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Closing the gap between open source and
commercial large language models for
medical evidence summarization

Check for updates

GongboZhang1, Qiao Jin 2, YiliangZhou 3, SongWang 4, Betina Idnay1, Yiming Luo5, ElizabethPark5,
Jordan G. Nestor 5, Matthew E. Spotnitz6, Ali Soroush 7,8,9, Thomas R. Campion Jr.3,10, Zhiyong Lu 2,
Chunhua Weng 1 & Yifan Peng 3,10

Large language models (LLMs) hold great promise in summarizing medical evidence. Most recent
studies focus on the application of proprietary LLMs. Using proprietary LLMs introduces multiple risk
factors, including a lack of transparency and vendor dependency. While open-source LLMs allow
better transparency and customization, their performance falls short compared to the proprietary
ones. In this study, we investigated to what extent fine-tuning open-source LLMs can further improve
their performance. Utilizing a benchmark dataset, MedReview, consisting of 8161 pairs of systematic
reviews and summaries, we fine-tuned three broadly-used, open-sourced LLMs, namely PRIMERA,
LongT5, and Llama-2. Overall, the performance of open-source models was all improved after fine-
tuning. The performance of fine-tuned LongT5 is close to GPT-3.5 with zero-shot settings.
Furthermore, smaller fine-tuned models sometimes even demonstrated superior performance
compared to larger zero-shot models. The above trends of improvement were manifested in both a
human evaluation and a larger-scale GPT4-simulated evaluation.

Medical evidence plays a critical role in healthcare decision-making. In
particular, systematic reviews and meta-analyses of randomized controlled
trials (RCTs) are considered the gold standard for generating robustmedical
evidence1,2. However, systematically reviewing multiple RCTs is laborious
and time-consuming3. It requires retrieving relevant studies, appraising the
evidence quality, and synthesizing findings. Meanwhile, systematic reviews
frequently become obsolete upon publication, primarily due to protracted
review processes. The delay is exacerbated by the exponential increase in
scientific discoveries, exemplified by over 133,000 new clinical trials regis-
tered at ClinicalTrials.gov since 20204. As such, it is imperative to establish
an efficient, reliable, and scalable automated system to streamline and
accelerate systematic reviews.

Typically, systematic reviews include quantitative and qualitative
reports5, the former being a statisticalmeta-analysis of relevant clinical trials,
and the latter being a concise narrative explanation of the quantitative
results6,7. Language generation technologies could potentially be employed

to auto-generate such narratives, yet they have not been widely applied for
medical evidence summarization7. Text summarization has attracted
research attention for decades. Earlier techniques relied on extracting key
phrases and sentences through rules or statistical heuristics like word fre-
quency and sentenceplacement8–12. Thesemethods, however, struggledwith
comprehending context and generating cohesive summaries. A significant
shift occurred with the adoption of neural network-based methods,
enhanced by attention mechanisms13–19. These mechanisms enable the
model to concentrate onvarious input segments andunderstand long-range
connections between text elements. This advancement allows for a deeper
grasp of context, leading to smoother and more precise summaries.

Recent advancements in generativeArtificial Intelligence, notably large
language models (LLMs), have shown tremendous potential in compre-
hending and generating natural language1,20. While these generalist models
perform well across diverse tasks, they fail to capture in-depth domain-
specific knowledge, particularly in biomedicine21,22. Furthermore, despite
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the relevant superior performances compared to open-source
alternatives7,23–26, the disadvantages of closed-source models were rarely
discussed or even mentioned27,28. The lack of transparency of closed-source
models makes it challenging to understand the model behavior and trou-
bleshoot customized variants. Moreover, reliance on closed-source models
raises the risks associated with changes in service terms or discontinuation
of services, which pose a critical threat to long-term projects. Open-source
models provide a promising solution to mitigate the above risks.

While multiple open-source model architectures were proposed for
either general-purpose foundation models or specifically for text summar-
ization, few have been optimized to synthesize medical evidence. Gutierrez
et al. compared the in-context learning performance of GPT-3 with fine-
tuned BERT models on named-entity recognition tasks in the biomedical
domain29. Tang et al. assessed zero-shot GPT-3.5 and ChatGPT on sum-
marizing Cochrane review abstracts7. The above-related studies, however,
did not focus on fine-tuning open-source models for medical evidence
summarization. It’s also unclear to what degree the optimization strategies,
e.g., few-shot learning or fine-tuning, can help bridge the performance gap
between open-source models and cutting-edge closed-source alternatives.
To quantitively assess fine-tuning technologies to enhance open-source
LLMs for medical evidence summarization, we experimented with three
broadly used open-sourced LLMs: PRIMERA15, LongT514, and Llama-225,
including both architectures designed specifically for text summarization
and architecturesof generalist foundationmodels. Fine-tuning thesemodels

is challenging due to the substantial requirement for computational
resources and the risk of catastrophic forgetting, a phenomenon inmachine
learning where the performance degrades on tasks where the LLM initially
performedwell30. To address these issues,we employed low-rankadaptation
(LoRA)31, which is a parameter-efficient fine-tuning method focusing on
updating only a minimal amount of model parameters during the fine-
tuning process.

To facilitate future studies on leveraging LLMs for medical evidence
summarization, we present a benchmark dataset, MedReview, consisting of
8161 pairs of meta-analysis results and narrative summaries from the
Cochrane Library32, published on 37 topics between April 1996 and June
2023. The dataset consists of training, validation, and test sets (see details in
the “Method” section and Supplementary Table 1). This collection is an
extension of our previous study of evaluating LLMs for evidence
summarization7 and covers a wider range of specialties and writing styles,
which highlight common text summarization challenges (Fig. 1a).

Results
Comparison of different LLMs in automatic evaluations
First, we fine-tuned PRIMERA, LongT5, and Llama-2 using the LoRA
method (Fig. 1b). We observed that fine-tuning considerably improved the
performance of most models (p < 0.01, Fig. 2). Specifically, LongT5 models
benefited the most from fine-tuning, which led to an increase from 14.72 to
24.61, 15.06 to 28.27 in METEOR, 15.15 to 38.81 in CHRF, and 36.05 to

Fig. 1 | Overview of topic distribution of the
MedReview dataset and LLMs in this study.
a Topic distribution of the MedReview dataset.
b Choice of LLMs in this study.
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51.43 in PICO-F1 (Supplementary Table 2). In contrast, PRIMERA
demonstrated a relatively moderate improvement with a ROUGE-L
increase from 18.90 to 20.48, METEOR increase from 25.15 to 26.50, and
PICO-F1 increase from 43.22 to 49.47. However, there was a slight decrease
in the CHRF from 39.25 to 37.84. Overall, the fine-tuned LLMs improved
the ROUGE-L score by an absolute of 9.89% (95% confidence interval of
improvement: 8.94–10.81), the METEOR score by 13.21 (95% confidence
interval of improvement: 12.05–14.37), and the CHRF score by 15.82 (95%
confidence interval of improvement: 13.89–16.44). These recently released
models all outperformed the fine-tuned variant of BART, the previous
SoTA. Thefine-tunedBARTachieved 17.74, 27.49, and 40.54 inROUGE-L,
METEOR, and CHRF, respectively. We compared the fine-tuned models
with GPT-3.5-turbo, one of the most widely known and cutting-edge
closed-source LLMs. Zero-shot GPT-3.5-turbo achieved 23.15 in ROUGE-
L, 28.83 in METEOR, and 39.74 in CHRF scores. The performance gaps
between the open-source models and GPT-3.5-turbo were reduced after
fine-tuning. The fine-tuned LongT5 achieved similar results as GPT-3.5-
turbo (SupplementaryTable 2).We also conducted apilot studyusingGPT-
4. The summaries generated by GPT-3.5-turbo and GPT-4 are not sig-
nificantly different; as such, we only use GPT-3.5-turbo for comparison.

Furthermore, while few-shot learning helped reduce the performance
gap, LLMs fine-tuned with the entire training data still demonstrated better
performance. We constructed two sets of few-shot learning baselines, one
based on few-shot prompting and the other based on few-shot fine-tuning
(see details in “Methods”). Under 1-, 2-, and 5-shot prompting, Mixtral-
8x7B achieved 24.87/24.53/24.99 in Rouge-L, 27.82/25.78/27.59 in

METEOR, 37.63/35.61/37.42 in CHRF, respectively. After being fine-tuned
using 100 randomly selected samples, PRIMERA achieved 19.11 in
ROUGE-L, 24.98 inMETEOR,and39.01 inCHRF;LongT5wasmoderately
improved by few-shot fine-tuning, resulting in 15.06 in ROUGE-L, 16.17 in
METEOR, and 24.81 in CHRF.

We also calculated Pearson correlation coefficients among different
automatic metrics using the entire test set (Supplementary Fig. 2). Most
metrics are strongly positively correlated with each other; with a few
exceptions,most coefficients are larger than0.7. The only exceptionalmetric
is the PICO coverage, which is only weakly positively correlated to the
others, with coefficients ranging between 0.33 and 0.46. As discussed above,
zero-shot models tend to verbatim replicate the input, which is already
abundant in PICO concepts, since we selected only the objective and main
results section of the review abstracts.

Comparison between zero-shot LongT5-xl and fine-tuned
longT5-base
Next, we investigated whether fine-tuned smaller models have the cap-
ability to outperform zero-shot larger models. To this end, we fine-tuned
the LongT5-base model, which has 10% fewer parameters than LongT5-
xl. Figure 3 shows that fine-tuned LongT5-base outperforms zero-shot
LongT5-xl. We also found that this observed trend holds across different
LLM architectures. For instance, the performance of fine-tuned PRI-
MERA and LongT5 exceeded that of zero-shot Llama-2 (Supplementary
Table 2), even though the latter model comprises at least 20 times more
parameters.
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Fig. 2 | Performance of different medical evidence summarization systems in automatic evaluations. The p-value was calculated using a paired t-test to determine the
statistical significance of the difference between the models. FT fine-tuning, ZS zero-shot learning, ns not significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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Qualitative evaluation
Finally, we conducted a comprehensive human evaluation and a GPT-4
simulated26 evaluation of machine-generated summaries. Our baseline,
zero-shot Llama-2, is one of the latest and largest open-sourcedLLMsby the
time of writing. In both evaluations, we requested clinical experts or GPT-4
to select the better summary fromapair of candidates—one generated using
the baseline and the other generated using our fine-tuned models. The win
rate is the ratio of machine-generated summaries evaluated as better than
thebaseline. Thebaselinewin rate is 50%, given that (1) zero-shot Llama-2 is
being compared to itself, (2) all pairs of summaries to be compared are
identical, and (3) ties are broken randomly24.

According to the human evaluation, fine-tuned Llama-2 was preferred
to zero-shot, with the win rate increased from 50% to 59.20% (Fig. 4a and
Supplementary Table 3). Fine-tuned PRIMERA and LongT5 models also
achieved 54.47% and 59.68% win-rate against the zero-shot Llama-2.

We further asked the evaluators to share the rationale behind their
preference for the chosen summaries. The fine-tuned models were com-
pared with zero-shot Llama-2 on multiple dimensions that have been
established as desired properties of summaries7,33. Figure 5 shows the
numberof caseswhere zero-shot LLama-2generatedbetter summaries (left/
red), in contrast to the cases where the fine-tuned models generated better
summaries (right/blue). With few exceptions, LLMs were improved in all
aspects after fine-tuning (Supplementary Table 5). By manually comparing
the summaries generatedby zero-shot andfine-tunedmodels,we found that
zero-shot models tend to present a detailed background of the summarized
studies but do not provide any findings or conclusions, i.e., they present a
high resemblance of leading sentences in the paragraphs. Recall that word
embeddings are combined with positional embeddings to represent each
token in a document in transformer architecture. In general summarization
tasks, the key information is typically presented in leading or concluding

Fig. 4 | Human and GPT4-simulated evaluation of
LLM-generated summaries. a Performance of dif-
ferent summarization systems in human evaluations
using win-rates against zero-shot Llama-2 (Llama-
2-zs). The dotted line represents the default 50%win
rate of the Llama-2-zs. b Performance of different
summarization systems in GPT4-simulated evalua-
tion using win-rate. The dotted line represents the
default win rate of Llama-2-zs. zs zero-shot learning,
ft fine-tuning.
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summaries in general. Despite PRIMERA and LongT5 having much smaller model
architectures, they significantly outperformed zero-shot LLama-2 after fine-tuning.
LLama-2 was also improved in all aspects via fine-tuning.
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sentences. The ordering of key information and other redundant infor-
mation can impact the positional embeddings during pre-training. The
zero-shot open-source summarization models tend to extract the leading
sentences instead of key information. This indicates that positional
embeddings significantly impacted the summary more than word embed-
dings in zero-shot open-source models. On the other hand, fine-tuned
models alignmore closelywith ground-truth summaries, which canprovide
supportive evidence or identify the lack of sufficient evidence for inter-
vention outcomes.

The GPT-4 simulated evaluation also indicates a significant
improvement in allmodels afterfine-tuning (Fig. 4b). In addition, 257out of
378 simulated evaluation results concord with the judgment of human
experts (68% accuracy).

We also evaluated all models on two distinct test sets of review articles
(Supplementary Table 4). One group, denoted as “after the cutoff,” was
published after the latest knowledge cutoff date of every model, i.e., no
articles in this group were used in pre-training the foundation models. The
other group, denoted as “before cutoff”, was publishedbefore the knowledge
cutoff date; the articles in this groupmay be used for pre-training purposes.
Onboth the “after cutoff” and the “before cutoff” test sets,fine-tunedmodels
demonstrated improved performances. Recap that all articles used for fine-
tuning were published “before cutoff”. This demonstrates the general-
izability of fine-tunedmodels “before cutoff” data on “after cutoff” test data.

Discussion
In this study, we focused on comparing open-source and closed-source
LLMs in medical evidence summarization. While closed-source models,
exemplified by GPT families and others, demonstrated superior perfor-
mance as compared to open-source alternatives, the risks associated with
using closed-source models are not negligible, which include lack of
transparency, reliance on external dependency as a single-point-of-failure,
potentially high-cost in migration to other vendors. Furthermore, it’s still
unclearwhether patientswould consent to have their informationutilized in
LLMs, especiallywhen theywere unaware of andunable to understandwhat
the LLMs will be used. However, such disadvantages were not paid enough
attention. To mitigate the above risks, we investigated recently released
open-source LLMs for medical evidence summarization. To our best
knowledge, open-source models still fall behind in natural language
understanding, as compared to closed-source ones. Based on the observa-
tion that fine-tuning can enhance, we validate principles of model optimi-
zation within evidence summarization and quantitatively measure the
performance boost via fine-tuning.

To facilitate future studies in this direction, we first introduced
MedReview, a collection of meta-analysis and summary pairs to assist in
fine-tuning LLMs for medical evidence summarization. We further
showed that open-source LLMs, including LongT5, PRIMERA, and
Llama-2, demonstrated improved summarization performance after fine-
tuning with MedReview, even close to GPT-3.5-turbo. This observation
also confirms that these generalist models perform well across diverse
tasks but need more in-depth domain-specific knowledge, e.g., in bio-
medicine. While few-shot learning has been effective in other NLP tasks,
the applicability is still limited by the context window within lengthy
document summarization. Fine-tuning is a robust approach to bridge this
performance gap between open-source models and closed-source alter-
natives, while maintaining the advantages of transparency, easy custo-
mization, maintenance, and migration. However, the manual evaluation
results show that fine-tuning does not guarantee truthful and accurate
summaries. This issue was also reported in the previous evaluation of
zero-shot GPT models7. This highlights that trustworthy summarization
of medical evidence remains challenging and unresolved.

In addition, the usage of largemodels is limited by the high demand for
computing resources.Our experiments indicated that smallermodels, when
fine-tuned, can sometimes outperform zero-shot larger models on specific
tasks. This is observed in two experiments. First, the fine-tuned LongT5-
base performs better than the zero-shot LongT5-xl (Fig. 3). Second,

PRIMERAandLongT5-xl, despite being smaller in size thanLlama-2 (70B),
demonstrated enhanced performance than the latter one upon fine-tuning
(Fig. 5 and Supplementary Table 2). In the cases of limited computing
resources, PRIMERA demonstrated robust performance in medical evi-
dence summarization in the few-shot fine-tuning setup, which confirms the
findings of the original reports of the PRIMERA paper. However, few-shot
fine-tuned models underperformed as compared to those fully fine-tuned
on the entire training data.

The evaluation of LLM-generated summaries presents another chal-
lenge in this task.Automaticmetrics frequently used for text summarization
can, at best, measure the similarity betweenword distributions of references
and LLM-generated summaries. These metrics do not correlate strongly
with properties of desired summaries, such as factual comprehensiveness
and consistency. As such, human evaluation, especially those from clinical
experts, is still critical but not scalable. Therefore, we used GPT-4 as a
simulated evaluator and found that 68% of GPT4-simulated evaluation
results aligned with human judgments. These findings suggest that GPT-4
holds the promise to not only facilitate summary evaluation, but also to
provide feedback to align the summarization model with simulated expert
feedback. The simulated evaluation results further confirmed that fine-
tuned smaller models can surpass larger zero-shot models (Fig. 4b). This
observation is consistent with the improvement discussed in the automatic
evaluation.

Summarization systems have diverse applications, particularly bene-
fiting researchers and healthcare professionals. For researchers engaged in
systematic reviews, these systems can analyze clinical trial reports efficiently,
pinpointing relevant studies and distilling essential findings without
requiring exhaustive document review. This significantly speeds up the
research process. Healthcare professionals and policymakers, on the other
hand, can utilize these systems to efficiently grasp the latest clinical trials’
outcomes and implications, which is vital for informed decision-making
concerning patient care, treatment guidelines, and healthcare policies,
especially under the urgent pandemic conditions. Furthermore, by con-
densing the latest clinical trial information, summarization systems provide
concise, current data to clinical decision support systems, assisting health-
care providers inmaking evidence-based treatment decisions customized to
their patient’s specific needs.

This study has certain limitations. Due to the restricted time and
resources, we cannot extensively explore fine-tuningmodels such as Claude,
GPT-3.5-turbo, and GPT-4. Instead, we mainly focused on open-sourced
LLMs. This restriction, however, does not impact the applicability of our
study in the clinical domain. We believe that open-sourced LLMs foster
wider collaboration and transparency, thus forwarding research progress as
other researchers can enhance, modify, and refine these models. Plus, by
advocating for the democratization of technology, these LLMs encourage a
more extensive use and a potentially higher rate of innovation. Another
limitation is that the LLMs were not fine-tuned to summarize clinical trial
publications but the manually curated “main results” of review abstracts.
This study design was initially aimed at simplifying and expediting the
development and testing of our summarization algorithms. A future direc-
tion is to deploy LLMs to directly synthesize information from clinical trials.

To summarize, our findings underscore the utility of fine-tuning as a
robust technique for bridging the performance gap between open-source
LLMs and closed-source ones, reinforcing its applicability across a spectrum
of model architectures and sizes, and setting the stage for more nuanced
investigations into the efficiency and effectiveness of model optimization
strategies. However, additional research is warranted to fully uncover the
potential of LLM in this context.

Methods
Data collection
We collected 8161 abstracts of systematic reviews from the Cochrane
Library32. Unlike abstracts of the biomedical literature, which are highly
condensed summaries, systematic review abstracts provide a structured
overview that enables readers to quickly determine the validity and

https://doi.org/10.1038/s41746-024-01239-w Article

npj Digital Medicine |           (2024) 7:239 5

www.nature.com/npjdigitalmed


applicability of the review. These abstracts typically follow a common
structure, detailing preferred reporting items5. The Cochrane review
abstracts present background, objectives, searchmethods, selection criteria,
data collection and analysis, main results, and authors’ conclusions.Within
such a self-contained structure, the authors’ conclusion presents a narrative
summary of the most salient details of the included clinical studies7. This
section is one of the first to consult when healthcare providers seek answers
to clinical questions. Given the meta-analysis results as input, we aim to
automatically reproduce this narrative summary. The collected reviews
cover a wide range of topics, including but not limited to neurology, gas-
troenterology, rheumatology, nephrology, and radiology. The publication
dates of the reviews range from April 1996 to June 2023.

We split the dataset into distinct training (91.56%), validation (4.83%),
and test (3.61%) sets, ensuring that all of the samples appear in one set
(Supplementary Table 1). All LLMs were prepared with a large extent of
public textual data collected until a certainmoment, known as the cutoff. To
maintain a legitimate comparison between LLMs, we put all articles pub-
lished after September 2022 as test data (because most LLMs studied in this
study used the data up to September 2022). Articles published prior to this
are primarily used for training and validation. The division of training and
validation was stratified according to the time of publication.

Few-shot baselines
Few-shot learninghas beenproven an effective and sample-efficient strategy
for optimizing task-specific LLMs. We construct two few-shot learning
baselines, one based on prompting and the other on fine-tuning.

For few-shot prompting, we use Mixtral-7x8B for the few-shot
prompting foundation model. Due to the limit on token numbers, other
open-source models cannot fit demonstrations of long document sum-
marization in the context windows. We randomly selected 1, 2, and
5 samples from the training set as demonstrations. For few-shotfine-tuning,
we followed the findings of the PRIMERA report that LLMs can be rea-
sonably adapted to domain-specific tasks with a limited number of labeled
samples. We used the same setup as the few-shot experiments in the PRI-
MERA, where we randomly selected 100 samples from the training set and
fine-tuned LLMs.

Fine-tuning LLMs
We investigated several LLM architectures that have recently surfaced for
tasks related to summarization tasks or as foundationmodels. In this study,
we only consider models that satisfy the following two conditions. First,
models need to be publicly accessible and open-sourced to ensure their
transparency and accountability. Second, context windows need to be long
enough to digest input without requiring condensation or truncation.
Bearing all these factors in mind, we included PRIMERA, LongT5, and
Llama-2 in our studies. PRIMERA deploys a pretraining strategy named
Entity Pyramid to select and aggregate salient information focusing on
document summarization15. LongT5 is an extension of T5 architecture that
adopts a summarization pretraining strategy to scale up the input length14.
Llama-2 is one of the recently released open-source, scalable foundation
models with 7B, 13B, and 70B parameters25. Since Mixtral-8x7B demon-
strated similar benchmark performance as Llama-2, we did not fine-tune
Mixtral-8x7B23. Instead, we report the few-shot prompting performance of
Mixtral-8x7B.

Following previous work7, we selected the objective and main results
sections of a review abstract as input and used the authors’ conclusion as a
reference to fine-tune models. We applied the LoRA method, which keeps
the original parameters frozen and adjusts only a relatively small number of
extra parameters via matrix decomposition31. The exact number of para-
meters depends on the rank hyperparameter in the LoRAmethod.We refer
the readers to the original LoRA paper for technical details31.

Our implementation uses the following libraries: transformers34,
torch35, andPEFT36.Mostfine-tuning jobswere completed onAWSandour
local lab servers. Llama-2 models were fine-tuned on the SageMaker plat-
form. All models were fine-tuned for 1 epoch, within which the validation

loss had already stopped decreasing. We set the learning rates to 3e-515, 1e-
425, and 1e-314 for PRIMERA, LLama-2, and LongT5 models, respectively.
We set the rank hyperparameter of LoRA to 831.

Evaluation metrics
We first use the natural language generation (NLG) metrics to evaluate the
quality of the generated summary. Thesemetrics include ROUGE-L (recall-
oriented understudy for gisting evaluation) and METEOR (metric for
evaluation of translation with explicit ordering) scores. We also include the
CHRF (CHaRacter-level F-score), which was reported to correlate highly
with the readability of generated text33. Their values range from 0.0 to 100.0,
with a score of 100.0 indicating that the generated summaries are identical to
the reference summary. The model performance on our test is approxi-
mately normally distributed and the performance of each model is inde-
pendent of others. As such, we calculated the p-value using a paired t-test to
determine the statistical significance of the difference between the two
models.

PICOmetrics
NLG metrics are known to be inadequate for evaluating factual complete-
ness and consistency33. We therefore propose to use a PICO (participants,
interventions, comparison, and outcomes) extraction system to evaluate the
accuracy of the generated summaries. More specifically, we fine-tuned a
BERT-based13,37model to extract PICO concepts and then score a generated
summary by comparing the values of these PICO elements obtained from
the reference.We consider a PICOelement to be a true positive, if it satisfies
two conditions: (1) the text in the reference overlaps with the text in the
generationand (2) the twoentity types shouldhave the samePICOcategory.
Themicro averages for precision, recall, and F1 scores are all computed over
the PICO components.

Human evaluation
We conducted a review of the summary quality via human evaluation. The
quality is measured from four aspects: consistency, comprehensiveness,
specificity, and readability, which were established as essential factors for
measuring machine summary quality. Consistency indicates whether the
summary contradicts the input source. Comprehensiveness measures
coverage of key information of input. Specificity measures the preciseness
and conciseness of the summary. Readability indicates amachine summary
is fluent and free of grammatical errors that hinder understanding.

To evaluate the machine summaries, we invited seven clinical experts,
each specializing in one or two of the following specialties, including Gas-
troenterology, General Surgery, InternalMedicine, Nephrology, Neurology,
Radiology, and Rheumatology. All experts have obtained MD training and
currently provide direct patient care. Following a recent LLM study24, we
request the experts to compare the quality of different machine summaries
(interface shown in Supplementary Fig. 1). Specifically, according to their
domain knowledge, each expert was assigned review abstracts along with
three summaries: (1) the authors’ conclusion section, (2) zero-shot Llama-2,
and (3) one of the fine-tuned models. From the zero-shot baseline and the
fine-tuned models, the experts will select which one generates a better
summary. To reduce the potential order-related bias, the order of sum-
maries generated by zero-shot Llama-2 and fine-tuned summaries was
randomized. We further asked the experts to choose the reasons for their
choices.

GPT-4 evaluation
Likemany other annotation scenarios, collecting experts’ feedback is not
scalable with respect to the samples to be labeled. In addition to our
manual review, we explored the use of GPT-426 as a simulated expert to
answer the same questions as those assigned to human experts. Instead
of selecting a sample of test data as in the manual review, we used the
model summaries for all test articles for GPT-4 evaluation. We also
analyzed the percentage of questions that human judgments agree with
the GPT-4 evaluation.
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