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Summary 
 

 Understanding metal and proton toxicity under field conditions requires consideration of 
the complex nature of chemicals in mixtures. Here, we demonstrate a novel method for 
relating the stream and river water concentrations of cationic species to a field ecological 
variable. The model WHAM-FTOX postulates that non-specific binding sites on or in 
aquatic macroinvertebrates can be represented by the functional groups of natural 
organic matter (humic acid), as described by the Windermere Humic Aqueous Model 
(WHAM6).  

 Using quantile regression on published data from over 400 sites across three continents, 
complex water chemistries were condensed into a single linear function that relates the 
combined toxicities of metals and H+ to the species richness of Ephemeroptera, 
Trichoptera and Plecoptera. The toxicity function (FTOX) is the sum of the products of the 

bound concentration and a toxicity coefficient (M), for each metal or the proton. A lower 
threshold of FTOX is defined, below which toxic effects are absent, and an upper threshold 
above which organisms are absent.  

 The available field data, from waters affected by acid deposition and abandoned mines, 

permitted the derivation of parameters for four cations, with values of M following the 
sequence Cu > Zn > Al > H+. For waters affected mainly by H+ and Al, FTOX shows a 
steady decline with increasing pH, crossing the lower threshold near to pH 7. Competition 
effects mean that toxicity due to Cu and Zn is most significant between pH 6 and pH 8.  

 It should be clearly recognised that our results do not deny the environmental toxicity of 
heavy metals other than Cu and Zn (e.g. Ni, Cd, Hg, Pb) – it is simply that their toxicities 
are not expressed at the study sites used in this work. 

 WHAM-FTOX is a plausible model describing the toxicity of mixtures of metals and 
protons, based on chemical speciation concepts, and as such is a significant forward 
step.  The results are consistent with mixture dose-response relationships in the field, 
supporting and extending previous conclusions based on a much smaller data set.   

 Calculations with the parameterised model for different streamwater discharges suggest 
that in some streams, changes in the concentration of the important competing cation Ca 
can at least sometimes compensate for changes in heavy metal concentration.  However, 
in systems that are only acidified (not impacted by heavy metals) low pH conditions 
brought about by high discharge are substantially more toxic than low-discharge 
conditions. 

 The analysis presented here is incomplete, limited by the available published data, and 
further research is clearly desirable. This could include further field work, laboratory work, 
or the analysis of existing toxicity data.  With respect to field studies, it would be 
especially helpful to work on systems with fewer unknown factors, or with well-known 
factors, so there is less reliance on quantile regression. 

 Several applications of the model can be envisaged.  Scientifically WHAM-FTOX provides 
a conceptual and quantitative framework within which to evaluate mixture toxicity effects, 
the contributions of individual components, and the role played by “protective” cationic 
metals such as Mg and Ca.  The model provides a means to estimate and predict actual 
toxicity effects in the field, as well as site-specific Environmental Quality Standards.  It 
could be useful to guide remediation activities, including cost-benefits, which might be 
especially valuable for abandoned mines. 
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1.  INTRODUCTION 

 

1.1  Background and justification 

In the project Environmental Quality Standards for trace metals in the aquatic environment 
(Bass et al., 2008), the need arose to evaluate the combined toxic effects of several cationic 
components of natural waters, namely protons, aluminium and “heavy metals”, while also 
taking into account the possible alleviating effects of “protective” metals such as Mg and Ca.  
The principal measure of toxicity in the field used in this work was the species richness of 
streamwater benthic macroinvertebrates.  One approach was to apply a model - given the 
preliminary name of Toxicity Binding Model (TBM) - based on the estimated extent of binding 
of cations by the organisms, the idea being that this would take into account the competition 
effects that are inevitably operating in all field systems.   

We used the TBM to describe macroinvertebrate data (OE: observed / expected species 
richness) in 30 metal-contaminated streams in northern England.  The parameterised model 
explained 72% of the variance in OE, with significant contributions from H+, Al, Zn and Cu, 
although in the studied waters Cu was not strongly represented.  The model was formulated 
so as to define a threshold value of Ftox, above which metal effects are seen. 

If the TBM could be parameterised more widely, with coverage of more metals, it might be a 
very useful way to describe metal effects in the environment, and to estimate the 
contributions of different metals under different circumstances.  The model could be used to 
evaluate the effects of metal mixtures in specific (point-source) exposures, in diffuse inputs, 
for example from atmospheric deposition, and to evaluate the effects of abandoned mines.  
In principle it could also be extended to soils and marine systems.  The project described 
here was conducted in order to test the model more fully, using published data from other 
field sites around the World. 

In the previous study in northern England we used species diversity metrics derived from the  
River Invertebrate Prediction and Classification System (RIVPACS; Clarke et al., 2003; 
Wright, 2000), but this could not readily be applied to sites located other countries or 
continents, and so we adopted a simplified variable, the species numbers of Ephemeroptera, 
Plecoptera and Trichoptera (EPT).  This is a widely used measure of stream ecological 
status, and is usually available from field studies. 

Although this project was motivated by interest in the possible ecological effects of cationic 
heavy metals such as Ni, Cu, Zn, Cd and Pb, the previous results showed the clear need 
also to take into account H+ and Al, both of which can exert toxic effects in the field.  
Therefore as well as analysing field data obtained from streams affected by abandoned 
metal mines, we also used data from studies of streams affected by acid deposition, where 
any toxic effects were predominantly or entirely due to H+ and Al.   
 

1.2  Wider context and scientific approach 

Assessment of the toxic effects of metals and protons in the environment in general and 
freshwaters in particular would benefit from an ability to deal with mixtures. Despite this, 
recent books on metals contamination of aquatic systems, give scant treatment to the topic 
of mixture toxicity (Luoma & Rainbow, 2008; Adams & Chapman, 2007). To interpret the 
results of laboratory single metal toxicity studies, the concept of multi substance Potentially 
Affected Fractions has been developed. This combines results from experiments with single 
toxins to describe mixtures, assuming additivity (De Zwart et al., 2006). The Biotic Ligand 
Model has been applied in laboratory studies of metal mixtures, by assessing competition for 
binding at the biotic ligand between toxic metals (Zn, Cu, Cd) and calcium (Kamo & Nagai, 
2008).  Expanding these approaches to create predictive models for the full range of 
components in environmental systems would be a formidable task. A pragmatic means of 
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combining single-metal Environmental Quality Standards (EQS) for the field assessment of 
mixtures is through the use of Cumulative Criterion Units (Clements et al., 2000), calculated 
as the sum of the ratios of the concentration of each metal to its individual EQS. However, 
this only predicts a standard value, not a dose-response relationship, and as applied to date 
does not take account of chemical speciation and bioavailability. 
 
A second issue in toxicity assessment is the need to demonstrate that estimates based on 
laboratory data apply in the field (Luoma & Rainbow, 2008). While this has been researched 
quite extensively for protons and aluminium in relation to acidification (Gensemer & Playle, 
1999), results for “heavy metals” are sparse. This is clearly important to establish the 
credibility of EQS, to develop remediation measures, and more generally to understand 
ecological damage. 
 
In the work presented here, we took a field-based approach to address both issues by 
developing a model, WHAM-FTOX, that describes the speciation and bioavailability of mixtures 
and uses observed ecological effects in the field for parameterisation. We used the 
Windermere Humic Aqueous Model (Tipping, 1994, 1998) to calculate both aqueous 
chemical speciation and the non-specific accumulation of protons and metals in or on aquatic 
macroinvertebrates. As an ecological response variable we employed macroinvertebrate 
species richness, specifically of Ephemeroptera, Plecoptera and Trichoptera. The EPT index 
is routinely employed as a measure of biological integrity and is sensitive to a wide range of 
stressors (Plafkin et al, 1989). It was appropriate for the present work in view of data 
availability, established sensitivity, widespread distribution, functional importance in stream 
ecosystems and sufficient variability to indicate graded responses to metals. We applied the 
model to published field chemistry and EPT data from over 400 individual sites, studied with 
respect to either acidification or the impacts of heavy metals from abandoned mines. 
 
Although the analysis of field data is attractive because it addresses the problem directly, a 
drawback is that EPT species richness may be reduced by environmental factors other than 
cation toxicity. Such factors may be biotic (competition, predation, dietary exposure), physical 
(water flow, suspended sediment), or chemical (nutrients, anionic toxicants such as arsenic, 
organic pollutants). Furthermore, benthic macroinvertebrates may be in contact with 
hyporheic groundwater, with a different chemical composition to that of the main streamflow, 
and may experience variations in chemistry during hydrological events.  However, such 
factors are not widely quantified, and for our analysis are therefore “unknown”.  To take 
unknown factors into account in assessing metal and proton toxicity, we performed quantile 
regression modelling (Cade & Noon, 2003), which has previously been applied to assessing 
organism responses to metals in freshwaters, but without including chemical speciation 
(Pacheco et al., 2005; Linton et al., 2007; Crane et al., 2007).  
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2.  OBJECTIVES 

1. Review available data that relate stream metal concentrations, speciated with WHAM, to 
macroinvertebrate diversity. 

2. Parameterise the TBM with all available published data, and determine whether the 
model can provide a unique toxicity function covering all sites and metals. 

3. Examine the implications for model predictions of short-term variations in streamwater 
chemistry. 
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3.  THEORY 

We assume that organisms in the field accumulate metals and protons by binding at non-
specific ligand sites (i.e. sites not necessarily involved in toxic action) exposed to the 
surrounding solution.  We represent these sites by the array of binding sites postulated for 
humic acid in WHAM.  They comprise monodentate, bidentate and tridentate binding sites 
comprising oxygen-containing ligands, together with less-abundant sites where binding is 
also influenced by the rarer “soft” ligand atoms, nitrogen and sulphur.  Partial justification for 
the use of WHAM comes from previous work showing good agreement between its 
predictions and measured trace metal accumulation by aquatic bryophytes (Tipping et al., 
2008).  Admittedly, the element stoichiometries of invertebrates differ from those of both 
plants and humic substances, due to their higher nitrogen contents.  However, under the 
relatively high cation loadings associated with cation toxicity, the abundant oxygen-
containing ligands are likely to dominate.  The function of WHAM in the present context is 
primarily to deal with binding at such sites on the invertebrates.   This bold approximation 
provides a major advantage in addressing mixture effects in the field because the chemically-
consistent parameterised WHAM readily provides estimates of non-specifically bound metals 
and protons, taking into account the multiplicity of competition effects that must operate.  We 
suggest that, at steady-state, the externally bound metal and proton contents determine the 
“metabolically available” cation contents of the organisms, as defined by Rainbow (15).  The 
non-specific binding does not in itself elicit a toxic response, but it represents bioavailability. 
 
The combined toxicity of the cations is quantified by a linear toxicity function; 

 MMTOXF να           (1) 

where M is the amount of metal bound (mmol g-1), αM is the toxicity coefficient, and M refers 
to each metal (including H+). The toxicity coefficients relate the amount of bound metal to its 
individual toxic effect. Note that the model does not depend upon predicting absolute values 

of M, only their relative amounts; thus it is not necessary to equate the total binding site 
densities of macroinvertebrates with those of humic acid. Equation (1) condenses complex 
water chemistries into a single linear variable (FTOX) intended to predict toxicity. Whilst we 
consider competition for accumulation through the speciation modelling, for simplicity we 
assume that the contributions of bound cations to FTOX are additive. Future developments 
could potentially include more complex relationships. 
 
WHAM-FTOX is similar to the Biotic Ligand Model (BLM) in that it includes the organism as a 
reactant in a conventional chemical equilibrium system. However in WHAM-FTOX the 
accumulation of reactants (H+ and metal cations) by the organism is non-specific, whereas in 
the BLM, toxicity depends upon the extent of occupation of a key site (the biotic ligand). In 
terms of parameterisation, the BLM requires specific equilibrium constants for the toxic metal 
or metals, and competing cations, including protons, derived from the results of laboratory 
experiments. Extension of the BLM to deal with mixtures in the field would require a major 
research effort to gather the necessary data, a problem which we finesse by using the pre-
existing WHAM speciation code to estimate non-specific binding in WHAM-FTOX.  
 
We assume that all macroinvertebrate species accumulate metals to the same extent, but 
respond differently to the toxicity pressure expressed by FTOX. Thus, sensitive species 
disappear from a stream at relatively low FTOX while resistant ones can tolerate high values. 
In this way variations in species richness among different streams can be related to water 
chemistry. A desirable way to describe the data is with a value of FTOX below which no toxic 
effects are observed as stated above (a lower threshold, FTOX-LT), and a second value above 
which all species are absent (an upper threshold, FTOX-UT). Thus we have the following 
conditions, in terms of species richness (SREPT); 
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4.  METHODS 

 

4.1 Field data 

We required comprehensive data sets that included both water chemistry and EPT species 
richness for the same sites. We collated data from several studies reported in peer reviewed 
literature in Northern England (survey code NE; Tipping et al., 2008; Bass et al., 2008); 
Japan Agakawa River catchment (JA; Sasaki et al., 2005); Japan Hasama River catchment 
(JH; Iwasaki et al., 2009); Wales and Cornwall, UK (WC; Hirst et al., 2002); Wales acid water 
survey (WA; Stevens et al., 1997); Scotland and Wales acidification study (SA; Kowalik et al., 
2007); and three studies in Colorado, US (CU; Mize & Deacon, 2002; Deacon et al., 2001; 
CE; Colorado EMAP report; and CC; Clements et al, 2008), totalling 397 individual locations. 
We also obtained data from the USGS National Water-Quality Assessment Program 
(NAWQA; downloaded from http://infotrek.er.usgs.gov/nawqa_queries/index.jsp). This 
archive yielded data from 15 locations across 5 survey programmes (Table S1). All 412 sites 
were either headwaters or other low order streams, with chemistry and SREPT data 
summarized in Table S2. We obtained approximately half of the data from surveys designed 
to investigate mine-affected sites, and the other half from surveys of sites potentially affected 
by acid atmospheric deposition. Mine surveys were not chosen on the basis of the extracted 
metals and pollution at some of the sites is as a result of mining of elements not considered 
in this work (e.g. Ag, Au). The data include a number of “reference” sites, not impacted by 
cationic toxins. Some chemical variables were missing from the data sets and values were 
therefore estimated (see Table S2) to attempt to improve the WHAM predictions of bound 
metals, but the results were hardly affected. Where we refer to a site we mean a specific 
location on an individual stream; the term “survey” refers to a geographical region covering a 
set of individual sites. 

 

4.2  Chemical speciation calculations 

The WHAM6 code (Tipping, 1998) was used to calculate the chemical speciation of 
streamwaters, with measured total concentrations of solution components, and measured 
pH, as inputs. Concentrations of dissolved organic matter (DOM) were based on measured 
[DOC], assuming DOM to be 50% carbon and that 65% of it is active with respect to cation 
binding (Tipping et al., 2008). In each case, the activity of Al was calculated from the 
measured total filtered concentration and also from the generalised equation derived by 
Tipping (2005), Eq. 5; 

2

Al
pH49.0pH26.327.10log 3 a        (5) 

and the lower of the two values was adopted.  This avoided over-estimation of Al activity in 
filtrates containing colloidal forms of the element.  The activity of Fe(III) was calculated from 
the empirical equation of Lofts et al. (2008), Eq. 6; 

pH70.293.2log 3Fe
a          (6) 

http://infotrek.er.usgs.gov/nawqa_queries/index.jsp
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We ran the model for two scenarios, one where the charges were forced to balance by 
adjusting the concentrations of Ca2+ and SO4

2-, and another where no adjustment was made. 
The same metal speciation results were obtained in the vast majority of cases, with Zn being 
the metal with the greatest sensitivity. In approximately 10% of cases the Zn varied by 25% 

or more (compared to 0 - 1% of cases for the other metals). The Zn value (Table 2) would be 

13% lower without the charge balancing applied. Other M values would not be significantly 
changed (see Supporting Information). 

 

Because DOM in the stream waters was represented only by fulvic acid, the humic acid 
component of WHAM was available as a proxy for binding to macroinvertebrates. We 
included a concentration of humic acid in all speciation calculations at a level low enough not 

to affect the calculated chemical speciation of the water, thereby obtaining values of M 
(mmol g-1) for metal and proton accumulation on or in the organisms. 

 

4.3  Fitting the data / quantile regression 

Quantile regression (QR) has previously been used to integrate chemical and biological data 
for individual toxicants (Pacheco et al., 2005), but has not been applied to the toxicity of 
mixtures. An advantage of the QR approach in modelling heterogeneous variations in 
response distributions, is that there is no requirement to specify how variance changes are 
linked to the mean (10). It differs from least squares regression in that it results in estimates 
approximating either the median or other quantiles of the response variable rather than the 
conditional mean. Quantiles can be estimated by an optimisation function that minimises the 
sum of weighted absolute deviations (Equations 7 and 8), where the weightings are based on 

asymmetric functions of  (this denotes the quantile and has values from 0 to 1). 

 
n

i

ii xyf )),((             (7) 










pyyp

pypy
pyf

))(1(

)(
)(




         (8) 

Here y is the observed SREPT and ξ(xi, β) represents the model as defined in equations (1 – 

4), this model provides a prediction (p). If the 90th quantile is modelled ( = 0.9), 90% of the 
values of y are less than or equal to the specified function of x (FTOX). For data that do not 
show the ideal response, unmeasured factors (see Introduction) become limiting and this 
increases the heterogeneity of organism response with respect to the measured factors 
included in the regression model (10). Unmeasured factors will result in a response that is 
lower than the ideal response and data affected by unknown factors therefore lie below the 
ideal response line (in this case the 90th quantile). 

The quantile regression and parameter fitting was performed using the Solver function in 
Excel. Values that Excel could optimise were the toxicity coefficients (αM), the FTOX thresholds 
(FTOX-LT and FTOX-UT) and the maximum value for species richness (SREPT-MAX). Different 
starting values were applied to check there were not multiple minima for the optimisation. 
Providing that the values were not initially set to zero, that FTOX-UT was set at a higher value 
than FTOX-LT and that the initial estimate for SREPT-MAX was between 10 and 28, the model 
always converged to give consistent values. We confirmed the significance of the 
contribution to FTOX of each of the four metals that we were able to characterise, by 
performing t-tests. Uncertainties in the model parameters SREPT-MAX, FTOX-UT, FTOX-LT, Al Cu 

Zn were estimated by bootstrapping, sampling the dataset with replacement 2000 
times.  The median, 13.6%ile and 86.4%ile of the distribution of each parameter were 
calculated; the range enclosed by the 13.6% and  86.4%iles of the distribution is a 
nonparametric equivalent of taking ±1 standard deviation of a normal distribution. 
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5.  APPLICATION TO FIELD SITES 

M were extracted from the model output for protons and the following metals; Al, 
K, Ca, Fe, Ni, Cu, Zn, Cd, Pb (ranges shown in Figure A2). In modelling the best fits for the 
quantile regression, only the values of αM for H+, Al, Cu and Zn were appreciably greater than 
zero, indicating that, for the sites modelled, only these four components contributed 
significantly to overall toxic effects. Because only relative values are required, we fixed αH at 
1.0 and re-fitted the model to produce the results of Table 2. Figure 1 shows the observed 
SREPT values plotted against calculated FTOX, together with the 90th quantile line. The lower 
threshold (FTOX-LT) value of 2.26 means that for FTOX greater than this value, toxic effects due 
to some combination of H+, Al, Cu and Zn operate. Data that plot below the model line 
indicate those sites where unknown factors (see Introduction) are decreasing the species 
richness further than the toxic cations alone. The data show no systematic differences across 
the continents (i.e. biogeographic regions) included in the study (Figure A3).  

We chose to model the 90th quantile, as estimates of model parameters for more extreme 
quantiles may have a greater uncertainty than other estimates. Extreme quantiles are also 
more sensitive to outliers (Pacheco et al., 2005). To test the effect of the quantile value, we 
additionally optimised the fitting parameters based on fitting the model to the 80th and 95th 
quantiles and compared the results to the 90th quantile values. Increasing the quantile results 
in changes in the model parameters of 20-47%, whereas decreasing the quantile results in 
maximum deviations of <9%. This demonstrates the greater uncertainty at larger quantiles 
and supports our decision to model the 90th quantile. 

Simple conclusions are not readily drawn from the model outputs because of the multiplicity 
of interactions that determine values of FTOX. Each water sample has a unique chemical 
composition and therefore different combinations of free ion activities, governed principally 
by the total concentrations of the potentially-toxic metals (including protons), other competing 
metals (Mg, Ca), pH and DOM. Competition effects in binding to the macroinvertebrates also 
have to be considered. However, by plotting FTOX against pH (Figure 2), some general 
features can be identified. Figure 2A shows the results for the field sites. Figures 2B and 2C 
show calculations with the parameterised model, for idealised Ca titrations of initially acid 
waters, with and without Cu or Zn.  

Consider first the waters from the acidification surveys that are calculated to be affected 
mainly by H+ and Al (open circles in Figure 2A, long dashes in Figures 2B and 2C).  At low 
pH, FTOX is considerably higher than the lower threshold.  It falls with increasing pH, only 
passing FTOX-LT at about pH 7.  Thus the model predicts that even in waters uncontaminated 
with heavy metals, species diversity is less than maximal for waters in the acid-to-neutral 
range.  If Al were completely absent, then H+ alone would exert toxic effects at pH < 6 (dotted 
line in Figure 2B).  The contributions of H+ and Al to FTOX vary with pH (Figure 2C), Al being 
dominant in the pH range 5 to 6.5.  Comparison of the plot for H+ alone (Figure 2B) with the 
H+ contribution plot of Figure 2C shows the competition effect of Al. 

Significant contributions to FTOX from Cu and Zn occur in some of the cases shown by filled 
triangles in Figure 2A, which represent the mining surveys. The magnitude of the deviations 
from the H+-Al trend caused by Cu and Zn depends not only upon their concentrations and 
speciation in the streamwater, but also on the concentrations of competing cations. Thus 
they exert little influence at low pH because even when they are present at high 

concentrations, proton competition prevents Cu or Zn attaining values sufficient to produce 
significant toxic effects. This can be seen on Figure 2A, where the five mine survey sites at 
the top left of the plot simply extend the H+-Al trend.  On the other hand, at high pH, 
competition by Ca and Mg comes into play, and also complexation by carbonate species and 
hydroxyl ion.  These effects reduce the binding of Cu and Zn by the macroinvertebrates, 

decreasing  Cu or Zn and thereby decreasing FTOX. Hence, the toxic effects of Cu and Zn are 
greatest between pH 6 and 8 (Figures 2A and 2B).   
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Table 1. Minimum, mean and maximum values of M obtained from the WHAM modelling for 
each data set (units of mmol g-1). 
 

  H Al  Cu  Zn 

Survey Sites Min Mean Max Min Mean Max Min Mean Max Min Mean Max 

US  15 0.95 1.10 1.18 0.07 0.14 0.32 0.00 0.02 0.13 0.00 0.05 0.42 

CE 78 0.52 1.25 2.43 0.01 0.27 0.83 0.00 0.05 1.23 0.00 0.06 0.58 

CU 13 0.84 1.21 2.89 0.07 0.23 0.62 0.00 0.04 0.16 0.00 0.31 1.08 

CC 21 1.11 1.18 1.44 0.12 0.27 0.88 0.01 0.03 0.08 0.00 0.00 0.00 

JH 6 0.95 1.10 1.19 0.09 0.16 0.33 0.00 0.02 0.04 0.02 0.16 0.33 

JA 4 2.89 3.09 3.35 0.45 0.54 0.62 0.00 0.00 0.00 0.00 0.00 0.00 

NE 33 0.80 1.23 2.51 0.03 0.37 0.88 0.00 0.01 0.12 0.00 0.17 0.92 

WC 51 0.66 1.32 2.37 0.01 0.45 0.85 0.00 0.07 0.98 0.01 0.13 1.04 

SA 89 1.06 1.74 2.96 0.09 0.52 0.95 0.00 0.00 0.02 0.00 0.02 0.10 

WA 102 1.15 1.40 2.60 0.14 0.68 0.96 0.00 0.01 0.03 0.00 0.01 0.13 

All  412 0.52 1.46 3.35 0.01 0.36 0.96 0.00 0.03 1.23 0.00 0.09 1.08 

 

 
 
Table 2. Parameters from the best fit using the 90th quantile, with results of the 

M values and errors (standard deviations) estimated by 
bootstrapping 
 

Parameter Values p 

SREPT-MAX 23.0 ( 2.0) - 

FTOX-UT 5.10 ( 0.65) - 

FTOX-LT 2.26 ( 0.48) - 

H 1a < 0.001 

Al 2.06 ( 0.51) < 0.001 

Cu 3.45 ( 0.63) 0.089b 

Zn 2.74 ( 0.47) 0.002 
 

aThe H value is fixed. 
bWhen the acid waters surveys (WA and SA) are excluded from the testing p = 0.049. 

 

It is important to recognise that finding significant values of αCu and αZn does not imply that 
Cu and Zn are more toxic than the other heavy metals considered (Ni, Cd, Pb). The 
significance arises because of the high concentrations of Cu and Zn in some of the 
streamwaters affected by abandoned mines that have been the subject of field studies. Zinc, 
which is comparatively mobile, is present in a high proportion of the waters, even though it is 
rarely the metal being mined. High concentrations of Cu are uncommon in the present data, 
but in a few cases very high levels occur, sufficient to establish a value of αCu (Table 2).  High 
concentrations of Ni, Cd or Pb did not occur in any of the waters considered here, and the 

highest values of Ni, Cd and Pb were 0.002, 0.001 and 0.24 mmol g-1 respectively, 

appreciably lower than those of Cu and Zn (Table 1). In some of the surveys collated for this 
study, the concentrations of Cd correlate with those of Zn, although generally they are much 
lower; the average Cd / Zn ratio in the present data set was c. 0.002 for Zn concentrations 
exceeding 10 nM. In laboratory toxicity tests Cd is usually found to be more toxic than Zn 
(Mance, 1987). However, the ratio of Cd and Zn endpoint concentrations in comparable 
single-metal toxicity tests is typically 0.1, much higher than the ratio from the studies in the 
work presented here, and so noticeable effects of Cd are not expected from our field data. 
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Toxic effects of Cu and Zn observed in this collection of streamwaters arise from high 
concentrations of these metals occurring in an appreciable number of waters, not from high 

intrinsic toxicity. In other words, it is high values of Cu and Zn, not αCu and αZn, that cause the 
high values of FTOX (see Equation 1). 
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Figure 1. Results of quantile regression fitting showing the relationship between species 
richness and FTOX. The solid line represents the best fit for the 90th quantile.  Figure A3 has 
been included in the Supporting Information to show the results for individual surveys. 
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Figure 2. Variations in FTOX with pH. The horizontal dashed lines represent FTOX-LT and the 
upper limit of each plot represents FTOX-UT.  Panel A shows the 412 data separated into those 
sites surveyed for the effects of acid deposition and those of mine affected areas.  Panels B 
and C show calculated results obtained by Ca titrations of solutions with 5 mg l-1 DOC, 1 mM 
NaCl and 0.1 mM sulphate, with and without 10 μM Cu or Zn, and assuming Al  activity to be 
controlled by the pH relationship of Equation 5.  Panel C shows the separate contributions of 
H+ and Al to FTOX.   
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6.  MODELLING DISCHARGE EFFECTS 

Streamwater chemistry changes with discharge, and therefore it would be expected that FTOX 
would also vary.  We explored this possibility through two examples, focusing firstly on acid 
systems affected by protons and Al, and secondly on a field site contaminated with Zn, for 
which detailed discharge and chemistry data were available. 

 

6.1  Acid streamwaters 

The sampling programme that resulted in the SA data set (Scotland and Wales acidification 
study, Kowalik et al., 2007) provided chemical data at both high and low flows.  The results 
were averaged for the main analysis (Section 5), but the parameterised model can also be 
used to compute FTOX under the two flow conditions.  It is found that FTOX is greater at high 
flow, when pH is lower and Al concentrations higher (Figure 3).  In the most extreme cases, 
the pH at high-flow is c. 2.7 units lower than at low-flow, and the value FTOX is c. 1.7 greater.  
These results suggest that high-discharge events are critical in acid waters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Changes in FTOX with pH.   Each point compares low- and high-flow conditions in 
SA dataset. 
 

 

6.2  Zinc-contaminated stream in Colorado 

The stream in question (French Gulch near Breckenridge) exhibits an average FTOX of 3.3, 
more than half of which is due to Zn, the rest being contributed mainly by H+ and Al.  As 
shown in Figure 4 (top panel) the Zn concentration varies appreciably with discharge, falling 
due to dilution at high flow, and returning to high levels when discharge declines.  The pH of 
the streamwater falls slightly at high discharge (Figure 4, middle panel), but there is sufficient 
buffering by Ca to prevent acid episodes.  Nonetheless, Ca concentrations fall more-or-less 
in parallel with those of Zn. 
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Despite the large variations in Zn concentration, the calculated FTOX hardly varies through the 
flow events (Figure 4, bottom panel).  This is explained by the co-variance of Ca 
concentration, which means that competition by Ca is reduced at high flow, and so Zn 
binding is maintained despite the lower Zn concentration.  Thus we calculate that 
macroinvertebrates experience almost constant toxic conditions in this stream. 
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Figure 4. Effects of 
discharge and the 
associated change in water 
chemistry on the FTOX 
modelling. Data are from 60 
samplings of  French Gulch 
near Breckenridge over four 
years, carried out by the US 
Geological Survey (Spahr et 
al., 2000). 

The two low FTOX values 
calculated for 5/96 and 8/96 
are due to anomalously high 
reported Ni concentrations, 
which make the calculated 
Zn binding very low.  (Ni is 
not modelled to be toxic 
because it did not show as 
significant in the main 
analysis of Section 5).  
Probably the Ni 
concentrations were 
incorrectly reported, and so 
the low FTOX values are 
artefacts. 
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7.  DISCUSSION & CONCLUSIONS 

 

7.1  Evaluation of the model 

WHAM-FTOX is a plausible model describing the toxicity of mixtures of metals and protons, 
based on chemical speciation concepts, and as such is a significant forward step.  By the 
use of quantile regression, we have parameterised the model using EPT species richness as 
a variable that responds to proton and metal toxicity, as well as to other (unknown) 
environmental factors. The results are consistent with mixture dose-response relationships in 
the field, and they support and extend the conclusions of Bass et al. (2008) that field effects 
can only be interpreted properly if mixtures and competition are taken into account.   

A corollary of the modelling approach is the difficulty of isolating the toxic effect of any single 
metal in terms of dissolved concentrations.  Only by considering the bound amounts, 
combined with the toxicity coefficients, can the contributions of individual toxicants be 
determined.  This makes chemical sense, but assumes that toxic effects within the organism 
are additive. 

The calculations of discharge-dependent FTOX values (Section 6) suggest that in well-
buffered streamwaters changes in the concentration of Zn – specifically dilution at high flow – 
may be compensated for by changes (decreases) in the concentration of a key competitor, in 
this case Ca.  As a result, the value of FTOX hardly varies.  The same general trend would be 
expected for Cu, but because it binds to natural organic matter more strongly than does Zn, 
the compensatory competitive effect of Ca would be less, and so the higher Cu concentration 
a low flow would mean a higher FTOX, i.e. more toxic conditions.  

However, when increases in discharge bring about decreases in pH, FTOX increases 
markedly (Figure 3), indicating that in acid streams the organisms are under much greater 
toxic threat during high-discharge events. 
 
 

7.2  Possible developments 

The analysis presented here is incomplete, limited by the available published data, and 
further research is clearly desirable. This could include field work on streams or lakes with a 
wider range of chemistries, the use of additional ecological variables, for example diatom and 
zooplankton diversity, or individual organism responses, and consideration of time- and flow-
dependent water chemistry.  It would be especially helpful to work on systems with fewer 
unknown factors, or with well-known factors, so there is less reliance on quantile regression. 

It would be interesting to compare the calculated values of M with measured body burdens 
for different macroinvertebrates.  Some preliminary work on this was performed in the study 
of Bass et al. (2008) with encouraging results, but a wider study could be useful.  

The extraction of values of αM from field data is dependent upon finding sufficient stream 
sites where the metal in question is present at toxic levels.  For streams affected by 
acidification and abandoned mines, as studied here, the accessible cations are restricted to 
just four, H+, Al, Cu and Zn, even though data from more than 400 sites have been used in 
the analysis.  To parameterise the model for other metals, a more targeted field approach 
might be needed.  It should of course be emphasised that our results do not deny the 
environmental toxicity of other metals (e.g. Ni, Cd, Hg, Pb) – it is simply that their toxicities 
are not expressed at the study sites. 

An alternative to the derivation of αM from field data is to utilise published laboratory toxicity 
data; it may be possible to apply WHAM-FTOX to derive species-specific values for a much 
wider range of metal cations.  Given the wealth of such data available in the literature, this 
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could be an efficient next step.  It would also be of interest to investigate possible 
relationships between αM and physiological mechanisms of toxicity. 

 

7.3  Applications 

Several applications of the model can be envisaged.  Scientifically WHAM-FTOX provides a 
conceptual and quantitative framework within which to evaluate mixture toxicity effects, the 
contributions of individual components, and the role played by “protective” cationic metals 
such as Mg and Ca.  The model provides a means to estimate and predict actual toxicity 
effects in the field, as well as site-specific Environmental Quality Standards.  It could be 
useful to guide remediation activities, including cost-benefits, which might be especially 
valuable for abandoned mines. 

In applying the model it should be remembered that it has only been validated for 
macroinvertebrates in low-order streams.  There is no guarantee that the parameters would 
apply to metal toxicity towards different macroinvertebrate species - or indeed other types of 
organism – in different kinds of water.  Indeed, this would be difficult to demonstrate from 
field data, and may have to rely on laboratory information.  
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APPENDIX / SUPPORTING INFORMATION 
 
 
Table A1  

USGS sites used in the US data set 

 

Table A2  

Minima, maxima and mean values for the physical, chemical and EPT values for each set of 

data 

 
 

Examination of differences in the  values when charge balancing was not applied. 
 

Figure A1 

Figure A1. Percentage difference in  values when charge balancing (CB) is not applied 

(calculated as: NOT-CB/CB -1). 

 

Figure A2 

Range of  values for a range bound components in the model. 

 

Figure A3 

Results of the quantile regression fitting showing each of the surveys plotted with separate 

symbols 
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Table A1. USGS sites used in the US data seta. 
 

Site code 
for this 
Work 

NAWQA 
Study Unit 
Code 

Station ID Site description 

US01 ALMN  03037525 South Branch Plum Creek at Five Points  
PA 

US02 ALMN 03049646 Deer Creek nr Dorseyville  PA 
US03 SACR 11447360 Arcade C nr Del Paso Heights CA 
US04 GRSL 10167800 Little Cottonwood Creek at Crestwood Park 

at Slc (1999 data) 
US05 GRSL 10168000 Little Cottonwood Creek at Jordan River nr 

Slc (2000 data) 
US06 GRSL 10172200 Red Butte Creek At Fort Douglas  nr Slc  

UT (1999 data) 
US07 GRSL 404505111480

001 
Emigration Creek about 1 Mile Upstream 
from Mouth 

US08 GRSL 404751111423
501 

Emigration Creek up Killyon Canyon 

US09 GRSL 10167800 Little Cottonwood Creek at Crestwood Park 
at Slc  (2000 data) 

US10 GRSL 10168000 Little Cottonwood Creek at Jordan River nr 
Slc  (2000 data) 

US11 GRSL 10172200 Red Butte Creek At Fort Douglas  near Slc  
UT (2000 data) 

US12 GRSL 403818111154
201 

Beaver Creek above Kamas  UT 

US13 GRSL 404026111273
001 

Silver Creek above Richardson Flat  UT 

US14 YELL 06187915 Soda Butte Cr at Park bndry At Silver Gate 
US15 COOK 15294700 Johnson R above Lateral Glacier nr 

Tuxedni Bay AK 
 

aAll data are from the USGS National Water-Quality Assessment Program and were 
downloaded from http://infotrek.er.usgs.gov/nawqa_queries/index.jsp. Reports from all of the 
study units can be found at http://water.usgs.gov/nawqa/studies/study_units_listing.html. 

http://infotrek.er.usgs.gov/nawqa_queries/index.jsp
http://water.usgs.gov/nawqa/studies/study_units_listing.html
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Table A2. Minima, maxima and mean values for the physical, chemical and EPT values for each set of data (all chemistry data have units of 
mol/l except DOC). Footnotes include details of how some of the missing data were filled. 
 
  T (°C)   pH  DOC (mg/l)  Na   Mg  

 Min Mean Max Min Mean Max Min Mean Max Min Mean Max Min Mean Max 

US  3.7 10.1 17.8 7.3 7.8 8.4 0.2 2.7 7.0 3.4×10
-5

 1.8×10
-3

 6.3×10
-3

 2.5×10
-5

 6.4×10
-4

 1.7×10
-3

 
CE 4.0 11.8 22.5 5.0 7.3 8.9 2.0 2.7 10.0 1.0×10

-4
 1.0×10

-4
 1.0×10

-4
 1.0×10

-5
 7.5×10

-5
 2.3×10

-4
 

CU 3.9 10.4 14.6 3.7 6.6 8.2 0.3 4.1 9.7 3.0×10
-5

 2.7×10
-4

 1.8×10
-3

 1.6×10
-5

 1.1×10
-4

 7.0×10
-4

 
CC 3.8 7.1 10.5 5.6 7.3 7.9 0.8 2.0 3.0 6.5×10

-5
 1.8×10

-4
 9.9×10

-4
 2.3×10

-4
 3.9×10

-4
 5.7×10

-4
 

WC 5.7 10.7 14.6 4.9 6.7 8.2 0.6 5.8 9.7 1.6×10
-4

 3.6×10
-4

 1.8×10
-3

 1.4×10
-5

 1.1×10
-4

 4.4×10
-4

 
NE 6.0 6.9 7.8 4.1 7.0 8.3 0.6 4.4 8.9 1.1×10

-4
 2.1×10

-4
 9.7×10

-4
 1.7×10

-5
 7.6×10

-5
 3.9×10

-4
 

SA 10.0 10.0 10.0 4.5 6.1 8.1 0.4 5.5 26.7 1.3×10
-4

 2.9×10
-4

 8.8×10
-4

 2.1×10
-5

 7.8×10
-5

 5.3×10
-4

 
WA 10.0 10.0 10.0 4.9 6.3 7.8 0.6 2.2 6.4 1.4×10

-4
 2.2×10

-4
 3.8×10

-4
 2.1×10

-5
 5.6×10

-5
 2.8×10

-4
 

JA 11.4 13.0 13.7 3.3 3.5 3.7 0.6 0.6 0.7 1.0×10
-4

 1.0×10
-4

 1.0×10
-4

 5.0×10
-5

 3.4×10
-4

 7.0×10
-4

 
JH 8.3 14.1 20.5 7.4 7.7 7.9 0.9 1.4 2.3 1.0×10

-4
 1.0×10

-4
 1.0×10

-4
 7.8×10

-5
 4.1×10

-4
 1.1×10

-3
 

  Al   K   Ca   Cr   Mn  

 Min Mean Max Min Mean Max Min Mean Max Min Mean Max Min Mean Max 

US  5.4×10
-8

 4.6×10
-7

 1.2×10
-6

 6.9×10
-6

 6.3×10
-5

 1.9×10
-4

 1.8×10
-4

 1.3×10
-3

 4.0×10
-3

 1.0×10
-9

 1.0×10
-8

 4.2×10
-8

 3.3×10
-8

 8.8×10
-7

 7.9×10
-6

 
CE 1.1×10

-6
 5.2×10

-6
 2.1×10

-4
 1.0×10

-5
 1.0×10

-5
 1.0×10

-5
 9.3×10

-5
 6.8×10

-4
 2.1×10

-3
 1.0×10

-9
 1.0×10

-9
 1.0×10

-9
 1.8×10

-8
 2.3×10

-6
 2.9×10

-5
 

CU 1.6×10
-7

 6.5×10
-5

 1.8×10
-3

 4.9×10
-6

 2.1×10
-5

 9.3×10
-5

 1.6×10
-4

 5.5×10
-4

 7.0×10
-3

 9.6×10
-9

 1.8×10
-8

 4.2×10
-7

 6.9×10
-8

 2.2×10
-6

 2.0×10
-5

 
CC equation (5) 1.2×10

-5
 1.1×10

-4
 7.4×10

-4
 4.0×10

-4
 1.6×10

-3
 6.4×10

-3
 1.0×10

-9
 1.0×10

-9
 1.0×10

-9
 2.5×10

-6
 2.5×10

-6
 2.5×10

-6
 

WC 4.9×10
-7

 2.4×10
-6

 1.2×10
-5

 1.5×10
-6

 2.6×10
-5

 9.3×10
-5

 2.9×10
-5

 3.3×10
-4

 4.4×10
-3

 1.0×10
-9

 1.0×10
-9

 1.0×10
-9

 6.9×10
-8

 1.1×10
-6

 1.2×10
-5

 
NE 3.7×10

-9
 4.1×10

-6
 5.8×10

-5
 3.3×10

-6
 1.4×10

-5
 5.3×10

-5
 1.1×10

-5
 2.8×10

-4
 8.3×10

-4
 3.9×10

-10
 3.0×10

-9
 9.5×10

-9
 3.7×10

-8
 1.1×10

-6
 2.0×10

-5
 

SA 3.7×10
-7

 3.1×10
-6

 2.7×10
-5

 1.3×10
-6

 1.2×10
-5

 8.1×10
-5

 1.0×10
-5

 1.2×10
-4

 1.2×10
-3

 1.0×10
-9

 1.0×10
-9

 1.0×10
-9

 6.5×10
-7

 6.5×10
-7

 6.5×10
-7

 
WA 1.0×10

-7
 2.2×10

-6
 1.1×10

-5
 1.8×10

-6
 7.6×10

-6
 3.8×10

-5
 1.8×10

-5
 9.8×10

-5
 7.6×10

-4
 1.0×10

-9
 1.0×10

-9
 1.0×10

-9
 1.8×10

-8
 6.6×10

-7
 4.0×10

-6
 

JA 8.5×10
-4

 1.1×10
-3

 1.8×10
-3

 1.0×10
-5

 1.0×10
-5

 1.0×10
-5

 5.0×10
-4

 3.4×10
-3

 7.0×10
-3

 1.5×10
-7

 3.0×10
-7

 4.2×10
-7

 1.3×10
-5

 1.6×10
-5

 2.0×10
-5

 
JH Equation (5) 1.0×10

-5
 1.0×10

-5
 1.0×10

-5
 1.0×10

-4
 2.5×10

-3
 7.2×10

-3
 1.0×10

-9
 1.0×10

-9
 1.0×10

-9
 1.0×10

-9
 1.0×10

-9
 1.0×10

-9
 

  Co   Ni   Cu   Zn   Cd  

 Min Mean Max Min Mean Max Min Mean Max Min Mean Max Min Mean Max 

US  9.6×10
-10

 2.8×10
-9

 2.2×10
-8

 1.0×10
-9

 1.8×10
-8

 5.7×10
-8

 1.0×10
-9

 2.6×10
-8

 8.7×10
-8

 1.0×10
-9

 1.3×10
-6

 1.8×10
-5

 1.6×10
-10

 2.1×10
-9

 1.8×10
-8

 
CE 1.0×10

-9
 1.0×10

-9
 1.0×10

-9
 1.0×10

-9
 1.0×10

-9
 1.0×10

-9
 9.4×10

-9
 9.0×10

-7
 3.9×10

-5
 6.1×10

-8
 1.2×10

-6
 1.4×10

-5
 4.4×10

-9
 6.6×10

-9
 2.9×10

-8
 

CU 8.5×10
-9

 3.0×10
-8

 5.3×10
-7

 8.5×10
-9

 5.8×10
-8

 1.6×10
-6

 7.9×10
-9

 5.7×10
-7

 1.3×10
-5

 4.7×10
-8

 4.9×10
-6

 5.1×10
-5

 4.4×10
-9

 9.2×10
-9

 6.5×10
-8

 
CC 1.0×10

-9
 1.0×10

-9
 1.0×10

-9
 1.0×10

-9
 1.0×10

-9
 1.0×10

-9
 1.1×10

-8
 3.2×10

-8
 6.1×10

-8
 5.2×10

-10
 1.4×10

-9
 2.4×10

-9
 1.8×10

-9
 3.8×10

-9
 6.3×10

-9
 

WC 6.7×10
-10

 3.8×10
-8

 5.3×10
-7

 1.0×10
-9

 1.0×10
-9

 1.0×10
-9

 1.1×10
-8

 7.2×10
-7

 1.3×10
-5

 1.6×10
-7

 4.6×10
-6

 5.1×10
-5

 2.7×10
-10

 6.6×10
-9

 6.0×10
-8

 
NE 7.5×10

-10
 3.0×10

-8
 8.6×10

-7
 1.6×10

-9
 6.7×10

-8
 1.3×10

-6
 2.8×10

-9
 2.6×10

-8
 1.5×10

-7
 2.8×10

-8
 7.8×10

-6
 1.7×10

-4
 1.6×10

-10
 1.0×10

-8
 1.7×10

-7
 

SA 1.0×10
-9

 1.0×10
-9

 1.0×10
-9

 2.9×10
-8

 2.9×10
-8

 2.9×10
-8

 1.5×10
-8

 1.5×10
-8

 1.5×10
-8

 2.4×10
-7

 2.4×10
-7

 2.4×10
-7

 8.1×10
-10

 8.1×10
-10

 8.1×10
-10

 
WA 1.0×10

-9
 1.0×10

-9
 1.0×10

-9
 2.9×10

-8
 2.9×10

-8
 2.9×10

-8
 1.5×10

-8
 1.5×10

-8
 1.5×10

-8
 2.0×10

-8
 1.6×10

-7
 2.4×10

-6
 8.1×10

-10
 8.1×10

-10
 8.1×10

-10
 

JA 1.0×10
-9

 1.0×10
-9

 1.0×10
-9

 4.6×10
-7

 9.6×10
-7

 1.6×10
-6

 7.1×10
-8

 1.3×10
-7

 1.5×10
-7

 6.0×10
-7

 7.2×10
-7

 9.5×10
-7

 4.8×10
-9

 1.7×10
-8

 3.2×10
-8
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JH 1.0×10
-9

 1.0×10
-9

 1.0×10
-9

 1.0×10
-9

 1.0×10
-9

 1.0×10
-9

 9.4×10
-10

 3.0×10
-8

 6.9×10
-8

 5.0×10
-8

 2.2×10
-6

 6.7×10
-6

 1.2×10
-11

 1.0×10
-8

 3.5×10
-8

 

 
  Ba   Pb   Cl   NO3   SO4  

 Min Mean Max Min Mean Max Min Mean Max Min Mean Max Min Mean Max 

US  1.0×10
-9

 3.5×10
-7

 6.9×10
-7

 3.5×10
-10

 2.1×10
-9

 1.1×10
-8

 1.4×10
-5

 1.9×10
-3

 7.2×10
-3

 5.5×10
-6

 3.3×10
-5

 7.8×10
-5

 7.2×10
-5

 6.5×10
-4

 3.4×10
-3

 
CE 1.0×10

-9
 1.0×10

-9
 1.0×10

-9
 1.9×10

-8
 1.9×10

-8
 1.9×10

-8
 1.4×10

-5
 1.6×10

-4
 4.4×10

-3
 8.1×10

-7
 1.2×10

-6
 4.8×10

-6
 1.0×10

-5
 3.2×10

-4
 2.4×10

-3
 

CU 4.4×10
-8

 7.6×10
-8

 1.2×10
-6

 2.4×10
-9

 5.5×10
-8

 1.5×10
-6

 1.4×10
-6

 3.0×10
-4

 2.1×10
-3

 1.5×10
-6

 1.7×10
-5

 3.9×10
-5

 4.8×10
-5

 1.2×10
-4

 2.0×10
-3

 
CC 1.0×10

-9
 1.0×10

-9
 1.0×10

-9
 1.0×10

-9
 1.0×10

-9
 1.0×10

-9
 8.3×10

-6
 2.6×10

-5
 6.2×10

-5
 5.6×10

-6
 1.1×10

-5
 1.5×10

-5
 1.4×10

-4
 1.4×10

-3
 4.6×10

-3
 

WC 1.3×10
-8

 5.1×10
-8

 1.2×10
-7

 1.1×10
-10

 6.3×10
-8

 1.5×10
-6

 1.8×10
-4

 4.2×10
-4

 2.1×10
-3

 2.0×10
-5

 2.0×10
-5

 2.0×10
-5

 5.0×10
-5

 5.0×10
-5

 5.0×10
-5

 
NE 1.4×10

-8
 4.1×10

-7
 3.1×10

-6
 5.1×10

-10
 7.4×10

-8
 7.5×10

-7
 1.0×10

-4
 2.6×10

-4
 1.2×10

-3
 4.1×10

-6
 1.5×10

-5
 5.5×10

-5
 2.9×10

-5
 1.1×10

-4
 8.1×10

-4
 

SA 1.0×10
-9

 1.0×10
-9

 1.0×10
-9

 7.7×10
-9

 7.7×10
-9

 7.7×10
-9

 1.5×10
-4

 3.4×10
-4

 1.0×10
-3

 2.1×10
-7

 2.3×10
-5

 4.0×10
-4

 1.2×10
-5

 7.3×10
-5

 2.3×10
-4

 
WA 1.0×10

-9
 1.0×10

-9
 1.0×10

-9
 7.7×10

-9
 7.7×10

-9
 7.7×10

-9
 1.5×10

-4
 2.4×10

-4
 4.3×10

-4
 1.0×10

-5
 1.0×10

-5
 1.0×10

-5
 2.5×10

-5
 6.2×10

-5
 2.1×10

-4
 

JA 1.0×10
-9

 1.0×10
-9

 1.0×10
-9

 2.9×10
-8

 4.1×10
-8

 6.8×10
-8

 1.0×10
-4

 1.0×10
-4

 1.0×10
-4

 1.7×10
-5

 2.8×10
-5

 3.9×10
-5

 3.0×10
-4

 3.0×10
-4

 3.0×10
-4

 
JH 1.0×10

-9
 1.0×10

-9
 1.0×10

-9
 6.5×10

-12
 2.6×10

-9
 7.9×10

-9
 1.0×10

-4
 1.0×10

-4
 1.0×10

-4
 1.0×10

-5
 1.0×10

-5
 1.0×10

-5
 1.0×10

-4
 4.0×10

-4
 1.0×10

-3
 

  F  EPT species richness Number of sites for each 
data set  Min Mean Max Min Mean Max 

US  5.1×10
-6

 1.2×10
-5

 2.1×10
-5

 2 13 30  15  
CE 1.0×10

-5
 1.0×10

-5
 1.0×10

-5
 0 13.6 30  78  

CU 2.6×10
-6

 9.1×10
-6

 1.1×10
-5

 1 14.4 29  13  
CC 0 2.9×10

-5
 1.1×10

-4
 2 14.3 21  21  

WC 1.0×10
-5

 1.0×10
-5

 1.0×10
-5

 1 10.1 21  51  
NE 1.0×10

-5
 1.0×10

-5
 1.0×10

-5
 5 13.7 27  33  

SA 1.0×10
-5

 1.0×10
-5

 1.0×10
-5

 4 11.7 30  89  
WA 1.0×10

-5
 1.0×10

-5
 1.0×10

-5
 4 13.2 31  102  

JA 1.0×10
-5

 1.0×10
-5

 1.0×10
-5

 3 6.8 12  4  
JH 1.0×10

-5
 1.0×10

-5
 1.0×10

-5
 5 19.3 29  6  

 
Ni, Cu, Zn, Cd, Pb data for SA and WA (not Zn) were estimated from averages from a 
UK wide „Critical Loads‟ project (29-31). Mn for SA were based on the WA average. Mn 
data for CC were based on the average from the CU and CE data. All other missing 
trace metal data were set at 10-9 mol l-1. WC nitrate data were based on the average of 
the SA data. EPT data for JA are upper estimates as they are based on the average of 
three surveys, all other EPT data are from single invertebrate surveys only. WC, JA and 
JH reported total organic carbon (TOC), we assumed that these values are 
approximately equal to DOC and applied them without modification. The partial pressure 
of CO2 was set at 0.00075 atm for all of the speciation modelling. 
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Examination of differences in the  values when charge balancing was not applied. 
 
It is logical to assume that there will always be a balance of cations and anions in solution. 
Therefore, we applied a charge balancing routine to our WHAM modelling by adjusting Ca 
and sulphate. However, we recognise that this procedure requires some assumptions about 
how this is achieved and that it is sensible to additionally view our results without the 
application of charge balancing. We applied the quantile M values 

Zn value 
decreased to 2.38 from 2.74. Changes to all other independent variables were <4%. Figure 
A M values for the four metals considered toxic in our model. 
Zinc binding is greatly increased at a small number of sites and this is likely to account for 
the decrease in the value of the zinc toxicity coefficient.  
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Figure A1. Percentage difference in  values when charge balancing (CB) is not applied 

(calculated as: NOT-CB/CB -1). Note the different y-axis scale for the Zn plot. The site number 
refers to the 412 sites and are ordered according to the surveys listing in Table 1 of the main 
manuscript. Values above the zero line indicate more metal is bound where CB is not 
applied, values below the zero line indicate less metal binding. 
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Figure A2.  Range of  values for a range bound components in the model. Note the  values 
are plotted on a log scale. 
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Figure A3.  Results of the quantile regression fitting showing each of the surveys plotted with 
separate symbols. The top frame shows the two UK acidification surveys and the bottom 
frame all other surveys. The solid line represents the best fit for the 90th quantile based on 
our modelling approach. 
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