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which is essential for transcription of small non-coding RNAs. Biallelic patho-

kodystrophy. Recently, de novo heterozygous variants in POLR3B were reported
in six individuals with ataxia, spasticity, and demyelinating peripheral neuropa-
thy. Three of these individuals had epileptic seizures.

The aim of this article is to precisely define the epilepsy phenotype associated
with de novo heterozygous POLR3B variants.

Methods: We used online gene-matching tools to identify 13 patients with de
novo POLR3B variants. We systematically collected genotype and phenotype data
from clinicians using two standardized proformas.

Results: All 13 patients had novel POLR3B variants. Twelve of 13 variants were
classified as pathogenic or likely pathogenic as per American College of Medical
Genetics (ACMG) criteria. Patients presented with generalized myoclonic,
myoclonic-atonic, atypical absence, or tonic-clonic seizures between the ages of
six months and 4 years. Epilepsy was classified as epilepsy with myoclonic-atonic
seizures (EMALtS) in seven patients and “probable EMAtS” in two more.

Seizures were treatment resistant in all cases. Three patients became seizure-free.

All patients had some degree of developmental delay or intellectual disability. In
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1 | INTRODUCTION

One in 400 children is diagnosed with epilepsy before
their third birthday." In this age group, neuroimaging and
genetic testing allow a precise underlying etiology to be
identified in more than half of patients. It is now clear that
genetic causation accounts for the majority of identifiable
etiology.! Consequently, there has been a reconceptual-
ization of the early childhood epilepsies as a collection
of rare, mostly genetic, diseases. Genetic etiology is more
likely to be identified in children with early onset of sei-
zures (<1year),”* and in children with therapy-resistant
seizures.*

Establishing a precise genetic etiology for a person's ep-
ilepsy can guide therapeutic decision-making,™® prevent
further costly and invasive investigations,’ guide counsel-
ing about recurrence risk for future offspring,* and end
lengthy diagnostic odysseys for patients and their fami-
lies.® Knowledge of a rare genetic diagnosis may empower
families to make contact with other families with the same
condition to share experiences and support. Collating ge-
notypic and phenotypic data about patients with a specific
genetic etiology for their epilepsy helps progress clinical
and scientific research. A major goal of such research is
to develop and implement effective disease-modifying
treatments.

In the current era, first-line diagnostic genetic testing
in the epilepsies often involves high-throughput technol-
ogies to look for rare genetic variants in numerous genes
simultaneously. This may involve testing large panels of
specific disease-associated genes, larger panels of non-
specific disease-associated genes, or even the entire exome
or genome, which will include many genes not known to
have any association with disease. The wider the genetic
testing net that is cast, the more dependent we become on

most cases developmental delay was apparent before the onset of seizures. Three
of 13 cases were reported to have developmental stagnation or regression in as-
sociation with seizure onset.

Treatments for epilepsy that were reported by clinicians to be effective were: so-
dium valproate, which was effective in five of nine patients (5/9) who tried it;
rufinamide (2/3); and ketogenic diet (2/3).

Additional features were ataxia/incoordination (8/13); microcephaly (7/13); pe-
ripheral neuropathy (4/13), and spasticity/hypertonia (6/13).

Significance: POLR3B is a novel genetic developmental and epileptic encepha-
lopathy (DEE) in which EMATS is the predominant epilepsy phenotype. Ataxia,
neuropathy, and hypertonia may be variously observed in these patients.

Encephalopathy, Epilepsy, Genetic, Myoclonic-atonic seizures, POLR3B

Key points

« The POLR3B gene encodes a ribosomal poly-
merase, responsible for transcribing small non-
coding RNA.

o POLR3B-DEE (developmental and epileptic
encephalopathy) is a newly described develop-
mental and epileptic encephalopathy.

« Epilepsy with myoclonic-atonic seizures
(EMAtS) is the most common epilepsy
phenotype.

« Electroencephalography in patients with
POLR3B-DEE usually shows generalized spike/
polyspike and slow wave discharges.

« Associated features may include ataxia, neurop-
athy, hypertonia, and microcephaly.

interpreting variants in the context of phenotype. Thus it
has become increasingly important to understand the full
phenotypic spectrum associated with each specific genetic
etiology. Knowledge of phenotype guides both variant in-
terpretation and genetic counseling. It is not uncommon
for genes that were found initially to be associated with
one specific phenotype to be subsequently identified with
either a wider spectrum of disease, a distinct phenotype,
or even a novel phenotype linked to a new mechanism of
disease such as a “gain of function” property, as recently
described in SCN1A-associated epilepsies.’

Here we report 13 patients with rare heterozygous
variants in a gene that was reported initially in associa-
tion with a recessive hypomyelinating leukodystrophy:
POLR3B. The majority of these patients presented with an
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early onset developmental and epileptic encephalopathy
(DEE) with myoclonic-atonic seizures.

POLR3Bencodes the second largest subunit of RNA poly-
merase III. RNA polymerase I1I is essential for the transcrip-
tion of small non-coding RNAs.' Small non-coding RNAs
include 5S ribosomal RNA, transfer RNA, and U6 small nu-
clear RNA. Despite the apparently ubiquitous roles of these
small RNA molecules in RNA maturation and transcription,
mutations in POLRB3 and other genes encoding ribosomal
polymerase III subunits have been associated with a range
of organ-specific diseases. Examples of ribosomal poly-
merase I1I-associated (Pol III) diseases include hypomyelin-
ating leukodystrophy (POLR3A,"* POLR3B,'* POLR3C,"
POLR3D,** and POLR3K15); susceptibility to varicella zos-
ter virus—induced encephalitis and pneumonitis (POLR3A,
POLR3C, POLR3E and POLR3F 16’17; primary ovarian in-
sufficiency (POLR3H)"; and endosteal hyperostosis and oli-
godontia (POLR3GL).” Precise disease mechanisms remain
poorly understood. Currently it is not clear what underpins
gene-disease relationships in Pol III disorders."

2 | METHODS

2.1 | POLR3B patient identification and
phenotype capture

The index patient (Patient 1), was recruited to a whole
genome sequencing study, which aimed to identify novel
genetic etiologies in DEEs of early childhood.! A second
patient at the same center, presenting with a very similar
phenotype, was identified on clinical diagnostic testing
using a panel including genes associated with develop-
mental disorders, the DDG2P exome.” Data relating to
four further previously published patients was obtained
from the corresponding authors.?** Seven further pa-
tients were identified via the online gene-matching tool
GeneMatcher.”
Inclusion criteria for the current study were:

1. Patient found to have a variant in POLR3B that is
either de novo or of undetermined inheritance.

2. No other etiological diagnosis for epilepsy or develop-
mental encephalopathy identified.

3. Patient has epilepsy.

4. Parents or carers have given consent to inclusion in the
study and publication of findings.

Contributing clinicians for each patient were identified
and each completed two structured proformas detailing
the genotype and phenotype of their patient.

The phenotype proformas required completion of the
following details:

Epilepsia

- Age at onset of seizures, presenting seizure type, sub-
sequent seizure types, and epilepsy classification as per
the 2022 International League Against Epilepsy (ILAE)
position paper on classification and definition of epi-
lepsy syndromes with onset in childhood.*

« Anti-seizure therapy history. Clinicians were asked to
highlight, but not quantify, if any therapies were per-
ceived subjectively to be particularly efficacious for sei-
zure control.

« Full developmental history across all domains of devel-
opment, with results of validated developmental assess-
ments where available. Clinicians were asked whether
there was any developmental slowing or regression ob-
served at the time of epilepsy onset.

« Full systemic, neurological, and dysmorphology exam-
ination, and height, weight, and occipital frontal cir-
cumference (OFC).

« Results of all neurological investigations, including elec-
troencephalography (EEG), brain magnetic resonance
imaging (MRI), and nerve conduction studies, and the
age of the patient when investigations were performed.

Contributing clinicians were asked to provide details of
the POLR3B variant identified in their patient including
genomic coordinates (GRCh38) and inheritance.

All variants were evaluated for pathogenicity by assess-
ing frequency in the asymptomatic population (gnomAD)
and in silico pathogenicity scores (REVEL, Align, SIFT,
PolyPhen-2, Splice AI). All variants were classified as per
the American College of Medical Genetics (ACMG) crite-
ria for pathogenicity.?

POLR3B missense variants were modeled by SWISS-
MODEL* using 7ael and 7fjj as wild-type template.*”**
Structural consequences were predicted with dynamut2*
and missense3D.”® Figure 2 was made with Mol**
Missense tolerance landscape is from MetaDome.*

3 | RESULTS

Phenotypic findings in each case are detailed in Table 1.
Genetic findings and testing platform are detailed in
Table 2.

3.1 | Clinical phenotypes of
POLR3B cohort
3.1.1 | Presenting seizures (see Table 1)

Age at first epileptic seizure ranged from six months to
four years (median =12 months). For eight of the 13 pa-
tients the firstseizure was classified asamyoclonic-atonic
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TABLE 1 Epilepsy phenotypes of the POLR3B cohort.

Patient

Patient 1 - female
9years at most recent
review

Patient 2 — male
4years at most recent
review

Patient 3 - male
6years at most recent
review

Patient 4 — female
7.5years at most recent
review

Patient 5 - female
7years at most recent
review

Patient 6 — female*
11years at most recent
review

Patient 7 - male*
22years at most recent
review

Patient 8 - male
12years at most recent
review

Patient 9 - female
10years at most recent
review

Patient 10 — male*
9years at most recent
review

Patient 11 - female
9years at most recent
review

Patient 12 — male*
19 months at most recent
review

Patient 13 - male
19 months at most recent
review

Age at fist
seizure

10 months

11 months

18 months

18 months

25 months

12 months

6 months

4years

6 months

12months

39 months

6 months

11 months

First
seizure

type
M-A

Myoclonic
absence
CSE

GM

M-A

M-A

M-A

AA

M-A

M-A

Subsequent
seizures (age
of onset)

M-A (10m)
GM (18m)
GC (15m)
AA (7years)

M-A (11 m)

M-A (18 m)

Myoclonic
absence (18 m)

CSE (25m)
AA (unknown)

GM (12m)
AA (unknown)

M-A (6m)

GM (unknown)
AA (unknown)
GTC (unknown)
AA (4y)

M-A (4y)

GM (4y)

GTC (5y)

NCSE (5y)

M-A (6m)

M-A (12m)

AA (39m)

M-A (6 m)

M-A (11 m)

Interictal EEG findings
(age at EEG)

Frequent bursts of high
amplitude sharp/spike
and slow wave, increasing
frequency at night

(24 months)

Frequent 1-2second bursts of

high amplitude sharp/spike
and slow wave (11 months)

N/A

Bursts of bifrontal spikes/
spikes-waves, more abundant
during sleep (3years)

Bifrontal spikes (3 years)

Generalized and multifocal
epileptiform discharges
(6years)

N/A

Generalized spike and wave
discharges with bifrontal
predominance (4 years)

N/A

N/A

Generalized burst-
suppression pattern
(39 months)

Generalized spike/polyspike-

slow wave discharges (1-2Hz,

posterior maximum) were

seen either as a single burst or

in longer runs up to 9 seconds
with no clinical correlate
(23 months)

Generalized polyspike wave
discharge (12 months)

Were seizures
captured on
EEG? (age when
captured)

Yes (17 months)

Yes (14 months)

Yes (20 months)

Yes (3years)

No

No

Yes (2years)

Yes (4years)

Yes (2years)

Yes (3years)

Yes (39 months)

No

No

Type of seizure
captured?

M-A

M-A

M-A

Myoclonic absence

N/A

N/A

AA

N/A

N/A

Note: *Included in previous publication.

Abbreviations: AA, atypical absence; ACC, anterior corpus callosotomy; CBD, cannabidiol; CLB, clobazam; CNB, cenobamate; CSE, convulsive status
epilepticus; CZP, clonazepam; EMA, Epilepsy with myoclonic absences. EMALS, Epilepsy with myoclonic-atonic seizures; ETX, ethosuximide; GBP, gabapentin;
GC, Generalized clonic; GM, generalized myoclonic; GT, generalized tonic; GTC, generalized tonic-clonic; KD, ketogenic diet, KV, K.Vita; LCS, lacosamide;
LEV, levetiracetam; LTG, lamotrigine; M-A, myoclonic-atonic; MAD, modified Atkins diet; NCSE, non-convulsive status epilepticus; OXC, oxcarbazepine; PB,
phenobarbital; PRED, prednisolone; RUF, rufinamide; TPM, topiramate; VNS, vagal nerve stimulation; VPA, sodium valproate; ZNS, zonisamide.
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Epilepsia
Anti-seizure
Current treatments Current seizure
Epilepsy Anti-seizure treatments anti-seizure reported to be frequency (age at which
EEG correlate classification tried treatments  effective reported)
High amplitude EMALtS LEV, VPA, CLB, RUF, VPA KD, VPA Infrequent AA (9years)
bisynchronous slow with Pyridoxine, KD (6)
marked spikes
High amplitude EMALtS CLB, VPA, KD, RUF, LEV, LTG, CNB VPA, KD, CNB 6-9M-A per day (3.5years)
bisynchronous spike and slow CBD, KV, LTG, CNB (9)
wave
High amplitude 2-3Hz EMALtS LEV, TPM, ZNS, MAD (4) None ZNS Seizure free since aged
irregularly generalized 5.5years (8years)
epileptiform discharges with
bifrontal predominance.
These last about
1-1.5seconds.
Bursts of bifrontal spikes/ EMA LTG, ETX, ZNS, CLB, ZNS, CLB, ETX Multiple myoclonic
spikes-waves VPA (5) VPA absences per day (4years)
N/A Unclassified LCS, OXC (2) LCS, OXC LCS, OXC 1-2 episodes of CSE per
epilepsy year (3years)
N/A Unclassified VPA, PRED, LEV, CLB, TPM PRED, TPM Very infrequent GM and
epilepsy KD, TPM (6) AA (10years)
High amplitude EMATtS PB, VPA, ETX, LEV, OXC, VPA, OXC, None Daily GM and AA (22years)
bisynchronous poly-spike PRED, ZNS, KD, VNS, GBP
wave ACC, GBP (11)
Burst of irregular generalized EMALtS RUF, ETX, VPA, CLB, RUF, LTG, RUF Multiple daily AA, one
spike and wave and polyspike LEV, LTG, CBD (7) ETX, CBD GTCS per month, one M-A
lasting 1second per month (12years)
Generalized polyspike EMATtS PB, LEV, VPA, CLB, RUF CLB, RUF CLB, RUF Seizure-free since aged
discharge (5) 7years (9years)
High amplitude EMALtS VPA, LEV (2) VPA, LEV VPA, LEV Very infrequent M-A
bisynchronous spike and slow (9years)
wave
Suppression of EEG Unclassified VPA (1) VPA VPA Seizure-free since aged
epilepsy Syears (12years)
N/A Probable EMAtS LEV, CLB, CZP (3) CZPp CZP 3-4M-A per day
(19 months)
N/A Probable EMAtS VPA (1) VPA VPA 10 x M-A and 10 x AA per

day (2years)
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seizure. The presenting seizure appeared to be related to
age. All patients who presented with myoclonic-atonic
seizures were under the age of 18 months at the time of
first seizure. Those presenting at relatively later ages
presented with the following seizure types: one with
myoclonic absence seizures (18 months); one with con-
vulsive status epilepticus (25 months); two with atypical
absences (four years and 39 months of age, respectively).
One patient, who presented at 12 months, was described
as having generalized myoclonic seizures without an
atonic component.

3.1.2 | Epilepsy evolution and classification
(see Table 1)

Patients who only had one seizure type

Five of the eight patients who presented with myoclonic-
atonic seizures continued to have myoclonic-atonic as
their only seizure type—these patients were 19 months,
19months, four years, six years, and 10years of age at the
most recent epilepsy review. One patient (age 7.5years at
the most recent review) had myoclonic absence seizures
only; and one patient (age nine years at the most recent
review) had atypical absences only.

Patients who had multiple seizure types

The remaining six patients all had multiple seizure types.
Seizure types observed were atypical absence seizures (six
patients); generalized tonic-clonic/clonic seizures (four
patients, of whom one had convulsive status epilepticus);
generalized myoclonic seizures (four patients); and non-
convulsive status epilepticus (one patient). Neither focal
seizures nor epileptic spasms were reported in any of the
patients.

Epilepsy classification as per ILAE 2022 Criteria

Seven patients had their epilepsy classified as epilepsy
with myoclonic-atonic seizures (EMAtS). On review of
the diagnostic criteria for EMAtS** all seven patients
satisfied these criteria. Two further patients had “prob-
able EMAtS” due to myoclonic-atonic seizures not being
definitively captured on EEG. In all but one of the pa-
tients with EMAtS/probable EMALS, age at onset was at
the early end of the spectrum for this syndrome (range
six months to four years, median 11 months). One pa-
tient had their epilepsy classified as epilepsy with

myoclonic absences (EMA). Three patients had unclas-
sified epilepsy.

3.1.3 | EEG (see Table 1)

EEG data were provided for all 13 patients. All patients
had generalized ictal or interictal epileptiform dis-
charges on EEG. Just one patient (Patient 6) was also re-
ported to have multifocal epileptiform discharges. One
patient (Patient 11) had a generalized burst suppression
EEG pattern at the age of 39 months. She had atypical
absence seizures in correlation with EEG suppressions.
Background EEG was within normal limits for the other
12 patients.

Eight patients had seizures captured on EEG—in all
cases the seizure type captured was a myoclonic-atonic
seizure and the EEG correlate was a high-amplitude burst
of generalized spike/polyspike and wave. The EEG studies
of Patient 1 and Patient 2, capturing myoclonic-atonic sei-
zures, are shown in Figure 1.

3.1.4 | Anti-seizure treatments and
effectiveness (see Table 1)

Eleven of the 13 patients satisfied diagnostic criteria for
therapy-resistant seizures, meaning that they continued
to have epileptic seizures despite adequate trials of two
tolerated, appropriately chosen, and used anti-seizure
medicine (ASM) schedules (whether as monotherapies
or in combination).*® The median number of ASMs tri-
aled per patient in our cohort was five. No ASM was re-
ported consistently to be efficacious. Sodium valproate
was reported to be effective for five of the nine (5/9)
patients for whom it was tried. Ketogenic diet was re-
ported to be effective for two of the three (2/3) patients.
Rufinamide was reported to be effective in two of the
three (2/3) patients. Cenobamate (1/1), zonisamide
(1/3), ethosuximide (1/3), lacosamide (1/1), oxcarbaz-
epine (1/2), topiramate (1/2), clobazam (1/4), predni-
solone (1/2), levetiracetam (1/9), and clonazepam (1/1)
were all reported to be efficacious in individual patients.
One patient had an unsuccessful trial of oral pyridox-
ine treatment. Outcomes, in terms of epileptic seizure
control, were variable. Three patients had been seizure-
free for at least six months at the time of reporting; four

FIGURE 1 EEG study Right hemisphere electrodes (red) over left hemisphere electrodes (black) montage with frontopolar and
electrocardiogram channels hidden to improve figure clarity. (A) Interictal EEG at the age of 17months in Patient 1. (B) Ictal EEG at the age
of 17 months in Patient 1, capturing a myoclonic-atonic seizure. (C) Ictal EEG at the age of 14 months in Patient 2, capturing a myoclonic-

atonic seizure.
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patients were having infrequent seizures; and six pa-
tients were having multiple seizures per day.

Four of six patients who were having daily seizures
were younger than five years at the time of report-
ing, whereas six of the seven patients who were ei-
ther seizure-free or having infrequent seizures were
nine years or older. Hence there is a suggestion that
seizure control may improve over time. Of the nine pa-
tients with EMAtS/probable EMALS, six were older than
seven years at the most recent reporting. For all six pa-
tients, their myoclonic-atonic seizures had become very
infrequent or had stopped entirely, and two patients had
become free of all seizure types.

3.1.5 | Developmental profiles and progress
(see Table 2)

Age at the first developmental concern ranged from six
to 33 months. For seven patients, the first developmental
concern was identified prior to presentation with seizures;
for two patients, the first developmental concern coin-
cided with seizure presentation; and for four patients, first
developmental concern was highlighted after presenta-
tion with seizures. In three patients (Patients 1, 2, and 5),
seizure onset was felt to be associated with developmental
slowing or plateau. In Patients 1 and 2, plus one further
patient (Patient 3), improved seizure control was associ-
ated with developmental progress.

For nine patients we were provided with reports from
validated developmental or neuropsychological testing. A
variety of different assessments were used. Assessments
were consistent with mild intellectual disability in three
patients and moderate intellectual disability in four pa-
tients. Two patients were younger than two years of age
at the time of formal developmental assessment, but find-
ings were consistent with global developmental delay. Of
the four patients who did not have formal developmental
assessment reports available, two were felt to have mild
intellectual disability, one was felt to have moderate intel-
lectual disability, and one was felt to have severe intellec-
tual disability.

Of the 11 patients who were older than two years of
age at their most recent assessment, one (9%) had severe
intellectual disability, five (46%) had moderate intellectual
disability, and five (46%) had mild intellectual disability.
Motor, cognitive, and speech and language development
appeared to be equally affected. Three patients (23%) were
diagnosed with autism spectrum disorder. All patients
who were older than two years at most recent assessment
gained the ability to walk independently, nine gained the
ability to talk, and all were orally fed.

3.1.6 | Motor features: Ataxia,
hypertonia, and neuropathy (see Table 3)

Six patients were reported to have ataxia (three mild and
three moderate). The age at onset of ataxia ranged between
19months and 11years. Three of these patients had addi-
tional cerebellar signs (intention tremor and dysmetria).
An additional three patients had an unstable or uncoordi-
nated gait but were not felt to have frank ataxia. Of the four
patients with no reported ataxia, two were 19 months at the
most recent assessment and were not yet walking. Four
patients had abnormal nerve conduction studies, of whom
two were felt clinically to have peripheral neuropathy and
two had no signs of neuropathy on neurological examina-
tion but had asymptomatic nerve conduction studies done.
Two further patients had asymptomatic nerve conduction
studies done and these were reported as normal. Of interest,
all four of the patients who had abnormal nerve conduc-
tion studies also had signs of hypertonia on neurological
examination. One of these was using ankle-foot orthoses.
Two further patients (Patient 1 and Patient 4) had signs of
lower limb hypertonia on neurological examination but did
not have nerve conduction studies performed.

3.1.7 | Growth parameters (see Table 3)

We were provided with height, weight, and occipital fron-
tal circumference (or OFC) for all 13 patients. Seven pa-
tients had microcephaly and two had short stature (both
of whom also had microcephaly). No patient had macro-
cephaly and all 13 patients had an OFC that was below
the mean for age. We did not have serial measurements or
parental measures for comparison.

3.1.8 | Imaging (see Table 3)

All 13 patients had MRI brain scan data available. MRI
was reported as normal in eight patients, showed global
cerebral or white matter volume loss in three, and non-
specific white matter changes (without volume loss) in
two.

3.1.9 | Additional features

Astigmatism, myopia, or hypermetropia were reported in
four patients and a further patient had cortical visual im-
pairment and attended a school for the blind. There were no
consistent dysmorphic features reported. Non-neurological
findings on physical examination are reported in Table 3.
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3.2 | Genetic findings of POLR3B cohort
(see Table 4)

Twelve of the 13 variants in POLR3B were confirmed de
novo. Patient 8 did not have parental DNA available, but
the variant was absent from two unaffected siblings. All
13 variants were novel and absent from large databases of
healthy population. Twelve of 13 variants were classified
as pathogenic or likely pathogenic as per ACMG criteria.>
Patient 6, Patient 7, Patient 10,2! and Patient 122> have
been published previously. All the variants were missense,
and they clustered in the region of the gene encoding the
part of the polymerase where transcribed DNA is melted.
There was in silico evidence to suggest that all 13 variants
are damaging to protein function (Table 4). Splice predic-
tion tools predict that the variant in Patient 8 will create a
new splice acceptor site at ¢.1730. This prediction is also
supported by SpliceAl (https://spliceailookup.broadinsti
tute.org/). The consequence of this splicing change is dif-
ficult to predict without cDNA analysis from this patient,
but will possibly interfere with the correct splicing of this
exon.

3.3 | POLR3B missense tolerance
landscape and structural modeling

The POLR3B variants found in this cohort were found
in regions of the gene that are intolerant of genetic vari-
ation.*” There was a clear clustering of the epilepsy-
associated variants within or nearby the DNA-binding
domain of POLR3B** (see Figure 2) For further details
of the modeling, see the Supplementary Material.

4 | DISCUSSION

We describe the detailed phenotypes of 13 patients with
epilepsy and missense variants in POLR3B, three of which
have been reported previously by Djordevic et al.*' and
one of which has been published previously by D'Gama.*
There is strong evidence that these variants are causative
because all variants appear to be absent from the gen-
eral population; 11 of the 13 variants were predicted as
damaging by all in silico tools tested; and in all the cases
where we had parental samples available (12/13), the var-
iants were confirmed as de novo. POLR3B is highly con-
strained to missense variation in DECIPHER (Missense
Constraint 0.64, p-Value 2.20 x 10719, gnomAD Vv 2.1.1(Z
score=3.2), and gnomAD v 4.0.0 (Z score =3.48).
Despite variability in other aspects of the pheno-
type—including neuroimaging findings, growth parame-
ters, dysmorphic features, neurocutaneous features, and

comorbid medical conditions—there were some highly
consistent features in this cohort. Nine of the patients
were classified as having EMALtS or probable EMALS, and
the majority of those with EMALtS had onset of seizures at
the younger end of the range for this epilepsy syndrome.
All patients had generalized discharges on EEG. Ataxia/
incoordination, hypertonia, and peripheral neuropathy
were identified in many of these patients.

More than 350 monogenic causes of epilepsy have
been described.* The majority of monogenic DEEs
are associated with early neonatal seizures, epileptic
spasms, or multifocal epilepsy.’****¢37 The number of
genes associated with DEEs in which generalized sei-
zures are the predominant seizure type are relatively
few, the most established being SLC2A1,> SYNGAP,*®
CHD2,” and SLC6A1.*° CHD2-DEE is distinctive for the
high proportion of patients with clinical photosensitiv-
ity, which is present in 80%. None of the patients in our
POLR3B cohort were reported to have photosensitivity.
Other rarer DEEs in which generalized seizures appear
to be the most prominent seizure type are NEXMIF,*
HNRNPU,* and EEF1A2.* Overall, the diagnostic yield
of genetic testing in patients presenting with myoclonic-
atonic seizures is relatively low,* but all these genes,
along with POLR3B, should be considered as potential
etiologies.

POLR3B disease-associated variants were first iden-
tified in biallelic state in patients with a progressive hy-
pomyelinating leukodystrophy. Abnormal dentition and
hypogonadotrophic hypogonadism were observed in some
affected individuals, leading to the term 4H leukodystophy
syndrome (hypomyelination, hypodontia, and hypogonad-
otrophic hypogonadism).'"'* None of these seven patients
reported initially had epilepsy as a feature of their phe-
notype. Since this initial description, many other patients
have been reported with POLR3B-related leukodystrophy,
but also with biallelic pathogenic variants in genes en-
coding other subunits of the RNA polymerase III, includ-
ing POLR3A,""'* POLR3C," POLR3K,"> and POLR3D."
Epilepsy has never been reported as a presenting or pre-
dominant feature in these patients. It is well recognized
that biallelic pathogenic variants in 4H-causing genes are
hypomorphic. As an example, one POLR3B variant associ-
ated with the leukodystrophy phenotype demonstrates im-
pairment of polymerase III biogenesis in a mouse model.*’

In 2021, Djordevic et al.?! reported six patients with
de novo heterozygous missense variants in POLR3B.
These patients had a distinct phenotype from those with
biallelic variants. There was no evidence of leukodys-
trophy on the MRI brain scans, and abnormal dentition
and hypogonadotrophic hypogonadism were not ob-
served. Five of the patients had a demyelinating periph-
eral neuropathy. Three of them had epilepsy. Proteomic
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RNA polymerase IlI

DN‘A-binding
not conserved
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FIGURE 2 Localization and predicted effects of POLR3B variants. Above: MetaDome missense tolerance landscape. Below, structural
modeling with POLR3B in blue, DNA in light gray. (A) RNA polymerase III complex, with its DNA template. (B) Cluster of the variants
(yellow) around the DNA binding region. (C-J) Captions of the predicted structural effects of 9 of 13 missense variants. (For further details

see Supplementary Material.)

analysis of the POLR3B variants identified in these pa-
tients revealed a disease mechanism different from that
of the hypomyelinating leukodystrophy cases. Rather
than impairing polymerase III biogenesis, the variants
caused aberrant association of individual enzyme sub-
units. Ando et al.*® reported two further patients with
Charcot-Marie-Tooth disease associated with de novo
variants in POLR3B. Neither of these patients had in-
tellectual disability, ataxia, or seizures. Hence, de novo
variants in POLR3B appear to be associated with a spec-
trum of disease presentations, involving various com-
binations of peripheral neuropathy, epileptic seizures,

ataxia, and developmental impairment/intellectual dis-
ability. At present, the case numbers are too few to start
investigating genotype-phenotype relationships.

What is clear is that the mechanism of disease is dis-
tinct from the global reduction of polymerase III activity
that is observed in the hypomyelinating leukodystrophy
cases. It is possible that these de novo missense variants
confer a gain-of-function property on the polymerase
III complex, or have other downstream effects on other
specific proteins. If overactivity of POLR3B is a contribu-
tor to epileptogenesis, then this opens potential avenues
for therapeutic intervention. Wholesale inhibition of
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polymerase III would not be advisable, since there is an
established association with progressive leukodystrophy.
However, certain licensed medications, which are known
to inhibit RNA polymerase, could be considered as can-
didates for therapeutic trials. Examples of ribosomal
polymerase inhibitors are melatonin®’ and rapamycin/
mTOR inhibitors.'” Mammalian target of rapamycin
(mTOR) inhibitors are effective anti-seizure medicines
and licensed for epilepsy treatment in tuberous sclerosis
complex.*® There are small scale human data to suggest
that melatonin may have an anti-seizure effect.*

5 | CONCLUSION

POLR3B-DEE is a newly described generalized DEE.
Pathogenic variants causing this condition are de novo
missense variants, and they cluster in the DNA-binding
domain of the gene. Seizures are resistant to conventional
ASMs and the only treatments reported to be effective in
more than one patient were sodium valproate and the ke-
togenic diet.
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