapering gradient (Table 6) and airway tortuosity 
(Table 7) for airway generations 2–6. Airways of generation 
2–6 can be segmented by most modern lung airway seg
mentation algorithms making the results of our airway ana
lyses relatively independent of the quality of a specific 
segmentation tool. The second analysis eschewed the nor
mal generation range and compared at a patient level the 
median lobar airway inter-tapering gradient (Table 8) and 

airway tortuosity values (Table 9) for airway generations 7 
and beyond.

2.9. Statistical analysis

Airway values for healthy volunteers and IPF patients are com
pared using the non-parametric Mann-Whitney U test. The 
median values for the various airway metrics are compared 
across equivalent lobes and airway generational ranges 
between the two study groups.

As this is a pilot study of 28 individuals, multiple comparison 
corrections are not considered in the main text. These results, 
which do not alter any conclusions in the paper are shown in 
the supplementary material.

3. Results

Following successful segmentation, AirQuant analyses were fully 
executed on all airway segments identified. Figure 5 shows the 
mean extent of airway segmentations for each study group. The 
median (25th−75th percentile) number of airways identified in 
normal and IPF groups was 128.50 (117.50–148.75) and 160.5 

Table 6. Median lobar intertapering per case within generations 2–6.

Lobe

Normal Idiopathic pulmonary fibrosis

n Median IQR n Median IQR p-value

RUL 14 38.11 3.50 14 33.66 6.41 0.02120
LUL 14 34.80 6.08 14 31.86 2.32 0.04440
RML 14 37.75 6.32 14 31.88 7.97 0.02410
LML 14 39.98 6.43 14 33.07 6.38 0.00208
RLL 14 37.46 5.16 14 29.03 8.71 0.00296
LLL 14 36.15 3.40 14 30.43 6.51 0.00003

Table 7. Median lobar tortuosity per case within generations 2–6.

Lobe

Normal Idiopathic pulmonary fibrosis

n Median IQR n Median IQR p-value

RUL 14 1.030 0.006 14 1.032 0.007 0.13700
LUL 14 1.028 0.007 14 1.032 0.005 0.00915
RML 14 1.025 0.011 14 1.031 0.009 0.15000
LML 14 1.025 0.008 14 1.035 0.011 0.00674
RLL 14 1.026 0.004 14 1.037 0.012 0.00065
LLL 14 1.026 0.004 14 1.032 0.005 0.00208

Table 8. Median lobar intertapering per case within generations 7 + .

Lobe

Normal Idiopathic pulmonary fibrosis

n Median IQR n Median IQR p-value

RUL 6 28.36 3.91 12 25.72 7.71 0.43700
LUL 4 32.93 6.79 5 21.09 18.95 0.41300
RLL 14 37.50 10.39 14 25.87 8.04 0.00042
LLL 12 33.95 6.61 14 27.36 8.72 0.00448

Table 9. Median lobar tortuosity per case within generations 7 + .

Lobe

Normal Idiopathic pulmonary fibrosis

n Median IQR n Median IQR p-value

RUL 6 1.024 0.013 12 1.036 0.012 0.02450
LUL 4 1.026 0.010 5 1.052 0.045 0.19000
RLL 14 1.020 0.005 14 1.033 0.015 <0.00001
LLL 12 1.023 0.012 14 1.034 0.012 0.02340
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Figure 5. Line plot showing mean number of segments with shaded standard deviation per generation across all patients, differentiating between normal healthy 
participants and idiopathic pulmonary fibrosis (IPF) patients for each lobe. Lobar generation 2 is the first generation of that lobe. RUL=right upper lobe, LUL=left upper 
lobe, RML=right middle lobe, LML=left middle lobe, RLL=right lower lobe, LLL=left lower lobe.

Figure 6. Visual airway segmentation results for all (a) normal healthy participants (b) idiopathic pulmonary fibrosis patients. Colour indicates lobar classification with 
colour bar shown. RUL=right upper lobe, LUL=left upper lobe, RML=right middle lobe, LML=left middle lobe, RLL=right lower lobe, LLL=left lower lobe.
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(139.50–191.25) respectively. Failure in the pipeline only 
occurred at the lobe classification phase. All lobe classifications 
were visually checked and manually corrected if necessary 
before further analysis. Two IPF and two normal cases had LUL 
airways mislabelled as lingular airways. One IPF case had RLL 
airways mislabelled as RUL airways. One healthy volunteer exhib
ited an anatomical variant whereby two RUL branches originated 
from the right main bronchus and these were mislabelled. 
Airway segmentation results and final lobe classifications are 
shown in Figure 6. Each case took 10–20 min to process in 
MATLAB on a 3 GHz Intel-i7 9th gen. processor with 16GB mem
ory workstation. The only manual involvement was of very brief 
lobe classification corrections to six anomalous cases.

3.1. Phantom analysis

Results of measurements on the phantom airways are shown in 
Figure 7. It was found that measurements of the straight phan
toms down to 2.12 mm diameter had a median error of less than 
5%. This error appeared to increase for curved phantoms, but 
nevertheless only showed a maximum median error of 7.6%.

3.2. Airway Level Quantitative Analysis

When the intertapering gradient was evaluated at the airway 
level across the normal generation range, a significant reduc
tion (p � 0:004) in intertapering gradient was found in IPF 

Figure 7. Box plots showing diameter measurement error on two sets of phantom airways. (a) Straight phantoms of fixed diameter. (b) Curved phantoms of fixed 
2.12 mm diameter.

Figure 8. Violin-box plots comparing normal healthy participants and idiopathic pulmonary fibrosis (IPF) patients. The level of significance for the Mann-Whitney 
U tests for each lobe is shown above the respective plot. (a) and (b) considers every airway segment from every subject in each group. (c) and (d) considers the median 
lobar values on a per patient basis within the normal generational range. RUL=right upper lobe, LUL=left upper lobe, RML=right middle lobe, LML=left middle lobe, 
RLL=right lower lobe, LLL=left lower lobe. ns, not significant, *p< 0:05, **p< 0:01, ***p< 0:001, ****p< 0:0001 in Mann-Whitney U comparison tests.
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patients compared to healthy volunteers. Airways from patients 
with IPF were shown to taper less than airways in healthy 
volunteers (Table 2, Figure 8(a)). Airway tortuosity was signifi
cantly greater (p � 0:034) in IPF patients than healthy volun
teers (Table 3, Figure 8(b)). Differences were most marked 
within the lower lobes, in keeping with the typical distribution 
of IPF airway abnormalities.

For airway changes examined at the patient level, significant 
reductions in intertapering were seen in IPF patients in the 
middle (p � 0:004) and lower lobes (p � 0:002) compared to 
healthy volunteers (Table 4, Figure 8(c)). Airway tortuosity was 
similarly significantly increased in the LML (p � 0:035) and both 
lower lobes (p � 0:002) (Table 5, Figure 8(d)). The results reflect 
the lower zone distribution of disease typically seen in IPF 
patients.

3.3. Patient level quantitative analysis

When airway metrics were examined at a patient level for 
generations 2–6, the segmental intertapering value was signifi
cantly reduced (p � 0:044) in IPF patients in all lobes. 
Differences were most marked within the lower lobes 
(p � 0:003) (Table 6, Figure 9(a)). Segmental airway tortuosity 
was significantly increased in left-sided lung lobes (p � 0:009) 
and the RLL (p � 0:001)(Table 7, Figure 9(b)). Mean diameter 
per generation per lobe is visualised for each case in Figure 10. 
This gives an intuitive comparison of how airway diameter 
changes across the 2nd to 6th generation between the two 
groups. Airway diameters are generally larger across all genera
tions (with a shallower gradient change: intertapering) in IPF 
patients when compared to normal subjects.

Airways at generations 7 and beyond were not routinely 
seen in the middle lobes. Accordingly, airway metrics for 

generation 7 and beyond were only examined in the upper 
and lower lobes. Significant differences in segmental inter
tapering (p � 0:004) (Table 8, Figure 9(c)) and segmental 
airway tortuosity (p � 0:023)(Table 9, Figure 9(d)) were 
seen in the lower lobes between IPF patients and healthy 
volunteers.

Segmentations and AirQuant graphs in two sex and age- 
matched individuals (one IPF and one control) are visualised in 
Figure 11. This figure demonstrates the utility of the reduced 
representation of airways as an AirQuant generated graph. This 
depiction gives a more precise visualisation in 2D of the number of 
segments visible per lobe and per airway generation as well as the 
mean diameter of individual segments. The visualisation allows an 
intuitive sense of extent and severity of traction bronchiectasis on 
a lobar basis.

4. Discussion

Our results highlight the potential for CT-based morphological 
airway measurements to identify differences in disease extent 
and severity of traction bronchiectasis in patients with IPF. To 
date airway damage in IPF has been thought to be a primarily 
distal airway phenomenon. Our proof of concept study, despite 
having a relatively small sample size of 14 IPF cases and healthy 
controls have supported this by showing that the largest dis
tinction in intertapering and tortuosity between healthy volun
teers and IPF patients was seen in the most distal airway 
generations, beyond the seventh generation. Yet the identifica
tion of a reduction in airway intertapering and increase in 
tortuosity in proximal airway branches (in the 2nd-6th genera
tions) suggests that subtle damage does affect the central air
ways in IPF, a finding previously under-recognised. The regional 
analysis achieved by AirQuant can provide valuable morpholo
gical insights when applied across sub-regions of the airway 

Figure 9. Violin-box plots comparing airways on a per patient basis in normal healthy participants and idiopathic pulmonary fibrosis (IPF) patients. The level of 
significance of the Mann-Whitney U test for each lobe is shown above the respective plot. (a) and (b) consider airway segments between generations two and six. (c) 
and (d) only consider airway segments from generation 7 onwards. RUL=right upper lobe, LUL=left upper lobe, RML=right middle lobe, LML=left middle lobe, 
RLL=right lower lobe, LLL=left lower lobe. ns, not significant, *p< 0:05, **p< 0:01, ***p< 0:001, ****p< 0:0001 in Mann-Whitney U comparison tests.
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tree. This is an advantage over pulmonary function tests which 
provide global measures of lung damage, and many quantita
tive CT algorithms which only estimate whole lung disease 
extents.

Our findings are comparable to previous analyses of inter
tapering gradients of proximal airways in patients with idio
pathic bronchiectasis and healthy controls Kuo et al. (2020). Our 
results diverged from Kuo et al. (2020) when more distal air
ways were evaluated, reflecting the ability of our 2D-UNet 
segmentation to identify larger numbers of more distal airway 
branches. A key advantage of AirQuant lies in its automation, 
which allows hundreds of airways in a single patient, captured 
by modern segmentation methods, to be comprehensively 
analysed. The automation built into AirQuant is crucial for the 
feasibility of clinical evaluation of large patient cohorts.

The concept that traction bronchiectasis scored visually 
on CT imaging could be a prognostic variable in IPF patients 
was first described almost 15 years ago Sumikawa et al. 
(2008); Edey et al. (2011). More recently, change in visual 
traction bronchiectasis scores has been shown to identify 
disease progression on longitudinal IPF imaging Jacob 
et al. (2020). The challenges associated with employing 
visual traction bronchiectasis estimation however are many. 
These include the time consuming nature of visual analysis, 
the requirement for expert reads of the images, where 
experts are typically in short supply, are expensive to 
employ and are prone to interobserver variation Jacob 
et al. (2016).

The motivation behind the current study was the idea that 
automating airway tapering assessments would alleviate some 
of the challenges associated with visual CT estimation of trac
tion bronchiectasis by providing an objective, rapid and sensi
tive measure of lung disease severity in IPF. Accordingly, we 
chose to use automated segmentation methods, specifically to 
demonstrate that meaningful measures can be derived using 
AirQuant without recourse to labour-intensive manual labelling 
of the extensive airway network.

AirQuant was successful in examining every case, but relies 
on a good lumen segmentation. Whilst our pipeline can be 
implemented following any airway segmentation method, 
missed airways in a segmentation can affect the cross- 
sectional comparison between subjects. It is expected that 
the number of airways almost exponentially increase across 
successive airway generations. In this study, the mean number 
of airways followed this trend to the 5th lobar generation 
globally in the lungs, and to the 6th generation in diseased 
lower lobes. In healthy controls, as the airways are inherently 
smaller and thinner, we see fewer segments at each generation. 
Airways become larger and easier to identify with disease. It is 
therefore to be expected that when comparing healthy lungs 
to diseased lungs, fewer airway segments might be identified in 
healthy cases rather than those with disease.

Airway lumen segmentation is heavily influenced by CT 
acquisition and reconstruction parameters. A larger x-ray 
focal point, larger detector size, larger field of view, larger 
slice spacing and reduced dose can result in reduced 

Figure 10. Median diameter per generation per lobe of every case. This is a graphical visualisation of diameter change (intertapering) across the 2–6 generation range 
for normal healthy individuals and idiopathic pulmonary fibrosis (IPF) patients. Joined points signify the same case. RUL=right upper lobe, LUL=left upper lobe, 
RML=right middle lobe, LML=left middle lobe, RLL=right lower lobe, LLL=left lower lobe.
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resolution and therefore fewer airways identified. Similarly, 
the presence of contrast agents and particular certain 
reconstruction kernels can affect CT density and therefore 
airway measurement. A limitation of this analysis was that 

these parameters could not be controlled retrospectively. 
Nevertheless, the airway measurement method described in 
this paper was validated on gold-standard 3D printed phan
toms down to 2.12 mm diameter. The majority of AirQuant 

Figure 11. Two pairs of age and sex matched cases between the normal healthy group (a,e) and idiopathic pulmonary fibrosis group (b,f). Cases (a) and (b) are a 55 and 
56 year old females with forced vital capacity (FVC) of 100 and 102% respectively. Cases (e) and (f) are a 52 and 51 year old males with FVC of 96 and 56 % respectively. 
(a,b,e,f) shows airway segmentation and lobar classification by colour with colour bar shown. (c,d,g,h) shows corresponding respective graph network visualisation of 
airways derived by AirQuant where each airway segment is represented by an edge with thickness proportionate to mean airway lumen diameter. Lobar classification 
also shown by colour. RUL=right upper lobe, LUL=left upper lobe, RML=right middle lobe, LML=left middle lobe, RLL=right lower lobe, LLL=left lower lobe.
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airway measurements were found to be accurate within 5% 
of the ground truth diameter which is an acceptable level of 
accuracy when translated to clinical CT imaging.

Our airway lobe classification algorithm can be affected by 
anatomical variants although these are relatively uncommon 
Gu et al. (2012). In mitigation of this, the lobe classification of 
individual airways can be easily retrospectively corrected in 
our pipeline. As future work we aim to improve the robust
ness with which our lobar classification system deals with 
anatomical variants which will likely be present in very large 
data sets ( > > 1000). Our existing lobe classification algo
rithm can help develop training data for methods more 
suitable to analysing large-scale datasets such as learning 
graphical neural networks.

In the more distal airway generations, an AirQuant seg
mental branch may in fact consist of multiple anatomical 
segments. This may occur if sibling branch points are not 
identified in the segmentation and therefore not acknowl
edged as bifurcations. Though unlikely in the central air
ways, it can affect metrics in distal generations. With the 
improvement of modern segmentation methods, this issue 
will become less of a constraint.

Efforts have been made to make the centreline extraction 
and graph conversion stage robust to loops. However, when 
coming across branches that cause loops, it is difficult to deter
mine which graph edge is the valid airway branch and which is 
the anomaly. It is likely that the wrong graph edge may have 
been removed in some cases, as it is not trivial to identify the 
anomaly in an automated way. For future work, it will be 
important to validate the clinical impact of our measurements 
on larger IPF datasets.

In conclusion, we have demonstrated that the airway 
inter-tapering gradient is reduced and airway tortuosity 
enhanced in IPF patients compared to healthy participants. 
The findings were accentuated in the lower lobes which is 
consistent with the typical distribution of traction bronch
iectasis in IPF. Our pilot analyses suggest that automated 
airway analyses show great promise for the assessment of 
disease severity and extent, both in IPF trials and for clinical 
care.

Note

1. https://github.com/tomdoel/pulmonarytoolkit
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