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Introduction 

Three recent crises — the dot-com bubble and the subprime and European sovereign 

debt crises — have revealed the complex dynamics underpinning the global financial 

system and how rapidly risk is propagated across markets. Investors, regulators and 

researchers are thus keen to develop accurate measures of risk transmission between 

assets and markets. From the investors’ perspective of guaranteeing efficient 

portfolio diversification, the risk of contagion is essential for their ongoing interest in 

changes in market linkages. From the regulators’ point of view, risk spillover is 

important to focalize attention on the maintenance and development of new 

financial regulatory and institutional rules such as circuit breakers, transaction taxes 

and short-sale rules. In fact, recognizing important shortcomings in financial 

supervision, the European Commission and European Central Bank (ECB) created 

the European Systemic Risk Board (ESRB) at the end of 2010 with the goal of 

monitoring, at the macro-prudential level, the European financial system and 

preventing and mitigating any propagation risk within the financial system.  

The literature contains many definitions of systemic risk. De Bandt and 

Hartmann (2000) defined it “as the risk of experiencing systemic events in the 

strong sense” where “strong sense” signifies the spread of news about an institution 

that has an adverse impact on one or more healthy institutions in a sequential 

manner. Furfine (2003) distinguished between two kinds of systemic risk: “The first 

type is the risk that some financial shock causes a set of markets or institutions to 

simultaneously fail to function efficiently. The second type of systemic is the risk 

that failure of one or a small number of institutions will be transmitted to others 

due to explicit financial linkages across institutions”. On the basis of the theoretical 

model proposed by Diamond and Dybvig (1983), Acharya (2009) defined systemic 

risk “as the joint failure risk arising from correlation of returns on the asset-side of 
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bank balance-sheets”. Billio et al. (2010) explained that “systemic risk can be 

realized as a series of correlated defaults among financial institutions, occurring over 

a short time span and triggering a withdrawal of liquidity and widespread loss of 

confidence in the financial system as a whole”. The last two definitions introduce the 

notion that common investment between banks generates correlation and “herding 

effects”, thereby generating systemic risk. The International Monetary Fund (IMF), 

Bank for International Settlements (BIS), Financial Stability Board (FSB) and the 

ECB focus their attention particularly on the consequences of systemic risk for the 

real economy. Thus the IMF, BIS, FSB (2009) stated systemic risk to be “the 

disruption to the flow of financial services that (1) is caused by an impairment of all 

or parts of the financial system; and (2) has the potential to have serious negative 

consequence for the real economy”. The ECB (2009) conceptualized systemic risk as 

a “risk that financial instability becomes so widespread that it impairs the 

functioning of the financial system to the point where economic growth and welfare 

suffer materially”. The above brief list of definitions points to the intricacy of the 

topic and the challenge faced by investors, regulators and researchers in attempting 

to measure the complexity and dynamics of systemic risk. 

Using the CoVaR systemic risk measure (Adrian and Brunnermeier, 2011; 

Girardi and Ergün, 2013), we quantified systemic risk as the impact of the risky 

situation of a particular financial institution, market or system on the value-at-risk 

(VaR) of other financial institutions, markets or systems. Our research objectives — 

potentially of interest to investors, regulators and researchers in equal measure — 

were as follows: 

1. To quantify systemic risk for Spanish financial institution and to account for 

the quantitative effect on the conditional VaR value with a view to assessing 

how the fragile position of one particular financial institution could impair the 

performance of other financial institutions and to determine how much 

regulatory capital a financial institution would need in order to cover its 

exposure to this kind of risk. 

2. To examine systemic risk in European sovereign debt markets and assess how 

this risk changed with the onset of the recent European sovereign debt crisis 

with a view to determining how the deteriorated financial position of a 

particular sovereign debt market can impair the performance of other sovereign 

debt markets. 
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3. To measure the systemic impact of domestic sovereign debt distress on domestic 

financial systems in Europe and of a potentially distressed Greek debt market 

on the financial systems of other countries during the recent financial and debt 

crises with a view to understanding the impact of domestic sovereign distress on 

a domestic financial system and the impact of Greek sovereign debt distress on 

other financial systems. 

The dissertation is laid out as follows: 

In Chapter 1 we provide a survey of the quantitative measure of systemic risk 

in the economics and finance literature. 

In Chapter 2 we examine, using conditional VaR (CoVaR), the systemic risk 

generated by major Spanish financial institutions in the recent global financial crisis 

and the European sovereign debt crisis as a systemic risk measure. CoVaR was 

quantified using quantile regression, multivariate generalized autoregressive 

conditional heteroskedasticity (MGARCH) and copula approaches. We also describe 

a novel copula-based approach to computing the CoVaR value, given that copula 

are flexible modellers of joint distribution and are particularly useful for 

characterizing the tail behaviour that provides such crucial information for the 

CoVaR. We found significant increases in systemic risk around the time of the 

recent global financial crisis and, to a lesser extent, around the time of the European 

debt crisis. Our evidence also shows that the quantile regression approach was 

unable to reflect the dynamics of, and sudden changes in, systemic risk. These 

results have implications for capital regulation in financial institutions and on how 

systemic risk should be measured.  

In chapter 3 we study systemic risk in European sovereign debt markets before 

and after the onset of the Greek debt crisis, taking, as a systemic risk measure, the 

CoVaR as characterized and computed using copulas. We found sovereign debt 

markets to be coupled before the debt crisis and systemic risk to be similar for all 

countries. With the onset of the Greek crisis, debt markets decoupled and the 

systemic risk of the countries in crisis (excepting Spain) decreased whereas that of 

the non-crisis countries increased slightly. The systemic risk of the Greek debt 

market increased for other countries in crisis, especially for Portugal (where systemic 

risk tripled after the onset of the crisis) and decreased for non-crisis countries.  

In Chapter 4 we investigated — using the CoVaR measure as characterized 

and computed using copulas and vine copulas — systemic sovereign debt distress in 

European domestic financial systems and the systemic risk of a potentially distressed 



Introduction 

4 

Greek debt market for other European financial systems countries before and after 

the onset of the recent financial and debt crises. We found that, before the debt 

crisis, sovereign debt had a positive systemic risk on European domestic financial 

systems. However, with the onset of the Greek crisis, the systemic impact of 

sovereign debt increased for countries in crisis (Greece, Italy and Portugal) whereas 

it remained stable or reduced for non-crisis countries. Regarding the systemic impact 

of sovereign Greek debt distress, our evidence indicates that negative impacts were 

limited to a small set of countries (Belgium, Italy, the Netherlands and Portugal).  

The dissertation results are described in three research articles with following 

titles: 

1. A CoVaR approach to systemic risk in the Spanish financial system 

2. A CoVaR-copula approach to systemic risk in European sovereign debt markets 

3. A vine copula-CoVaR approach to systemic sovereign debt risk for the financial 

sector. 

The realization of this results was only feasible by accessing to database as 

Bloomberg or Datastream. Furthermore, with the use of computer programs as: 

Matlab, R-Project, Eviews and OxMetrics. 
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Chapter 1 

1. Literature review 

Over the last years, researchers have developed a number of systemic risk measures 

referring to different systemic risk propagation channels. Three main measures can 

be identified: (1) measures of systemic risk that capture the contagion and exposure 

effect between institutions; (2) measures of systemic risk that quantify the trigger 

effect between the financial sector and the real economy; and (3) measures of 

systemic risk between the financial and public sectors and vice versa. 

The first category refers to the risk of a failure of one financial institution 

having a contagion or domino effect on other institutions through the transactions 

and interconnections linking these institutions. Many researchers have focused their 

attention on this kind of risk propagation. Segoviano and Goodhart (2009) created a 

banking stability index that assesses interbank dependence for tail events. Acharya 

et al. (2010) used systemic and marginal expected shortfall (ES) measures to 

quantify downside risk and the contribution of individual financial institutions to 

risk. Allen et al. (2010) proposed a measure of aggregate systemic risk — called 

CATFIN — to predict declines in aggregate bank lending activity six months in 

advance. Huang, Zhou and Zhu (2009, 2010, 2012) proposed their distress insurance 

premium (DIP) measure. Adrian and Brunnermeier (2011) proposed using 

conditional value-at-risk (CoVaR) to capture possible risk spillovers between 

financial institutions. Likewise, Brownless and Engle (2012) developed a systemic 

risk measure, called SRISK, to represent the amount of capital needed to restore 

minimum capital requirements. Billio et al. (2012) proposed five measures of 
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systemic risk to capture contagion and exposure effects in the relationship between 

financial institutions. Girardi and Ergün (2013) proposed a new approach to 

quantifying CoVaR using the joint density for the financial system and financial 

institution returns. Finally, Halaj et al. (2013) suggested a simple network analysis 

measure, called the systemic probability index (SPI). 

Regarding measures of the trigger effect, several authors have developed a 

systemic risk measure based on interdependence between the financial sector and the 

real economy. Reinhart and Rogoff (2009a) showed that systemic risk in financial 

markets increases in crisis periods and has adverse effects that extend to the real 

economy. Giesecke and Kim (2011) developed the default intensity model (DIM) to 

capture spillover effects through the complex network of relationships with the real 

economy. De Nicolò and Lucchetta (2010) proposed a GDP-at-risk model to quantify 

the impact between the macro-economy, the financial markets and intermediaries. 

Finally, regarding systemic risk generated between the financial and public 

sectors, Reinhart and Rogoff (2009b, 2010) documented sovereign distress spread to 

the financial system when banks held a substantial amount of government debt in 

their portfolio. Alter and Schuler (2012) examined the relationship between 

sovereign default risk and domestic banks. Mink and De Haan (2013) analysed the 

impact of highly volatile Greek bonds on European bank stock prices in 2010 and De 

Bruyckere et al. (2013) studied contagion between banking and sovereign default 

risk in Europe through asset, collateral and rating channels. Bhanot et al. (2014) 

investigated the impact of changes in Greek sovereign yield spreads on stock returns 

in the financial sector. Battistini et al. (2014) demonstrated that the sovereign debt 

portfolios of European banks revealed growing home bias during the recent crisis, 

with domestic sovereign debt holdings growing in line with sovereign solvency risk. 

Finally, alternative risk measures have been proposed, other than those 

included in the three categories mentioned above. Engle and Manganelli (2004) 

developed their conditional autoregressive value at risk (CAViaR) model that uses 

quantile regression to capture the tail behaviour of returns. De Jonghe (2010) used 

extreme value theory to measure banks’ systemic risk exposure. Zhou (2010) used 

multivariate extreme value theory to quantify systemic risk, analysing the 

relationship between institution size and systemic importance. Finally, Krizman et 

al. (2011) developed a measure of systemic risk called the absorption ratio that relies 

on principal component analysis (PCA). 
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1.1. Systemic risk measures 

Below we describe the methodologies used to quantify systemic risk measures. In the 

selection of the systemic risk measures, we would trace briefly all aspects that the 

literature aims to address. 

1.1.1. Mahalanobis distance 

Kritzman and Li (2010) defined “financial turbulence” as the statistical unusualness 

of a set of returns given historical behaviour patterns, including extreme price 

movements, decoupling of correlated assets and convergence of uncorrelated assets. 

To quantify turbulence they used the Mahalonabis distance (Mahalanobis, 1927). 

Given the returns for a particular period of n assets, the turbulence index was 

formally defined as: 

    1'

t t td y y
    , (1.1) 

where: 

td = turbulence at time t 

ty = vector of asset returns at time t (n 1) 

= sample average vector of historical returns (n 1) 

= sample covariance matrix of historical returns (n n) 

When applying the turbulence index to two assets, we consider the difference 

between the return for the first asset at time t and the mean return and the 

difference between the return for the second asset at time t and the mean return and 

calculate the covariance between the returns for these two assets. We then take the 

absolute value of the final calculation so that the turbulence index is always 

positive. The information provided by the financial turbulence index is helpful 

because assets that may be negatively correlated during normal economic conditions 

may become positively correlated during times of high turbulence. This systemic risk 

measure, which can be used for stress tests of asset portfolios, provides a realistic 

estimate of possible losses arising from a systemic event. 

1.1.2. Multivariate density estimators 

Segoviano and Goodhart (2009) developed a systemic risk measure based on the 

banking system’s multivariate density (BSMD). Considering the banking system as 
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a portfolio of banks, with each bank as part of the portfolio, probabilities of distress  

can be obtained by estimating the BSMD using a multivariate density methodology 

(Segoviano, 2006). It is also possible to estimate banking stability measures from the 

BSMD. Segoviano and Goodhart (2012) used this methodology to examine and 

quantify relative changes in stability over time in the following cases: (1) general 

distress in the banking system; (2) distress between specific banks; and (3) distress 

in the system associated with a specific bank. Given the BSMD, the authors 

proposed a set of measures of systemic risk, namely, joint probability of default, the 

banking stability index and the distress dependence matrix. 

1.1.3. Conditional value at risk  

Adrian and Brunnermeier (2011) proposed the CoVaR measure for systemic risk, 

which captures possible risk spillovers between financial institutions by providing 

information on the VaR of the financial system conditional on the fact that a 

financial institution is in distress. These authors also calculated the systemic risk 

contribution of an institution as the ∆CoVaR, which measures the difference 

between the CoVaR under financial distress and the CoVaR in the benchmark state. 

Formally, the CoVaR can be defined as the q-quantile of a conditional distribution: 

  j|i i
q qPr X CoVaR |X =VaR =q,j i  (1.2) 

with the systemic risk contribution defined as: 

 j|i j|i j|i
q q 50%CoVaR CoVaR CoVaR   . (1.3) 

The authors proposed using quantile regression to compute the CoVaR:  

 i i i i i
t t t-Msystem| system| system|

1CoVaR VaR      , (1.4) 

where t-M 1  denotes a set of explanatory variables. 

1.1.4. Co-risk 

An IMF Global Financial Stability Report (IMF, 2009a) proposed the co-risk 

methodology to estimate co-movements between the credit default swap (CDS) 

spreads for several financial institutions. This methodology assesses direct and 

indirect financial linkages that may arise from exposure to common risks (similar 

business models, common accounting practices, etc). Like the CoVaR, co-risk 
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employs quantile regression to estimate co-movement between risk factors for 

financial institutions in distress. The co-risk measure is formally defined as: 

 
k

i , i i , i j
i

CDS R CDS
  

      , (1.5) 

where iCDS is the credit default swap spread of the institution i, jCDS  is the credit 

default swap spread of the institution j, iR denotes common aggregated risk factors, 

  denotes the quantile (usually the 95th) corresponding to a distress period and 

where , i
  are the parameter estimates that quantify the input of firms as the credit 

risk of firm i at quantile  . Hence, the conditional co-risk measure is given by:  

 

k

95 95,i i 95, j j
i

i, j
i

R CDS (95)

CoRisk 100 1
CDS (95)

 
     

 
  

 
 
 
 


, (1.6) 

where iCDS (95)  and jCDS (95)  are the CDS spreads of institution i and j 

corresponding to the 95th percentile and where 95 , 95, i  and 95, j  are the quantile 

regression parameters at the 95th level. 

1.1.5. Systemic and marginal expected shortfalls 

Acharya et al. (2010) showed how a financial institution’s contribution to systemic 

risk could be measured and priced as the systemic expected shortfall (SES). The 

SES represents a propensity to be undercapitalized when the system as a whole is 

undercapitalized. The SES can be quantified using three measures: (1) the outcome 

of stress tests performed by regulatory bodies; (2) the decline in equity valuations of 

large financial firms during a crisis; and (3) the widening of the credit default swap 

spread of large financial institutions. The same authors also developed leading 

indicators denominated the marginal expected shortfall (MES) and leverage (LVG) 

defined as the ratio of the quasi-market value of assets market to the value of 

equity. They define the MES of a financial institution as its short-run expected 

equity loss conditional on the market taking a loss greater than its VaR at  %. 

Formally it is expressed as: 

   i, t i, t 1 m,t 1 ,t t 1MES r | r q r C ,=E
   

   (1.7) 

or 
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  i, t i, t 1 m,t 1MES r | r C ,=E
 

  (1.8) 

where i, tr is the stock return of the institution, m,tr is the market return and C is a 

constant corresponding to what is considered to be “tail risk” in the market. As all 

the considered institutions belong in the market, it is straightforward to see that the 

MES of one institution is simply the derivate of the market ES with respect to the 

institution’s market share (or capitalization), hence the term “marginal”. LVG is 

defined as: 

 
i

quasi-market value of assets
LVG .

market value of equity
  (1.9) 

Moreover, applying cross-section regression analyses of firms’ SES on MES and 

LVG: 

 i i i iSES MES LVG        . (1.10) 

After estimating the three parameters,  ,   and  , for specific SES metrics, the 

systemic risk of financial institution at a future time t can be calculated as: 

 Systemic Risk of Firm   t t
i ii MES LVG

 

   

 
 

    

. (1.11) 

1.1.6. The default intensity model  

Giesecke and Kim (2011) developed the default intensity model (DIM) as a dynamic 

measure of the systemic risk of the financial sector as a whole. Recognizing that 

systemic distress involves all economic agents, they proposed considering the 

systemic risk of the financial sector as the conditional probability of the failure of 

most financial institutions. The model estimated in terms of hazard rate, or 

intensity, is expressed as: 

    
t

t s* * *
t t s

0

exp X e dJ ,
 

      (1.12) 

where *
tX  is a time-varying vector of the several explanatory variables, *  is a 

vector of parameters and  

*
t

t 1 N
J v ...v ,   
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where  *
n nv max 0, log D    . Intensity is the sum of two terms with a bearing 

on economy-wide default: baseline hazard and spillover hazard. The model’s 

parameters are obtained by maximizing log-likelihood for the default rate as follows:  

     
t

* * *
s s s

0

max log dN ds .



      (1.13) 

The conditional distribution at time t of economy-wide defaults over the period is 

estimated via Monte Carlo simulation. Finally, VaR at level   is used to quantify 

the systemic risk. DIM is thus able to capture default spillover within and between 

sectors and also can provide accurate out-of-sample forecasts of systemic risk. 

1.1.7. Distress insurance premium 

As an ex-ante systemic risk measure, Huang, Zhou and Zhu (2010) proposed distress 

insurance as a theoretical insurance premium against systemic financial distress. 

Their methodology is based on each institution’s marginal contribution to systemic 

risk. First, the probability of default is calculated as: 

 
a

a b

t i, t
i, t

t i, t t i, t

s
PoD ,

LGD s



 (1.14) 

where ra e
t T

t t
d

    , rb e
t T

t t
d ,

     LGD is the loss given default, r  is the 

risk-free rate and i, ts  is the CDS spread of bank i at time t. Next the correlation 

between banks’ assets is estimated and then a hypothetical debt portfolio is created 

that consists of the liabilities of all the sampled banks weighted by the Size of the 

liability in each institution. The cost of the distress insurance premium is the 

expectation of portfolio credit losses equalling or exceeding a predetermined 

threshold, simulated using the Monte Carlo method in two steps: (1) the probability 

distribution of joint default is calculated; and (2) the LGD distribution is 

incorporated so as to derive the probability distribution of portfolio losses. 

1.1.8. Broader hedge fund-based systemic risk measures 

The broad impact of hedge funds on systemic risk was analysed by Chan, 

Getmansky, Haas and Lo (2006a, 2006b), who, to examine the unique risk/return 

profiles of hedge funds, suggested three risk measures. In the first measure, an 

autocorrelation-based measure is used to proxy hedge fund illiquidity exposure, with 



Chapter 1 

12 

the authors adapting a cross-sectional weighted average of rolling first-order 

autocorrelations for hedge funds. The second measure quantifies the probability of 

hedge fund liquidation and the third measure is a regime-switching model that 

quantifies aggregate distress in the hedge fund sector. 

1.1.9. Granger causality tests 

Billio et al. (2010) developed two measures of connectedness for capturing changes 

in correlation and causality among financial institutions, based on an analysis of 

contagion in four financial sectors, namely, hedge funds, banks, brokers and 

insurance companies. The first measure, which determines increases in correlation 

between asset returns, is based on PCA, which decomposes the asset return of a 

sample of financial institution into orthogonal factors of decreasing explanatory 

power (see Muirhead, 1982 for an explanation of PCA). The second measure uses 

pairwise linear and nonlinear Granger causality tests to determine the network of 

relations between financial institutions. This test gives a statistical notion of 

causality based on the relative forecasting power of series of pairs. From this model, 

Billio et al. (2010) made the following network-based measures of connectedness: 

degree of Granger causality (DGC), number of connections, sector-conditional 

connections, closeness and eigenvector centrality. Resolved measures can identify 

and quantify financial crisis periods and act as early-warning indicators of systemic 

risk. 

1.1.10. Simulating a credit scenario 

Chau-Lau, Espinosa and Sole (2009) evaluated a systemic banking network and 

interbank linkage. Their analysis considered a network of N institutions and stylized 

balance sheets for each financial institution i, as follow: 

 ,ji i i i i ij
j j

x a k b d x       (1.15) 

where jix  represents bank i loans to bank j, ia  is bank i’s other assets, ik  is bank i’s 

capital, ib  is long- and short-term borrowing that is not interbank lending, ijx  

represents bank i borrowing from bank j and id  is a deposit in bank i. This 

approach analyses contagion due to a credit shock between institutions and tracks, 

via simulation, the domino effects of each individual failure. 
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1.1.11. GDP stress test 

Alfaro and Drehmann (2009) developed a macroeconomic stress test — useful for 

assessing the potential impact of adverse shocks — using an absorption ratio model 

of actual and expected real GDP growth ( ty ) as good summary indicators of 

macroeconomic status. Their model is defined as: 

 1 1 2 2t t t ty y y
 

      . (1.16) 

As a stress scenario, the authors used the worst negative forecast error of the above 

absorption ratio model, regardless of whether this coincided with a banking crisis or 

not.
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Chapter 2 

2. Measuring systemic risk in the Spanish 

financial system: A CoVaR approach 

2.1. Introduction 

Financial crises draw the attention of investors and regulators to the fragility of the 

financial system and the potential systemic risk effects of a bank default. 

Quantifying systemic risk is therefore crucial to an assessment of how the fragile 

position of a financial institution could impair the performance of other financial 

institutions. It is also crucial to determine how much regulatory capital a financial 

institution needs to hoard in order to cover its exposure to this kind of risk. Below 

we quantify systemic risk for Spanish financial institutions and examine how this 

risk has changed in the recent global financial crisis and the European sovereign 

debt crisis. 

The most widely used risk measure is value-at-risk (VaR), which quantifies a 

financial institution’s maximum loss for a given confidence level and time horizon. 

This measure, however, is centred on the individual risk of an institution and fails to 

consider the potential spillover effects that default may have on other institutions. 

The literature has proposed a large number of systemic risk measures (see Bisias et 

al., 2012 and Bernal et al., 2013 for a review). Huang, Zhou and Zho (2009) 

developed a systemic risk indicator given by the price of credit default swaps (CDS) 
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against systemic financial distress. Using CDS data, Segoviano and Goodhart (2009) 

constructed a banking stability index with which to assess interbank dependence for 

tail events. Moreno and Peña (2012) provided evidence regarding the suitability of 

using CDS data to estimate systemic risk. Acharya et al. (2010) introduced systemic 

expected shortfall and marginal expected shortfall as indicators to quantify downside 

risk and the contributions of financial institutions to risk. Brownless and Engle 

(2012) developed a systemic risk measure called SRISK, representing the amount of 

capital needed to restore a minimal capital requirement. Allen et al. (2010) proposed 

a measure of aggregate systemic risk called CATFIN that can predict declines in 

aggregate bank lending activity six months in advance. Billio et al. (2012) proposed 

five measures of systemic risk that capture contagion and exposure effects in 

relationships between financial institutions. Engle and Manganelli (2004) developed 

a conditional autoregressive value at risk (CAViaR) model that uses quantile 

regression to capture the tail behaviour of returns. 

Recently, Adrian and Brunnermeier (2011) proposed conditional VaR 

(CoVaR) as a new measure of systemic risk. CoVaR captures possible risk spillovers 

between financial institutions by providing information on the VaR of the financial 

system conditional on the fact that a financial institution is in distress,1 with the 

systemic risk contribution of an institution measured as the difference between the 

CoVaR under financial distress and the CoVaR in its benchmark state. More 

recently, Girardi and Ergün (2013) generalized the CoVaR measure by assuming 

that the conditioning financial distress event should refer to the return of the 

financial institution being less than or equal to its VaR, rather than merely being 

equal to its VaR, as proposed in Adrian and Brunnermeier (2011). Girardi and 

Ergün (2013) also proposed a new approach to quantifying systemic risk that differs 

from the quantile regression approach proposed by Adrian and Brunnermeier (2011); 

it consists of using a multivariate generalized autoregressive conditional 

heteroskedasticity (MGARCH) model to characterize joint density between the 

financial system and financial institution returns and to obtain the CoVaR value by 

numerically solving a double integral. 

Below we quantify systemic risk for Spanish financial institutions using the 

CoVaR measure and also account for the quantitative effect on the CoVaR value of 

                                                 
1 López-Espinosa et al. (2012) identified the main determinants of systemic risk for a set of 

large international banks using the CoVaR measure proposed by Adrian and Brunnermeier 

(2011). 
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using quantile regression and MGARCH. We also propose a novel copula-based 

approach to computing the CoVaR value, given that copulas are more flexible in 

modelling joint distributions and are particularly useful for characterizing tail 

behaviour, which provides such crucial information for the CoVaR. Estimating the 

CoVaR through copulas is also computationally less cumbersome than using the 

MGARCH approach. The procedure involves two steps: first, given the confidence 

level of the VaR and the CoVaR, we obtain the cumulative probability of the 

CoVaR from the copula; and second, we invert the marginal distribution function 

for this cumulative probability and so obtain the value of the CoVaR. 

We studied systemic risk for financial institutions listed on the Spanish stock 

exchange using weekly data for the period January 2003 to February 2013. Our 

evidence shows that systemic risk displays dynamic behaviour that is well captured 

by the copula and MGARCH approach to computing the CoVaR; quantile 

regression, however, is unable to capture the dynamics and abrupt changes in the 

value of systemic risk. More specifically, we found significant increases in systemic 

risk during the recent global financial crisis and the European debt crisis that 

quantile regression was unable to capture or underestimated. The fact that the 

copula approach, on average, indicated greater systemic risk than the MGARCH 

approach is consistent with the time-varying evidence of tail dependence reported by 

the copula. 

The remainder of the chapter is laid out as follows. Section 2.2 characterizes 

systemic risk, quantile regression, MGARCH and copula approaches to the CoVaR,  

Section 2.3 presents our data, Section 2.4 reports the results and Section 2.5 

concludes the chapter. 

2.2. Methodology 

Several systemic risk measures have been proposed in the literature to quantify the 

impact of a potentially risky financial institution on the financial system as a whole. 

For our research, we chose to use VaR — as arguably the measure most widely 

employed by financial institutions — to quantify systemic risk as the effect of the 

risky situation of a particular financial institution on the VaR of the financial 

system overall, specifically, the CoVaR (Adrian and Brunnermeier, 2011; Girardi 

and Ergün, 2013). 
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2.2.1. CoVaR 

The CoVaR of the financial system is the VaR of the financial system conditional on 

the fact that a given financial institution is in financial distress. Let  be the 

returns of the financial system and let  be the returns of the financial institution 

i. The CoVaR for a confidence level  and time t can be formally defined as the 

-quantile of the conditional distribution of : 

 , (2.1) 

where the financial distress situation of the financial institution i is represented by 

the fact that , where  is the VaR for the financial institution i, 

measuring the maximum loss that financial institution i may experience for a 

confidence level  and a specific time horizon t, that is, the -quantile of the 

return distribution for the financial institution i: . Thus, from a 

statistical point of view, computing the CoVaR value consists of determining the 

quantile of a conditional distribution. 

In addition, the systemic risk contribution of a particular financial institution i 

can be defined as the difference between the CoVaR for a confidence level  and 

the VaR of the financial system conditional on the fact that financial institution i is 

in a benchmark state, measured as the median of the return distribution of 

institution i (the VaR value for ). This measure, called delta CoVaR (

CoVaR), is formally defined as: 

 . (2.2) 

Below we describe different approaches to computing the value of the CoVaR. 

2.2.2. Quantile regression 

Adrian and Brunnermeier (2011) proposed using quantile regression to compute the 

CoVaR in such a way that the VaR of the financial institution i and a set of 

explanatory variables determine the quantile of the conditional distribution of . 

We can thus obtain information on the VaR of the financial system conditional on 

the fact that the returns of financial institution i are in its VaR, , that 

is, . We do this by characterizing the  conditional 

quantile function of  as: 

s
tX

i
tX
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 s
tX
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 , (2.3) 

where  is the conditional distribution function of  given the set x of 

explanatory variables,  includes a set of explanatory variables and the quantile 

regression coefficient  determines the dependence relationship between the 

 and the VaR of the financial system. The CoVaR value at each time t is 

computed as the estimated value of the quantile regression given by Eq. (2.3) for the 

corresponding confidence levels of  and . 2  Quantile regression is 

computationally simple but has the disadvantage that it provides information only 

on the CoVaR conditional on the fact that  and not on the fact that 

; this fact has repercussions for the CoVaR values, as was discussed in 

Girardi and Ergün (2013). In addition, using quantile regression requires 

computation of the . 

Adrian and Brunnermeier (2011) proposed computing the in Eq. (2.3) 

by means of quantile regression for the distribution of , where only the 

explanatory variables in  were included in order to allow the value of  

to change over time. With the aim of accounting for the effect of heteroskedasticity 

and fat tails of the return distribution on the value of the , we followed a 

different approach to computing the . Specifically, we modelled the returns 

of each financial institution through an autoregressive (AR) moving average (MA) 

model, specifically, ARMA(p,q), specified as: 

 , (2.4) 

where p and q are non-negative integers and  and  are the AR and MA 

parameters, respectively. The stochastic process , where  — the 

conditional variance of  whose dynamic is reflected in a threshold generalized 

autoregressive conditional heteroskedasticity (TGARCH) specification (Zakoian, 

1994; Glosten et al., 1993) — is given by: 

                                                 
2 Adrian and Brunnermeier (2011) proposed a specification of the quantile regression function 

that is slightly different from Eq. (2.3). As the explanatory variable they include i
tX  instead 

of i
t,

VaR

 and use the estimated parameter values to predict the CoVaR by substituting i

tX  

by i
t,

VaR


. In this way, they assume that estimated parameter values are equal across 

different quantile regression functions. 

 s s
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 , (2.5) 

where  is a constant,  is the variance prediction error for the previous period 

(the generalized autoregressive conditional heteroskedasticity (GARCH) 

component), represents the volatility shock for the previous period (the 

autoregressive conditional heteroskedasticity (ARCH) component) and  captures 

leverage effects. When  takes values greater than zero the future conditional 

variance will increase proportionally more after a negative shock that after a positive 

shock of the same magnitude.  is an i.i.d. random variable with mean zero and 

unit variance that follows a Hansen (1994) skewed-t density distribution given by: 

 , (2.6) 

where  and  are the degrees of freedom parameter ( ) and the 

symmetric parameter ( ), respectively. The constants a, b and c are given 

by , and . This distribution 

converges to the standard Gaussian as  and  and to the symmetric 

Student-t distribution as  and  is finite. From Eqs. (2.4)-(2.6) we can 

compute the  at each time t as: 

 , (2.7) 

where  is the quantile of the standardized skewed-t distribution for 

probability . This is the value for the VaR that we considered in Eq. (2.3) in order 

to estimate the CoVaR through quantile regression. 

2.2.3. MGARCH 

In order to obtain the value of the VaR conditional on the event , 

Girardi and Ergün (2013) proposed an alternative procedure based on the joint 

distribution of  and . From Eq. (2.1), the CoVaR can be expressed as: 
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 . (2.8) 

Given that , Eq. (2.8) can be written as: 

 . (2.9) 

Hence, the value of the CoVaR can be obtained by numerically solving the following 

double integral: 

 , (2.10) 

for , where  denotes the joint probability density. Thus, 

computing the CoVaR involves knowledge of the joint distribution of  and . 

According to Girardi and Ergün (2013), the joint distribution of  and  

can be obtained using MGARCH and time-varying dynamic conditional correlation 

(DCC). This MGARCH-DCC model, initially proposed by Engle (2002), considers 

the mean and volatility dynamics of the returns as given by Eqs. (2.4) and (2.5). 

The bivariate stochastic terms are given by , where , 

 has a standardized bivariate Student-t distribution and where  is a 

variance-covariance matrix where the variance of each stochastic component is given 

by Eq. (2.5) and the covariance between the two stochastic components is given by 

, where  is the correlation coefficient between the returns of 

the system and the financial institution i. The correlation matrix is given by 

, where  is a 2x2 diagonal matrix, with the conditional variance 

of each variable located along the main diagonal. Engle (2002) proposed 

characterizing the dynamics of the conditional correlations as follows: 

 ,  

 , (2.11) 

where  is the unconditional covariance matrix for the standardized residuals, 

 is the  diagonal matrix and  and  are parameters. Once we 

estimated the MGARCH-DCC model, we had all the necessary information on the 

elliptical , so, for the given value of the  we could numerically 

solve Eq. (10) to obtain the CoVaR for each time period. 
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2.2.4. Copulas 

We can employ copulas3 to compute the CoVaR. From Eq. (2.9), we can express the 

CoVaR in terms of the joint distribution function of  and , , as: 

 . (2.12) 

Furthermore, according to Sklar’s (1959) theorem, the joint distribution function of 

two continuous random variables can be expressed in terms of a copula function. 

Hence, Eq. (2.12) can be written as: 

 , (2.13) 

where is a copula function and  and  denote the marginal distributions 

of  and , respectively, such that  and . 

Thus, from Eq. (2.13) we can compute the CoVaR value following a two-step 

procedure. First, given that  and given the copula specification, for a 

confidence level  we compute the cumulative probability for the CoVaR, , by 

solving from Eq. (2.13). Next, from , we invert the marginal distribution function 

of  to obtain the CoVaR, hence, . 

Computing the CoVaR using copulas offers three main advantages. First, 

copulas offer more flexibility in separate modelling the marginals and dependence, 

which is especially important when the marginals have different characteristics or 

when dependence is not linear — in particular, when the joint distribution displays 

different forms of tail dependence (crucial for the values of the CoVaR). Second, 

computation of the CoVaR through copulas is less computationally burdensome than 

using the MGARCH approach involving the numerical resolution of a double 

integral. Third, computation of the is not necessary, as we only need 

information on the confidence level for , which is exogenously determined. 

Obtaining the CoVaR through copulas requires specification of the marginals 

and the copula function. The marginals we used are given by Eqs. (2.4)-(2.6); in 

order to characterize different patterns of dependence, different copula specifications, 

                                                 
3 For further analysis of copulas, see Joe (1997) and Nelsen (2006). An overview of copula 

applications to finance can be found in Cherubini et al. (2004). Mainik and Schaanning 

(2012) provided the first representation of the CoVaR in terms of copulas. 
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as reported in Table 2.1, were used. We also captured time-varying dependence by 

assuming that copula parameters change over time. For the Gaussian and the 

Student-t copulas, we adopted an ARMA(1,q)-type process (Patton, 2006) for the 

linear dependence parameter : 

 , (2.14) 

where  is the modified logistic transformation that keeps the 

value of  in (-1,1). For the Student-t copula,  is replaced by . We also 

considered time-varying dependence for the Gumbel copula and for its rotated 

version by assuming that the parameters follow the dynamics given by the following 

equation: 

 . (2.15) 

Overall, the family of eleven copulas considered here can be classified as follows: (1) 

symmetric copulas, with either tail dependence (Student-t and time-varying 

Student-t copulas) or tail independence (Gaussian, time-varying Gaussian and 

Plackett copulas) and (2) asymmetric tail dependence copulas (Gumbel, rotated 

Gumbel, BB7, BB1 and time-varying Gumbel and rotated Gumbel copulas). 

The parameters of the marginal and copula models were estimated using a two-

step procedure called inference functions for margins (Joe and Xu, 1996). We first 

estimated the marginal models by maximum likelihood (ML) and then transformed 

each filtered standardized return series (standardized residual) into its uniform 

marginal via the probability integral transform, thus obtaining  and . Using 

this information, we then estimated the copula function parameters by ML. The 

number of lags in the mean and variance equations for each series was selected 

according to the Bayesian information criterion (BIC) and Akaike information 

criterion (AIC). The performance of the different copula models was evaluated using 

the AIC adjusted for small-sample bias, as in Breymann et al. (2003) and Reboredo 

(2011; 2013). 
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Table 2.1: Copula specifications 

Name Copula Parameter Structure dependence 

Gaussian  1 1
NC (u,v; ) (u), (v)        No tail dependence. 

Student-t  
 

   1 1
STC (u,v; , ) T(t (u), t (v))   Symmetric tail dependence. 

Gumbel 

   
   

          

1

GC (u,v; ) exp logu log v  
  1  Upper tail dependence and lower tail 

independence. When   1  two variables are 

independent. 

Rotated Gumbel        RG GC (u,v; ) u v 1 C (1 u,1 v; )    1  Upper tail independence and lower tail 

dependence. 

BB7 

   

1
1

BB7C (u, v; , ) 1 1 1 1 u 1 1 v 1


 

 
 

      
                        

1  , 

0   

Differing degrees of upper and lower tail 

dependence. 

Plackett 

 
                         

 

2

P

1
C (u,v; ) 1 1 u v 1 1 u v 4 1 uv

2 1

 

0  , 

  1  

Symmetric tail independence. 

BB1 

   

1
1

CGC (u, v; , ) u 1 v 1 1






 
 

   
        

     

0   
1   

Asymmetric tail dependence. 
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2.3. Data 

We empirically examined systemic risk for nine listed Spanish institutions using 

daily prices for the period 16 January 2003 to 28 February 2013. The set included 

seven banks (BBVA, Banco Santander, Banco Sabadell, Banco Popular, Bankinter, 

Banesto and Banco de Valencia) and two insurance companies (Catalana Occidente 

and Mapfre). To capture the behaviour of the whole financial system, we used the 

MSCI Spain Financials Index. Data were obtained from Bloomberg and returns for 

price data were computed on a continuous compounding basis. 

We also considered daily information for a set of variables that were included 

in  in Eq. (2.3), as follows (all these data were obtained from Bloomberg): 

(a) Daily IBEX-35 volatility, computed as the standard deviation of the daily 

returns in a backward window of three months. 

(b) The first difference of the 12-month Treasury bill rate. 

(c) The slope of the yield curve measured as the difference between the 10-year and 

the 12-month Treasury bill rates. 

(d) The credit spread determined as the difference between interest rates for 

corporate and government 10-year maturity bonds. 

(e) Daily market returns obtained from the IBEX-35 general market index. 

Figure 2.1 shows the time-series plot for the returns of the studied institutions 

( ) and the MSCI ( ). All series display the usual characteristics of financial 

returns — including volatility clustering and fat tails — and also show abrupt 

changes around the onset of the global financial crisis (mid-2008) and European 

sovereign debt crisis (at the end of 2009). Figure 2.2 depicts the temporal dynamics 

of the set of variables considered as explanatory variables in the quantile regression. 
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Figure 2.1: Time series plot of daily returns for each institution and the MSCI 

Index. 
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Figure 2.2: Time series plot for the explanatory variables. 

  

  

 
Table 2.2: Descriptive statistics for specific risk factors. 

 

Market 

volatility 

12-month Treasury 

bill variation rate 
Slope 

Credit 

spread 

Market 

yield 

Mean 0.232 0.000 0.018 0.007 0.000 

Std. Dev. 0.113 0.001 0.011 0.004 0.015 

Maximum 0.679 0.010 0.043 0.019 0.120 

Minimum 0.080 -0.015 0.000 -0.003 -0.100 

Skewness 1.249 -0.460 -0.073 0.572 0.161 

Kurtosis 4.909 38.921 1.788 3.209 8.687 

J-B 987.6* 129011.4* 148.9* 135.1* 3242.4* 

Q(20) 44079 97.319 45005 41735 61.509 

 

[0.000] [0.000] [0.000] [0.000] [0.000] 

ARCH 33075.33 8.408 2060.849 1698.055 18.624 

 [0.000] [0.000] [0.000] [0.000] [0.000] 

Note. Daily data for the period 16 January 2003 to 28 Febrary 2013. J-B denotes 

the Jarque-Bera statistic for normality. Q(k) is the Ljung-Box statistic for serial 

correlation in squared returns computed with k lags. ARCH denotes Engle’s LM 

test for heteroskedasticity computed using 20 lags. An asterisk (*) indicates 

rejection of the null hypothesis at 5%. 
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Table 2.3: Descriptive statistics for weekly price returns for selected Spanish financial institutions. 

 

Banesto Bankinter BBVA Popular Sabadell Santander Valencia Catalana Mapfre MSCI  

Mean 0.000 0.000 0.000 -0.001 0.000 0.000 -0.001 0.001 0.000 0.000 

Std. Dev. 0.022 0.025 0.029 0.025 0.020 0.033 0.037 0.022 0.022 0.021 

Maximum 0.183 0.151 0.365 0.203 0.175 0.608 0.668 0.132 0.134 0.154 

Minimum -0.235 -0.092 -0.163 -0.122 -0.118 -0.293 -0.334 -0.120 -0.157 -0.116 

Skewness -0.018 0.477 1.026 0.751 0.796 2.720 2.348 0.269 0.118 0.421 

Kurtosis 14.602 5.776 19.666 10.360 12.184 60.472 65.466 6.393 7.822 9.423 

J-B 13449* 860.89* 28174* 5638.4* 8681.9* 332978* 392072* 1179.3* 2328.7* 4192.8* 

Q(20) 39.184 44.197 74.862 55.902 77.119 100.520 128.850 42.193 52.843 55.391 

 

[0.006] [0.001] [0.000] [0.000] [0.000] [0.000] [0.000] [0.003] [0.000] [0.000] 

ARCH 3.448 12.133 28.833 11.042 7.861 30.954 16.363 12.475 13.934 16.218 

 [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 

Pearson Corr. 0.693 0.700 0.934 0.806 0.708 0.891 0.318 0.469 0.629  

Note. Daily data for the period 16 January 2003 to 28 February 2013. J-B denote the Jarque-Bera statistic for normality. 

Q(k) is the Ljung-Box statistics for serial correlation in squared returns computed with k lags. ARCH denotes Engle’s LM 

test for heteroskedasticity computed using 20 lags. Pearson Corr. is the Pearson correlation between the financial system 

(MSCI) and each financial institution. An asterisk (*) indicates rejection of the null hypothesis at 5%. 
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Table 2.2 shows that weekly returns for the financial institutions had similar 

characteristics. Specifically, returns on average were approximately zero and their 

standard deviations were larger in an order of several magnitudes, hence, no 

significant trend was observed in the returns. The Banco de Valencia showed greater 

volatility than the other institutions, in terms of the standard deviation and the 

distance between maximum and minimum values. For all the series the Jarque-Bera 

test clearly rejected the null hypothesis of normality. Asymmetry and fat tails in the 

returns were evident in the fact that the kurtosis coefficient was above 3. The 

autoregressive conditional heteroskedasticity-Lagrange multiplier (ARCH-LM) 

statistic indicated that all the return series displayed ARCH effects. Finally, the 

Pearson’s correlation coefficient for each financial institution with the system was 

positive, with larger institutions taking greater values. 

2.4. Results 

Below we present the marginal model and VaR results for each financial institution 

and then report the CoVaR results obtained using the different approaches. 

2.4.1. Marginal model and VaR results 

The estimation results for the marginal models reflected in Eqs. (2.4)-(2.6) are 

reported in Table 2.4 for all the institutions and overall financial system returns. We 

considered different combinations of the parameters p, r and m for values ranging 

from zero to a maximum lag of two, selecting the most suitable value according to 

the BIC and AIC. We can summarize the evidence on the marginal models as 

follows. Average returns exhibited, in general, no temporal dependence and returns 

volatility was persistent across different financial institutions, with some volatility 

dynamics (for Banesto, Banco Popular, Banco de Valencia and Catalana Occidente) 

described by several lags in the TGARCH model specification. Leverage effects were 

also found for all series with the exception of Banco Popular and Banco de Valencia. 

The estimated degrees of freedom and symmetry parameter values for the skewed 

Student-t distribution confirm that the error terms were not normal and were even 

asymmetric in two cases. 
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Table 2.4: Maximum likelihood estimates. 

 
Banesto Bankinter Bbva Popular Sabadell Santander Valencia Catalana Mapfre MSCI 

Mean    
     

  

 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001* 0.000 0.000 
(0.537) (0.459) (0.332) (0.417) (0.584) (0.378) (0.116) (3.963) (0.500) (0.332) 

AR(1) 0.036*   0.055* 0.088*      
 (1.882)   (2.637) (4.683)      

MA(1)   0.069*    -0.062*  -0.070*  
   (3.442)    (-2.515)  (-3.223)  

Variance    
     

 
 

 0.116 0.066 0.053* 0.025* 0.068* 0.098* 0.038 0.003 0.041* 0.020* 

 
(1.553) (1.794) (3.332) (2.385) (3.301) (2.948) (0.060) (0.814) (2.098) (2.958) 

 0.029 0.047* -0.004 0.054* 0.043* -0.008 0.412* 0.140* 0.023* -0.008 

 
(0.773) (2.452) (-0.545) (3.503) (2.440) (-0.848) (4.985) (3.374) (2.196) (-1.038) 

 0.154* 0.894* 0.928* 1.322* 0.919* 0.904* 1.337* 1.399* 0.934* 0.934* 
 (2.077) (28.720) (62.75) (16.330

) 
(57.250) (39.640) (10.950) (10.180) (54.250) (62.81) 

 0.168* 0.120* 0.146* 0.051 0.056* 0.192* -0.023 0.231* 0.074* 0.141* 
 (3.044) (3.565) (6.084) (1.836) (3.121) (4.857) (-0.232) (3.460) (3.741) (5.564) 

Asymmetr
y 0.027 0.044 0.008 0.042 -0.014 -0.048 0.076* 0.055* 0.017 -0.051 
 (1.095) (1.598) (0.276) (1.613) (-0.612) (-1.867) (2.943) (2.146) (0.647) (-1.883) 

Tail 3.955* 5.731* 7.701* 5.282* 3.701* 6.920* 3.398* 4.538* 6.096* 7.994* 

 
(11.230) (8.973) (6.790) (9.416) (11.900) (7.460) (11.240) (9.555) (8.932) (6.630) 

LogLik 6236.66 5782.24 5788.37 6111.80 6453.02 5696.24 5960.89 6201.78 6097.45 6512.05 

LJ 24.050 22.794 28.880 13.224 24.494 19.546 28.646 20.713 28.710 26.185 

 
[0.194] [0.299] [0.068] [0.827] [0.177] [0.487] [0.072] [0.414] [0.071] [0.159] 

LJ 2 6.444 18.669 14.987 22.833 7.437 10.475 3.892 10.551 12.956 8.719 

 [0.989] [0.413] [0.663] [0.088] [0.986] [0.916] [0.691] [0.836] [0.794] [0.966] 

ARCH 0.322 0.902 0.872 1.181 0.447 0.565 0.398 0.545 0.638 0.506 

 
[0.998] [0.585] [0.625] [0.261] [0.983] [0.938] [0.948] [0.949] [0.887] [0.965] 

K-S [0.492] [0.637] [0.950] [0.234] [0.111] [0.548] [0.047] [0.283] [0.701] [0.876] 

CvM [0.597] [0.661] [0.941] [0.247] [0.125] [0.906] [0.115] [0.264] [0.805] [0.817] 

A-D [0.672] [0.693] [0.952] [0.265] [0.144] [0.924] [0.118] [0.277] [0.903] [0.806] 

Note. The table presents the coefficients of the maximum likelihood (ML) estimates and the z statistics (in 

parentheses) for the parameters of the marginal distribution used to calculate the volatility of the series and to 

calculate the dynamic conditional correlation (DCC) model.
 
LogLik is the log-likelihood value. LJ represents the 

Ljung-Box statistic for serial correlation in the residual model calculated with 20 lags. LJ2 represents the Ljung-Box 

statistic for serial correlation in the squared residual model calculated with 20 lags. ARCH is Engle’s LM test for the 

ARCH effect in the residuals up to 20th order. K-S, CvM and A-D denote the Kolmogorov-Smirnov, Cramér-von 

Mises and Anderson-Darling test for adequacy of the skewed-t distribution model. P values (in square brackets) below 

0.05 indicate rejection of the null hypothesis. An asterisk (*) indicates significance at 5%. For specific institutions the 

best models are as follows: Banesto, TGARCH(1,2); Banco Popular, TGARCH(2,3); and Banco de Valencia and 

Catalana Occidente, TGARCH(2,1). 
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The last rows of Table 2.4 report information on the goodness-of-fit of our 

marginal models. The Ljung-Box and ARCH statistics indicate that neither 

autocorrelation nor ARCH effects remained in the residuals of the marginal models. 

We also tested the null hypothesis that the standardized model residuals were 

uniform (0,1) by comparing the empirical distribution with the theoretical 

distribution function using the well-known Kolmogorov-Smirnov (K-S), Cramér-von 

Mises (CvM) and Anderson-Darling (AD) tests. The p-values for these tests, 

reported in last three rows of Table 2.4, indicate that, for either of the marginal 

models, the null of the correct specification of the distribution function could not be 

rejected at the 5% significance level. Overall, our goodness-of-fit tests indicate that 

the marginal distribution models were not mis-specified. 

We computed the VaR for the 95% confidence level 4  for each financial 

institution using information from its marginal model and Eq. (2.7). Figure 2.3 

depicts the temporal dynamics of the VaR for all the institutions, which showed 

similar trends throughout the sample period, with the VaR decreasing considerably 

during the recent global financial crisis and less intensely during the European 

sovereign debt crisis. Also, due to financial difficulties experienced at the end of the 

sampling period, the VaR value for the Banco de Valencia turned down since 2011. 

Table 2.5 reports descriptive statistic for the VaR. Larger banks like Santander and 

BBVA had larger mean VaR values (in absolute terms), although not Banco de 

Valencia, given that it was experiencing financial distress. Likewise, VaR volatility 

increased with institution size. 

Table 2.5: Descriptive statistics for the value-at-risk at the 95% confidence level. 

 

Banesto Bankinter Bbva Popular Sabadell Santander Valencia Catalana Mapfre 

Mean -0.031 -0.037 -0.039 -0.034 -0.028 -0.042 -0.041 -0.032 -0.033 

Std. Dev. 0.013 0.015 0.023 0.018 0.010 0.027 0.041 0.016 0.013 

Maximum -0.016 -0.016 -0.015 -0.011 -0.015 -0.017 -0.013 -0.007 -0.016 

Minimum -0.169 -0.087 -0.188 -0.102 -0.077 -0.275 -0.647 -0.123 -0.105 

  

                                                 
4 Results for the 97% and 99% confidence levels are available on request. 
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Figure 2.3: Time series plot for value-at-risk at the 95% confidence level. 

 

2.4.2. Quantile regression results 

With the value of the VaR for each financial institution and the set of explanatory 

variables described in the data section, we estimated the CoVaR for the financial 

system using the quantile regression reflected in Eq. (2.3). Table 2.6 reports 

estimates for a 95% confidence level (  and ). Given that the 

quantil regression parameter  was significant and had the expected sign for all the 

financial institutions, the VaR for each institution had a significant impact on the 

VaR of the financial system. Regarding the explanatory variables, we found that 

market volatility and yield curve slope were significant and had the expected sign in 

all cases; other explanatory variables were only significant in some cases; and the 

IBEX-35 returns were non-significant in all the cases. 

For each financial institution the CoVaR value at each time t was computed 

as the estimated value of the corresponding quantile regression. Table 2.9 reports 

descriptive statistics for the CoVaR, showing values that were greater for the banks 

than for the insurance companies and, in general, with values reflecting the size of 

the bank. Likewise, larger banks generated more instability in CoVaR values than 

small banks or insurance companies. 
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Table 2.6: Quantile regression estimates at the 95% confidence level. 

Note. 

The quantile regression coefficients, 

 

are as follows: 
  = coefficient of the quantile regression for the returns of each institution (  

 ), 

  = coefficient of the quantile regression for market volatility (IBEX-35), 

  = coefficient of the quantile regression for the 12-month Treasury bill variation rate, 

  = coefficient of the quantile regression for the yield curve slope, 

  = coefficient of the quantile regression for the credit spread, 

  = coefficient of the quantile regression for the market returns (IBEX-35), 

Numbers in brackets indicate standard error: 

* Significance at 10%. 

** Significance at 5%. 

*** Significance at 1%. 

2.4.3. MGARCH results 

We estimated the DCC model for returns composed of the financial system paired 

with each financial institution. Table 2.7 reports the results for the parameters and 

degrees of freedom, as reflected in Eq. (2.11), for the bivarate Student-t distribution. 

All the parameters were significant, providing consistent evidence in favour of time-

varying dependence and fat tails according to the estimated degrees of freedom. 

Figure 2.4 depicts correlation dynamics for each financial institution, showing that 

institutional interdependence with the general financial system varies according to 

the institution’s size, with no significant change with the onset of the global 

| | | | | |
, 1, 1, 1, 1, 1,( ) 12 . ,s i i s i i s i i s i i s i i s i i

t p t p t p t p t p t pQ x VaR MkVol TrBill Slope cr spread Mkreturns                  

0.01, 

 

            

Banesto 
0.834*** -0.091*** -0.114 -0.156*** -0.072 -0.008 
(0.058) (0.006) (0.219) (0.035) (0.110) (0.023) 

Bankinter 0.637*** -0.111*** 0.179 -0.188*** 0.591*** -0.013 
(0.049) (0.008) (0.316) (0.034) (0.101) (0.022) 

BBVA 0.790*** -0.026*** 0.051 -0.100*** -0.202*** -0.014 
(0.021) (0.003) (0.096) (0.014) (0.058) (0.009) 

Popular 0.766*** -0.061*** 0.059 0.004 -0.013 -0.038 
(0.085) (0.012) (0.375) (0.050) (0.213) (0.027) 

Sabadell 0.719*** -0.134*** 0.049 -0.147*** 0.379** -0.022 
(0.048) (0.006) (0.299) (0.034) (0.175) (0.023) 

Santander 0.634*** -0.054*** -0.288*** -0.131*** -0.447*** 0.001 
(0.026) (0.004) (0.109) (0.020) (0.044) (0.011) 

Valencia 
0.145*** -0.183*** -0.011 -0.177*** 0.669*** -0.005 
(0.025) (0.007) (0.413) (0.033) (0.143) (0.025) 

Catalana 0.272*** -0.161*** 0.084 -0.306*** 0.485*** -0.007 
(0.042) (0.012) (0.615) (0.038) (0.178) (0.028) 

Mapfre 1.017*** -0.043*** -0.219 -0.291*** 0.017 -0.008 
(0.087) (0.010) (0.368) (0.034) (0.110) (0.021) 
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financial crisis or of the European sovereign debt crisis. With this correlation 

coefficient and marginal model information we have all the information on the joint 

distribution function of the financial system and the financial institution at each 

time t. Hence, taking the VaR of a given financial institution computed through its 

marginal return model, we can compute the CoVaR value by numerically solving 

Eq. (2.10) for the CoVaR and  and . 

Table 2.7: Dynamic conditional correlation (DCC) model estimates. 

 Banesto Bankinter BBVA Popular Sabadell Santander Valencia Catalana Mapfre 

DoF 5.220* 6.110* 6.270* 5.682* 4.850* 5.139* 4.900* 6.294* 7.185 
 (15.65) (14.61) (13.91) (15.21) (18.27) (17.21) (19.49) (13.59) (11.42) 

α 0.056* 0.056* 0.044* 0.038* 0.030* 0.035* 0.017* 0.010* 0.025* 
 (3.71) (5.50) (3.73) (5.23) (3.11) (3.74) (3.20) (3.75) (3.11) 

β 0.917* 0.696* 0.659* 0.696* 0.638* 0.692* 0.686* 0.689* 0.673* 
 (33.10) (51.49) (42.56) (90.82) (71.76) (77.19) (175.60) (314.30) (59.91) 

Note. In accordance with the DCC model, α and β are the parameters estimated with the Student-t 

distributed errors. An asterisk (*) indicates rejection of the null hypothesis at 5%. 

 

Figure 2.4: Time series plot for dynamic conditional correlation (DCC). 

 

Descriptive statistics for the CoVaR values are reported in Table 2.9. The 

evidence on systemic risk is qualitatively similar to that reported for the quantile 

regression approach, even though the size of the CoVaR was quite different. The 

CoVaR values obtained using the MGARCH approach were considerably reduced 

with respect to those obtained using the quantile regression approach. This is 

consistent with the idea that conditioning on the fact that  and not on 

the fact that  has a quantitative impact on the value of the CoVaR (an 

effect that was also discussed by Girardi and Ergün, 2013).  
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2.4.4. Copula results 

Table 2.8 reports parameter estimates for the nine pairs given by the MSCI Spain 

Financials Index returns matched with each institution’s returns. Both static and 

dynamic copula specifications indicate that all the financial institutions co-moved 

with the general financial index. Parameter estimates for all the static copulas were 

significant, as also was the case for most of the time-varying copula specifications. 

Considering the AIC values corrected for small-sample bias, we found evidence of 

time-varying dependence and lower tail dependence, with the time-varying rotated 

Gumbel copula offering the best fit for all institutions, except for BBVA and 

Catalana Occidente, for which the time-varying Student-t performed better, thereby 

providing evidence of symmetric tail dependence. 

From the best copula specification and following the same two-step procedure 

as described above, we obtained the CoVaR value at the 95% confidence level for 

the financial system conditional on the VaR of each institution at the 95% 

confidence level. We also obtained the CoVaR value using Eq. (2.2). Figure 2.5 

depicts the dynamic behaviour of the estimated CoVaR and CoVaR (in 

percentage) and reports — to enable assessment and comparison of the impact of 

different methodological approaches — the CoVaR values estimated using the 

quantile regression and MGARCH approaches. The graphical evidence for the 

CoVar points to two conclusions. First, trends in the CoVaR values were consistent 

across different financial institutions, with systemic risk increasing around the onset 

of the global financial and the European sovereign debt crises. Significant changes 

also occurred in the CoVaR values in April 2011, when the systemic risk of Spanish 

financial institutions increased due to Portugal requesting a financial bailout. 

Second, there were significant differences in CoVaR values obtained using quantile 

regression as compared to using the MGARCH and copula approaches. Specifically, 

quantile regression CoVaR values were higher and also relatively stable through the 

sampling period, with little variation once the crises broke, indicating that the real 

systemic risk was underestimated. In contrast, MGARCH and copula CoVaR values 

were lower and reflected dynamics that adjusted much better to crisis events; thus, 

values were reduced when the crises broke and increased in more stable periods, 

thereby indicating a better adjustment to the changing economic environment in the 

latter years of the sampling period. 

  




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Table 2.8: Copula model estimates for institutions vs the MSCI Index. 

Panel A: Parameter estimates for time-invariant copulas 

Copula Banesto Bankinter Bbva Popular Sabadell Santander Valencia Catalana Mapfre 

Gaussian           

 

0.661 0.680 0.947 0.742 0.666 0.967 0.438 0.404 0.586 

          

AIC -1375.837 -1485.457 -5458.490 -1918.773 -1404.743 -6575.424 -508.015 -424.749 -1005.770 

Student-t          

 

0.667* 0.692* 0.951* 0.755* 0.684* 0.970* 0.459* 0.411* 0.589* 

 
(0.01) (0.01) (0.00) (0.01) (0.01) (0.00) (0.02) (0.01) (0.01) 

 

 
 

6.175* 5.300* 4.055* 4.907* 4.065* 3.389* 5.426* 12.943* 8.622* 
(1.95) (1.47) (0.48) (0.46) (0.41) (0.36) (0.74) (1.81) (0.87) 

AIC -1434.531 -1581.141 -5714.405 -2037.900 -1568.800 -6861.588 -588.128 -437.843 -1043.008 

Gumbel  
 

         

 

 
 

1.749* 1.813* 4.629* 2.057* 1.802* 5.860* 1.385* 1.314* 1.578* 
(0.03) (0.03) (0.08) (0.03) (0.03) (0.10) (0.02) (0.02) (0.03) 

AIC -1205.439 -1324.791 -5320.482 -1797.433 -1298.704 -6361.999 -469.609 -356.186 -883.238 

Rotated Gumbel          

 
   

 

1.838* 1.915* 4.794* 2.125* 1.903* 6.197* 1.411* 1.336* 1.623* 
(0.03) (0.03) (0.08) (0.04) (0.03) (0.11) (0.02) (0.02) (0.03) 

AIC -1460.203 -1594.086 -5528.936 -1983.757 -1565.309 -6685.885 -568.721 -422.484 -1019.961 

BB7 
 

         

 

1.428* 1.454* 4.034* 1.738* 1.448* 4.103* 1.233* 1.185* 1.369* 

 

(0.04) (0.05) (0.00) (0.08) (0.09) (0.04) (0.03) (0.03) (0.04) 

 

1.126* 1.217* 4.263* 1.327* 1.218* 6.311* 0.547* 0.453* 0.798* 

 

(0.05) (0.05) (0.00) (0.06) (0.04) (0.21) (0.04) (0.04) (0.04) 

AIC -1431.329 -1552.662 -5355.069 -1931.303 -1530.783 -6214.699 -551.679 -415.580 -1018.554 

Plackett          

 9.732* 11.279* 99.679* 15.385* 11.115* 186.395* 4.516* 3.581* 6.682* 

 (0.52) (0.57) (4.53) (0.75) (0.57) (29.81) (0.26) (0.20) (0.35) 

AIC -1387.328 -1567.059 -5534.123 -2016.034 -1525.218 -6787.020 -568.881 -428.177 -981.821 

BB1          

 0.721* 0.753* 0.906* 0.659* 0.763* 1.036* 0.383* 0.322* 0.515* 

 (0.05) (0.06) (0.04) (0.05) (0.06) (0.07) (0.04) (0.04) (0.05) 

 1.348* 1.384* 3.352* 1.612* 1.372* 4.090* 1.195* 1.161* 1.300* 

 (0.03) (0.03) (0.05) (0.04) (0.03) (0.12) (0.03) (0.02) (0.03) 

AIC -1459.027 -1590.462 -5646.838 -2004.665 -1562.220 -6754.743 -563.207 -426.512 -1039.673 
























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Panel B: Parameter estimates for time-varying copulas. 

 Banesto Bankinter Bbva Popular Sabadell Santander Valencia Catalana Mapfre 

TVP-Gaussian          

 
-0.269 0.076 -1.294 -0.517* -0.039* 5.000 0.030 -0.041 -0.144* 

 (1.67) (0.13) (9.37) (0.10) (0.00) (9.58) (0.02) (0.92) (0.07) 

 
0.176 0.300* 0.201 0.184* 0.262* 0.116 0.241* 0.045 0.083* 

 (5.81) (0.06) (0.18) (0.04) (0.01) (2.35) (0.05) (2.46) (0.03) 

 
2.695 2.070* 5.000 3.121* 2.286* -1.022 1.909* 2.200 2.469* 

 (3.73) (0.24) (10.05) (0.17) (0.02) (6.16) (0.08) (1.49) (0.15) 

AIC -1433.80 -1552.50 -5471.60 -1983.83 -1554.62 -6575.19 -636.04 -473.50 -1028.27 

TVP-Student-t          

 -0.198* -0.072 -14.21* -0.657* -0.037* -12.743* 0.059 0.003 2.183 

 (0.02) (0.11) (0.00) (0.08) (0.00) (5.05) (0.05) (0.02) (2.03) 

 0.131* 0.156* 0.03* 0.103* 0.189* -0.014 0.205* 0.097* 0.249 

 (0.02) (0.03) (0.00) (0.03) (0.02) (0.01) (0.04) (0.03) (0.14) 

 2.543* 2.388* 18.80* 3.354* 2.297* 17.521* 1.843* 2.034* -1.707 

 (0.04) (0.19) (0.00) (0.14) (0.01) (5.20) (0.15) (0.08) (3.55) 

 6.221* 6.677* 5.00* 5.770* 6.666* 3.171* 7.646* 17.118* 9.488* 

 (0.46) (1.14) (0.00) (0.35) (0.68) (0.33) (2.84) (2.18) (1.93) 

AIC -1480.20 -1618.48 -5736.39 -2085.60 -1642.09 -6861.18 -684.12 -481.04 -1046.55 

TVP-Gumbel          
 0.772* 0.595 1.768* 0.946* 1.121* 1.417* 0.675* 0.389 1.505* 

 (0.32) (0.38) (0.17) (0.43) (0.24) (0.04) (0.12) (0.36) (0.20) 

 0.222 0.300* 0.106* 0.198 0.147 0.167* 0.279* 0.329 -0.194 

 (0.12) (0.13) (0.03) (0.14) (0.08) (0.00) (0.05) (0.19) (0.11) 

 -1.626* -1.390 -5.000* -2.095* -2.779* -3.801* -1.977* -1.084* -2.060* 

 (0.58) (0.77) (0.57) (0.95) (0.57) (0.39) (0.25) (0.50) (0.29) 

AIC -1306.20 -1456.58 -5464.95 -1957.46 -1538.34 -6626.42 -660.92 -389.85 -925.14 

TVP-Rotated Gumbel         
 0.368* 0.477* 1.162* 0.473* 0.932* 1.480* 0.448* -0.167 1.381 

 (0.04) (0.04) (0.05) (0.04) (0.08) (0.07) (0.07) (0.10) (2.72) 

 0.370* 0.340* 0.195* 0.336* 0.197* 0.160* 0.358* 0.621* -0.111 

 (0.01) (0.01) (0.01) (0.01) (0.03) (0.01) (0.02) (0.05) (1.37) 

 -0.761* -1.027* -2.230* -0.868* -2.050* -3.810* -1.425* -0.351* -1.948 

 (0.12) (0.10) (0.29) (0.13) (0.14) (0.63) (0.18) (0.13) (2.29) 

AIC -1553.51 -1731.97 -5679.02 -2122.33 -1756.68 -6913.55 -739.91 -447.49 -1066.97 

Notes. The table reports the maximum likelihood (ML) estimates for the different copula models for MSCI and the 

series indicated in each column. Standard error values (in brackets) and the AIC values adjusted for small-sample 

bias are provided for the different copula models. The minimum Akaike information criterion (AIC) value indicates 

the best copula fit. For the TVP-Gaussian and TVP-Student-t copulas, q in Eq. (2.14) was set to 10. An asterisk (*) 

indicates significance at the 5% level. 
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Figure 2.5 also provides information on CoVaR dynamics, with the value 

remaining relatively stable over the sampling period, but registering sudden 

reductions when dependence between a financial institution and the overall system 

reduced, thereby increasing the value of the CoVaR. In particular, there was a 

significant reduction in CoVaR and  CoVaR for Banco de Valencia towards the 

end of the sampling period when this bank went bankrupt. However, this 

bankruptcy had little impact on the system as a whole, given the decoupling that 

occurred. 

Table 2.9 summarizes descriptive CoVaR and CoVaR statistics for the three 

approaches. The average CoVaR values obtained with the MGARCH model and 

bivariate Student-t density and copula models were similar and much lower than for 

the quantile regression approach. Moreover, fluctuations in the quantile regression 

CoVaR values were much less than for the other two procedures, as confirmed by 

the differences between maximum and minimum values. We can therefore conclude 

that quantile regression underestimates systemic risk. Descriptive statistics for 

CoVaR allow us to conclude that the systemically important financial institutions in 

the Spanish financial sector were BBVA and Santander and that systemic risk 

increases with the size of the financial institution. 

Figure 2.5: Estimates of CoVaR (left axis) and ∆CoVaR (right axis) for the MSCI 

Index with respect to each institution. 
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Figure 2.5: (Continued) 
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Figure 2.5: (Continued) 
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Figure 2.5: (Continued) 
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Figure 2.5: (Continued) 
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Table 2.9: Summary statistics for CoVaR–QR, CoVaR–Student-t, CoVaR–Copula 

and ∆CoVaR—Copula for each institution with the MSCI Index. 

  
Mean Std. Max Min 

Banesto 

CoVaR--QR -0.0257 0.0111 -0.0132 -0.1405 

CoVaR--Student-t -0.0605 0.0333 -0.0185 -0.2169 

CoVaR--Copula -0.0626 0.0337 -0.0202 -0.2173 

∆CoVaR--Copula 0.6742 0.0066 0.6815 0.6287 

Bankinter 

CoVaR--QR -0.0239 0.0097 -0.0101 -0.0556 

CoVaR--Student-t -0.0607 0.0328 -0.0189 -0.2056 

CoVaR--Copula -0.0625 0.0333 -0.0209 -0.2102 

∆CoVaR--Copula 0.6745 0.0113 0.6824 0.5526 

BBVA 

CoVaR--QR -0.0312 0.0181 -0.0121 -0.1486 

CoVaR--Student-t -0.0632 0.0339 -0.0210 -0.2226 

CoVaR--Copula -0.0632 0.0338 -0.0212 -0.2226 

∆CoVaR--Copula 0.6809 0.0009 0.6836 0.6794 

Popular 

CoVaR--QR -0.0262 0.0136 -0.0083 -0.0783 

CoVaR--Student-t -0.0617 0.0341 -0.0197 -0.2214 

CoVaR--Copula -0.0630 0.0339 -0.0212 -0.2225 

∆CoVaR--Copula 0.6781 0.0042 0.6830 0.6508 

Sabadell 

CoVaR--QR -0.0203 0.0070 -0.0105 -0.0550 

CoVaR--Student-t -0.0607 0.0341 -0.0167 -0.2200 

CoVaR--Copula -0.0624 0.0340 -0.0155 -0.2211 

∆CoVaR--Copula 0.6688 0.0352 0.6824 0.1524 

Santander 

CoVaR--QR -0.0265 0.0172 -0.0110 -0.1741 

CoVaR--Student-t -0.0632 0.0339 -0.0212 -0.2226 

CoVaR --Copula -0.0632 0.0338 -0.0213 -0.2226 

∆CoVaR --Copula 0.6815 0.0009 0.6842 0.6799 

Valencia 

CoVaR--QR -0.0060 0.0059 -0.0018 -0.0941 

CoVaR--Student-t -0.0555 0.0328 -0.0157 -0.2141 

CoVaR--Copula -0.0588 0.0330 -0.0111 -0.2169 

∆CoVaR--Copula 0.6172 0.0860 0.6810 0.0283 

Catalana 

CoVaR--QR -0.0087 0.0044 -0.0019 -0.0335 

CoVaR--Student-t -0.0542 0.0318 -0.0145 -0.2004 

CoVaR--Copula -0.0517 0.0293 -0.0115 -0.1929 

∆CoVaR--Copula 0.4332 0.0755 0.5810 0.0504 

Mapfre 

CoVaR--QR -0.0333 0.0132 -0.0161 -0.1072 

CoVaR--Student-t -0.0587 0.0328 -0.0177 -0.2127 

CoVaR--Copula -0.0619 0.0332 -0.0204 -0.2082 

∆CoVaR--Copula 0.6669 0.0172 0.6791 0.4513 

Notes. The table reports descriptive statistic for the CoVaR and CoVaR in percentages for each 
institution at the 95% confidence level, given a VaR level at 95% for the MSCI Index and using 
quantile regression (QR), the multivariate generalized autoregressive conditional heteroskedasticity-
dynamic conditional correlation (MGARCH-DCC) model with a bivariate Student-t distribution 
and the best copula fits. Std., Max and Min denote standard deviation, maximum and minimum, 
respectively. 


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Finally, we considered the relationship between the VaR and CoVaR, as 

represented in Figure 2.6. Our results reveal a weak relationship between the 

CoVaR and VaR, calculated using the quantile regression, MGARCH and copula 

approaches — a result that is consistent with that reported by Girardi and Ergün 

(2003). This suggests that the VaR is incapable of determining capital requirements 

for financial institutions that would overcome market risk. 

Figure 2.6: Scatter plot for ΔCoVaR vs VaR. 

  

 

2.5. Conclusions 

Recent financial and debt crises have raised public and regulatory concerns 

regarding the systemic risk impact of failed or failing financial institutions. Accurate 

assessment of systemic risk is crucial for effective regulation of risk and to ameliorate 

the impact of financial crises on the performance of financial systems. We studied 

the systemic risk of Spanish financial institutions around the time of the recent 

global financial crisis and the European sovereign debt crisis. To that end, we 

quantified the CoVaR for several listed Spanish financial institutions for the period 

January 2003 to February 2013 and characterized dynamic behaviour using three 

different approaches: quantile regression, MGARCH model and copulas. 

We found that the CoVaR measure of systemic risk displayed trends that were 

consistent for all the institutions throughout the sampling period, taking lower 
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values around the periods of the crises, especially around the recent global financial 

crisis. We also observed that the CoVaR computed using quantile regression was not 

able to capture the dynamics of systemic risk, as it lacked the flexibility to adapt to 

crisis periods when volatility was high; consequently it underestimated systemic risk. 

The MGARCH and copula approaches were more flexible in identifying crisis 

periods with significant reductions in the CoVaR value. We also found that the 

copula approach reflected greater systemic risk than the MGARCH approach; this 

evidence is consistent with the fact that tail dependence is better captured by a 

copula than by a parametric multivariate distribution function. The risk 

contribution of the financial institutions, as evaluated using CoVaR, amounted to 

around 65%. 

Overall, our measurements of systemic risk allow us to conclude that systemic 

risk increased during the financial crisis but not with the same intensity for all the 

studied institutions; it mainly affected larger institutions that assumed increasingly 

systemic importance and were considered to be too interconnected to fail. These 

results have implications for regulatory policy aimed at determining optimal capital 

requirements and cyclical changes in value, mainly for large financial entities.


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Chapter 3 
 

3. Systemic risk in European sovereign debt 

markets: A CoVaR-copula approach 

3.1. Introduction 

The recent sovereign debt crisis in Europe has raised concerns about the fragility of 

the debt markets and the potential systemic risk effects of a sovereign default in the 

euro area. Measuring systemic risk among debt markets is crucial to an assessment 

of how the deteriorated financial position of a sovereign market can impair the 

performance of other sovereign debt markets. In this chapter, we quantify systemic 

risk in the European sovereign debt markets before and after the onset of the 

European sovereign debt crisis by computing the conditional value-at-risk (CoVaR) 

through copulas, providing thus quantitative evidence regarding how systemic risk 

has changed as a result of the debt crisis. 

One strand of the burgeoning literature on the European sovereign debt crisis 

examines co-movements and drivers of fluctuations in government bond spreads such 

as credit risk, exchange rate movements, specific news, rating changes or the 

probability of some countries exiting the euro area (see, e.g., Manganelli and 

Wolswijk, 2009; Haugh et al., 2009; Schuknecht et al., 2010; Borgy et al., 2011; de 

Santis, 2013; Beestma et al. 2013; Favero, 2013). Another strand of this literature is 

concerned with the spillover effects of the European debt crisis on the financial 
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sector. De Bruyckere et al. (2013) studied contagion between bank and sovereign 

default risk in Europe through asset, collateral and rating channels. Bhanot et al. 

(2014) investigated the impact of changes in Greek sovereign yield spreads on stock 

returns in the financial sector. Similarly, Mink and De Haan (2013) analysed the 

impact of highly volatile Greek bonds on European bank stock prices in 2010. Alter 

and Schuler (2012) examined the relationship between sovereign default risk and 

domestic banks. In addition, using credit default swaps, other studies examined 

sovereign risk contagion among eurozone countries (see, e.g., Missio and Watzka, 

2011; Arezki et al., 2011; Alter and Beyer, 2012; Caporin et al., 2013). However, 

even though systemic risk is an important dimension of contagion that enables to 

quantify the impact of extreme downward movement in one market on other 

markets, no study has yet examined systemic risk in European sovereign debt 

markets and how this risk has changed with the onset of the recent European 

sovereign debt crisis. This chapter attempts to fill this gap, contributing, in 

particular, to the existing literature in two ways. 

First, we characterize the CoVaR systemic risk measure—as proposed by 

Adrian and Brunnermeier (2011) and generalized by Girardi and Ergün (2013)—in 

terms of copulas. CoVaR captures possible risk spillovers between markets by 

providing information on the value-at-risk (VaR) of a market, conditional on the 

fact that another market is in financial distress. Using copulas, the value of the 

CoVaR can be obtained in a two-step procedure. Given the cumulative probability 

of the VaR of the market in financial distress and the confidence level for the 

CoVaR, we can compute the cumulative probability for the CoVaR from a copula 

function. We then can invert the marginal distribution function for this cumulative 

probability in order to obtain the value of the CoVaR. From a computational point 

of view, this approach is more tractable than other parametric approaches; it is also 

more flexible, given that copula functions, by providing a measure of both average 

dependence and upper and lower tail dependence (joint extreme movements), enable 

the dependence structure of stochastic variables to be fully described. This 

information is crucial to determining the VaR of one variable, which is conditional 

on the fact that another variable takes values below or equal to its own VaR. In 

fact, (lower) tail dependence of a copula function naturally provides this 

information, but at the limit. 

Second, for a sample of sovereign bond benchmark price indices for France, 

Germany and the Netherlands, for GIIPS economies (Greece, Ireland, Italy, Portugal 

and Spain) and for an overall sovereign bond price index for the European Economic 
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and Monetary Union (EMU), for the period January 2000 to October 2012, we 

provide evidence of strong co-movement between European debt markets and the 

EMU index before the onset of the European debt crisis. All sovereign debt markets 

shared a similar trend in systemic risk, which was very similar in size across 

markets. However, with the onset of the European sovereign debt crisis, we find 

evidence of the decoupling of debt markets in such a way that GIIPS markets 

negatively correlate, on average, with the EMU index returns, displaying, in general, 

market independence at the tails. As a result, systemic risk for the GIIPS markets, 

with the exception of Spain, was reduced, whereas systemic risk for the non-crisis 

countries experienced a significant upsurge as a result of a high degree of co-

movement with the EMU index. Finally, we examined the systemic risk impact of 

the Greek debt market on other European debt markets, finding that before the 

Greek debt crisis, Greek systemic risk was relatively low and different across 

countries. However, after crisis onset, Greek systemic risk increased for the countries 

in crisis, especially for Portugal, where systemic risk tripled overall. For countries 

not in crisis the systemic impact of the Greek debt crisis was less, given that the 

debt markets of these countries decoupled from the Greek market. 

The remainder of the chapter is laid out as follows: in Section 3.2 we outline 

the copula approach to the CoVaR, in Section 3.3 we present data and in Section 

3.4 we discuss the results. Finally, Section 3.5 concludes the chapter. 

3.2. Methodology 

With the aim of quantifying systemic risk between assets, institutions or markets, 

different systemic risk measures have been proposed in the literature (see, e.g., 

Huang et al., 2009; Segoviano and Goodhart, 2009; Acharya et al., 2010; Allen et al., 

2010; Zhou, 2010, Adrian and Brunnermeier, 2011; Brownlees and Engle, 2011; Billio 

et al., 2012; Girardi and Ergün, 2013; Gravelle and Li, 2013). Given that VaR is 

arguably the most widely employed risk measure by investors, financial institutions 

and regulators, in this study we evaluate systemic risk between European debt 

markets using the CoVaR measure proposed by Adrian and Brunnermeier (2011) 

and generalized by Girardi and Ergün (2013). 
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3.2.1. CoVaR and copulas 

The CoVaR for the European debt market is the VaR for the European debt market 

as a whole, conditional on the fact that a given debt market is in financial distress. 

Let d

t
R  be the returns for the debt market as a whole and let j

t
R  be the returns for 

debt market j. The CoVaR, formally defined as the  -quantile of the conditional 

distribution of d

t
R , is as follows: 

 d d j j j

t t t t
R CoVaR R VaR|

, ,Pr( | )
 

    , (3.1) 

where j

t
VaR ,  is the VaR for debt market j, measuring the maximum loss that debt 

market j may experience for a confidence level 1    and a specific time horizon, 

that is, the  -quantile of the return distribution for the debt market j: 
j j

t t
R VaR ,Pr( )


   . Therefore, computing the CoVaR consists of determining the 

quantile of a conditional distribution, or, alternatively, of an unconditional bivariate 

distribution if we express Eq. (3.1) as: 

 
d d j j j

t t t t

j j

t t

R CoVaR R VaR

R VaR

|
, ,

,

Pr( , )

Pr( )

 



 
 


. (3.2) 

Given that j j

t t
R VaR ,Pr( )


   , the CoVaR in Eq. (3.2) can be expressed as: 

 d d j j j

t t t t
R CoVaR R VaR|

, ,Pr( , )
 

    . (3.3) 

Girardi and Ergün (2013) proposed to compute for the CoVaR in Eq. (3.3) by 

numerically solving a double integral: 

 
d j j

t t
CoVaR VaR d j d j

t t t t t
R R R Rf d d

|
, , ( , ) 

 
    (3.4) 

for given levels of  ,   and j

t
VaR , ; and where d j

t t t
R Rf ( , ) is the bivariate density of 

d

t
R  and j

t
R . 

In this chapter we propose to compute the CoVaR through copulas.5 Note that 

Eq. (3.3) can be expressed in terms of the joint distribution function of d

t
R  and j

t
R , 

d j
t t

R R
F

,
, as: 

                                                 
5 For further analysis on copulas, see Joe (1997) and Nelsen (2006). An overview of copula 

applications to finance can be found in Cherubini et al. (2004). Mainik and Schaanning 

(2012) provide the first representation of the CoVaR in terms of copulas. 
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 d j
t t

d j j

t tR R
F CoVaR VaR|

, ,,
( , )

 
  , (3.5) 

and that, according to Sklar’s (1959) theorem, the joint distribution function of two 

continuous variables can be expressed in terms of a copula function. Hence, Eq. (3.5) 

can be written as: 

 C u v( , )   , (3.6) 

where C(·,·) is a copula function, d
t

d j

tR
u F CoVaR |

,( )


  and j
t

j

tR
v F VaR ,( )


  and where 

d
t

R
F  and 

j
t

R
F  are the marginal distribution functions of d

t
R  and j

t
R , respectively. 

Given its copula representation in Eq. (3.6), the CoVaR can be computed from that 

equation through copulas in a two-step procedure: 

1) We obtain the value of d
t

d j

tR
u F CoVaR |

,( )


 . Since C u v( , )   , where  ,   and v 

are given (note that v   ), from the copula function specification we can solve 

to determine the value of u . 

2) Taking u , we can obtain the CoVaR value as the quantile of the distribution of 

d

t
R , with a cumulative probability equal to u , by inverting the marginal 

distribution function of d

t
R : d

t

d j

t R
CoVaR F u| 1

, ( )


 . 

Computing the CoVaR through copulas has two main advantages. First, since 

copulas allow separate modelling of the marginals and dependence structures, they 

offer great flexibility in modelling marginals. This flexibility is crucial for the 

computation of VaR and the modelling of dependence structures with different tail 

dependence characteristics, such as the tail independence and symmetric or 

asymmetric tail dependence that is especially relevant for the computation of the 

CoVaR measure. Furthermore, copulas are useful when the joint distribution 

function is not elliptical, when the traditional dependence measure given by the 

linear correlation coefficient is insufficient to describe the dependence structure (see 

Embrechts et al. 2003). This is especially relevant when the bivariate Gaussian or 

Student-t distributions (both widely used in multivariate generalized autoregressive 

conditional heteroskedasticity (GARCH) models) do not adequately represent the 

joint distribution function of the data. Second, computation of the CoVaR using 

copulas is computationally more tractable than obtaining the value of CoVaR using 

Eq. (3.4), as the equation requires numerical resolution of a double integral and VaR 

computation for the financially distressed market. Note that, using a copula 
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characterization of the CoVaR, we only need information on the cumulative 

probability for the VaR and not the value of the VaR itself. 

Adrian and Brunnermeier (2011) and Girardi and Ergün (2013) define the 

systemic risk contribution of a particular market j as the delta CoVaR ( CoVaR), 

which is the difference between the VaR of the European debt market as a whole 

conditional on the distressed state of market j ( j j

t t
R VaR , ) and the VaR of the 

European debt market as a whole conditional on the benchmark state of market j, 

considering it as the median of the return distribution of market j, or, alternatively, 

the VaR for an 0.5  . The systemic risk contribution of market j is thus defined 

as: 

 d j d j d j d j

t t t t
CoVaR CoVaR CoVaR CoVaR| | | , 0.5 | , 0.5

, , ,
 

  
   . (3.7) 

3.2.2. Marginal distribution and copula models 

The marginal models and copula specifications we used to compute the CoVaR 

measure for the European sovereign debt markets are described as follows. 

For the marginal models, following Bhanot et al. (2014), we consider that the 

conditional mean of the market returns for a European debt market j are given as a 

function of common and specific factors. Common factors are given by interbank 

interest rate changes, measured by changes in the Euribor rate (E), with a dummy 

variable (CRISIS) denoting periods before and after the onset of the European 

sovereign debt crisis as 0 and 1, respectively. Included as specific factors are the 

stock market index returns (
j t

r , ) and market volatility (
j t

vol , ) for each country and 

lagged values for the debt market returns. Thus, the marginal model for market j is 

specified as: 

 
p

j j

t j j h t h j j t j j t j t j t j t
h

R R r vol E Crisis,0 , , , ,
1




              , (3.8) 

with 
j t j t j t

z, , ,   , where 
j t

2
,  is the conditional variance, given by a threshold 

generalized autoregressive conditional heteroskedasticity (TGARCH) specification 

(Zakoian, 1994; Glosten et al., 1993): 

 
r m m

j,t j j,k j,t k j,h j,t h j,h j,t h j t

k h h

b a d Crisis2 2 2

1 1 1
  

  

            , (3.9) 
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where j  is a constant, j,t k
2
  is the GARCH component and j,t h  is the 

autoregressive conditional heteroskedasticity (ARCH) component and where   

captures leverage effects. If   0 , then the future conditional variance will 

proportionally increase more following a negative shock than following a positive 

shock of the same magnitude. The crisis dummy variable is included in the volatility 

specification to take into account the potential effect of the sovereign debt crisis on 

volatility. 
j t

z ,  is a i.i.d. random variable with zero mean and unit variance that 

follows a Hansen’s (1994) skewed-t density distribution. It is given by: 

 

j t

j t

bz a

j t

j t

bz a

j t

bc z a b

f z

bc z a b

,

,

( 1) 2
2

1
,2 1

, ( 1) 2
2

1
,2 1

1

( ; , )

1

 



 

 



 

                
   
         

, (3.10) 

where   and   are the degrees of freedom parameter ( 2     ) and the 

symmetric parameter ( 1 1    ), respectively. The constants a, b and c are given 

by  a c 2
1

4 


  , b a2 2 21 3    ,    c 1

2 2
( 2)       . This distribution 

converges to the standard Gaussian as 0   and  , and to the symmetric 

Student-t distribution as 0   and   is finite. 

We used seven different copula specifications to capture different 

characteristics of dependence, as follows:  

1) The bivariate Gaussian is the most commonly employed distribution in the 

finance literature. It is defined by  1 1
NC (u,v; ) (u), (v)      , where   is the 

bivariate standard normal cumulative distribution function with correlation   

between X and Y and where 1(u)  and 1(v)  are standard normal quantile 

functions. It has no tail dependence. 

2) The Student-t is useful for capturing symmetric tail dependence. It is given by 

 
 

   1 1
STC (u,v; , ) T(t (u), t (v)) , where T is the bivariate Student-t cumulative 

distribution function with degree-of-freedom parameter   and  correlation   and 

where 1t (u)


 and 1t (v)


 are the quantile functions of the univariate Student-t 

distribution with degree-of-freedom parameter  . 
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3) The Gumbel copula is asymmetric and displays upper tail dependence and lower 

tail independence. It is given by    
   

          

1

GC (u,v; ) exp logu log v . Note 

that the two variables are independent when   1 . 

4) The rotated Gumbel copula displays upper tail independence and lower tail 

dependence. It is given by        RG GC (u,v; ) u v 1 C (1 u,1 v; ) . 

5) The BB7 copula  allows for different degrees of upper and lower tail dependence. 

It is defined as: 

    

1
1

BB7C (u, v; , ) 1 1 1 1 u 1 1 v 1


 

 
 

      
                      

, (3.11) 

with,   1   0 . 

6) The Plackett copula is a symmetric copula which, like the Gaussian copula, 

exhibits tail independence, even though the dependence for large joint realizations 

is less than for the Gaussian copula. It is given by: 

 
 

                         
 

2

P

1
C (u,v; ) 1 1 u v 1 1 u v 4 1 uv

2 1
. (3.12) 

7) The Clayton-Gumbel or BB1 copula allows for asymmetric tail dependence. It is 

specified as 

    

1
1

CGC (u, v; , ) u 1 v 1 1






 
 

   
        

   

, (3.13) 

with   0 ,   1 . 

In addition, we considered possible time-varying dependence by allowing the 

parameters of some copulas to vary according to a specific evolution equation. For 

the Gaussian and the Student-t copulas, we specified the linear dependence 

parameter t  so that it evolves according to a model with 1 autoregressive term and 

q moving-average terms, that is, an ARMA(1,q)-type process (Patton, 2006):  

  q

t t t j t jq j
(u ) (v ) 

  
         1 11

0 1 1 2 1
, (3.14) 

where   x x(x) e e


    
1

1 1  is the modified logistic transformation that keeps the 

value of t  in (-1,1). The dependence parameter is explained by a constant, 0 , by 

an autoregressive term, 1 , and by the average product over the last q observations 

of the transformed variables, 2 . For the Student-t copula, 1(x)  is substituted by 
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

1t (x) . Similarly, we consider time-varying dependence for the Gumbel and its 

rotated version by assuming that their parameters follow the dynamics represented 

by the following equation: 

 
q

t t t j t jq j
u v1

1 1  
     . (3.15) 

Overall, the copula family considered here can be classified as either symmetric 

copulas with tail dependence (Student-t and time-varying Student-t copulas) or tail 

independence (Gaussian, time-varying Gaussian and Plackett) or as asymmetric 

copulas with tail dependence (Gumbel, rotated Gumbel, BB7, BB1, time-varying 

Gumbel and rotated Gumbel). 

The parameters of the marginal and copula models are estimated using a two-

step procedure called inference for the margins (Joe and Xu, 1996). The likelihood 

function is given by: 

 d j
t t

d j d j

t t t t tR R
R R c u v f R f R( , ) ( , ) ( ) ( )f , (3.16) 

where c(u,v) is the copula density and d
t

d

tR
f R( )  and j

t

j

tR
f R( )  are the marginal 

densities of d

t
R  and j

t
R , respectively. The log likelihood function can thus be 

decomposed as the sum of the log likelihood function of the marginals plus the log 

likelihood of the copula density. Thus, in a first step, we estimate the parameters of 

the marginal distributions separately by maximum likelihood and, in a second step, 

we estimate the parameters of the copula by solving the following problem: 

 




  
T

t t
t 1

ˆ ˆargmax  ln c(u , v ; ) , (3.17) 

where   are the copula parameters and d
t

d
t R t d

ˆû F (R ; )   and j
t

j
t t jR

ˆv̂ F (R ; )   are 

pseudo-sample observations for the copula. Under standard regularity conditions, 

this two-step estimation is consistent and the parameter estimates are 

asymptotically efficient and normal (see Joe, 1997). The number of lags in the mean 

and variance equations for each series is selected according to the Akaike 

information criteria (AIC) and the performance of the different copula models is 

evaluated using the AIC adjusted for small-sample bias, as in Breymann et al. 

(2003) and Reboredo (2011; 2013). 
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3.3. Data 

We empirically evaluated systemic risk in European sovereign debt markets by 

considering weekly data for sovereign bond benchmark price indices for France, 

Germany, the Netherlands, GIIPS markets and the overall sovereign bond price 

index for the EMU. Benchmark bond price indices were sourced from Datastream 

for 10-year maturities covering the period 7 January 2000 to 26 October 2012. Thus, 

we evaluated the VaR of the European sovereign debt market, represented by the 

EMU, conditional on the fact that a specific European debt market was in financial 

distress. 

Figure 3.1 displays the benchmark bond price return dynamics (computed on a 

continuous compounding basis) for all the debt markets considered, and also for the 

EMU index returns, showing differences in the size and timing of price movements 

(especially relevant after the onset of the debt crisis at the end of 2009). Price 

volatility significantly changed for the GIIPS markets with the onset of the debt 

crisis, whereas volatility dynamics for the non-crisis countries (Germany, France and 

the Netherlands) remained relatively stable. Table 3.1 reports descriptive statistics 

for bond price returns. The average returns were similar across different debt 

markets and the corresponding standard deviations were larger for GIIPS markets 

than for the non-crisis markets. Also, differences between the maximum and 

minimum price returns show that price ranges were greater for GIIPS. Negative 

values for skewness were more pronounced for Greece than for the other debt 

markets (suggesting a greater probability of large decreases), with Ireland, Italy and 

Spain showing positive skewness. All return series showed high values for the 

kurtosis statistic, consistent with fat tails in the returns distributions; in fact, the 

Jarque-Bera test strongly rejected the normality of the unconditional distribution for 

all the series. The Ljung-Box statistic suggested the presence of serial correlation 

only in GIIPS returns. The autoregressive conditional heteroskedasticity-Lagrange 

multiplier (ARCH-LM) statistic indicated that ARCH effects could be found in all 

the returns series. Finally, the results of the Dickey and Fuller (1979) and Phillips 

and Perron (1988) non-stationarity tests and the Kwiatkowski et al. (1992) 

stationarity test confirm that all debt return series were stationary. 

For the explanatory variables, we obtained weekly data on stock market 

indices for each country from Datastream, and also on the Eurostoxx 50 index for 

the EMU. Stock market volatility for each index at any time was computed as the 

standard deviation of the daily returns in a backward window of three months. Data 
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for the Euribor at one year were also sourced from Datastream. Figure 3.2 depicts 

the stock price return dynamics, showing an abrupt change around the onset of the 

debt crisis that was common to all stock markets. This fact is corroborated by the 

behaviour of the market volatility data depicted in Figure 3.3. 
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Figure 3.1: Time series plot of weekly bond returns for selected countries and the 

European Economic and Monetary Union (EMU). 
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Table 3.1: Descriptive statistics for sovereign bond price returns. 

 

France Germany Greece Ireland Italy Netherlands Portugal Spain EMU 

Mean 0.000 0.001 -0.002 0.000 0.000 0.001 0.000 0.000 0.001 

Std. Dev. 0.008 0.008 0.030 0.015 0.010 0.008 0.020 0.011 0.008 

Maximum 0.039 0.029 0.236 0.119 0.082 0.032 0.127 0.079 0.029 

Minimum -0.032 -0.027 -0.290 -0.103 -0.043 -0.034 -0.137 -0.049 -0.027 

Skewness -0.063 -0.073 -2.401 0.393 1.168 -0.166 -0.034 1.061 -0.072 

Kurtosis 4.400 3.315 36.985 20.451 14.600 4.101 17.367 13.574 3.317 

J-B 54.9* 3.3* 32788.7* 8493.9* 3897.4* 36.8* 5744.9* 3237.6* 3.4* 

Q(20) 21.673 23.546 113.950 35.907 46.847 24.583 101.330 42.140 23.804 
 [0.359] [0.263] [0.000] [0.016] [0.001] [0.218] [0.000] [0.003] [0.251] 

ARCH 7.288 7.106 11.084 12.955 3.901 6.176 10.025 8.404 7.086 

 [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 

ADF -28.21* -28.14* -15.24* -24.37* -26.86* -27.52* -19.46* -30.86* -28.16* 

PP -28.19* -28.13* -23.32* -24.34* -26.84* -27.52* -25.86* -30.68* -28.15 

KPSS 0.06 0.10 0.50 0.08 0.05 0.08 0.16 0.17 0.10 

Notes. Weekly data for the period 14 January 2000 to 26 October 2012. EMU indicates European Economic 
and Monetary Union debt returns. J-B denotes the Jarque-Bera statistic for normality. Q(k) is the Ljung-
Box statistics for the serial correlation in returns computed with k lags. ARCH denotes Engle’s LM test for 
heteroskedasticity computed using 20 lags. For these tests, p values are reported in square brackets. ADF, 
PP and KPSS are the empirical statistics of the Augmented Dickey-Fuller (1979) unit root test, the Phillips-
Perron (1988) unit root test, and the Kwiatkowski et al. (1992) stationarity test, respectively. An asterisk 
(*) indicates rejection of the null hypothesis at 5%. 
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Figure 3.2: Time series plot of weekly market index returns for indices for selected 

countries and the European Economic and Monetary Union (EMU). 
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Figure 3.3: Time series plot of weekly market volatility returns for selected countries 

and the Eurostoxx 50. 
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Table 3.3 reports descriptive statistics for stock market return volatility and 

interest rate changes. Average volatility is similar across stock markets, with all 

volatility series exhibiting positive skewness and kurtosis, uncorrelated volatility and 

ARCH effects. The main features of log changes in the interest rate series are 

negative skewness, kurtosis and ARCH effects. 

Finally, we considered the crisis dummy variable, identifying two sample 

periods: before and after the onset of the European sovereign debt crisis (hereafter, 

the pre- and post-onset periods, respectively), assigning the values 0 to the pre-onset 

period and 1 to the post-onset period. The crucial point here was to determine the 

date when the European sovereign debt crisis started. Following Bhanot et al. 

(2014), we took this date to be November 2009. This was when investors became 

concerned regarding the quality of Greek debt, in response to the Greek government 

revealing that its debt amounted to 12.7% of gross domestic product, a figure 

considerably superior to the previously announced figure of 6.7%. The fact that the 

impact of the crisis was different across debt markets is likely to affect the 

dependence relationship between markets. Table 3.4 illustrates how the values of the 

Pearson correlation coefficient changed with the advent of the crisis. The lower 

triangular matrix shows that the correlation coefficient was positive and high for all 

the market pairs; however, the upper triangular matrix shows how correlation 

coefficients changed dramatically with the onset of the debt crisis: GIIPS negatively 

correlated with the EMU index, whereas France, Germany and the Netherlands 

continued to show high dependence on this index. Furthermore, linear dependence of 

the Greek market with the other markets changed, which decoupled from the non-

crisis markets and reduced dependence on the other countries in crisis. 
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Table 3.2: Descriptive statistics for stock market returns. 

 

France 

CAC40 

Germany 

DAX40 

Greece 

ATHEX 

Ireland 

ISEQ 

Italy 

MIB30 

Netherlands 

AEX 

Portugal 

PI20 

Spain 

IBEX35 

EMU 

Eurostoxx 50 

Mean -0.001 0.000 -0.003 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 

Std. Dev. 0.033 0.035 0.040 0.034 0.035 0.034 0.027 0.034 0.030 

Maximum 0.135 0.149 0.196 0.134 0.194 0.136 0.085 0.118 0.136 

Minimum -0.251 -0.243 -0.203 -0.317 -0.244 -0.288 -0.206 -0.238 -0.264 

Skewness -0.814 -0.553 -0.288 -1.707 -0.915 -1.081 -1.212 -0.766 -1.016 

Kurtosis 9.322 8.067 6.192 16.100 9.648 11.866 10.072 7.872 13.876 

J-B 1186.26 748.69 292.93 5100.83 1323.28 2317.97 1555.68 726.07 3407.52 

Q(20) 45.444 34.658 30.672 45.025 39.934 36.632 30.402 37.335 64.862 
 [0.001] [0.022] [0.060] [0.001] [0.005] [0.013] [0.064] [0.011] [0.000] 

ARCH 3.550 5.868 4.848 5.541 5.462 2.616 4.563 4.344 3.718 

 [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 

Notes. See Table 3.1 notes.  
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Table 3.3: Descriptive statistics for market volatility and Euribor at 1 year. 

 

France Germany Greece Ireland Italy Netherlands Portugal Spain EMU Euribor 1y 

Mean 0.103 0.106 0.116 0.094 0.100 0.100 0.076 0.102 0.261 0.000 

Std. Dev. 0.045 0.048 0.048 0.047 0.048 0.052 0.035 0.044 0.106 0.001 

Maximum 0.263 0.247 0.234 0.302 0.250 0.281 0.205 0.248 0.813 0.003 

Minimum 0.044 0.045 0.047 0.034 0.035 0.040 0.024 0.041 0.116 -0.003 

Skewness 1.280 1.178 0.426 2.066 0.915 1.497 1.272 0.855 1.540 -0.468 

Kurtosis 4.712 3.740 2.130 8.599 3.374 4.855 5.467 3.790 6.238 6.835 

J-B 264.06* 169.69* 41.27* 1347.99* 97.15* 345.17* 349.50* 98.70* 556.05* 433.73* 

Q(20) 7600.1 8054.8 8983.6 9428.9 8098.5 7964.8 7634.3 7518.3 5613.7 442.53 
 [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] 

ARCH 2382.7 1974.5 1047.3 3307.9 1831.2 3532.8 2140.5 2212.1 69.9 9.6 
 [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] 

Notes. See Table 3.1 notes. 
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Table 3.4: Pearson correlation coefficients. 

 

France Germany Greece Ireland Italy Netherlands Portugal Spain EMU 

France  0.69 -0.09 0.09 0.22 0.80 -0.02 0.23 0.69 

Germany 0.95  -0.36 -0.10 -0.19 0.93 -0.16 -0.09 1.00 

Greece 0.81 0.78  0.27 0.26 -0.28 0.29 0.22 -0.36 

Ireland 0.82 0.80 0.85  0.40 0.00 0.51 0.35 -0.10 

Italy 0.89 0.87 0.91 0.86  -0.08 0.29 0.75 -0.19 

Netherlands 0.95 0.96 0.86 0.86 0.92  -0.12 0.00 0.93 

Portugal 0.90 0.89 0.91 0.88 0.94 0.94  0.25 -0.16 

Spain 0.94 0.94 0.86 0.87 0.93 0.97 0.95  -0.09 

EMU 0.95 1.00 0.78 0.80 0.87 0.96 0.89 0.94  

Notes. EMU indicates European Economic and Monetary Union. The lower triangular matrix reports 
the Pearson’s correlation coefficient in the pre-onset period and the upper triangular matrix shows the 
Pearson’s correlation coefficient in the post-onset period. 

3.4. Empirical results 

3.4.1. Marginal model results 

Table 3.5 displays estimation results for the marginal models specified in Eqs. (3.8)-

(3.10) for sovereign debt returns. Marginal models were estimated by considering 

different combinations of the parameters p, r and m for values ranging from zero to 

a maximum lag of two; the most suitable model was selected according to AIC 

values. The evidence reported in Table 3.5 indicates that stock market returns had a 

negative impact on sovereign debt returns for all debt markets except Greece, 

Ireland, Italy and Portugal; stock market volatility, meanwhile, had no significant 

impact on average returns except for French debt returns and for the EMU index. 

Interest rate dynamics had a significant negative impact on debt returns in all series. 

The results for the crisis dummy variable indicate that the sovereign debt crisis 

negatively impacted average returns only in Greece and Portugal. Regarding debt 

return volatility, the empirical results confirm that volatility was persistent across 

different debt markets and leverage effects were hardly observed (Ireland, Italy and 

Spain were the exceptions). Consistent with the descriptive evidence on non-

normality and fat tails reported in Table 3.1, the estimated values for the degrees of 

freedom and the symmetry parameter of the skewed Student-t distribution confirm 

that the error terms are not normal and in some cases are asymmetric. 

We also checked the goodness-of-fit of our marginal models. The last rows of 

Table 3.5 indicate that neither autocorrelation nor ARCH effects remain in the 

residuals of the marginal models. Furthermore, we tested for the adequacy of the 
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skewed-t distribution model, testing the null hypothesis that the standardized model 

residuals were uniform (0,1) by comparing the empirical distribution and the 

theoretical distribution function using the well-known Kolmogorov-Smirnov, 

Cramér-von Mises and Anderson-Darling tests. The p-values for these tests, reported 

in last three rows of Table 3.5, indicate that, for either of the marginal models, the 

null of the correct specification of the distribution function could not be rejected at 

the 5% significance level. Overall, our goodness-of-fit tests indicate that the marginal 

distribution models were not mis-specified, so the copula model could correctly 

capture dependence between debt markets. 

3.4.2. Copula model results 

We considered the potential effects of the European sovereign debt crisis on 

dependence by estimating copula models for the pre- and post-onset periods, 

delimitating both periods according to the information reported by the crisis dummy 

variable. We also considered the systemic risk of each country for the European debt 

market as a whole and the systemic risk of Greece—the main country affected by 

the debt crisis—for other European debt markets. For the pre-onset and post-onset 

periods we estimated eight copula pairs for the EMU index returns and each 

country’s debt index returns; we also estimated seven copula pairs for the Greek 

debt index returns and the debt market returns for each of the other countries. 

Tables 3.6 and 3.7 report the copula model results for the EMU paired with 

each European country in the pre- and post-onset periods, respectively. The evidence 

from both static and time-varying copulas indicate that all the debt markets 

strongly co-moved with the EMU index, providing consistent evidence of tail 

dependence and time-varying (TVP) dependence. In fact, according to the AIC 

values, TVP-rotated Gumbel copula and the Student-t offered the best fit for all 

markets, meaning that there was lower tail dependence and, in one case, symmetric 

tail dependence. Table 3.7 reports the results for the post-onset period, showing how 

the shape of dependence changed completely. With the onset of the crisis, European 

debt markets decoupled: GIIPS debt markets moved in the opposite direction to the 

general debt index, whereas the non-crisis countries (France, Germany and the 

Netherlands) continued to strongly co-move (mainly Germany) with the EMU index 

as in the pre-onset period. Tail dependence results also indicated that Greece and 

Portugal decoupled from the EMU index under extreme market movements, since, 

according to the AIC, the best copula fit displayed tail independence (the Gaussian 

copula for Greece and the Plackett copula for Portugal). The other countries in 
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crisis displayed lower symmetric tail dependence — as represented by the TVP-

Student-t copula — in the post-onset period compared to the pre-onset period. For 

the non-crisis countries, tail dependence also changed, with France and the 

Netherlands showing lower tail independence and with Germany showing 

asymmetric tail dependence. Obviously, such changes in the dependence structure, 

and in particular in tail dependence, have implications for systemic risk that will be 

considered below. 

Tables 3.8 and 3.9 report results for the copula models for Greece paired with 

each European country in the pre- and post-onset periods. The evidence provided by 

the static and TVP copulas shows that the Greek debt market strongly co-moved 

with all the European debt markets, indicating lower tail dependence and upper tail 

independence. According to the AIC, the TVP-rotated Gumbel copula was the 

model that best fit all countries, with the exception of Italy, where the TVP-Gumbel 

copula offered the best fit, displaying upper tail dependence and lower tail 

independence with Greece. Table 3.9 reports dependence results for the post-onset 

period, showing that Greek debt market dependence on other European markets 

completely changed with the onset of the debt crisis. The Greek market decoupled 

from the non-crisis countries (France, Germany and the Netherlands), moving in the 

opposite direction on average and showing independence at the tails. The Greek 

debt market continued to co-move with the other countries in crisis in the post-onset 

period, although the intensity of co-movement decreased considerably. According to 

the AIC, the best copula fit revealed that, in times of extreme downturns, the Greek 

debt market did not co-move with the Irish, Italian, Portuguese or Spanish debt 

markets. There was also upper tail independence with the Greek market for all these 

markets except Portugal. It is important to point out that, according to our copula 

results, the Greek crisis at its depth did not have any spillover effect on the general 

EMU market index, given that this index is mainly based on non-crisis countries. 

This evidence is consistent with the results reported in Bhanot et al. (2014) for a 

multivariate GARCH model. 
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Table 3.5: Parameter estimates for the marginal distribution models. 

 
France Germany Greece Ireland Italy Netherlands Portugal Spain EMU 

Mean    
     

 

0
  0.001* 0.001* 0.001 0.000 0.001 0.001 0.001* 0.001* 0.001* 
 (2.18) (1.99) (0.85) (0.37) (1.77) (1.58) (2.10) (1.96) (2.04) 

AR(1) -0.112* -0.091*  -0.042   -0.125* -0.121* -0.094* 
 (-2.64) (-2.18)  (-1.00)   (-3.07) (-2.99) (-2.27) 

Euribor -4.726* -4.388* -4.754* -4.957* -4.673* -4.429* -5.017* -4.824* -4.574* 
 (-8.97) (-9.03) (-11.24) (-9.78) (-11.60) (-9.70) (-10.47) (-11.28) (-9.07) 

EMU Index -0.068* -0.069* -0.003 -0.013 -0.012 -0.068* -0.014 -0.026* -0.091* 

 (-5.74) (-6.30) (-0.39) (-1.06) (-0.91) (-5.91) (-1.05) (-2.33) (-6.21) 

Market Vol. -0.011* -0.009 -0.003 0.000 -0.008 -0.007 -0.015 -0.008 -0.005* 
 (-1.92) (-1.93) (-0.45) (0.05) (-1.68) (-1.29) (-1.82) (-1.49) (-2.03) 

Dummy 0.001 0.001 -0.012* -0.001 0.000 0.001 -0.003* -0.001 0.001 
 (1.197) (1.50) (-4.32) (-0.90) (-0.23) (1.49) (-2.16) (-1.33) (1.72) 

Variance    

     

 

  1.968* 1.531* 0.035* 0.019* 1.291* 1.870* 0.014* 0.015* 1.567* 
 (2.35) (2.35) (3.74) (2.16) (2.54) (2.073) (3.05) (2.64) (2.27) 

1


 0.087* 0.085* 0.034 -0.003 0.000 0.087* 0.038 0.010 0.094* 
 (3.04) (2.68) (0.50) (-0.08) (0.01) (2.543) (1.47) (0.38) (2.72) 

1


 0.867* 0.885* 0.851* 0.884* 0.890* 0.863* 0.886* 0.882* 0.879* 
 (29.61) (37.38) (21.51) (20.26) (40.50) (24.11) (48.30) (33.18) (34.66) 

  0.002 -0.020 0.158 0.162* 0.166* 0.005 0.104 0.147* -0.028 
 (0.04) (-0.49) (1.29) (3.45) (3.37) (0.094) (1.840) (2.226) (-0.65) 

Dummy 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 
 (32.81) (99.43) (87.63) (151.6) (42.44) (75.75) (227.2) (186.3) (93.75) 

Asymmetry -0.034 -0.116* -0.165* -0.115* -0.117 -0.073 -0.127* -0.144* -0.091 

 (-0.61) (-2.31) (-2.68) (-2.12) (-1.85) (-1.26) (-1.93) (-2.48) (-1.69) 

Tail 6.827* 8.538* 3.348* 5.257* 6.424* 8.390* 5.614* 7.252* 8.489* 

 
(72.08) (39.20) (4.02) (14.36) (105.6) (117.2) (39.93) (83.69) (128.8) 

LogLik 2404.47 2412.65 2120.94 2259.65 2390.82 2428.22 2203.12 2332.55 2414.79 

LJ 18.129 16.061 24.227 16.418 29.691 19.782 18.374 19.710 17.921 

 
[0.514] [0.653] [0.233] [0.629] [0.075] [0.472] [0.498] [0.412] [0.528] 

LJ
2

 22.954 23.810 27.523 27.278 15.443 19.416 21.691 12.057 26.933 

 
[0.192] [0.161] [0.051] [0.074] [0.631] [0.367] [0.246] [0.844] [0.080] 

ARCH 1.065 1.403 1.456 1.365 0.826 0.969 0.939 0.603 1.549 

 
[0.383] [0.113] [0.090] [0.133] [0.682] [0.498] [0.537] [0.912] [0.060] 

K-S [0.986] [0.946] [0.967] [0.892] [0.882] [0.903] [0.940] [0.948] [0.531] 
C-vM [0.990] [0.864] [0.938] [0.812] [0.989] [0.926] [0.989] [0.996] [0.740] 
A-D [0.992] [0.911] [0.963] [0.896] [0.998] [0.907] [0.992] [0.999] [0.806] 

Note. The table presents the maximum likelihood estimates and the z statistics (in parentheses) for the 

parameters of the marginal distribution models given by Eqs. (8)-(10).
 
LogLik is the log-likelihood value. LJ 

denotes the Ljung-Box statistic for serial correlation in the residual model calculated with 20 lags. LJ2 

denotes the Ljung-Box statistic for serial correlation in the squared residual model calculated with 20 lags. 

ARCH is Engle’s LM test for the ARCH effect in the residuals up to 20th order. K-S, C-vM and A-D denote 

the Kolmogorov-Smirnov, Cramér-von Mises and Anderson-Darling tests for adequacy of the skewed-t 

distribution model. P values (in square brackets) below 0.05 indicate rejection of the null hypothesis. An 

asterisk (*) indicates significance at 5%. EMU indicates European Economic and Monetary Union.  
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Table 3.6: Estimates for copula models in the period before crisis onset. European 

Economic and Monetary Union (EMU) vs. selected countries. 

Panel A: Parameter estimates for time-invariant copulas. 

Copula France Germany Greece Ireland Italy Netherlands Portugal Spain 

Gaussian          


 0.936* 0.981* 0.834* 0.835* 0.868* 0.943* 0.880* 0.909* 

 (0.00) (0.00) (0.01) (0.10) (0.01) (0.00) (0.01) (0.01) 

AIC -1067.493 -1680.860 -603.613 -608.745 -713.692 -1123.293 -756.375 -890.382 

Student-t          


 0.952* 0.983* 0.858* 0.868* 0.881* 0.948* 0.897* 0.916* 

 
(0.01) (0.00) (0.01) (0.01) (0.01) (0.00) (0.01) (0.01) 

  

 
 

1.828* 3.510* 2.841* 2.322* 4.214* 2.495* 3.247* 3.646* 
(0.26) (0.80) (0.53) (0.36) (0.99) (0.36) (0.59) (0.82) 

AIC -1266.306 -1760.424 -688.291 -724.814 -759.001 -1214.324 -824.799 -936.630 

Gumbel  
 

        

  

 
 

4.674* 7.955* 2.764* 2.840* 3.001* 4.593* 3.174* 3.528* 
(0.18) (0.30) (0.10) (0.11) (0.11) (0.17) (0.12) (0.13) 

AIC -1117.217 -1687.119 -619.432 -643.766 -715.031 -1115.740 -748.857 -865.385 

Rotated Gumbel        

  

 
 

4.971* 7.969* 2.809* 2.862* 2.981* 4.759* 3.270* 3.662* 
(0.19) (0.30) (0.10) (0.11) (0.11) (0.18) (0.12) (0.14) 

AIC -1186.789 -1688.961 -644.116 -657.189 -704.506 -1166.714 -784.269 -901.423 

BB7 
 

        

  4.162* 4.929* 2.421* 2.563* 2.801* 4.116* 2.711 3.073* 

 

(0.15) (0.00) (0.25) (0.18) (0.29) (0.22) (2.14) (0.49) 

  4.770* 8.747* 2.051* 1.930* 1.877* 4.461* 2.469* 2.937* 

 

(0.27) (0.03) (0.39) (0.18) (0.22) (0.31) (1.22) (0.85) 

AIC -1136.301 -1604.134 -633.823 -645.491 -696.002 -1131.798 -748.137 -870.589 

Plackett          

  134.543* 294.951* 31.904* 40.619* 37.994* 110.522* 46.854* 56.622* 

 (13.34) (32.99) (3.49) (4.60) (3.25) (15.88) (4.46) (5.43) 

AIC -1256.681 -1691.174 -672.451 -733.420 -755.312 -1189.036 -827.383 -921.424 

BB1         

  1.051* 0.827* 0.679* 0.599* 0.479* 0.947* 0.730* 0.783* 

 (0.15) (0.13) (0.12) (0.12) (0.11) (0.14) (0.12) (0.13) 

  3.264* 5.876* 2.150* 2.268* 2.496* 3.282* 2.433* 2.668* 

 (0.21) (0.34) (0.12) (0.13) (0.14) (0.21) (0.14) (0.16) 

AIC -1198.671 -1746.093 -660.372 -677.892 -739.670 -1187.867 -796.358 -918.379 

  




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Panel B: Parameter estimates for time-varying copulas. 

Copula France Germany Greece Ireland Italy Netherlands Portugal Spain 

TVP-Gaussian         

0  0.697 -0.611 -1.198* -0.870 -1.749 -1.050 -1.836 -1.484 

 (4.02) (17.72) (0.03) (70.06) (66.30) (22.01) (10.09) (452.12) 

1  0.111 0.422 0.309* 0.443 0.078 -0.132 0.249 -0.007 

 (0.06) (1.64) (0.02) (5.03) (2.76) (0.33) (0.27) (2.44) 

2  2.796 5.000 4.087* 3.658 5.000 5.000 5.000 5.000 

 (4.29) (16.58) (0.05) (106.19) (73.45) (23.11) (11.74) (501.79) 

AIC -1064.763 -1691.338 -628.580 -656.319 -710.828 -1121.542 -762.466 -886.352 

TVP-Student         

0  7.669* 44.715 5.629* 7.100* 9.028* -0.050 6.440 7.761 

 (0.93) (115.39) (1.03) (1.09) (1.94) (0.11) (6.81) (20.72) 

1  -0.017 0.001 -0.082 -0.051 -0.091 0.337 -0.289 -0.031 

 (0.02) (0.00) (0.04) (0.03) (0.09) (0.28) (0.29) (0.11) 

2  -3.975* -40.634 -3.406* -5.000* -6.974* 0.934 -3.260 -5.000 

 (1.07) (117.53) (1.20) (1.21) (2.22) (1.16) (7.34) (22.96) 

  1.951* 3.508* 2.344* 2.084* 3.822* 5.032* 11.020* 3.518 

 (0.29) (1.18) (0.37) (0.29) (0.84) (2.14) (5.62) (2.04) 

AIC -1269.201 -1756.383 -688.087 -723.210 -755.618 -1214.939 -275.838 -932.676 

TVP-Gumbel         

 1.412* 1.744* 1.661* 1.449* 1.238* 1.353* 1.603* 1.892 

 (0.11) (0.24) (0.41) (0.29) (0.61) (0.10) (0.40) (1.13) 

  0.172* 0.138* 0.095 0.148* 0.176 0.179* 0.112 0.049 

 (0.01) (0.02) (0.09) (0.05) (0.12) (0.01) (0.08) (0.21) 

  -4.429* -5.000* -4.880* -4.422* -3.295 -4.174* -4.757* -5.000 

 (0.88) (1.82) (1.48) (1.17) (2.08) (0.84) (1.56) (4.11) 

AIC -1275.875 -1730.546 -698.930 -768.086 -766.341 -1198.528 -799.470 -903.540 

TVP-Rotated Gumbel        

 1.320* 1.702* 1.316* 1.457* 0.773* 1.264* 1.461* 1.696* 

 (0.06) (0.23) (0.25) (0.21) (0.05) (0.09) (0.21) (0.36) 

  0.180* 0.144* 0.167* 0.149* 0.266* 0.186* 0.147* 0.111 

 (0.01) (0.01) (0.05) (0.03) (0.01) (0.01) (0.04) (0.06) 

  -3.451* -5.000* -3.716* -4.494* -1.664* -3.172* -4.309* -5.000* 

 (0.53) (2.52) (0.99) (0.91) (0.32) (0.67) (0.91) (1.47) 

AIC -1335.555 -1757.076 -725.442 -782.999 -766.521 -1237.901 -842.849 -963.021 

Notes. The table reports the ML estimates for the different copula models for the EMU index returns and debt 
index returns for the European countries indicated. Standard error values (in brackets) and Akaike 
information criterion (AIC) values adjusted for small-sample bias are provided for the different copula models. 
The minimum AIC value (in bold) indicates the best copula fit. For the TVP-Gaussian and TVP-Student-t 
copulas, q in Eq. (3.13) was set to 10. An asterisk (*) indicates significance at the 5% level. 
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Table 3.7: Estimates for copula models in the period after crisis onset. European 

Economic and Monetary Union (EMU) vs. selected countries. 

Panel A: Parameter estimates for time-invariant copulas. 

Copula France Germany Greece Ireland Italy Netherlands Portugal Spain 

Gaussian  

   

  

 

  

  0.679* 0.994* -0.370* -0.156* -0.182* 0.914* -0.194* -0.103 

 
(0.03) (0.00) (0.06) (0.07) (0.07) (0.01) (0.07) (0.07) 

AIC -94.074 -686.627 -20.824 -1.812 -3.188 -279.631 -3.928 0.364 

Student-t          

  0.684* 0.994* -0.362* -0.175* -0.154 0.916* -0.192* -0.108 

 
(0.04) (0.00) (0.06) (0.09) (0.09) (0.01) (0.08) (0.08) 

  

 
 

10.311 17.672 59.756 5.179* 5.393 11.644 7.905 3.810* 
(7.53) (13.18) (643.5

2) 
(2.43) (2.86) (20.36) (4.69) (1.57) 

AIC -93.371 -685.348 -18.805 -5.746 -5.473 -278.957 -4.300 -4.192 

Gumbel  
 

        

  

 
 

1.821* 13.132* 1.000* 1.000* 1.000* 3.475* 1.000* 1.000* 
(0.12) (0.88) (0.10) (0.08) (0.08) (0.23) (0.08) (0.08) 

AIC -89.144 -666.026 2.026 2.026 2.026 -263.297 2.026 2.026 

Rotated Gumbel         

  

  

1.838* 13.029* 1.000* 1.005* 1.000* 3.558* 1.000* 1.000* 
(0.12) (0.87) (0.11) (0.02) (0.09) (0.24) (0.09) (0.09) 

AIC -88.574 -666.476 2.026 1.973 2.026 -267.907 2.026 2.026 

BB7  
 

        

  1.666* 5.733* 1.001* 1.001* 1.001* 3.113* 1.001* 1.001* 

 

(0.19) (0.30) (0.21) (0.38) (0.35) (0.17) (0.38) (0.43) 

  0.913* 10.474* 0.001 0.001 0.001 2.635* 0.001 0.001 

 

(0.21) (0.95) (0.99) (0.95) (0.95) (0.17) (0.95) (0.94) 

AIC -88.226 -588.400 4.261 4.109 4.159 -258.116 4.178 4.119 

Plackett         

  9.939* 665.125* 0.366* 0.507* 0.606* 48.488* 0.540* 0.700* 

 (2.00) (130.30) (0.08) (0.13) (0.15) (10.71) (0.13) (0.18) 

AIC -94.752 -648.064 -15.609 -4.192 -2.079 -270.526 -4.663 0.164 

BB1         

  0.403* 0.924* 0.001 0.001 0.001 0.675* 0.001 0.001 

 (0.18) (0.25) (0.84) (0.87) (0.87) (0.22) (0.85) (0.86) 

  1.568* 9.389* 1.001 1.001 1.001 2.720* 1.001 1.001 

 (0.15) (1.04) (0.66) (0.57) (0.58) (0.28) (0.64) (0.59) 

AIC -92.345 -686.060 4.327 4.135 4.188 -274.670 4.215 4.132 

  




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Panel B: Parameter estimates for time-varying copulas. 

Copula France Germany Greece Ireland Italy Netherlands Portugal Spain 

TVP-Gaussian         

0  2.916 5.000 -0.845 -0.185 -0.290 5.000 -0.388 -0.003 

 (41.03) (83.18) (0.49) (0.18) (2.50) (8.76) (1.36) (0.27) 

1  0.116 0.015 -0.372 -0.248 1.130 -0.284 -0.148 1.201* 

 (5.85) (25.41) (0.48) (0.22) (0.86) (0.38) (0.47) (0.33) 

2  -2.000 1.000 0.126 1.160 -2.000 -1.761 0.116 -2.000* 

 (63.09) (56.93) (1.02) (0.77) (5.33) (9.33) (6.93) (0.05) 

AIC -90.021 -682.559 -17.566 0.373 -9.741 -276.408 -0.009 -4.988 

TVP-Student         

0  1.595 106.808 -0.838* -0.021 -0.044 6.440 -0.583 -0.070 

 (2.07) (161.24) (0.26) (0.03) (0.04) (6.81) (1.24) (0.12) 

1  -0.195 0.155 -0.362 -0.110* 0.181 -0.289 -0.099 0.299 

 (0.27) (0.32) (0.29) (0.06) (0.14) (0.29) (0.37) (0.23) 

2  0.363 -101.562 0.132 2.159* 1.600* -3.260 -0.817 0.807 

 (2.71) (161.13) (0.66) (0.10) (0.48) (7.34) (6.21) (0.93) 

  6.862 17.439 100.000* 5.309* 4.833* 11.020* 7.982 4.420* 

 (5.16) (19.73) (0.00) (1.48) (1.93) (5.62) (5.82) (1.88) 

AIC -89.577 -681.335 -15.464 -8.163 -15.034 -275.838 -0.194 -6.759 

TVP-Gumbel         

 2.167* 1.984* 0.000 0.000 0.000 0.771* 0.000 0.000 

 (0.62) (0.23) (1.00) (1.00) (1.00) (0.21) (1.00) (1.00) 

  -0.154 0.123* 0.000 0.000 0.000 0.258* 0.000 0.000 

 (0.21) (0.02) (1.00) (1.00) (1.00) (0.04) (1.00) (1.00) 

  -5.000* -4.619 0.000 0.000 0.000 -1.107 0.000 0.000 

 (1.25) (2.46) (1.00) (1.00) (1.00) (0.76) (1.00) (1.00) 

AIC -112.068 -663.314 6.175 6.163 6.167 -263.027 6.169 6.163 

TVP-Rotated Gumbel        

 0.847 2.920 0.000 -1.399* 0.000 0.633* 0.000 0.000 

 (0.48) (1.82) (1.00) (0.53) (1.00) (0.10) (1.00) (1.00) 

  0.252 0.052 0.000 1.001 0.000 0.286* 0.000 0.000 

 (0.13) (0.13) (1.00) (0.62) (1.00) (0.02) (1.00) (1.00) 

  -2.317 -5.000 0.000 1.248 0.000 -0.655 0.000 0.000 

 (1.24) (12.52) (1.00) (0.95) (1.00) (0.39) (1.00) (1.00) 

AIC 1.000 -662.873 6.173 4.807 6.161 -267.848 6.161 6.160 

Notes. See Table 3.6 notes. 
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Table 3.8: Estimates for the copula models in the period before crisis onset. Greece 

vs. country. 

Panel A: Parameter estimates for time-invariant copulas. 

Copula France Germany Ireland Italy Netherlands Portugal Spain 

Gaussian         

  0.856* 0.834* 0.916* 0.932* 0.867* 0.944* 0.915* 

 (0.01) (0.01) (0.01) (0.00) (0.01) (0.00) (0.01) 

AIC -671.901 -602.133 -932.624 -1035.026 -707.130 -1128.174 -925.587 

Student-t         

  0.878* 0.857* 0.940* 0.949* 0.880* 0.952* 0.931* 

 

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

  

 
 

2.318* 3.061* 1.343* 1.521* 2.287* 2.489* 2.094* 
(0.43) (0.57) (0.16) (0.19) (0.34) (1.01) (0.29) 

AIC -772.265 -682.688 -1147.700 -1200.938 -784.636 -1213.367 -1044.899 

Gumbel  
 

       

  

 
 

3.060* 2.743* 4.266* 4.647* 3.065* 4.812* 3.960* 
(0.12) (0.10) (0.17) (0.18) (0.12) (0.18) (0.15) 

AIC -704.236 -616.276 -982.597 -1073.074 -710.077 -1125.291 -932.318 

Rotated Gumbel        

  

 
 

3.035* 2.798* 4.496* 4.766* 3.148* 4.971* 4.200* 
(0.11) (0.10) (0.17) (0.18) (0.12) (0.18) (0.16) 

AIC -710.350 -640.877 -1049.016 -1108.588 -745.980 -1165.662 -1002.412 

BB7 
 

       

  2.836 2.399* 3.639* 4.126* 2.692* 5.275* 3.353* 

 

(3.81) (0.23) (0.25) (0.01) (0.22) (0.04) (0.17) 

  2.143* 2.029* 4.483* 4.269* 2.553* 5.074* 4.036* 

 

(0.29) (0.14) (0.41) (0.03) (0.17) (0.00) (0.23) 

AIC -712.089 -630.231 -1022.834 -1068.123 -740.602 -1126.389 -969.510 

Plackett         

  43.107* 31.535* 125.294* 143.040* 44.410* 117.270* 82.852* 

 (6.44) (3.10) (6.78) (14.70) (3.60) (11.82) (5.60) 

AIC -763.799 -666.266 -1137.193 -1209.029 -768.939 -1190.713 -1030.318 

BB1         

  0.609* 0.674* 1.093* 0.861* 0.806* 0.925* 1.068* 

 (0.12) (0.13) (0.16) (0.12) (0.14) (0.15) (0.23) 

  2.425* 2.140* 2.942* 3.409* 2.290* 3.474* 2.750* 

 (0.14) (0.13) (0.19) (0.20) (0.14) (0.22) (0.22) 

AIC -740.509 -656.994 -1061.755 -1130.593 -763.160 -1190.198 -1011.073 

  




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Panel B: Parameter estimates for time-varying copulas. 

Copula France Germany Ireland Italy Netherlands Portugal Spain 

TVP-Gaussian 
    

   

0  -1.143* -0.985 -0.919 -1.901 -1.879* -1.539 -1.903 

 (0.25) (5.23) (16.77) (16.31) (0.51) (9.56) (17.24) 

1  0.440* 0.345 0.548* 0.822 0.291* 0.524* 0.767 

 (0.08) (1.29) (0.15) (0.63) (0.09) (0.11) (72.88) 

2  4.000* 3.793 4.001 5.000 5.000* 5.000 4.947 

 (0.36) (7.57) (18.01) (16.49) (0.67) (10.02) (14.72) 

AIC -709.982 -626.195 -957.491 -1098.490 -728.252 -1147.538 -977.912 

TVP-Student        

0  -3.095* 6.465* 10.266* 1.176 -0.437* 9.047 1.124* 

 (1.13) (1.56) (2.04) (1.02) (0.17) (9.20) (0.38) 

1  0.092 -0.089 -0.008 -0.003 -0.020* -0.025 0.953* 

 (0.07) (0.05) (0.01) (0.00) (0.01) (0.03) (0.40) 

2  6.556* -4.405* -7.175* 2.656* 3.725* -5.540 -1.600 

 (1.37) (1.80) (2.13) (1.09) (0.21) (9.64) (0.85) 

  3.479* 2.610* 1.265* 1.485* 1.945* 2.302* 10.749 

 (0.63) (0.54) (0.16) (0.13) (0.13) (0.45) (5.90) 

AIC -781.633 -680.461 -1147.196 -1202.745 -789.062 -1209.952 -41.941 

TVP-Gumbel        

 1.422* 1.580* 1.418* 1.536* 0.957* 1.454* 1.425* 

 (0.30) (0.25) (0.04) (0.05) (0.10) (0.30) (0.17) 

  0.159* 0.109* 0.173* 0.158* 0.233* 0.164* 0.169* 

 (0.05) (0.05) (0.00) (0.00) (0.01) (0.04) (0.02) 

  -4.270* -4.563* -4.650* -5.000* -2.314* -4.206* -4.543* 

 (1.28) (0.93) (0.58) (0.30) (0.54) (1.54) (0.89) 

AIC -823.898 -695.634 -1211.396 -1325.291 -783.531 -1227.545 -1069.085 

TVP-Rotated Gumbel       

 1.291* 1.392* 1.399 1.529* 0.888* 1.361* 1.320* 

 (0.17) (0.30) (0.81) (0.06) (0.10) (0.12) (0.08) 

  0.184* 0.147* 0.173* 0.158* 0.242* 0.178* 0.181* 

 (0.03) (0.06) (0.07) (0.00) (0.01) (0.01) (0.01) 

  -3.924* -3.791* -4.229 -5.000* -1.869* -3.879* -3.645* 

 (0.85) (1.10) (6.10) (0.47) (0.50) (0.88) (0.42) 

AIC -828.722 -718.430 -1246.123 -1321.561 -810.422 -1285.344 -1116.245 

Notes. See Table 3.6 notes.  
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Table 3.9: Estimates for the copula models in the period after crisis onset. Greece vs. 

country. 

Panel A: Parameter estimates for time-invariant copulas. 

Copula France Germany Ireland Italy Netherlands Portugal Spain 

Gaussian        

  -0.061 -0.377* 0.473* 0.417* -0.264* 0.470* 0.400* 

 (0.08) (0.06) (0.06) (0.06) (0.07) (0.06) (0.06) 

AIC 1.432 -21.754 -37.308 -27.601 -9.276 -36.665 -24.910 

Student-t         

  -0.059 -0.368* 0.449* 0.384* -0.258* 0.440* 0.377* 

 
(0.20) (0.08) (0.04) (0.05) (0.07) (0.06) (0.06) 

  

 
 

500.000 37.902 100.000 32.619 500.000 8.075 22.329 
(1377.3

5) 
(36.14) (81.42) (89.61) (1758.78) (6.33) (38.08) 

AIC 3.629 -19.772 -35.395 -25.960 -7.196 -36.803 -23.631 

Gumbel  
 

       

  

 
 

1.000* 1.000* 1.344* 1.269* 1.000* 1.372* 1.270* 
(0.08) (0.10) (0.08) (0.07) (0.09) (0.08) (0.07) 

AIC 2.026 2.026 -34.138 -25.111 2.026 -40.190 -23.783 

Rotated Gumbel        

  

 

1.000* 1.000* 1.350* 1.280* 1.000* 1.367* 1.269* 
(0.10) (0.11) (0.08) (0.07) (0.10) (0.08) (0.07) 

AIC 2.026 2.026 -28.568 -22.014 2.026 -30.844 -18.434 

BB7  
 

       

  1.001* 1.001* 1.294* 1.229* 1.001* 1.402* 1.235* 

 

(0.46) (0.20) (0.13) (0.09) (0.29) (0.12) (0.11) 

  0.001 0.001 0.307* 0.299* 0.001 0.252* 0.261* 

 

(0.93) (0.99) (0.11) (0.11) (0.97) (0.12) (0.12) 

AIC 4.172 4.261 -31.717 -25.525 4.235 -38.020 -21.565 

Plackett         

  0.925* 0.353* 4.171* 3.110* 0.523* 4.276* 3.170* 

 (0.19) (0.08) (0.90) (0.69) (0.12) (0.94) (0.68) 

AIC 1.887 -16.633 -33.880 -20.940 -5.663 -34.341 -23.500 

BB1         

  0.001 0.001 0.149 0.187 0.001 0.092 0.131 

 (0.85) (0.84) (0.12) (0.13) (0.84) (0.12) (0.12) 

  1.001 1.001 1.267* 1.188* 1.001 1.325* 1.211* 

 (0.62) (0.66) (0.09) (0.08) (0.64) (0.10) (0.08) 

AIC 4.188 4.327 -33.753 -25.888 4.284 -38.826 -22.940 

  




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Panel B: Parameter estimates for time-varying copulas. 

Copula France Germany Ireland Italy Netherlands Portugal Spain 
TVP-Gaussian 

    
   

0  -0.081 -0.805 1.725* 0.336 -0.891 1.077 0.175 

 (0.13) (0.88) (0.81) (0.71) (0.54) (0.81) (0.30) 

1  -0.367 -0.335 0.244 -0.062 -0.751 1.530 -0.144 

 (0.56) (0.47) (0.29) (0.17) (0.67) (1.25) (0.19) 

2  0.719 0.246 -1.946 1.314 -0.604 -2.000 1.792* 

 (1.62) (2.06) (1.56) (1.72) (1.55) (1.34) (0.63) 

AIC 4.684 -18.442 -33.568 -23.856 -6.916 -44.739 -22.290 

TVP-Student        

0  -0.110 -0.807 1.836* 0.321 -0.891 1.124* 1.723* 

 (0.34) (0.85) (0.58) (0.65) (1.24) (0.38) (0.47) 

1  0.150 -0.325 0.595* -0.053 -0.753 0.953* -0.322 

 (0.35) (0.41) (0.15) (0.15) (0.59) (0.40) (0.49) 

2  -2.153* 0.225 -2.583* 1.338 -0.601 -1.600 -2.000* 

 (0.05) (2.10) (0.50) (1.64) (5.29) (0.85) (0.65) 

  499.046 53.091 51.820 35.602 500.000 10.749 25.178 

 (826.55) (307.10) (182.00) (101.05) (1772.87) (5.90) (39.80) 

AIC 7.628 -16.369 -32.884 -21.919 -4.767 -41.941 -19.824 

TVP-Gumbel        

 0.000 0.000 2.251* 1.283 0.000 0.757 1.079 

 (1.00) (1.00) (0.32) (0.79) (1.00) (0.99) (0.64) 

  0.000 0.000 -0.750* -0.182 0.000 0.241 -0.169 

 (1.00) (1.00) (0.10) (0.45) (1.00) (0.40) (0.43) 

  0.000 0.000 -2.665 -1.947 0.000 -1.904 -1.301 

 (1.00) (1.00) (1.64) (1.15) (1.00) (1.75) (0.92) 

AIC 6.167 6.174 -32.556 -24.977 6.172 -47.444 -21.348 

TVP-Rotated Gumbel       

 0.000 0.000 0.515 1.018 0.000 0.622* 0.669 

 (1.00) (1.00) (1.04) (1.27) (1.00) (0.24) (1.67) 

  0.000 0.000 0.300 -0.290 0.000 0.316* 0.012 

 (1.00) (1.00) (0.49) (0.94) (1.00) (0.08) (1.19) 

  0.000 0.000 -1.396 -0.430 0.000 -1.871* -0.647 

 (1.00) (1.00) (1.70) (1.11) (1.00) (0.66) (1.13) 

AIC 6.164 6.173 -28.235 -18.030 6.170 -38.570 -14.679 

Notes. See Table 3.6 notes. 
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3.4.3. CoVaR results 

Using the best copula fit for the pre- and post-onset periods, and following the two-

step procedure described above, we computed the CoVaR at the 99% confidence 

level ( 0.01  ) for the European sovereign debt market, conditional on the VaR for 

the sovereign debt returns of different countries at the 99% confidence level             

( 0.01  ).6 

Figure 3.4 depicts the results for the CoVaR and  CoVaR (in percentage) 

dynamics in the pre- and post-onset periods (delimited by a vertical line). For each 

figure that represents the systemic risk of each country, we also included information 

on the CoVaR, as computed using the methodology proposed by Girardi and Ergün 

(2013). Thus, taking a bivariate dynamic conditional correlation GARCH model 

with a bivariate Student-t density for the standardized residuals of the marginal 

models in Eqs. (3.8)-(3.10), and taking the value of VaR 7  for the market under 

distress, we numerically solved Eq. (3.4). We could thus visualize the differences 

between the copula approach and the approach used by Girardi and Ergün (2013) to 

compute the CoVaR and so assess the impact of copula modelling on the CoVaR 

values. 

Figure 3.4 indicates that, in the pre-onset period, all European debt markets 

experienced a similar trend in terms of systemic risk, with the size of this risk very 

similar across debt markets. Furthermore, the CoVaR measure clearly captured the 

impact of the dot-com bubble and the subprime crisis on systemic risk with 

significant reductions in the CoVaR values. The  CoVaR dynamics were similar, 

displaying significant increases around the time of the dot-com bubble and recent 

global financial crises. Table 3.10 provides a descriptive analysis for the CoVaR and 

 CoVaR measures (in percentages) across debt markets. The results for the pre-

onset period corroborate the graphical evidence: across debt markets, average 

CoVaR and CoVaR values were similar and standard deviations were of a similar 

magnitude. Descriptive statistics for the CoVaR values also indicate very similar 

results, irrespective of whether the CoVaR was computed through a bivariate  

  

                                                 
6 Results at the 95% confidence level are available on request. 
7 The VaR values for any European debt market j at any time t is computed from the 

marginal models as j 21
,t t , j,tVaR t ( )

  
     , where t  and 2

j,t  are the conditional 

mean and standard deviation of the debt returns computed according to Eqs. (3.8)-(3.9) and 

where 1
,t ( )
 

  denotes the  -quantile of the skewed Student-t distribution in Eq. (3.10). 
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Figure 3.4: CoVaR (left axis) and ∆CoVaR (right axis) estimates for the European 

Economic and Monetary Union (EMU) with respect to selected 

countries. 
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Figure 3.4: (Continued) 
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Figure 3.4: (Continued) 
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Figure 3.4: (Continued) 
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Student-t distribution or using a copula approach. Thus, regarding the pre-onset 

period, the copula approach to the CoVaR only had computational, not modelling, 

advantages, given that co-movement between debt markets and the EMU index was 

very high, with tail dependence also high for all copula specifications. In fact, there 

is no significant difference between the tail dependence arising from the TVP-

rotated Gumbel copula (the best copula fit for almost all the markets) and the lower 

tail dependence arising from the Student-t copula. As a result, the CoVaR values for 

these two copula specifications did not differ too much, as Table 3.10 reports. 

Regarding the post-onset period, the dynamics of the estimated CoVaR—as 

displayed in Figure 3.4 to the right of the vertical line and according to the 

descriptive statistics in Table 3.10—indicate that values increased for the GIIPS, 

with the exception of Spain. This is consistent with the fact that the debt markets of 

countries in crisis decoupled from other debt markets after the onset of the European 

sovereign debt market crisis. In fact, the dependence structure drastically changed in 

that the tail dependence of the pre-onset period dissipated after the onset of the debt 

crisis. The rise in the CoVaR values indicate that the systemic risk of the crisis 

countries was reduced, a finding corroborated by the behaviour of the  CoVaR 

values, which, in some cases, dropped to negative values as a result of opposite 

movement between the country in question and the EMU index returns. In the case 

of Spain, lower tail dependence with the EMU index persisted, so CoVaR values 

dropped, thus furnishing evidence of an increase in systemic risk in the Spanish 

sovereign debt market. This result is consistent with the concerns of government 

authorities and financial media; it is also consistent with the fact that the Spanish 

debt market could be the drive-belt for the debt crisis in peripheral countries, 

bringing its repercussions to the hard core of Europe and generalizing the crisis to all 

European debt markets. In contrast, for the non-crisis countries, the CoVaR values 

dropped significantly, indicating that French, German and Dutch debt market risk 

became more systemic than in the pre-onset period. This result was a consequence of 

their decoupling from debt markets after the onset of the debt crisis; it was also due 

to the fact that the markets continued to strongly co-move with the EMU index. 
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Table 3.10: Summary CoVaR and CoVaR statistics for the European Economic 

and Monetary Union (EMU) and selected countries. 

  Before crisis onset  After crisis onset 

Country Method Mean Std. Max Min  Mean Std. Max Min 

France 

Student-t -3.566 0.979 -1.325 -7.914  -4.914 0.748 -3.314 -7.290 

Copula -3.568 0.979 -1.325 -7.915  -4.086 0.650 -2.112 -5.560 

∆CoVaR 100.70 40.42 487.64 43.26  61.32 23.03 119.87 6.90 

Germany 

Student-t -3.569 0.979 -1.325 -7.915  -5.131 0.806 -3.396 -7.856 

Copula -3.569 0.979 -1.325 -7.914  -5.131 0.806 -3.396 -7.856 

∆CoVaR 100.71 40.42 487.68 43.26  96.77 10.39 137.42 75.64 

Greece 

Student-t -3.536 0.958 -1.313 -7.825  -2.810 0.495 -1.585 -4.556 

Copula -3.560 0.966 -1.325 -7.877  -0.897 0.302 -0.092 -1.916 

∆CoVaR 100.56 40.46 487.67 43.25  -48.43 8.56 -33.43 -88.59 

Ireland 

Student-t -3.511 0.924 -1.313 -7.576  -2.154 1.713 0.000 -6.862 

Copula -3.534 0.936 -1.325 -7.803  -3.001 1.149 -0.896 -6.704 

∆CoVaR 99.98 40.86 487.72 2.56  54.28 18.96 120.16 5.07 

Italy 

Student-t -3.566 0.979 -1.324 -7.913  -5.129 0.806 -3.394 -7.853 

Copula -3.568 0.978 -1.325 -7.904  -3.490 1.063 -0.231 -6.337 

∆CoVaR 100.69 40.42 487.66 43.25  66.13 26.43 118.17 -47.64 

Netherlan

ds 

Student-t -3.566 0.979 -1.324 -7.913  -5.129 0.806 -3.394 -7.853 

Copula -3.569 0.979 -1.325 -7.915  -5.130 0.806 -3.395 -7.855 

∆CoVaR 100.71 40.42 487.64 43.26  96.73 10.39 137.36 75.60 

Portugal 

Student-t -3.556 0.973 -1.313 -7.893  -2.691 0.480 -1.491 -4.386 

Copula -3.568 0.978 -1.325 -7.912  -1.916 0.391 -0.887 -3.285 

∆CoVaR 100.69 40.42 487.65 43.25  -6.75 0.95 -4.95 -10.82 

Spain 

Student-t -3.562 0.977 -1.320 -7.893  -3.253 0.942 -0.622 -6.540 

Copula -3.568 0.977 -1.325 -7.911  -3.793 0.896 -1.760 -6.890 

∆CoVaR 100.70 40.42 487.65 43.26  78.65 13.56 125.20 43.60 

Notes. The table reports descriptive CoVaR and  CoVaR statistics (percentages) at the 99% 
confidence level for the EMU and the VaR at the 99% level for selected countries in the pre- and post-
onset periods using the best copula fit and the multivariate generalized autoregressive conditional 
heteroskedasticity (MGARCH) model with bivariate Gaussian and Student-t distributions. Std., Max 
and Min denote standard deviation, maximum and minimum, respectively. 
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Empirical evidence for the post-onset period also revealed differences for 

CoVaR measures computed using different methods. In general, for the non-crisis 

countries, dependence continued to be strong after the onset of the debt crisis, with 

lower tail dependence changing in some cases. Tail dependence for France was lower, 

explaining the differences between the copula approach and the bivariate Student-t 

approach that can be observed in Figure 3.4 and in Table 3.10. However, tail 

dependence for Germany remained high through different copula specifications, so 

there was no almost difference between the CoVaR values obtained through the BB1 

copula or the Student-t approach. This evidence was similar for the Netherlands, 

with no significant differences. 

Results for the countries in crisis in the post-onset period (Figure 3.4) provide 

striking evidence of differences in CoVaR values as computed using different 

approaches. These differences can be explained in terms of (lower) tail dependence: 

for the Greek and Portuguese markets there was tail independence, so the CoVaR 

values were reduced with respect to the values obtained using a bivariate Student-t 

distribution. Also, when there was (lower) tail dependence, as for the Italian, 

Portuguese and Spanish debt markets, CoVaR values computed using the copula 

approach differed with respect to the values for the bivariate Student-t distribution. 

Hence, one of the advantages of using copulas to compute the CoVaR lies in the fact 

that copulas offers more flexibility in terms of fitting dependence (and particularly 

tail dependence) than parametric bivariate distributions; consequently, they yield a 

more accurate CoVaR measure. 

Overall, our results can be summarized as follows. Before the onset of the debt 

crisis, the dynamics and extent of systemic risk in European sovereign debt markets 

were similar, evidence consistent with high co-movement or coupling between debt 

markets. However, debt markets decoupled with the onset of the debt crisis, with 

crisis countries even displaying negative dependence. As a result, systemic risk 

decreased for the GIIPS debt markets, although not for Spain, and systemic risk 

increased for the non-crisis countries. 

Our results have implications for investors in debt markets. First, evidence 

regarding decoupling after the onset of the crisis indicates that investors could find 

hedging opportunities using sovereign debt instruments; this would not have been 

possible before the crisis given the coupling between debt markets. Furthermore, our 

results regarding tail independence and reductions in systemic risk indicate that, 

after the onset of the debt crisis, investors could achieve downside risk reductions 

with a portfolio that included sovereign debt from different countries, mainly for 
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sovereign debt markets that moved independently or in the opposite direction to the 

EMU index. 

3.4.3.1. Systemic risk in the Greek debt market 

Given that Greece was the leading protagonist of the European sovereign debt crisis, 

we estimated the CoVaR and  CoVaR values for each European debt market 

conditional on the VaR of the Greek debt market in order to evaluate the systemic 

impact of the Greek crisis and its differential effects across debt markets before and 

after the onset of the crisis. 

The dynamics of the CoVaR and CoVaR for all debt markets in the pre- and 

post-onset periods (delimited by a vertical line) are depicted in Figure 3.5. As with 

Figure 3.4, for each country we included information on the CoVaR computed using 

the methodology proposed by Girardi and Ergün (2013). The graphical evidence 

indicates that Greek systemic risk was low and relatively stable in the pre-onset 

period. The impact of the global financial crisis is reflected in an abrupt fall in the 

CoVaR value. Summary statistics for the CoVaR and CoVaR (in percentages) for 

the pre-onset period, as reported in Table 11, confirm that the systemic risk of the 

Greek debt market for other European debt markets was, on average, lower for the 

non-crisis countries than for the crisis countries. 

However, Greek systemic risk drastically changed from the onset of the Greek 

debt crisis, with the CoVaR value associated with the crisis countries experiencing a 

huge reduction. In contrast, non-crisis countries experienced an increase in the 

CoVaR value given that they decoupled from the Greek market. Moreover, CoVaR 

volatility increased substantially for the countries in crisis as a result of the 

uncertainty of the debt markets and the implementation of stabilization policies as 

formulated by the European Central Bank and the International Monetary Fund, 

provoking sudden changes in investor expectations. This evidence on systemic risk 

dynamics is consistent with the idea that the crisis had spillover effects on countries 

with weak economic fundamentals, and also had contagion effects, given that 

countries like France, Germany and the Netherlands—with no great economic 

difficulties—reduced their conditional VaR. As for the crisis countries, Portugal 

experienced the greatest impact, with a fall in its CoVaR values of up to -15% on 

average, followed by Ireland (-13%), Spain (-7.6%) and Italy (-5.9%). This evidence 

suggests that the Greek debt crisis particularly affected Portugal. This is consistent 

with the concerns of the financial media regarding fears that the Greek crisis could 

rapidly extend to Portugal. 
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Table 3.11: Summary CoVaR statistics for selected European debt markets and 

Greece. 

  Before crisis onset  After crisis onset 

Country Method Mean Std. Max Min  Mean Std. Max Min 

France 

Student-t -3.980 1.080 -1.680 -10.249  -3.658 1.312 -1.573 -8.207 

Copula -4.023 1.119 -1.688 -10.274  -1.876 0.716 -0.244 -4.275 

∆CoVaR 114.24 43.10 550.10 4.81  -7.96 2.38 -5.54 -32.22 

Germany 

Student-t -3.621 0.945 -1.271 -8.041  -2.776 0.451 -1.699 -4.437 

Copula -3.643 0.950 -1.284 -8.031  -0.871 0.289 0.060 -1.784 

∆CoVaR 101.31 43.90 597.29 44.24  -49.84 9.18 -33.79 -106.74 

Ireland 

Student-t -5.560 2.175 -2.777 -15.875  -9.927 8.789 0.000 -36.085 

Copula -5.581 2.188 -2.830 -15.958  -13.335 5.624 -4.798 -29.465 

∆CoVaR 146.57 43.82 702.18 89.91  79.62 1.86 84.25 72.99 

Italy 

Student-t -4.402 1.786 -1.641 -14.113  -7.399 3.086 -3.624 -15.844 

Copula -4.252 1.724 -0.563 -13.585  -5.962 2.502 -3.027 -12.845 

∆CoVaR 111.88 28.45 321.86 22.50  59.53 2.30 66.84 47.97 

Netherlands 

Student-t -3.520 1.052 -1.282 -10.208  -3.083 0.754 -1.689 -5.313 

Copula -3.547 1.051 -1.341 -10.226  -1.157 0.357 -0.048 -2.382 

∆CoVaR 100.28 39.38 513.80 44.45  -33.56 6.99 -22.27 -91.58 

Portugal 

Student-t -5.330 2.321 -2.399 -18.431  -23.683 8.277 -6.366 -42.892 

Copula -5.335 2.324 -2.405 -18.432  -15.167 4.916 -3.932 -28.369 

∆CoVaR 135.06 27.30 355.42 82.11  44.68 21.55 95.68 1.14 

Spain 

Student-t -4.203 1.625 -1.692 -14.474  -9.511 2.915 -4.271 -16.290 

Copula -4.214 1.630 -1.696 -14.484  -7.612 2.402 -3.424 -13.192 

∆CoVaR 111.00 32.44 457.41 62.43  52.23 3.07 61.98 45.01 

Notes. The table reports descriptive CoVaR and  CoVaR statistics (percentages) at the 99% confidence level 
for the EMU and the VaR at the 99% level for Greece in the pre- and post-onset periods using the best copula 
fit and the multivariate generalized autoregressive conditional heteroskedasticity (MGARCH) model with 
bivariate Gaussian and Student-t distributions. Std., Max and Min denote standard deviation, maximum and 
minimum, respectively. 
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Figure 3.5: CoVaR (left axis) and ∆CoVaR (right axis) estimates for Greece with 

respect to selected countries. 
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Figure: 3.5: (Continued) 
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Figure: 3.5: (Continued) 
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Figure: 3.5: (Continued) 

 

3.5. Conclusions 
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sovereign default in the euro area across debt markets. We measured systemic risk 

for European debt markets using the CoVaR measure, as proposed by Adrian and 
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2012, we calculated the systemic risk of the debt markets for each country and the 

systemic risk of the Greek debt market for other European debt markets for the 

periods before and after the onset of the European sovereign debt crisis. Our results 

indicate that European debt markets strongly co-moved in the period before the 

onset of the debt crisis and that systemic risk trends were similar across markets. 

However, after the onset of the crisis, European debt markets decoupled and GIIPS 

markets correlated negatively with the EMU index and displayed lower tail 

dependence. As a result, systemic risk changed dramatically and the value of the 

CoVaR increased. In contrast, for non-risk countries co-movement did not 

substantially change, even though systemic risk increased. We also analysed the 

systemic risk impact of Greek debt, finding that the risk for other European debt 

markets was low and stable before crisis onset. However, thereafter the systemic risk 

of Greek debt increased, mainly with regard to the other countries in crisis and with 

a particularly negative effect on the Portuguese market. The systemic risk of Greek 

debt for the non-crisis countries was reduced as a result of decoupling between the 

Greek debt market and the debt markets of the non-crisis countries. 
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Chapter 4 

4. A Vine-copula CoVaR approach to 

systemic sovereign debt risk for the 

financial sector 

4.1. Introduction 

How would a sovereign default impact on a country’s financial system? Does 

sovereign default in one country impact on the financial systems of other countries? 

In view of the recent global financial and European debt crises, the answers to such 

questions have acquired great importance for investors, regulators and researchers. 

We measured the systemic effect of domestic sovereign debt distress on 

domestic financial systems in European countries in the aftermath of recent financial 

and debt crises. We also measured the systemic effect of potential Greek debt 

distress on the financial systems of other European countries for the same period. 

Recent research has shown that systemic risk in financial markets increases 

considerably in times of crises and has adverse effects that extend to the real 

economy (e.g. Reinhart and Rogoff, 2009a). The links between financial crises and 

sovereign debt distress have been specifically documented by Reinhart and Rogoff 

(2009b, 2010) in relation to sovereign distress spreading to financial systems when 

banks hold substantial government debt in their portfolios (as happened in Italy, 
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Portugal and, to a lesser extent, Spain).8 Furthermore, sovereign debt portfolios of 

banks in European countries have been demonstrated to show a growing ‘home 

bias’, thereby increasing domestic sovereign holdings with sovereign solvency risk 

(Battistini, et al., 2014) while reinforcing the ‘diabolic loop’ between sovereign 

distress and bank solvency (Brunnermeier et al., 2011). Therefore, accurately 

quantifying how a potential sovereign default in the eurozone could impair the 

performance of a financial system has practical interest for both investors and 

regulators. 

Over the last few years, researchers have developed an increasing number of 

systemic risk measures to account for the impact of failure of a financial institution 

on an entire financial system and vice versa. To capture possible risk spillovers 

between markets, Adrian and Brunnermeier (2011) proposed using conditional 

value-at-risk (CoVaR), a measure that provides information on the value-at-risk 

(VaR) of a market conditional on the fact that another market is in financial 

distress. This measure was later generalized by Girardi and Ergün (2013) by 

considering the VaR of a market conditional on the fact that another market’s 

returns take values less than or equal to its VaR. Other authors have proposed 

alternative risk measures based on marginal expected shortfall (Acharya et al., 

2010), extreme value theory (De Jonghe, 2010; Zhou, 2010), principal component 

analysis (Billio et al., 2012; Kritzman et al., 2011), default probabilities (Lehar, 

2005; Huang et al., 2009; Segoviano and Goodhart, 2009; Huang et al., 2012; Gray 

and Jobst, 2010; Jin and Nadal De Simone, 2014), distance to default (Saldías, 2013) 

and network analysis (see, e.g., Halaj and Kok Sorensen, 2013; Allen et al., 2010; 

Tarashev et al., 2010).9 

We chose CoVaR because VaR is arguably the risk measure most widely used 

by investors, financial institutions and regulators. We characterized CoVaR systemic 

risk in terms of copulas (Mainik and Schaanning, 2012). Firstly, to account for the 

effects of domestic sovereign debt risk on the domestic financial system, we 

employed bivariate copulas so that CoVaR could be obtained in a two-step 

procedure. Thus, for the confidence level for CoVaR and the cumulative probability 

of the VaR for the domestic sovereign debt market, we could compute CoVaR 

cumulative probability from a copula function. We then inverted the marginal 

                                                 
8 Other channels of transmission of sovereign risk to financial institutions such as collateral, 

rating or guarantee channels were also identified by BIS (2011). 
9 Bisias et al. (2012) offer a comprehensive review on systemic risk measurement. 
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distribution function for this cumulative probability in order to obtain CoVaR. 

Secondly, to account for the systemic impact of a potential Greek sovereign debt 

default on the financial system of other European countries, taking into account the 

link between domestic financial and sovereign debt markets we extended the copula 

CoVaR representation to a multivariate setting by considering the vine-copula 

approach, which allows systemic risk to be assessed using a hierarchical dependence 

construction given by a set of bivariate copulas. In this way, we could take into 

account dependence between the Greek sovereign market and the sovereign and 

financial systems of other countries; hence, the impact of sovereign default—in the 

domestic or Greek or both markets—on the financial system could be obtained in a 

three-step procedure: (1) for the given cumulative VaR probability and for the 

CoVaR confidence level, we computed the cumulative probability for the VaR 

referring to the domestic sovereign debt market from a copula function; (2) using 

the information obtained, we computed the cumulative CoVaR probability from a 

copula function; and finally, (3) we inverted the marginal distribution function for 

this cumulative probability in order to obtain CoVaR. 

We measured the impact of sovereign debt default on the financial systems for 

both eurozone core countries (Austria, Belgium, Finland, France, Germany and the 

Netherlands) and peripheral countries (Italy, Greece, Portugal and Spain) for the 

period 2000 to 2012. Our results point to substantial differences in the systemic 

impact of sovereign debt on financial systems in the periods before and after crisis 

onset. Thus, before the outbreak of either the financial or debt crises (but mainly 

before the debt crisis), we observed that sovereign debt had a positive systemic risk 

impact in the sense that the financial system VaR increased; this increase can be 

explained in terms of the diversification effect of sovereign debt on bank portfolios. 

The Greek sovereign debt played a diversification role across financial systems in the 

entire eurozone excluding Portugal. However, with the onset of the European debt 

crisis domestic sovereign debt was observed to have a negative systemic impact on 

domestic financial systems. Not surprisingly, this effect was common to all the 

peripheral countries. As for the core countries, sovereign debt played a 

diversification role similar to that observed prior to the outbreak of the debt crisis. 

This differentiated sovereign debt impact can be explained in terms of the 

decoupling of debt markets across the eurozone; thus, negative effects on peripheral 

sovereign debt markets were not transmitted to core country sovereign debt 

markets. Furthermore, in examining the systemic impact of Greek sovereign debt 

distress on the financial systems of other countries, we found that although all 
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European financial systems were affected, they were affected to different degrees. 

For core countries Greek sovereign debt continued to play a diversification role 

(even though the intensity was less and more varied); whereas for peripheral 

countries like Belgium and the Netherlands, Greek sovereign systemic effects 

exacerbated the risk associated with their financial systems. 

This study adds to the burgeoning literature on the European sovereign debt 

crisis regarding links between sovereign debt markets and domestic and general 

financial sectors. De Bruyckere et al. (2013), for instance, examined contagion 

between bank and sovereign default risk in Europe through asset, collateral and 

rating channels. Bhanot et al. (2014) investigated how stock returns in the financial 

sector in crisis and non-crisis European countries were affected by the yield spreads 

for Greek sovereign debt. Mink and De Haan (2013) studied the impact of highly 

volatile Greek bonds on European bank stock prices in 2010. Alter and Schuler 

(2012) examined the relationship between sovereign default risk and domestic 

banking risk. For credit default swaps, other studies examined sovereign risk 

contagion among eurozone countries (e.g., Missio and Watzka, 2011; Arezki et al., 

2011; Alter and Beyer, 2012; Caporin et al., 2013) and the effects of sovereign debt 

default risk on the financial stability of the eurozone (Radev, 2012). However, 

underrepresented in this literature is examination of the systemic impact of domestic 

sovereign distress on domestic financial systems or the impact of Greek sovereign 

debt distress on the financial systems of other countries. This chapter fills this gap 

by attempting to quantify CoVaR for financial and sovereign debt crises using 

procedures based on copulas and vine copulas.  

The remainder of the chapter is laid out as follows: in Section 4.2 we outline 

the copula and vine-copula approaches to CoVaR, in Section 4.3 we present our data 

and in Section 4.4 we discuss the results. Finally, Section 4.5 concludes the chapter. 

4.2. Methodology 

We quantified the systemic impact of the sovereign debt market on the financial 

system using the CoVaR measure as introduced by Adrian and Brunnermeier (2011) 

and generalized by Girardi and Ergün (2013). CoVaR for the financial system of a 

country is VaR for the financial system conditional on the fact that the sovereign 

debt market is in financial distress. Let f

t
x  be the returns for the financial system at 

time t and let d

t
x  be the returns for the sovereign debt market at time t. Hence, 
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CoVaR for a confidence level of (1 )   can be formally characterized as the  -

quantile of the conditional distribution of f

t
x  as follows: 

 f f d d d

t t t t
x CoVaR x VaR|

, ,Pr( | )
 

    , (4.1) 

where d

t
VaR ,  denotes the VaR of the debt market that measures the maximum loss 

that may be experienced by the sovereign debt market for a confidence level 1    

at time t. Formally, it is the  -quantile of the return distribution for the debt 

market: d d

t t
x VaR ,Pr( )


   . 

We can compute CoVaR by determining the quantile of a conditional 

distribution or by using the quantile of an unconditional bivariate distribution, given 

that Eq. (4.1) can be written as: 

 
f f d d d

t t t t

d d

t t

x CoVaR x VaR

x VaR

|
, ,

,

Pr( , )

Pr( )

 



 
 


, (4.2) 

or alternatively as: 

 f f d d d

t t t t
x CoVaR x VaR|

, ,Pr( , )
 

    . (4.3) 

4.2.1. CoVaR with copulas 

To obtain CoVaR from Eq. (4.3), we used copulas to characterize the joint 

distribution function.10 Eq. (4.3) can be expressed in terms of the joint distribution 

function of f

t
x  and d

t
x , 

f d
F ,

, as f d d

f d t t
F CoVaR VaR|

, , ,( , )
 

  ; furthermore, Sklar’s 

(1959) theorem relates the joint distribution function and the copula as follows: 

 f d

f d t t f d
F x x C u u, ( , ) ( , ) , (4.4) 

where C(·,·) is a copula function, f

f f t
u F x( )  and d

d d t
u F x( )  and where 

f
F  and 

d
F  

are the marginal distribution functions of f

t
x  and d

t
x , respectively. Consequently, we 

can express Eq. (4.3) in terms of copulas as: 

  f d d

f t d t
C F CoVaR F VaR|

, ,( ), ( )
 

  . (4.5) 

Hence, CoVaR can be computed from Eq. (5) using a simple two-step procedure: 

                                                 
10 For further analysis on copulas, see Joe (1997) and Nelsen (2006). An overview of copula 

applications to finance can be found in Cherubini et al. (2004). Mainik and Schaanning 

(2012) provide the first representation of CoVaR in terms of bivariate copulas. 
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(1) We obtain the value of f d

f t
F CoVaR |

,( )


 from Eq. (4.5). Given that 
f d

C u u( , )   , 

where  ,   and 
d

u  are given (note that 
d

u   ), from the copula function 

specification we can solve to determine the value of f d

f f t
u F CoVaR |

,( )


 . 

(2) From u  we can obtain CoVaR as the quantile of the distribution of f

t
x , with a 

cumulative probability equal to u , by inverting the marginal distribution function 

of f

t
x : f d

t f f
CoVaR F u| 1

, ( )


 . 

The use of copulas to obtain CoVaR is appealing because of their flexibility, 

compared to parametric bivariate functions, in allowing separate modelling of the 

marginals and the dependence structure. This is crucial because marginals and 

dependence functions may have different tail dependence characteristics that may 

affect CoVaR. Furthermore, computing CoVaR using the above two-step procedure 

is simple and only requires information on the confidence levels. In fact, tail 

dependence information from copulas naturally provides a measure of CoVaR, even 

though it does so at the limits. 

4.2.2. CoVaR with vine copulas 

Copula CoVaR provides useful information in a bivariate setup. However, since we 

wanted to consider systemic risk affecting several markets—i.e., the impact of Greek 

debt distress on the financial system and on other debt markets—we needed to 

consider dependence in more than two dimensions. We thus considered vine 

copulas,11 since these account for a multivariate distribution that combines three or 

more marginal distributions in a joint distribution. Vine copulas are multivariate 

copulas that are generated through a hierarchical construction that is decomposed 

into a cascade of bivariate copulas called pair-copulas, where each bivariate pair-

copula captures conditional dependence between two variables. Thus, a vine 

construction requires pairs of original variables and pairs of conditional distributions 

of recomputed variables to be modelled. 

Since we wished to analyse the systemic impact of a distressed sovereign debt 

market (Greece) and foreign debt markets on national financial systems, we 

                                                 
11 In the statistical literature vine copulas were introduced by Joe (1997) and were extended 

by Aas et al. (2009) for risk management purposes. Some applications of vine copulas in 

finance include, among others, Chollete et al. (2009), Aas and Beng (2009), Low et al. (2013) 

and Weiß and Supper (2013). 
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considered a vine copula with three variables. Let d

t
x *  be the returns for the foreign 

debt market at time t with distribution function d

d t d
F x u*

* *( )  . According to 

Bedford and Cooke (2001), the joint density of financial, national and foreign debt 

returns can be expressed as the product of the marginal densities and a set of 

conditional bivariate copulas as: 

 

   

 

f d d f d d d f d

f d d f d d d f d f d

d d f d d

d d d d f d d

f x x x c F x x F x x c F x F x

c F x F x f x f x f x

* * * *
, | * | * | * , * *

* *
, * * *

( , , ) ( | ), ( | ) ( ), ( )

( ), ( ) ( ) ( ) ( )



                    

, (4.6) 

where c(·,·) denotes the copula density and f(·) the marginal densities and where 

f d d
c , | *  is referred to as the pair-copula. The conditional distribution functions in Eq. 

(4.6) for any two random variables x and y can be obtained as (Joe, 1997): 

 x y
C F x F y

F x y
F y

, ( ( ), ( ))
( | )

( )





. (4.7) 

The decomposition in Eq. (4.6) is a canonical or C-vine copula model where the 

initial node of the vine copula hierarchical structure is given by the returns of the 

foreign debt market;  alternatively, the decomposition in Eq. (4.6) is given by a D-

vine copula model like that represented in Figure 4.1, where each edge corresponds 

to a bivariate copula density and the first three T1 (upper) nodes correspond to the 

marginals. We adopted this hierarchical structure as we were interested in the 

systemic impact of the Greek national debt market on the financial system, given 

specific foreign debt market circumstances, or the systemic effect of sovereign Greek 

debt distress on the financial systems of other countries. 

Figure 4.1: A D-Vine copula hierarchical structure 

 

Now, in this multivariate conditional setup, CoVaR is given by: 

  f f d d d d d d

t t t t t
x CoVaR x VaR x| , * | * *

, ,Pr | ,
 

    , (4.8) 

which can be expressed in terms of the conditional joint distribution function as

 f d d d d

f d d t t
F CoVaR VaR| , * | *

, | * , ,,
 

  . Hence, to obtain CoVaR from the vine-copula 

f d* d

f,d* d*,d

(f, d*) (d*, d)

(f, d|d*)

T1

T2
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specification, we have to take into account information provided by the conditional 

joint distribution function of f

t
x  and d

t
x , given, in terms of the copula, as: 

    f d d d

f d d f d d f d d d
F x x x x C u u u u* *

, | * , | * * *( | ),( | ) ( | ),( | ) . (4.9) 

Thus, CoVaR can be obtained from the vine copula using a three-steep procedure: 

(1) For given values of  , 
d

u    and 
d

u *  and for the copula specification in Eq. 

(4.9) we can solve to determine the value of 
f d

u u *( | ). 

(2) From the value of 
f d

u u *( | )  we obtain the value of 
f

u  by solving from the 

conditional distribution of f

t
x  given by Eq. (4.7). 

(3) From 
f

u  we obtain CoVaR as the quantile of the distribution of f

t
x , with a 

cumulative probability equal to u , by inverting the marginal distribution function 

of f

t
x : f d d

t f f
CoVaR F u| , * 1

, ( )


 . 

Following this three-step procedure we obtain information on CoVaR of the 

financial system in a given country in a situation of debt market distress, taking into 

account the foreign debt market situation. Furthermore, we can also consider the 

CoVaR of the financial system under two other market scenarios: (1) both national 

and foreign debt markets are distressed ( d d

t t
x VaR ,  and d d

t t
x VaR* *

, ); (2) only 

the foreign debt market is distressed ( d d

t t
x VaR* *

, ). In the first case, the returns in 

both debt markets are below or equal to their VaR figures, so 
d

u    and 
d

u *   , 

where 1    is the confidence level for the VaR of the foreign debt market. The 

estimation procedure is identical to the three-steep procedure described above except 

regarding the value of 
d

u * . In the second case, we only have information on 
d

u *    

and for that information we have to obtain the value of 
d

u  from the bivariate 

copula for both debt markets. Once we have this information we follow the three-

step procedure described above. 

4.2.3. Marginal distribution and copula models 

The marginal models and copula specifications used to compute the CoVaR 

measures are described as follows. 

To account for the usual characteristics of financial return distributions, such 

as leverage, fat tails and asymmetries, we considered that the conditional mean and 
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variance of returns (
t

r ) are given by an autoregressive moving average (ARMA) 

model with p and q lags specified as: 

 
p q

t j t j j t h t
j h

r r0
1 1

 
 

          , (4.10) 

where 
t t t

z    and where 
t

2  is the conditional variance, given by a threshold 

generalized autoregressive conditional heteroskedasticity (TGARCH) specification 

(Zakoian, 1994; Glosten et al., 1993): 

 
r m m

t k t k h t h h t h

k h h

b a2 2 2

1 1 1
  

  

          , (4.11) 

where   is a constant, t k
2
  is the GARCH component and t h  is the ARCH 

component. The parameter   captures asymmetric effects in such a way that when 

  0 , the future conditional variance will proportionally increase more following a 

negative shock than following a positive shock of the same magnitude. 
t

z  is a zero 

mean and unit variance i.i.d. random variable that follows a Hansen’s (1994) 

skewed-t density distribution given by: 

 
 

 

t

t

bz a

t

t

bz a

t

bc z a b

f z

bc z a b

( 1) 2
2

1
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, (4.12) 

where   and   are the degrees of freedom parameter ( 2     ) and the 

symmetric parameter ( 1 1    ), respectively. The constants a, b and c are given 

by  a c 2
1

4 


  , b a2 2 21 3     and    c 1

2 2
( 2)       . This distribution 

converges to the standard Gaussian as 0   and as  , and to the symmetric 

Student-t distribution as 0   and   is finite. 

We used seven different copula specifications to capture different 

characteristics of dependence: tail independence (Gaussian and Plackett), symmetric 

tail dependence (Student-t) and asymmetric tail dependence (Gumbel, Rotated 

Gumbel, BB7 and Symmetric Joe-Clayton (SJC)). Table 4.1 summarizes the main 

features of all the static and dynamic copula functions that were employed in the 

empirical analysis. 

We estimated the parameters of the marginal and bivariate copula models 

following the inference function for margins procedure (Joe and Xu, 1996), which 

consists of first estimating the parameters of the marginal distributions separately 



Chapter 4 

102 

using maximum likelihood and then estimating the parameters of the copula using 

the pseudo-sample observations for the copula given by the probability integral 

transformation of the standardized residuals for the marginals. For the vine copula 

(second tree of Figure 4.1), we recomputed the pseudo-sample observations through 

the copulas estimated for the first tree. This sequential estimation procedure was 

introduced by Aas et al. (2009) and later examined in Hobæk Haff (2013). The 

number of lags in the mean and variance equations for each series was selected 

according to the Akaike information criteria (AIC) and the different copula models 

were evaluated using the AIC adjusted for small-sample bias, as in Breymann et al. 

(2003) and Reboredo (2011; 2013). 

4.3. Data 

We empirically examined the systemic risk effect of sovereign debt distress on the 

financial sector by considering six eurozone core countries (Austria (AT), Belgium 

(BE), Finland (FI), France (FR), Germany (DE) and Netherlands (NL)) and four 

peripheral countries (Italy (IT), Greece (GR), Portugal (PT) and Spain (ES)). For 

each country we considered weekly data for benchmark bond price indices for 10-

year maturities and for the MSCI financial price index. Data were sourced from 

Datastream and Bloomberg and cover the period 23 December 1999 to 25 May 2012. 

With this data we evaluated the following: (1) the impact of a distress event in one 

country’s debt market on its financial sector as represented by the MSCI financial 

index; (2) the impact of a distress event in the Greek debt market on the banking 

sector of other European countries; and (3) the impact of a simultaneous distress 

event in the Greek and domestic debt markets on the domestic financial system. 
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Table 4.1: Copula models. 

Name Copula Parameter Structure dependence 

Gaussian  1 1
NC (u,v; ) (u), (v)         No tail dependence. U L 0     

Student-t 1 1
STC (u,v; , ) T(t (u), t (v)) 

 
    ,   Symmetric tail dependence: 

 U L 12 t 1 1 / 1


            

Gumbel 
   

   
          

1

GC (u,v; ) exp logu log v  
  1  Asymmetric tail dependence: 

L 0  , 
1

U 2 2     

Rotated Gumbel        RG GC (u,v; ) u v 1 C (1 u,1 v; )    1  Asymmetric tail dependence: 

L 0  , 
1

U 2 2     

BB7 

   

1
1

BB7C (u,v; , ) 1 1 1 1 u 1 1 v 1


 

 
 

      
               
       

 

1  , 

0   

Asymmetric tail dependence: 
1

L 2

  , 

1

U 2 2     

Plackett 

 
           

2

P

1
C (u,v; ) 1 1 u v 1 1 u v 4 1 uv

2 1
              

 
 

0  , 

1   

No tail dependence. U L 0     

SJC  U L U L U L
SJC JC JCC (u,v; , ) 0.5 C (u,v; , ) C (1 u,1 v; , ) u v 1               

where     U
21/ log 2 ,     L

21/ log , 
JCC ( )  is similar to 

BB7C ( )  

U (0,1)   
L (0,1)   

Upper and lower tail 

independence: U 0   and L 0   

Notes. We also captured time-varying dependence by assuming that copula parameters change over time. For the Gaussian and Student-t copulas, we assumed an 

ARMA(1,q)-type process (Patton, 2006) for the linear dependence parameter 
t

 : q 1 11 (u ) (v )j 1t 1 0 1 t 1 2 t i t iq

               
, where    x x(x) e e

1
1 11


      is the modified 

logistic transformation that keeps the value of 
t

  in (-1,1). For the Student-t copula, 1(x)  is replaced by 1t (x)


. We considered time-varying dependence for the 

Gumbel and Rotated Gumbel copulas by assuming that the parameters reflect the dynamics given by the following equation: q
u vt t j t i t iq

1
1 1           . Finally, we 

considered time-varying dependence for the symmetrized Joe-Clayton (SCJ) copula by assuming that U qU 1 u vj 1t 2 0,U 1,U t 1 2,U t i t iq

 
            

 and

L qL 1 u vj 1t 2 0,L 1, L t 1 2,L t i t iq

 
            

, where  x(x) e
1

1 12


   is the logistic transformation used to keep U
 and L

 in (0,1)
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Figures 4.2 and 4.3, which display the benchmark bond and MSCI price 

dynamics for all ten countries considered in our analysis, show differences in the size 

and timing of price movements in debt markets and the financial sector that become 

especially relevant after the onset of the debt crisis at the end of 2009. Price 

volatility changed significantly around the period of the recent global financial crisis 

for the MSCI index and around the period of the European debt crisis for debt price 

benchmarks, to degrees that differed significantly across core and peripheral 

countries. A superficial inspection of the data shows that co-movement between debt 

and financial sectors was different across countries and also changed with the onset 

of the debt crisis. Table 4.2 reports descriptive statistics for bond and financial price 

returns computed on a continuous compounding basis. Average returns were 

similarly close to zero in all the debt and financial markets and standard deviations 

were larger for the financial markets than for the debt markets. Also, differences in 

maximum and minimum values show that price ranges were greater for financial 

markets than for debt markets and greater for peripheral countries than for core 

countries. Negative values for skewness were common across markets and countries, 

with the exception of the Belgian, Italian and Spanish debt markets. All return 

series showed fat tails; the kurtosis statistic took high values and the Jarque-Bera 

test strongly rejected the normality of the unconditional distribution for all the 

series. The Ljung-Box statistic indicated that some return series displayed temporal 

correlation, whereas the ARCH-Lagrange multiplier (ARCH-LM) statistic indicated 

that ARCH effects could be found in all the return series. 

Finally, in order to take into account the effects of the European sovereign 

debt crisis on expected returns and on volatility, we considered a crisis dummy 

variable in the mean and the variance of the marginal models that identified sample 

periods for before (value set to 0) and after (value set to 1) the onset of the 

European sovereign debt crisis. The crucial point here was to determine when the 

European sovereign debt crisis started. Following Bhanot et al. (2014), we took this 

date to be November 2009, as this was when investors became concerned regarding 

the quality of Greek debt; this concern developed in response to the Greek 

government’s revelation that its deficit amounted to 12.7% of gross domestic 

product and not the previously announced 6.7%. The fact that the impact of the 

crisis was different across debt markets is likely to have affected the dependence 

relationships between markets. 
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Figure 4.2: Time series plot of weekly sovereign bond price indices. 
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Figure 4.3: Time series plot of weekly MSCI financial price indices. 
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Table 4.2: Descriptive statistics by country. 

Panel A: Sovereign bond returns 

 

AT BE FI FR DE GR IT NL PT ES 

Mean 0.000 0.000 0.000 0.000 -0.003 -0.003 0.000 0.001 -0.001 0.000 

SD 0.008 0.009 0.007 0.008 0.022 0.032 0.009 0.008 0.019 0.010 

Maximum 0.046 0.091 0.026 0.039 0.135 0.293 0.082 0.027 0.127 0.079 

Minimum -0.036 -0.079 -0.029 -0.032 -0.142 -0.287 -0.043 -0.029 -0.137 -0.038 

Skewness -0.250 0.217 -0.178 -0.065 -1.487 -1.428 0.917 -0.191 -0.253 1.195 

Kurtosis 6.352 23.528 3.873 4.446 16.739 44.200 14.986 3.722 20.809 14.658 

J-B 310.6* 11400.* 24.03* 56.98* 5343.9* 46122.* 3975.8* 18.05* 8583.1* 3829.6* 

Q(20) 62.252 74.578 26.007 26.139 24.095 128.27 51.085 24.729 106.01 29.106 

 
[0.000] [0.000] [0.166] [0.161] [0.238] [0.000] [0.000] [0.212] [0.000] [0.086] 

ARCH 10.417 15.579 5.390 8.485 6.275 17.654 4.750 5.330 9.929 10.900 
 [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 

Panel B: MSCI financial index returns 

 

AT BE FI FR DE GR IT NL PT ES 

Mean 0.000 -0.003 0.001 -0.001 -0.002 -0.005 -0.002 -0.003 -0.005 -0.001 

SD 0.053 0.051 0.041 0.049 0.046 0.060 0.044 0.065 0.043 0.046 

Maximum 0.240 0.193 0.158 0.195 0.230 0.255 0.228 0.238 0.181 0.181 

Minimum -0.559 -0.474 -0.236 -0.242 -0.344 -0.273 -0.243 -0.536 -0.251 -0.252 

Skewness -2.253 -1.657 -0.643 -0.361 -0.578 -0.236 -0.904 -1.382 -0.744 -0.657 

Kurtosis 25.812 16.381 6.780 6.667 9.697 6.140 8.634 14.291 7.886 7.218 

JB 14620.* 5138.4* 431.21* 377.61* 1248.9* 272.6* 946.7* 3654.2* 705.3* 527.75* 

Q(20) 57.325 51.874 23.286 29.874 31.819 34.312 40.792 53.924 41.351 31.039 

 
[0.000] [0.000] [0.275] [0.072] [0.045] [0.024] [0.004] [0.000] [0.003] [0.055] 

ARCH 6.349 6.527 4.879 12.142 5.958 8.175 7.166 8.644 11.381 8.497 
 [0.000] [0.000] [0.275] [0.072] [0.045] [0.024] [0.004] [0.000] [0.003] [0.055] 

Notes. Weekly data for the period 23 December 1999 to 25 May 2012. JB denotes the Jarque-Bera statistic for 

normality. Q(k) is the Ljung-Box statistic for serial correlation in squared returns computed with k lags. ARCH 

denotes Engle’s LM test for heteroskedasticity computed using 20 lags. An asterisk (*) indicates rejection of the 

null hypothesis at 5%. 

Table 4.3 provides information on the Pearson correlation between debt and 

financial returns for all the countries examined for the entire sample and for the 

periods before and after the onset of the European sovereign debt crisis (dated 

according to the dummy variable). It can be observed that linear dependence 

significantly changed for peripheral countries and Belgium, with correlation changing 

from negative to positive values; for these countries the diversification effect of 

sovereign debt dissipated with the onset of the sovereign debt crisis. However, for 

core countries we observed that the negative correlation values persisted after the 

onset of the crisis. The fact that the diversification role of sovereign debt was not 

changed in this case by the debt crisis has implications for CoVaR as we will discuss 

below. 
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Table 4.3: Pearson correlation between financial returns and sovereign debt returns 

by country. 

 AT BE FI FR DE GR IT NL PT ES 

All series -0.07 0.00 -0.23 -0.21 -0.36 0.27 0.14 -0.24 0.20 0.04 

Before crisis onset -0.13 -0.19 -0.19 -0.25 -0.30 -0.04 -0.13 -0.20 -0.07 -0.21 

After crisis onset 0.07 0.34 -0.37 -0.11 -0.56 0.39 0.52 -0.41 0.31 0.40 

4.4. Empirical results 

4.4.1. Marginal model results 

We estimated the marginal models in Eqs. (4.10)-(4.12) for sovereign debt and 

financial returns, taking the values of the parameters p, q, r and m as those that 

minimize the AIC values for possible lag values ranging from zero to a maximum of 

two. The evidence reported in Table 4.4 indicates that average sovereign debt 

returns displayed no serial correlation and were not affected by the outbreak of the 

debt crisis, except in Greece and Portugal, where impact was negative. The 

empirical volatility estimates confirm that volatility was persistent across different 

national markets and that leverage effects were hardly observed, except in Belgium, 

Finland and Italy. Our results also indicate that debt markets became more volatile 

with the onset of the debt crisis, as reflected by the positive significant effect of the 

dummy variable in the volatility equation. The estimates for the degrees of freedom 

and for the symmetry parameter of the skewed Student-t distribution confirm that 

error terms, as reported in Table 4.1, were not normal and were asymmetric, 

thereby providing evidence on the usefulness of the skewed Student-t distribution in 

modelling asymmetries in the marginals. 

Table 4.5 reports the empirical results for the marginal distribution for the 

MSCI financial returns. Average financial returns showed no correlation and were 

negatively affected by the debt crisis, except in Austria, Finland, Germany and the 

Netherlands. Estimates indicate that volatility was persistent and that leverage 

effects were common across financial markets at the 10% significance level. Evidence 

was also found—consistent with the descriptive statistics reported in Table 4.1—of 

asymmetries and fat tails in the financial return distributions. The last rows of 

Tables 4.4 and 4.5 show statistics for the goodness-of-fit of the marginal models, 

indicating that neither autocorrelation nor ARCH effects remained in the residuals. 

We also checked the adequacy of the skewed-t distribution model by testing the null 
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hypothesis that the standardized model residuals were uniform (0,1). To that end, 

we employed the well-known Kolmogorov-Smirnov, Cramér-von Mises and 

Anderson-Darling tests, which compare the empirical and theoretical distributions of 

the standardized residuals. 

The P values for these tests (in the last three rows of Tables 4.2 and 4.3) 

indicate that the null hypothesis of correct specification of the distribution functions 

could not be rejected at the 5% significance level. Thus, evidence from the goodness-

of-fit tests indicates that the marginal distribution models were not mis-specified, 

indicating, in turn, that the copula model could correctly capture dependence 

relationship between markets. 

4.4.2. Copula model results 

We estimated the bivariate copula models reported in Table 4.1 for each country for 

the MSCI financial and sovereign debt return pairs using, as observations, the 

probability integral transform of the standardized residuals from the marginal 

models. The best copula model was that which yielded the best AIC value corrected 

for small-sample bias. In the interest of brevity only graphical evidence is provided.12 

Figure 4.4 shows the estimated parameter values, with parameter dynamics 

represented throughout the sample period for the best copula model fit. Our results 

indicate that static copulas offered a good fit for the core countries (Austria, 

Finland, France and Germany) for which tail independence existed between the 

financial sector and the domestic sovereign debt market. For the remaining two core 

countries (Belgium and the Netherlands), we found dependence to be time-varying 

and well captured by a Gaussian copula and therefore pointing to no evidence of tail 

dependence. The empirical estimates also showed that dependence was negative in 

both Belgium and Netherlands before the onset of the European sovereign debt 

crisis; thereafter, however, dependence continued to be negative for the Netherlands 

but turned positive for Belgium. Regarding the peripheral countries, our evidence for 

dependence pointed to a distinctive pattern in the pre- and post-onset sovereign 

debt crisis periods. Before the outbreak of the crisis, all the peripheral countries 

displayed time-varying negative dependence, as captured by the Student-t copula. 

The evidence for symmetric tail dependence indicated greater co-movement between 

the financial sector and sovereign debt markets for peripheral countries compared to 

the core countries showing evidence of tail independence. Moreover, this evidence 

                                                 
12 Full information on copula model estimations is available on request. 
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indicates that the safe-haven characteristics of sovereign debt differed widely across 

European countries. In considering the post-onset debt crisis period, dependence 

between financial sector and sovereign debt markets changed radically in the 

peripheral countries, turning this dependence positive and also pointing to positive 

tail dependence. 

Table 4.4: Marginal distribution model. Parameter estimates for sovereign debt returns 

by country. 

 
AT BE FI FR DE GR IT NL PT ES 

Mean    
     

  

0
  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

(1.001) (0.899) (0.772) (0.935) (1.006) (1.381) (0.653) (1.307) (0.837) (0.931) 

Dummy 0.000 -0.001 0.001 0.000 0.001 -0.012* -0.001 0.001 -0.005* -0.002 
 (0.293) (-0.504) (1.285) (0.685) (1.306) (-4.304) (-1.133) (1.392) (-2.884) (-1.656) 
Variance    

     

  
  2.405* 3.632* 1.440* 2.407 1.934* 0.023 1.748* 2.088* 0.025* 2.428 

 
(2.023) (2.221) (2.663) (1.679) (2.840) (1.265) (2.838) (2.420) (2.615) (1.950) 

Dummy 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 
 (132.7) (181.5) (3.180) (7.253) (1.730) (2.812) (22.200) (6.970) (311.3) (154.4) 

1
  0.097* 0.008 0.104* -0.063 0.016 -0.046 -0.033* -0.017 0.052 0.041 

 
(3.325) (0.521) (4.654) (-1.234) (0.409) (-1.764) (-2.630) (-0.654) (1.406) (1.501) 

1
  0.869* 0.808* 0.899* 0.839* 0.897* 0.850* 0.904* 0.867* 0.873* 0.875* 
 (25.370) (19.170) (50.600) (17.610) (46.250) (33.570) (47.090) (32.940) (27.340) (19.410) 
  -0.019 0.206* -0.062* 0.130 -0.008 0.146 0.262* 0.059 0.076 0.090 
 (-0.484) (2.221) (-2.019) (1.957) (-0.146) (0.648) (3.046) (1.126) (1.293) (1.276) 

Asymetry -0.143* -0.144* -0.117* -0.113* -0.112* -0.092 -0.106* -0.108* -0.131* -0.103* 
 (-2.859) (-2.807) (-2.597) (-2.391) (-2.396) (-1.649) (-2.168) (-2.166) (-2.453) (-1.985) 

Tail 13.610* 12.010* 303.905* 
188.795

* 238.863* 6.314 7.025* 
187.282

* 6.718* 9.315* 

 
(143.4) (35.56) (336.9) (176.2) (487.3) (0.283) (77.62) (54.01) (34.63) (79.89) 

LogLik 2268.04 2245.77 2295.66 2256.66 2252.98 2080.39 2255.70 2280.07 2096.94 2208.03 
LJ 17.297 21.544 15.271 19.709 17.380 23.790 21.467 16.569 17.922 20.713 

 
[0.634] [0.366] [0.761] [0.476] [0.628] [0.252] [0.370] [0.681] [0.593] [0.414] 

LJ 2 25.371 23.941 25.771 26.038 23.612 24.936 24.873 20.870 24.303 21.002 

 [0.115] [0.091] [0.105] [0.053] [0.130] [0.096] [0.098] [0.184] [0.145] [0.279] 

ARCH 1.182 1.139 1.193 1.082 1.269 1.305 1.347 0.957 0.961 1.021 

 
[0.263] [0.305] [0.254] [0.365] [0.193] [0.168] [0.143] [0.514] [0.515] [0.435] 

K-S [0.470] [0.466] [0.390] [0.692] [0.507] [0.859] [0.951] [0.893] [0.732] [0.821] 

C-vM [0.855] [0.734] [0.560] [0.826] [0.685] [0.750] [0.962] [0.921] [0.876] [0.870] 

A-D [0.928] [0.881] [0.637] [0.884] [0.744] [0.784] [0.986] [0.918] [0.952] [0.944] 

Notes. The table presents the maximum likelihood estimates and z statistics (in parentheses) for the parameters 

of the marginal models described in Eqs. (4.10)-(4.12) for sovereign debt returns.
 
LogLik is the log-likelihood 

value. LJ represents the Ljung-Box statistic for serial correlation in the residual model calculated with 20 lags. LJ2 

represents the Ljung-Box statistic for serial correlation in the squared residual model calculated with 20 lags. 

ARCH is Engle’s LM test for the ARCH effect in residuals up to 20th order. K-S, C-vM and A-D denote the 

Kolmogorov-Smirnov, Cramér-von Mises and Anderson-Darling tests for adequacy of the skewed-t distribution 

model. P values (in square brackets) below .05 indicate rejection of the null hypothesis. An asterisk (*) indicates 

significance at 5%. 
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Table 4.5: Marginal distribution model. Parameter estimates for MSCI financial index 

returns by country. 

 
AT BE FI FR DE GR IT NL PT ES 

Mean    
     

  

0
  0.002 -0.002* 0.002 0.000 0.000 0.001 0.000 0.000 0.000 0.001 

(1.816) (-2.195) (0.986) (0.308) (-0.193) (0.285) (0.413) (-0.347) (-0.075) (0.436) 

Dummy -0.005 -0.004* 0.000 -0.006* -0.002 -0.023* -0.008* -0.004 -0.013* -0.010* 
 (-1.466) (-3.564) (0.107) (-5.385) (-1.667) (-3.087) (-2.495) (-1.293) (-2.321) (-9.237) 
Variance    

     
  

  0.311* 0.320* 1.387 0.470* 0.573* 0.812* 0.309* 0.413* 0.141 0.323* 

 
(2.825) (3.934) (1.520) (4.008) (2.354) (2.263) (3.375) (2.880) (1.828) (3.952) 

Dummy 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 

 (24.48) (605.1) (-12.43) (2,126.) (298.1) (2.449) (413.9) (221.8) (3.438) 
(2,543.0

) 

1
  0.022 -0.131* -0.004 -0.072* -0.046* 0.039 -0.034 0.001 0.040 -0.098* 

 
(0.844) (-4.408) (-0.089) (-3.444) (-4.043) (1.754) (-1.055) (0.045) (1.283) (-4.921) 

1
  0.886* 0.976* 0.825* 0.882* 0.877* 0.878* 0.899* 0.854* 0.865* 0.937* 

 
(38.350

) (106.40) (8.154) (41.910) (19.550) (23.050) (19.280) (28.570) (39.270) (47.080) 

  0.144* 0.249* 0.184 0.315* 0.240* 0.079* 0.172* 0.269* 0.201* 0.243* 
 (3.577) (5.889) (1.875) (6.663) (3.511) (2.299) (3.731) (4.423) (3.215) (8.007) 

Asymetry -0.119* -0.281* -0.181* -0.240* -0.206* 0.002 -0.308* -0.240* -0.034 -0.243* 
 (-2.217) (-5.427) (-2.633) (-3.578) (-3.034) (0.030) (-4.544) (-3.651) (-0.618) (-3.522) 

Tail 9.932* 6.607* 4.987* 12.954 10.209* 8.243* 9.074* 10.919* 4.108* 12.031* 

 
(23.930

) 
(5.797) (5.387) (1.792) (2.658) (3.297) (3.139) (2.872) (5.621) (2.223) 

LogLik 1228.30 1234.31 1241.51 1205.01 1224.85 1038.06 1302.31 1115.94 1344.75 1245.05 

LJ 29.994 29.200 29.200 22.446 15.402 16.179 23.276 30.962 19.642 12.304 

 
[0.070] [0.084] [0.848] [0.317] [0.753] [0.705] [0.275] [0.056] [0.353] [0.905] 

LJ 2 12.597 14.862 18.958 4.091 5.437 7.826 12.736 18.251 16.612 4.774 

 [0.815] [0.671] [0.394] [1.000] [0.998] [0.981] [0.807] [0.439] [0.550] [0.999] 

ARCH 0.589 0.600 0.702 0.180 0.288 0.377 0.599 0.891 0.778 0.216 

 [0.921] [0.914] [0.826] [1.000] [0.999] [0.994] [0.915] [0.599] [0.742] [1.000] 

K-S [0.887] [0.657] [0.657] [0.706] [0.569] [0.424] [0.390] [0.792] [0.466] [0.686] 

C-vM [0.896] [0.637] [0.651] [0.797] [0.653] [0.598] [0.444] [0.670] [0.632] [0.631] 

A-D [0.939] [0.741] [0.786] [0.859] [0.783] [0.683] [0.541] [0.723] [0.715] [0.731] 

Notes. See Table 4.4. 

The results of the vine-copula model estimates are reported in Figures 4.5-4.7. 

Figure 4.5 displays the dynamics of the parameter estimates for the domestic 

financial system and sovereign Greek debt return pairs. For all the countries, time-

varying copula models offered a better fit than the static copula models. We also 

observed a significant change in dependence for Belgium, Italy, the Netherlands, 

Portugal and Spain with the onset of the European sovereign debt crisis: the 

dependence parameter increased significantly, marking a change that was consistent 

with the relative importance of sovereign Greek debt for bank portfolios in those 

countries. However, for the other European countries (Austria, Finland, France and 

Germany), dependence was not significantly affected by the debt crisis. Only 

Austria, Finland and the Netherlands showed evidence of tail independence.  
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Figure 4.4: Times series plots for parameter estimates of the best copula fits between 

domestic financial systems and sovereign debt returns. 
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Figure 4.6 displays the dynamics of the parameter estimates for the best 

copula model fit between the domestic sovereign debt and sovereign Greek debt 

return pairs. The evidence was conclusive in the period before the onset of the global 

financial crisis: all the debt markets strongly co-moved with the sovereign Greek 

debt market. However, thereafter—and mainly in the aftermath of the Greek debt 

crisis—European debt markets decoupled from the Greek market (markets in the 

core countries more so than in the peripheral countries), with dependence continuing 

to be positive, although less intense, in the peripheral countries. Of the core 

countries, Belgium was a particular case in that it exhibited high tail dependence at 

a specific times after the Greek crisis; a similar pattern was also observed for the 

Netherlands. 

Figure 4.7 displays the dynamics of the parameter estimates for the best pair-

copula model for domestic financial and sovereign debt returns conditional on 

sovereign Greek debt returns:  f d d f d f d d d d d
c F x x F x x, | * | * * | * *( | ), ( | ) . The empirical 

evidence is consistent with the evidence reported for the copula linking domestic 

financial and sovereign debt returns. Evidence on tail independence was found for all 

the core countries except Austria and Belgium. Dependence was static for Finland, 

France and the Netherlands but was time-varying for Austria, Belgium and 

Germany. Moreover, for Austria and Germany, dependence did not experience 

significant changes with the onset of the European debt crisis; in Belgium, 

dependence turned positive after 2011. Regarding peripheral countries, evidence of 

time-varying dependence was found for Italy and Spain and evidence of static 

dependence was found for Portugal. Dependence increased in the aftermath of the 

European debt crisis in Italy and, to a lesser extent, in Spain. 

4.4.3. Systemic risk results 

Using the best copula and vine-copula fits, we obtained the CoVaR for each time 

period following the two- and three-step procedures described above. We obtained 

CoVaR at the 95% confidence level ( 0.05  ), conditional on the VaR for sovereign 

debt returns at the 95% confidence level ( 0.05   or/and 0.05  ). 13  Below we 

present the results for CoVaR using bivariate copulas and then using vine copulas. 

  

                                                 
13 Results at the 99% confidence level, which were consistent with the results reported here, 

are available on request. 
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Figure 4.5: Times series plots for parameter estimates of the best copula fits between 

domestic financial systems and sovereign Greek debt returns. 
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Figure 4.6: Times series plots for parameter estimates of the best copula fits between 

domestic sovereign and Greek sovereign debt returns. 

  

  

  

  

 
  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Austria: TVP-SCJ

Lower Tail Upper Tail

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Belgium: TVP-SCJ

Lower Tail Upper Tail

0

2

4

6

8

10

12 Finland: TVP-Gumbel

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 France: TVP-SCJ

Lower Tail Upper Tail

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Germany: TVP-SCJ

Lower Tail Upper Tail

0

2

4

6

8

10

12

14

16 Italy: TVP-Rotated Gumbel

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Netherlands: TVP-SCJ

Lower Tail Upper Tail

0

1

2

3

4

5

6

7

8

9

10 Portugal: TVP-Rotated Gumbel

0

2

4

6

8

10

12

14 Spain: TVP-Gumbel



Chapter 4 

116 

Figure 4.7: Times series plots for parameter estimates of the best copula fits between 

domestic financial systems and domestic sovereign debt returns 

conditional on sovereign Greek debt returns. 
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Figure 8 depicts the results for CoVaR dynamics throughout the sample 

period, with the post-onset financial and debt crisis periods indicated as shaded 

areas. For each figure representing the systemic risk of domestic sovereign debt for 

the financial systems for each country, we also included information on the financial 

system VaR so as to allow comparisons between VaR and CoVaR data. For each 

country in Table 6, the first two rows provide information on average VaR and 

CoVaR for the entire sample and for the pre- and post-onset European sovereign 

debt crisis periods (dated according to the dummy variable). Our evidence shows 

that, in the pre-crisis period, domestic sovereign debt played a diversification role for 

domestic financial systems in the eurozone, as indicated by CoVaR figures that were 

greater than VaR figures. This was particularly relevant for the core countries where 

systemic risk reductions were greater than for the peripheral countries. This 

evidence confirms the diversification role played by sovereign debt across European 

countries in the pre-crisis period, with the intensity of this role varying across 

countries depending on the degree of dependence between sovereign and financial 

sector returns and the weight of sovereign debt in bank portfolios. 

As our copula results show, dependence between domestic financial systems 

and sovereign debt markets changed in a different way across countries on the 

outbreak of the sovereign Greek debt crisis that had an impact on systemic risk. 

Figure 4.8 shows that sovereign debt for the core countries continued to play a 

diversification role for the financial system, given that CoVaR figures were, in 

general, greater than VaR figures; the only exception was Belgium, where, from the 

end of 2010, sovereign debt distress increased VaR. Table 4.6 shows, in fact, that 

average CoVaR figures were below the average VaR figures for all the core countries 

(except Belgium). However, for the peripheral countries, the opposite effect was 

observed: the systemic impact of sovereign debt increased considerably for Greece, 

Italy and Portugal, while remaining relatively stable for Spain. This evidence is 

consistent with the change in dependence observed for peripheral countries after the 

onset of the debt crisis; an increase in (positive) dependence swept away the 

diversification effects of domestic sovereign debt on domestic financial systems. 
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Figure 4.8: VaR(f) and CoVaR(f|d) 
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Figure 4.8: (Continued) 
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Figure 4.8: (Continued) 
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Figure 4.8: (Continued) 
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Figure 4.8: (Continued) 
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Table 4.6: CoVaR results. 

  

All Series 

 

Before Crisis Onset 

 

After Crisis Onset 

  

Mean SD 

 

Mean SD 

 

Mean SD 

Austria VaR (f) -0.068 (0.037) 

 

-0.063 (0.036) 

 

-0.088 (0.034) 

 

CoVaR (f|d) -0.056 (0.030) 

 

-0.052 (0.029) 

 

-0.074 (0.028) 

 

CoVaR (f|d=0.05,d*) -0.057 (0.031) 

 

-0.052 (0.027) 

 

-0.076 (0.037) 

 

CoVaR (f|d,d*=0.05) -0.061 (0.037) 

 

-0.055 (0.033) 

 

-0.085 (0.043) 

 

CoVaR (f|d=0.05,d*=0.05) -0.058 (0.035) 

 

-0.052 (0.032) 

 

-0.081 (0.038) 

Belgium VaR (f) -0.080 (0.043) 

 

-0.075 (0.046) 

 

-0.099 (0.021) 

 

CoVaR (f|d) -0.059 (0.041) 

 

-0.048 (0.025) 

 

-0.100 (0.060) 

 

CoVaR (f|d=0.05,d*) -0.063 (0.036) 

 

-0.056 (0.030) 

 

-0.089 (0.046) 

 

CoVaR (f|d,d*=0.05) -0.058 (0.048) 

 

-0.040 (0.023) 

 

-0.124 (0.058) 

 

CoVaR (f|d=0.05,d*=0.05) -0.066 (0.045) 

 

-0.051 (0.030) 

 

-0.124 (0.046) 

Finland VaR (f) -0.065 (0.020) 

 

-0.066 (0.021) 

 

-0.060 (0.018) 

 

CoVaR (f|d) -0.047 (0.015) 

 

-0.048 (0.015) 

 

-0.044 (0.013) 

 

CoVaR (f|d=0.05,d*) -0.047 (0.015) 

 

-0.048 (0.015) 

 

-0.043 (0.014) 

 

CoVaR (f|d,d*=0.05) -0.048 (0.017) 

 

-0.048 (0.016) 

 

-0.048 (0.019) 

 

CoVaR (f|d=0.05,d*=0.05) -0.052 (0.017) 

 

-0.052 (0.016) 

 

-0.049 (0.019) 

France VaR (f) -0.078 (0.044) 

 

-0.073 (0.045) 

 

-0.095 (0.035) 

 

CoVaR (f|d) -0.055 (0.031) 

 

-0.052 (0.032) 

 

-0.069 (0.025) 

 

CoVaR (f|d=0.05,d*) -0.058 (0.035) 

 

-0.055 (0.036) 

 

-0.072 (0.027) 

 

CoVaR (f|d,d*=0.05) -0.057 (0.042) 

 

-0.051 (0.040) 

 

-0.081 (0.039) 

 

CoVaR (f|d=0.05,d*=0.05) -0.062 (0.042) 

 

-0.057 (0.042) 

 

-0.083 (0.039) 

Germany VaR (f) -0.071 (0.036) 

 

-0.071 (0.038) 

 

-0.071 (0.023) 

 

CoVaR (f|d) -0.042 (0.021) 

 

-0.042 (0.023) 

 

-0.043 (0.014) 

 

CoVaR (f|d=0.05,d*) -0.031 (0.016) 

 

-0.032 (0.017) 

 

-0.027 (0.009) 

 

CoVaR (f|d,d*=0.05) -0.015 (0.023) 

 

-0.013 (0.023) 

 

-0.024 (0.019) 

 

CoVaR (f|d=0.05,d*=0.05) -0.040 (0.027) 

 

-0.041 (0.029) 

 

-0.036 (0.018) 

Greece VaR (f) -0.091 (0.046) 

 

-0.072 (0.028) 

 

-0.164 (0.024) 

 

CoVaR (f|d) -0.105 (0.080) 

 

-0.068 (0.033) 

 

-0.246 (0.043) 

Italy VaR (f) -0.069 (0.037) 

 

-0.060 (0.035) 

 

-0.103 (0.023) 

 

CoVaR (f|d) -0.075 (0.060) 

 

-0.053 (0.035) 

 

-0.163 (0.054) 

 

CoVaR (f|d=0.05,d*) -0.070 (0.045) 

 

-0.056 (0.031) 

 

-0.120 (0.053) 

 

CoVaR (f|d,d*=0.05) -0.070 (0.065) 

 

-0.043 (0.024) 

 

-0.173 (0.071) 

 

CoVaR (f|d=0.05,d*=0.05) -0.067 (0.056) 

 

-0.044 (0.028) 

 

-0.154 (0.050) 

Netherlands VaR (f) -0.091 (0.052) 

 

-0.085 (0.052) 

 

-0.117 (0.042) 

 

CoVaR (f|d) -0.049 (0.033) 

 

-0.047 (0.034) 

 

-0.059 (0.029) 

 

CoVaR (f|d=0.05,d*) -0.070 (0.045) 

 

-0.064 (0.044) 

 

-0.091 (0.042) 

 

CoVaR (f|d,d*=0.05) -0.066 (0.056) 

 

-0.050 (0.046) 

 

-0.128 (0.050) 

 

CoVaR (f|d=0.05,d*=0.05) -0.070 (0.056) 

 

-0.055 (0.046) 

 

-0.130 (0.051) 

 

          

         



Chapter 4 

124 

Table 4.6 (Continued) 

Portugal VaR (f) -0.064 (0.044) 

 

-0.050 (0.031) 

 

-0.121 (0.042) 

 CoVaR (f|d) -0.075 (0.067)  -0.048 (0.029)  -0.180 (0.067) 

 

CoVaR (f|d=0.05,d*) -0.076 (0.055) 

 

-0.059 (0.040) 

 

-0.139 (0.058) 

 

CoVaR (f|d,d*=0.05) -0.101 (0.078) 

 

-0.071 (0.043) 

 

-0.216 (0.074) 

 

CoVaR (f|d=0.05,d*=0.05) -0.078 (0.066) 

 

-0.052 (0.033) 

 

-0.179 (0.067) 

Spain VaR (f) -0.073 (0.038) 

 

-0.066 (0.038) 

 

-0.099 (0.021) 

 

CoVaR (f|d) -0.067 (0.043) 

 

-0.057 (0.038) 

 

-0.107 (0.037) 

 

CoVaR (f|d=0.05,d*) -0.066 (0.035) 

 

-0.057 (0.030) 

 

-0.100 (0.029) 

 

CoVaR (f|d,d*=0.05) -0.065 (0.045) 

 

-0.052 (0.037) 

 

-0.113 (0.043) 

 

CoVaR (f|d=0.05,d*=0.05) -0.068 (0.043) 

 

-0.057 (0.037) 

 

-0.111 (0.037) 

Notes. The table reports descriptive VaR and CoVaR statistics at the 95% confidence level for domestic financial sectors and 

sovereign debt markets for selected countries in the overall sample and in the pre- and post-onset crisis periods using the best 

copula fit. CoVaR(f|d) denotes the CoVaR of the financial system conditional on the fact that the sovereign debt market is in 

distress; CoVaR(f|d = 0.05,d*) denotes the same but takes into account the effect of the sovereign Greek debt market situation. 

CoVaR(f|d,d* = 0.05) denotes the CoVaR of the financial system given the situation in the domestic debt market and 

conditional on the fact that the sovereign Greek debt market is in distress; finally, CoVaR(f|d = 0.05,d* = 0.05) denotes the 

CoVaR of the financial system conditional on the fact that the domestic and sovereign Greek debt markets are in distress. 

Values reported are mean and standard deviations (SD). 

 

Figure 4.9 depicts CoVaR dynamics throughout the sample period for the 

vine-copula model, whose CoVaR was computed under three scenarios: (1) the 

CoVaR of the domestic financial system given domestic sovereign distress 

(represented by d = 0.05) and the current situation in the Greek debt market (not 

necessarily in distress); (2) the CoVaR of the domestic financial system given the 

domestic sovereign debt market situation (not necessarily in distress) and the 

sovereign Greek debt market in distress (represented by d* = 0.05); and (3) the 

CoVaR of the domestic financial system when domestic and Greek sovereign debt 

markets are both in distress (represented by d = 0.05 and d* = 0.05, respectively). 

Average CoVaR data for the three scenarios for the entire sample and in the pre- 

and post-onset European sovereign debt crisis periods are provided in the last three 

rows for each country in Table 4.6. Our results indicate that the systemic effect of a 

potential Greek sovereign debt default on the financial system of Austria, Finland, 

France and Germany was negligible, as CoVaR computed under scenarios (1) and 

(2) were no different from the CoVaR obtained without considering the impact of 

Greek sovereign debt. This evidence is consistent with the fact that the Greek debt 

market decoupled from the debt markets and financial systems of those core 

countries (as shown by our previous copula results). Note also that the weight of the 

Greek sovereign debt in the bank portfolios of those countries was relatively low 
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(Battistini et al., 2014). However, for Belgium and Netherlands the systemic impact 

of the Greek sovereign debt crisis was different: CoVaR figures under scenarios (2) 

and (3) were lower than for the CoVaR figures obtained without considering the 

impact of Greek sovereign debt. For Belgium, this evidence was a consequence of the 

change in the dependence relationship between Greek sovereign debt, domestic debt 

and financial systems; for the Netherlands, this was also the consequence of Dutch 

investments in sovereign Greek debt (see Blundell-Wignall and Slovik, 2010). 

Regarding the peripheral countries, the systemic impact of sovereign Greek debt 

distress had a limited impact in Spain, given that the CoVaR under scenarios (2) 

and (3) did not differ greatly from the CoVaR obtained when the impact of Greek 

sovereign debt was not considered. For Italy and Portugal, however, systemic 

impact was patent. 

Figure 4.9: Results for CoVaR (f|d = 0.05,d*), CoVaR (f|d,d* = 0.05) and CoVaR 

(f|d = 0.05,d* = 0.05). 
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Figure 4.9: (Continued)
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Figure 4.9: (Continued) 
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Figure 4.9: (Continued) 
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Figure 4.9: (Continued) 
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Overall, our CoVaR results indicate that: (1) domestic sovereign debt had a 

systemic impact on domestic financial systems across European countries that was 

positive in the sense of increasing financial system VaR; (2) this systemic effect 

changed with the onset of the European debt crisis in peripheral countries like 

Greece, Italy and Portugal, where the systemic impact of sovereign debt increased, 

thereby reducing financial system CoVaR; (3) the systemic impact of a potential 

Greek debt default was mainly limited to Belgium, Italy, the Netherlands and 

Portugal; and finally, (4) for the remaining countries this event does not add much 

value with respect to the CoVaR figures obtained without considering the impact of 

the Greek sovereign debt. 

4.4.4. Statistical test 

Empirical evidence reported in Section 4.3 describes systemic risk behaviour before 

and after crisis onset with no testing of statistical significance. Below we use 

statistical significance testing to draw robust conclusions on sovereign debt systemic 

risk for financial systems. We compared cumulative distribution for VaR and/or 

CoVaR data using the Kolmogorov-Smirnov (KS) bootstrapping test as proposed by 

Abadie (2002) and applied by Bernal et al. (2014) to compare CoVaR figures. This 

test measures the difference between two cumulative quantile functions relying on 

the empirical distribution function and without considering any underlying 

distribution function. It is defined as: 

    mn x m n

mn
KS sup F x G x

m n

1
2 

  
 

, (4.13) 

where  mF x  and  nG x  are the cumulative VaR or CoVaR distribution functions, 

respectively, and n and m are the size of the two samples. With this statistic we 

tested four hypotheses, both before and after crisis onset: 

 Hypothesis 1: H0: CoVaR(f|d) > VaR(f) 

 Hypothesis 2: H0: CoVaR(f|d) > CoVaR(f|d=0.05,d*) 

 Hypothesis 3: H0: CoVaR(f|d) > CoVaR(f|d,d*=0.05) 

 Hypothesis 4: H0: CoVaR(f|d) > CoVaR(f|d=0.05,d*=0.05) 

The first hypothesis examines whether sovereign debt contributes to downside risk 

in the financial system, whereas the remaining hypotheses examine whether systemic 

risk in one country is affected by the Greek debt market under normal or 

exceptional circumstances (denominated scenarios (1)-(3) above). Table 4.7 reports 

results for the KS statistic and the associated bootstrap p-values under the null 
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hypothesis, yielding statistical evidence that is fully consistent with the empirical 

evidence described in Section 4.3. 

Table 4.7: Significant test for differences in risk measures. 

  Hypothesis 1 Hypothesis 2 Hypothesis 3 Hypothesis 4 

  Stat p-value Stat p-value Stat p-value Stat p-value 

Austria Before crisis onset 0.000 0.999 0.033 0.567 0.024 0.724 0.033 0.544 

 After crisis onset 0.000 0.999 0.098 0.271 0.008 0.988 0.008 0.990 

Belgium Before crisis onset 0.000 0.999 0.010 0.950 0.285 0.000 0.031 0.601 

 After crisis onset 0.256 0.000 0.158 0.032 0.000 0.999 0.023 0.925 

Finland Before crisis onset 0.000 0.999 0.056 0.194 0.109 0.002 0.021 0.782 

 After crisis onset 0.000 0.999 0.105 0.219 0.030 0.873 0.030 0.874 

France Before crisis onset 0.000 0.999 0.017 0.842 0.085 0.022 0.027 0.652 

 After crisis onset 0.000 0.999 0.030 0.878 0.023 0.923 0.015 0.964 

Germany Before crisis onset 0.000 0.999 0.308 0.000 0.816 0.000 0.101 0.004 

 After crisis onset 0.000 0.999 0.752 0.000 0.722 0.000 0.526 0.000 

Greece Before crisis onset 0.081 0.031       

 After crisis onset 0.895 0.000       

Italy Before crisis onset 0.010 0.949 0.041 0.413 0.213 0.000 0.291 0.000 

 After crisis onset 0.617 0.000 0.466 0.000 0.150 0.046 0.248 0.000 

Netherlands Before crisis onset 0.000 0.999 0.000 0.999 0.083 0.029 0.000 0.999 

 After crisis onset 0.008 0.988 0.000 0.999 0.000 0.999 0.000 0.999 

Portugal Before crisis onset 0.029 0.636 0.000 0.999 0.000 0.999 0.002 0.997 

 After crisis onset 0.504 0.000 0.406 0.000 0.000 0.999 0.113 0.179 

Spain Before crisis onset 0.010 0.950 0.025 0.718 0.106 0.003 0.015 0.878 

 After crisis onset 0.128 0.110 0.113 0.173 0.045 0.751 0.023 0.924 

Note. The bootstrap Kolmogorov-Smirnov tests whether the values of different risk measures follow (or not) the 

same cumulative distribution function (CDFs) in the pre- and post-onset crisis periods. The null hypotheses are 

considered as follows:  

Hypothesis 1 = H0: CoVaR(f|d) > VaR(f) 

Hypothesis 2 = H0: CoVaR(f|d) > CoVaR(f|d=0.05,d*) 

Hypothesis 3 = H0: CoVaR(f|d) > CoVaR(f|d,d*=0.05) 

Hypothesis 4 = H0: CoVaR(f|d) > CoVaR(f|d=0.05,d*=0.05). 

4.5. Conclusions 

We have provided empirical evidence, for the periods before and after the onset of 

the recent financial and debt crises, of (1) the systemic impact of domestic sovereign 

debt distress on domestic financial systems in European countries and (2) the 

potential systemic impact of a distressed Greek debt market on the financial systems 

of other European countries. We measured systemic risk using the CoVaR measure, 
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as proposed by Adrian and Brunnermeier (2011) and generalized by Girardi and 

Ergün (2013). CoVaR measures VaR for a financial system conditional on the fact 

that the debt market is in distress. We computed CoVaR data using both bivariate 

and vine-copula models, given that copulas can flexibly account for dependence, 

most especially for tail dependence, which is crucial to determining CoVaR data. To 

estimate CoVaR, we adopted (1) a two-step procedure that accounted for the 

impact of domestic debt distress on domestic financial systems, and (2) a three-step 

procedure that—taking into account the link between domestic financial and 

sovereign debt markets—accounted for the systemic impact of a potential Greek 

default on the financial systems of other European countries. 

Using a sample of MSCI financial and sovereign bond benchmark indices for 

six eurozone core countries (Austria, Belgium, Finland, France, Germany and the 

Netherlands) and four peripheral countries (Italy, Greece, Portugal and Spain) for 

the period 2000 to 2012, we estimated copula and vine-copula models—in order to 

characterize the dependence structure between financial and sovereign debt 

markets—and then computed CoVaR figures. Our evidence indicates that there were 

substantial differences in the systemic impact of sovereign debt in the periods before 

and after the onset of the European debt crisis. In the pre-onset period sovereign 

debt was observed to have a positive systemic risk effect in reducing financial system 

VaR. This impact can be explained in terms of the diversification effect of sovereign 

debt on bank portfolios, with even Greek sovereign debt playing a diversification 

role across financial systems in the eurozone, except in Portugal. However, in the 

post-onset crisis period the picture was quite different, with domestic sovereign debt 

having a negative systemic impact on domestic financial systems as CoVaR fell. This 

evidence was found for all the peripheral countries; as for the core countries, 

sovereign debt continued to play a diversification role, having a positive impact on 

CoVaR. This positive impact can be explained by the fact that the negative impact 

of the sovereign debt crisis was not fully transmitted to the core countries. 

Regarding the systemic impact of Greek sovereign debt distress on the financial 

systems of other countries, we found all financial systems in Europe to be affected, 

but to differing degrees. For core countries, after the onset of the debt crisis, Greek 

sovereign debt continued to play a diversification effect, although this effect was less 

intense and more varied. In the four peripheral countries, Belgium and the 

Netherlands, the systemic effects of Greek sovereign debt distress exacerbated 

financial system risk. 
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Anexo: resumen en castellano 

Las crisis financieras, que se manifestaron de manera peculiar a principios del siglo 

XXI, están afectando al sistema financiero mundial en sus estructuras 

fundamentales. Entre estas crisis podemos destacar la explosión de la burbuja 

tecnológica (2000), la crisis de las hipotecas subprime (2007) y, por último, los 

recientes problemas de las deudas soberanas en Europa (2010). Estas crisis han 

revelado la complejidad del sistema financiero global y la rapidez de la propagación 

del riesgo entre los mercados. Así, tanto inversores, reguladores como investigadores 

están muy interesado en desarrollar una medida veraz y precisa del riesgo de 

trasmisión entre activos y entre mercados. Desde la óptica de los inversores, que 

tratan de diseñar una cartera correctamente divesificada, el riesgo de contagio es 

esencial dado que ello provoca un cambio en relación de dependencia entre los 

mercado. Desde el punto de vista de los reguladores, la propagación del riesgo es 

importante en la medida que permite focalizar la atención en el mantenimiento y 

desarrollo de nuevas regulaciones tales que permitan intrerrumpir el proceso de 

transmisón de riesgos, aplicar impuestos a las transacciones, o bien aplicar 

restricciones en el tipo de transacciones realizadas en los mercados, tales como las 

ventas en descubierto. No obstante, reconociendo las importantes deficiencias en la 

supervisión financiera, la Comisión Europea y el Banco Central Europeo (BCE) 

crearon la Junta Europea de Riesgo Sistémico (JERS) a finales de 2010 con el 

objetivo de supervisar a nivel macro prudencial el sistema financiero Europeo y 

prevenir y mitigar cualquier riesgo de propagación dentro del sistema financiero. 

En la literatura financiera se ha caracterizado el riesgo sistémico desde ópticas 

diversas. Así, De Bandt y Hartmann (2000) lo definen "como el riesgo de sufrir 

efectos sistémicos en el sentido fuerte", donde el "sentido fuerte" significa la difusión 

de noticias sobre una institución que tiene un impacto adverso sobre uno o más 

instituciones sanas de manera secuencial. Por otro lado, Furfine (2003) distingue 

entre dos tipos de riesgo sistémico: "El primer tipo es el riesgo de que uno shock 

financiero provoca a un conjunto de mercados o de instituciones a fallar 

simultáneamente en su funcionamiento eficiente; mientras que el segundo tipo de 

sistémico se refiere al riesgo de que el fallo de una o un pequeño número de 

instituciones se transmitirán a los demás debido a los vínculos financieros explícitos 

entre las instituciones". Sobre la base del modelo teórico propuesto por Diamond y 
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Dybvig (1983), Acharya (2009) definen el riesgo sistémico "como el riesgo de quiebra 

conjunta resultante de la correlación de los rendimientos en el lado del activo de los 

balances de los bancos". Billio et al. (2010) argumenta que "el riesgo sistémico puede 

realizarse como una serie de incumplimientos correlacionados entre las instituciones 

financieras, que ocurre en un lapso de tiempo corto que consecuentemente provoca 

una retirada de liquidez y la pérdida generalizada de confianza en el sistema 

financiero en su conjunto". Las dos últimas definiciones introducen la idea de que la 

inversión común entre los bancos genera correlación y "efecto manada", lo que genera 

el riesgo sistémico. El Fondo Monetario Internacional (FMI), el Banco de Pagos 

Internacionales (BPI), el Consejo de Estabilidad Financiera (FSB) y el BCE centran 

su atención en particular sobre las consecuencias del riesgo sistémico para la 

economía real. Así, el FMI, BIS, FSB (2009) afirman que el riesgo sistémico es "la 

interrupción en el flujo de los servicios financieros que (1) es causado por un 

deterioro en la totalidad o en partes del sistema financiero; y (2) tiene el potencial 

de tener consecuencias negativas graves para la economía real". El BCE (2009) 

conceptualiza el riesgo sistémico como un "riesgo de que la inestabilidad financiera se 

vuelve tan extendida que afecta el funcionamiento del sistema financiero hasta el 

punto que el crecimiento económico y el bienestar social sufren materialmente". Las 

anterior lista de definiciones apunta a la complejidad del tema y el desafío que 

enfrentan los inversores, los reguladores y los investigadores en el intento de medir la 

complejidad y la dinámica del riesgo sistémico. 

En los últimos años, los investigadores han desarrollado una serie de medidas 

de riesgo sistémico que se refieren a diferentes canales de propagación de riesgos 

sistémicos. Se pueden identificar tres medidas principales: (1) medidas de riesgo 

sistémico que capturan el efecto contagio y la exposición entre las instituciones; (2) 

las medidas de riesgo sistémico que cuantifican el efecto dominó entre el sector 

financiero y la economía real; y (3) las medidas de riesgo sistémico entre los sectores 

financiero y público y viceversa. 

La primera categoría se refiere al riesgo de una quiebra de una institución 

financiera que tiene un efecto contagio o dominó sobre otras instituciones a través de 

las transacciones e interconexiones que unen estas instituciones. Muchos 

investigadores han centrado su atención en este tipo de propagación de riesgos. 

Segoviano y Goodhart (2009) crearon un índice de estabilidad bancaria que evalúa la 

dependencia interbancaria para los eventos extremos. Acharya et al. (2010) 

utilizaron una medida sistémicas y marginales del expected shortfall (ES) para 

cuantificar el riesgo y la contribución individuales de las instituciones financieras al 



 

143 

riesgo. Allen et al. (2010) propusieron una medida de riesgo sistémico agregado - 

denominado CATFIN - para predecir la disminución de la actividad crediticia 

bancaria agregada con seis meses de antelación. Huang, Zhou y Zhu (2009, 2010, 

2012) propusieron una medida de distress insurance premium (DIP). Adrian y 

Brunnermeier (2011) propusieron el valor en riesgo condicional (CoVaR) para 

capturar posibles efectos del riesgo de rebosamiento entre las instituciones 

financieras. Del mismo modo, Brownless y Engle (2012) desarrollaron una medida de 

riesgo sistémico, denominada SRISK, que representa la cantidad de capital necesario 

para restaurar los recursos propios mínimos requeridos. Billio et al. (2012) 

propusieron cinco medidas de riesgo sistémico para capturar el contagio y los efectos 

de exposiciones en la relaciones entre las instituciones financieras. Girardi y Ergün 

(2013) propusieron un nuevo enfoque para cuantificar el CoVaR utilizando para ello 

la densidad conjunta para el sistema financiero y los rendimientos de la institución 

financiera. Finalmente, Halaj et al. (2013) sugirió una simple medida de análisis de 

red, llamado el índice de probabilidad sistémica (SPI). 

Respecto a las medidas del efecto dominó, varios autores han desarrollado una 

medida de riesgo sistémico basado en la interdependencia entre el sector financiero y 

la economía real. Reinhart y Regoff (2009a) mostraron que el riesgo sistémico en los 

mercados financieros aumenta en los períodos de crisis y tiene efectos adversos que 

se extienden a la economía real. Giesecke y Kim (2011) desarrollaron el modelo de 

intensidad de los impagos (DIM) para capturar los efectos indirectos a través de la 

compleja red de relaciones con la economía real. De Nicolò y Lucchetta (2010) 

propusieron un modelo de PIB-en-riesgo para cuantificar el impacto entre la 

macroeconomía, los mercados financieros y los intermediarios. 

Por último, en relación con el riesgo sistémico generado entre los sectores 

público y financiero, Reinhart y Rogoff (2009b, 2010) documentaron como se 

propaga la situación de estrés de la deuda soberana en el sistema financiero cuando 

los bancos mantienen una cantidad sustancial de deuda pública en su cartera. Alter 

y Schuler (2012) examinaron la relación entre el riesgo de quiebra de la deuda 

soberana y los bancos nacionales. Mink y De Haan (2013) analizaron el impacto de 

la elevada volatilidad de los bonos griegos sobre los precios de las acciones bancarias 

europeas en 2010, mientras que De Bruyckere et al. (2013) estudiaron el contagio 

entre los bancos y el riesgo de quiebra soberana en Europa a través de los canales de 

activos, garantías y calificación. Bhanot et al. (2014) investigaron el impacto de los 

cambios en los diferenciales de rendimiento de la deuda soberana griega sobre los 

rendimientos de las acciones en el sector financiero. Finalmente, Battistini et al. 
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(2014) demostraron que las carteras de deuda soberana de los bancos europeos 

revelaron un aumento en las posiciones en deuda nacional durante la crisis reciente, 

con las tendencia de la deuda soberana doméstica a crecer en línea con el riesgo de 

solvencia soberana. 

Además, también se han propuesto medidas alternativas de riesgo, distintas de 

los incluidas en las tres categorías mencionadas anteriormente. Así, Engle y 

Manganelli (2004) desarrollaron el modelo autorregresivo conditional para medir el 

valor en riesgo (CAViaR) proponiendo el uso de la regresión cuantil para capturar el 

comportamiento en las colas de los rendimientos. Por otra parte, De Jonghe (2010) 

utilizó la teoría del valor extremo para medir la exposición al riesgo sistémico de los 

bancos. Asimismo, Zhou (2010) utilizó la teoría de valores extremos multivariante 

para cuantificar el riesgo sistémico, analizando la relación entre el tamaño de la 

institución y su importancia sistémica. Finalmente, Krizman et al. (2011) 

desarrollaron una medida de riesgo sistémico llamado el ratio de absorción que se 

basa en el análisis de componentes principales (ACP). 

Considerando diferentes medidas propuestas en literatura, en esta tesis el 

análisis se centrado en la medida de riesgo sistémico dada por el CoVaR (Adrian y 

Brunnermeier, 2011; Girardi y Ergün, 2013). De acuerdo con Adrian and 

Brunnermeier (2011), /s iCoVaR   es el VaR del sistema financiero en su conjunto, 

denotado por s, condicionado al hecho de que una institución i se encuentra en una 

situación de stress financiero medido por su VaR, i iX VaR . Además, estos autores 

también definen la contribución del riesgo sistémico de una institución como la 

diferencia entre el CoVaR bajo una situación de la stress financiero y el CoVaR en 

una situación de normalidad, lo que denominan como delta CoVaR ( CoVaR ). 

Recientemente, Girardi y Ergün (2013) propoene calcular el CoVaR asumiendo que 

el evento condicionado a un stress financiero es i iX VaR . Esta metodología 

considera el estrés de manera más severa, capturando así la información que está por 

debajo de las colas pesadas de la distribución de probabilidad de los rendimientos.  

Los objetivos de investigación en esta tesis - potencialmente de interés para los 

inversores, los reguladores y los investigadores en la misma medida - son los 

siguientes: 

1. Cuantificar el riesgo sistémico para las entidades financieras españolas teniendo en 

cuenta el efecto cuantitativo sobre el valor en riesgo condicional (CoVaR) con el fin 

de evaluar cómo la posición de fragilidad financiera de una institución financiera 

particular podría poner en peligro el funcionamiento de otras instituciones 
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financieras, pudiendo así determinar la cantidad de capital regulatorio que una 

institución financiera necesitaría para cubrir su exposición a este tipo de riesgo. 

2. Examinar el riesgo sistémico en los mercados de deuda soberana europeos y 

evaluar cómo este riesgo cambió con el inicio de la reciente crisis de la deuda 

soberana. El fin es determinar cómo el deterioro de la situación financiera en un 

mercado particular de deuda puede alterar el funcionamiento de otros mercados de 

deuda. 

3. Medir el impacto sistémico de la deuda soberana doméstica en una situación de 

estrés sobre el sistema financiero nacional de los países de la zona Euro y de una 

potencial situación de dificultad en el mercado de deuda griega sobre los sistemas 

financieros de otros países del Euro durante la reciente crisis financiera y de deuda, 

con el fin de comprender cuál ha sido el impacto de una situación de peligro de la 

deuda nacional sobre el sistema financiero nacional y el impacto de una situación de 

dificultad de la deuda soberana griega sobre otros sistemas financieros. 

Para dar cumplimiento a estos objetivos, la tesis se organiza del siguiente 

modo. En el capítulo 1 se proporciona un breve repaso de las medidas cuantitavas 

del riesgo sistémico presente en la literatura. En el capítulo 2 se cuantifica el riesgo 

sistémico generado por las principales entidades financieras españolas en la reciente 

crisis financiera mundial y en la crisis europea de la deuda soberana. Para ello, se 

cuantifica el CoVaR utilizando la regresión cuantil, el modelo multivariante 

generalizado de heteroscedasticidad condicional autorregresiva (MGARCH) y las 

funciones cópula. También se describe un nuevo enfoque basado en la cópula para 

calcular el valor del CoVaR, dado que la cópula son modeladores flexibles de la 

distribución conjunta y son particularmente útiles para caracterizar el 

comportamiento de las colas que nos proporciona información crucial para el cálculo 

del CoVaR. En el capítulo 3 se estudia el riesgo sistémico en los mercados de deuda 

soberana en Europa antes y después del inicio de la crisis de la deuda griega, 

considerando, como medida de riesgo sistémico el CoVaR caracterizado y calculado 

usando cópulas. Finalmente, en el capítulo 4 se investiga - utilizando la medida del 

CoVaR caracterizado y calculado usando cópulas y vine cópulas – el efectos sitémico 

del mercado de dedua soberana sobre los sistemas financieros nacionales en Europa, 

así como el riesgo sistémico de una potencial dificultad en el mercado de deuda 

griega sobre los sistemas financieros de otros países europeos antes y después del 

inicio de las recientes crisis financieras y de la deuda. 

Los resultados obtenidos indican que: 
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1. La medida CoVaR para el riesgo sistémico muestra tendencias que son 

consistentes para todas las instituciones financieras españolas en todo el periodo de 

muestreo, teniendo valores bajos en los períodos de las crisis, principalmente en 

torno a la crisis financiera mundial reciente. También se observa que el CoVaR 

calculado utilizando la regresión cuantil no es capaz de capturar la dinámica del 

riesgo sistémico ya que carece de la flexibilidad necesaria para adaptarse a los 

períodos de crisis en los que la volatilidad es alta, subestimando así el riesgo 

sistémico. Los enfoques MGARCH y cópula son más flexibles en la identificación de 

los períodos de crisis, con reducciones significativas en el valor CoVaR. También se 

observa que las funciones cópula reflejan un mayor riesgo sistémico que el enfoque 

MGARCH. Esta evidencia es consistente con el hecho de que la dependencia de la 

cola es capturada por una cópula mejor que por una función de distribución 

paramétrica multivariante. En general, las mediciones de riesgo sistémico nos 

permiten concluir que el riesgo sistémico aumentó durante la crisis financiera, pero 

no con la misma intensidad para todas las instituciones estudiadas; afectando 

principalmente a las instituciones más grandes que asumían cada vez más 

importancia sistémica y se consideraban demasiado interconectadas para quebrar. 

Estos resultados tienen implicaciones para la política regulatoria dirigida a 

determinar los requisitos de capital óptimas y los cambios cíclicos en valor, sobre 

todo para las grandes entidades financieras. 

2. Los resultados del análisis del riesgo sistémico para los mercados de deuda 

soberana europea indican que estos mercados estuvieron altamente conectados en el 

período anterior a la crisis de la deuda y que las tendencias temporales del riesgo 

sistémicos fueron similares en todos los mercados. Sin embargo, tras el inicio de la 

crisis, los mercados de deuda europeos se desacoplaron y los países denominados 

GIIPS (Grecia, Italia, Irlanda y Portugal) tuvieron una correlación negativa con el 

índice de la UEM, mostrando una menor dependencia en las colas. Como resultado, 

el riesgo sistémico cambió drásticamente y el valor de la CoVaR aumentó. 

Contrariamente, para los países que no fueron afectados por la crisis el co-

movimiento no cambió sustancialmente, a pesar de que el riesgo sistémico aumentó. 

Además, también se constata que el riesgo sistémico de la deuda griega sobre otros 

mercados europeos fue bajo y estable antes de la llegada de crisis, mientras que a 

partir del inicio de la crisis el riesgo sistémico de la deuda griega aumentó 

principalmente para los países en situación crisis, con un efecto particularmente 

negativo en el mercado portugués, y no tuvo efectos sistémicos sobre los países que 

no fueron afectado da la crisis debido al desacoplamiento entre el mercado de la 
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deuda griega y los mercados de deuda de los países que no fueron afectados por la 

crisis. 

3. Nuestra evidencia indica que existen diferencias sustanciales en el impacto 

sistémico de la deuda soberana sobre el sistema financiero en los períodos antes y 

después del inicio de la crisis. En el período previo al estallido de la crisis, deuda 

soberana tiene un efecto sistémico positivo al generar reducciones del VaR en el 

sistema financiero, excepto para el caso de Portugal. Este impacto puede ser 

explicado en términos del efecto diversificación de la deuda soberana en la cartera de 

los bancos, incluso con la deuda soberana griega. Sin embargo, en el período 

posterior al inicio de la crisis se constata que la deuda soberana doméstica tiene un 

impacto sistémico negativo en los sistemas financieros nacionales, con reducciones 

impotantes en el valor del CoVaR. Esta evidencia es común para todos los países de 

la periferia de la zona Euro; mientras que para los países no periféricos la deuda 

soberana siguió desempeñando un papel de diversificación, tenniendo un impacto 

positivo en el CoVaR. Este efecto positivo puede ser explicado con el hecho de que el 

impacto negativo de la crisis de la deuda soberana no se transmitió completamente a 

los países de la zona no periférica. En cuanto al impacto sistémico de la deuda 

soberana griega en los sistemas financieros de los otros países, se muestra que todos 

los sistemas financieros europeos podrían verse afectados, pero en diferentes grados. 

Así, para los países no perféricos, después del inicio de la crisis de la deuda, la deuda 

soberana griega siguió desempeñando un efecto de diversificación, aunque este efecto 

fue menos intenso, con la excepción de Bélgica y Holandalos Países Bajos donde se 

observa un incremente del efectos sistémico de la deuda soberana griega sobre el 

sistema financiero. 
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