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Predictive Analysis of a Hydrodynamics Application on Large-Scale
CMP Clusters

J.A. Davis · G.R. Mudalige · S.D. Hammond · J.A. Herdman · I. Miller · S.A. Jarvis

Abstract We present the development of a predictive per-
formance model for the high-performance computing code
Hydra, a hydrodynamics benchmark developed and main-
tained by the United Kingdom Atomic Weapons Establish-
ment (AWE). The developed model elucidates the parallel
computation of Hydra, with which it is possible to predict
its run-time and scaling performance on varying large-scale
chip multiprocessor (CMP) clusters. A key feature of the
model is its granularity; with the model we are able to sepa-
rate the contributing costs, including computation, point-to-
point communications, collectives, message buffering and
message synchronisation. The predictions are validated on
two contrasting large-scale HPC systems, an AMD Opteron/
InfiniBand cluster and an IBM BlueGene/P, both of which
are located at the Lawrence Livermore National Laboratory
(LLNL) in the US. We validate the model on up to 2,048
cores, where it achieves a> 85% accuracy in weak-scaling
studies. We also demonstrate use of the model in expos-
ing the increasing costs of collectives for this application,
and also the influence of node density on network accesses,
therefore highlighting the impact of machine choice when
running this hydrodynamics application at scale.
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1 Introduction

Hydrodynamics applications represent a significant part of
the high-performance computing (HPC) workload at organ-
isations such as AWE in the UK and the national laboratories
in the U.S. For this reason, benchmark codes representative
of these applications, such as SAGE from Los Alamos Na-
tional Laboratory (LANL) (Kerbyson et al., 2001) and Hy-
dra from AWE, provide a key tool for evaluating HPC sys-
tems during design, procurement, installation and mainte-
nance. The development of such HPC codes, the evaluation
of their performance on candidate systems and, sustaining
performant execution, is a costly and time consuming exer-
cise. To aid in these activities research has been conducted
into developing accurate performance modelling tools and
techniques for application analysis (Sundaram-Stukel and
Vernon, 1999; Hoisie et al., 2000; Kerbyson et al., 2001;
Mathis and Kerbyson, 2004; Mudalige et al., 2008).

In this paper we detail the development of an analytic
performance model for Hydra, a hydrodynamics benchmark
application developed and maintained by AWE. To this end
we elucidate the parallel computational operation of Hydra,
validate the model on two contrasting HPC systems and ap-
ply the model to assess the impact of application compo-
nents, and machine architecture, on run-time. Specifically,
we make the following contributions:

– An analytic performance model is developed for AWE’s
hydrodynamics benchmark, reflecting its functional be-
haviour and operation on large parallel HPC systems.
The model allows us to predict the time to solution of
the application with only a concise set of application and
machine parameters. This is the first predictive perfor-
mance model for Hydra and represents a significant ad-
vance to AWE’s ability to assess application/architecture
capabilities for this class of application.

– We validate the analytic model on two large-scale HPC
system architectures – an IBM BlueGene/P and a com-
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modity AMD/InfiniBand system, both located at LLNL.
The model predicts execution time on up to 2,048 pro-
cessor cores with> 85% accuracy. These systems repre-
sent two contrasting HPC architectures, and demonstrate
the versatility of the model across CMP platforms.

– The model is utilised to assess the impact of component
costs including computation, point-to-point communica-
tions, collectives, message buffering and message syn-
chronisation, and their relationship with HPC machine
architectures, thus illustrating how the model may be put
into use by AWE scientists.

– Using the performance model we also investigate the po-
tential impact on this code of increasing cores per die,
for both the BlueGene and the AMD/InfiniBand archi-
tectures. Our study investigates 2x, 4x and 8x the current
core density, and exposes the potential cost of increased
network accesses.

The remainder of the paper is organised as follows: Sec-
tion 2 provides background on the Hydra application, in-
cluding a summary of its application, problem sizes of in-
terest, parallel decomposition and previous related work on
the performance modelling of this class of application; Sec-
tion 3 presents the analytic model for Hydra; Sections 4
and 5 provide a validation of the model on two HPC sys-
tems of interest and demonstrate how the granularity of the
model can be used in scaling studies and in architectural as-
sessment. Section 6 concludes the paper.

2 Background

Predicting the dynamic behaviour of materials as they flow
under the influence of high pressure and stress is of consid-
erable importance to understanding weapons. Without re-
course to underground testing, access to experimental hy-
drodynamics facilities and supporting high-performance sim-
ulation have an important role in providing data to assess
weapon safety and performance. Hydra is a benchmark 3D
Eulerian structured mesh hydrocode, with which the explo-
sive compression of materials, shock waves, and the behav-
iour of materials at the interface between components can be
investigated. The Hydra benchmark code simulates a cube of
mixed materials under stress by discretising the data onto a
3D grid of cells given byNx×Ny×Nz and utilising message
passing for parallelisation. Thus, in a typical SPMD fash-
ion, the 3D cube of data is decomposed onto a number of
processing elements (PEs) during execution.

The decomposition attempts to distribute the problem as
evenly as possible between the available PEs. Thus, givenP
processing elements, the problem will be decomposed on to
a processor grid ofPx×Py×Pz such that a block of cells of
sizeNx/Px×Ny/Py×Nz/Pz will be held within a single PE.
The decomposition is achieved by finding the factors ofP
where the grid is partitioned successively, favouring decom-

Cores Case Decomposition
2048 P is a power of 2 16×8×16
1000 P has an integer cube root 10×10×10
1650 P has three factors 10×11×15
817 P has only two factors 1×19×43

2003 P is a prime number 1×1×2003

Table 1 SamplePx, Py andPz values at scale

position in the dimension with the highest cell count. In the
case of a cubic grid, the application favours the orderz, y,
x with the exception of powers of 2, where the order is ad-
justed toy, z, x. Table 1 illustrates example decompositions
for various cases ofP.

Once the data has been decomposed a PE will itera-
tively solve its allocated sub-grid of cells. A Hydra iteration
consists of a number of bulk-synchronous-type steps. These
steps belong to one of three operations: (1) a computation by
a PE on its local sub-grid, (2) near-neighbour communica-
tions in all three dimensions, (3) collective communications
between all the PEs. The specifics of these steps are dis-
cussed in detail as part of the model development process in
Section 3.1. Hydra performs a number of iterations, depend-
ing on a predetermined simulation time, with each iteration
taking a variable proportion of the simulation time depen-
dent on the simulation parameters. Typical simulation times
for the problem sizes documented here are approximately 10
micro-seconds.

2.1 Related Work

Application performance modelling has been refined and
adapted over several generations of systems and applica-
tions, and regularly features in articles examining the per-
formance of the world’s largest computers. The most no-
table use of application performance modelling to architec-
ture and machine comparison is provided by LANL’s Perfor-
mance Architecture Laboratory (PAL). PAL detail the de-
velopment of performance models for a range of applica-
tions related to LANL’s key high-performance computing
workloads. The performance models themselves are used in
the comparison of (i) the effectiveness of high-performance
computing systems (including potential future architectures)
(Mathis et al., 2000; Petrini et al., 2003; Hoisie et al., 2006),
(ii) the behaviour of systems during installation and upgrade
(Kerbyson et al., 2002; Barker et al., 2009) and (iii) differ-
ent possible hardware optimisations (Johnson et al., 2008;
Kerbyson et al., 2008), amongst others.

Kerbyson et al. (2001) introduce the hydrodynamics code
SAGE. They also produce a performance model based on
communication, computation and memory contention. They
validate this model on an IBM SP3, a Compaq AlphaServer
ES45 cluster and a SGI Origin 2000. Our work differs from
theirs in a number of respects: (1) because of application
differences (communication phases, setup patterns and com-
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munication patterns) we have had to develop an entirely new
model, full details of which we provide here; (2) we com-
pare and validate this model on two recent high performance
compute clusters installed at LLNL; (3) the model is vali-
dated against 3D domain decomposition, as opposed to the
2D decomposition seen in Kerbyson et al. (2001); (4) our
model allows us to expose several attributes of the appli-
cation including point-to-point communication, collectives,
message packing and unpacking and a breakdown of com-
putation into 10 component terms. Therefore, the model is
comprehensive, and we include a complete description in
this paper.

3 A Predictive Model for Hydra

Hydra proceeds by performing one of three operations – lo-
cal computation, near-neighbour communication and collec-
tive communication – in a bulk-synchronous fashion. An it-
eration of Hydra employs several parallel functions, each of
which consists of a number of the above operations. An aim
of this work is to capture the time to solution by modelling
the critical-path run-time of the code as demonstrated in pre-
vious analytic modelling research (Mudalige et al., 2008).
We develop a general analytic model for the first two key
operations (local computation, near-neighbour communica-
tion) before applying these to specific segments of the Hydra
code. To obtain platform agnostic generalised expressions,
we assume that the parallel system consists of number of
nodes each withC cores sharing a block of memory and a
single Network Interface Controller (NIC). The total num-
ber of processor cores is denoted byP. The modelling of
collective operations is particular to a target platform, due to
their platform specific behaviour.

A local computation performed by a processor forms the
simplest of the three operations. It consists only of compu-
tation over the block of cells, sizedNx/Px×Ny/Py×Nz/Pz

(= nxnynz) held within a processor. We model this by de-
veloping a parameterwg, f , which denotes the time (work,
or grind time) to compute a grid cell; we term thiswg. The
subscriptedf denotes the name of the function (f ) during
which this grind time is observed. Thus a local computation
can be simply modelled as:

Tcomp, f = (wg, f ).(nxnynz) (1)

For clarity the model terms are summarised in Table 2.

3.1 A Hydra Iteration

A Hydra iteration (see Figure 1) consists of a number of
functional blocks. Through profiling and code analysis we
identify the parallel functions of interest: (1)mdt, a func-
tion that calculates the time step duration, (2)mlagh, a La-
grangian hydro phase, (3)lartvis, for the calculation of

1 BEGIN ITERATION
2 MDT
3 COMPUTE
4 LARTVIS
5 EXCHANGE(LARTVIS)
6 COMPUTE
7 ALLGATHERS
8
9 MLAGH

10 EXCHANGE(MLAGH( 1 ) )
11 LOOP( i )
12 COMPUTE
13 EXCHANGE(MLAGH( 2 ) )
14 ALLGATHERS
15 IF ( i ! =0 )
16 LARTVIS
17 EXCHANGE(LARTVIS)
18 COMPUTE
19 END IF
20 END LOOP
21
22 MADV
23 COMPUTE
24 EXCHANGE(MADV)
25 MADVX
26 COMPUTE
27 MADVMX
28 EXCHANGE(MADVM)
29 COMPUTE
30 REPEAT LINES 24−29 FOR MADVY,MADVZ
31 IF (KAPPA)
32 LARTVIS
33 EXCHANGE(LARTVIS)
34 COMPUTE
35 END IF
36 END ITERATION

Fig. 1 Outline of a single Hydra iteration

artificial viscous pressure and, (4)madv, used for the com-
putation of the advection of materials in three dimensions.
These functions account for over 90% of the parallel run-
time of the code, and thus form the target areas of interest
for performance analysis and optimisation. The remaining
10% of run-time is spent in utility functions and in perform-
ing disk I/O, which we ignore in this model.

mdt (line 2, Figure 1) consists of (1) computation over
its local grid cells (Tcomp,mdt), (2) the calculation of viscous
pressure (Tlartvis) and (3) 23 MPI allgather collectives (de-
fined asTallgather). We can model the time to execute func-
tion mdt as:

Tmdt = Tcomp,mdt+Tlartvis+(23.Tallgather) (2)

Tlartvis = Texch,lartvis+Tcomp,lartvis (3)

lartvis consists of (1) a near-neighbour exchange and (2)
a local computation for the calculation of viscous pressure.

mlagh can be modelled in a similar manner to that of
mdt. There are two notable differences: (1)mlagh has two
near-neighbour exchanges; (2) there are a number of itera-
tions within the function (itermlagh), which varies according
to the period of simulation that the iteration represents, thus:

Tmlagh = Texch,mlagh(1)+

(itermlagh).(Tcomp,mlagh+Texch,mlagh(2)+

(2.Tallgather))+(itermlagh−1).(Tlartvis) (4)
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Term Definition Term Definition

Compute Comms.
P Total number of processing elements (cores) Texch, f Time for near-neighbour exchange for functionf

n{x|y|z} Number of local grid cells inx,y,z Tallgather Time to perform an allgather
Tcomp, f Compute time for functionf C Cores per node
iter f Number of iterations within functionf Nodes{x|y|z} Nodes inx,y,zdimension

Talloc−dealloc Time for array setup inter{x|y|z}_link Number of inter-node comms in anx, y, or z row
Tmdt Wall time ofmdt intra{x|y|z}_link Number of intra-node comms in anx, y, or z row

Tmlagh Wall time ofmlagh Tinter{x|y|z}(msg) Time for inter-node comms (sizemsg) in x|y|z
Tlartvis Wall time oflartvis Tintra{x|y|z}(msg) Time for intra-node comms (sizemsg) in x|y|z
Tmadv Wall time ofmadv Tcomm,inter,n(msg) Time to commn messages (sizemsg) on ext. link

Tmadv{x|y|z} Wall time ofmadv{x,y,z} subroutine Tcomm,intra,n(msg) Time to commn messages (sizemsg) on int. link
Tmadvm{x|y|z} Wall time ofmadvm{x,y,z} Tpack,msg Time to pack an MPI message of sizemsg

κ Control parameter, 1 or 0 Tunpack,msg Time to unpack an MPI message of sizemsg

Table 2 Terms for compute and communication model

mlagh(1) andmlagh(2) distinguish the two different near-
neighbour message exchanges (see lines 10, 13 of Figure 1).

The functionmadv consists of some local computation
followed by calls to three subroutines:madvx, madvy and
madvz. A near-neighbour exchange precedes each of these
subroutines; at the end ofmadv, viscous pressure may be
recalculated (κ is an input parameter set to true (1) or false
(0) in the input deck).

Tmadv= Tcomp,madv+

3.Texch,madv+Tmadvx+Tmadvy+Tmadvz+

(κ .Tlartvis) (5)

We definemadvx, madvyandmadvzas:

Tmadv{x|y|z} = Tcomp,madv{x|y|z}+Tmadvm{x|y|z} (6)

Tmadvm{x|y|z} = Texch,madvm{x|y|z}+

Tcomp,madvm{x|y|z} (7)

The specific message sizes sent during each near-neighbour
communication operation are detailed in Table 3.

3.2 Communication Models

Hydra possesses multiple communication phases as high-
lighted in 3.1, consisting of either point-to-point near-neigh-
bour communication or collective operations.

While these phases communicate different collections
of data, the patterns of communication are very similar be-
tween the phases and thus we are able to represent a single
phase using an abstract communication model. This is then
applied across all phases in combination with knowledge of
the amount of data to be sent. Likewise, the collective com-
munications are primarily the same type,MPI_AllGather,
and thus we can substitute a single model for this collective
wherever it appears within the Hydra model as a whole.

Since the communication performance will vary between
differing machines, we make use of a benchmark applica-
tion such as SkaMPI (Reussner et al., 1998). This allows us
to record important characteristics of the network and un-
derstand the impact of setup costs and bandwidth.

1 LOOP DIMENSION={x , y , z }
2 PACKING
3 MPI_ISEND / IRECV both f a c e s i n DIMENSION
4 MPI_WAITALL( Near−Neighbour )
5 UNPACKING
6 END LOOP

Fig. 2 Typical point-to-point phase

3.2.1 Near Neighbour Point-to-Point

On an individual PE, neighbouring cells will either be stored
locally or on a near neighbour PE, as per the 3D decompo-
sition. These are termedinternalboundaries. Cells that exist
on the very edge of the data grid have no neighbouring cell in
one or more directions and these are termedexternalbound-
aries. A near-neighbour communication operation involvesa
processing element exchanging each of its six faces to the lo-
cal grid boundaries with its respective neighbours, and con-
sists of non-blocking MPI send/receives in each direction.
The six message exchanges are done in each of the three
dimensions, first in thex-dimension and then followed by
they andz dimensions respectively. Due to the use of non-
blocking MPI communication primitives, anMPI_Waitall
is called to synchronise the end of the communication opera-
tions with all near neighbours along a dimension axis before
proceeding to the next dimension.

Within a single Hydra cycle there exist eleven different
point-to-point communication instances, yet due to the sim-
ilarity between some of these calls, we define these as five
distinct exchanges:Texch,lartvis (lines 4, 16, 32),Texch,mlagh(1)

(line 10),Texch,mlagh(2) (line 13),Texch,madv(line 24, and twice
for line 30), andTexch,madvm{x|y|z} (line 28, and twice for line
30). The pattern of communication for an exchange remains
the same. The key difference is the data being exchanged;
that is, each exchange represents different sets of variables
to be communicated per cell. This results in different mes-
sage sizes, and in the case where variables of more than one
datatype exist, the number of messages to be sent. These
message sizes (defined asmsgsize(f,d), where f is the func-
tion andd is the dimension) are summarised in Table 3.
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X internal links 

Pz = 5 

Y internal links 
Y external link 

Z external links 

Px =4 

Py = 8 

(a) 128 Processor cores :Px = 4,Py = 8,Pz = 4

X internal links Y external links 

Z external 

links 

Px =16 

Py = 16 

Pz = 16 

(b) 4096 Processor cores :Px = 16,Py = 16,Pz = 16

Fig. 3 Number of external and internal links on a 16 core CMP/SMP-node system

Function( f ,d) Message size (msg)

lartvis 1double× f ace
mlagh(1) (7double+1int)× f ace
mlagh(2) (3double+1int)× f ace
madv (5double+1int)× ( f ace×2)
madvmx
madvmy 13double× ( f ace×3)
madvmz

where

f ace=







(ny)× (nz) if d = x

(nx)× (nz) if d = y
(nx)× (ny) if d = z

Table 3 Message sizes (msgsize) for message exchange

As the data to be exchanged are not stored in contiguous
memory, a packing operation needs to be performed before
it is sent via MPI; similarly an unpacking operation needs to
be performed after message reception. The pseudocode for
near-neighbour communication is detailed in Figure 2.

As our assumed parallel system consists of nodes each
made up ofC cores sharing a NIC, the MPI task alloca-
tion becomes crucial when determining which communi-
cations are performed between cores on the same proces-
sor (intra-node) and between cores on different processors
(inter-node). Assuming a Node-Fill Rank assignment, the
MPI ranks are assigned along the logicalx-dimension of
Hydra’s decomposition before repeating in they-dimension
(until there arePy rows), before finally repeating across each
xy-plane in thez-dimension. As a result the number of in-
ter/intra connections within a given dimension is a function
of Px,Py,Pz andC, the number of cores per node. This opera-
tion is summarised in equations (8)-(12):

Nodesx = min(⌈(Px/C)⌉,Px) (8)

Nodesy = min(⌈((PxPy)/C)⌉,Py) (9)

Nodesz = min(⌈((PxPyPz)/C)⌉,Pz) (10)

inter{x|y|z}_link = Nodes{x|y|z}−1 (11)

intra{x|y|z}_link = (P{x|y|z}− inter{x|y|z}_link −1)/Nodes{x|y|z}

(12)

Whereinter{x|y|z} is the number of inter-node communica-
tions in anx, y or z row respectively andintra{x|y|z} is the
number of intra-node communications in anx, y or z row
per node.

We illustrate the external and internal links for a sys-
tem with 128 processor cores, configured as 8 nodes with 16
cores in each, in Figure 3. Here there are 3 internalx-links
communicating within a node. In they-dimension there are
also 3 internal links as well as a single external link. As
there is only one NIC per node, we can expect some con-
tention on the NIC for communicating in they-dimension.
That is, there are 4 cores attempting to exchange messages
in they-dimension with their off-node neighbours. In thez-
dimension all communications are off-node. Thus there are
16 cores per node attempting to access the NIC simultane-
ously during message exchanges in thez-dimension.

Given that there are message exchanges contending for
the NIC, we adopt the following notation to denote the time
to exchangen simultaneous messages of sizemsgover an
external link:Tcomm,inter,n(msg).

From the number of inter- and intra-node connections
(equations 11 and 12), we can derive a model for near-neigh-
bour communications in a similar fashion to that found in
Mudalige et al. (2008). This makes the assumption that the
communication network is full-duplex and that the time for
two nodes to perform a non-blocking send and receive is
equivalent to the time for a single blocking send and receive
because of Hydra’s use ofMPI_Waitall.
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DawnDev (BlueGene/P) Hera
Processor PowerPC 450(d) AMD 2.3GHz Opteron

Compute Nodes 1,024 847
Cores/Node 4 16
Total Cores 4,096 13,552

Memory/Node (GB) 4 32
Interconnect BlueGene 4xDDR-InfiniBand

torus and tree switch
Theoretical 13.9 127.2

peak (TFLOP/s)
O/S IBM CNK CHAOS 4.3

Compilers IBM XL 11.0 Fortran, PGI 8.0
9.0 C

MPI IBM BlueGene MPI OpenMPI 1.3.2

Table 4 Experimental machines

Tintra{x|y|z}(msg) =

0 if intra(x|y|z)_link = 0
1.(α +β ) if intra(x|y|z)_link = 1
1.(α +β ) if intra(x|y|z)_link > 0

& inter(x|y|z)_link > 0
2.(α +β ) if intra(x|y|z)_link > 1

& inter(x|y|z)_link = 0

(13)

Tinter{x|y|z}(msg) =

0 if inter{x|y|z}_link = 0
1.(α +β ) if inter(x|y|z)_link > 0

& intra(x|y|z)_link > 0
1.(α +β ) if inter(x|y|z)_link = 1

& intra(x|y|z)_link = 0
2.(α +β ) if inter(x|y|z)_link > 1

& intra(x|y|z)_link = 0

whereα = Tcomm,intra,n(msg) or Tcomm,inter,n(msg) as appro-
priate (these values are derived from SKaMPI benchmarks
(Reussner et al., 1998)) andβ = Tpack,msg+Tunpack,msg.

Based on these definitions we can complete the defini-
tion for a near-neighbour exchangeTexch, f .

Texch, f = Tintrax(msgsize( f ,x))+Tintray(msgsize( f ,y))+

Tintraz(msgsize( f ,z))+Tinterx(msgsize( f ,x))+

Tintery(msgsize( f ,y))+Tinterz(msgsize( f ,z))+

(14)
3.2.2 MPI Collectives

MPI_AllGather is the primary MPI collective used within
Hydra, frequently withinmdt and with more limited use
within mlagh.

In many respects theMPI_AllGather is similar to that
of an MPI_AllRedue. However, forMPI_AllGather, as
the number of communication steps scale withP, so the
amount of data does also. We assume a pair-wise exchange,
where the ranks are split into pairs and exchange data. New
pairs are formed on a tree-like basis until all ranks have
received from all other ranks, directly or indirectly as de-
scribed in Benson et al. (2003). This results in alog2 ar-
rangement, where the amount of data sent doubles per step:

Tallgather(dts) = (
(log2C)−1

∑
i=0

Tcomm,intra,n(2
i ∗dts))+

(
(log2P)−1

∑
i=log2C

Tcomm,inter,n(2
i ∗dts)) (15)

Wheredts is the size of the datatype in bytes.

3.3 Hydra Model Summary

The Hydra model therefore consists of several microbench-
marks combined through equations 1 through 15. The cost
of execution is calculated as the sum of computation, near-
neighbour point-to-point communication (including packing
and unpacking costs for message exchange) and the global
collectives:

Twalltime,Hydra = Tcomp,alloc−dealloc+Tmdt+

Tmlagh+Tmadv (16)

WhereTcomp,alloc−dealloc is a microbenchmark for memory
allocation/deallocation.

4 Model Validation and Projections

4.1 Machines

Table 4 summarises the key architectural features of the ex-
perimental systems used in this study – an IBM BlueGene/P
(DawnDev) and an AMD/InfiniBand system (Hera), both lo-
cated at LLNL. DawnDev is the development system for
Dawn, which itself is the initial delivery system for Sequoia,
a 20 PFLOP/s system to be delivered at LLNL starting in
2011 for deployment in 2012. DawnDev is an IBM Blue-
Gene/P system and thus follows the tradition of IBM Blue-
Gene architectures: a large number of lower performance
processors (quad-core Power PC 450d running at 850MHz),
a small amount of memory per node (4GB per node, 1GB
per core), and a proprietary BlueGene torus high-speed in-
terconnect. The BlueGene architecture is recognised as be-
ing highly scalable, with a relatively low power footprint.
Hera on the other hand utilises densely packed nodes that
consist of high-performance multi-core CPUs – four-way
2.3GHz AMD Opteron quad-core CPUs (16-cores per node)
with 32 GB memory per node (2 GB per core). Hera uses the
InfiniBand DDR high-speed interconnect and exemplifies a
typical large capacity resource (127 TFLOP/s peak).

4.2 Model Validation

In order to validate the model we conduct an extensive series
of experiments on DawnDev and Hera. The Hydra applica-
tion is linked with our own supporting Performance Mod-
elling and Timing Module (PMTM) instrumentation library,
which allows us to benchmark critical sections of the code
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503 problem size 753 problem size
DawnDev Hera DawnDev Hera

Cores Execution Prediction Error Execution Prediction Error Execution Prediction Error Execution Prediction Error
(sec) (sec) (%) (sec) (sec) (%) (sec) (sec) (%) (sec) (sec) (%)

32 - - - 253.3 259.55 2.44 - - - 806.94 783.36 -2.92
64 505.23 484.37 -4.13 291.58 287.76 -1.33 1665.8 1561.46 -6.26 901.91 832.89 -7.65
128 525.15 485.77 -7.15 295.74 302.07 2.1 1702.63 1562.87 -8.21 905.04 859.41 -5.04
256 534.24 487.44 -8.76 310.06 319.77 3.1 1718.68 1564.53 -8.97 974.75 888.32 -8.87
512 528.76 494.53 -6.47 325.15 339.31 4.33 1707.78 1577.7 -7.62 1002.52 918.38 -8.39
1024 544.43 497.75 -8.57 337.54 363.9 7.78 1729.02 1580.92 -8.57 1039.3 953.54 -8.25
2048 584.97 503.04 -14.01 398.1 413.01 3.71 1779.78 1586.21 -10.88 1172.02 1013.88 -13.49

Table 5 Model validations, weak-scaled, 503 and 753 meshes per core
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Fig. 4 Breakdown of weak-scaled 503 per core problem sizes

during execution; we also use the SKaMPI benchmark to
measure point-to-point and collective communication costs
for both contended and non-contended communication. The
benchmarks are used to prime the performance model (de-
tails of this process have been previously documented; see
Mudalige et al. (2008); Hammond et al. (2009)).

We conduct weak- and strong-scaling studies on a range
of problem sizes; for the sake of brevity, we provide a sam-
ple of results that demonstrate the capability and accuracyof
the performance model. In Table 5 we provide the results of
weak-scaling studies on 503 and 753 data sets on DawnDev
and Hera. As this is a weak-scaling study, the total execution
time gradually increases with the number of cores, up to a
maximum of 1779.78 seconds for a 2,048-core run (Dawn-
Dev, 753). The model predictions are also shown, demon-
strating a model accuracy exceeding 85%. In Figure 4 we
demonstrate the ability of the model to expose component
costs that contribute to the wall-clock time and project out
to 8,192 cores on both the Hera and DawnDev machines.

The increasing cost of collectives is clear to see, and with
this information we are able to assess future code develop-

ment directions as well as the impact of choosing one ma-
chine type over another. The impact of collectives is less
marked on DawnDev as the IBM BlueGene/P has a dedi-
cated collective network capable of delivering low latency
and high bandwidth for fan-in/fan-out collectives.

5 Analysis of Future Architectures

A trend of recent processor developments has been growth
in the number of cores per socket. Recent processor releases
may contain as many as 16-cores per single processor die
and predictions are for future designs to have higher core
densities still. Whilst providing significant increases in theo-
retical performance and the potential for greater parallelism
at lower cost, the utilisation of more cores per individual
die is not without its problems, including higher contention
for memory bandwidth and, importantly for a 3D-hydrocode
such as Hydra, increased contention for network accesses.

The model developed in this paper is parameterised to
accomodate for contention on compute nodes which arises
from the use of multiple processing-elements (cores) per
node. The number of cores parameter,C, permits flexible
evaluation of potential future platforms which may contain
significantly higher numbers of cores per node. In Figure 5
we present projections for potential future systems in which
the per-core performance is identical to that of the existing
benchmarked machines but in which the number of cores
per node has been increased by 2x, 4x and 8x.

In these configurations the utilisation of higher core den-
sities results in degraded runtime; this may be advantageous
if the higher core counts enable more parallelism to be used
in the machine (through increased throughput or, alterna-
tively, strong-scaling operations). The projections in Fig-
ure 5 demonstrate that performance may degrade from 25
to 70% on DawnDev and Hera respectively. The lower fig-
ure for DawnDev is an indication of the higher interconnect
performance versus compute in the BlueGene/P design.

The indications of our projections are that future work-
loads are likely to experience considerably degraded run-
time if the current strategy of increasing core density per
die without increasing the number of network interfaces per
node continues. Insights such as this give AWE, and sim-
ilar computing sites, the ability to quantitatively assessthe
impact of machine architecture choices as well as the oppor-



8 J.A. Davis et al.

-10

0

10

20

30

40

50

60

70

80

32 64 128 256 512 1024 2048

In
cr

ea
se
/D

ec
re

as
e

in
R

u
n

ti
m

e
(%

)

Processing Elements (Cores)

2x (32 Cores/Node)

4x (64 Cores/Node)

8x (128 Cores/Node)

(a) Hera

-15

-10

-5

0

5

10

15

20

25

30

32 64 128 256 512 1024 2048

In
cr

ea
se
/D

ec
re

as
e

in
R

u
n

ti
m

e
(%

)

Processing Elements (Cores)

2x (8 Cores/Node)

4x (16 Cores/Node)

8x (32 Cores/Node)

(b) DawnDev

Fig. 5 Predicted increase/decrease in run-time for increased core den-
sities per node (weak-scaled, 503 per core)

tunity to engineer their codes to minimise the impact of such
machine designs before they are deployed.

6 Conclusions

We present the development of a predictive performance
model for the high-performance computing code Hydra, a
hydrodynamics benchmark developed and maintained by the
United Kingdom Atomic Weapons Establishment (AWE).
The model allows us to predict the time to solution of the ap-
plication with only a concise set of application and machine
benchmarks. This is the first predictive performance model
for Hydra and represents a significant advance to AWE’s
ability to assess application/architecture capabilitiesfor this
class of application. We validate the analytic model on two
large-scale HPC system architectures – an IBM BlueGene/P
and a commodity AMD/InfiniBand based system. The model
predicts execution time on up to 2,048 processor cores with
> 85% accuracy. These systems represent two contrasting
HPC architectures, and demonstrate the versatility of the
model across CMP platforms. The model is utilised to as-
sess the impact of component costs including computation,
point-to-point communications and collectives and their re-
lationship with HPC machine architectures, thus illustrating
how the model may be put into use by AWE scientists.
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