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Abstract

Deep learning applications have had a profound impact on many scientific fields, including functional genomics. Deep learning models
can learn complex interactions between and within omics data; however, interpreting and explaining these models can be challenging.
Interpretability is essential not only to help progress our understanding of the biological mechanisms underlying traits and diseases
but also for establishing trust in these model’s efficacy for healthcare applications. Recognizing this importance, recent years have seen
the development of numerous diverse interpretability strategies, making it increasingly difficult to navigate the field. In this review, we
present a quantitative analysis of the challenges arising when designing interpretable deep learning solutions in functional genomics.
We explore design choices related to the characteristics of genomics data, the neural network architectures applied, and strategies
for interpretation. By quantifying the current state of the field with a predefined set of criteria, we find the most frequent solutions,
highlight exceptional examples, and identify unexplored opportunities for developing interpretable deep learning models in genomics.
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Introduction
The overarching goal of functional genomics research is to
understand and intervene in the underlying biological processes
between genotype, environment, and phenotype [1]. To probe
these underlying biological processes, a wide variety of omics
are gathered. Genetic data (DNA sequences, single nucleotide
polymorphisms (SNPs), and copy number variants (CNV)) serves
as the stable foundation from which many biological processes
start. Transcriptomics data provides the expression of genes
by measuring messenger RNA (mRNA), which is dynamically
transcribed from DNA and can be regulated by various epigenetic
mechanisms. These epigenetic mechanisms include DNA methy-
lation, RNA methylation, regulatory non-coding RNA (ncRNA),
histone modifications, and chromatin accessibility. Altogether,
these omic types provide insight in the biological processes
that link heritable and environmental factors to observable
characteristics in a cell or individual [1]. The underlying biological
processes can be very complex [2] and massive amounts of data
are acquired to study these processes. The massive amount of
data and the complexity of the biological processes allow and
justify using more complex models, such as deep learning models,
to help unravel the intricacies between genotype, environment,
and phenotype.

Deep learning, a subset of machine learning, consists of a
group of methods that can capture complex interactions and non-
linear relationships given a sufficiently large number of examples.
Deep learning solutions have been successful in a wide variety of
applications; a few examples include biomedical image segmen-
tation [3], natural language modelling [4], and protein modelling
[5]. Despite their widespread popularity and convincing perfor-
mances of deep-learning models there are drawbacks in using
neural networks; deep learning methods offer no explanation for
their decision-making process.

Explaining the decision-making process of AI-driven technolo-
gies is essential, given that these technologies impact various
facets of our daily lives, encompassing critical domains such as
healthcare, governance, and legal systems [6]. Recent European
data and privacy legislation, particularly the General Data Pro-
tection Regulation (GDPR), has put ‘explainability’ as a top priority
in machine learning research [7]. In the special case of decisions
reached using automated processing, the rights of data subjects
(e.g. patients) were phrased as to ‘obtain an explanation of the decision
reached’ [8], encoding the right to explanations for data subjects
within European law. Interpretability is central to inspiring trust
in neural networks. Understanding why and how a model makes
decisions, as opposed to blindly trusting that they are correct,
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contributes to its trustworthiness [6]. The ability to understand
the reasoning behind a model’s prediction (the why) is often
termed ‘explainability’, whereas the ability to fully understand
the inner workings of the model (the how) is referred to as its
‘interpretability’. According to this definition, all interpretable AI
is inherently explainable but not all explainable AI systems are
interpretable. Generally, rule-based models and simpler machine
learning models such as linear and logistic regression and deci-
sion trees are intrinsically interpretable. In more complex mod-
els, like large random forests and dense neural networks, pre-
dictions can often only be approximated through explainability
methods [9].

Designing an interpretable deep-learning application is an
inherently creative process without a set path to a successful
application. Researchers require not only in-depth knowledge
of the data they are working with, but also need to be aware
of the different types of model architectures that can be
applied, their limitations such as required sample size, how
these architectures can be made interpretable, and, finally,
how to combine these components in a way that yields insight
into the biological question of interest. Fortunately, there are
numerous successful applications of interpretable deep learning
in genomics that can guide development and inspire novel
approaches. In this study, we provide an in-depth analysis of the
current state of the interpretable genomics field by discussing
the most prevalent solutions, visualise common combinations of
solutions, and identify interesting opportunities for designing
interpretable deep-learning applications in genomics. While
there exist numerous comprehensive reviews outlining different
interpretability approaches [10–14], we provide a more practical
guide for researchers that want to bring interpretability into their
models. We dissect the challenges associated with the three key
considerations of every interpretable deep-learning application
in genomics: (i) the characteristics of the utilised data, (ii) the
model architecture, and (iii) the interpretation strategy selected.
We assessed each surveyed paper according to predefined criteria
relating to these key considerations (Section 6), resulting in
an overview table that provides a quantitative overview of all
approaches and applications of interpretable deep learning in
genomics (Section 6). From this comprehensive overview table, we
extract general statistics that provide insight into the prevalent
research questions addressed and the popularity of both models
and interpretability methods. Furthermore, we provide supporting
graphics to outline (dis-) advantages for combinations of data
types, models, and interpretation strategies, with the goal of
identifying inspirational examples, challenges, and unexplored
opportunities in developing an interpretable deep-learning model.

In the first section Considerations for designing an inter-
pretable model, we discuss the major decisions that need to
be taken during model development and we provide a short
intuition on the most commonly used data types, models, and
interpretability strategies. After establishing the fundamentals,
we analyse and visualise trends and statistics of current solu-
tions in section The current state of the field: a quantifica-
tion. Finally, in Opportunities and perspectives, we highlight
unexplored opportunities, best practices, and considerations for
designing interpretable deep-learning applications in genomics.

Considerations for designing an
interpretable model
We focus on three key aspects that mark major decisions during
developing an interpretable deep-learning model for omics data:

(i) the type and characteristics of data used, (ii) the model
architecture of choice, and (iii) the interpretability strategy
deployed. As all these three aspects are intertwined and cannot be
discussed separately, we aim to clarify dependencies by gradually
stacking information. First, we expand and motivate the criteria
for the quantitative analysis, before moving on to the quantitative
analysis itself.

Criteria and considerations used for evaluation:

1. Characteristic of the input data
(a) Sequencing type: was the data generated using single cell

or bulk sequencing?
(b) Omic type: which omics (e.g. SNPs, CNVs, mRNA, CpGs)

were used in the study? Single omic or multi-omic?
(c) Data dimensions: what is the number of examples (e.g.

number of patients, cells) in the dataset?
2. Choosing a model architecture:

(a) Neural network type: what kind of neural network archi-
tecture was used (convolutional neural network (CNN),
visible neural network (VNN), transformer, etc.)

(b) Input dimensions: what was the dimension of the input
for each example to the network? (e.g between 50 and
100, between 1000 and 2000, more than 1 million)

(c) Computational resources: which computational resources
(CPU/GPU memory) was available for model construc-
tion and interpretation?

3. Navigating interpretation strategies
(a) Biological level of interpretation: on which (biological) level

was interpretability applied (gene-level, pathway, etc.)?
(b) Interpretation taxonomy: how was model interpretation

facilitated (global, local, attribution methods, hidden
semantics, etc.)?

(c) Interpretation strategy: what are the defining characteris-
tics of the interpretation method (use prior knowledge,
visualisation, backpropagation method, etc.)?

(d) Prior knowledge: if prior knowledge was used, which
database was used? (KEGG, Reactome, Gene-Onthology,
etc.)

Characteristics of the input data
The data are the basis on which the neural networks are built
and its characteristics largely influence the choice of model archi-
tecture and the interpretation method. We included studies with
at least one of the following types of data: genetic (SNPs, CNVs),
transcriptomics (mRNA), and epigenetic data such as chromatin
accessibility (ATAC-seq, DNase), non-coding RNAs (ncRNAs), and
DNA methylation (CpGs). We make a distinction between single-
cell and bulk sequencing, as the challenges and characteristics of
these sequencing types can be quite different and we categorised
the number of examples in the dataset to give an impression of
the volume of the data needed to perform the study.

Table 1 highlights some of the characteristics of the omic types
included and challenges associated with designing a neural net-
work for the included omic types. These characteristics and chal-
lenges, in combination with the research question mainly shape
the realm of possible options for neural network architectures.
For instance, due to the expansive dimensions of genetic data,
utilising sparse models becomes necessary, since fully connected
layers could exceed GPU memory capacities. For sequence data,
neural networks that scan the sequences for patterns, such as
CNNs are typically utilised. However, the atypical out-of-the-box
applications are interesting to highlight. These demonstrate that
with both conventional and unconventional transformations of
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Table 1. Overview of the characteristics and challenges of the main omics types encountered in the surveyed papers

Genetic Transcriptomics Epigenetic

Category SNPs, sequences Bulk gene expression Single-cell gene
expression

Chromatin
accessibility

Methylation

Methods Genotype arrays,
whole genome
sequencing

RNA-seq,
microarrays

scRNA-seq ATAC-seq,
DNase-seq

BeadChip

Number of
measurements

>88 million variants ∼24 000 genes <24 000 genes Millions of reads ∼450 000 CpGs

Data type Categorical
(nucleotide, dosage)

Positive continuous
(gene expression
level)

Positive continuous
(gene expression
level)

Positive continuous
(read counts per
region)

Fraction (CpG
methylation level)

Challenges for
ML

Large input size,
small effect sizes,
non-coding regions

Input order, mixture
of cell signals

Identifying cell-types
and cell-states, data
sparsity

TN5 bias,
peak-calling

High dimensionality,
cell-type
heterogeneity

the data, one can open up new possibilities. For example, the
use of k-mers to decrease the input size of genetic data, and
to increase the depth of the data [15]. Transforming the gene
expression data into images to apply CNNs and image-based
interpretation strategies [16–18]. ChromBPnet [19] avoids peak-
calling by using the raw counts as an input. Additionally, they add
an additional network trained on the non-peak regions to correct
for a bias in ATAC-seq measurements (TN5 bias). The latter is also
a great example of demonstrating that a thorough understanding
of the data and preprocessing steps is crucial in identifying steps
that can be replaced or benefit from deep learning.

Choosing a model architecture
The choice of model architectures is mainly driven by data,
technological innovations, and trends. Most deep learning archi-
tectures are variations of neural networks. We categorise each
network as one of the main neural network types: multi-layer per-
ceptron (MLP), CNN, VNN, graph neural networks (GNN), autoen-
coders (AE), and the recently introduced generative pretrained
transformers (GPT) (Fig. 1). Historically, CNNs were designed for
image data, GNNs for data that can be represented as graphs (e.g.
social networks, molecules, and proteins), and transformers had
their first successes in text-based natural language tasks. How-
ever, neural networks can consist of a mix of multiple types of lay-
ers, providing endless opportunities to tailor the neural network
to specific problems and data types, such as the various types of
omics data. Genomics data generally has a large input dimension
and one can choose to modify the network to take all the inputs
or choose a subset of the data to feed into the network. This is
related to the last criterion: the computational resources. Larger
networks that take all the data need more memory train longer.

Multi-layer perceptron (MLP) is the most traditional neural
network architecture [21]. Each layer consists of a set of neurons
that is fully connected to neurons in previous and subsequent
layers (see Fig. 1(a). MLP architectures are abundantly used, espe-
cially in common supervised tasks relevant in medicine, such as
the prediction of cancer types, estimating disease severity, and
molecular subtyping [22]. These feed-forward neural networks do
not need to be deep with multiple subsequent layers to model
complex functions. It has been shown that a shallow network with
a single layer with infinite width, can accurately approximate any
function [23, 24].

Convolutional neural networks (CNNs) have a rich history of
successful applications, particularly in imaging, where they excel
in extracting useful patterns from local correlation structures,

such as edges in images [21]. CNNs are not fully connected,
instead, in each convolutional layer it optimises a predefined
number of filters that slide across the input features (as shown in
Fig. 1b). This sliding operation over the inputs makes the network
invariant to where the pattern is located. In other words, the
network is translation-invariant. Stacking multiple layers results
in a fully CNN. In such a network, each subsequent layer can
capture more abstract patterns. When used in conjunction with
genomic data, CNNs commonly take DNA sequences or gene
expression matrices as input. Stacking convolutional layers allows
the model to learn increasingly complex gene interaction pat-
terns. For example, the first convolutional layer can detect local
clusters of co-expressed genes. The second layer subsequently
learns how groups of genes are correlated. Deeper layers may ulti-
mately abstract specific expression signatures characteristic of
pathways or even certain diseases or cell types. Stacking convolu-
tional layers also contributes to increasing the receptive field: the
region used by the network to create a particular feature. Thus, the
receptive field defines the largest distance for which interactions
can be learned by the network.In the context of genomics, this can
be the length of a DNA sequence or values of reads (e.g. DNase,
ATAC-seq data) mapped to a reference sequence.

Visible neural networks (VNN) were introduced in the field
of biology to tackle two common problems in deep learning in
genomics: efficiently handling large input sizes and addressing
the lack of interpretability. These types of neural networks reduce
the number of learnable parameters by embedding biological
information in the network architecture so that only biologically
meaningful connections are retained (see Fig. 1d). Each neuron
in a VNN represents a biological entity, for example, a gene or
a pathway [25]. In the network illustrated in Fig. 1(d), the high-
lighted neuron represents a gene. Only genetic variants that have
a relation to that gene (according to prior biological knowledge)
are used as input. The output of this gene could be connected
neurons representing pathways that this gene is involved in. Vis-
ible neural networks can be seen as a hybrid between GNNs and
MLP. It uses the mechanics of fully-connected feed-forward layers
but is shaped like a graph using external sources of biological
knowledge.

Generative pre-trained transformers (GPT) are the most
recently proposed class of neural networks that have had a
major impact in research and society [26]. Transformers were
developed for the task of translating natural language texts and
are performing best on sequential data, such as DNA sequences.
A transformer alternates between feed-forward layers and the
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Figure 1. Overview of the most popular neural network architectures. (a) Multilayer perceptron, a fully connected neural network. (b) Convolutional
neural network, (c) GNN. (d) GPT; Generative pretrained transformer, here displayed the attention mechanism (inspired by [20]) (e) VNN, and (f) AE.

self-attention mechanism. Self-attention (see Fig. 1e) allows each
element in a sequence to dynamically weigh the importance of
all other elements. In the original translation task, each word in
a sentence can ‘attend’ to all other words, enabling the model
to understand context and relationships within the sequence. In
genomics, the equivalents of ‘words in a sentence’ can be seen
as ‘genes in a cell’ [27]. GPTs are large transformer models that
have been trained on massive amounts of data (Supplementary
Figure 6b). During training, these models learn to predict the

next output in a sequence given the previous inputs. During
this self-supervised training procedure, the model gains a deeper
understanding of the data and should, therefore, be aware of
context. For example, it should be able to infer the gene expression
of a masked gene in a cell given the expression of all other genes.
These models are also referred to as foundation models, since
the pre-trained models, with their better understanding of the
general concepts, can be used for various downstream tasks with
little fine-tuning [28].
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GNN [29] are designed for analysing data structured as graphs,
such as molecules, proteins, social networks, or protein interac-
tion networks. A GNN is structured like a graph, using prior infor-
mation to describe which nodes are connected to which nodes
(see Fig. 1c). For example, each protein in a protein interaction
network is a node, with edges between proteins that interact. Mes-
sage passing, aggregating information from neighbouring nodes,
enables each node to aggregate and process information from its
immediate neighbours. This process occurs in each layer, where
layers can be thought of as iterations of the graph with updated
weights. This iterative aggregation enables the network to learn
node representations that reflect not only the features of the
nodes themselves, but also their relationships within the graph.
With each successive layer, GNNs integrate information from
broader neighbourhoods, capturing more complex and global
patterns in the graph structure.

AE (Fig. 1f) are unsupervised neural networks consisting
of an encoder and a decoder [21]. The encoder maps the
high-dimensional input data into a lower dimensional latent
embedding while the decoder reconstructs the original input from
this smaller dimensional embedding. This unsupervised encoder-
decoder structure, with such an information bottleneck, allows
AEs to act as dimensionality reduction tools. For example, an AE
can use single-cell gene expression matrices as input and encode
them into a UMAP-like structure. The clustering patterns found
in this UMAP-like embedding can subsequently be interpreted
as different cell cluster and used for e.g. cell type annotation.
Variational autoencoders (VAE) [30] use probabilistic resampling
to model the output of the encoder as a distribution over the
latent space. An extra regularisation term is added in the loss
function to encourages the learned distributions to approximate
a prior distribution (typically a Gaussian). As a consequence of
the probabilistic resampling, each sample can be sampled from
a wider area in the latent space as opposed to a single point in
regular AEs. This results in a coherent latent space that can be
used for generating new data points by sampling from this latent
space. For this property VAE have also been used for generating
synthetic patient data, such as user-specific cancer types based
on DNA methylation data [31].

Navigating interpretation strategies
We classified the interpretation strategies in each paper by the
taxonomy defined by Zhang et al., which utilises three dimensions
to categorise approaches [12] (Fig. 2).The first dimension divides
the interpretation approaches into active and passive according to
whether they require changing the network architecture. Active
approaches need a specific configuration of the network to work,
for example, embedding biological knowledge in the network
architecture. Passive approaches do not have this requirement
and can be applied post-hoc to (nearly) any network. The second
dimension describes the type of explanation that is obtained by
using the method. It differentiates between three major types:
logic rules, hidden semantics, attributions, ordered by decreasing
explanatory power. Methods that extract logic rules approximate
the learned function of the neural network by a set of rules.
Hidden semantics includes methods that explain the inner state
of a neural network. Attribution, the final option for the second
dimension, is subdivided further into gradient-based, permutation,
perturbation, game theory, attention, each describing a different
mechanism to attach an importance value to each input. The
third and final dimension describes the level of interpretability
with regard to the input space, differentiating between global,
semi-local, and local approaches. Global interpretability refers

to understanding the overall decision logic of a model and its
behaviour across all samples, for example, a global overview
of the importance of a specific SNP over the whole population.
Local explanations provide the interpretation for a single patient,
such as a list of genes ranked by their predicted importance
to patient survival [32]. As the transition between global and
local interpretation is soft, the category of semi-local approaches
describes an intermittent state which can be thought of as e.g.
biomarkers differentially expressed in a group of similar patients.
In addition to the taxonomy, we examined which level of biological
information was extracted from the network. This can be inputs
(SNPs, genes etc.) or higher level concepts such as gene sets and
pathways. Since many of the interpretation methods are novel
approaches, we also tagged each interpretation method based
on keywords describing methodological characteristics. Finally,
if prior biological knowledge is used in the design of the neural
network, we tabulate the source of the prior knowledge.

The current state of the field: a
quantification
During literature retrieval, we employed a systematic approach
and subsequently continuously included newly published articles
by evaluating the references and citations of the screened articles
(snowballing procedure). In total, our systematic search identified
2008 studies, of which 1146 remained after exclusion of dupli-
cates. During abstract screening, studies were included that (i)
use human (multi-) omics measurements, (ii) utilise deep learning
architectures, (iii) attempt to facilitate interpretability. Further-
more, to select the most relevant primary studies for our area of
interest, we excluded studies which used data featuring a spatial
(2D/3D images, spatial-omics) or time component (metabolomics,
proteomics; except if used in a multi-omics study), as well as
studies with a focus on drug development or predicting genome
regulatory elements without a focus on human disease. For the
latter, we refer to Koido et al. [33], Eraslan et al. [34], and Talukder
et al. [35] for excellent reviews on this topic. Additionally, we
included relevant articles identified by the snowballing procedure
[36], resulting in a total of 123 research articles for our analysis.
A detailed description of the literature retrieval procedure can be
found in Supplementary Methods. The table with all the surveyed
studies is available online as an interactive table for easy naviga-
tion, filtering, and sorting (http://www.roshchupkin.org/xai).

Characteristics of the input data
Interpretable deep learning solutions have been applied to a
wide variety of fields and tasks within genomics. Figure 3b shows
an overview of fields represented in this study. The majority of
interpretable deep learning applications are found in oncology
(48%), with neurology (10%) and immunology (10%) following
closely behind. This large percentage of oncology studies is likely
a result of large amount of publicly available cancer data. For
example, TCGA was used in 43 out of the 73 oncology studies.
Regarding the types of tasks, supervised learning dominates the
field, constituting 78% of interpretable neural network applica-
tions. Specifically, supervised classification represents 54%, while
regression tasks, encompassing survival prediction, make up 24%
of the included applications (see Table 2). Overall, this demon-
strates that the utilisation of interpretable models is not limited
to specific biological fields or use cases but is widely employed
across various disciplines.

Figure 3a graphically summarises the datatypes found in the
surveyed papers. Despite the recent advancement of single-cell
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Figure 2. Overview of the three dimensions defined by Zhang et al. [12] to categorise interpretability strategies. Dimension 1 divides approaches into
whether they require to change the network architecture (active) or can be applied post-hoc (passive). Note that active and passive approaches are not
mutually exclusive. Dimension 2 further delineates passive interpretability approaches, including methods implementing them. Dimension 3 describes
the level of interpretability with regard to the input space, thus differentiating between strategies applicable to whole populations (global), a group of
individuals (semi-local), or an individual (local).

Figure 3. Data types in, and the biological context of, interpretable deep learning studies (123 publications). (a) Summary on the data types usage.Note
that the inner circle follows the labels in the legend counter-clockwise. (b) Overview of biological fields.

sequencing, we found that most studies used bulk sequencing
(81%). Single-cell sequencing was mostly restricted to single-cell
RNA sequencing (n = 22) and to a lesser extent single-cell ATAC-
seq (n = 4).

Genetic data were used as at least one of the input types for
29% of the studies included in the survey (Fig. 3(a). The small

effects and the large number of genetic variants have forced the
community to bundle genetic datasets to acquire the sample
sizes necessary for these studies. This, together with the rela-
tively low cost of genotyping, results in datasets with large num-
bers of individuals. The largest sample size among interpretable
deep-learning applications amounted to 21,105 individuals [37].
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Table 2. Overview of the largest categories for each criterion in the main table (see http://www.roshchupkin.org/xai) for the full table.
Not all categories sum to the total number of papers (n = 121) since some studies fall under multiple categories or use multiple
methods or datasets.

General

Publication per year 2023 (13)∗ 2022 (45) 2021 (32) 2020 (12) other (19)
Research Field oncology (70) immunology (15) neurology (15) heritable traits

(8)
other (39)

Task supervised
classification
(76)

supervised
regression (33)

unsupervised
clustering (31)

Data
Bulk/single-cell bulk (97) single-cell (22)
Data type transcriptomics

(88)
genetics (56) epigenetics (34) clinical (7) other (10)

Sample size between 500 and
1000 (33)

>1000 & <5000
(29)

>10 000 & <50
000 (19)

>5000 & <10
000 (12)

other (52)

Model
Model architecture multilayer

perceptron (37)
autoencoder (36) visible neural

networks (24)
graph neural
network (17)

other (27)

Number of features <10000 (40) <50000 (31) <1000 (20) <100 000 (13) other (16)
Computational resources unspecified (88) GPU <13 GB (23) GPU >13 GB (16) CPU (11) other (5)
Interpretability
Active/passive (1st
dimension)

passive (72) active (35) passive & active
(14)

Interpertation strategy (2nd
dimension)

attribution (101) hidden
semantics (47)

prior knowledge
(37)

connection-
weights
(32)

other (41)

Interpretation methods (2nd
dimension)

SHAP (14) Integrated
Gradients (10)

DeepLIFT (9) Layerwise
Relevance
Propagation (7)

other (41)

Granularity of interpretation
(3rd dimension)

global (61) local (49) semi-local (17)

Level of interpretation genes (92) pathways (35) SNPs (14) gene sets (11) other (24)
Source of prior knowledge
(active interpretability)

Gene-Onthology
(15)

KEGG (13) Reactome (11) StringDB (4) other (32)

∗The systematic literature review was completed before the end of the year.

However, there is a large gap between the sample sizes used
in interpretable deep-learning applications and the millions of
individuals included in genome-wide association studies (GWAS)
(e.g. [38]). Genetic data are sensitive and cannot be readily shared,
and gathering large datasets in one place is often infeasible.
Distributed learning could be a solution to increase sample sizes
[39, 40]. Especially since most common research questions revolve
around predicting phenotypes [41–43] and diseases, most com-
monly cancer [16, 44–49], but also neuro-degenerative diseases
[50], psychiatric conditions [51, 52], or hyper-inflammatory condi-
tions [53]. Around these topics, GWAS consortia have formed that
have the proper data agreements in place. However, interpretable
deep learning with genetic data is not just restricted to these
traits and diseases. Examples of other topics for these applications
include differentiating populations [54, 55] or detecting gene-gene
interactions and epistasis [56–59].

Transcriptomics is the most frequently utilised input type cov-
ering 45% of the applications. Effect sizes of genes are generally
larger than genetic variants and studies can therefore use smaller
sample sizes. Sample sizes in the surveyed papers varied between
several hundreds [18, 60–62] to tens of thousands of individuals
[16, 63–66]. Similar to studies with genetic data, research ques-
tions for studies that use bulk transcriptomics data often revolve
around predicting various phenotypes based on gene expression
differences. Studies that use single-cell sequencing generally have
different research questions, and are focused on clustering and
integration using AE architectures (e.g. [67–70]). Recent popular

publications on these tasks use foundation models, which are
promising as they can perform several tasks such as cell-type
annotation and batch correction. These large generative models
are trained on millions of cells. Geneformer [71] used 30 million
cells, scGPT [27] was trained with a 33 million cells, and scFoun-
dation [28] on 50 million cells.

Epigenetics is an increasingly popular research area, covering
17% of publications. Epigenomics data are commonly included as
one of the inputs in a multi-omics framework—only a few publi-
cations focus on the sole use of epigenetic data (Supplementary
Figure 4). Lemsara et al. [72] combined four omic types in a
sparse AE based on pathways and Pan et al. [73] showcased the
combination of up to six different data types using a vanilla AE to
improve stratification of breast cancer patients. Epigenetic data,
often in combination with other data types, have been used to
predict cancer states [46, 49, 74–77], drug response [78], COVID-19
[79], metadata [80], or even other omic types, such as gene expres-
sion [61, 81].

Neural network architectures underlying
interpretable models
Figure 4a shows the publication date of these papers categorised
per network type. From this figure, it is clear that the field is
in rapid development, with the vast majority (94%) of papers
included in this study being published in 2017 or later. It is also
evident that the field has not converged to a single network type,
and many types of neural networks are being explored. Figure 4b
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Figure 4. General trends and statistics for model architectures used in the surveyed studies. (a) Number of publications over the years (cumulative) split
per neural network type. (b) Heatmap illustrating the variety and quantity of data-model combinations.

provides an overview of the network architectures per data type.
Absence of interpretable deep learning architecture for a certain
data type can be a consequence of technical limitations, incom-
patibility, or an opportunity. For example, it will only be a matter of
time before interpretable transformer architectures are applied to
epigenetics data. At this time, traditional fully connected neural
networks (26%) are still the most applied neural network type,
closely followed by all the variations of AE (26%), VNNs (17%), and
GNNs (12%).

Interpretable deep learning models outperformed standard
machine learning baselines in nearly all studies, but this could
be inflated by publication bias. For all tasks, the most frequent
type of baseline was other neural network architectures (see
Supplementary Figure 5). Depending on the task, other popular
baselines included statistical frameworks such as Seurat, PCA,
and UMAP for clustering tasks, and random forest, linear regres-
sion, and support vector machines for classification and regres-
sion tasks.

We found that the choice of model architecture is closely
linked to data dimensions (Supplementary Figure 6). Regarding
the number of input features, such as the number of SNP or
gene expression measurements, most surveyed models can han-
dle around 50 000 input features on average (Supplementary
Figure 5a). GNNs and in particular VNNs can learn from a larger
number of features. Due to the sparsely-connected architecture
and reduced computational load, VNNs are ideal candidates in
applications with a large number of inputs and limited compute.
The largest number of input features, using more than 4 and 6
million genetic variants, were found in studies employing VNNs
[52, 82]. GPT-based foundation models, on the other hand, repre-
sent the lower end of the spectrum, typically processing between
5 000 and 50 000 input features. This limitation is due to their high
computational costs and their exclusive use with single-cell gene
expression data, which measures a limited number of genes per
cell due to technical constraints.

Standard graph CNNs [83], have been used in all data types
(see Fig. 4b). GNNs come in a wide array of variations and can
even vary in the way that information from neighbouring nodes
are combined. To illustrate, [84] integrated self-attention from
transformers in GNNs while [85] used spectral graph convolutions.
In terms of the number of samples used in training, we found
that all architectures, except for GPT-based foundation models,
were typically trained with around 5 000 samples (Supplementary
Figure 6b). GNNs have commonly been applied with smaller
sample sizes of around 500, making them an attractive choice
for researchers with limited data. GPT-based foundation models,
however, were only used with at least a million samples. This high
sample requirement is feasible only with high-throughput single-
cell data, where each cell represents a sample, as it far exceeds
the number of patient samples currently available.

All unsupervised learning applications (22.1% of the studies)
were clustering tasks, and almost all were applying variations
of AEs. Here we find notable differences between the use of
bulk data and single-cell data. For single-cell data, there is a
data-specific challenge to accurately cluster cell types. Recent
articles have proposed to use AEs for this task as AE can provide
additional functionalities aside from reducing the dimensionality,
for example, remove batch effects, denoise the data, find clusters
and integrate multi-omics data [67, 70, 79, 86, 87]. Around 75%
surveyed papers using single-cell data use variations of AEs for
clustering.

AEs recently adopted the concept of visible networks. This was
pioneered by the work of Seninge et al. [70] who designed VEGA,
a sparse variational AE for sc-transcriptomics supporting user-
defined modules, subsequently inspiring numerous other works.
Among them was Lotfollahi et al. [69], who designed the latent
dimensions of an scRNA-seq AE to represent biological modules
with their activities being directly interpretable, further proving
the versatility of different AE designs. Using biological knowledge
to create more sparse AEs, allows these networks to work with
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Figure 5. Overview of the interpretability methods and strategies employed. (a) Sunburst plot depicting the strategies employed for the first and second
dimensions of interpretability, along with their respective prevalence among 123 surveyed publications. (b) Heatmap illustrating the variety and quantity
of data-interpretability combinations. (c) Stacked bar-chart highlighting the identified of model-interpretability combinations.

more input features with a reduced computational cost, some-
thing that AEs—with their mirrored design—historically struggled
with. It is still an ongoing debate whether the encoder, decoder, or
both parts of the model should be sparsified [88]. Finally, the latent
embeddings of AEs are known to suffer from the presence of con-
founding variables [89, 90] and latent features may be entangled,
meaning they encode similar information, which hampers direct
interpretability.

Interpretability
Dimension 1: active, passive, or both?
Active interpretability methods require architectural changes,
often by integrating biological knowledge, in the network
structure prior to training. Naturally, the source of prior biological
knowledge is largely determined by the application area of
the active network. We found a rich diversity of knowledge
sources—around 18 different— during our literature search (see
Supplementary Figure 3), demonstrating the big advantage of
active networks, namely to tune the model with respect to one’s
scientific interest. While around 50% of publications use one of
the three major gene/pathway annotation databases (Gene Ontol-
ogy (GO) knowledgebase, Reactome, or the Kyoto Encyclopedia
of Genes and Genomes (KEGG)), others utilise smaller databases
describing e.g. miRNA interactions (miRTarBase) [68], functionally
associated genes (GeneMania) [65], curated gene sets (MSigDB)
[75, 77, 91], or even own data [61, 76, 92]. Active networks can
model gene interactions, reactions, or even whole pathways, but
in this they are restricted by the quality of the prior knowledge.
Integrating incomplete or subjective data may severely limit

model performance and interpretability. Active networks are
also hampered in their potential to uncover novel biological
connections. None of the active deep-learning applications had
the ability to learn new connections or relations after the prior
knowledge was introduced, limiting the viability for niche data
types, such as microRNA and non-coding RNA, where only a few
experimentally validated interactions are recorded in databases.

Passive interpretability approaches can be applied post-hoc,
meaning they do not require researchers to change model archi-
tectures prior to training. There are a wide variety of post-hoc
interpretation algorithms, most of them model-agnostic (Fig. 5a).
The latter allows developers to make easy-to-use out-of-the-box
interpretation solutions that can work for most neural network
architectures. Examples of frameworks for passive interpretation
are Captum [93], LIME [94], tf-explain [95], and SHAP [96]. The
ease of use makes them the interpretability method of choice in
many studies (passive n = 72, active & passive n = 14, Fig. 5(a).
However, while these methods are flexible regarding the type
of model used, most of them provide approximations or make
strong assumptions regarding data structures. Because passive
interpretability strategy is based on different strong assumptions,
each method offers a unique perspective on what the network has
learned. As a result, the interpretations can vary between passive
strategies.

Active and passive interpretability approaches are not mutu-
ally exclusive. For example, Elmarakeby et al. [74] used VNNs
in combination with DeepLIFT [97], a passive approach. Passive
analysis methods can complement active methods, such as VNNs,
well. Edge weights provide global attribution scores but do not
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Table 3. Overview of the most widely used attribution methods with a hand-picked selection of manuscripts applying each method.
The full overview table with all entries can be found online (http://www.roshchupkin.org/xai) and in Supplementary Materials

Strategy Methodology Citation

Gradient-based integrated gradients [64,102–104]
DeepLIFT [59,67,74,92,105]
GradCAM [18, 85]
Layerwise relevance propagation (LRP) [49,106,107]
SHAP GradientExplainer [108,109]
DeepSHAP [110]

permutation – [46,111]
perturbation LIME [112]

modify input [113,114]
game theory SHAP [72,88,115,116]
attention – [76,81,117,118]
other LINA [58]

DeepResolve [119]
Diet Networks with element-wise input scaling [48]

provide the important patterns per individual or which features
interact.

Dimension 2: how explicit do explanations need to be?
Logic rule sets were found in the earliest applications of inter-
pretability in neural networks [56, 98–100] However, logic rules
are not a method of the past; a recent work of Montanez et al.
[57] showcased how association rule mining can be used to study
epistasis. Association rule mining relies on the construction of
sets of SNPs that often occur together across different individ-
uals. By describing the relationship between SNPs in sets, easily
understandable logic rules can be derived. Another recent pub-
lication [101], tackled the problem of explainability in healthcare
by developing a framework capable of directly extracting rule sets
from neural networks, which can subsequently be inspected and
adjusted by clinical experts. Deriving rule sets is indisputably the
most explicit way of understanding the decision-making process
of networks. In the case of large or complex networks, however,
deriving a reasonable number of (understandable) rules might be
infeasible.

Attribution methods provide less explanatory power as logic
rules but are generally quite feasible to apply, as demonstrated
by their popularity. Attribution methods make up 44.8% of the
interpretation strategies (Fig. 5(a). As attribution strategies span
such a large portion of the interpretation strategies, we subdivided
them further based on methodological differences. Table 3 shows
the types of attribution strategies accompanied by a selection of
representative application examples.

The largest category, gradient-based methods, contains many
variations that differ on how the gradient is propagated back
to obtain the feature importance. All gradient-based methods
surveyed, with the exception of GradCAM, need a reference input
to compute the attribution score. This gives researchers the flex-
ibility to compute importances with respect to different starting
conditions, for example, to distinguish between tumour and nor-
mal tissue samples, normal tissues can be utilised as reference
points [102]. However, the use of inadequate references holds the
possibility of spurious or misleading results, as demonstrated in
the framework XOmiVAE [120]. In this study, the authors show
that their interpretability results vary substantially depending on
the reference chosen. They conclude that the use of random sets
of reference samples is inferior to using normal tissue samples as
reference, as the latter specifically highlights important cancer
pathways.

Permutation and perturbation methods shuffle or change the
inputs and observe the change in output. While permutation and
perturbation of samples represent a simple way of deriving expla-
nations for any model, they are not well suited for studying large
input dimensions or interactions between inputs (e.g. epistasis),
as this quickly leads to an exploding number of input combina-
tions to perturb. Perturbations and permutations were used in 11
studies, mainly in transcriptomics and in studies that aim to find
epistasis [59] (Fig. 5(b)). Sun et al. [112] used local interpretable
model-agnostic explanations (LIME) [94] to reveal which genetic
variants drive the progression of age-related macular degenera-
tion. LIME utilises perturbed samples to build simple surrogate
models approximating the predictions of an underlying black box
model, thereby revealing important features [46,111,113].

Interpretability methods relying on game-theory almost
exclusively revolve around Shapley additive explanations (SHAP)
[96]. Its root in cooperative game theory makes SHAP model-
agnostic and thus universally applicable— from finding which
genes attribute to important pathways in VNNs [88], patient-
specific feature importance scores for multi-omics cancer data
[72], or capturing relevant age-related CpG-CpG interactions
with SHAP GradientExplainer, an extension of the integrated
gradients method [108]. However, the calculation of SHAP values is
complex (NP-hard) [121], so it can be computationally infeasible
to deal with high-dimensional data. Additionally, SHAP values
are designed to handle continuous data and thus show limited
support for categorical features, making it challenging to apply
them to genetic data.

Attention-based interpretations are mainly used in trans-
former architectures, but has also been integrated in GNNs.
Through the use of a graph transformer network and separate
attention values for nodes and edges, Kaczmarek et al. [76] were
able to determine important miRNAs and mRNAs (nodes) as well
as their interactions (edges) in TCGA cancer samples. The use of
attention is popular when translating one omics type into another,
for example, when attempting to predict DNA methylation
patterns from genetic sequences, as it reveals relevant regions
of interest of the input data type, giving further insight into the
interplay of genomic mechanisms [81,117].

Although the bulk of attribution methods in genomics are
adopted from the fields of image recognition or natural language
processing, we wanted to highlight some unique approaches
stemming from the biological domain. LINA, a linearising
neural network architecture developed by Badre et al. [58], is
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a backpropagation method capable of delivering first-order
(individual feature importance), as well as second-order (feature
interactions) interpretability. Applied to SNP data with the task of
epistasis detection, it outperformed other attribution methods
such as DeepLIFT or LIME. DeepResolve [119] sets the goal of
visualising how genetic features interact and contribute to a
final phenotype. The method uses gradient ascent and allows
negative values in its feature interaction map, thereby addressing
limitations of other gradient-based methods.

Hidden semantics should be considered if the goal is to deci-
pher the inner workings of network rather than focus on what is
important for the final result. Exploring which patterns hidden
neurons are sensitive to can be easily done when working with
active networks. As hidden nodes represent biological entities in
sparse networks, such as GO terms [122] or gene modules [69, 70],
their activation can be directly interpreted as their activity. In the
VEGA framework, authors even propose calculating differential
latent variable (gene module) activity, deriving a differential gene
expression-like metric. If there is an interest in sequence motifs
rather than gene sets, Wang et al. showcased that the examination
of convolutional filters in CNN, which act as a ‘motif detector,’
can uncover known Alzheimer disease-associated patterns [42].
In a versatile framework, Märtens et al. showed the possibility to
simultaneously reduce dimensions and enforce clustering in the
latent space of a variational AE [123]. To circumvent the need for
additional dimensionality reduction methods like tSNE or PCA,
an AE with only two latent dimensions was designed so that the
latent space can be directly visualised [54, 55]. For studies not
directly observing the activation of hidden nodes or employing
AEs with a minimal latent size, our survey revealed that post-
hoc attribution methods are often used to infer the meaning of
hidden nodes. As an example, Janizek et al. utilised integrated
gradients in their biologically constrained AE to explain latent
feature contribution to reconstruction accuracy, and to find the
contribution of genes to pathways [88]. Additionally, they analysed
single-cell multi-omics data through sequential perturbation of
latent features in an variational AE and observed its downstream
differences [87].

Dimension 3: from individual explanations to general
patterns
In the surveyed studies, for each data type and each neural
network architecture, there was a good mix of local, semi-local,
and global interpretation methods applied. We did not find a clear
preference for any particular level of interpretation granularity.
The choice of granularity mainly depends on the goal of the
study. For precision medicine, local methods are employed to
obtain patient-specific explanations. Popular examples include
the investigation of important input features for supervised
prediction of a variety of phenotypes, including cancer [16, 64,
82, 124], autism [125], macular degeneration [122], and multiple
sclerosis [50], or interpretation of ECG readouts [114]. Besides
interrogating the decisions behind predictions for patients, local
interpretability can also be used to gain insight into how genes
influence the glycophenotype of cells [126], how gene expression
and DNA methylation are connected [81], or which genes are best
used to approximate the activity of other genes in gene regulatory
networks [127].

If the outcome of a group of individual, rather than just one
individual, is of interest, semi-local approaches should be pre-
ferred. Semi-local interpretability is of considerable interest when
conducting biomarker discovery or survival analysis, as these
research questions have the underlying assumption that groups

of individuals exist that can be characterised by a unique genomic
pattern. Especially in cancer research, namely NSCLC [47, 128],
GBM [129], and BRCA [73,120], we found that by employing semi-
local interpretability approaches, the direct characterisation of
patient subgroups in terms of important (multi-omics) features
was enabled. In single-cell sequencing, semi-local methods can
enable the characterisation of cell clusters or aggregates of cell-
clusters (pseudo-bulk aggregates), which is a key point when
trying to study tissue heterogeneity [51].

The highest level of interpretation is constituted by global
approaches. They aim at explaining the network as a whole—
these research questions revolve around identifying the most
predictive variants, genes, and pathways. Linear models, as used
in GWAS studies, always provide global interpretations. Neural
networks can achieve these interpretations by taking a bottom-
up approach of deriving global insight by aggregating all local
interpretations when assuming independent and identically dis-
tributed random samples [130] or by using global interpretation
methods such as inspecting the weights of VNN or extracting a
rule set.

Opportunities and perspectives
There is a plethora of tools and strategies to achieve interpretable
deep learning. In this review, we have tabulated and analysed 123
studies of interpretable deep learning applications in genomics.
We observe an evolving and growing field, rich with a wide
variety of strategies and tools. Overall, the most applied neural
network architecture is still the traditional fully connected
neural network, closely followed by newer network types such
as the AE, VNN, and GNN. Post-hoc interpretation methods,
in particular attribution methods, from popular frameworks
such as DeepLIFT [97], SHAP [96], and Captum [93] make up
the majority of interpretability approaches. However, with the
rising popularity of GNNs and VNNs, the number of applications
with active approaches, in which biological knowledge is used
to shape the connections in a neural network, will continue to
grow.

A lack of diversity and reproducibility within
studies
Most studies validate their interpretations by comparing their
findings to existing literature, either by directly comparing the
important genes or by conducting enrichment and pathway anal-
ysis (e.g. [52,106,113,131]). Although valid when done rigorously,
this may be prone to confirmation bias. Holzscheck et al. [91] went
one step further and validated their interpretations by recapitu-
lating associations from the literature with in-silico gene knock-
downs. Other studies, such as Nguyen et al. [132], corroborated
their findings by integrating other data types. The authors tested
the significance of the identified SNP-gene pairs by overlapping
these with promoters and enhancer regions derived from Hi-C
data. Finally, there are a few studies in this survey that conducted
biological experiments to validate their findings. For example,
Elmarakeby et al. [74] experimentally validated the relevance of
MDM4, a gene identified by applying DeepLIFT on their VNN.
They found that over-expressed MDM4 was significantly associ-
ated with resistance to medication and that depletion of MDM4
resulted in a significant reduction of proliferation of prostate
cancer cells. Experimental validations are expensive and often
challenging, but are ultimately necessary to ascertain the causal-
ity of results obtained through interpretability methods. To reduce
cost and time, a promising advancement in interpreting complex
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models could be incorporating causality or mechanistic modelling
into prediction models [133].

Until causal models are ready, robust computational validation
is essential. Unfortunately, we found that most studies (n =
115) utilise only a single interpretation strategy; only six stud-
ies used multiple interpretation methods [16,63,78,88,103,114].
With this wide range of different interpretation methods avail-
able, and without a consensus on the best methods, it is worth-
while to apply multiple interpretation methods to obtain multiple
perspectives. As each interpretation strategy has its own set of
strengths and weaknesses, a combination of interpretation meth-
ods will paint a clearer and more consistent picture. Especially
the use of interpretation methods of different categories may
complement each other, as global interpretation strategies might
miss individual-level or group-level patterns. Local interpretation
strategies, on the other hand, may fail to provide a clear overview.
Even the use of multiple interpretation methods from the same
dimension may be beneficial, as some methods are particularly
designed to find interactions between features while others are
designed to find the most important features.

In addition to the observation that most studies apply a single
interpretation strategy, we also observe that most studies just
apply the interpretation approach once. Neural networks have
stochastic elements, and each trained network will inevitably
find a different local minimum with different weights. If the goal
of a study is to understand the underlying biology, then it is
vital to assess the reproducibility of interpretations over multiple
network iterations. Studies will need to assess if the set of the
most important genes or pathways is consistent over multiple
runs. In the surveyed papers, we noticed a general lack of reporting
regarding the reproducibility of interpretability results or overlap
of results from different passive interpretation strategies. Only a
handful of studies have focused on estimating the robustness of
their network interpretations [45,66,80,103,134,135].

Finally, it is important to consider that neural networks are
non-linear, and that non-linear interactions cannot be captured
in a single value. Therefore, extracting a set of rules, although
harder, provide more value than the popular attribution methods.
Extracted rules can provides insight in the number of interactions,
the stability of the prediction model, the behaviour of examples
that fall outside of the training set. In this regard, the noticeable
absence of probabilistic deep learning methods is noteworthy. A
well-calibrated certainty estimate could offer a clear indication
of whether a method is applied to a sample unlike any training
examples.

Future innovations for interpretable deep
learning
The majority of the future innovations in interpretability strate-
gies will likely come from adapting established technologies to
genomics data. Novel strategies to explain or interpret deep learn-
ing will follow from all scientific fields where deep learning is
applied. In fields with inherently more interpretable data, such
as image data, the validity of the obtained interpretation can be
visually assessed. For example, one can overlay an image and the
attribution scores and visually assess the plausibility or, for AEs,
one can generate the resulting images while traversing through
the latent space. In genomics, intuitive validation is limited. Sim-
ulated data can bring relief, and the field has provided useful tools
for validating new interpretation strategies (e.g. [136–138]).

The field of genomics in itself also offers unique opportunities
for interpretable deep learning. High-quality databases with var-
ious types of knowledge (protein-protein interactions, gene and

pathway annotations) have been leveraged in various ways to
create interpretable neural network architectures. The field has
had novel contributions for interpretable deep learning such as
DeepLIFT [97] and many specialised neural networks architec-
tures such as VNN architectures [25].

Visible neural networks are promising neural network architec-
tures where all weights are interpretable. Nevertheless, this most
likely comes with a cost in performance and in this aspect there
is room for improvement. For example, in most implementations,
genes and pathways are represented with a single neuron. The
number of patterns that a network can learn within a gene or
pathway is quite restricted. In contrast, CNNs commonly use
between 64 and 512 feature maps. Additionally, the sparsity of the
connections limit the number of interactions that these models
can capture between genes and pathways. The quality of interpre-
tations is thus strongly dependent on the quality of the biological
information embedded. None of the current implementations
can compensate well for missing information, and here lies an
opportunity to balance between a data-driven approach and a
knowledge-guided approach. Learning the gap in the prior knowl-
edge may not be easy, but interpretability, for example, finding the
interacting nodes, can be a tool to aid in identifying the missing
connections. Networks that can learn missing connections will
not only perform better and provide higher quality interpretation,
they will also provide opportunities to fill gaps in biological knowl-
edge.

GPT (e.g. [27, 28, 71]) will be a popular tool for at least the short-
term future. Ease of use, as shown by the popularity of model-
agnostic interpretation methods, is a major factor for adoption.
Here, AEs, GNNs, and VNNs have a disadvantage as they require
more expert knowledge in the design phase. Counter-intuitively,
transformers are easily adopted, as once trained, they can be
widely shared and easily applied. Interpretation for these large
models is more complex for various reasons. Experiments in
the natural language domain have shown that there is often little
correlation between important features revealed by gradient-
based interpretation methods and attention. Completely different
sets of attention weights can result in the same prediction [139],
and Bastings et al. [140] argues that attention weights reflect the
importance of representations of inputs rather than the original
inputs themselves and that those representations might already
have mixed in information from other inputs. Finally, transform-
ers are often used as an extra preprocessing step that transforms
the data before applying an additional network for a downstream
task, bringing an extra hurdle for interpretation. Novel interpre-
tation strategies may therefore be required to enable transformer
architectures to help researchers in understanding the underlying
biology in genomics.

In the long term, we expect more large-scale multi-omics
datasets. Integrating multi-omics data is difficult as the data
combines the complexities of all the omics types used [141]. Deep-
learning applications offer unique qualities that are particularly
useful for combining omics data. While other machine learning
or statistical methods often depend on dimensionality reduction
tools, such as PCA, to bring the data to the same dimension, deep-
learning models can handle multiple inputs of different sizes and
use the appropriate layers for each input. Sequence data can be
fed through convolutional filters, whereas expression data can be
processed using attention, or fully connected layers. The hierar-
chical structure of a neural network—each layer leads to a more
abstract representation—provides freedom in when and how to
connect separate inputs. Similarly, other types of data such as
clinical data, imaging data, and patient records can be integrated
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in a single prediction model [142, 143]. These models will grow in
size with the complexity of the data and the complexity of the
task, but distributed learning might offer a solution to acquire
the sample sizes necessary to train these large models. Finding
novel ways to interpret these large models or to combine this data
efficiently in smaller, interpretable models will be the challenge.

Concluding remarks
There are many ways to bring interpretability in deep-learning
applications in genomics, and many opportunities to develop
novel approaches to interpret and explain neural networks. Aside
from the concerns and opportunities raised in the previous sec-
tions, we quantified and visualised common solutions and combi-
nations of solutions. We observed an exponentially growing field,
rich with a wide diversity of methods and strategies, and we
believe that this healthy diversity will inspire the next genera-
tion of more interpretable and trustworthy interpretable deep-
learning applications.

Key Points

• We systematically evaluate and quantify the most fre-
quently used interpretable deep learning algorithms in
genomics. Our findings are summarized in a compre-
hensive and interactive table, which is publicly available.

• By visualising various aspects such as input size, inter-
pretation method, neural network type, and more, we
explore common solutions and common combinations
of solutions for problems encountered in designing inter-
pretable deep learning applications.

• We discuss and highlight exceptional examples,
common approaches, and unexplored opportunities
for developing interpretable deep learning models in
genomics.

• Our findings indicate that the field is not converging
towards a single type of solution; instead, it is exploring
a diverse range of approaches.

• We observe a gap in the literature, with few studies
employing multiple interpretation techniques to offer a
comprehensive understanding of what the deep learning
model has learned.
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34. Eraslan G, Avsec ž, Gagneur J. et al. Deep learning: New com-
putational modelling techniques for genomics. Nat Rev Genet
2019;20:389–403. https://doi.org/10.1038/s41576-019-0122-6.

35. Talukder A, Barham C, Li X. et al. Interpretation of deep learning
in genomics and epigenomics. Brief Bioinform 2021;22:bbaa177.
https://doi.org/10.1093/bib/bbaa177.

36. Wohlin C. Guidelines for snowballing in systematic literature
studies and a replication in software engineering. In: Proceedings
of the 18th International Conference on Evaluation and Assessment in
Software Engineering. New York, NY, USA: ACM, 2014, pp. 1–10.

37. Kassani PH, Lu F, Le Guen Y. et al. Deep neural networks with
controlled variable selection for the identification of putative
causal genetic variants. Nat Mach Intell 2022;4:761–71. https://
doi.org/10.1038/s42256-022-00525-0.

38. Yengo L, Vedantam S, Marouli E. et al. A saturated map of com-
mon genetic variants associated with human height. Nature
2022;610:704–12. https://doi.org/10.1038/s41586-022-05275-y.

39. Rieke N, Hancox J, Li W. et al. The future of digital health
with federated learning. NPJ Digit Med 2020;3:119. https://doi.
org/10.1038/s41746-020-00323-1.

40. Roth HR, Cheng Y, Wen Y. et al. Nvidia FLARE: Federated
learning from simulation to real-world. arXiv preprint. 2022.
https://arxiv.org/abs/2210.13291.

41. Tonner PD, Pressman A, Ross D. Interpretable modeling of
genotype-phenotype landscapes with state-of-the-art predic-
tive power. Proc Natl Acad Sci USA 2022;119:e2114021119.

42. Wang Y, Chen L. DeepPerVar: a multi-modal deep learning
framework for functional interpretation of genetic variants in
personal genome. Bioinformatics 2022;38(24):5340–51. https://
doi.org/10.1093/bioinformatics/btac696.

43. Demetci P, Cheng W, Darnell G. et al. Multi-scale inference of
genetic trait architecture using biologically annotated neural
networks. PLoS Genet 2021;17:e1009754.

44. Hu J, Yu W, Dai Y. et al. A deep neural network for gastric
cancer prognosis prediction based on biological information
pathways. J Oncol 2022;2022:2965166.

45. Feng J, Zhang H, Li F. Investigating the relevance of major
signaling pathways in cancer survival using a biologically
meaningful deep learning model. BMC Bioinform 2021;22:47.

46. Li X, Ma J, Leng L. et al. MoGCN: a multi-omics integration
method based on graph convolutional network for cancer sub-
type analysis. Front Genet 2022;13:806842.

47. Kipkogei E, Arango Argoty GA, Kagiampakis I. et al.
Explainable transformer-based neural network for the
prediction of survival outcomes in non-small cell lung
cancer (NSCLC). medRxiv. 2021. Available from: https://doi.
org/10.1101/2021.10.11.21264761.

48. Kobayashi K, Bolatkan A, Shiina S. et al. Fully-connected neu-
ral networks with reduced parameterization for predicting
histological types of lung cancer from somatic mutations.
Biomolecules 2020;10(9):1249. https://doi.org/10.3390/biom1009
1249.

49. Schulte-Sasse R, Budach S, Hnisz D. et al. Integration of multi-
omics data with graph convolutional networks to identify new
cancer genes and their associated molecular mechanisms. Nat
Mach Intell 2021;3:513.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/5/bbae449/7759907 by guest on 27 Septem

ber 2024

https://doi.org/10.1007/s00439-021-02387-9
https://doi.org/10.1186/s12859-023-05262-8
https://doi.org/10.1186/s12859-023-05262-8
https://doi.org/10.1186/s12859-023-05262-8
https://doi.org/10.1186/s12859-023-05262-8
https://doi.org/10.1093/bioinformatics/btx234
https://doi.org/10.1093/bioinformatics/btx234
https://doi.org/10.1093/bioinformatics/btx234
https://doi.org/10.1093/bioinformatics/btx234
https://doi.org/10.1093/bioinformatics/btx234
https://doi.org/10.1016/j.ejca.2022.08.033
https://doi.org/10.1016/j.ejca.2022.08.033
https://doi.org/10.1016/j.ejca.2022.08.033
https://doi.org/10.1016/j.ejca.2022.08.033
https://doi.org/10.1016/j.ejca.2022.08.033
https://doi.org/10.3390/biology12071033
https://doi.org/10.3390/biology12071033
https://doi.org/10.3390/biology12071033
https://doi.org/10.3390/biology12071033
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1186/s13073-021-00968-x
https://doi.org/10.1186/s13073-021-00968-x
https://doi.org/10.1186/s13073-021-00968-x
https://doi.org/10.1186/s13073-021-00968-x
https://doi.org/10.1186/s13073-021-00968-x
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1038/s41592-024-02201-0
https://doi.org/10.1038/s41592-024-02201-0
https://doi.org/10.1038/s41592-024-02201-0
https://doi.org/10.1038/s41592-024-02201-0
https://doi.org/10.1101/2023.05.29.542705
https://doi.org/10.1101/2023.05.29.542705
https://doi.org/10.1101/2023.05.29.542705
https://doi.org/10.23915/distill.00033
https://doi.org/10.23915/distill.00033
https://doi.org/10.23915/distill.00033
https://doi.org/10.23915/distill.00033
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.1186/s12859-020-3516-8
https://doi.org/10.1186/s12859-020-3516-8
https://doi.org/10.1186/s12859-020-3516-8
https://doi.org/10.1186/s12859-020-3516-8
https://doi.org/10.1038/s10038-024-01256-3
https://doi.org/10.1038/s10038-024-01256-3
https://doi.org/10.1038/s10038-024-01256-3
https://doi.org/10.1038/s10038-024-01256-3
https://doi.org/10.1038/s41576-019-0122-6
https://doi.org/10.1038/s41576-019-0122-6
https://doi.org/10.1038/s41576-019-0122-6
https://doi.org/10.1038/s41576-019-0122-6
https://doi.org/10.1093/bib/bbaa177
https://doi.org/10.1093/bib/bbaa177
https://doi.org/10.1093/bib/bbaa177
https://doi.org/10.1093/bib/bbaa177
https://doi.org/10.1093/bib/bbaa177
https://doi.org/10.1038/s42256-022-00525-0
https://doi.org/10.1038/s42256-022-00525-0
https://doi.org/10.1038/s42256-022-00525-0
https://doi.org/10.1038/s42256-022-00525-0
https://doi.org/10.1038/s41586-022-05275-y
https://doi.org/10.1038/s41586-022-05275-y
https://doi.org/10.1038/s41586-022-05275-y
https://doi.org/10.1038/s41586-022-05275-y
https://doi.org/10.1038/s41586-022-05275-y
https://doi.org/10.1038/s41746-020-00323-1
https://doi.org/10.1038/s41746-020-00323-1
https://doi.org/10.1038/s41746-020-00323-1
https://doi.org/10.1038/s41746-020-00323-1
https://arxiv.org/abs/2210.13291
https://arxiv.org/abs/2210.13291
https://arxiv.org/abs/2210.13291
https://arxiv.org/abs/2210.13291
https://doi.org/10.1093/bioinformatics/btac696
https://doi.org/10.1093/bioinformatics/btac696
https://doi.org/10.1093/bioinformatics/btac696
https://doi.org/10.1093/bioinformatics/btac696
https://doi.org/10.1093/bioinformatics/btac696
https://doi.org/10.1101/2021.10.11.21264761
https://doi.org/10.1101/2021.10.11.21264761
https://doi.org/10.1101/2021.10.11.21264761
https://doi.org/10.3390/biom10091249


Designing interpretable deep learning applications for functional genomics | 15

50. Ghafouri-Fard S, Taheri M, Omrani MD. et al. Application of
artificial neural network for prediction of risk of multiple
sclerosis based on single nucleotide polymorphism genotypes.
J Mol Neurosci 2020;70:1081–7.

51. Nguyen ND, Huang J, Wang D. A deep manifold-regularized
learning model for improving phenotype prediction from
multi-modal data. Nat Comput Sci 2022;2:38–46. https://doi.
org/10.1038/s43588-021-00185-x.

52. van Hilten A, Kushner SA, Kayser M. et al. GenNet framework:
interpretable deep learning for predicting phenotypes from
genetic data. Commun Biol 2021;4:1094. https://doi.org/10.1038/
s42003-021-02622-z.

53. Raimondi D, Simm J, Arany A. et al. An interpretable
low-complexity machine learning framework for robust
exome-based in-silico diagnosis of Crohn’s disease patients.
NAR Genom Bioinform 2020;2:lqaa011. https://doi.org/10.1093/
nargab/lqaa011.

54. Battey CJ, Coffing GC, Kern AD. Visualizing population structure
with variational autoencoders. G3 (Bethesda) 2021;11(1). https://
doi.org/10.1093/g3journal/jkaa036.

55. Ausmees K, Nettelblad C. A deep learning framework for
characterization of genotype data. G3 Genes|Genomes|Genetics
2022;12(3). https://doi.org/10.1093/g3journal/jkac020.

56. Motsinger-Reif AA, Reif DM, Fanelli TJ. et al. A compari-
son of analytical methods for genetic association studies.
Genet Epidemiol 2008;32:767–78. https://doi.org/10.1002/gepi.
20345.

57. Montanez CAC, Fergus P, Chalmers C. et al. SAERMA: Stacked
Autoencoder Rule Mining Algorithm for the interpretation of
epistatic interactions in GWAS for extreme obesity. Comput Biol
Med 8:112379–92.

58. Badre A, Pan C. LINA: a linearizing neural network archi-
tecture for accurate first-order and second-order interpre-
tations. IEEE Access 2022;10:36166–76. https://doi.org/10.1109/
ACCESS.2022.3163257.

59. Greenside P, Shimko T, Fordyce P. et al. Discovering epistatic
feature interactions from neural network models of regula-
tory DNA sequences. Bioinformatics 2018;34:i629–37. https://doi.
org/10.1093/bioinformatics/bty575.

60. Lee S, Lim S, Lee T. et al. Cancer subtype classifica-
tion and modeling by pathway attention and propagation.
Bioinformatics 2020;36:3818–24. https://doi.org/10.1093/bioinfor
matics/btaa203.

61. Yuan L, Lai J, Zhao J. et al. Path-ATT-CNN: a novel deep neu-
ral network method for key pathway identification of lung
cancer. Front Genet 2022;13:896884. https://doi.org/10.3389/
fgene.2022.896884.

62. Ma T, Zhang A. Incorporating biological knowledge with
factor graph neural network for interpretable deep learn-
ing. arXiv preprint. 2019. Available from: https://arxiv.org/
abs/1906.00537.

63. Cho HJ, Shu M, Bekiranov S. et al. Interpretable meta-learning
of multi-omics data for survival analysis and pathway enrich-
ment. Bioinformatics 2023;39:btad113. https://doi.org/10.1093/
bioinformatics/btad113.

64. Zhang TH, Hasib MM, Chiu YC. et al. Transformer for
Gene Expression Modeling (T-GEM): An interpretable deep
learning model for gene expression-based phenotype predic-
tions. Cancers (Basel) 2022;14(19):4763. https://doi.org/10.3390/
cancers14194763.

65. Ramirez R, Chiu YC, Zhang S. et al. Prediction and inter-
pretation of cancer survival using graph convolution neural
networks. Methods 2021;192:120–30. https://doi.org/10.1016/j.
ymeth.2021.01.004.

66. Bourgeais V, Zehraoui F, Ben Hamdoune M. et al. Deep GONet:
self-explainable deep neural network based on gene ontology
for phenotype prediction from gene expression data. BMC Bioin-
form 2021;22:455. https://doi.org/10.1186/s12859-021-04370-7.

67. Choi Y, Li R, Quon G. Interpretable deep generative models
for genomics. bioRxiv. 2022. https://doi.org/.10.1101/2021.09.
15.460498.

68. Alessandri L, Cordero F, Beccuti M. et al. Sparsely-connected
autoencoder (SCA) for single cell RNAseq data mining. NPJ Syst
Biol Appl 2021;7:1. https://doi.org/10.1038/s41540-020-00162-6.

69. Lotfollahi M, Rybakov S, Hrovatin K. et al. Biologically informed
deep learning to infer gene program activity in single cells.
bioRxiv 2022. https://doi.org/10.1101/2022.02.05.479217.

70. Seninge L, Anastopoulos I, Ding H. et al. VEGA is an
interpretable generative model for inferring biological net-
work activity in single-cell transcriptomics. Nat Commun
2021;12:5684. https://doi.org/10.1038/s41467-021-26017-0.

71. Theodoris CV, Xiao L, Chopra A. et al. Transfer learning enables
predictions in network biology. Nature 2023;618:616–24. https://
doi.org/10.1038/s41586-023-06139-9.

72. Lemsara A, Ouadfel S, Fröhlich H. PathME: pathway based
multi-modal sparse autoencoders for clustering of patient-
level multi-omics data. BMC Bioinformatics. 2020;21:146. https://
doi.org/10.1186/s12859-020-3465-2.

73. Pan X, Burgman B, Sahni N. et al. Deep learning based on
multi-omics integration identifies potential therapeutic targets
in breast cancer. bioRxiv. 2022. https://doi.org/10.1101/2022.
01.18.476842.

74. Elmarakeby HA, Hwang J, Arafeh R. et al. Biologically informed
deep neural network for prostate cancer discovery. Nature.
2021;598:348–52. https://doi.org/10.1038/s41586-021-03922-4.

75. Azher ZL, Vaickus LJ, Salas LA. et al. Development of biologi-
cally interpretable multimodal deep learning model for cancer
prognosis prediction. In: Proceedings of the 37th ACM/SIGAPP
Symposium on Applied Computing; 2022; Virtual Event. New York,
NY, USA: Association for Computing Machinery, 2022, p. 636–44.
https://doi.org/10.1145/3477314.3507032.

76. Kaczmarek E, Jamzad A, Imtiaz T. et al. Multi-omic graph trans-
formers for cancer classification and interpretation. Pac Symp
Biocomput 2022;27:373–84.

77. Levy JJ, Chen Y, Azizgolshani N. et al. MethylSPWNet and
MethylCapsNet: biologically motivated organization of DNAm
neural networks, inspired by capsule networks. NPJ Syst Biol
Appl 2021;7:33. https://doi.org/10.1038/s41540-021-00193-7.

78. Cai Z, Poulos RC, Aref A. et al. Transformer-based deep learning
integrates multi-omic data with cancer pathways. bioRxiv 2022.
https://doi.org/10.1101/2022.10.27.514141.

79. Zhou M, Zhang H, Baii Z. et al. Single-cell multi-omic
topic embedding reveals cell-type-specific and COVID-19
severity-related immune signatures. bioRxiv [Preprint] 2023,
2023.01.31.526312. https://doi.org/10.1101/2023.01.31.526312.

80. Fiosina J, Fiosins M, Bonn S. Explainable deep learning for
augmentation of small RNA expression profiles. J Comput Biol
2020;27(2):234–47. https://doi.org/10.1089/cmb.2019.0320.

81. Huang Z, Wang J, Yan Z. et al. Differentially expressed genes
prediction by multiple self-attention on epigenetics data. Brief
Bioinform 2022;23(3). https://doi.org/10.1093/bib/bbac117.

82. Liu G, Bichindaritz I. An explainable deep network frame-
work with case-based reasoning strategies for survival analysis
in cancer. Research Square 2022. https://doi.org/10.21203/rs.3.
rs-2184342/v1.

83. Kipf TN, Welling M. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907. 2017.
Available from: https://arxiv.org/abs/1609.02907.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/5/bbae449/7759907 by guest on 27 Septem

ber 2024

https://doi.org/10.1038/s43588-021-00185-x
https://doi.org/10.1038/s43588-021-00185-x
https://doi.org/10.1038/s43588-021-00185-x
https://doi.org/10.1038/s43588-021-00185-x
https://doi.org/10.1038/s43588-021-00185-x
https://doi.org/10.1038/s42003-021-02622-z
https://doi.org/10.1038/s42003-021-02622-z
https://doi.org/10.1038/s42003-021-02622-z
https://doi.org/10.1038/s42003-021-02622-z
https://doi.org/10.1038/s42003-021-02622-z
https://doi.org/10.1093/nargab/lqaa011
https://doi.org/10.1093/g3journal/jkaa036
https://doi.org/10.1093/g3journal/jkaa036
https://doi.org/10.1093/g3journal/jkaa036
https://doi.org/10.1093/g3journal/jkaa036
https://doi.org/10.1093/g3journal/jkaa036
https://doi.org/10.1093/g3journal/jkaa036
https://doi.org/10.1093/g3journal/jkac020
https://doi.org/10.1093/g3journal/jkac020
https://doi.org/10.1093/g3journal/jkac020
https://doi.org/10.1093/g3journal/jkac020
https://doi.org/10.1093/g3journal/jkac020
https://doi.org/10.1093/g3journal/jkac020
https://doi.org/10.1002/gepi.20345
https://doi.org/10.1109/ACCESS.2022.3163257
https://doi.org/10.1109/ACCESS.2022.3163257
https://doi.org/10.1109/ACCESS.2022.3163257
https://doi.org/10.1109/ACCESS.2022.3163257
https://doi.org/10.1093/bioinformatics/bty575
https://doi.org/10.1093/bioinformatics/bty575
https://doi.org/10.1093/bioinformatics/bty575
https://doi.org/10.1093/bioinformatics/bty575
https://doi.org/10.1093/bioinformatics/bty575
https://doi.org/10.1093/bioinformatics/btaa203
https://doi.org/10.3389/fgene.2022.896884
https://doi.org/10.3389/fgene.2022.896884
https://doi.org/10.3389/fgene.2022.896884
https://doi.org/10.3389/fgene.2022.896884
https://arxiv.org/abs/1906.00537
https://arxiv.org/abs/1906.00537
https://arxiv.org/abs/1906.00537
https://arxiv.org/abs/1906.00537
https://doi.org/10.1093/bioinformatics/btad113
https://doi.org/10.1093/bioinformatics/btad113
https://doi.org/10.1093/bioinformatics/btad113
https://doi.org/10.1093/bioinformatics/btad113
https://doi.org/10.1093/bioinformatics/btad113
https://doi.org/10.3390/cancers14194763
https://doi.org/10.3390/cancers14194763
https://doi.org/10.3390/cancers14194763
https://doi.org/10.3390/cancers14194763
https://doi.org/10.1016/j.ymeth.2021.01.004
https://doi.org/10.1016/j.ymeth.2021.01.004
https://doi.org/10.1016/j.ymeth.2021.01.004
https://doi.org/10.1016/j.ymeth.2021.01.004
https://doi.org/10.1016/j.ymeth.2021.01.004
https://doi.org/10.1186/s12859-021-04370-7
https://doi.org/10.1186/s12859-021-04370-7
https://doi.org/10.1186/s12859-021-04370-7
https://doi.org/10.1186/s12859-021-04370-7
https://doi.org/.10.1101/2021.09.15.460498
https://doi.org/10.1038/s41540-020-00162-6
https://doi.org/10.1038/s41540-020-00162-6
https://doi.org/10.1038/s41540-020-00162-6
https://doi.org/10.1038/s41540-020-00162-6
https://doi.org/10.1101/2022.02.05.479217
https://doi.org/10.1101/2022.02.05.479217
https://doi.org/10.1101/2022.02.05.479217
https://doi.org/10.1038/s41467-021-26017-0
https://doi.org/10.1038/s41467-021-26017-0
https://doi.org/10.1038/s41467-021-26017-0
https://doi.org/10.1038/s41467-021-26017-0
https://doi.org/10.1038/s41586-023-06139-9
https://doi.org/10.1038/s41586-023-06139-9
https://doi.org/10.1038/s41586-023-06139-9
https://doi.org/10.1038/s41586-023-06139-9
https://doi.org/10.1186/s12859-020-3465-2
https://doi.org/10.1186/s12859-020-3465-2
https://doi.org/10.1186/s12859-020-3465-2
https://doi.org/10.1186/s12859-020-3465-2
https://doi.org/10.1101/2022.01.18.476842
https://doi.org/10.1038/s41586-021-03922-4
https://doi.org/10.1038/s41586-021-03922-4
https://doi.org/10.1038/s41586-021-03922-4
https://doi.org/10.1038/s41586-021-03922-4
https://doi.org/10.1145/3477314.3507032
https://doi.org/10.1145/3477314.3507032
https://doi.org/10.1145/3477314.3507032
https://doi.org/10.1038/s41540-021-00193-7
https://doi.org/10.1038/s41540-021-00193-7
https://doi.org/10.1038/s41540-021-00193-7
https://doi.org/10.1038/s41540-021-00193-7
https://doi.org/10.1101/2022.10.27.514141
https://doi.org/10.1101/2022.10.27.514141
https://doi.org/10.1101/2022.10.27.514141
https://doi.org/10.1101/2023.01.31.526312
https://doi.org/10.1101/2023.01.31.526312
https://doi.org/10.1101/2023.01.31.526312
https://doi.org/10.1089/cmb.2019.0320
https://doi.org/10.1089/cmb.2019.0320
https://doi.org/10.1089/cmb.2019.0320
https://doi.org/10.1089/cmb.2019.0320
https://doi.org/10.1093/bib/bbac117
https://doi.org/10.1093/bib/bbac117
https://doi.org/10.1093/bib/bbac117
https://doi.org/10.1093/bib/bbac117
https://doi.org/10.1093/bib/bbac117
https://doi.org/10.21203/rs.3.rs-2184342/v1
https://doi.org/10.21203/rs.3.rs-2184342/v1
https://doi.org/10.21203/rs.3.rs-2184342/v1
https://doi.org/10.21203/rs.3.rs-2184342/v1
https://doi.org/10.21203/rs.3.rs-2184342/v1
https://doi.org/10.21203/rs.3.rs-2184342/v1
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907


16 | Hilten et al.

84. Xing X, Yang F, Li H. et al. Multi-level attention graph neural
network based on co-expression gene modules for disease diag-
nosis and prognosis. Bioinformatics 2022;38(8):2178–86. https://
doi.org/10.1093/bioinformatics/btac088.

85. Yingtaweesittikul H, Suphavilai C. Network-guided super-
vised learning on gene expression using a graph convolu-
tional neural network. bioRxiv 2021. https://doi.org/10.1101/
2021.12.27.474240.

86. Zhao Y, Cai H, Zhang Z. et al. Learning interpretable cellular
and gene signature embeddings from single-cell transcrip-
tomic data. Nat Commun 2021;12:5261. https://doi.org/10.1038/
s41467-021-25534-2.

87. Minoura K, Abe K, Nam H. et al. A mixture-of-experts deep gen-
erative model for integrated analysis of single-cell multiomics
data. Cell Rep Methods 2021;1(5):100071. https://doi.org/10.1016/
j.crmeth.2021.100071.

88. Janizek JD, Spiro A, Celik S. et al. PAUSE: principled feature
attribution for unsupervised gene expression analysis. Genome
Biol 2023;24:81. https://doi.org/10.1186/s13059-023-02901-4.

89. Wang H, Wu Z, Xing EP. Removing confounding factors asso-
ciated weights in deep neural networks improves the predic-
tion accuracy for healthcare applications. Pac Symp Biocomput
2019;24:54–65.

90. Zhao Q, Adeli E, Pohl KM. Training confounder-free deep learn-
ing models for medical applications. Nat Commun 2020;11:6010.
https://doi.org/10.1038/s41467-020-19784-9.

91. Holzscheck N, Falckenhayn C, Söhle J. et al. Modeling tran-
scriptomic age using knowledge-primed artificial neural net-
works. NPJ Aging Mech Dis 2021;7:15. https://doi.org/10.1038/
s41514-021-00068-5.

92. Albaradei S, Albaradei A, Alsaedi A. et al. MetastaSite: Pre-
dicting metastasis to different sites using deep learning with
gene expression data. Front Mol Biosci 2022;9:913602. https://doi.
org/10.3389/fmolb.2022.913602.

93. Kokhlikyan N, Miglani V, Martin M. et al. Captum: A unified and
generic model interpretability library for PyTorch. arXiv 2020.
Available from: https://arxiv.org/abs/2009.07896.

94. Ribeiro MT, Singh S, Guestrin C. “Why should I trust you?”:
Explaining the predictions of any classifier. In: Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining; 2016 Aug 13–17; San Francisco, CA, USA.
New York, NY: Association for Computing Machinery, 2016,
p. 1135–44.

95. Meudec R. tf-explain [software]. Version 0.3.1. Zenodo, 2021.
Available from: https://github.com/sicara/tf-explain. https://
doi.org/10.5281/zenodo.5711704.

96. Lundberg SM, Lee S-I. A unified approach to interpreting model
predictions. In: Guyon I, Luxburg UV, Bengio S, et al., (eds).
Advances in Neural Information Processing Systems 30. Curran
Associates, Inc., 2017, p. 4765–74.

97. Shrikumar A, Greenside P, Kundaje A. Learning important fea-
tures through propagating activation differences. In: Interna-
tional Conference on Machine Learning. PMLR, 2017, p. 3145–53.

98. Neagu C-D, Avouris N, Kalapanidas E. et al. Neural and neuro-
fuzzy integration in a knowledge-based system for air quality
prediction. Appl Intell 2002;17:141–69. https://doi.org/10.1023/
A:1016108730534.

99. Pal NR, Sharma A, Sanadhya SK. Deriving meaningful rules
from gene expression data for classification. J Intell Fuzzy Syst
2008;19:171–80.

100. Chen C-F, Feng X, Szeto J. Identification of critical genes
in microarray experiments by a neuro-fuzzy approach.

Comput Biol Chem 2006;30:372–81. https://doi.org/10.1016/j.
compbiolchem.2006.08.004.

101. Shams Z, Dimanov B, Kola S. et al. REM: an integrative
rule extraction methodology for explainable data analy-
sis in healthcare. medRxiv 2021. https://doi.org/10.1101/2021.
01.25.21250459.

102. Jha A, Quesnel-Vallières M, Wang D. et al. Identifying common
transcriptome signatures of cancer by interpreting deep learn-
ing models. Genome Biol 2022;23:117. https://doi.org/10.1186/
s13059-022-02681-3.

103. Dwivedi K, Rajpal A, Rajpal S. et al. An explainable AI-driven
biomarker discovery framework for Non-Small Cell Lung Can-
cer classification. Comput Biol Med 2023;153:106544. https://doi.
org/10.1016/j.compbiomed.2023.106544.

104. Chatzianastasis M, Vazirgiannis M, Zhang Z. Explainable mul-
tilayer graph neural network for cancer gene prediction. Bioin-
formatics 2023;39(11). https://doi.org/10.1093/bioinformatics/
btad643.

105. Real KSD, Rubio A. Discovering the mechanism of action
of drugs with a sparse explainable network. EBioMedicine
2023;95:104767. https://doi.org/10.1016/j.ebiom.2023.104767.

106. Chereda H, Bleckmann A, Menck K. et al. Explaining decisions of
graph convolutional neural networks: patient-specific molec-
ular subnetworks responsible for metastasis prediction in
breast cancer. Genome Med 2021;13:42. https://doi.org/10.1186/
s13073-021-00845-7.

107. Mieth B, Rozier A, Rodriguez JA. et al. DeepCOMBI: explainable
artificial intelligence for the analysis and discovery in genome-
wide association studies. NAR Genomics Bioinformatics 2021;3(3).
https://doi.org/10.1093/nargab/lqab065.

108. de Lima Camillo LP, Lapierre LR, Singh R. A pan-tissue DNA-
methylation epigenetic clock based on deep learning. NPJ Aging
2022;8(1):4. https://doi.org/10.1038/s41514-022-00085-y.

109. Yap M, Johnston RL, Foley H. et al. Verifying explainability of a
deep learning tissue classifier trained on RNA-seq data. Sci Rep
2021;11:2641. https://doi.org/10.1038/s41598-021-81773-9.

110. Benkirane H, Pradat Y, Michiels S. et al. CustOmics: A versa-
tile deep-learning based strategy for multi-omics integration.
PLoS Comput Biol 2023;19(3). https://doi.org/10.1371/journal.
pcbi.1010921.

111. Yu T. AIME: Autoencoder-based integrative multi-omics
data embedding that allows for confounder adjustments.
PLoS Comput Biol 2022;18(1). https://doi.org/10.1371/journal.
pcbi.1009826.

112. Sun T, Wei Y, Chen W. et al. Genome-wide association
study-based deep learning for survival prediction. Stat Med
2020;39(30):4605-4620. https://doi.org/10.1002/sim.8743.

113. Magnusson R, Tegnér JN, Gustafsson M. Deep neural net-
work prediction of genome-wide transcriptome signatures –
beyond the black-box. NPJ Syst Biol Appl 2022;8:9. https://doi.
org/10.1038/s41540-022-00218-9.

114. van de Leur RR, Bos MN, Taha K. et al. Improving explainability
of deep neural network-based electrocardiogram interpreta-
tion using variational auto-encoders. Eur Heart J Digit Health
2022;3(3):390–404. https://doi.org/10.1093/ehjdh/ztac038.

115. Liu L, Meng Q, Weng C. et al. Explainable deep trans-
fer learning model for disease risk prediction using high-
dimensional genomic data. PLoS Comput Biol 2022;18(7). https://
doi.org/10.1371/journal.pcbi.1010328.

116. Watson M, Hasan BAS, Al Moubayed N. Using model
explanations to guide deep learning models towards
consistent explanations for EHR data. Sci Rep 2022;12(1):

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/5/bbae449/7759907 by guest on 27 Septem

ber 2024

https://doi.org/10.1093/bioinformatics/btac088
https://doi.org/10.1093/bioinformatics/btac088
https://doi.org/10.1093/bioinformatics/btac088
https://doi.org/10.1093/bioinformatics/btac088
https://doi.org/10.1093/bioinformatics/btac088
https://doi.org/10.1101/2021.12.27.474240
https://doi.org/10.1038/s41467-021-25534-2
https://doi.org/10.1038/s41467-021-25534-2
https://doi.org/10.1038/s41467-021-25534-2
https://doi.org/10.1038/s41467-021-25534-2
https://doi.org/10.1016/j.crmeth.2021.100071
https://doi.org/10.1016/j.crmeth.2021.100071
https://doi.org/10.1016/j.crmeth.2021.100071
https://doi.org/10.1016/j.crmeth.2021.100071
https://doi.org/10.1016/j.crmeth.2021.100071
https://doi.org/10.1186/s13059-023-02901-4
https://doi.org/10.1186/s13059-023-02901-4
https://doi.org/10.1186/s13059-023-02901-4
https://doi.org/10.1186/s13059-023-02901-4
https://doi.org/10.1038/s41467-020-19784-9
https://doi.org/10.1038/s41467-020-19784-9
https://doi.org/10.1038/s41467-020-19784-9
https://doi.org/10.1038/s41467-020-19784-9
https://doi.org/10.1038/s41514-021-00068-5
https://doi.org/10.1038/s41514-021-00068-5
https://doi.org/10.1038/s41514-021-00068-5
https://doi.org/10.1038/s41514-021-00068-5
https://doi.org/10.3389/fmolb.2022.913602
https://doi.org/10.3389/fmolb.2022.913602
https://doi.org/10.3389/fmolb.2022.913602
https://doi.org/10.3389/fmolb.2022.913602
https://arxiv.org/abs/2009.07896
https://arxiv.org/abs/2009.07896
https://arxiv.org/abs/2009.07896
https://arxiv.org/abs/2009.07896
https://github.com/sicara/tf-explain
https://github.com/sicara/tf-explain
https://github.com/sicara/tf-explain
https://github.com/sicara/tf-explain
https://github.com/sicara/tf-explain
https://github.com/sicara/tf-explain
https://doi.org/10.5281/zenodo.5711704
https://doi.org/10.5281/zenodo.5711704
https://doi.org/10.5281/zenodo.5711704
https://doi.org/10.5281/zenodo.5711704
https://doi.org/10.1023/A:1016108730534
https://doi.org/10.1023/A:1016108730534
https://doi.org/10.1023/A:1016108730534
https://doi.org/10.1023/A:1016108730534
https://doi.org/10.1016/j.compbiolchem.2006.08.004
https://doi.org/10.1016/j.compbiolchem.2006.08.004
https://doi.org/10.1016/j.compbiolchem.2006.08.004
https://doi.org/10.1016/j.compbiolchem.2006.08.004
https://doi.org/10.1016/j.compbiolchem.2006.08.004
https://doi.org/10.1101/2021.01.25.21250459
https://doi.org/10.1186/s13059-022-02681-3
https://doi.org/10.1186/s13059-022-02681-3
https://doi.org/10.1186/s13059-022-02681-3
https://doi.org/10.1186/s13059-022-02681-3
https://doi.org/10.1016/j.compbiomed.2023.106544
https://doi.org/10.1016/j.compbiomed.2023.106544
https://doi.org/10.1016/j.compbiomed.2023.106544
https://doi.org/10.1016/j.compbiomed.2023.106544
https://doi.org/10.1016/j.compbiomed.2023.106544
https://doi.org/10.1093/bioinformatics/btad643
https://doi.org/10.1093/bioinformatics/btad643
https://doi.org/10.1093/bioinformatics/btad643
https://doi.org/10.1093/bioinformatics/btad643
https://doi.org/10.1093/bioinformatics/btad643
https://doi.org/10.1016/j.ebiom.2023.104767
https://doi.org/10.1016/j.ebiom.2023.104767
https://doi.org/10.1016/j.ebiom.2023.104767
https://doi.org/10.1016/j.ebiom.2023.104767
https://doi.org/10.1016/j.ebiom.2023.104767
https://doi.org/10.1186/s13073-021-00845-7
https://doi.org/10.1186/s13073-021-00845-7
https://doi.org/10.1186/s13073-021-00845-7
https://doi.org/10.1186/s13073-021-00845-7
https://doi.org/10.1093/nargab/lqab065
https://doi.org/10.1093/nargab/lqab065
https://doi.org/10.1093/nargab/lqab065
https://doi.org/10.1093/nargab/lqab065
https://doi.org/10.1093/nargab/lqab065
https://doi.org/10.1038/s41514-022-00085-y
https://doi.org/10.1038/s41514-022-00085-y
https://doi.org/10.1038/s41514-022-00085-y
https://doi.org/10.1038/s41514-022-00085-y
https://doi.org/10.1038/s41514-022-00085-y
https://doi.org/10.1038/s41598-021-81773-9
https://doi.org/10.1038/s41598-021-81773-9
https://doi.org/10.1038/s41598-021-81773-9
https://doi.org/10.1038/s41598-021-81773-9
https://doi.org/10.1371/journal.pcbi.1010921
https://doi.org/10.1371/journal.pcbi.1010921
https://doi.org/10.1371/journal.pcbi.1010921
https://doi.org/10.1371/journal.pcbi.1010921
https://doi.org/10.1371/journal.pcbi.1010921
https://doi.org/10.1371/journal.pcbi.1009826
https://doi.org/10.1371/journal.pcbi.1009826
https://doi.org/10.1371/journal.pcbi.1009826
https://doi.org/10.1371/journal.pcbi.1009826
https://doi.org/10.1371/journal.pcbi.1009826
https://doi.org/10.1002/sim.8743
https://doi.org/10.1002/sim.8743
https://doi.org/10.1002/sim.8743
https://doi.org/10.1002/sim.8743
https://doi.org/10.1038/s41540-022-00218-9
https://doi.org/10.1038/s41540-022-00218-9
https://doi.org/10.1038/s41540-022-00218-9
https://doi.org/10.1038/s41540-022-00218-9
https://doi.org/10.1093/ehjdh/ztac038
https://doi.org/10.1093/ehjdh/ztac038
https://doi.org/10.1093/ehjdh/ztac038
https://doi.org/10.1093/ehjdh/ztac038
https://doi.org/10.1093/ehjdh/ztac038
https://doi.org/10.1371/journal.pcbi.1010328
https://doi.org/10.1371/journal.pcbi.1010328
https://doi.org/10.1371/journal.pcbi.1010328
https://doi.org/10.1371/journal.pcbi.1010328
https://doi.org/10.1371/journal.pcbi.1010328


Designing interpretable deep learning applications for functional genomics | 17

19899. https://doi.org/10.1038/s41598-022-24356-6. Erratum
in: Sci Rep. 2023;13(1):1349. https://doi.org/10.1038/s41598-023-
28610-3.

117. Jin J, Yu Y, Wang R. et al. iDNA-ABF: multi-scale deep bio-
logical language learning model for the interpretable predic-
tion of DNA methylations. Genome Biol 2022;23:219. https://doi.
org/10.1186/s13059-022-02780-1.

118. Jin Y, Ren Z, Wang W. et al. Classification of Alzheimer’s dis-
ease using robust TabNet neural networks on genetic data.
Math Biosci Eng 2023;20(5):8358-8374. https://doi.org/10.3934/
mbe.2023366.

119. Liu G, Zeng H, Gifford DK. Visualizing complex feature inter-
actions and feature sharing in genomic deep neural net-
works. BMC Bioinformatics 2019;20:401. https://doi.org/10.1186/
s12859-019-2957-4.

120. Withnell E, Zhang X, Sun K. et al. XOmiVAE: an interpretable
deep learning model for cancer classification using high-
dimensional omics data. Brief Bioinform 2021;22(6). https://doi.
org/10.1093/bib/bbab315.

121. Van den Broeck, Lykov A, Schleich M. et al. On the tractability of
shap explanations. J Artif Intell Res 2022;74:851–86. https://doi.
org/10.1613/jair.1.13283.

122. Sun T, Wei Y, Chen W. et al. Genome-wide association study-
based deep learning for survival prediction. Stat Med 2020;39:
4605–20. https://doi.org/10.1002/sim.8743.

123. Märtens K, Yau C. BasisVAE: Translation-invariant feature-
level clustering with Variational Autoencoders. In: Proceed-
ings of the Twenty Third International Conference on Artifi-
cial Intelligence and Statistics (AISTATS). Proceedings of Machine
Learning Research. 2020;108:2928–37. Available from: https://
proceedings.mlr.press/v108/martens20b.html.

124. Liang B, Gong H, Lu L. et al. Risk stratification and pathway
analysis based on graph neural network and interpretable
algorithm. BMC Bioinform 23:394.

125. Ghafouri-Fard S, Taheri M, Omrani MD. et al. Application of
single-nucleotide polymorphisms in the diagnosis of autism
spectrum disorders: a preliminary study with artificial neural
networks. J Mol Neurosci 68:515–21.

126. Qin R, Mahal LK, Bojar D. Deep learning explains the biology
of branched glycans from single-cell sequencing data. iScience.
2022;25(10):105163. https://doi.org/10.1016/j.isci.2022.105163.

127. Keyl P, Bischoff P, Dernbach G. et al. Single-cell gene regula-
tory network prediction by explainable AI. Nucleic Acids Res.
2023;51(4). https://doi.org/10.1093/nar/gkac1212.

128. Jin T, Nguyen ND, Talos F. et al. ECMarker: interpretable
machine learning model identifies gene expression biomark-
ers predicting clinical outcomes and reveals molecular mech-
anisms of human disease in early stages. Bioinformatics 37:
1115–24.

129. Chen RJ, Lu MY, Wang J. et al. Pathomic fusion: an integrated
framework for fusing histopathology and genomic features for
cancer diagnosis and prognosis. IEEE Trans Med Imaging 41:
757–70.

130. Søgaard A. Shortcomings of interpretability taxonomies for
deep neural networks. In: Proceedings of the 2022 CIKM Work-
shops. 2022, p. 1–6.

131. Hayakawa J, Seki T, Kawazoe Y. et al. Pathway importance
by graph convolutional network and shapley additive expla-
nations in gene expression phenotype of diffuse large b-cell
lymphoma. PloS One 2022;17:e0269570. https://doi.org/10.1371/
journal.pone.0269570.

132. Nguyen ND, Jin T, Wang D. Varmole: a biologically drop-
connect deep neural network model for prioritizing disease risk
variants and genes. Bioinformatics 2021;37:1772–5. https://doi.
org/10.1093/bioinformatics/btaa866.

133. Heinze-Deml C, Maathuis MH, Meinshausen N. Causal struc-
ture learning. Annu Rev Stat Appl 2018;5:371–91. https://doi.
org/10.1146/annurev-statistics-031017-100630.

134. van Hilten A, van Rooij J, BIOS consortium. et al. Phenotype
prediction using biologically interpretable neural networks
on multi-cohort multi-omics data. bioRxiv 2023;2023:537073.
https://doi.org/10.1101/2023.04.16.537073.

135. Esser-Skala W, Fortelny N. Reliable interpretability of biology-
inspired deep neural networks. NPJ Syst Biol Appl 2023;9:50.
https://doi.org/10.1038/s41540-023-00310-8.

136. Urbanowicz RJ, Kiralis J, Sinnott-Armstrong NA. et al. GAMETES:
a fast, direct algorithm for generating pure, strict, epistatic
models with random architectures. BioData mining 2012;5:1–14.
https://doi.org/10.1186/1756-0381-5-16.

137. Blumenthal DB, Viola L, List M. et al. Epigen: an epistasis
simulation pipeline. Bioinformatics 2020;36:4957–9. https://doi.
org/10.1093/bioinformatics/btaa245.

138. Yang W, Gu CC. A whole-genome simulator capable
of modeling high-order epistasis for complex disease.
Genet Epidemiol 2013;37:686–94. https://doi.org/10.1002/gepi.
21761.

139. Jain S, Wallace BC. Attention is not explanation. In: Burstein
J, Doran C, Solorio T (eds). Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers); 2019 Jun; Minneapolis, Minnesota. Association
for Computational Linguistics, 2019, p. 3543–56. https://doi.
org/10.18653/v1/N19-1357.

140. Bastings J, Filippova K. The elephant in the interpretabil-
ity room: Why use attention as explanation when we have
saliency methods? In: Alishahi A, Belinkov Y, Chrupała G,
Hupkes D, Pinter Y, Sajjad H (eds). Proceedings of the Third
BlackboxNLP Workshop on Analyzing and Interpreting Neural Net-
works for NLP; 2020 Nov; Online. Association for Computational
Linguistics, 2020, p. 149–55. https://doi.org/10.18653/v1/2020.
blackboxnlp-1.14.

141. Li Y, Wu F-X, Ngom A. A review on machine learning princi-
ples for multi-view biological data integration. Brief Bioinform
2018;19:325–40.

142. Cui C, Yang H, Wang Y. et al. Deep multimodal fusion of
image and non-image data in disease diagnosis and prog-
nosis: a review. Prog Biomed Eng 2023;5(2):022001. https://doi.
org/10.1088/2516-1091/acc2fe.

143. Stahlschmidt SR, Ulfenborg B, Synnergren J. Multimodal
deep learning for biomedical data fusion: a review.
Brief Bioinform 2022;23:bbab569. https://doi.org/10.1093/bib/
bbab569.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/5/bbae449/7759907 by guest on 27 Septem

ber 2024

https://doi.org/10.1038/s41598-022-24356-6
https://doi.org/10.1038/s41598-022-24356-6
https://doi.org/10.1038/s41598-022-24356-6
https://doi.org/10.1038/s41598-022-24356-6
https://doi.org/10.1038/s41598-023-28610-3
https://doi.org/10.1186/s13059-022-02780-1
https://doi.org/10.1186/s13059-022-02780-1
https://doi.org/10.1186/s13059-022-02780-1
https://doi.org/10.1186/s13059-022-02780-1
https://doi.org/10.3934/mbe.2023366
https://doi.org/10.3934/mbe.2023366
https://doi.org/10.3934/mbe.2023366
https://doi.org/10.3934/mbe.2023366
https://doi.org/10.1186/s12859-019-2957-4
https://doi.org/10.1186/s12859-019-2957-4
https://doi.org/10.1186/s12859-019-2957-4
https://doi.org/10.1186/s12859-019-2957-4
https://doi.org/10.1093/bib/bbab315
https://doi.org/10.1093/bib/bbab315
https://doi.org/10.1093/bib/bbab315
https://doi.org/10.1093/bib/bbab315
https://doi.org/10.1093/bib/bbab315
https://doi.org/10.1613/jair.1.13283
https://doi.org/10.1613/jair.1.13283
https://doi.org/10.1613/jair.1.13283
https://doi.org/10.1613/jair.1.13283
https://doi.org/10.1002/sim.8743
https://proceedings.mlr.press/v108/martens20b.html
https://proceedings.mlr.press/v108/martens20b.html
https://proceedings.mlr.press/v108/martens20b.html
https://proceedings.mlr.press/v108/martens20b.html
https://proceedings.mlr.press/v108/martens20b.html
https://proceedings.mlr.press/v108/martens20b.html
https://proceedings.mlr.press/v108/martens20b.html
https://proceedings.mlr.press/v108/martens20b.html
https://doi.org/10.1016/j.isci.2022.105163
https://doi.org/10.1016/j.isci.2022.105163
https://doi.org/10.1016/j.isci.2022.105163
https://doi.org/10.1016/j.isci.2022.105163
https://doi.org/10.1016/j.isci.2022.105163
https://doi.org/10.1093/nar/gkac1212
https://doi.org/10.1093/nar/gkac1212
https://doi.org/10.1093/nar/gkac1212
https://doi.org/10.1093/nar/gkac1212
https://doi.org/10.1093/nar/gkac1212
https://doi.org/10.1371/journal.pone.0269570
https://doi.org/10.1371/journal.pone.0269570
https://doi.org/10.1371/journal.pone.0269570
https://doi.org/10.1371/journal.pone.0269570
https://doi.org/10.1371/journal.pone.0269570
https://doi.org/10.1093/bioinformatics/btaa866
https://doi.org/10.1093/bioinformatics/btaa866
https://doi.org/10.1093/bioinformatics/btaa866
https://doi.org/10.1093/bioinformatics/btaa866
https://doi.org/10.1093/bioinformatics/btaa866
https://doi.org/10.1146/annurev-statistics-031017-100630
https://doi.org/10.1146/annurev-statistics-031017-100630
https://doi.org/10.1146/annurev-statistics-031017-100630
https://doi.org/10.1146/annurev-statistics-031017-100630
https://doi.org/10.1146/annurev-statistics-031017-100630
https://doi.org/10.1101/2023.04.16.537073
https://doi.org/10.1101/2023.04.16.537073
https://doi.org/10.1101/2023.04.16.537073
https://doi.org/10.1038/s41540-023-00310-8
https://doi.org/10.1038/s41540-023-00310-8
https://doi.org/10.1038/s41540-023-00310-8
https://doi.org/10.1038/s41540-023-00310-8
https://doi.org/10.1186/1756-0381-5-16
https://doi.org/10.1186/1756-0381-5-16
https://doi.org/10.1186/1756-0381-5-16
https://doi.org/10.1093/bioinformatics/btaa245
https://doi.org/10.1093/bioinformatics/btaa245
https://doi.org/10.1093/bioinformatics/btaa245
https://doi.org/10.1093/bioinformatics/btaa245
https://doi.org/10.1093/bioinformatics/btaa245
https://doi.org/10.1002/gepi.21761
https://doi.org/10.18653/v1/N19-1357
https://doi.org/10.18653/v1/N19-1357
https://doi.org/10.18653/v1/N19-1357
https://doi.org/10.18653/v1/N19-1357
https://doi.org/10.18653/v1/N19-1357
https://doi.org/10.18653/v1/2020.blackboxnlp-1.14
https://doi.org/10.18653/v1/2020.blackboxnlp-1.14
https://doi.org/10.18653/v1/2020.blackboxnlp-1.14
https://doi.org/10.18653/v1/2020.blackboxnlp-1.14
https://doi.org/10.18653/v1/2020.blackboxnlp-1.14
https://doi.org/10.1088/2516-1091/acc2fe
https://doi.org/10.1088/2516-1091/acc2fe
https://doi.org/10.1088/2516-1091/acc2fe
https://doi.org/10.1088/2516-1091/acc2fe
https://doi.org/10.1088/2516-1091/acc2fe
https://doi.org/10.1093/bib/bbab569

	 Designing interpretable deep learning applications for functional genomics: a quantitative analysis
	Introduction
	Considerations for designing an interpretable model
	The current state of the field: a quantification
	Opportunities and perspectives
	Concluding remarks
	Key Points
	Acknowledgements
	Funding
	Data and code availability
	Author contributions


