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A B S T R A C T

Radiation therapy plays a crucial role in cancer treatment, necessitating precise delivery of radiation to
tumors while sparing healthy tissues over multiple days. Computed tomography (CT) is integral for treatment
planning, offering electron density data crucial for accurate dose calculations. However, accurately representing
patient anatomy is challenging, especially in adaptive radiotherapy, where CT is not acquired daily. Magnetic
resonance imaging (MRI) provides superior soft-tissue contrast. Still, it lacks electron density information, while
cone beam CT (CBCT) lacks direct electron density calibration and is mainly used for patient positioning.

Adopting MRI-only or CBCT-based adaptive radiotherapy eliminates the need for CT planning but presents
challenges. Synthetic CT (sCT) generation techniques aim to address these challenges by using image synthesis
to bridge the gap between MRI, CBCT, and CT. The SynthRAD2023 challenge was organized to compare
synthetic CT generation methods using multi-center ground truth data from 1080 patients, divided into two
tasks: (1) MRI-to-CT and (2) CBCT-to-CT. The evaluation included image similarity and dose-based metrics
from proton and photon plans.

The challenge attracted significant participation, with 617 registrations and 22/17 valid submissions for
tasks 1/2. Top-performing teams achieved high structural similarity indices (≥ 0.87∕0.90) and gamma pass
rates for photon (≥ 98.1%∕99.0%) and proton (≥ 97.3%∕97.0%) plans. However, no significant correlation was
found between image similarity metrics and dose accuracy, emphasizing the need for dose evaluation when
assessing the clinical applicability of sCT.

SynthRAD2023 facilitated the investigation and benchmarking of sCT generation techniques, providing
insights for developing MRI-only and CBCT-based adaptive radiotherapy. It showcased the growing capacity
of deep learning to produce high-quality sCT, reducing reliance on conventional CT for treatment planning.
1. Introduction

More than half of cancer patients receive radiotherapy as the stan-
dard care, providing effective local treatment (Chandra et al., 2021).
Radiotherapy is typically delivered daily over several weeks (Mitchell,
2013), aiming to provide a high radiation dose to the target while
minimizing the dose to the surrounding healthy tissue. To achieve
conformal radiation treatment, obtaining an electron density map of
the patient’s anatomy is crucial to determine beam attenuation and
local dose deposition (Grégoire and Mackie, 2011). This electron den-
sity information is currently obtained through computed tomogra-
phy (CT) (Seco and Evans, 2006). However, tumors are not always
clearly visible on CT, and magnetic resonance imaging (MRI) has been
proposed as its superior soft-tissue contrast offers improved visibility
of tumor-boundaries and organs-at-risk (OARs) (Schmidt and Payne,
2015). Moreover, throughout the treatment course, patient anatomy
may vary. In adaptive radiotherapy, new treatment plans are generated
weekly or daily while the patient is on the treatment couch to maintain
dose conformality. During adaptive radiotherapy, typically cone-beam
CT (CBCT) (Nijkamp et al., 2008) or MRI (Lagendijk et al., 2014)
are the sole imaging modalities at hand. However, neither MRI nor
CBCT allows for direct treatment plan optimization as accurate electron
density information is lacking. Techniques have been developed to gen-
erate synthetic CT (sCT) (also called pseudo-CT, virtual CT, surrogate
CT) from MRI and CBCT to aid in determining local beam attenuation
and dose deposition for treatment planning (Edmund and Nyholm,
2017). The sCT generation has paved the way for MRI-based treatment
planning (MRI-only radiotherapy) and CBCT-based adaptive radiother-
apy, which avoid additional radiation exposure due to imaging and
reduce the treatment centers’ workload by omitting unnecessary scans.

Although several approaches for obtaining sCT exist, including bulk
density override and atlas-based methods, deep neural networks have
recently shown promise in generating sCT (Spadea et al., 2021). Neu-
ral networks can be broadly categorized into convolutional neural
2

networks (CNNs), e.g., U-net (Ronneberger et al., 2015), generative
adversarial networks (GANs), e.g., cycleGAN, pix2pix, Goodfellow et al.
(2014), Zhu et al. (2017), Isola et al. (2017), and, more recently,
(vision-)transformers (Vaswani et al., 2017; Dosovitskiy et al., 2020)
and diffusion models (Ho et al., 2020). Paired (supervised) and un-
paired (unsupervised) training approaches have been suggested de-
pending on the network architecture. The models were trained using
2-dimensional (2D) slices or 3D CT and MRI/CBCT volumes. More-
over, 2.5D approaches considering neighboring slices or perpendicular
planes have been introduced to deal with spatial information and
coherence while maintaining performance and feasible memory use.
Most of these papers claim that their sCT generation method out-
performs others. However, networks are often trained on different
datasets and anatomies and evaluated using different metrics, making
consistent methodological comparison difficult. Moreover, most sCT
methods are evaluated based on image similarity metrics, whereas
what matters is, ultimately, the effect of sCT on the treatment plan
dose distribution, and image metrics do not necessarily reflect the dose
accuracy (Kieselmann et al., 2018). This lack of a fair comparison
hinders the identification of the best network design choices that should
be implemented in clinical sCT tools.

To address these issues and provide a fair comparison, we organized
the SynthRAD2023 Grand Challenge, held in conjunction with MICCAI
2023. In the challenge, we provided ground truth data and devel-
oped methods to facilitate fair model comparisons and increase the
understanding of how different network designs influence performance.
This challenge encourages the development and evaluation of state-of-
the-art algorithms for generating accurate and clinically relevant sCT
images from MRI and CBCT data. Two tasks were defined based on a
new publicly available dataset (Thummerer et al., 2023a): (1) MRI-to-
CT generation for MRI-only radiotherapy and MRI-guided radiotherapy
and (2) CBCT-to-CT generation for image-guided adaptive radiotherapy
(IGART) and online adaptive radiotherapy.

This paper reviews the challenge participation, evaluation, and
ranking of the submitted algorithms based on image similarity and
dose assessment for sCTs compared to ground truth CTs. The analysis
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Fig. 1. The SynthRAD2023 pipeline. Left: the participants’ algorithms generate sCT from input MRI or CBCT images. Middle block: the obtained sCT is evaluated with image
similarity metrics (comparing sCT images to ground truth CT images) and dose metrics (comparing dose distributions recalculated on sCT and ground truth CT for pre-planned
photon and proton treatment plans). Right: after calculating the metrics, the winner is determined by applying a ranking approach.
explores trends in submitted algorithms and their correlation with
overall performance, focusing on the impact of variation within the
dataset, the metrics chosen for evaluation, and examining ranking
stability.

2. Material and methods

2.1. Challenge setup

The SynthRAD (Synthesizing Computed Tomography for Radiother-
apy) challenge allowed teams to test and compare their sCT algorithms.
The challenge was hosted on the Grand Challenge website https://
synthrad2023.grand-challenge.org. It consisted of two tasks: task 1
involved generating sCT from MRI data, while task 2 focused on devel-
oping sCT from CBCT data. Each task comprises two subtasks involving
the brain and pelvis regions.

The organizing team arose from the ‘‘Image synthesis & reconstruc-
tion’’ expertise subgroup of the Dutch deep learning in radiotherapy
initiative www.DLinRT.org. The organizing group encompasses early-
stage researchers, PhDs, postdocs, four assistant professors, and one
associate professor from five Dutch University Medical Centers and
three Dutch Technical Universities.

Fig. 1 presents an overview of the SynthRAD2023 Grand Challenge
design, including the algorithms developed by the participants and
the evaluation and ranking procedures performed by the organizers.
Participants in the challenge were tasked with developing and training
models capable of generating accurate sCT images using only input
MRI or CBCT. Participants could participate in either task 1, task 2,
or both. Only fully automated methods trained from scratch on the
provided data could be used; in other words, pre-trained models were
not allowed. The submissions were automatically evaluated on the
Grand Challenge environment. Further details regarding participation
rules and policies can be found in the Appendix A. As the sCTs are
intended for radiotherapy, we analyzed photon and proton dose metrics
alongside image similarity metrics, as described in Section 2.5. To
determine the winner of the challenge, we ranked the teams based
on these metrics, for which we provide a further explanation in Sec-
tion 2.6. To ensure transparency and enable further exploration of the
methods employed during the challenge, the data preprocessing and
evaluation code can be accessed at https://github.com/SynthRAD2023.
3

2.2. Challenge phases

The challenge was divided into four phases: training, validation,
preliminary test, and test. Teams had two months to familiarize them-
selves with the challenge and begin training their algorithms, as the
training data was released on April 1, 2023. The validation phase
began on June 1, 2023, and was a Type-1 challenge in which par-
ticipants were required to execute the inference locally and submit
the corresponding sCTs. This phase allowed for up to two submissions
every four days, and the submitted sCTs were automatically assessed
using image similarity metrics. The results were then updated on an
open leaderboard, allowing real-time comparison between participating
teams. The ground truth CT images used for validation were not
shared with the participants to prevent biased results. The final test
phase was a Type-2 challenge in which teams had to upload a Docker
image containing their method, which is inferred and evaluated on the
Grand Challenge platform. The test data and ground truth CTs were
kept hidden. To familiarize participants with a Type-2 challenge, we
introduced the preliminary test phase, which started on May 1, 2023.
The preliminary test phase used six cases; only image similarity metrics
were evaluated. The final test phase started on July 16, 2023, and
lasted five weeks. The preliminary test phase and test phase ended
on August 22, 2023. Teams were required to upload a Docker image
of their algorithm and a description of their methods. To minimize
algorithm tweaking to the test data, each team could submit only twice
during the testing phase, and only the last submission was counted.
The second submission allowed participants to correct potential errors
arising during the first submission. During this phase, the generated
sCT images underwent an image similarity evaluation and a photon
and proton dose evaluation to verify the most relevant metrics for
radiotherapy. The image similarity metrics were calculated online on
the platform provided by Grand Challenge, and the dose evaluation
was performed offline due to the computational resources required. At
the end of the testing phase, the final ranking was published to show
the performance of the participating teams. After the challenge, a post-
challenge test phase was opened, and the preliminary and validation
phases were reopened to enable continuous evaluation of algorithms
until September 20, 2028.

https://synthrad2023.grand-challenge.org
https://synthrad2023.grand-challenge.org
https://synthrad2023.grand-challenge.org
http://www.DLinRT.org
https://github.com/SynthRAD2023
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2.3. Dataset

Data from 1080 patients undergoing radiotherapy treatment were
included in the SynthRAD2023 dataset. The dataset consisted of imag-
ing data from three Dutch University Medical Centers. Both task 1
(MRI-to-CT) and task 2 (CBCT-to-CT) included data from 270 patients
for both the brain and pelvis anatomy (leading to 2 × 2 × 270 image
airs). The 270 cases were divided into a training, validation, and test
et of 180, 30, and 60 patients. The dataset consisted primarily of
dult patients, with no gender restrictions applied. Only patients for
hom the MRI or CBCT was acquired within two months of the CT
ere included to limit anatomical changes. It should be emphasized

hat the datasets for task 1 and task 2 did not contain the same
atients. A detailed dataset description can be found in the publication
y Thummerer et al. (2023a). Ethical approval was obtained from
he data-providing institutes’ internal review boards/Medical Ethical
ommittees. The data was released under the CC BY-NC (Creative Com-
ons Attribution-Non-Commercial) license and made available via Zen-

do at https://zenodo.org/doi/10.5281/zenodo.7835406 (train), https:
/zenodo.org/doi/10.5281/zenodo.7868168 (validation), and https://
oi.org/10.5281/zenodo.10514185 (test, available from 01-01-2028).

The imaging protocols used to acquire the MRI and CBCT adhered
o the clinical routines of the individual centers. As a result, variations
n the MRI, CBCT, and CT imaging protocols were present between
enters and between datasets, which are representative of real-world
pplication scenarios. A comprehensive table detailing the imaging
arameters was provided alongside the dataset (Thummerer et al.,
023a). For task 1, MRIs were acquired with scanners from two dif-
erent vendors using different settings per site. Additionally, centers A
nd C used MRI scanners with field strengths of 1.5T and 3T, while
enter B exclusively utilized a 1.5T scanner. T1-weighted gradient echo
as selected for all brain data. The datasets from centers B and C

ncluded T1-weighted MRI acquired after Gadolinium contrast agent
njection, whereas those from center A were acquired without contrast
gent injection. The pelvis data comprised two-thirds of a T1-weighted
radient echo sequence and a T2-weighted spin echo sequence. For task
, CBCTs were acquired with Linacs from two different vendors. The
wo sites that scanned CBCTs with Linacs from the same vendor had
ifferent acquisition protocols.

As described by Thummerer et al. (2023a), the data was prepro-
essed by resampling the voxel size to 1 × 1 × 1 mm3 for the brain
nd 1 × 1 × 2.5 mm3 for the pelvis patients, respectively. The face was
ntentionally removed for brain cases to protect patient privacy or pro-
rietary information. The patient outline was automatically segmented
n the MRI/CBCT using thresholding and morphological operations.
his was followed by a dilation of 20 voxels in the axial plane and
in the superior-inferior directions. To ensure alignment between

he MRI/CBCT and the CT, the field of view of the MRI/CBCT and
T was adjusted based on the patient outline, and rigid registration
as performed. The resulting mask, including surrounding air, was
rovided and could be used by the participants for preprocessing.

.4. Baseline algorithms

Two bulk-assignment baseline sCT models were used to provide
nsight into the evaluation metrics: ‘‘water’’ and ‘‘stratified’’. The water
pproach assigned 0 HU to voxels within the dilated body contour mask
nd −1000 HU outside the mask (air). As suggested by Maspero et al.
2017), a stratified approach was employed to obtain images resem-
ling bulk-assigned sCT without geometrical deformations by starting
rom ground truth CT. Stratified sCTs were obtained by classifying the
round truth CT data into five categories and assigning bulk density val-
es for voxels within their specific HU ranges. Voxels were categorized
nto five classes based on HU intensity levels, mapping a range of den-
ity values to a population-derived HU value for this tissue (Maspero
4

t al., 2017), indicated as ⟨lower bound,upper bound⟩ HU → xx HU:
air’ (⟨−∞,−210⟩ HU → −968 HU), ‘adipose tissue’ ([−210,−20⟩ HU
→ −86 HU), ‘soft tissue’ ([−20, 120⟩ HU → 42 HU), ‘bone marrow’
([120, 555⟩ HU → 198 HU), and ‘cortical bone’ ([555,∞⟩ HU → 949
HU). The accuracy of the bone segmentation was further refined using
a binary hole-filling algorithm to avoid soft tissue and air voxels within
bone structures.

2.5. Evaluation

The sCTs generated by the participants were compared to the
ground truth CTs based on metrics comparing image similarity and dose
accuracy.

2.5.1. Image similarity
During the validation and test phases of the SynthRAD2023 Grand

Challenge, the accuracy of the generated sCT images was evaluated
using image similarity metrics within the dilated body contour masks
 = {𝑖 ∣ 𝑖 = 1} provided with the dataset. This evaluation aimed
to assess how closely the sCTs resembled the reference CTs. The mean
absolute error (MAE), peak signal-to-noise ratio (PSNR), and structural
similarity index measure (SSIM) were considered as image similarity
metrics, as they are commonly used in medical image synthesis (Spadea
et al., 2021).

Masked MAE was calculated to measure the average absolute dif-
ference between corresponding voxels in the sCT and CT, defined as

MAE(CT, sCT) = 1
||

∑

𝑖∈

|

|

CT𝑖 − sCT𝑖
|

|

(1)

in which we sum over the voxels inside the body contour  and
normalized by the total number of masked voxels | |.

Masked PSNR was calculated to quantify the ratio of maximum
signal intensity over the noise level in the sCT compared to the CT,
defined as

PSNR(CT, sCT) = 10 log10
⎛

⎜

⎜

⎝

𝑄2

1
||

∑

𝑖∈
(

CT𝑖 − sCT𝑖
)2

⎞

⎟

⎟

⎠

, (2)

where 𝑄 is the dynamic range of the voxel intensities ([−1024, 3000]
HU). The CT and sCT were clipped to the dynamic range to calculate
the masked PSNR.

Masked SSIM was calculated to assess structural similarity between
T and sCT. The SSIM for a voxel 𝑖 between two images 𝑥 and 𝑦 is

computed by

SSIM𝑖(𝑥, 𝑦) =

(

2𝜇𝑖
𝑥𝜇

𝑖
𝑦 + 𝑐1

)(

2𝜎𝑖𝑥𝑦 + 𝑐2
)

(

(

𝜇𝑖
𝑥
)2 +

(

𝜇𝑖
𝑦

)2
+ 𝑐1

)(

(

𝜎𝑖𝑥
)2 +

(

𝜎𝑖𝑦
)2

+ 𝑐2

) , (3)

where 𝜇𝑖
𝑥 and 𝜎𝑖𝑥 are the mean and variance, respectively, of 𝑥 within

an 𝑁 ×𝑁 ×𝑁 window centered on voxel 𝑖 and 𝜎𝑖𝑥𝑦 is the covariance of
𝑥 and 𝑦 within an 𝑁 ×𝑁 ×𝑁 window centered on voxel 𝑖. 𝑁 = 7 is the
window size, and 𝑐1 = (0.01 ⋅ 𝐿)2 and 𝑐2 = (0.03 ⋅ 𝐿)2 are normalization
constants, where 𝐿 = (3000 − (−1024)) HU is the dynamic range of the
volumes. The final masked SSIM value is then obtained by computing

SSIM(CT, sCT) = 1
||

∑

𝑖∈
SSIM𝑖(CT, sCT), (4)

where the intensities of both the CT and sCT were clipped to [−1024,
3000] HU and then adjusted to be non-negative by adding 1024 HU.

2.5.2. Dose distribution similarity
Photon and proton intensity-modulated treatment plans were opti-

mized based on the reference CT using the matRad treatment planning
system (Wieser et al., 2017). The dose was prescribed to the planning
target volume (PTV) for simplicity in both modalities, i.e., no robust
optimization was performed for proton plans, with specific doses and

https://zenodo.org/doi/10.5281/zenodo.7835406
https://zenodo.org/doi/10.5281/zenodo.7868168
https://zenodo.org/doi/10.5281/zenodo.7868168
https://zenodo.org/doi/10.5281/zenodo.7868168
https://doi.org/10.5281/zenodo.10514185
https://doi.org/10.5281/zenodo.10514185
https://doi.org/10.5281/zenodo.10514185
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Table 1
Dose constraints and planning objectives used in matRad for the brain and pelvis
cases, respectively.
Source: Values are taken from Lambrecht et al. (2018) and Hall et al. (2021).

Brain Pelvis
30 × 2.0 Gy to 95% of the PTV 20 × 3.0 Gy to 95% of the PTV

Structure Constraint Structure Constraint

Brainstem
𝐷0.03 cc < 60Gy
𝐷0.03 cc < 54Gy Rectum

𝑉60Gy < 1%
𝑉50Gy < 22%
𝑉40Gy < 38%
𝑉30Gy < 57%
𝑉20Gy < 85%

Chiasm 𝐷0.03 cc < 55Gy Bladder

𝑉60Gy < 3%
𝑉56.8Gy < 5%
𝑉48Gy < 25%
𝑉40Gy < 50%

Optical Nerve 𝐷0.03 cc < 55Gy Femur heads 𝐷max < 37Gy
Cochlea 𝐷mean < 45Gy Colon 𝐷max < 50Gy
Brain 𝑉60Gy < 3 cc Small bowel 𝐷max < 40Gy

isodose levels for the brain and pelvis. Only co-planar plans were
considered, with photon plans utilizing 9–13 equi-angled 6 MV beams
from a generic Linac model and proton plans utilizing 3–4 beams (from
bilateral and opaque angles) from a generic proton system available
in matRad. To reduce the dose to the healthy tissues and to ensure
plan uniformity between patients, we used the same objective functions
and constraints available in matRad per treatment site. OAR dose limits
were treated as hard constraints whenever possible and were revised on
a patient-specific basis when hard constraints were not achievable. For
a few patients, the number of beams and some optimization parameters
(e.g., optimizer, maximum number of iterations, and objective weights)
were also fine-tuned to meet dose prescriptions and OAR limits. All
planning goals and OAR dose limits were based on international guide-
lines for the brain (Lambrecht et al., 2018) and pelvis (Hall et al., 2021)
are summarized in Table 1.

Throughout the dose evaluation process, the dose was recalculated
on each sCT for both proton and photon treatment plans. This recal-
culation was carried out without propagating organ delineations or
replanning, a deliberate measure taken to avoid potential differences
arising from plan optimization. Subsequently, the differences between
the planning dose distributions, originally calculated on CT, and the
recalculated dose distributions on the sCT for both photon and proton
plans were quantified using three specific metrics. To ensure high
reproducibility and facilitate fair comparisons for the SynthRAD2023
test set, the offline dose evaluation will be available at https://doi.org/
10.5281/zenodo.10514185 at the time of the release of the test set.

Relative mean absolute dose difference within high dose regions
 = {𝑖 ∣ 𝐷𝐶𝑇 ,𝑖 ≥ 0.9 ⋅𝐷𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑} were calculated to assess the difference
n received dose in and around the target, defined as

AEdose = 1
||

∑

𝑖∈

𝐷𝐶𝑇 ,𝑖 −𝐷𝑠𝐶𝑇 ,𝑖

𝐷prescribed
, (5)

ith 𝐷(𝑠)𝐶𝑇 being the dose distribution in the (𝑠)𝐶𝑇 and 𝐷𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑 the
rescribed dose.
Dose-volume histogram (DVH) parameters were calculated to

ssess the differences in the doses received by the PTV and OARs:
he near-minimum dose in the PTV 𝐷98PTV, the PTV volume receiv-
ng at least 95% of the prescribed dose 𝑉 95PTV, the near-maximum

dose of a given OAR 𝐷2OAR, and the mean dose received by a given
AR 𝐷meanOAR. Specifically, the use of the near-minimum and near-
aximum was suggested by ICRU83 (https://www.fnkv.cz/soubory/
16/icru-83.pdf). We included the relative absolute differences for all
arameters as defined by

98PTV,CT =
|𝐷98PTV,CT −𝐷98PTV,sCT + 𝜖|

𝐷98PTV,CT + 𝜖
, (6)

𝑉 95PTV,CT =
|𝑉 95PTV,CT − 𝑉 95PTV,sCT + 𝜖|

, (7)
5

𝑉 95PTV,CT + 𝜖
𝐷2OARs =
1

𝑛OARs

∑

OAR

|𝐷2OAR,CT −𝐷2OAR,sCT + 𝜖|
𝐷2OAR,CT + 𝜖

, (8)

meanOARs =
1

𝑛OARs

∑

OAR

|𝐷meanOAR,CT −𝐷meanOAR,sCT + 𝜖|
𝐷meanOAR,CT + 𝜖

, (9)

where 𝜖 = 1e−12 to avoid division by zero and 𝑛OARs is the number
of OARs. For each patient, we used the three OARs (if available) that
had the highest average of 𝐷5OAR and 𝐷meanOAR to analyze dose
differences in organs close to the target. We summed the four terms
to obtain one final value for the DVH metric.

Gamma pass rates were calculated to compare the 3D spatial
dose distributions from the sCTs with the dose obtained from the CT.
This calculation followed the 3D gamma pass rate approach described
by Low et al. (1998) with a dose-difference criterion (𝛥𝐷) of 2% and a
distance-to-agreement criterion (𝛥𝑑) of 2 mm. The gamma pass rate at
each position vector in the sCT was determined by comparing it with
the CT dose. Gamma pass rates were evaluated within regions receiving
doses ≥ 10% of the prescribed dose (Ezzell et al., 2009).

2.6. Eligibility and ranking

The nine metrics defined above were calculated for each test case
and aggregated across all test cases for each participating team (𝜇±𝜎).
Teams were not considered in the ranking if their method did not
outperform the water baseline for all three individual image similarity
metrics. Moreover, the participants’ method must complete the gener-
ation of a single sCT within 15 min on the Grand-Challenge platform,
as described in the Appendix A.

Several methods exist for creating a ranking for a challenge with
multiple metrics, including (1) calculating the mean over all metrics
and ranking the aggregated scores (MeanThenRank), (2) calculating
the median over all metrics and ranking the aggregated scores (Me-
dianThenRank), (3) calculating the ranking for each metric and com-
puting the mean of the aggregated ranks (RankThenMean), and (4)
Calculating the ranking for each metric and computing the median of
the aggregated ranks (RankThenMedian). Directly applying MeanThen-
Rank and MedianThenRank to the nine metrics is inappropriate due
to their lack of normalization and the differing orderings (ascending
or descending). To fairly rank the submissions, each metric was nor-
malized and scaled between zero (indicating the worst average team
performance) and one (indicating the best average team performance).
Subsequently, the normalized metrics are used to calculate the mean or
median and rank the aggregated score.

In the context of the SynthRAD2023 challenge, the MeanThenRank
approach was employed to determine the winners. This method should
account for variations in team performance, enabling a fair evaluation
considering the diverse clinically relevant aspects of image similarity,
photon dose, and proton dose metrics. To analyze biases introduced by
the ranking method, we also studied how the other ranking approaches
would affect the outcome to assess ranking stability.

2.7. Analysis

2.7.1. Overall sCT performance
Besides computing the aggregated metrics per submission (𝜇 ± 𝜎),

we analyzed the significance of one team outperforming another in
terms of individual metrics. To do so, we used the Wilcoxon signed-
rank test (Wilcoxon, 1945) with Holm’s adjustment for multiple test-
ing (Holm, 1979) for each metric separately, offering insights into the
pairwise performance differences between teams. The significance level
for this test is set at 𝛼 = 0.05. Additionally, we recorded the inference
time of the participant’s methods (𝜇± 𝜎) to synthesize the CT from the

CBCT or MRI data on the Grand Challenge infrastructure.

https://doi.org/10.5281/zenodo.10514185
https://doi.org/10.5281/zenodo.10514185
https://doi.org/10.5281/zenodo.10514185
https://www.fnkv.cz/soubory/216/icru-83.pdf
https://www.fnkv.cz/soubory/216/icru-83.pdf
https://www.fnkv.cz/soubory/216/icru-83.pdf
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2.7.2. Model design predictors
We evaluated the model design choices adopted by participating

teams thoroughly, aiming to identify the impact of these choices on
overall ranking and performance. Statistical significance of the differ-
ences in SSIM performance within each subtask is determined using the
Mann–Whitney U-test (Mann and Whitney, 1947) (𝛼 = 0.01), chosen
for its suitability in comparing two independent samples that may not
adhere to normal distribution. This test is particularly robust in the
context of our analysis, providing reliable insights into the performance
disparities associated with distinct design choices. To define predic-
tors for sCT performance, we analyzed different design choices. We
categorized them into five key aspects: (1) model and anatomy, (2)
backbone architecture, (3) spatial configuration, (4) preprocessing, (5)
data augmentation, and (6) postprocessing.

Model and anatomy. Teams used different strategies to handle brain
and pelvis data. Some teams used one collective model trained on both
brain and pelvis patients (‘‘One model’’) or conditioned the collective
model on the anatomical region (‘‘One model, anatomy conditional’’).
In contrast, others trained the same model separately for the brain
and pelvis subsets (‘‘Two identical models’’). Additionally, some teams
used the same or a similar backbone architecture for both regions with
distinctions in training parameters or network layers (‘‘Two identi-
cal backbones, different training param.’’ and ‘‘Two similar models’’,
respectively). Others employed entirely different models for the two
regions (‘‘Two different models’’).

Backbone architecture. The base of a synthesis model involved using a
CNN encoder–decoder model, which is a standard choice for image re-
construction and translation within deep learning. Teams also explored
alternative architectures, such as GAN-based models that introduced a
discriminator network and adversarial loss, transformer-based architec-
tures that emphasized attention in the synthesis process, and diffusion
model-based approaches that relied on an iterative diffusion process
during inference. Moreover, some teams used an ensemble of multiple
models to produce the final output.

Supervision. Each team reported the supervision approach adopted.
Supervised (paired) training was guided by directly comparing predic-
tions (sCT) to ground truth (CT) from the same cases. Unsupervised
(unpaired) training was guided by introducing cycle-consistency as
introduced by Zhu et al. (2017).

Spatial configuration. The implementation of sCT generation models
varied in different spatial configurations. Opting for fully 3D models
was possible, considering the entire image volume as input. However,
fully 3D models were often restricted in use by available computing re-
sources; therefore, many studies employed 3D patch-based approaches,
2.5D models considering multiple consecutive 2D slices, or a combi-
nation of orthogonal slices, full slice 2D models, or 2D patch-based
models.

Preprocessing. A range of preprocessing techniques were used in the
submitted algorithms, focusing on resizing and intensity normalization,
necessary for stable and optimal model training. Resizing was used to
achieve the desired voxel size, such as in the case of iso-resampling or
the desired model input size. Intensity normalization was implemented
linearly at the population level, at the patient level, or as standard-
ization by ensuring well-distributed data based on a specific mean and
standard deviation. Furthermore, some teams used intensity clipping to
remove outliers, applied histogram matching or provided a specialized
pipeline for the specific modality or anatomical region being processed.

Data augmentation. Various data augmentation techniques ensured a
diverse training set, potentially making the models more robust to
unseen cases in the test set. Teams introduced randomness through ran-
dom crop or patch selection, flipping, rotation, blurring, noise addition,
and intensity transformations like bias field or contrast adjustments.
Random deformations, whether affine or elastic, were also applied to
enhance the diversity of the training set.
6

Table 2
Details on the challenge participation. Participants without a team are displayed as a
one-person team.

Validation Preliminary test Test

Task 1
275 valid 77 valid 18 included,
submissions submissions 4 excluded, and
(from 38 teams) (from 27 teams) 2 failed teams

Task 2
207 valid 36 valid 14 included and

3 excluded teamssubmissions submissions
(from 25 teams) (from 15 teams)

Postprocessing. Some teams that implemented patch-based models av-
eraged overlapping patches at test time. The multiple outputs of ensem-
bled methods could be combined into a single sCT. Additionally, spe-
cific postprocessing steps were implemented considering prior knowl-
edge of the modality, such as noise and artifact removal. The inversion
of original preprocessing steps, such as normalization and padding, was
crucial in obtaining the final sCT with accurate dimensions and voxel
representation in Hounsfield units (HU).

2.7.3. Data influence
By examining the teams’ performances, we analyzed the test dataset

to identify the characteristics and features of the samples correlating
with synthesized image quality. The analysis compared image simi-
larity and dose metrics (𝜇 ± 𝜎) averaged for each task, center, and
anatomy within the test set. In addition, for task 1, the influence of
MR acquisition protocol and magnetic field strength on performance
was investigated. Statistical significance between the groups was es-
tablished using the Mann–Whitney U-Test (Mann and Whitney, 1947)
(𝛼 = 0.01). Lastly, we extended our analysis to a patient level, allowing
for detailed evaluation of low-performing patients.

2.7.4. Metric correlations
For clarification throughout the paper, we defined the term ‘metric

group’ to refer to one of the three categories of evaluation metrics:
image similarity metrics (MAE, PSNR, and SSIM), photon dose met-
rics (MAEdose, DVHmetric, and 𝛾), and proton dose metrics (MAEdose,
DVHmetric, and 𝛾).

Our objective was to analyze the correlation within and between
metric groups. To achieve this, we employed visual assessments to
illustrate correlations within a metric group. We used the Spearman
rank correlation coefficient 𝜌 (Spearman, 1904) to quantify correlations
between all metrics. This coefficient considers the ordinal relation-
ship between the ranks of single test case performances, providing
robustness against variations in the scale and direction of the values.

2.7.5. Ranking stability and correlations
We used Kendall’s 𝜏 correlation coefficient (Kendall, 1938) between

the approaches to analyze the effect of ranking approach choice. This
coefficient quantifies the correlations between the ranking approaches
outlined in Section 2.6, assessing the similarity in the relative ordering
of elements across different rankings.

In addition, we investigated the stability of the final rankings at
a patient level, as recommended by Wiesenfarth et al. (2021). This
involved implementing bootstrapping to examine variations in the
ranking positions of all teams. The ranking process was iteratively
applied to 1000 bootstrap sets. Each bootstrapping set consisted of 120
randomly selected patients from the test set, with patients potentially
being selected more than once. The MeanThenRank approach was
employed to rank the teams by first normalizing the metric values based
on the best and worst average performance of that metric per bootstrap
sample.

3. Participation

The SynthRAD2023 Grand Challenge witnessed substantial partici-
pation from research teams worldwide, showcasing various techniques
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and methodologies for sCT generation. By the end of the test phase, the
training dataset had been downloaded 1797 times, and 617 researchers
had registered for the challenge, forming 94 teams and 429 individual
participants. Participation in the challenge phases decreased over time,
resulting in 22 and 17 successful submissions in the test phase for tasks
1 and 2, respectively. Based on the criteria described in Section 2.6,
18 and 14 teams were included in the analysis for tasks 1 and 2,
respectively (Table 2). Note that due to an unexpectedly large matrix
size for one patient in the test set, the inference time limit was raised
to accommodate the sCT generation. Nine of the included teams partic-
ipated in both tasks, primarily utilizing the same or similar models for
both tasks. Tables 3 and 4 show an overview of the proposed methods
of all teams for tasks 1 and 2, respectively. More detailed descriptions
of the methods implemented by the top five teams for both tasks are
presented in Sections 3.1 to 3.7. Detailed method descriptions of all
other teams can be found in supplementary document A.

3.1. SMU-MedVision (task 1 & 2)

SMU-MedVision employed a hybrid 3D patch-based CNN and trans-
former Unet network with multi-scale structure extraction and preser-
vation (MSEP) for task 1 (Chen et al., 2023; Zhong et al., 2023). In the
encoder, they employed channel and spatial-wise attention to extract
spatial information, allowing for varying input sizes. Additionally, a
residual dilated Swin transformer (RDSformer) was integrated into each
skip connection of the UNet to enhance the preservation of structural
information in cross-modal features (Liu et al., 2021). Two identical
models were created for both anatomical regions, including the masked
MAE and VGG19 perceptual loss (Johnson et al., 2016). Preprocessing
involved Z-score normalization tailored to individual patient statistics
and random horizontal and vertical flipping for data augmentation. At
test time, overlapping patches were created by selecting every 80,000th
voxel within the body mask as the central point of each patch. These
overlapping patches were averaged to result in the full sCT. The model
underwent training for 200 epochs using the Adam optimizer with a
learning rate of 2e−4 and a poly decay scheduler. The final epoch used
t test time was determined based on the best MAE in the sub-validation
et created from the training set.

For task 2, SMU-MedVision implemented a 2.5D Unet++ (Zhou
t al., 2018) with a ResNeXt101 backbone, with the loss function
ombining masked MAE loss, VGG19 perceptual loss (Johnson et al.,
016), and L2 regularization. The model was trained using brain and
elvis data and then fine-tuned per region. Preprocessing involved
esizing, clipping, and linear normalization of the CT. Training data
ugmentation included shift scale rotations with horizontal and ver-
ical flipping, while test data underwent augmentation via horizontal
nd vertical flipping. Slices of 5 × 384 × 384 voxels were used for

collective pretraining, and the model input sizes for fine-tuning were
5 × 288 × 288 voxels for the brain and 5 × 416 × 416 voxels for
the pelvis. Postprocessing included the inversion of test-time augmen-
tations. The model was collectively trained for 40 epochs and then
fine-tuned using 5-fold cross-validation for 50 for the brain and 40
epochs for the pelvis, respectively, and optimized using an AdamW
optimizer with a stepped decay learning rate schedule. The final result
was based on an ensemble of all five folds (with the best validation
MAE) and a model trained on the completely provided training set (for
the number of epochs mentioned above).

3.2. Jetta_Pang (task 1)

Jetta_Pang implemented two 3D patch-based nnU-Net (Isensee et al.,
2021) models with an MSE loss for task 1: Model-Brain and Model-
Pelvis. Preprocessing involved Z-score normalization for MRI and no
normalization for CT images. No resizing, rescaling, or data augmen-
tation was applied. Model input sizes were 64 × 128 × 224 voxels
for brain patches and 112 × 160 × 128 voxels for pelvis patches.
7

Inference utilized the nnU-Net’s default sliding window with half-patch
size overlap, and no postprocessing steps were applied since the sCT
was presented in HU. The models were trained for 1000 epochs using an
SGD optimizer with a Nesterov momentum of 0.99, an initial learning
rate of 1e−2, and a polyLR scheduler.

.3. GEneRaTion (task 2)

GEneRaTion employed a 2D restoration approach using a Swin
ransformer (Liang et al., 2021) combined with a pre-trained masked
utoencoder (He et al., 2022) for task 2. The SwinV2 architecture (Liu
t al., 2022) was enhanced by incorporating group propagation blocks
Yang et al., 2022). Depending on the training stage, the model in-
luded either an L1, MSE, or perceptual loss (Johnson et al., 2016).
wo identical models were created for the brain and pelvis. (CB)CT
as linearly normalized between [−1000, 3000] HU for the brain and
−1000, 2000] HU for the pelvis. In a self-supervised pretraining phase,
n L1 loss and a learning rate of 1e−4 were applied to 8 × 8 random

patches with at least 75% of the patch within the provided body mask.
Random 90◦ rotations or horizontal or vertical flipping were part of
this pretraining step. Subsequently, the models were fine-tuned for 100
epochs on axial slices randomly cropped to 160 × 160 voxels, utilizing
three stages. These stages involved training with (1) L1 loss and a
learning rate of 1e−4, (2) MSE loss with a learning rate of 2e−5, and
3) a perceptual loss with a learning rate of 1e−5. During test-time
nsembling, the three sCTs were combined through a weighted average,
ith weights calculated by 𝑠𝐶𝑇−mean(𝑠𝐶𝑇 )

max(𝑠𝐶𝑇 ) , and preprocessing steps were
restored.

3.4. FAYIU (task 1 & 2)

Team FAYIU implemented a patch-based 3D Swin UNETR
(Hatamizadeh et al., 2021) in MONAI (Cardoso et al., 2022) for both
tasks and regions separately. The Swin UNETR architecture, incorpo-
rating a vision transformer-based encoder and CNN-based decoder,
enabled the processing of 3D patches. The models used a masked L1
loss. MRI inputs were normalized by dividing by 1000, while (CB)CT
inputs were first made non-negative and subsequently divided by 2000.
For training, 20 random patches of 32 × 96 × 96 voxels were selected
per patient, and no other data augmentation techniques were applied.
At inference time, patches overlapping by 28 × 72 × 72 voxels were
selected, and overlapping regions were averaged in a weighted manner,
with the weights for adjacent patches decreasing linearly as the overlap
distance increased. Furthermore, the CT normalization procedure was
reverted to result in an sCT in HU. The models were trained for 4000
epochs using the Adam optimizer and step-wise learning rate decay
from 5e−4 to 5e−5.

3.5. iu_mia (task 1 & 2)

Team iu_mia employed a 3D patch-based ShuffleUNet (Chatterjee
et al., 2021) model conditioned on the anatomical region for both tasks,
with the L1 loss for both tasks. This model incorporates specialized
3D pixel unshuffling and shuffling modules to effectively handle the
unique 3D aspects of medical imaging data. Z-score normalization was
applied to the 3D MRI volumes, while (CB)CT volumes underwent
linear scaling by ((CB)CT − 1024)∕4024. They selected random patches
measuring 96 × 96 × 96 voxels for training, and no other data augmen-
tation techniques were applied. At test time, sCTs were generated from
patches with a 62.5% overlap and averaging using Gaussian weighting
(𝜎 = 0.125), and the normalization process was inverted. The models
were trained for 3000 epochs using the Adam optimizer with a linear

learning rate scheduler initialized at 1e−3.



MedicalImageAnalysis97(2024)103276

8

E.M
.C.H

uijben
et
al.

Table 3
Ranking and model details task 1 (MRI-to-CT synthesis). When a check is used, this step is applied to both MRI and CT and brain (br) and pelvis (pel); otherwise, it is specified by the subgroup. All distinctions listed in the first two
rows are described in Section 2.7.2.

Rank Team Model & anatomy Backbone arch. Sup. Spatial config. Preprocessing Data augmentation Postprocess.

O
ne

m
odel

O
ne

m
odel,anatom

y
conditional
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m

odels
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o
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backbones,different

training
param

.

Tw
o

sim
ilar

m
odels

Tw
o

different
m

odels

CN
N

encoder-decoder

GAN

Transform
er

Diffusion
m

odel

Ensem
ble

of
m

ultiple
m

odels

Supervised

U
nsupervised

3D 3D
patch-based

2.5D

2D Iso-resam
pling

/
resizing

Clipping

Patient
level

linear
norm

alization

Population
level

norm
alization

Standardization

H
istogram

m
atching

O
ther

(e.g.N
4

correction,sm
oothing,lim

b
rem

oval)

Random
crop

/
patch

Flipping

Rotation

Blurring

N
oise

addition

Intensity
transform

(bias
field,contrast

/
histogram

adj.)

Deform
ation

(affine
or

elastic)

Average
overlapping

patches

N
oise

/
artifact

rem
oval

Revert
norm

alization
/

padding

1 SMU-MedVision ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2 Jetta_Pang ✓ ✓ ✓ ✓ MR ✓

3 FAYIU ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

4 Elekta ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ MR MR ✓ ✓ ✓

5 iu_mia ✓ ✓ ✓ ✓ pel CT MR ✓ ✓ ✓

6 ShantouBME ✓ ✓ ✓ ✓ MR CT ✓ ✓

7 FGH_365 ✓ ✓ ✓ ✓ ✓ ✓ ✓ MR CT ✓ ✓ ✓ ✓ ✓ ✓ ✓

8 USC-LONI ✓ ✓ ✓ ✓ ✓ MR CT ✓ ✓

9 UKA ✓ ✓ ✓ ✓ ✓ ✓ CT ✓ ✓ ✓

10 PSICPT_AI4PT ✓ ✓ ✓ ✓ CT MR ✓ ✓ ✓ ✓

11 SubtleCT ✓ ✓ ✓ ✓ ✓ MR CT ✓

12 mriG ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

13 KoalAI ✓ ✓ ✓ ✓ ✓ CT MR ✓ ✓ ✓ ✓ ✓ ✓ ✓

14 Breizh-CT ✓ ✓ ✓ ✓ ✓ ✓ ✓

15 SKJP ✓ ✓ ✓ ✓ MR MR
16 reza.karimzadeh ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

17 thomashelfer ✓ pel br ✓ br pel ✓ ✓

18 X-MAN ✓ ✓ ✓ ✓ MR ✓ ✓ ✓ ✓
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Table 4
Ranking and model details task 2 (CBCT-to-CT synthesis). When a check is used, this step is applied to both CBCT (CB) and CT and the brain and pelvis (pl.). Otherwise, it is specified by the subgroup. All
distinctions listed in the first two rows are described in Section 2.7.2.

Rank Team Model & anatomy Backbone arch. Sup. Spatial config. Preprocessing Data augmentation Postproc.

O
ne

m
odel

O
ne

m
odel,anatom

y
conditional

Tw
o

identical
m

odels

Tw
o

identical
backbones,different
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param

.
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odels
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encoder-decoder

GAN

Transform
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Diffusion
m

odel
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ultiple
m

odels

Supervised

U
nsupervised

3D
patch-based

2.5D

2D 2D
patch-based

Iso-resam
pling

/
resizing

Clipping

Patient
level
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norm

alization
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level

linear
norm
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H
istogram

m
atching

O
ther

(e.g.overflow
correction,m

ulti-w
indow

ing)

Random
crop

/
patch

/
translation

Flipping

Rotation

N
oise

addition

Intensity
transform

(contrast
/

histogram
adj.)

Deform
ation

(affine
or

elastic)

Average
overlapping

patches

N
oise

/
artifact

/
background

rem
oval

Revert
norm

alization
/

padding

1 SMU-MedVision ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2 GEneRaTion ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

3 iu_mia ✓ ✓ ✓ ✓ pel ✓ ✓ ✓ ✓

4 FAYIU ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

5 Pengxin Yu ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

6 FGZ Medical Research ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

7 KoalAI ✓ ✓ ✓ ✓ ✓ ✓ pel ✓ ✓ ✓ ✓ ✓ ✓

8 FGH_365 ✓ ✓ ✓ ✓ ✓ ✓ ✓ CB CT ✓ ✓ ✓ ✓ ✓ ✓ ✓

9 UKA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

10 Breizh-CT ✓ ✓ ✓ ✓ ✓ CB ✓ ✓

11 MedicalMind ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

12 RRRocket_Lollies ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

13 SKJP ✓ ✓ ✓ ✓ CB
14 X-MAN ✓ ✓ ✓ ✓ CB ✓ ✓ ✓ ✓
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3.6. Elekta (task 1)

Team Elekta only participated in task 1, where they employed a
2.5D pix2pix (Isola et al., 2017) model using a ResUnet (Zhang et al.,
2018) generator and a discriminator implemented similarly to the en-
coding part of the ResUnet. Spectral normalization (Miyato et al., 2018)
was applied after each convolutional layer, and instance normalization
replaced group normalization. Two identical models were created per
anatomical region, using the least squares GAN loss (Mao et al., 2017)
with L1 regularization (weight of 50). Linear scaling of MRI and CT
intensities was conducted to fit within the range of [−1, +1], with
source ranges determined by percentiles for MRI and fixed as [−1000,
+2200] HU or [−1000, +3000] HU for CT. Two networks were trained
for both regions, one covering the full CT intensity range and the other
focusing on a narrower range. The training involved randomly selecting
axial patches of 5 × 192 × 192 and augmented using affine transforma-
tions, synthetic multiplicative bias fields, blurring, sharpening, gamma
contrast adjustments, and linear intensity transformations for MRI. For
CT, only affine transformations were applied. During inference, patches
with 4 × 96 × 96 voxels overlap were combined through weighted
averaging, with higher weights assigned to pixels near the center of
the patch and lower weights to those near the edge. The model was
trained using the Adam optimizer and learning rates of 1e−4 and 5e−5
for the generator and discriminator, respectively. Additionally, a slow-
moving exponential moving average (EMA) of the generator parameters
was tracked during training and used as the final model for inference.
Each model was trained six times, resulting in a final sCT ensembled
by averaging the results of the six models.

3.7. Pengxin Yu (task 2)

Pengxin Yu employed a 3D patch-based model inspired by Ge et al.
(2019) for task 2, implemented separately for the brain and pelvis.
The model architecture featured consecutive multiscale residual blocks,
effectively extracting fine-grained spatial structures and integrating
stereo-correlation and image-expression constraints alongside the L1
reconstruction loss to guide structural detail and scene content. CBCT
was linearly normalized between [−1000, 2000] HU, and for CT,
center and region-specific windows were set: brain center A: [0, 3000]
HU, brain center B and C: [−1000, 2000] HU, pelvis center A: [0,
2000] HU, and pelvis center B and C: [−1000, 1000] HU, after which
the intensities were linearly normalized. During training, patches of
8 × 180 × 180 voxels were created by randomly resizing, cropping, and
horizontal flipping. At test time, overlapping patches were selected with
an overlap of 2 × 32 × 48 voxels. The models were trained for 1000
epochs with the AdamW optimizer with an initial learning rate of 3e−4
and reducing the learning rate by a factor 10 when the validation loss
has not decreased for 10 epochs in a row. The final epoch used at test-
time was determined based on the best PSNR on the sub-validation set,
created from the training set.

4. Results

4.1. Overall sCT generation performance

Table 5 presents the final ranking and quantitative results of the 18
eligible teams for task 1 and 14 eligible teams for task 2, along with
the two baseline algorithms. All eligible teams outperformed the water
baseline in both tasks based on the image similarity metrics. Almost all
teams also outperform the water baseline based on the dose metrics.
However, one team (X-MAN) did not outperform the water baseline
when considering the 𝛾photon and DVHproton metrics in task 1 and the
MAEphoton and 𝛾photon metrics in task 2. On the other hand, 11/18
and 14/18 teams outperform the stratified baseline based on image
similarity for tasks 1 and 2, respectively. Regarding the dose metrics
10

in task 1, 10/18 and 14/18 outperformed the stratified baseline for
the photon and proton gamma pass rate, respectively. In task 2, the
stratified baseline outperformed all teams based on the photon gamma
pass rate, while 11/15 teams achieved a higher proton gamma pass rate
than the stratified baseline. Interestingly, a higher image similarity did
not automatically lead to an improved dose distribution. For example,
comparing SMU-MedVision (rank 1) and FGZ Medical Research (rank
6) for task 2, we observe a large difference in MAE of 49.95±11.78 and
60.65±12.56 HU, while a subtle difference in photon gamma pass rates
of 99.49 ± 1.65 and 99.57 ± 1.07 is seen. Such differences motivated us
to perform an in-depth statistical analysis examining the significance of
one team outperforming another based on individual metrics (Figures
1 and 2 in supplementary document B). Based on the image similarity
metrics, high-ranking teams robustly outperform lower-ranked teams.
Statistical significant improvements were observed when comparing all
image metrics between a team and another team ranked at least seven
places lower for task 1, or six placed lower for task 2. However, for the
dose metrics, this relation is weaker. In task 1, no statistical significant
differences were observed between the top fourteen teams regarding
the photon dose metrics and top eleven teams regarding the proton dose
metrics. In task 2, no statistically significant differences were observed
between the top eight teams regarding the photon and proton dose
metrics, except for the fifth team (Pengxin Yu), which significantly
outperforms the seventh team (KoalAI) regarding the proton DVH
metric.

Overall, the teams successfully generated high-quality sCTs, accu-
rately synthesizing soft-tissue density. However, visual examples in
Fig. 2 show more pronounced errors at transitions between tissue
densities, such as the boundaries between air and soft tissue or soft
tissue and bone. These errors at the boundaries of the input with the
ground truth CT appear consistent across teams and lead to increased
dose error when a beam passes through these regions. Moreover, in the
pelvic cases, the anatomy does not always fit within the field-of-view
of the CBCT, requiring participants to synthesize anatomy not present
in the model input.

The average inference time per case was 5.2 ± 2.8 minutes, with
teams utilizing an average of 4.0 ± 4.8 GB of GPU RAM. The maximum
observed inference time for a single case was 21.8 min. There was
a notable spread in resource usage between teams, and a detailed
overview per team per subtask is available in Figure 3 in supplementary
document B.

4.2. Model design predictors

Of all the teams that participated in both tasks, the challenge
winner, SMU-MedVision, was the only team to implement two different
model architectures for each task. Most teams used the same model
architecture for the brain and the pelvis but trained it separately for
both regions. Therefore, the limited number of teams that chose similar
or different models/parameters for the brain and pelvis did not allow
for visible trends in the rankings (Tables 3 and 4). Nevertheless, teams
that used one model conditioned on the anatomy consistently secured
relatively high ranks for both tasks. Still, the team that trained one
collective model without conditioning on the anatomical region ranked
last in both tasks.

In addition, plain CNN decoder-encoder and GAN-based models
were prevalent among the teams. However, the teams that placed first
and third in task 1 and second and fourth in task 2 used transformer-
based approaches. These transformers showed significantly better per-
formance in both regions for task 1 and in the brain for task 2,
achieving average SSIM values of 0.88 ± 0.03 for task 1 and 0.90 ± 0.03
for task 2 (Fig. 3). Following the transformers, CNN encoder–decoder
models were the next best-performing, yielding SSIM values of 0.85 ±
.04 and 0.89 ± 0.04 for tasks 1 and 2, respectively. Conversely, teams
sing GANs tended to rank lower (Tables 3 and 4), with SSIM values of
.83 ± 0.07 for task 1 and 0.87 ± 0.05 for task 2. Notably, GANs showed
a significant performance drop, especially for the pelvis cases (Fig. 3).
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Table 5
All quantitative metrics (𝜇 ± 𝜎) produced by every participant in task 1 (MRI-to-CT) and task 2 (CBCT-to-CT). There were three image-based and six dose-based metrics: three for photon
treatment and three for proton treatment. The best results per task per metric are marked in boldface.

Metric table 1: The quantitative metrics for task 1 (MRI-to-CT). Participants who scored worse than the water baseline on one image metric were excluded from the final ranking.

Rank Team Image metrics Dose metrics

Photon Proton

MAE (HU, ↓) PSNR (dB, ↑) SSIM (↑) MAE (Gy, ↓) DVH (↓) 𝛾2%/2 mm (↑) MAE (Gy, ↓) DVH (↓) 𝛾2%/2 mm (↑)

1 SMU-MedVision 𝟓𝟖.𝟖𝟑 ± 𝟏𝟑.𝟒𝟏 𝟐𝟗.𝟔𝟏 ± 𝟏.𝟕𝟗 𝟎.𝟖𝟖𝟓 ± 𝟎.𝟎𝟐𝟗 𝟎.𝟎𝟎𝟒𝟎 ± 𝟎.𝟎𝟎𝟑𝟐 𝟎.𝟎𝟐𝟔𝟓 ± 𝟎.𝟎𝟑𝟖𝟐 98.23 ± 4.45 0.0326 ± 0.0220 𝟎.𝟐𝟎𝟖𝟕 ± 𝟎.𝟐𝟔𝟎𝟒 97.28 ± 2.58
2 Jetta_Pang 65.73 ± 13.75 28.38 ± 1.68 0.869 ± 0.032 0.0040 ± 0.0037 0.0268 ± 0.0429 𝟗𝟗.𝟎𝟎 ± 𝟏.𝟗𝟖 𝟎.𝟎𝟑𝟏𝟔 ± 𝟎.𝟎𝟏𝟗𝟒 0.2208 ± 0.2680 𝟗𝟕.𝟓𝟒 ± 𝟐.𝟑𝟕
3 FAYIU 61.72 ± 13.32 28.83 ± 1.61 0.876 ± 0.030 0.0041 ± 0.0036 0.0273 ± 0.0437 98.18 ± 4.24 0.0320 ± 0.0202 0.2150 ± 0.2732 97.25 ± 2.56
4 Elekta 62.76 ± 13.06 28.80 ± 1.60 0.875 ± 0.030 0.0040 ± 0.0036 0.0286 ± 0.0525 98.15 ± 4.21 0.0332 ± 0.0220 0.2271 ± 0.2756 97.27 ± 2.50
5 iu_mia 62.83 ± 13.77 28.70 ± 1.59 0.873 ± 0.029 0.0040 ± 0.0034 0.0278 ± 0.0533 98.07 ± 4.65 0.0322 ± 0.0187 0.2173 ± 0.2608 97.31 ± 2.50
6 ShantouBME 67.54 ± 14.17 28.05 ± 1.55 0.863 ± 0.031 0.0042 ± 0.0034 0.0275 ± 0.0408 98.11 ± 4.18 0.0334 ± 0.0197 0.2185 ± 0.2575 97.23 ± 2.34
7 FGH_365 66.75 ± 13.18 28.59 ± 1.51 0.866 ± 0.032 0.0043 ± 0.0039 0.0324 ± 0.0598 97.94 ± 4.75 0.0349 ± 0.0254 0.2249 ± 0.2674 96.91 ± 2.82
8 USC-LONI 70.70 ± 14.40 27.77 ± 1.74 0.854 ± 0.034 0.0045 ± 0.0037 0.0331 ± 0.0590 97.97 ± 4.32 0.0365 ± 0.0210 0.2715 ± 0.3116 97.00 ± 2.77
9 UKA 77.39 ± 22.04 27.83 ± 2.16 0.849 ± 0.050 0.0045 ± 0.0036 0.0327 ± 0.0504 98.40 ± 4.04 0.0394 ± 0.0337 0.3641 ± 0.3683 96.79 ± 3.05
10 PSICPT_AI4PT 78.00 ± 27.44 27.55 ± 2.16 0.839 ± 0.049 0.0044 ± 0.0031 0.0316 ± 0.0487 98.17 ± 4.13 0.0370 ± 0.0263 0.2326 ± 0.2695 97.18 ± 2.10
11 SubtleCT 66.53 ± 14.63 28.51 ± 1.68 0.869 ± 0.029 0.0054 ± 0.0042 0.0370 ± 0.0624 98.20 ± 4.12 0.0443 ± 0.0308 0.2353 ± 0.2807 96.17 ± 2.99
12 mriG 82.01 ± 17.77 26.38 ± 1.53 0.842 ± 0.035 0.0046 ± 0.0040 0.0305 ± 0.0453 97.77 ± 4.24 0.0318 ± 0.0182 0.2363 ± 0.2772 97.08 ± 2.70
13 KoalAI 68.94 ± 11.82 28.14 ± 1.37 0.862 ± 0.029 0.0054 ± 0.0045 0.0338 ± 0.0432 97.94 ± 4.49 0.0460 ± 0.0314 0.2450 ± 0.2952 95.86 ± 3.60
14 Breizh-CT 93.57 ± 19.01 25.86 ± 1.43 0.806 ± 0.032 0.0050 ± 0.0041 0.0334 ± 0.0491 98.56 ± 2.44 0.0454 ± 0.0222 0.3052 ± 0.3153 95.97 ± 3.00
15 SKJP 88.42 ± 26.89 26.44 ± 2.03 0.815 ± 0.043 0.0063 ± 0.0047 0.0428 ± 0.0553 97.72 ± 4.97 0.0562 ± 0.0319 0.3445 ± 0.4111 94.83 ± 4.26
16 reza.karimzadeh 113.38 ± 20.35 24.71 ± 1.43 0.764 ± 0.034 0.0083 ± 0.0067 0.0542 ± 0.0644 97.02 ± 4.70 0.0565 ± 0.0288 0.4068 ± 0.6937 94.47 ± 3.80
17 thomashelfer 126.32 ± 17.01 23.69 ± 0.94 0.756 ± 0.029 0.0098 ± 0.0070 0.0599 ± 0.0643 97.38 ± 4.86 0.0791 ± 0.0585 0.3823 ± 0.4215 94.53 ± 3.66
18 X-MAN 117.88 ± 45.08 25.64 ± 2.20 0.774 ± 0.097 0.0117 ± 0.0148 0.0736 ± 0.0957 96.42 ± 5.00 0.0817 ± 0.0759 3514.188 ± 38491.0637 93.72 ± 5.77
19 Water baseline 332.93 ± 89.53 17.95 ± 1.73 0.552 ± 0.127 0.0166 ± 0.0104 0.0972 ± 0.1057 96.70 ± 5.36 0.1334 ± 0.0573 1.8218 ± 8.2652 88.87 ± 7.83
- Stratified baseline 69.45 ± 16.33 28.42 ± 1.92 0.854 ± 0.027 0.0049 ± 0.0039 0.0347 ± 0.0504 98.21 ± 5.17 0.0515 ± 0.0309 0.4180 ± 0.3567 95.43 ± 3.76

Metric table 2: The quantitative metrics for task 2 (CBCT-to-CT). Participants who scored worse than the water baseline on one image metric were excluded from the final ranking.

Rank Team Image metrics Dose metrics

Photon Proton

MAE (HU, ↓) PSNR (dB, ↑) SSIM (↑) MAE (Gy, ↓) DVH (↓) 𝛾2%/2 mm (↑) MAE (Gy, ↓) DVH (↓) 𝛾2%/2 mm (↑)

1 SMU-MedVision 𝟒𝟗.𝟗𝟓 ± 𝟏𝟏.𝟕𝟖 𝟑𝟎.𝟕𝟗 ± 𝟐.𝟎𝟎 𝟎.𝟗𝟎𝟔 ± 𝟎.𝟎𝟑𝟔 𝟎.𝟎𝟎𝟑𝟖 ± 𝟎.𝟎𝟎𝟒𝟐 𝟎.𝟎𝟐𝟒𝟎 ± 𝟎.𝟎𝟕𝟎𝟑 99.49 ± 1.65 𝟎.𝟎𝟐𝟖𝟑 ± 𝟎.𝟎𝟐𝟓𝟏 𝟎.𝟏𝟔𝟔𝟑 ± 𝟎.𝟐𝟐𝟑𝟓 𝟗𝟕.𝟓𝟕 ± 𝟑.𝟏𝟐
2 GEneRaTion 55.50 ± 11.00 30.48 ± 1.72 0.897 ± 0.033 0.0040 ± 0.0042 𝟎.𝟎𝟐𝟒𝟏 ± 𝟎.𝟎𝟓𝟑𝟎 99.55 ± 1.20 0.0294 ± 0.0251 0.1689 ± 0.2188 97.42 ± 3.11
3 iu_mia 50.79 ± 11.81 30.58 ± 1.95 𝟎.𝟗𝟎𝟔 ± 𝟎.𝟎𝟑𝟒 0.0045 ± 0.0083 0.0326 ± 0.1543 98.99 ± 4.57 0.0336 ± 0.0408 0.1728 ± 0.2269 97.00 ± 4.72
4 FAYIU 51.18 ± 11.34 30.40 ± 1.93 0.903 ± 0.034 0.0044 ± 0.0080 0.0317 ± 0.1415 99.06 ± 4.29 0.0333 ± 0.0393 0.1711 ± 0.2197 97.09 ± 4.42
5 Pengxin Yu 54.05 ± 12.30 30.56 ± 1.95 0.900 ± 0.037 0.0043 ± 0.0070 0.0304 ± 0.1297 99.19 ± 3.72 0.0320 ± 0.0342 0.1762 ± 0.2296 97.16 ± 4.18
6 FGZ Medical Research 60.65 ± 12.56 29.67 ± 1.71 0.879 ± 0.039 0.0040 ± 0.0032 0.0251 ± 0.0442 𝟗𝟗.𝟓𝟕 ± 𝟏.𝟎𝟕 0.0307 ± 0.0208 0.2239 ± 0.2718 97.46 ± 2.85
7 KoalAI 56.13 ± 12.06 30.11 ± 1.89 0.897 ± 0.034 0.0055 ± 0.0080 0.0385 ± 0.1411 98.99 ± 4.38 0.0408 ± 0.0373 0.2106 ± 0.2497 96.05 ± 4.77
8 FGH_365 56.29 ± 11.08 30.24 ± 1.79 0.896 ± 0.035 0.0058 ± 0.0084 0.0410 ± 0.1517 98.97 ± 4.51 0.0432 ± 0.0439 0.2029 ± 0.2387 95.94 ± 5.08
9 UKA 65.46 ± 19.25 29.13 ± 2.64 0.881 ± 0.041 0.0049 ± 0.0092 0.0364 ± 0.1540 98.98 ± 4.89 0.0365 ± 0.0390 0.218 ± 0.2479 96.83 ± 4.79
10 Breizh-CT 71.28 ± 13.60 28.43 ± 1.65 0.863 ± 0.041 0.0052 ± 0.0052 0.0347 ± 0.0739 99.25 ± 2.23 0.0449 ± 0.0380 0.2309 ± 0.2495 96.06 ± 4.15
11 MedicalMind 68.40 ± 13.48 29.18 ± 1.63 0.875 ± 0.030 0.0094 ± 0.0110 0.0665 ± 0.1671 98.42 ± 5.38 0.0678 ± 0.0569 0.2395 ± 0.2534 94.11 ± 6.23
12 RRRocket_Lollies 71.58 ± 13.79 28.34 ± 1.50 0.862 ± 0.036 0.0099 ± 0.0095 0.0651 ± 0.1497 98.42 ± 4.95 0.0740 ± 0.0481 0.2744 ± 0.2678 92.32 ± 5.87
13 SKJP 78.63 ± 18.88 27.98 ± 1.71 0.853 ± 0.033 0.0113 ± 0.0092 0.0784 ± 0.1478 98.67 ± 4.76 0.0844 ± 0.0533 0.4572 ± 0.4907 91.50 ± 6.38
14 X-MAN 99.15 ± 59.43 27.51 ± 3.41 0.831 ± 0.087 0.0227 ± 0.0384 0.1150 ± 0.2003 92.44 ± 14.5 0.1035 ± 0.1056 0.3747 ± 0.3803 91.70 ± 10.8
15 Water baseline 344.26 ± 125.32 17.97 ± 2.08 0.546 ± 0.149 0.0191 ± 0.0118 0.1255 ± 0.1663 96.33 ± 5.80 0.1453 ± 0.0525 28.7704 ± 309.6595 85.08 ± 9.78
- Stratified baseline 69.99 ± 18.93 28.65 ± 2.25 0.837 ± 0.057 0.0046 ± 0.0027 0.0332 ± 0.0432 𝟗𝟗.𝟖𝟔 ± 𝟎.𝟒𝟔 0.0432 ± 0.0282 0.3936 ± 0.3608 95.93 ± 2.97
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Fig. 2. Examples of synthetic CTs for task 1 (MRI-to-CT; a) and task 2 (CBCT-to-CT: b). The model input is shown in the upper left, and the ground truth is in the center-left.
The sCT of the top five participants for task 1 and task 2 are shown in the top row. The difference from ground truth CT is shown in the middle row. On the bottom left is the
planned irradiation based on the CT for a photon (a) and proton (b) plan. The bottom row shows the dose difference when the treatment plan is applied to the sCT (CT dose -
sCT dose). All values outside the body contour were masked.
Finally, the diffusion model, rarely adopted in this challenge, achieved
SSIM values of 0.82±0.06 and 0.88±0.04 for tasks 1 and 2, respectively.

Only one team (RRRocket_Lollies, task 2) implemented an unsuper-
vised approach which placed them close to the bottom of the ranking
(12th out of 14). Due to the lack of unsupervised methods we could not
extend the analysis on the supervision level.

Spatial configuration exhibited opposing trends in the two tasks
(Fig. 4). For task 1 (MRI-to-CT), 3D patch-based, 2.5D, and 2D models
achieved SSIM values of 0.83 ± 0.06, 0.85 ± 0.04, and 0.87 ± 0.03,
respectively, with 2D models significantly outperforming the others. In
contrast, for task 2 (CBCT-to-CT), 3D patch-based models (significantly)
outperformed other models, with SSIM values of 0.89 ± 0.06, 0.88 ± 0.04,
and 0.88 ± 0.04 for 3D patch-based, 2.5D, and 2D models, respectively.

No significant differences in choices for preprocessing, data aug-
mentation, and postprocessing and, consequently, no trends in rank-
ing were observed (Tables 3 and 4). The numerous combinations of
processing steps and substantial differences in model design prevent
definitive conclusions about the importance of specific processing steps.
12
4.3. Data influence

The image quality of the brain patients was significantly different
between the centers (Fig. 5). In task 1, the participants generated sCTs
for centers A, B, and C with an SSIM of 0.857±0.052, 0.831±0.056, and
0.852 ± 0.050, respectively. For task 2, the participants generated sCTs
for centers A, B, and C with an SSIM of 0.883 ± 0.039, 0.921 ± 0.034,
and 0.897 ± 0.035, respectively. No statistically significant differences
in image similarity were observed between centers for the pelvis data.
The sCTs in task 2 showed a better image similarity than those in task
1, with an MAE of 79.40 ± 28.30 HU for task 1 versus 63.50 ± 24.34 HU
for task 2. When considering the dose metrics for brain cases in task 1,
center B (𝛾photon = 92.03 ± 6.84) underperforms compared to centers A
(𝛾photon = 99.65 ± 1.09) and C (𝛾photon = 99.93 ± 0.17). On the other hand,
for pelvis cases in task 1, center A (𝛾photon = 98.29± 3.00) underperforms
relative to center C (𝛾photon = 99.55 ± 0.58). For brain cases in task
2, minor dose differences were observed between the centers, with
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Fig. 3. Boxplots of SSIM values for all patients in each subtask, i.e., task 1 (MRI-to-CT) or 2 (CBCT-to-CT) and brain or pelvis, grouped by the model backbone choice of each
team. The 𝑛 in the boxes indicates the number of teams represented in that box. An asterisk indicates significant differences within one subtask.
Fig. 4. Boxplots of SSIM values for all patients in each subtask, i.e., task 1 (MRI-to-CT) or 2 (CBCT-to-CT) and brain or pelvis, grouped by the spatial configuration of the models
esigned by the team. The 𝑛 in the boxes indicates the number of teams represented in that box. An asterisk indicates significant differences within one subtask.
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proton = 98.80 ± 2.83, 96.87 ± 4.75, and 97.34 ± 4.94 for centers A,
, and C, respectively.

For task 1, each center employed consistent MRI scanning protocols
or each anatomical region. Consequently, a comparison at the level of
he MRI scan sequence yields identical results, as illustrated in Fig. 5.
oreover, the absence of variability in magnetic field strengths for

enters B and C constrained this analysis to center A (Figure 4 in sup-
lementary document B). For the brain, the only significant difference
as observed for 𝛾photon, which decreased from 98.99± 1.43 for 1.5T to
7.33 ± 3.23 for 3T. In contrast, for the pelvis, a significant increase in
erformance was observed for 3T compared to 1.5T. Specifically, the
SIM increased from 0.83 ± 0.05 to 0.84 ± 0.05, 𝛾photon increased from
7.51 ± 3.45 to 98.75 ± 2.59, and 𝛾proton increased from 93.29 ± 4.05 to
5.64 ± 3.42.
13

h

A further investigation of the performance at the patient level,
ncluding a visual analysis of outlier patients, is presented in section
.2 of supplementary document B.

.4. Metric correlations

Fig. 6 highlights the correlations within the three metric groups. We
bserve strong correlations within the image similarity metric group,
ith the absolute inter-metric Spearman correlation coefficients |𝜌|

anging from 0.88 to 0.96 (Fig. 7). These values consistently mea-
ure the underlying aspects of all three image metrics. In contrast,
he photon and proton metrics show weaker correlations within their
roups. Among the dose metrics, the MAEdose (photon) shows the
ighest correlation with the other dose metrics, such as 𝛾 pass rate, with
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Fig. 5. Boxplots of the teams’ performance in terms of SSIM and gamma pass rates for photon and proton, grouped by different subsets in our dataset, analyzing the differences
between task, anatomical region and center. Asterisks indicate significant differences.

Fig. 6. Correlation plots among metrics in the three categories: (a) image metrics, (b) photon metrics, and (c) proton metrics. Each data point indicates a team’s performance for
one patient in either task 1 or 2. Note that some metrics are presented using a logarithmic scale, and one extreme outlier for the proton DVH metric (in the order of 1 × 105) is
excluded from the plot.
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Fig. 7. Spearman rank correlation coefficient 𝜌 between the different metrics. Note
hat the interpretation of the correlation coefficient is contingent upon whether both
ompared metrics exhibit concordant trends.

oefficients of −0.66 and −0.75 for photons and protons, respectively.
hile the correlation between the MAEdose (photon) and DVH (photon)

s strong (0.76), the correlation between MAEdose (photon) and DVH
proton) is significantly lower (0.26). The proton DVH metric shows
oor correlation with all metrics, highlighting the complex relationship
etween these metrics (Figs. 6(b), 6(c) and 7).

Furthermore, the metric groups correlate moderately with each
ther. The average absolute coefficients between image similarity met-
ics and photon metrics were 0.40 ± 0.03, while those with proton
etrics were 0.47 ± 0.08. Moreover, the average absolute correlation

oefficient between photon and proton metrics was 0.50 ± 0.23, with
he large standard deviation introduced by a correlation coefficient of
ero between DVH (proton) and 𝛾 (photon). Overall, the results strongly
uggest that an sCT similar to the ground truth CT does not directly
ranslate into a dose distribution similar to the reference distribution,
ighlighting that the different metrics focus on different aspects in
valuating sCTs.

.5. Ranking stability and correlations

Fig. 8 illustrates that the challenge winner also secured the top
osition for both tasks under the three other ranking approaches, and
eams at the bottom of the rankings are also stable across the ranking
pproaches. However, the middle-ranked teams experience notable
hifts. For task 1, transitioning from MeanThenRank to MedianThen-
ank caused substantial changes for UKA (9 → 13) and mriG (12 →

). Conversely, task 2’s largest shifts occurred when changing from
eanThenRank to RankThenMedian for FGZ Medical research (6 → 2)

nd iu_mia (3 → 6). Despite these variations, all approaches strongly
orrelated with MeanThenRank approach, as indicated by Kendall’s 𝜏

correlation coefficient (Table 6).
Fig. 9 demonstrates that the final rankings (determined by Mean-

ThenRank) were relatively stable. There was high confidence in top-
performing teams securing higher ranks and underperforming teams
obtaining lower ranks, with the teams showing a maximum shift of 4
and 3 positions for tasks 1 and 2, respectively. SMU-MedVision had a
15

63.7% certainty of being the winner for task 1 and 99.7% for task 2,
Fig. 8. Stability of the chosen ranking approach (MeanThenRank) compared to the
other three. For all approaches, we used the mean over all test patients to obtain one
average value per metric per team.

Table 6
Kendall’s 𝜏 correlation coefficients for the ranking obtained from MeanThenRank
compared to the other three ranking approaches.

Comparison Task 1 Task 2

MeanThenRank vs. MedianThenRank 0.88 0.87
MeanThenRank vs. RankThenMean 0.88 0.91
MeanThenRank vs. RankThenMedian 0.91 0.84

while certainties for the second to fifth places were lower, ranging from
45.0% to 66.7% for task 1 and from 30.5% to 60.4% for task 2. Teams
in the middle of the rankings again showed some level of uncertainty,
while it was inevitable that teams at the bottom of the ranking received
the correct rank. This specifically holds for the last five teams for task 1
and the last six teams for task 2, with average certainties of 97.0 ± 3.5%
and 99.8 ± 0.4%, respectively.

5. Discussion

SynthRAD2023 allowed the comparison of deep learning techniques
for synthesizing CT from MRI or CBCT. It is the first large-scale,
multi-center challenge for generating in-vivo synthetic CT and gar-
nered significant participation among the community, consisting of
617 participants, generating 39 valid submissions. The participants
were generally able to synthesize high-quality sCT, outperforming the
baseline algorithms in terms of image quality and dose accuracy.

The top five teams performed well, with SSIM values of at least 0.87
and 0.90 for tasks 1 and 2, respectively. Additionally, they exceeded
gamma pass rates (2 mm/2%) of 98.07% for photon and 97.25% for
proton treatment plans in task 1, and at least 98.99% for photon and
97.00% for proton treatment plans in task 2. These results indicate
a high level of correspondence to the ground truth CTs. Neverthe-
less, despite the excellent performance, challenges remain for image
synthesis. Difficulties for MRI-to-CT synthesis were encountered at air-
tissue boundaries, potentially due to low MRI signal and magnetic
susceptibility artifacts (Krupa and Bekiesińska-Figatowska, 2015). Ad-
ditionally, in our dataset, the limited field-of-view of CBCT compared to
CT introduced challenges in accurately synthesizing the complete body
contour in the sCT.

Our analysis revealed that transformers (Vaswani et al., 2017)

outperform CNN encoder–decoder models (e.g., U-Net Ronneberger
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Fig. 9. Visualization of ranking stability. Blob size is proportional to the frequency of
the rank achieved based on bootstrapping (N = 1000).

et al., 2015), which in turn outperform GANs (Goodfellow et al.,
2014). Notably, recent architectures like diffusion models (Ho et al.,
2020) and transformer-GAN combinations performed worse than the
16
architectures mentioned above. These findings contrast recent reviews
considering sCT generation (Spadea et al., 2021; Dayarathna et al.,
2023), which either found no correlation between model architecture
and performance or suggested that diffusion models hold promise in
this field. Despite the statistically significant performance differences
observed in our challenge, the differences were marginal, and the
sample size was limited. In addition to comparing model architec-
tures, it is important to acknowledge the potential impact of variations
in training methodologies, including the reliability of hyperparame-
ter search, on the observed performance differences among different
approaches. Therefore, whether the observed differences stem solely
from architectural choices or are significantly influenced by other
aspects of the complex end-to-end pipeline, including preprocessing,
data augmentation, postprocessing, and training procedures, remains
inconclusive. For instance, previous literature suggests that data aug-
mentation generally benefits generative models, suggesting that this
step may play an essential role in model performance (Taylor and
Nitschke, 2018; Steiner et al., 2021).

The 2D models outperformed 2.5D and (patch-based) 3D models
for MRI-to-CT synthesis, while the 3D models outperformed the 2(.5)D
approaches for CBCT-to-CT synthesis. These results hold for both pelvis
and brain cases in both tasks. However, it has been shown that for
MRI-to-CT synthesis 2.5D (multi-view) models outperform 2D mod-
els (Spadea et al., 2019; Maspero et al., 2020), and that 3D models
outperform 2D models (Sun et al., 2022). We did not identify the
cause of these contrasting results between MRI-to-CT and CBCT-to-
CT synthesis. Future work could investigate why the impact of spatial
dimension differs between these imaging modalities for synthetic CT
generation.

We found that the image similarity metrics are highly correlated
among themselves (|𝜌| ≥ 0.88) and that the MAE of the photon and
proton dose distribution are moderately correlated to their respective
gamma pass rates (|𝜌| ≥ 0.66). Specifically, the photon and proton DVH
metrics are weakly correlated with the respective gamma pass rates
(|𝜌| ≤ 0.42) (Fig. 7). Furthermore, the average correlations between
the image similarity metrics and dose metrics are low (|𝜌| ≤ 0.47)
despite the similar goal of measuring correspondence between the sCT
and ground truth CT. The difference in correlations observed within
and between metric groups may be attributed to the distinct regions
where each metric is measured: image similarity was assessed within
the dilated body contour, while dose metrics were calculated within
high-dose regions or specific organs. These findings suggest that image
similarity metrics should not be solely relied upon to determine the
clinical suitability of a model, as they are not a reliable surrogate
for clinically relevant dose metrics. Previous literature aligns with the
finding, corroborating the poor correlation between image similar-
ity and dose accuracy (Kieselmann et al., 2018; Peng et al., 2020).
This highlights the need to perform thorough dose evaluations when
clinically testing sCT generation approaches.

Two teams, i.e., UKA and PSCICP_4AI4PT, scored unexpectedly low
in the final test phase compared to the validation phase due to imple-
mentation errors or misinterpreting data details. After (re-)opening the
post-challenge phases, the two teams submitted corrected versions of
the algorithms. Based on image similarity metrics alone, UKA climbed
seven positions (9 → 2) in the rankings for both tasks. Similarly,
PSCICP_4AI4PT climbed six positions (10 → 4) for task 1. During the
open test phase, the teams could not resubmit their algorithms, as
they ran successfully on the platform. The low scores of the erroneous
algorithms underscore the fairness of the adopted rules.

5.1. Clinical impact

Despite the similarity between the sCTs generated by the partic-
ipants and the ground truth CTs, there remains a lack of consen-
sus regarding the criteria determining the clinical acceptability of an

sCT (Vandewinckele et al., 2020). In radiotherapy, treatment planning



Medical Image Analysis 97 (2024) 103276E.M.C. Huijben et al.
is defined to meet specific dose prescriptions and constraints. In this
sense, dose-related metrics may be considered clinically significant.
Some works have investigated clinical acceptance criteria for synthetic
CTs. For example, Olberg et al. (2019) considered photon gamma
pass rates greater than 98% acceptable using the 2 mm/2% criterion.
On the other hand, Korsholm et al. (2014) proposes that treatments
with a DVH difference of <2% are clinically acceptable. However,
these criteria were proposed for breast, head-and-neck, and thorax sCT
generation; it is unclear whether these criteria translate to different
anatomical regions. Before addressing the clinical impact of the chal-
lenge results, it is crucial to consider the quality of the treatment plans
adopted for SynthRAD2023 evaluation. Treatment planning techniques
may differ between institutes. The planning techniques chosen have
been based on constraints adopted in clinical guidelines (Hall et al.,
2021; Lambrecht et al., 2018), making the results of the challenge of
clinical relevance. The Linac and proton systems used in the treatment
planning were generic; however, studies have demonstrated their ef-
fectiveness by showing that gamma pass rates deviate by a maximum
of 0.5% when compared to dose engines adopted in clinical systems,
independent of the irradiation type (Wieser et al., 2017).

To indicate clinically acceptable sCT, we propose considering an
average gamma pass rate (2 mm/2%) above 99% and 97.5% for photon
and proton irradiation in regions receiving at ≥10% of the prescribed
dose, respectively. For the SynthRAD2023 challenge, only one team
(Jetta_Pang) met these criteria for the MRI-to-CT task. For the CBCT-to-
CT task, one team (SMU-MedVision) met both criteria. In contrast, five
other teams (GEneRaTion, FAYIU, Pengxin Yu, FGZ Medical Research,
and Breizh-CT) met only the photon criterion. As previously mentioned,
the evaluation was affected by differences in patient positioning be-
tween the imaging sessions. Still, when considering the results on a
population level, we do not expect to observe any systematic dose
differences unless the sCT generation method introduced geometrically
consistent distortion (Adjeiwaah et al., 2019). The lack of systematic
dose differences suggests that the solutions offered by the participants
are promising and of high quality. Before implementing any proposed
clinical solutions, evaluating them according to the clinical standards
specific to each facility using the commissioned treatment planning
system is advisable.

Currently, commercial solutions to generate sCT from MRI or CBCT
are available (Köhler et al., 2015; van Stralen et al., 2019; Cronholm
et al., 2020; Archambault et al., 2020). It would be interesting to com-
pare the algorithms submitted to the SynthRAD2023 challenge with
these commercial solutions. Some of these commercial solutions require
a dedicated imaging protocol to generate accurate sCT data (Florkow
et al., 2020; Bratova et al., 2019; Liu et al., 2023), making the com-
parison challenging. Exploring the necessity of specialized imaging
protocols, or in simpler terms, assessing the ability of sCT algorithms to
generalize across different input variations as in Nijskens et al. (2023),
could be worthwhile.

5.2. Limitations of the SynthRAD2023 dataset and setup

A substantial multi-center dataset was gathered for the
SynthRAD2023 challenge. However, the dataset can be further im-
proved despite its size and diversity. For example, the dataset consists
solely of patients treated at Dutch hospitals, which may limit the
dataset’s heterogeneity, possibly resulting in low performance for case
outliers in the data distributions. Additionally, it is important to ac-
knowledge that the included MRIs represent only a subset of the
magnetic field strengths commonly used in clinical practice (1.5T and
3T). This limits the generalizability of the findings to the broader
spectrum of clinical MRI applications, where other field strengths are
routinely employed. While the inclusion of three centers represents a
commendable starting point, extending the dataset with international
data may improve the generalization capabilities of the submitted
17

models and increase the clinical impact.
A model ideally should generalize across different centers without
conditional fine-tuning, as current commercial solutions are not center-
specific. While some participants incorporated center-based prediction
and optimization using information shared in the training and valida-
tion sets, effective models should extend beyond the provided centers
to make a clinical impact. Future challenges may consider whether
circumventing such information may lead to designing more general
approaches.

Furthermore, the SynthRAD2023 dataset contained rigidly reg-
istered image pairs, resulting in residual anatomical mismatch af-
ter registration, as mentioned above. Reducing the registration er-
ror, e.g., recurring to deformable registration, may improve perfor-
mances (Florkow et al., 2020). However, it may also confound possible
geometrical distortion to the input images the models may introduce,
which is undesirable in a clinical scenario (Pappas et al., 2017).
The impact of residual misregistration is corroborated by the paired
nature of the dataset, and could be mitigated by performing unpaired
synthetic CT generation. However, unpaired sCT generation prohibits
a dosimetric evaluation of the generated sCT, and limits the use of
established image similarity metric, such as the SSIM or PSNR.

An additional dataset limitation stems from the automated process-
ing pipeline, where, for all brain patients from center B in task 1, the
treatment table was included within the dilated body contour. At the
same time, the table was successfully excluded from the dataset by
the other centers, leading to inconsistent table representation in the
dose evaluations. Moreover, for two out of sixty pelvis patients in task
2, the field-of-view of the CBCT was smaller than the body contour.
Such patients can be considered outliers, and for future challenges, it
would be beneficial to revise case selection and exclude them from
the test set. The inclusion of the table in the mask and limited CBCT
field-of-view had minor impact on the image similarity evaluation,
which was computed within the provided mask, but could be more
substantial for the dose evaluation due to beam attenuation. Note
that the inconsistency was present for all teams, leaving the challenge
ranking unbiased.

Another limitation arose from the absence of dose evaluation during
the validation phase, hindering teams from optimizing their models for
this radiotherapy-related metric. On the other hand, the lack of dose
metrics during validation may have compelled participants to develop
general methods that could function irrespective of the chosen planning
strategy.

5.3. Future direction

SynthRAD2023 has set out to advance the state-of-the-art in MRI-to-
CT and CBCT-to-CT generation. While the results are promising, these
tasks have not yet been solved during this challenge. The dataset only
included brain and pelvis patients. Other, maybe more challenging,
anatomical regions could benefit from sCT generation, such as the
thorax, head-and-neck, breast, or abdomen (Spadea et al., 2021). In
addition, it would be of interest to examine the generalizability of the
models by including test data from centers that were not present in the
training data (Texier et al., 2023).

The positive reception to SynthRAD2023 has spurred the develop-
ment of SynthRAD2025, which aims to expand the challenge beyond
the Dutch national domain into more unexplored anatomical regions,
such as the head-and-neck and abdomen.

Furthermore, addressing the limitations in data preparation and
image registration discussed earlier will enhance the analysis of future
challenges.

Lastly, we anticipate that the post-challenge phases will offer op-
portunities to validate and enhance the statistical robustness of the
challenge’s conclusions, enabling other researchers to compare their

methods with the results of SynthRAD2023.



Medical Image Analysis 97 (2024) 103276E.M.C. Huijben et al.

G
Z
Z
Z
L
W
W
W
–
v
&
&
e
e
–
–
r
r
–
r
r
&
–
r
N

6. Conclusion

While synthetic CT generation has already become a clinical re-
ality (Spadea et al., 2021), the SynthRAD2023 Grand Challenge rep-
resents a pivotal advancement in image synthesis for radiotherapy
planning. The challenge marks the first multi-center challenge with
a substantial dataset, serving as a catalyst for further innovation in
radiotherapy. Participants showcased their ability to generate high-
quality sCTs, demonstrating high image similarity and accurate dose
distributions. These achievements highlight the potential of deep learn-
ing for enhancing sCT generation. However, it is important to recognize
that solely relying on image similarity metrics may not adequately
capture the clinical applicability of sCTs. Nonetheless, these significant
strides hold promise for reducing reliance on conventional CT and
improving efficiency in radiotherapy.
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Appendix A. Participation rules and prize policies

To ensure fairness and transparency in SynthRAD2023, organizers,
data providers, and contributors were prohibited from participating
in the challenge since data providers and organizers had access to
the data, including the test set ground truth CTs. However, members
affiliated with the organizers’ institutes were allowed to participate,
provided they had not co-authored any publications with the organizers
in the year preceding the challenge.

Participants were required to develop fully automated methods that
run in the Amazon Web Services (AWS) cloud environment using a
single g4dn.2xlarge instance. This instance includes a GPU with
16 GB VRAM, an 8-core CPU, and 32 GB RAM. In this environment,
the inference time for generating an sCT for a single case (one patient)
is constrained to a maximum of 15 min.

Teams receiving a prize had to present their methodology at MIC-
CAI 2023, sign all necessary prize acceptance documents, and submit
a detailed paper in LNCS format outlining their methods. Addition-
ally, participants committed to citing both the data challenge pa-
per (Thummerer et al., 2023a) and this challenge overview paper in
subsequent publications, whether scientific or non-scientific. Although
sharing codes was strongly encouraged, it was not mandatory. The
challenge results and rankings were publicly announced after the test
phase concluded. The top five teams for both tasks were awarded a
total of e10,000, with the following distribution: e2200, e1250, e850,
e500, e200.

The complete challenge design can be found at Thummerer et al.
2023b).
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Supplementary material related to this article can be found online
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