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A B S T R A C T   

The widespread adoption of artificial intelligence (AI) technology globally has brought significant 
changes to various sectors. AI-assisted algorithms have notably improved decision-making, 
operational efficiency, and productivity, especially in healthcare and medicine. However, in 
low and middle-income countries (LMICs), particularly in sub-Saharan Africa (SSA), the inte
gration of medical AI has faced delays and challenges, slowing its acceptance and implementation 
in medical interventions. This thematic narrative critically explores the current trends and pat
terns in applying medical AI in SSA, with a specific focus on its potential impact on medical 
laboratories. The review covers the general use of medical AI in SSA, examining factors like 
enablers, challenges, and opportunities that influence healthcare systems. Additionally, it looks 
into the implications of medical AI for medical laboratories and suggests context-specific and 
practical recommendations for potential integration. We highlight various challenges, including 
data availability, security concerns, resource limitations, regulatory gaps, poor internet connec
tivity, and digital literacy issues, contributing to the slow integration of AI in healthcare systems 
in SSA. Despite challenges, the adoption of medical AI in SSA medical laboratories holds latent 
potential for improving diagnostic accuracy, streamlining workflows, and enhancing patient care. 
Further exploration and careful consideration are necessary to unlock these possibilities.   

1. Introduction 

Globally, the medical laboratory space has evolved since the 1950s, mainly shifting from manual laboratory testing to automation 
(Thurow, 2023). The introduction of automated diagnostics in clinical laboratory settings has generally decreased the workload and 
human errors of medical laboratory professionals. Notwithstanding its success, manual methods are very technical and laborious and 
often lead to human errors in the analytical process (Alaidarous, 2020). Given that an accurate diagnosis is the cornerstone of effective 
disease management and more than 70% of medical decisions are based on laboratory results (Badrick, 2013; Sikaris, 2017), auto
mation has decreased turnaround time and improved reproducibility, test quality, and efficiency (Cherkaoui et al., 2020). Although 
there is heterogeneity among trained medical laboratory professionals, automation has standardized and harmonized laboratory 
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diagnostics (Lippi & Da Rin, 2019). Medical laboratory professionals can now perform more complex tests while ensuring the quality of 
test results and troubleshooting analyzers to maintain quality test outcomes. 

With continued global technological advancements, artificial intelligence (AI) is revolutionizing and enabling businesses and in
stitutions in education (Chen et al., 2020), manufacturing (Plathottam et al., 2023), wastewater treatment (Wang et al., 2023), the 
creative space (Anantrasirichai & Bull, 2022), and healthcare (Bajwa et al., 2021; Davenport & Kalakota, 2019), among others. 
Sub-Saharan Africa (SSA) has seen notable AI applications across various sectors. In 2007, the revolutionary digital payment platform 
M-Pesa was launched in Kenya, later integrating AI algorithms for enhanced services (Vodafone, 2019). South Africa’s JUMO, an 
intelligent banking technology, emerged in the 2010s (JUMO, 2024). In healthcare, Zimbabwe’s Dr. CADx, which aids radiologists 
with diagnostics, appeared in the mid-2010s (Dr CADx, 2022). Around the same period in 2014, South Africa’s Aerobotics (Aerobotics, 
2024) and Nigeria’s Hello Tractor (Atlas AI, 2024) improved farming mechanization and efficiency. AI-powered educational platforms 
like Kenya’s M-Shule, which educates hard-to-reach populations (M-Shule, 2024) and Nigeria’s Ubenwa, which monitors and in
terprets infant cries (Ubenwa, 2024), have also gained traction. More recently, Ghana’s GridWatch (CEGA, 2024) and WaterScope in 
South Africa, Ethiopia and Tanzania (WaterScope, 2020) have improved infrastructure monitoring through AI-powered crowdsourced 
information on power grid reliability and water quality testing, respectively. The vast field of AI has achieved significant traction in 
medicine and healthcare in general, using varying methods and algorithms in diagnostics, simulations, large data analysis, and ma
chine learning. The historical context of AI in medicine and healthcare dates back to the 1950s, with pioneers exploring its potential 
(Russell et al., 2016). In the 1960s and 1970s, rule-based expert systems for diagnosis and decision support emerged (Shortliffe & 
Buchanan, 1975). However, progress was limited by computational constraints. By the 1980s, advances in machine learning laid the 
foundation for more sophisticated AI algorithms (Mitchell, 1997). The proliferation of electronic health records (EHRs) in the 2000s 
enabled the collection of large datasets, fueling the development of AI-driven diagnostic tools and predictive analytics (Davenport, 
2019). Recent breakthroughs in deep learning and natural language processing have transformed medical imaging, drug discovery, 
personalized medicine, and patient care (Topol & Verghese, 2019), with ongoing efforts to address challenges related to data privacy, 
regulation, and ethics. Owing to the success in developed countries, it is therefore imminent that discussions be held about introducing 
and leveraging AI in laboratory diagnosis, particularly in countries with limited resources. AI systems have the capability of revolu
tionizing laboratory procedures by using sophisticated analytical tools, boosting diagnostic accuracy, and reducing workflow (Para
njape et al., 2021). The integration of AI in the medical laboratory would represent a significant breakthrough toward enhancing 
diagnosis and overall patient outcomes. 

Resource-limited settings such as SSA are challenged with a disproportionately high burden of infectious diseases, including 
malaria, HIV, cholera, meningitis, and tuberculosis, among others. In addition, regulatory entities remain fragmented, further 
complicating implementation in SSA. These unique challenges are met with limited access to healthcare infrastructure funding and 
advanced diagnostic technologies and a shortage of skilled healthcare professionals (Amu et al., 2022; Moyo et al., 2023). With these 
limitations, integrating AI into medical laboratories holds enormous promise for improving diagnostic capabilities and patient care and 
addressing long-standing healthcare disparities. This review profiled the current application of medical AI and the challenges that 
impede its implementation in SSA. The available opportunities for integrating medical AI to improve healthcare systems in the SSA are 
also discussed. Ultimately, this review demonstrates the implications of Medical AI in medical laboratory practice in SSA. 

2. Methods 

2.1. Review framework 

This review’s methodological foundation was built on the framework by Arksey and O’Malley (Arksey & O’Malley, 2005). The 
evidence synthesis stages included the identification of the research question, data search, data screening and selection of eligible 
articles, data charting, and reporting. The research question was: "What are the current applications of Medical AI in SSA?". 

2.2. Data search and screening 

The data search and screening process adopted the Preferred Reporting Items for Systematic Reviews and Meta-Analysis approach 
(Peters et al., 2015). A comprehensive search of relevant electronic databases including Scopus, PubMed, EBSCOHost, Web of Science, 
and CINAHL was conducted using identified keywords and index search terms relevant to the research question. An additional search 
was conducted through citation matching and web search. The following search terms and relevant keywords were used in different 
combinations with Boolean operators (AND, OR) in the search process: application, use, medical AI, medical artificial intelligence, 
healthcare, diagnosis, machine learning, deep learning, sub-Saharan Africa, SSA, challenges, prospects, and opportunities. For 
example, (artificial intelligence or ai or a.i.) AND (healthcare or medical care or medicine or health care) AND (sub saharan africa or 

Table 1 
Population, Concept, and Context (PCC) framework for the 
study.  

Population All populations 
Concept Medical AI applications 
Context Sub-Saharan Africa (SSA)  
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sub-saharan africa or sub sahara or sub-sahara or ssa). The search query encompassed data spanning all years up to 2023. The Pop
ulation, Concept, and Context (PCC) framework was employed to guide the eligibility of the individual studies included in the review 
(Table 1) (Aromataris & Munn, 2020). The study included research conducted in SSA, focusing on the use of Medical AI in the region. 
Additionally, only studies published in English were considered. However, grey and review articles were excluded. Studies were 
exported to the Rayyan review manager for thorough screening and selection (Rayyan, 2022). A three-phase screening by two (2) 
independent reviewers was employed (screening by titles, abstracts, and full texts). An additional reviewer was employed to resolve 
review conflicts. The findings of the evidence synthesis were presented in the narrative format while profiling emerging themes, 
trends, and patterns in the application of medical AI in SSA and its prospects in medical laboratory practice. The results focused on 
different aspects, such as how medical AI is used in the SSA region, what challenges its implementation, opportunities for improving 
healthcare, the effects of medical AI on medical laboratories, and suggestions for its application in SSA’s medical laboratories. 

2.2.1. Data search output 
A total of 654 articles extracted from Scopus (n = 22), CINAHL (n = 81), PubMed (n = 126), EBSCOHost (n = 420), and additional 5 

articles identified by citation and web search were initially screened for duplicates (Fig. 1). The reviewers identified and removed 350 
duplicates and subsequently screened the titles of 304 articles. At this screening phase, 12 articles failed to meet inclusion criteria, and 
292 articles were screened by abstract. Here, 24 articles were excluded, and 268 articles met inclusion criteria for full-text screening. 
Full-text screening led to the exclusion of 244 articles. The reviewers excluded articles that were not conducted in SSA, review articles, 
and articles that did not focus on the application of medical AI (Fig. 1). Full-text screening produced 24 articles that met inclusion 
criteria (Table 2). 

2.2.2. Quality appraisal 
The 24 included articles were appraised to assess the quality of their methodology using the Excel spreadsheet of the Mixed 

Methods Appraisal Tool (MMAT) version 2018 (Hong et al., 2018). Absolute quality scores were calculated and classified according to 
the level of quality of evidence as follows: weak (≤50%), moderately weak (51–65%), moderately strong (66–79%), or strong 
(80–100%) (Li et al., 2015). One study had weak quality of evidence (Glaser et al., 2023). Four studies had moderately weak quality 

Fig. 1. Screening for eligible studies.  
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Table 2 
The characteristics of eligible studies.  

Author/Year Country Study design Sample size/ 
number of 
patients 

Study 
duration 

Specialty Disease AI algorithm/model 

Glaser et al. 
(2023) 

Lesotho and 
South Africa 

Case series 4 patients – Medical 
Imaging 

Tuberculosis Computer-aided 
detection (CAD) 
software 

Sendra-Balcells 
et al. (2023) 

Egypt, Algeria, 
Uganda, Ghana 
and Malawi 

Model evaluation 25 patients – Medical 
Imaging 

Fetal 
abnormalities 

AI-assisted fetal 
ultrasound planes 

Rajab et al. 
(2023) 

Uganda Performance 
evaluation 

2207 patients – Infectious 
diseases 

Malaria Interpretable 
Machine Learning 
(IML) models 

Kiemde et al. 
(2022) 

Burkina Faso Randomized 
controlled 
diagnostic trial 

Block size of 
20, 30, or 40 
subjects in 
random order 

1 year Infectious 
diseases 

Febrile illness AI-assisted 
intervention in a 
two-step malaria 
RDT PfHRP2/pLDH 
and point-of-care 
tests 

Liu et al. (2022) Senegal Field evaluation 32 water 
bodies 

2016–2019 Spatial analysis Schistosomiasis Deep learning 
segmentation of 
high-resolution 
satellite imagery and 
drone technology 

Singh and Mars 
(2012) 

South Africa Model evaluation 600 clinicians – Infectious 
diseases 

HIV/AIDS Physician- 
administered AI- 
based decision 
support system 

Esber et al. 
(2023) 

Uganda, Kenya, 
Tanzania, and 
Nigeria 

Cohort 1571 patients 
on ART 

2013–2020 Infectious 
diseases 

HIV/AIDS Machine learning- 
based algorithms 
(lasso-type 
regularized 
regression and 
random forests) 

Turbé et al. 
(2021) 

South Africa Pilot (cross- 
sectional) 

60 nurses and 
community 
health workers 

– Infectious 
diseases 

HIV/AIDS Deep learning 
technology 

Stockman et al. 
(2022) 

Mozambique and 
Nigeria 

Implementation 
science 

360000 
patients 

2010–2019 Infectious 
diseases 

HIV/AIDS Machine learning 
technology Forest 
model 

Tallam et al. 
(2021) 

Senegal Performance 
evaluation 

5500 images of 
snails and 
5100 images of 
cercariae 

2015–2019 Imaging Schistosomiasis Deep learning-based 
convolutional neural 
networks (CNNs) 

Makau-Barasa 
et al. (2023) 

Nigeria Performance 
evaluation 

869 patients – Microscopy Schistosomiasis AI-assisted 
microscope (AiDx 
NTDx multi- 
diagnostic Assist 
microscope) 

Niazkar and 
Niazkar 
(2020) 

South Africa Performance 
evaluation 

– – Infectious 
diseases 

COVID-19 Artificial Neural 
Networks (ANN) 

Mulenga et al. 
(2023) 

Zambia Performance 
evaluation 

1433 COVID- 
19 hospitalized 
patients 

2020–2021 Infectious 
diseases 

COVID-19 Machine learning 
algorithms 

Ibrahim et al. 
(2023) 

Morocco, Sudan, 
Namibia, South 
Africa, Uganda, 
Rwanda, Nigeria, 
Senegal, Gabon 
and Cameroon 

Performance 
evaluation 

– 2020–2022 Infectious 
diseases 

COVID-19 Machine learning 
models 

Elahi et al. 
(2022) 

Tanzania Performance 
evaluation 

2972 patients – Non- 
communicable 
diseases 

Traumatic Brain 
Injury 

A locally derived 
machine learning- 
based prognostic 
model 

Bellemo et al. 
(2019) 

Zambia Performance 
evaluation 

76370 retinal 
fundus images 
from 13099 
patients 

2010–2013 Non- 
communicable 
diseases 

Diabetic 
retinopathy 

Convolutional neural 
networks 

(continued on next page) 
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(Folson et al., 2023; Niazkar & Niazkar, 2020; Sendra-Balcells et al., 2023; Singh & Mars, 2012). Nineteen studies had strong quality 
(Bellemo et al., 2019; Ebrahim & Derbew, 2023; Elahi et al., 2022; Esber et al., 2023; Ibrahim et al., 2023; Kiemde et al., 2022; Liu 
et al., 2022; Makau-Barasa et al., 2023; Mohammed et al., 2021; Mulenga et al., 2023; Njoroge et al., 2023; O’Donovan et al., 2022; 
Porras et al., 2021; Rajab et al., 2023; Stockman et al., 2022; Sukums et al., 2015; Tallam et al., 2021; Turbé et al., 2021; Zakane et al., 
2014). 

3. Findings and discussion 

3.1. Current application of medical AI in sub-Saharan Africa 

Since the advent of big-data-bound technologies across the globe, SSA has harnessed these technologies to enhance livelihoods. 
Computer-assisted platforms and AI have been widely used in SSA in diverse specialties in healthcare and medicine. This review 
profiles the application of these technologies in medical imaging, diagnosis of infectious and non-communicable medical conditions, 
disease outbreak surveillance and response systems, forecasting, public health point-of-care diagnostics uptake, and maternal and 
neonatal care. 

3.1.1. Medical imaging 
AI-powered applications have impacted several specialties of medical imaging, such as brain imaging, cancer, chest imaging, and 

cardiology (Houssein et al., 2021; Martin-Isla et al., 2020; Zhang et al., 2020). However, the focus has always been on high-resource 

Table 2 (continued ) 

Author/Year Country Study design Sample size/ 
number of 
patients 

Study 
duration 

Specialty Disease AI algorithm/model 

Ebrahim and 
Derbew 
(2023) 

Ethiopia Performance 
evaluation 

1523 patients 
with type-2 
diabetes and 
716 without 
type-2 diabetes 

February to 
June of 
2021 

Non- 
communicable 
diseases 

Type-2 diabetes The Decision tree 
pruned J48, K- 
nearest neighbor, 
Naïve Bayes, Binary 
logistic regression, 
Support vector 
machine, Artificial 
neural network, and 
Random forest 
machine learning 
algorithms 

Folson et al. 
(2023) 

Ghana Performance 
evaluation 

36 adolescent 
girls 

– Non- 
communicable 
diseases 

Malnutrition A mobile AI dietary 
assessment 
application known as 
Food Recognition 
Assistance and 
Nudging Insights 
(FRANI) 

Porras et al. 
(2021) 

The Democratic 
Republic of the 
Congo 

Performance 
evaluation 

132 patients – Facial Analysis Down syndrome An in-house mobile 
application using AI- 
assisted facial 
analysis technology 

Njoroge et al. 
(2023) 

Kenya Cohort 500 health 
workers 

12 months Non- 
communicable 
diseases 

Mental health A mobile application 
modelled to use 
sensor stream 
signatures 

Sukums et al. 
(2015) 

Ghana and 
Tanzania 

Longitudinal 61 and 56 
health workers 
at the midterm 
and final 
assessment 

2011–2013 Maternal and 
neonatal 

Antenatal and 
intrapartum 
abnormalities 
and 
complications 

AI-assisted electronic 
clinical decision 
support system 
(eCDSS) 

Zakane et al. 
(2014) 

Burkina Faso Qualitative 45 informant 
interviews 

2011–2012 Maternal and 
neonatal 

Antenatal and 
intrapartum 
abnormalities 
and 
complications 

A computerized 
clinical decision 
support system 
(CDSS) 

Mohammed 
et al. (2021) 

The Gambia Performance 
evaluation 

11012 children 
with clinical 
pneumonia 

– Maternal and 
neonatal 

Pneumonia Neural Network 
Prediction Model 

O’Donovan 
et al. (2022) 

Uganda and 
Kenya 

Descriptive 
development and 
validation 

12 community 
health workers 
from Uganda 
and 25 from 
Kenya 

2020–2021 Supervision Community 
management of 
diseases 

An open-access 
predictive machine 
learning web 
application  
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settings. Most medical imaging diagnostic platforms, such as the use of X-rays, are known to offer high and acceptable diagnostic 
performance (sensitivity and specificity). However, there may be human variations and inconsistencies in test performance and 
radiological interpretation of test outputs, mainly due to the different competencies and technical experiences of the radiographers and 
radiologists. Also, in resource-limited settings, including SSA, specialist opinion and the required radiological expertise may be 
lacking, particularly in highly disease-burdened and hard-to-reach communities (Pedrazzoli et al., 2017). The application of 
AI-assisted algorithms has been tested and evaluated in attempts to address these limitations. 

In Lesotho and South Africa, computer-aided detection (CAD) software built on AI has significantly been applied in reading and 
interpreting chest X-ray results for detecting chest X-ray tuberculosis (TB) pathology (Glaser et al., 2023). This medical AI system has 
improved TB case findings and real-time diagnosis with limited human intervention or the need for specialist radiologists who are 
limited in high-TB-burdened settings such as South Africa. 

Similarly, a new framework for medical AI models was built for clinicians to detect and diagnose fetal abnormalities using fetal 
ultrasound planes in five (5) African countries (Egypt, Algeria, Uganda, Ghana, and Malawi) using local datasets from these countries 
(Sendra-Balcells et al., 2023). These AI models were transferred from high-income countries such as Denmark and the UK and applied 
in low-income settings. 

3.1.2. Infectious diseases 
Several AI-assisted clinician decision-making and diagnostic algorithms have been proposed, evaluated, and implemented in SSA 

for diagnosing and managing various infectious diseases. For example, Friedman proposed a promising strategy for diagnosing most 
infectious diseases in rural settings of SSA using computer-assisted medical diagnosis tools (Friedman, 2009). He introduced several 
carefully selected computer-assisted diagnosis and physician decision support systems (DiagnosisPro, ASTI, DXPLAIN, EGADSS, 
GIDEON, Isabel, and PAIRS) in SSA to facilitate efficient disease diagnosis and address the health workforce deficits. 

Specifically, in malaria predictions and diagnostic interpretations, a study in Uganda used Interpretable Machine Learning (IML) 
models to predict and interpret severe malaria predictions based on large data and deep learning (Rajab et al., 2023). The researchers 
employed Explainable Artificial Intelligence (XAI) techniques such as the Shapley Additive Explanation (SHAP) and Local Inter
pretable Model-agnostic Explanation (LIME) to improve the reliability of malaria predictions and the early detection of severe malaria. 
The SHAP technique, rooted in game theory’s Shapley values, equitably assigns each feature’s influence on predictions, providing both 
local and global consistent interpretability (Lundberg & Lee, 2017). In contrast, LIME creates fast and flexible local approximations 
using simpler models to explain individual predictions across any machine learning model (Ribeiro et al., 2016). 

Kiemde and colleagues are currently testing a hypothesis that seeks to improve febrile illnesses among children under 5 and to 
address antimicrobial resistance (AMR) in Burkina Faso (Kiemde et al., 2022). This will be done by developing and evaluating an 
AI-assisted algorithm (intervention) in a two-step malaria RDT PfHRP2/pLDH and point-of-care tests for detecting malaria and bac
terial infections respectively. The AI intervention will use large data on patients’ clinical information for example, clinical pre
sentations, clinical history, and laboratory test results using varying biomarkers such as C-reactive protein, white blood cell count, and 
specific bacterial point-of-care test outcomes. 

In schistosomiasis control, an AI-powered computer vision model built by merging deep learning segmentation of high-resolution 
satellite imagery and drone technology was employed to map the spatial distribution of schistosome-inhabited vector snails in the 
Senegal River Basin (Liu et al., 2022). This model was aimed at locating the vector snails that aid in the transmission of schistosomiasis 
to give directions for control interventions by stakeholders involved. Similarly, a proof of concept study was conducted in Senegal to 
prove that deep learning-based convolutional neural networks (CNNs) can effectively classify vector snails and schistosoma parasites 
(Tallam et al., 2021). The CNN was fed and trained with 5500 images of different genera of schistosomal vector snails harvested from 
the Senegal River Basin together with images of non-human schistosomiasis vector snails. The CNN model learned and achieved 99% 
accuracy in classifying snails and 91% accuracy in classifying the schistosoma parasites. Furthermore, an AI-assisted microscope (AiDx 
NTDx multi-diagnostic Assist microscope) was evaluated on performance regarding digital detection of Schistosoma haematobium and 
quantification of schistosomal eggs in Nigeria (Makau-Barasa et al., 2023). The evaluation further considered the ability to auto-focus, 
auto-scan, and register images into its system and process them using AI, and automatic parasite count using two types of microscopes 
(semi-automated and fully automated). The semi-automated microscope had 90.3% and 89% sensitivity and specificity respectively 
whereas the fully automated AiDx Assist microscope had 98% and 99% sensitivity and specificity respectively. Similarly, there was a 
significant correlation of egg count of both semi-automated (r = 0.93, p ≤ 0.001) and fully automated (r = 0.89, p ≤ 0.001) AI-assisted 
microscopes with those of the conventional microscope. 

Likewise, AI seeks to enhance HIV management in SSA. For instance, a proposed study in South Africa sought to develop a 
physician-administered AI-based decision support system tool to effectively manage HIV patients on antiretroviral therapy (ART) 
(Singh & Mars, 2012). This technology sought to estimate HIV prognosis based on large data of CD4 count, HIV genomic sequence, and 
information on ART resistance. Moreover, deep learning technology was implemented to complement the diagnostic performance of 
point-of-care (POC) diagnostics for diagnosing HIV in South Africa (Turbé et al., 2021). The deep learning technology demonstrated 
97.8% and 100% sensitivity and specificity respectively for accurately interpreting the HIV POC test results. This algorithm conforms 
with the real-time connectivity component embedded in the new foundational principle for implementing REASSURED diagnostics in 
SSA (Land et al., 2019; Otoo & Schlappi, 2022). Also, two machine learning-based algorithms’ (lasso-type regularized regression and 
random forests) ability to predict HIV viral failure and its associated factors were compared in Uganda, Kenya, Tanzania, and Nigeria 
(Esber et al., 2023). At least 1000 copies/ml viral load for persons living with HIV (PLWHIV) and receiving ART for at least 6 months 
was considered as viral failure. The lasso regression model performed better than the random forest in identifying viral failure. 
Furthermore, machine learning technology was implemented to predict and identify ART clients with a higher risk of ART compliance 
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and loss to follow-up in Nigeria and Mozambique health systems (Stockman et al., 2022). High precision recalls of 0.65 and 0.52 were 
recorded in Mozambique and Nigeria respectively using the Random Forest model. These were against loss to follow-up (LTFU) rates of 
23% and 27% respectively. 

In the advent of COVID-19, case prediction AI models using Artificial Neural Networks (ANN) were proposed and applicability 
tested in several countries including South Africa (Niazkar & Niazkar, 2020). The ANN models were designed to forecast COVID-19 
confirmed cases while considering the 14-day incubation period. The 7th, 12th, and 14th models had the best performance out of 
the 14 prediction models evaluated. Similarly, machine learning algorithms were employed to predict mortality rates of hospitalized 
COVID-19 patients in Zambia (Mulenga et al., 2023). Seven (7) machine learning models including XGBoost (XGB), decision tree (DT), 
gradient boosting (GB), random forest (RF), Naïve Bayes (NB), support vector machines (SVM), and logistic regression (LR) were 
evaluated. The XGB model performed best in predicting the COVID-19 mortality rates in Zambia with 92.3% accuracy, 94.2% recall, 
92.4% F1-Score, and 97.5% area under the receiver operating characteristic curve (ROC_AUC). Moreover, four (4) machine learning 
models were evaluated in Morocco, Sudan, Namibia, South Africa, Uganda, Rwanda, Nigeria, Senegal, Gabon, and Cameroon to 
adequately predict daily COVID-19 cases (Ibrahim et al., 2023). The ANN, adaptive neuro-fuzzy inference system (ANFIS), SVM, and 
conventional multiple linear regression (MLR) models were evaluated based on their accuracy in predicting new cases and new 
variants. Though ANFIS better predicted COVID-19 new cases, it was revealed that some models produced better outcomes when used 
in an ensemble for example ANN-E and SVM-E. 

3.1.3. Non-communicable diseases and injuries 
In addition, medical AI has been applied in the assessment of cancers, renal diseases, metabolic derangements, retinopathies, 

injuries, and among others. For example, in Tanzania, a locally derived machine learning-based prognostic model using large data from 
a traumatic brain injury (TBI) registry of the Kilimanjaro Christian Medical Center (KCMC) was developed and compared with foreign 
online-based decision support technologies such as the corticosteroid randomization after significant head injury (CRASH) and in
ternational mission for prognosis and clinical trials in traumatic brain injury (IMPACT) (Elahi et al., 2022). This development was to 
reduce the long triage, diagnosis, and surgery duration for TBI patients. The KCMC model had the best discrimination (area under the 
curve), could be calibrated like the other two models, and performed similarly to the CRASH model. 

In Zambia, an AI model made up of two convolutional neural networks (VGGNet architecture and a residual neural network ar
chitecture) using deep learning was evaluated for diagnosing diabetic retinopathy (Bellemo et al., 2019). This technology used large 
data of 76000 color fundus images of patients diagnosed with diabetes from both foreign and local sources (Singapore and Zambia) to 
classify diabetic retinopathy. The AI system demonstrated promising results, recording an area under the curve of 0.973 for referable 
diabetic retinopathy and sensitivities of 99.42% for vision-threatening diabetic retinopathy and 97.19% for diabetic macular edema. 
The system was also able to identify systemic risk factors with similar accuracy to human graders, highlighting its potential in aiding 
early diagnosis and reducing the burden on ophthalmologists in SSA. 

Supervised machine learning algorithms were applied in Ethiopia to classify and predict type 2 diabetes (Ebrahim & Derbew, 
2023). These algorithms (Decision tree pruned J48, K-nearest neighbor, Naïve Bayes, Binary logistic regression, Support vector ma
chine, Artificial neural network, and Random Forest) were fed with 2239 datasets made up of 1523 people with type-2 diabetes and 
716 people without type-2 diabetes. Random forest emerged as the best classification and prediction algorithm with a 93.8% correct 
classification rate and 98% sensitivity. 

A mobile AI dietary assessment application known as Food Recognition Assistance and Nudging Insights (FRANI) was evaluated 
among adolescent females 12–18 years old in Ghana against two (2) models thus weighed records (WR), and multipass 24-h recalls 
(24HR) using different dietary nutrient compositions (Folson et al., 2023). The accuracy of the AI-assisted FRANI mobile application 
was equivalent to those of WR and 24HR hence could efficiently assess and estimate dietary nutrient intake in adolescent girls in 
Ghana. 

In the Democratic Republic of Congo, an in-house mobile application using AI-assisted facial analysis technology was implemented 
for screening and detecting Down syndrome among the local population (Porras et al., 2021). Using deep learning approaches, frontal 
facial images of presumed Down syndrome normative persons as the control arm and suspected Down syndrome cases were fed into the 
mobile application. The software produced 91.67%, 95.45%, and 87.88% accuracy, sensitivity, and specificity respectively. 

Medical AI and deep learning models have been proposed to predict mental health outcomes in Kenya (Njoroge et al., 2023). A 
mobile application is modelled to use sensor stream signatures to predict the risk of depression and mood abnormalities among 
healthcare practitioners in Kenya. This application if fully implemented will scale up real-time detection and diagnosis of mental 
disorders among healthcare workers and boost economic liberation in Kenya and SSA as a whole. 

3.1.4. Maternal and neonatal healthcare 
Several advancements have been made in the application of AI-powered, deep-learning, and machine-learning systems in maternal 

and neonatal care in SSA. These systems range from triaging algorithms in antenatal care to perinatal assessments to ensure both the 
baby’s and mother’s safety and survival; and ultimately reduce maternal and neonatal mortality rates in SSA. Maternal health 
intervention using the Quality of Maternal and Prenatal Care: Bridging the Know-Do Gap (QUALMAT) project was designed and 
evaluated in Ghana and Tanzania (Sukums et al., 2015). This project introduced an AI-assisted electronic clinical decision support 
system (eCDSS) for antenatal and perinatal care to help reduce maternal and neonatal mortality in sub-Saharan Africa. The project 
trained healthcare workers who provide antenatal and perinatal care to patients in six primary healthcare facilities in rural 
communities. 

Similarly, a computerized clinical decision support system (CDSS) was introduced and evaluated among rural maternal and 
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neonatal care professionals in Burkina Faso (Zakane et al., 2014). This medical AI system was introduced to augment the care given by 
maternal and neonatal healthcare providers in rural settings to improve the quality of services. 

In Gambia, an online web-based neural network-based pneumonia mortality prediction triage tool was migrated and implemented 
as an entirely offline mobile application (Mohammed et al., 2021). This development aimed at assisting medical staff during patient 
triaging for admission to better predict the risk of death of children diagnosed with pneumonia for rapid intervention in real-time to 
save lives. 

3.1.5. Monitoring and supervision 
While most AI-powered algorithms are targeted for specific medical conditions or diseases, others are implemented to monitor and 

strengthen healthcare programs and systems. For example, in Uganda and Kenya, an open-access web-based machine learning 
application was developed to effectively supervise community health workers (m-Health-facilitated supervision) (O’Donovan et al., 
2022). The application uses 3429 coded digital supervisory interactions between community health workers and their supervisors and 
engages in deep learning to ensure that the community healthcare workers function effectively and meet set targets. 

3.2. The enablers of medical AI in SSA 

It is well understood that the implementation of any medical technology in a healthcare system requires that some conditions be 
met. Major themes emerged, including the availability of enough and quality data and support from institutions, particularly in 
financing, regulation, education, and competency training. 

3.2.1. Availability of large and quality clinical datasets 
AI-powered projects thrive on the availability of large and quality data. AI models are trained using data, and as such, the quality of 

their output is a function of the data they are fed (Owoyemi et al., 2020). Currently, most health facilities in SSA run on different 
information management systems, ranging from non-digitized (paper-based folders) to limited facility-specific electronic information 
management systems (Akanbi et al., 2012). 

Although, SSA may not have a common health information system, either through a donor-sponsored or self-sponsored program, 
South Africa, Benin, Botswana, Ghana, Malawi, Mozambique, Rwanda, Sierra Leone, Tanzania, Zambia, Zanzibar, and Zimbabwe have 
implemented the District Health Information System software version 2 (DHIS 2) as their health information system (Koumamba et al., 
2021). However, most routinely collected country-specific data from health ministries in SSA are challenged with issues related to 
quality, completeness, uniformity, and timeliness as demanded for national, regional, and global policy formulations (Mbondji et al., 
2014). 

The COVID-19 pandemic exposed the poor digital health systems in SSA, which led to the main shift in approach to coordinate the 
surveillance systems in SSA with that of the global health systems. Several public health information algorithms were developed and 
implemented in SSA. For example, the African Union launched a "saving lives, economies, and livelihoods" campaign in 2020 to 
safeguard the African continent using a common health status and mobile global health information platform known as the PanaBios 
(AU, 2020). Similarly, Ghana and Nigeria have fully adopted an open-source mobile eHealth information system SORMAS (Surveil
lance Outbreak Response Management and Analysis System) to manage and control disease outbreaks (Barth-Jaeggi et al., 2023). 
However, Côte d’Ivoire, Nepal, Tanzania, and Tunisia are currently piloting and partially implementing SORMAS at the sub-national 
level (Barth-Jaeggi et al., 2023). 

Currently, the Africa CDC is supporting member states to leverage digital health technologies to address the loopholes in the health 
information management systems in the continent (Africa CDC, 2023). For medical AI to be successfully implemented in SSA, digital 
health and data management systems must be strengthened to generate local data for training the systems. For this to be achieved, 
public health units and health information sections should be empowered to switch from manual documentation to computerized 
information systems. 

3.2.2. Financial and institutional support 
Globally, AI systems are expensive and hence require a strict financial commitment to implement in low and middle-income 

countries, particularly in SSA whose health systems commonly function on donor support. Several AI components including data 
collection, hardware, software, labor, testing, deployment, training, and maintenance among others are required to fully mount and 
implement an AI-powered digital system (Reilly, 2023). It costs not less than USD15000, USD40000, and USD80000 for a low-level 
complex, medium-level complex, and high-level complex AI respectively (RisingMax, 2023). However, the health and economic 
impact outweighs the cost of implementation. For example, in the United States of America, the use of medical AI potentially could 
save between USD200 billion and USD360 billion of costs of healthcare annually (Alnasser, 2023). In addition, medical AI tools have 
been demonstrated to produce health incremental gains compared with non-AI tools. For example, an AI-powered screening tool for 
colorectal cancers demonstrated a 4.8% cost-effective incremental gain compared to a non-AI screening tool (Areia et al., 2022). 
Similarly, an autonomous AI tool for screening retinopathies in premature infants and low birthweight neonates was USD34 more 
cost-effective than assessment by ophthalmoscopy (Morrison et al., 2022). 

For AI systems to be deployed and maintained in hospital laboratories, there should be investments in research, infrastructure, and 
training programs (Herman et al., 2021). These investments are necessary to ensure that the AI systems are reliable, sustainable, 
accurate, and efficient. The training programs should be designed to equip the laboratory staff with the necessary skills to operate and 
maintain the AI systems as stewards. The infrastructure should be robust enough to support the systems and ensure that they are always 
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available when needed. The research should be focused on improving the systems’ accuracy, reliability, and efficiency, as well as 
identifying new use for the technology. 

3.2.3. Regulatory framework and ethical approval 
Several ethical issues have been discussed since the advent of AI-powered algorithms in the global web space. These discussions 

have been prominent especially in healthcare research (Scott et al., 2020) and academia (Khan, 2023). For example, there is a rising 
trend of misinformation and disinformation based on the potential threat of AI-generated images, videos, and audio in the digital space 
(Gonzalez, 2023; Ramirez et al., 2023). In healthcare, there are concerns about a breach of patient confidentiality through the exposure 
of patients’ private health information in the cloud bundled in large data to be used by computer algorithms (Kitsios et al., 2023). A 
digital health policy implemented across the SSA region would potentially guide the ethical deployment and monitoring of digital 
health strategies before AI can be implemented in the medical laboratory (Owoyemi et al., 2020). This is because the AI systems can 
operate, to some degree, autonomously from the human health care practitioner, and use machine learning to generate new, often 
unforeseen analyses and predictions (Donnelly, 2022). 

Leaders in SSA countries should learn from global AI readiness experiences and formulate SSA-contextual regulatory frameworks 
and standards for the development and deployment of AI in healthcare to ensure patient safety and data privacy. For example, the 
European Union (EU) is leading AI policy formulations in the global AI landscape such as the EU Digital Services Act, the EU Digital 
Markets Act, and the AI Act; the USA has Executive Order 13859, National Artificial Intelligence Initiative, the National AI Advisory 
Committee, and the AI Consumer Privacy Act; China has the Cyberspace Administration, and the Chinese Association for Artificial 
Intelligence (Goriola et al., 2023). 

3.2.4. Training and education 
It is critical to provide healthcare personnel with the required training and knowledge of AI technology. This could be implemented 

through the institution and Government-sponsored tertiary education and continuous professional development for laboratory pro
fessionals (Charow et al., 2021). This guarantees that the trained personnel can properly implement these technologies into their 
practice and comprehend the strengths and limitations of the AI systems. Also, the role of the medical scientist within the AI medical 
setup should be clearly defined. Clinical scientists will embrace and integrate AIs into their practice if they are made to understand that 
their future is not in peril, but the systems will only enhance their output (Cutamora et al., 2023). These initiatives will help to improve 
the quality of healthcare and patient outcomes. 

3.3. Challenges to the application of medical AI in SSA 

Despite the enabling factors to potentially implement successful AI-powered algorithms in the clinical settings of SSA, several 
challenges impede their acceptance and implementation. 

3.3.1. Data unavailability 
The lack of complete, unbiased, and timely digital-based structured data in the healthcare systems of SSA is a major challenge to 

meeting the basic requirement for implementing AI-powered systems (Musa et al., 2023). The lack of reliable and comprehensive data 
makes it difficult to develop effective healthcare policies and programs, allocate resources, and monitor progress. Many health fa
cilities in SSA, particularly health facilities in hard-to-reach settings are now integrating digital health records into their system 
(Akanbi et al., 2012). However, a few others still depend on the folder (manual) methods of keeping patient details and health in
formation. Given that, large and quality data is required for training AI models, it is a significant hurdle, that must be overcome for 
integrating medical AIs into hospital laboratories in SSA. 

3.3.2. Data security issues 
The usage of information and communication technologies (ICTs) in Africa is one of the drivers of escalating privacy issues. 

Typically, public anxieties about people’s privacy have been fuelled by the huge gathering of personal information and the relatively 
straightforward possibilities for the exploitation of such information (Makulilo, 2012). This is a major concern, particularly in the 
healthcare sector, where sensitive information about patients is collected and stored. For the successful implementation of medical AI 
in SSA, these concerns need to be addressed. It is important to establish robust data protection policies and regulations that will 
safeguard the privacy of individuals. Additionally, healthcare providers need to implement strict and appropriate security measures to 
protect patient data from unauthorized access, use, or disclosure. 

3.3.3. Resource constraints 
A major challenge that limits the use of Medical AI in SSA is poor financial, infrastructure, and digital-skilled health workforce 

resourcing (Cerf, 2021; Oleribe et al., 2019). The use of AI in healthcare is gaining momentum, and governments, healthcare systems, 
and private organizations understand the value of these technologies. However, few among them have the resources to purchase these 
AI tools, making their integration a challenge. 

3.3.4. Regulatory hurdles 
Lack of AI regulations in SSA poses a potential risk to the successful implementation of medical AI. Comparably, the application of 

AI in the healthcare setting comes with great risks. Diagnosis and treatment decisions can have deadly consequences if errors are made 
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during analysis (Kaur et al., 2021). The ethical dimensions of AI in healthcare require careful attention in the development and 
application of algorithms. Overcoming these challenges demands not only the development of comprehensive regulatory frameworks, 
but also the establishment of collaborative networks, capacity building, and an unwavering commitment to prioritizing patient safety 
in healthcare AI applications. 

3.3.5. Poor access to internet connectivity 
Poor access to reliable internet connectivity has been the worst challenge in SSA’s journey to digital transformation. Only 36% of 

the SSA population have access to broadband internet connectivity, however, affordability issues remain unresolved (World Bank, 
2023). The Internet connectivity crisis has hindered the implementation of the fourth industrial revolution (4IR) in low and 
middle-income countries, especially SSA (Sehlako et al., 2023) and healthcare systems (Mwanza et al., 2023). Although the techno
logical advancements in AI systems may now permit a limited few complex algorithms to run offline using mobile applications (Jain 
et al., 2021), the majority of medical AI-powered systems require internet access (Manickam et al., 2022). 

3.3.6. Poor acceptance and perceptions 
Several misconceptions and myths have been formed and propagated against the global acceptance and implementation of AI 

hence clouding the revolutionary benefits AI seeks to bring. These have created confusion, fear, and panic, particularly in SSA largely 
through misinformation fuelled by socio-cultural influences (Ade-Ibijola & Okonkwo, 2023). For example, the misconception that AI 
will erase human existence and, the lack of trust in AI systems due to the absence of human personal emotions such as empathy, among 
others, have slowed down the acceptance and use of AI-powered technologies (Bewersdorff et al., 2023). In SSA, a predominantly high 
proportion of public health professionals believe although medical AI will improve their task performance, job security is a concern 
(Mwase et al., 2023). 

3.3.7. Digital illiteracy 
Digital literacy forms the backbone of Africa’s readiness to meet the current trends in global digitization and to adopt and 

implement AI and machine learning. The SSA region has heterogeneous digital-skilled personnel in individual settings. However, the 
region records the poorest digital-skilled population globally (Madden & Kanos, 2020). South Africa, Nigeria, and Kenya have on 
average the highest digital literacy in SSA according to the World Bank’s 2021 report on the Future of Work in Africa (Choi et al., 
2020). Other countries such as Ghana, Rwanda, and Mozambique are gradually harnessing digital technologies largely through in
ternational collaborations and donor support systems to transform their digital space and ultimately create digital economies (MoCD, 
2023; World Bank, 2021). 

3.4. The opportunities to apply medical AI to improve healthcare systems in SSA 

On the other hand, medical AI provides several opportunities to ultimately provide equitable population health, especially in 
poorer communities. Brain drain has resulted in the loss of skilled health workforce in developing countries including SSA as it 
continues to drag the economic development of these countries (Docquier et al., 2007). This is a significant problem in the health sector 
of SSA as most healthcare workers are not satisfied with the conditions of service in the region. Medical AI offers the distinct advantage 
of streamlining testing processes, leading to a significant reduction in the personnel required for test administration and adequately 
remunerating and well-resourcing the few (Cutamora et al., 2023). By automating routine tasks and enhancing efficiency in data 
analysis, medical AI not only optimizes resource utilization but also allows healthcare professionals to focus their expertise on more 
complex and critical aspects of patient care. This promotes competency development through continuing professional development 
and refresher training to stay abreast with current trends (Feldacker et al., 2017). 

Above all, the willingness of healthcare professionals especially, medical laboratory personnel to adapt and build competency to 
work with AI-powered algorithms gives hope for the effective implementation of medical AI in the healthcare and laboratory space in 
SSA. These are evident in the active participation in conversations surrounding AI with others leading AI development, evaluation, and 
use (Barth-Jaeggi et al., 2023; The Citizen, 2023; WEC, 2022). However, these are only feasible when the challenges discussed are 
adequately addressed and the needed facilities and resources are provided. 

3.5. Implications of medical AI for medical laboratory practice 

The implications of digitization and medical AI in medical laboratory practice are numerous, with great prospects for enhancing 
diagnosis, patient care, and operational efficiency (Alowais et al., 2023; Isbılen Basok, 2020). Integrating artificial intelligence will 
revolutionize laboratory medicine practice in SSA. 

3.5.1. Improved diagnostic efficiency 
AI-based laboratory testing improves the efficiency of diagnosis in the medical space because they have the potential to improve a 

test’s turnaround time, quality, and cost (Rhoads, 2020). AI-powered diagnostics have gained traction and proven to produce better 
diagnostic performance than non-AI routine laboratory procedures (McDonald et al., 2017; Rabbani et al., 2022). AI-powered labo
ratory algorithms using machine learning approaches have successfully and accurately predicted laboratory results (Rabbani et al., 
2022) and reference values (Yang et al., 2013) based on available large, structured, and quality data. For example, an AI-powered 
neural network model learned from routine complete blood count results to accurately predict serum iron concentration and iron 
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deficiency anemia (Azarkhish et al., 2012). Similarly, the AI-assisted serum lipid analysis algorithm accurately estimated low-density 
lipoprotein cholesterol (LDL-C) through the deep neural network using large datasets from the Korean National Health and Nutrition 
Examination Survey and the Wonju Severance Christian Hospital (Lee et al., 2019). 

In addition, AI-assisted diagnostic algorithms have the potential to address probable patient and sample misidentification which 
may result in adverse and sometimes fatal outcomes for patients. Pre-analytical errors, which usually center around patient and 
specimen identification, are mostly predominant among laboratory errors (Bonini et al., 2002). Patient and specimen misidentification 
is a serious issue that has the potential to cause detrimental health outcomes to patients (Valenstein et al., 2006) and may have re
percussions on laboratory personnel. However, AI models have been trained to identify and manage patients and specimens with a 
focus on identifying mislabelled laboratory samples (Farrell, 2021). 

In resource-limited settings especially in SSA, culture and sensitivity testing to diagnose urinary tract infections (UTI) have a 
success rate of approximately 30% (McDonald et al., 2017). This infers that, out of a hundred people with UTIs, there is a probability 
that 70% may be misdiagnosed, and this negatively affects healthcare delivery. Also, many bacteria are morphologically diverse and 
may adapt and make some morphological changes (Treebupachatsakul & Poomrittigul, 2020), making microscopic identification 
challenging. Recently, machine learning approaches have been demonstrated to accurately detect bacteremia and mycoses (over 
98.7% sensitivity) using large, multicentre in-patient data (Bhavani et al., 2020). This technology has the potential to revolutionize 
bacteria and fungi cultures to maximize test outcomes for efficient patient management. Again, this is proof that the pitfalls in mi
crobial identification in medical laboratories can be improved greatly with AI. 

Finally, the use of AI-modelled wearables (Dunn et al., 2021; Picard & Boyer, 2021) to estimate and predict laboratory results and 
the gradual implementation of point-of-care diagnostics have the potential to democratize access to diagnostics and healthcare in 
general in poor regions particularly hard-to-reach settings of SSA (Dincer et al., 2017; Mashamba-Thompson, 2022). 

3.5.2. Quality assurance and test validation 
In most jurisdictions, AI and machine learning models have been used to revolutionize quality control systems and have been 

demonstrated to effectively validate routine laboratory test results. For example, a machine learning-supported patient-centered real- 
time quality control system accurately detected analytical errors for biochemistry test biomarkers albumin (71.3% sensitivity and 
99.6% specificity), and glucose (95.2% sensitivity and 98.7% specificity), among others (Zhou et al., 2022). Similarly, quality control 
systems for testing complete blood count biomarkers using combined evaluation of delta data and machine learning produced 99% 
accuracy, 99% sensitivity, and 99% specificity (Liang et al., 2022). Also, AI-assisted neural networks and tree-based algorithms have 
been employed in verifying the validity of laboratory results, distinguishing micro-clotted blood samples from non-clotted samples, 
and identifying mislabelled samples (Rabbani et al., 2022). 

3.5.3. Interpretation of laboratory test outputs 
Recent studies have revealed the application of medical AI and machine learning technology in the interpretation of laboratory test 

results. These augment the specialist knowledge of both clinicians and laboratory professionals. For example, machine learning al
gorithms on hematological testing have accurately predicted and interpreted blood-based test results for differential diagnosis of 
hematologic diseases (Gunčar et al., 2018). At the onset of the COVID-19 pandemic, a smartphone-based application (xRCovid) was 
developed and evaluated on its accuracy in reading and interpreting COVID-19 rapid diagnostic test (RDT) results using machine 
learning technology (Mendels et al., 2021). This application produced between 97.6-100% and 99–100% sensitivity and specificity 
respectively using eleven (11) different RDT models which increased the test uptake and boosted the test confidence to be used as a 
self-test (Mendels et al., 2021). Elsewhere, a tree-based machine learning model was used to classify steroid profiles in urine with 87% 
accuracy in diagnostic performance and interpretation (Wilkes et al., 2018). 

3.5.4. Better management of laboratory records and patient data 
Medical AI and deep learning platforms have been integrated into laboratory information management systems. These smart 

systems can be used to analyze large amounts of data that include population heterogeneities and would allow a revolution in the 
healthcare field in real-time (Pereira et al., 2021). For example, a tree-based machine learning technology was used to accurately 
identify 85% of unlabelled laboratory results in a laboratory database (Parr et al., 2018). Similarly, using machine learning algorithms, 
Logical Observation Identifiers Names and Codes (LOINCs) can identify data of interest through adjudication processes devoid of the 
stress of manual review and data search (Fillmore et al., 2019). Better management of patient records will allow for early detection, 
prevention, and management of diseases. 

3.5.5. Cost-effective laboratory diagnostics 
Medical AI has produced cost-effective laboratory diagnostics in the differential diagnosis of several diseases. For example, lab

oratory malaria diagnosis using machine learning-powered digital in-line holographic microscopy rapidly and better detected malaria- 
infected red blood cells compared with conventional staining and microscopy (Go et al., 2018). In addition, this technology-driven 
algorithm is more sensitive and cost-effective in diagnosing malaria. Similarly, the economic evaluation of an AI model was per
formed in cytology testing for cervical cancer screening (Shen et al., 2023). The evaluation established that the AI-assisted screening 
algorithm is more cost-effective with an ICER of USD8790/QALY gained compared with the conventional screening method (Shen 
et al., 2023). While the initial investment in AI deployment may necessitate resources, the long-term advantages in terms of cost 
savings, operational efficiency, and enhanced results may surpass these early costs (Cutamora et al., 2023). 
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4. Limitations 

Reviews might unintentionally miss out on valuable information because they stick to specific search scopes and eligibility criteria. 
In this study, for instance, some good studies in non-English languages, grey literature, and unpublished articles were excluded. 

5. Conclusion 

Medical AI can revolutionize the practice of medical laboratory science in the SSA. Several studies have proven that AI can be 
integrated into the medical space in SSA. Despite the proven importance and advantages of incorporating AI in laboratory practice, 
many hurdles need to be overcome before the integration can be complete. Education and competency training, ethical consideration, 
the generation of local data, and investments in infrastructure and technology must be achieved before the successful implementation 
of medical AI in laboratory practice in SSA. 

6. Recommendations for the application of medical AI in medical laboratories in SSA 

To allow for the effective integration of medical AI into laboratory practices in SSA, several strategic policies must be implemented. 
To begin with, comprehensive education and training programs should be established to equip medical laboratory professionals with 
the necessary knowledge and skills in AI. The training institutions in SSA should develop relevant curricula and training programs to 
equip medical laboratory professionals with AI skills. Governments should allocate resources for education and competency training 
programs, as well as invest in infrastructure and technology. Simultaneously, the formulation and implementation of ethical guidelines 
and regulatory frameworks specific to the region are vital to ensuring responsible AI usage. Encouraging the generation of structured 
and quality local healthcare data for training and validating AI algorithms, coupled with investments in healthcare infrastructure, will 
enhance the seamless integration of AI into laboratory workflows. Additionally, technology service providers, such as internet service 
providers, play a vital role in offering equitable and accessible tailored solutions and support for the successful implementation of 
medical AI in laboratory practice in SSA. Making AI technologies more accessible and affordable, along with promoting public and 
professional awareness, will contribute to widespread acceptance. Collaborative research initiatives, governmental support, and ca
pacity building in AI governance are integral components. Implementing pilot programs, followed by continuous evaluation, will allow 
for the refinement of AI applications based on real-world performance. By collectively addressing these recommendations, stake
holders can overcome existing hurdles and usher in a new era of enhanced healthcare through the successful integration of medical AI 
in SSA. 
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