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anos remataŕıa dicindo en voz alta que foi unha gran experiencia. Tiven a oportunidade
de traballar nunha parte da f́ısica que me fascinou dende sempre, de viaxar a centros de
investigación de nomes mı́ticos e de ver traballar a expertos do seu campo. E polo medio,
gracias a axuda de moitos, puiden aportar a miña pequena contribución. Rematada esta
etapa abrirase outra, e resucitando ao meu optimista interior direi, seguro que mellor.

Dedico esta tesis a mi padre, que siempre fue para todos un ejemplo de responsabilidad y de
esfuerzo constante al que aspirar.

xiv



Publications related to this work
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Introduction

In theoretical physics it is natural to distinguish between weakly and strongly coupled sys-
tems. In the first case the coupling constant that measures the strength of the interaction is
small, and the natural approach is perturbation around the free theory with vanishing cou-
pling. In the second situation the degrees of freedom of the system are strongly correlated
with each other and a perturbative analysis fails to describe even the most basic features of
the system. We talk about nonperturbative e↵ects. Many physically interesting situations
lie in the nonperturbative regime of the theory and it is the physicist’s job to develop the
appropriate tools for the computation of observables.

A famous example is the WKB approximation, which in quantum mechanics allows to
compute the decay time by tunnel e↵ect of a particle in potentials unbounded from below,
among other things. The coupling constant here is ~, and the result is to leading order
proportional to ~�1, so the e↵ect has no interpretation in the classical limit. Powerful
nonperturbative methods have been invented in many areas of physics to approach a variety
of di↵erent problems. See for example [1] for a non-exhaustive survey.

In mathematics the study of nonperturbative problems is typically incarnated in the
study of functions, usually complex, and their various representations as integrals, series,
etc. More precisely, one is interested in the singular behavior of the functions at di↵erent
points in the complex plane and their asymptotic limit there. The classification of these
functions is eased by the study of the di↵erential equations they satisfy and the properties
these have in terms of regular or irregular points. A more general approach is that of the
theory of resurgence [2], which deals with a very general class of functions whose singularity
structure has interesting algebraic properties. In some sense, it provides a unifying framework
in which to accommodate previous separate results and tools to approach more di�cult and
general problems. In physics, the relevant functions, usually describing observables of the
theory, depend on the coupling constant.

For physical applications the coupling has real values but, as usual, much more can
be achieved by regarding it as a complex variable. It has been found in the past decades
that many observables of physical systems have representations as power series that are
not convergent for any nontrivial value of the coupling constant—usually zero or infinity
depending on the convention. That is, they have zero radius of convergence. The origin
of the divergence is the singular behavior of the functions and the underlying resurgent
structure. In practice, working with divergent series is not completely hopeless because in
many cases, before the series starts to diverge, the partial sums can approximate the actual
value of the observable quite well. This is what allows quantum field theories to produce
predictions of high precision when a few loops are included in the calculation and the e↵ective
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2 INTRODUCTION

coupling constant is not very large (the divergent nature of the series continues to hold after
renormalization). What at first sight would be regarded as a problem, that is, the divergence
of perturbation theory for any value of the coupling constant, turns out to provide a very
useful connection between perturbative and nonperturbative quantities, as was understood
by the theory of resurgence.

In high energy physics a good part of the interesting dynamics occurs in the nonper-
turbative regime of the relevant coupling constant. Several techniques have been developed
during the years to translate di�cult problems into others that are amenable to more stan-
dard approaches. This process very often brings with it a new perspective on the theory
under consideration because new languages are invented to describe it, or new relations to
pre-existing theories are discovered. Among various examples we can highlight integrability,
where it is found that the theory, or some of its sectors, can be solved exactly for any value
of the coupling. The existence of several descriptions of integrability increases the chances
of finding relations with seemingly di↵erent theories; for an example with links to resurgence
see [3]. Another example applies to some quantum field theories including gauge theories and
topological string theory is localization, see for example [4, 5], where a symmetry, usually in
the form of a supersymmetry, can simplify an infinite dimensional path integral to a finite
dimensional one. The latter description is usually easier to approach. For gauge theories
it can be identified as a matrix model, for which nonperturbative techniques are available.
The most powerful and far-reaching nonperturbative technique high energy physics is the
gauge/gravity correspondence [6] resting on the general idea on large N duality [7] and holog-
raphy [8]. The correspondence compares superstring theory on an asymptotic AdS space and
a supersymmetric gauge theory. The theories depend on two parameters, the string coupling
and string tension on one side, and the rank of the gauge group and the ’t Hooft parameter
on the other. In its weakest formulation super Yang–Mills at strong coupling and large N
would be equivalent to classical supergravity, which is a weak coupling limit of string theory.
There is a large amount of evidence in favor of the conjecture. It has been used to explore
the strong coupling regime of several gauge theories. Proving the conjecture would require a
nonperturbative understanding of string theory that is still beyond reach. However, nonper-
turbative e↵ects have been calculated in terms of D-branes, dynamical objects that extend
in several dimensions, and on which open strings can end. The possible perfect equivalence
between string and gauge theory would in principle provide a nonperturbative definition of
the former in terms of the latter. This realization is particularly suggestive in the case of
topological string theories and their matrix model duals.

Matrix models, also known as random matrix theory, has multiple connections with prob-
lems in mathematics and physics—see for example [9–12]. In physics they can be regarded as
toy models, zero-dimensional versions of gauge theories, and as we said before, they appear
naturally from localization. They depend on a gauge group of rank N that can be used as a
expansion parameter, around infinite N . The large N expansion of the free energy, computed
as the logarithm of the matrix integral, can be matched by the perturbative free energy of a
topological string theory [13, 14]. This correspondence has an illuminating description in the
case of matrix models with polynomial potentials. The matrix model is determined at lead-
ing order in 1/N2 (planar limit) by a spectral curve [15]. From this spectral curve alone one
can compute recursively the complete perturbative large N expansion [16–19]. This is the
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so-called topological recursion whose application extends beyond matrix models. Topological
string theory has less degrees of freedom than the physical string theory but it retains many
of its features, as well as being completely integrable in many cases and realizing interesting
mathematical ideas like mirror symmetry, see [20]. Like the original one it can describe open
and closed strings. The target space the strings probe is a Calabi–Yau threefold, a complex
three-dimensional variety with special geometrical properties. This geometry and the spec-
tral curve are related to each other. Moreover, to all orders in perturbation theory, open
topological string theory on a particular geometry is equivalent to a Hermitian matrix model
whose polynomial potential determines the spectral curve. The string coupling gs, from the
string side, and the rank N , from the gauge side, are related through the ’t Hooft parameter
t = gsN , which can be calculated on both sides of the duality as an integral over cycles of
the geometry. The details of the correspondence can be understood in terms of a geometric
transition [21] between the deformed geometry associated to the spectral curve and its reso-
lution as a Calabi–Yau manifold. The identification of both theories beyond the planar limit
was done [22] by showing the equivalence between an extension of the topological recursion
and the holomorphic anomaly equations [23, 24] that the topological string free energies
satisfy. To go beyond perturbation theory in gs is an even more challenging problem, first
of all because topological string theory lacks a nonperturbative definition. The problem of
finding a nonperturbative completion of this and the full string theory is a longstanding one,
and there have been several proposals inspired by large N duality to address the problem
[25–29].

Any nonperturbative completion of string theory must incorporate all the knowledge ob-
tained from gauge/gravity dualities, and in fact, they have been the main inspiration. This
thesis explores a di↵erent set of tools, those of resurgent transseries, to gain nonperturbative
information about topological string theory. Nevertheless this work presented in this thesis
relies heavily on previous research involving the duality with matrix models and the relations
to resurgence [30–42]. Often, the starting point of resurgence is an asymptotic series, usually
divergent. In string theory that series in the free energy, the asymptotic parameter is the
string coupling constant. The coe�cients are the perturbative free energies. They grow fac-
torially with the order [43, 44] and they are well-defined functions of certain moduli (’t Hooft
parameter, complex or Kähler moduli) [45]. This factorial growth implies nonperturbative
e↵ects in the string coupling constant of order e�1/gs [44, 46, 47] that can be identified with
D-branes.

At the formal mathematical level the theory of resurgence focuses on complex functions,
their asymptotic series representations, the properties of their Borel transforms, and the
underlying algebraic structure. This theory provides a convenient and powerful language is
which to express questions and answers for nonperturbative problems. An example is the
concept of transseries which extends the perturbative series expansion to include nonper-
turbative corrections. It has to be thought of as a formal object on the coupling constant
because it has a zero radius of convergence. Nevertheless, it is a representation of the most
general solution to the problem determining a particular observable. As such it has the
potential to become the final physical solution. The step going from a formal transseries
to an actual function of the coupling constant is called resummation. The problem of re-
summing divergent perturbative expansions is an old one and many techniques have been
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developed to extract sensible numbers out of them, see for example [48, 49]. However, due
to the singular nature of the underlying functions, resummation is sometimes burdened with
the so-called nonperturbative ambiguity that leaves the final result underdetermined. This
issue a↵ects quantum mechanical systems and also quantum field theories, and its resolution
involves the cancellation of ambiguities coming not only from perturbation theory, but from
all nonperturbative sectors. This phenomenon has been observed in many di↵erent settings
[50–53] and it is a necessary condition for the consistency any physical theory.

One of the key results in resurgence theory is the existence of a set of equations relating
coe�cients of perturbative expansions around trivial and nontrivial saddle points of the
theory. The are called large-order relations because they describe the asymptotic growth of
the coe�cients in a particular series expansion. The first example of a large-order relation in
a physical setting was done in the asymptotic analysis of the energy levels of the anharmonic
oscillator [54, 55], and it was later extended to apply in field theories of di↵erent types. In
well-defined mathematical problems the analysis of the large-order relations could be done in
great detail. An interesting realization of this ideas in the context of integral representation
of functions was developed in [56], where the resurgent relations appear explicitly from
the existence of di↵erent saddle points for the integral. One of the fundamental problems
in resurgence as applied to quantum field theories is to understand what is the analogous
situation for path integrals. See [57] for a recent discussion and references.

In recent years the framework and techniques of resurgence have found application in
an increasing number of areas, in mathematics, theoretical physics, and the vague region
between the two. Hopefully in the near future the ideas of resurgence, as applied to nonper-
turbative problems in physics, will be naturally incorporated as useful tools in combination
with others. There are many ideas yet to be explored and generalizations to be made that
will find their application in problems of today and the near future.

Goal of the thesis

The purpose of this thesis is the study of the resurgent structure of the topological closed
string theory. The motivation to do so is twofold.

The first motivation centers on the longstanding problem of providing a nonperturbative
definition for string theories in general, and topological string theories in particular. Large
N dualities and the AdS/CFT correspondence in its various incarnations have become the
preferred tool to learn about nonperturbative aspects of string theories. From a bold point of
view, gauge theories present themselves as candidates for nonperturbative definitions of their
dual string theories. A more standard approach takes duality as inspiration and guidance to
propose purely string theoretic formulations. This thesis sees perturbative string theory as a
collection of results that can be further exploited using the adequate tools without necessarily
having to cross the bridge to gauge theory. These tools are resurgent transseries and large-
order analysis. The asymptotic nature of string perturbation theory hides, from the point
of view of resurgence theory, a wealth of information about the nonperturbative formulation
of the theory. This information is conveniently stored in the transseries, a formal object
beyond perturbation theory. The resummation of the transseries into an actual function of
the string coupling constant provides the final step in the nonperturbative formulation of
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string theory. This last part may well be a di�cult practical problem. Finally, a physical
interpretation of the nonperturbative elements of the transseries must be provided.

The second motivation has to do with putting the capabilities of the resurgent framework
to the test. Resurgence theory has a solid mathematical formulation and has found natural
applications in the study of solutions to di↵erential and di↵erence equations. In these areas,
rigorous theorems can be proved and numerical resurgence checks can be done to high pre-
cision. The application of resurgence to physical problems has been more timid, especially
in field theories, partly due to the technical obstacle of being able to compute perturbation
theory to high order and/or higher instanton corrections. In matrix models (especially with
polynomial potentials) the situation has been more favorable due to the development of pow-
erful computational techniques, such as the use of orthogonal polynomials. On the string
theory side, the holomorphic anomaly equations have been used very e�ciently to generate
perturbative data. It is this possibility of computing perturbation theory to high order, in
a very interesting and nontrivial physical problem, that opens up the possibility of applying
the techniques of resurgence. At the same time, the holomorphic anomaly equations can be
naturally written in a way that admits a transseries solution. Thus, topological string theory
satisfies two important properties: computability to high order in perturbation theory and
capability to generate transseries solutions. Both features come together through large-order
analysis.

Structure of the thesis

This thesis is divided in two parts.
In the first one we introduce the main theoretical aspects of both resurgence and topo-

logical string theories. Chapter 1 on resurgence, reviews the definitions of asymptotic series,
Borel resummation, and related concepts. Next we discuss the concept of resurgent trans-
series and their physical interpretation, and end with an overview of alien calculus and
large-order relations, as they will be used in chapters 3 and 4. Chapter 2 reviews the con-
struction of topological string theory and the definition of the free energies. We discuss their
computation with the holomorphic anomaly equations on the B model. We conclude with
the example of the mirror of local CP2, and the calculation the perturbative free energies to
high genus.

The second and main part of the thesis studies the resurgent properties of topological
string theory. In chapter 3 we show the extension of the holomorphic anomaly equations
and study the structure of di↵erent transseries solutions. We discuss the case of resonance
and stress the consequences of large-order growth of the perturbative free energies. We
finish by analyzing the problem of fixing the holomorphic ambiguities. Chapter 4 applies the
techniques described in previous chapters to the case of local CP2. We study the large-order
growth of perturbation theory and discover a number of instanton actions controlling it. A
deeper analysis uncovers the existence of one and two-instanton sectors. These are computed
from the holomorphic anomaly equations as explained in chapter 3 and found to agree, to
high precision, with numerical tests. Resonance is found explicitly in the large-order growth
of the one-instanton sector. New transseries sectors computed from the holomorphic anomaly
equations control its growth.
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Chapters 5 and 6 cover a summary and conclusions of the thesis. Appendices A, B, and
C show extra material that can be consulted in parallel with chapters 3 and 4. A list of
bibliographic references concludes the thesis.



Chapter 1

Aspects of resurgence

1.1 Introduction

In the study of di↵erential equations it is common to find formal solutions, expressed as pow-
ers series in the relevant variable x, that have zero radius of convergence. Often, the cause
for this is a factorial growth in the coe�cients of the asymptotic series, rather than a milder
exponential one. This behavior occurs already in very simple di↵erential equations, or it
can be found in the series expansion of functions expressed in integral form, for example. In
physical problems such divergent series can appear after performing a perturbative calcula-
tion around the weakly coupled regime of the theory. This is the case in quantum mechanics
and quantum field theory. In the latter, the fast growth is sometimes due to the factorial
number of Feynman diagrams contributing to a given order in perturbation theory, while
other in other cases the diagrams themselves grow factorially and one speaks of renormalons.
A very generic argument due to Dyson [58] shows that the radius of convergence of, say the
ground state energy as a series in the coupling, must be zero. The reason lies in the fact that
if a series converges for 0 < x  R, then it will also converge for �x—or any other complex
value of x with |x|  R—, but the quantum mechanical system with the opposite coupling
may well be unstable, and hence, very di↵erent from the original. Even if this argument is
not a proof (see [59] for counterexamples), it shows that we should not expect observables
to be represented by convergent series if the physics of the problem changes drastically as
the coupling x moves in the complex plane.

Beyond the perturbative asymptotic series there usually exists a larger family of formal
solutions, not only in x, but also in the object e�1/x. This exponential is nonanalytic at
x = 0, and from the physical point of view it is a genuine nonperturbative object, in the
sense that it cannot be seen in a perturbative computation around x = 0. In physical
problems one can find such nonanalytic functions of the coupling when looking, for instance,
at instanton configurations. These are related to saddle points other than the minimum.
Such a formal double power series is the simplest example of transseries—see [60] for a
mathematical review—, and it constitutes a very convenient way to store nonperturbative
information of physical systems [32]. A very important problem is the passage from the
formal transseries to a well-defined function in some region of the complex coupling plane.
This is one the main concerns of the theory of resurgence [2]

7
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Resurgence deals with asymptotic series and their resummation, uncovering very inter-
esting and powerful algebraic structures that impose relations between the di↵erent sectors
and coe�cients of the transseries. These resurgence relations, of which we will make exten-
sive use, dictate precisely how the factorial growth is realized, not only for the perturbative
solution, but also for any of the other sectors. It turns out, remarkably, that this large-order
factorial growth is controlled by other sectors of the transseries and the relation can be
made absolutely explicit. This happens in such a way that knowing one of sectors would, in
principle, allow us to reconstruct all the others. This determination of one sector in terms of
the rest is not really a surprise if we think that the transseries may come from a di↵erential
equation, for example. All the information is stored in the equation so we could expect it
to be also stored in any of the sectors. However, the actual resurgence relations have a very
transparent and hierarchical form that makes them useful. The first thread from which to
pull the nonperturbative sectors of the transseries is the factorial growth of the perturbative
coe�cients.

The asymptotic analysis of perturbation theory in physical systems started with the
example of the quantum anharmonic oscillator [54, 55]. From a semiclassical point of view,
instanton configurations were found to be deeply related to the asymptotics [50, 51, 61–
63]. At the same time, similar asymptotic studies were being carried out for field theories in
various fronts [64–68], see [69] for a thorough compilation. After the work of Écalle [2] and the
birth of resurgence, approaches became more rigorous and formal [70]. Since then there has
been an extensive application of resurgence ideas to the solutions of di↵erential equations, see
for example [71]. In high energy physics the usefulness of the resurgent transseries started to
appear within the context of matrix models, their double scaling limits and dual topological
string theories [31–33, 36, 38]. Especially fruitful was the analysis of the Painlevé I equation
[38] for which a two-parameter transseries was needed and resonance was present, that is
there are two instanton actions of opposite signs whose physical interpretations remains to
be explained. Further examples suggest that this is a common phenomenon [40, 41] in cases
where a topological expansion, of powers of x2, defines the perturbative sector. The concept
of resonance that will be explained in this chapter, see section 1.5.3, is indeed present in
the topological string theory on local CP2, as it will be shown in chapter 4. For theories
in which a di↵erential—like Painlevé I—or di↵erence equation—like the string equation in
polynomial matrix models [16]—is present, it is possible to compute the full transseries in
a systematic way and check many relations that resurgence imposes on the coe�cients of
di↵erent sectors. However, in general in physical systems, and especially in quantum field
theories, computing the perturbative sector already becomes a challenge. Nevertheless, there
has been significant progress in gauge theories with realistic properties such as asymptotic
freedom and the presence of renormalons [52, 53, 57, 72]. Some of this progress is based on
the understanding of resurgence on quantum mechanical systems on which progress is still
ongoing, see for example [73–75]. Exact quantization conditions born in the area of quantum
mechanics are also being used in the context of spectral problems in topological string theory
and its refined version [76, 77].

In this chapter we are going to review the most important and relevant concepts of
asymptotic series, resurgent transseries, alien calculus and large-order relations. The results
of the last section will be especially useful when we deal with an actual topological string
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theory. Because this is an early application of resurgence theory to topological string theory
on its own, some of the advanced concepts explained in this chapter will not find a realization
in the example of local CP2 presented in chapter 4. Useful reviews on asymptotics and
resurgent transseries can be found in [40, 78–83]. See also [84] for a recent overview of
resurgence in quantum physics.

1.2 Asymptotic series

Even if asymptotic series are not necessary divergent this adjective is most often used to
suggest a zero radius of convergence. We will follow this common abuse of language since it
should not lead to confusion.

1.2.1 Definition and properties

The di↵erence between an asymptotic series and a Taylor expansion can be understood by
looking at the sequence of partial sums

N
X

g=0

ag xg. (1.1)

For a Taylor series expansion, if we fix a value of x and take N ! 1 the partial sum
approximates better and better the original function it represents. The series converges with
a certain radius in the complex plane. For an asymptotic series, on the other hand, one has
to fix the upper bound N and take x ! 0 to increase the agreement. Asymptotic series are
not expected to converge for any nonzero value of x, so for practical purposes they can be
thought of as formal power series around x = 0. More precisely, given a formal series,

'(x) =
1
X

g=0

ag xg, (1.2)

we say that a function �(x) is asymptotic to it in the sense of Poincaré if for every N

lim
x!0

 

�(x)�
N
X

g=0

ag xg

!

x�N = 0. (1.3)

This means that for a fixed and small value of x, we can find a value of N for which the
partial sum approximates well the value of the function �(x). Di↵erent functions can have
the same asymptotic expansion. For example, the functions �(x) and �(x) + 4 e�3/x share
have the same Poincaré asymptotics as x ! 0 (from the right). The reason is that the
exponential term is nonanalytic at zero and its naive Taylor series has every coe�cient equal
to zero as a result. We speak of an exponentially suppressed term that in the language of
physics is labelled nonperturbative. Asymptotic series may be convergent or not, but one
usually finds divergent examples of a particular kind called Gevrey 1.
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A power series '(x) like (1.2) is of class Gevrey 1 if there exist two positive numbers c
and A, such that

|ag|  c g! A�g, (1.4)

for all g. Series of this class are asymptotic and they are found in the perturbative calculation
of many systems. For them we can estimate which partial sum gives the best approximation
to a function asymptotic to it. That is, we are looking for the optimal truncation of the
series before the factorial growth takes over and makes the result divergent. We need to find
the smallest term in the series, the value of g for which |ag xg| is minimal. That value of g
will be our optimal truncation value for N . If x is small enough, optimal N will be large, so
we can approximate

�

�ag xN
�

� ' c N ! A�N |x|N ' c
p

2⇡N

✓

N

e

◆N ✓

|x|
A

◆N

, (1.5)

using Stirling’s approximation to the factorial. This term is minimal for a value of N
approximately equal to

N ' A

|x| . (1.6)

The error in this optimal truncation can be estimated by the order of the next term in the
asymptotic series

ot error '
�

�aN+1

xN+1

�

� ' c̃ e�A/|x|, (1.7)

where we have used Stirling’s approximation again. Note that this error is nonperturbative
in nature. A word of caution is in order here. The resummation of the asymptotic series
(1.2) by optimal truncation, or by more powerful methods that will be covered later, does
not need to coincide with the value of the full nonperturbative function �(x). Indeed, there
may well be a transseries on top of the perturbative asymptotic expansion '(x) that needs to
be taken into account in order to match against the value of �(x). We can compare orders
of magnitude between subleading sectors (which are exponentially suppressed) and errors
of resummation of the perturbative one. Sometimes this error will be far greater than the
transseries contributions. So for numerical purposes it will make no sense to include those,
because they will be shadowed by the resummation error. Other times, the subleading terms
of the transseries have a non-negligible part to play. The underlying reason is that di↵erent
functions can have the same asymptotic expansion, as we mentioned before.

1.2.2 Borel transform and resummation

A step beyond optimal truncation is Borel resummation. This process comes in two parts.
The first deals with the construction of the Borel transform: a new series in a new variable,
⇠, that lives in the so-called Borel plane. Given a Gevrey 1 series like (1.2), we define its
Borel transform as

B['](⇠) :=
1
X

g=1

ag

(g � 1)!
⇠g�1. (1.8)

This expression is also sometimes called the minor of ', and it does not include the constant
term a

0

. The definition of the Borel transform can be slightly modified to accommodate
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di↵erent factorial growths of the form (�g + �)!, for some values of � and �. The precise
details are not relevant for us and definitions can be adapted accordingly. In any case, it is a
theorem—see proposition 3 of [81], for example—that the Borel transform defines an analytic
function in some disk around ⇠ = 0. The radius of the disk will be equal to the distance
from the origin to the closest singularity. The singularities of the Borel transform carry
abundant information and they are of primary importance in the theory of resurgence. The
second ingredient of Borel resummation involves the formal inverse of the Borel transform:
the Laplace transform. Note that for Re(1/x) > 0,

Z 1

0

d⇠ e�⇠/x ⇠g�1 = xg �(g) = xg (g � 1)!, (1.9)

which puts back the factorial that was removed in the Borel transform. If B['](⇠) has an
analytic continuation in some region around the real axis, we define Borel resummation of
the asymptotic series '(x) as

(S')(x) := a
0

+

Z 1

0

d⇠ e�⇠/x B['](⇠). (1.10)

Technically, we need B['](⇠) to grow like e⌧ |⇠| at most, for some value ⌧ , when ⇠ goes to
infinity. Then (S')(x) defines an analytic function on {x | Re(1/x) > ⌧}. The resummed
function, (S')(x), is still asymptotic to ' in the appropriate domain. See [78] or [81] for
details. Borel resummation can be generalized so that the integration is taken along some
other line in the Borel plane around which the Borel transform has an analytic continuation,

(S✓')(x) := a
0

+

Z 1 e

i✓

0

d⇠ e�⇠/x B['](⇠). (1.11)

An important obstruction appears along directions where the Borel transform has singular-
ities. The avoidance of singularities from above or below introduces the definition of lat-
eral resummations (S✓±')(x), where ✓± are directions slightly above or below the direction
marked by the angle ✓ where the singularities lie, respectively. The two lateral resummations
define di↵erent functions. The di↵erence between the two is given by

(S✓
+

')(x)� (S✓�')(x) =

Z

C
d⇠ e�⇠/x B['](⇠), (1.12)

where C is a contour in the Borel plane around the singularities. We can see that the
integral on the right-hand-side depends on the possible singularities of the Borel transform
along the ✓-direction. This quantity is actually nonperturbative in nature. Let us consider
the simple example in which B['](⇠) only has one pole. The location of the singularity can
be determined by the growth of the asymptotic series coe�cients, say ag ⇠ c (g� 1)! A�(g�1)

as g !1. To see this we can perform the rough calculation

B['](⇠) =
1
X

g=1

ag

(g � 1)!
⇠g�1
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' (finite piece) +
X

g�1

c
(g � 1)!

(g � 1)!

✓

⇠

A

◆g�1

' (finite piece) +
c

1� ⇠/A
, (1.13)

where we have separated the first terms of the series into a finite piece that is not important.
The pole is located at ⇠ = A. The contour C that comes from infinite at angle ✓�, goes
around the singularity at A = |A| ei✓, and leaves o↵ to infinity at angle ✓

+

, can be deformed
as to only enclose the pole, because in this case there are no other poles or branch cuts. The
residue theorem tells us that, for this very simple example,

(S✓
+

')(x)� (S✓�')(x) = �2⇡i c e�A/x. (1.14)

The connection between the singularities of the Borel plane and the large-order growth of
the asymptotic coe�cients is not accidental, and it can be studied systematically with the
help of the alien calculus.

1.3 Resurgent transseries

1.3.1 Definition and notation

A transseries is a formal power expansion that goes beyond a series in x alone. In the
simplest case, the expansion is both in x and e�A/x, for some constant A 2 C,

'(x) =
X

n2N
e�nA/x

1
X

g=0

a(n)

g xg. (1.15)

This is, in principle, a formal object, but an ultimate goal is to make sense of the right-hand-
side of (1.15) as a proper function of x after some resummation procedure is applied. We call
n the instanton number even if the problem does not admit such a physical interpretation.
We will speak of the n-instanton sector to refer to quantities associated to this number. An
example is the series

1
X

g=0

a(n)

g xg (1.16)

which is expected to be asymptotic. Also, we will refer to A as the instanton action regardless
of its actual origin. The customary choice of the letter A is not a coincidence in the light
of the previous section; the instanton action is involved in the large-order growth of the
coe�cients a

(0)

g . This is the first and most simple sign of resurgence.
It should be clear from the form of the transseries that it combines perturbative and

nonperturbative information in x. In this way, the transseries proves to be the formal object
that, after proper resummation, should become the full nonperturbative solution to the
physical problem under study.

Let us spend some time generalizing the transseries in (1.15) and fixing notation that will
be used extensively later. It is customary and useful to introduce a transseries parameter �,
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which keeps track of the instanton sector, n. Also, we should allow each asymptotic series
to start at a generic power of x, b(n). Thus,

'(�, x) =
X

n2N
�n e�nA/x

1
X

g=0

a(n)

g xg+b(n)

. (1.17)

The presence of � is natural in the context of ordinary di↵erential equations. There, it has
the interpretation of an integration constant which must eventually be fixed by a boundary
condition, for example. A natural and common generalization of (1.17) involves allowing for
several instanton actions collected into a vector A = (A

1

, A
2

, . . . , Ap). The new transseries
will be

'(�, x) =
X

n2Np

�n e�n·A/x

1
X

g=0

a(n)

g xg+b(n)

, (1.18)

where �n =
Qp

↵=1

�n↵
↵ , n · A =

Pp
↵=1

n↵ A↵. (1.18) is called a multiparameter transseries,
where p is the number of parameters. n·A, also denoted by A(n), is called the total instanton
action for the n-instanton sector. The next step in the generalization of the transseries
ansatz requires the introduction of another monomial: log x. The presence of logarithms is
not uncommon at all and has to be kept in mind when considering a transseries ansatz. In
the context of di↵erential equations it appears naturally to lift the degeneracy of solutions
when some eigenvalues are equal. We will not consider these cases in as much detail as the
other type of transseries, but we can write down the expression

'(�, x) =
X

n2Np

�n e�n·A/x

k
(n)

max

X

k=0

logk(x)'(n)[k](x), (1.19)

where

'(n)[k](x) =
1
X

g=0

a(n)[k]

g xg+b(n)[k]

. (1.20)

If there are no logarithms present, the relevant index, k, drops and we just have '(n)(x).
We should also say that more general transseries may include other nonanalytic functions at
x = 0, besides e�1/x or log x, see for example [60]. For each particular problem the resurgent
structure should tell us what the general form of the transseries is.

1.3.2 Physical transseries

If ' is to represent a physical observable that includes nonperturbative corrections, we must
deal with two questions. One is the resummation of the transseries. The other is the selection
of the transseries sectors that will enter the resummation. It is clear that if the instanton
sectors of the transseries, with n 6= 0, have to be exponentially suppressed with respect to
the perturbative sector, n = 0, one must have

Re(A↵/x) > 0. (1.21)
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We have not imposed any restrictions on the complex numbers A↵, but if we take x 2 R+

(e.g., x is a physical coupling constant) then only sectors with Re(A↵) > 0 must become part
of the transseries to be resummed. All the others must have �� = 0. This does not mean
that the sectors set to zero are not important or relevant—they are very much relevant. On
the one hand, they are involved in the large-order growth of the perturbative coe�cients a

(0)

g

and of other higher instanton coe�cients. On the other hand, the vanishing of �� for these
sectors is subordinated to a particular region in the complex x-plane. Moving to di↵erent
regions involves crossing the so-called Stokes lines, and such Stokes transitions can turn on
transseries parameters that were zero before. This e↵ect is called Stokes phenomenon, see
for example [85, 86].

The application of the Borel resummation procedure to a full transseries goes by the name
of Borel-Écalle resummation. One of the main results of Écalle’s work is the proof that Borel-
Écalle resummation exists uniquely whenever the singularities of the Borel transforms of the
di↵erent sectors have isolated singularities (technically one requires that they can be ana-
lytically continued along any path in the Borel plane that avoids the singularities). A very
important property of Borel-Écalle resummation is the resolution of the nonperturbative am-
biguity that is present in Borel resummations along singular directions. In section 1.2 we saw
that we must define lateral resummations, either above or below the singular direction. This
ambiguity can render perturbation theory inconsistent and ill-defined. Borel resummation
of higher instanton series '(n) also produces analogous ambiguities. The remarkable result
is that, when considered all together, as part of the transseries, the ambiguities cancel each
other out, leaving a well-defined object. This cancellation was observed to leading order in
quantum mechanics in [50, 51] and has the name of Bogomolny–Zinn-Justin mechanism. Re-
cently this mechanism was shown to work in particular examples of quantum field theories in
four and two dimension [52, 53]. A generic study of the cancellation of the nonperturbative
ambiguity and reality conditions was carried out in [42]. This procedure also goes by the
name of median resummation.

1.4 Alien calculus

1.4.1 Definition and properties

In section 1.2 we saw that the di↵erence between lateral Borel resummations produces a non-
perturbative result that depends on the singularities of the Borel transform. The systematic
study of these singularities, for the di↵erent sectors in the transseries, leads to a complicated
algebraic structure that goes by the name of alien calculus. In Écalle’s work it was shown
that, besides the usual derivations with respect to x, there exist a number of derivatives,
labelled by points ! in the Borel plane, which are sensitive to the singularities of the Borel
transform. These are the alien derivatives, �!. In part of this section it will be convenient
to work with the inverse variable z = 1/x, to keep with standard notation.

The definition of the alien derivative is based on the concept of resurgent function that
we now, finally, explain. Given a Gevrey 1 series, ', we say that it is resurgent if its Borel
transform has analytic continuations along any path avoiding the discrete set of singularities
of B['](⇠). This is a very wide definition. Usually, and because this is the case in many
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examples, one restricts to the set of resurgent functions whose Borel transform has only
simple poles and logarithmic branch cuts at each singularity. More precisely, if ⌦ = {! 2
C |! singularity of B['](⇠)} is the set of singular points of B['], we say that ' is a simple
resurgent function if, for every ! 2 ⌦,

B['](⇠) =
a!

2⇡i(⇠ � !)
+ B[ !](⇠ � !)

log(⇠ � !)

2⇡i
+ hol. func. (1.22)

where a! 2 C and B[ !] is holomorphic near the singularity !.1 Simple resurgent functions
form an algebraically closed set under multiplication. Note that (1.22) is a generalization
of the very simple case that we considered in (1.13). When faced with particular problems,
which admit a transseries solution, one finds that the function  ! is actually one of the
higher instanton sectors, '(n), or some combination of them. In this sense, the function '
resurges in di↵erent guises when looking near the singularities of the Borel transforms. We
will focus on this topic later on.

Now we are in position to define the alien derivative acting on a simple resurgent function.
If ! /2 ⌦ then �!' := 0. If ! 2 ⌦ then

(�!')(z) := a! +  !(z). (1.23)

Note that the alien derivative takes an asymptotic (formal) series and gives back another
formal series.2 It can be shown that �! is a derivation, that is, it is linear and it satisfies
Leibniz rule for di↵erentiation. A very important property of the alien derivative lies in its
commutation relation with the usual derivative

[@z, �!] = !�!. (1.24)

Since the computation of alien derivatives is not usually an easy task, (1.24) can help translate
alien operations into regular ones.

1.4.2 Stokes automorphism and bridge equation

The principal role of the alien derivative is to provide a systematic way of computing the
di↵erence between lateral resummations

(S✓
+

')(z)� (S✓�')(z). (1.25)

We saw earlier that this di↵erence is determined precisely by the singularity behavior of
the Borel transform, captured in (1.23). Let us define the Stokes automorphism along the
direction ✓, S✓, by the relation

S✓
+

:= S✓� �S✓. (1.26)

1Strictly speaking, on the left-hand-side of (1.22) we must work with a particular analytic continuation
of the Borel transform along a particular path that avoids the singularities up until !.

2Technically, the definition of �!' involves a weighted sum over inequivalent continued paths from the
origin to !. We can think of (1.23) as a schematic version of the actual definition.
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This is an automorphism from the space of simple resurgent functions into itself. Note that

S✓
+

� S✓� = �S✓� �Disc✓, (1.27)

where S✓ = 1� Disc✓. This discontinuity operator and the Stokes automorphism are func-
tions of the alien derivatives. In general, the relation between derivations and automorphisms
is given by exponentiation. A familiar example is the translation automorphism on a func-
tion, f(z) ! f(z + 1), and the usual derivative @z. The precise relation is

S✓ = exp

0

@

X

{!✓}

e�!✓ z �!✓

1

A , (1.28)

where {!✓} is the set of singularities in ⌦ that lie along the ✓-direction. A justification
for this formula requires a careful examination of the contours involved in (1.25) and the
definition of the alien derivative (for a rigorous derivation see [79]). Usually poles along a
given direction ✓ can be written as multiples of an instanton action A with arg(A) = ✓, that
is, ! = `A, with ` � 1. In this case,

S✓ = 1 + e�Az�A + e�2Az

✓

�
2A +

1

2
�2

A

◆

+ · · · (1.29)

See [40] for general formulae describing the action of the Stokes automorphism on one and
two-parameter transseries. Thus, we see explicitly that knowledge about the alien deriva-
tives on the asymptotic series at each relevant singularity will give us a precise form of the
discontinuity of lateral resummations. However, as we mentioned before, the computation
of the alien derivatives may be di�cult, due to lack of knowledge of the Borel transform. In
some situations a huge step forward is provided by the so-called bridge equation. The first
step to obtain the bridge equation is to define the pointed alien derivative

�̇! = e�! z �!, (1.30)

appearing in (1.28). We can easily see from (1.24) that �̇! commutes with @z. The derivative
with respect to the transseries parameter, �, also trivially commutes with �̇!, because the
latter does not act on �. Consider now the situation in which the transseries of interest, ',
satisfies an ordinary di↵erential equation in z, that could be nonlinear. If we act on this
equation with either �̇! or @� we will arrive at a linear di↵erential equation for �̇!' or
@�', respectively, due to the commutativity with @z. The equation will be the same in both
cases. Note that ' itself may be part of this equation, but our focus is on �̇!' and @�',
and for them the equation is indeed linear. For the sake of simplicity, we are considering a
first order di↵erential equation and hence a one-parameter transseries. This means that any
solutions of the linearized equation should be proportional to each other. This means

�̇!'(�, z) = S!(�) @�'(�, z). (1.31)

Here, S!(�) is the proportionality factor, a function of the transseries parameter, independent
of z and regular at � = 0. (1.31) is an example of bridge equation between alien derivations
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on the left-hand-side and usual ones on the right. If we start with a higher order di↵erential
equation, admitting a multiparameter transseries, the right-hand-side of (1.31) will change
to a linear combination with partial derivatives with respect to all the �↵. If we now plug
the transseries ansatz for ' and expand S!(�) in series, we can collect similar powers of �.
This will lead us to explicit expressions of the alien derivatives, �!'

(n), in terms of other
sectors '(m) of the transseries. The only unknown in this procedure are the coe�cients of
the series expansion of S!(�), called the Stokes constants. See [40] for explicit formulae and
examples.

1.4.3 Dispersion relation

The main use we will make of the Stokes automorphism is the derivation of the large-
order growth of the coe�cients of various sectors of the transseries, a

(n)

g , starting with the
perturbative ones. We go back to the use of x for the remainder of this section. Consider a
function '(x) and write its value as a contour integral using Cauchy’s theorem,

'(x) =
1

2⇡i

I

(x)

dy
'(y)

y � x
, (1.32)

where (x) denotes a small contour around x. Let us deform this contour, expanding it out to
infinity carefully avoiding possible singularities and branch cuts of '(x), until we obtain two
contributions. The first is the integral around infinity, which in many cases can be shown to
vanish, so we forget about it for simplicity. The other is given by a sum of discontinuities
along certain singular rays. We can therefore write

'(x) =
X

{✓}

1

2⇡i

Z

e

i ✓ 1

0

dy
Disc✓'(y)

y � x
(1.33)

for some set of singular directions {✓}. The discontinuity operator is given in terms of the
Stokes automorphism. If we know the alien derivatives we can calculate the right-hand-
side of (1.33), and this will give us an explicit expression for the large-order growth of the
coe�cients of the asymptotic expansion of '(x). For illustration purposes, let us consider
a one-parameter transseries with instanton action A, and assume that the bridge equation
holds. Then we obtain the set of resurgent equations

�`A'
(n) = S` (n + `)'(n+`), (1.34)

where the Stokes function ends up having the form S`A(�) = S` �
1�`, with S` the Stokes

constant. Since the Stokes function is analytic at � = 0 we must have `  1. All the other
alien derivatives are zero. The origin, ` = 0, is trivial as well, so the relevant singular set
⌦ = {`A | ` = 1,�1,�2, . . .}. Let us focus on the perturbative sector, n = 0. The Stokes
automorphism, (1.28), is only nontrivial for ✓ = 0, and because in that direction �`A 6= 0
only for ` = 1, we have

S✓=0

'(0) =
1
X

k=0

1

k!
e�kAz�k

A'
(0)
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=
1
X

k=0

Sk
1

e�kAz'(k). (1.35)

while S✓ 6=0

'(0) = '(0). From this, the discontinuity operator reads

Disc
0

'(0) = �
1
X

`=1

(S
1

)` e�`A/x '(`), (1.36)

Disc⇡'
(0) = 0. (1.37)

See [40] for more details and general cases. Because the direction other than ✓ = 0 is trivial
in this example, we only have to worry about integration along the positive real line. We
look at (1.33) for ' = '(0), and expand everything as a formal series, to find

X

g=0

a(0)

g xg+b(0) = � 1

2⇡i

Z 1

0

dy
1
X

`=1

1
X

h=0

(S
1

)` e
�`A/y yh+b(`)

y � x
a

(`)
h

= �
1
X

`=1

(S
1

)`

2⇡i

1
X

h=0

1
X

g=0

xg a
(`)
h

Z 1

0

dy e�`A/y yh+b(`)�g�1

=
1
X

g=0

xg

1
X

`=1

(S
1

)`

2⇡i

1
X

h=0

�(g � b(`) � h)

(`A)g�b(`)�h
a

(`)
h , (1.38)

where we have transformed the integral into a Gamma function. After a shift in the index
g we find

a(0)

g ⇠
1
X

`=1

(S
1

)`

2⇡i

1
X

h=0

�(g + b(0) � b(`) � h)

(`A)g+b(0)�b(`)�h
a

(`)
h . (1.39)

This expression determines explicitly how the coe�cients a
(0)

g grow with the order g. We
will examine this relation and some generalizations in the next section.

1.5 Large order relations

1.5.1 Structure and one-instanton contribution

We finished last section with the simplest example of a resurgence relation. Equation (1.39)

shows how the growth of the perturbative coe�cients a
(0)

g is determined by all the other higher
instanton coe�cients, a

(l)
h . By looking at other sectors one can find analogous resurgence

relations. This network shows how the information captured in one sector is also shared
by all the others. More importantly, the information is spread in many layers, in such a
way that complete knowledge of the perturbative coe�cients can determine all the other
higher instanton coe�cients. This is a critical point for this thesis because our starting
point in topological string theory is a perturbative computation and we need to calculate
nonperturbative data. Knowledge of the perturbative sector to all orders is not always
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possible so one has to rely on numerical methods to make up for this. We will discuss this
issues in section 1.5.2.

Let us explore the simplest resurgence relation (1.39). We can expand it out as

a

(0)

g ⇠ �(g + b

(0,1))
A

g+b(0,1)

S

1

2⇡i

 

a

(1)

0

+
�(g + b

(0,1) � 1)
�(g + b

(0,1))
A a

(1)

1

+
�(g + b

(0,1) � 2)
�(g + b

(0,1))
A

2

a

(1)

2

+ . . .

!

+
�(g + b

(0,2))
(2A)g+b(0,2)

(S
1

)2

2⇡i

 

a

(2)

0

+
�(g + b

(0,2) � 1)
�(g + b

(0,2))
2A a

(2)

1

+
�(g + b

(0,2) � 2)
�(g + b

(0,2))
(2A)2 a

(2)

2

+ . . .

!

+ · · · (1.40)

where b(0,`) := b(0) � b(`). Assuming that b(1)  b(2)  . . . we can see that the second line in
(1.40) is subleading with respect to the first line because it is exponentially suppressed by a
factor 2�g. In the same way, the contribution of the `-th instanton sector is suppressed by
a factor `�g. Therefore, the leading and most important contribution to the growth of the
perturbative coe�cients is the one-instanton sector. This fact is very explicitly understood
in the context of saddle point methods for integral expressions. Let us focus on the first line
of (1.40). Besides the factorial growth and the presence of the instanton action, confirming

the Gevrey 1 behavior, we have the one-loop one-instanton action coe�cient a
(1)

0

. The ratio
of Gamma functions in the first line simplifies to the product

�(g + b(0) � b(1) � 1)

�(g + b(0) � b(1))
=

h
Y

k=1

1

g + b(0) � b(k) � k
= O(g�h), (1.41)

so the e↵ect of the coe�cient a
(1)

h is suppressed by a factor g�h, as g ! 1. An analogous
description can be made for the other instanton sectors in (1.40). In summary, the coe�cient

of the transseries a
(`)
h contributes to the large-order of a

(0)

g at order `�g g�h.

One-instanton contribution

The fact that the di↵erent contributions are hierarchical is very useful because, when taking
the reverse point of view, we can think of extracting the coe�cients a

(`)
h out of the set {a(0)

g }
by looking at the contributions at the appropriate order. To exemplify this let us take one
step back and extract first the instanton action out of the perturbative coe�cients. If we
consider the combination

g
a

(0)

g

a
(0)

g+1

(1.42)

and expand around g = 1 we can see that, at leading order, it is given by

A
�

1 +O(g�1) +O(2�g)
�

. (1.43)

This is simply a consequence of the Gevrey 1 condition. We can therefore write

A = lim
g!1

g
a

(0)

g

a
(0)

g+1

. (1.44)
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This means that even if we knew nothing about the transseries we could still find out the
instanton action. The next piece of information we can find out is the number b(0) � b(1),
with the help of the limit

� (b(0) � b(1)) = lim
g!1

g

 

1� A

g

a
(0)

g+1

a
(0)

g

!

. (1.45)

Note that we need to know A in order to compute the right-hand-side. Now we are in
position to calculate the one-instanton coe�cients a

(1)

h . We start with the first one,

S
1

2⇡i
a

(1)

0

= lim
g!1

Ag+b(0)�b(1)

�(g + b(0) � b(1))
a(0)

g , (1.46)

and then, recursively for h � 1,

S
1

2⇡i
a

(1)

h = lim
g!1

Ag+b(0)�b(1)

�(g + b(0) � b(1))

 

a(0)

g �
h�1

X

k=0

�(g + b(0) � b(1) � k)

Ag+b(0)�b(1)�k

S
1

2⇡i
a

(1)

k

!

. (1.47)

Without further information we cannot disentangle the Stokes constant from the one-instan-
ton coe�cients. This is not necessarily a problem since at the end of the day the Stokes
constant may be absorbed into the transseries parameter �, which still remains to be fixed.
In the solution of di↵erential equations a

(1)

0

is the only coe�cient that is not determined by

the equations. The freedom to choose its value is transferred to � and a
(1)

0

is set to 1 by
convention. In this situation the Stokes constant S

1

can be calculated from (1.46). The limit
(1.47) is becomes more subtle and fine as we h is higher because the information that is ex-
tracted lies deeper in the asymptotic expansion. In this sense the limit becomes increasingly
di�cult to do in practice.

Richardson extrapolation

In the common situation where data is scarce one cannot take limits all the way to infinite
and we have to conform ourselves with numerical approximations. Let

q = lim
g!1

Qg (1.48)

for some quantities Qg, q. One can approximate q by Qg
max

, where g
max

is the largest value
of g for which data is available. This approximation is almost never su�ciently good. A
very e�cient way to accelerate the convergence of (1.48) is to use the Richardson transform
(or extrapolation) of the sequence Qg [87]. To be able to apply a Richardson transform we
must have

Qg = q
0

+
q
1

g
+

q
2

g2

+ . . . (1.49)

where we treat Qg as a function of g. Note that q
0

is the value we want to approximate,
that is, q. All the limits we discussed above adapt to this form. The Richardson transform
modifies the sequence {Qg} into a new sequence {Q[1]

g } defined by

Q[1]

g := (g + 1) Qg+1

� g Qg. (1.50)
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The key point is that this combination produces a cancellation that removes theO(g�1)-term,

Q[1]

g = q
0

� q
2

g2

+
q
2

� 2q
3

g3

+ . . . (1.51)

This accelerates the numerical convergence of the sequence. A generalization of (1.50) is
given by

Q[n]

g :=
n
X

h=0

(�1)n�h (g + h)n

h!(n� h)!
Qg+h

= q
0

+
qn+1

gn+1

+O
✓

1

gn+2

◆

. (1.52)

We say that we have taken n Richardson transforms on the limit (1.48). Note that with each
simple Richardson transform we make use of a number in the sequence whose information
cannot be used in the next one. So there is a limit to the number of Richardson transforms
that can be taken with a finite amount of data.

We will make extensive use of this technique, for di↵erent values of n, and it will allow
us to compute limits with great precision.

1.5.2 Practical resummation and two-instanton contribution

The extraction of the two-instanton sector coe�cients, a
(2)

h , is not as straightforward. We
first need to do a resummation of the one-instanton contribution as a series in 1

g
. It is not a

surprise that this series turns out to be asymptotic in most cases. We saw in section 1.2 that
an approximate resummation can be done with the technique of optimal truncation. The
error of this method is of order e� ˜A/g, where Ã is the instanton action controlling the large-
order of the asymptotic series. Note that Ã will not coincide with A because the series to
resum is not '(1) but one in which the coe�cients a

(1)

h and A are mixed together. Explicitly,
we have to resum

I(g) :=
1
X

h=0

�(g + b(0) � b(1) � h)

�(g + b(0) � b(1))
Ah a

(1)

h . (1.53)

The ratio of Gamma functions can be expanded in power series around 1

g
= 0,

�(g + b(0) � b(1) � h)

�(g + b(0) � b(1))
= g�h

�

1 +O(g�1)
�

, (1.54)

from which we arrive at

I(g) =
1
X

h=0

ãh

gh
. (1.55)

In order to see if optimal truncation is good enough we must make sure that the optimal
truncation error is smaller than the order of magnitude of the two-instanton contribution
to a

(0)

g , for a given value of g [88]. If this is not the case we must resort to more powerful
resummation methods. The obvious one that we have discussed is Borel resummation.



22 CHAPTER 1. ASPECTS OF RESURGENCE

This method presents, however, a practical problem which makes it unusable except in very
favorable situations. In most cases we only have a finite number of coe�cients to work with
and the Borel transform cannot be computed. Optimal truncation does not care about this
limitation but the Borel transform requires all the terms. This is so because the result must
be a function with finite radius of convergence, that can later be extended analytically in some
region of the Borel plane. If we truncate the Borel transform series, the resummation will give
back the original result. A remedy for this uses Padé approximants for the truncated Borel
transform [48]. The Padé approximant takes a polynomial of degree d and approximates it
by a rational function whose series expansion matches the original polynomial up to order d.
The Padé approximant gives a good approximation to the actual Borel transform because
it incorporates some of its singularities. This procedure goes by the name of Borel-Padé
resummation, and it is expected to give a better approximation that optimal truncation. We
define

BP[I](g) := g

Z 1

0

d⇠ e�⇠/g Padé

 

h
max

X

h=0

ãh

h!
⇠h

!

, (1.56)

where h
max

is the maximum index for which there is available data. Just as with Borel
resummation we may find some singularities (poles) along the integration contour. Several
options have been considered to tackle this issue, see for example [89–91]: deformation of the
contour either above or below the axis, or principal value prescription. The latter has the
advantage that no nonperturbative ambiguity is introduced, which may a↵ect later a clean
extraction of the coe�cients a

(2)

h .
Once a su�ciently accurate resummation is performed we can consider the asymptotic

series

X(1)

g :=
Ag+b(0)�b(1)

�(g + b(0) � b(1))
a(0)

g � S
1

2⇡i
Resum [I(g)] (1.57)

⇠ Ab(2)�b(1)

2g+b(0)�b(2)

(S
1

)2

2⇡i

1
X

h=0

�(g + b(0) � b(2) � h)

�(g + b(0) � b(1))
(2A)h a

(2)

h + . . . (1.58)

By taking suitable ratios and combinations we can extract b(0)� b(2) and the coe�cients a
(2)

h .
We could then go on to the third, fourth, etc instanton sectors, if enough data and precision
is available.

1.5.3 Generalizations

Generalizations of (1.40) exist when the transseries has more parameters. There are also
similar formulae describing the large-order of other sectors. For systems that satisfy a bridge
equation like (1.31) one can be very systematic and derive general resurgence relations for
any sector [40]. For other examples, we should expect some generalization of (1.40). In any
case, the resurgence relations give us a list of relations, with a very combinatorial flavor,
in which the transseries coe�cients play specific roles. In physical examples that admit
a large N description [7] we find that the perturbative sector forms an asymptotic series
in x2 rather than in x. One talks about a topological expansion because the asymptotic
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series can be interpreted as a sum over Riemann surfaces of all genera. The rest of the
transseries sectors are still proper formal series in x. Along with this it has been found
in several examples, all related to each other, that the transseries describing them have
two parameters with opposite instanton actions, A and �A. For a two-parameter resonant
transseries with instanton actions A and �A, the bridge equation (1.31) generalizes to

�̇!'(�, z) = S!(�) @�
1

'(�, z) + eS!(�) @�
2

'(�, z), (1.59)

where the singularities are restricted some integer multiples of A. The set of resurgent
equations for the di↵erent sectors is more complicated than in the one-parameter case. For
the perturbative sector we still have �`A'

(0|0) = 0 for ` � 2, but now �`A'
(0|0) = eS` '

(`+1|1) 6=
0 for ` = �1. This means that the Stokes automorphism along ✓ = ⇡ is not trivial anymore
and it contributes to the perturbative large-order,

a(0|0)

g ⇠
1
X

`=1

(S
1

)`

2⇡i

1
X

h=0

�(g + b(0|0) � b(`|0) � h)

(`A)g+b(0|0)�b(`|0)�h
a

(`|0)

h

+
1
X

`=1

(eS�1

)`

2⇡i

1
X

h=0

�(g + b(0|0) � b(0|`) � h)

(�`A)g+b(0|0)�b(0|`)�h
a

(0|`)
h , (1.60)

where eS�1

is another Stokes constant. Because the perturbative series is topological, every
other coe�cient on the left-hand-side must be zero, which means that there must be a
cancellation to all instanton orders in the right-hand-side to make this happen. If a

(0|0)

odd

= 0
we must have

b(`|0) = b(0|`) and (S
1

)` a
(`|0)

h = (�1)�b(0)+b(0|`)+h (eS�1

)` a
(0|`)
h , (1.61)

for all values of ` and h. This symmetry is verified by direct computation in the examples
mentioned above and will also be true for topological string theory, see section 3.5.2. If we
use the relations (1.61) back into (1.60) we find

a
(0|0)

2g ⇠
1
X

`=1

(S
1

)`

⇡i

1
X

h=0

�(2g + b(0|0) � b(`|0) � h)

(`A)2g+b(0|0)�b(`|0)�h
a

(`|0)

h . (1.62)

Because the odd coe�cients are all zero it is customary to do a change of notation

F (0|0)

g := a
(0|0)

2g and F
(`|0)

h := a
(`|0)

h , (1.63)

where we have already adopted the letter F , for free energy, that will be used in the rest of
the thesis.

The large-order growth of the one-instanton coe�cients, F
(1|0)

g , shows resonance explicitly.
From the bridge equation (1.59) one can see after a small calculation that the nontrivial alien
derivatives on this sector are �A'

(1|0) = 2 S
1

'(2|0) and �`A'
(1|0) = S̃` '

(`+2|1) for `  �1.
The growth is controlled to leading order by the singularities that are closest to the origin
in the Borel plane, A and �A. Using the dispersion relation (1.33) one finds,

F (1|0)

g ⇠ �(g + b(1|0) � b(2|0))

Ag+b(1|0)�b(2|0)

S
1

⇡i
F

(2|0)

0

+
�(g + b(1|0) � b(1|1))

(�A)g+b(1|0)�b(1|1)

1

2

eS�1

⇡i
F

(1|1)

0

(1.64)
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Note the explicit presence of �A and the mixed sector F
(1|1)

0

, which was absent in the large-

order of F
(0|0)

g .
Some final remarks to conclude. In some situations, the presence of two instanton sectors

of the same absolute value, hence contributing to the same order, can produce a growth of
the form

F (0|0)

g ⇠ �(2g + b)

|A|2g+b
cos(✓ (2g + b) +  ) |µ| , (1.65)

where A = |A| ei✓ and  is a phase coming from the one-instanton sector represented by µ.
The oscillations produced by the trigonometric function prevent us from using the Richardson
transform in order to extract A, b, and µ. No approach around this obstacle has been found
yet, to my knowledge. In multiparameter transseries with di↵erent instanton actions A

1

, A
2

,
. . . , Ap it is crucial to determine the ordering of the quantities |`Ai| from smallest to largest
for i = 1, 2, . . . , p and ` = 1, 2, . . . The smallest this quantity is, the largest contribution the
corresponding sector will have in the resurgence relation, due to the dependence (`Ai)�g. If
the problem at hand has moduli or external parameters, as is the case for topological strings,
the ordering may change as we move through the parameter space.

1.5.4 An example: Riccati equation

We can illustrate the concept of a transseries and make use of the large-order relations in a
particularly simple example, the Riccati equation

'0(z) = '(z)� 1

z
'(z)2 � 1

z2

. (1.66)

This is a first order nonlinear equation, so we expect a formal solution around z = 1 (or
x = z�1 = 0) in the form of a one-parameter transseries,

'(z) =
1
X

n=0

�ne�nAz

1
X

g=0

a(n)

g z�g�b(n)

. (1.67)

Since we are dealing with a di↵erential equation the argument leading to the bridge equation
(1.31) applies, and so do the resurgence relations (1.40). Plugging the transseries ansatz into
(1.66) we first find the value of the instanton action A = �1, and

'(z) = z�1
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The starting powers are b(0) = 1, b(n) = n � 1 for n � 1. The first coe�cient of the one-
instanton sector, a

(1)

0

, is not determined by the equations and is set to one by convention. The
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integration constant is �, the transseries parameter, that will have to be fixed by boundary
conditions as |z|!1 in some direction. For example, we must impose � = 0 if we require
a nontrivial as z ! +1; but � 6= 0 if we need a solution as z ! �1. The coe�cients of
the perturbative sector alternate signs, which indicates Borel summability along the positive
x-axis because the pole lies on the negative side. Indeed,

a(0)

g ⇠ �(g + 1)

Ag+1

S
1

2⇡i
a

(1)

0

= �(g + 1)(�1)g+1

S
1

2⇡i
. (1.69)

The instanton action can be extracted from the limit (1.44) and one finds a numerical value
compatible A = �1, see first plot in figure 1.1. To be more precise we can show the di↵erence
between the exact value of �1 and various Richardson transforms performed on the limit
(1.44),

# rt exact� limit

0 �1.7 · 10�2

1 �2.8 · 10�4

2 +4.6 · 10�6

3 �2.8 · 10�7

8 �7.6 · 10�10

Here the maximum value of g is 60. After around ten Richardson transforms there is no
further improvement.

Equation (1.45) shows that b(0)�b(1) = 1, as we see from the comparison with the general

case (1.40). The next term we can look at is (1.46), for which a
(1)

0

= 1, so we are actually
calculating the Stokes constant. One finds, see figure 1.1,

S
1

2⇡i
= �3.676 077 910 37 . . . = �sinh(⇡)

⇡
. (1.70)

The exact value can be calculated by other, analytical, means. See [81, 92] for a thorough
resurgent analysis of this and more general Riccati equations. Once the Stokes constant is
identified one can check the rest of the one-instanton coe�cients, a

(1)

h , h = 1, 2, . . ., using
equation (1.47). Each limit is accelerated with several Richardson transforms. In this simple
example it is very easy to compute many perturbative coe�cients so one can go very far
in the asymptotics. See figure 1.1 for examples of these limits. Plots like these will appear
profusely in chapter 4.

To check the two-instanton coe�cients of the transseries out of large-order we need to use
the resummation procedure explained in section 1.5.2, and the quantities X

(1)

g in equation
(1.57). To know whether we can use optimal truncation for the resummation procedure or
we have to do Borel-Padé resummation we do the following comparison. Let

exact =
Ag+1

�(g + 1)
a(0)

g , (1.71)

for a particular value of g, say g = 40. Denote by ot the optimal truncation of the one-
instanton contribution, that is the second term in (1.57). We find

|exact� ot| ' 2 · 10�13, ot error ' 6 · 10�14 (1.72)
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Figure 1.1: In these plots we compare the numerical large-order analysis of the per-
turbative coe�cients of the transseries solution to the Riccati equation against resurgent
predictions. We present the sequence of points that converge towards the corresponding
quantity, for example A = �1 in the first plot coming from the limit (1.44). The first two
Richardson transforms are displayed as continuous lines, as well as the predicted limit, in
red.

And we need to compare this error against the order of magnitude of the leading contribution
to X

(1)

g=58

in (1.58), which is
�

�

�

�

A

2g

S2

1

2⇡i

1

g

�

�

�

�

' 2 · 10�12. (1.73)

It turns out that two orders of magnitude between the optimal truncation error and the two-
instanton contribution is not big enough for optimal truncation to be su�ciently precise.
We need to use the Borel-Padé resummation. The Padé approximants have poles along the
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Figure 1.2: Checks for the two-instanton coe�cients of the Riccati transseries solution,
a

(2)

0

= �1, a

(2)

1

= �5, a

(2)

2

= �14 and a

(2)

3

= �122

3

. They are obtained from the large-order
growth of X

(1)

g , (1.58), where the resummation is done with Borel-Padé, (1.56).

positive line of integration so the contour has to be deformed to avoid them. This introduces
a nonperturbative ambiguity of subleading order that will be cancelled by ambiguities at
higher orders. In order to check the coe�cients a

(2)

h from the large-order of X
(1)

g we can
simply omit the ambiguity. We show the checks for the first few coe�cients in figure 1.2.

The bridge equation predicts that the large-order growth of the one-instanton sector is
controlled by the two-instanton sector. The one-parameter version of (1.64) is just

a(1)

g ⇠
1
X

h=0

�(g + b(1) � b(2) � h)

Ag+b(1)�b(2)�h

S
1

⇡i
a

(2)

h , (1.74)

where we have only included the leading contribution: the two-instanton sector. From this
large-order growth we can extract A and b(1) � b(2) whose values we already know from
the calculations above. The limits that extract the coe�cients a

(2)

h produce plots that look
very much like those in figure 1.2. We show the examples of �(b(1) � b(2)) and the high-

loop coe�cient a
(2)

5

in figure 1.3. The appearance of the same two-instanton coe�cients in
both the subleading contribution to perturbative theory and in the leading contribution to
the one-instanton sector is a consequence of resurgence and the precise form of the bridge
equation (1.31) and the resurgence equations (1.34) it generates. The resurgent structure
that we will uncover for the topological string theory on the mirror of local CP2 shares many
properties with this example, but this feature of the two-instanton sector is not realized
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Figure 1.3: Checks for the di↵erence of starting powers and a high loop two-instanton
coe�cient, a

(2)
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3

, from the large-order of the one-instanton sector, (1.74).

there. The Riccati equation does not have a complicate resurgent structure because it is
a first order di↵erential equation and the transseries has only one parameter. Resonance
between sectors can only appear for higher order equations. We will discuss this in chapters
3 and 4.



Chapter 2

Aspects of topological string theory

2.1 Introduction

String theory can be seen as a conformal field theory in two dimensions coupled to gravity.
The two-dimensional manifold, a Riemann surface, is the worldsheet the string creates as it
propagates in a ten-dimensional target space, assuming supersymmetry is present. It can
further be required that the observables do not depend on the metric of the Riemann surface,
hence the adjective topological. This extra feature makes it possible to solve the topological
string theory to any perturbative order in many cases, so it is an excellent arena in which to
explore string related properties. Topological string theory can compute objects of interest
in the full string theory, it realizes the mathematical statement of mirror symmetry, and it
also enjoys large N dualities of its own, which in some cases can be explored in great depth.

Topological string theory is built from a topological conformal field theory coupled to
gravity on the Riemann surface. This theory is an N = (2, 2) supersymmetric sigma model
whose bosonic field represents a map from a worldsheet of genus g to a six-dimensional
target space, which should be thought of as the compactified manifold in the splitting of ten-
dimensional string theory. Supersymmetry requires this manifold be complex, and moreover,
Kähler. To make the theory topological a modification of the symmetry algebra called
twisting is required. It comes in two flavors, A and B. The A-model depends on the Kähler
structure of the target space, while the B-model depends on the complex structure. Most
observables (correlation functions) for these theories are trivial, and the essential reason is
that the metric of the Riemann surface is fixed. There are no holomorphic functions on
Riemann surfaces of genus g � 2. One needs to integrate over all possible metrics—which,
in a conformal field theory, reduces to integration over complex structures—in order to
overcome the selection rule that dictates which correlation functions vanish. This coupling
to gravity leads to the definition of the topological string theory, once the target space has
been further constrained to be a Calabi-Yau threefold. In this final setting, the A and B
models are not quite holomorphic in their dependence of the Kähler or complex structures,
respectively. This failure of holomorphicity can be made quantitatively precise through the
holomorphic anomaly equations of Bershadsky, Cecotti, Ooguri and Vafa [23, 24]. These

equations involve the perturbative free energies of the theory, F
(0)

g . They are of central
importance for this thesis.

29
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The A and B topological string theories are related by mirror symmetry, a geometrical
statement that identifies the moduli space and observables of an A-model on a Calabi-Yau X
with the ones of a B-model on the mirror manifold eX. This means that computations done on
one side, involving topological and geometrical information of one of the geometries, can be
translated into the mirror symmetry model and geometry. The most important application of
this is the calculation of Gromov–Witten invariants of X—essentially counting holomorphic
maps from a Riemann surface of genus g to X with fixed degree—from computations on the
B-model, usually performed with the holomorphic anomaly equations.

Topological string theory can also compute relevant quantities for compactifications of
string theories on Calabi-Yau threefolds. The resulting e↵ective theory isN = 2 supergravity
in four dimensions. The e↵ective couplings of this theory turn out to be determined by the
free energies obtained in type A or B topological string theory, depending whether we started
with a type IIA or type IIB string theory. In [93], it was shown how the perturbative free
energy of the type-A topological string theory,

F (0)(t, gs) =
1
X

g=0

g2g�2

s F (0)

g (t), (2.1)

(here gs is the string coupling constant and t represents Kähler structure moduli) can be
expressed directly as an index counting BPS states of the supergravity theory. The explicit
computation of this index gives a general expression for the type-A perturbative (in gs) free
energy, and it involves integer numbers, the so-called Gopakumar–Vafa invariants, that can
be directly related to Gromov–Witten invariants—see [94] for a review.

Topological strings, like physical strings, can be open or closed. Open topological string
theory includes topological D-branes that impose boundary conditions on the strings and
can also wrap nontrivial cycles of the geometry. There is an open/closed string duality, in
the spirit of AdS/CFT correspondence, that is realized through geometric transitions [95]
(see [96] for a mathematical review). The first studied example was the transition from
a deformed conifold, T ⇤S3, with D-branes wrapping around the S3 and making it shrink
into a singularity. The singular geometry is then resolved and the D-branes disappear. The
resulting theory, after the transition, is one of closed strings. The proposal for this result was
motivated after studying the equivalence between Chern–Simons theory—a gauge theory—
on S3 and an open topological string theory on the deformed conifold. This equivalence can
be checked by comparing the free energy of the gauge theory, which can be computed exactly,
and the Gopakumar–Vafa expression for the type-A free energy on this particular geometry.
This duality between a gauge theory and a topological string theory is a further, more
tractable, example of large N duality. In [13, 14] it was shown how geometric transitions
can be applied to obtain dualities between type-B topological string theories and matrix
models. These matrix models depend on a potential which is determined by the Calabi–Yau
geometry. However, these geometries do not have mirrors.

An important class of Calabi–Yau geometries which do have mirrors is that of toric
Calabi–Yau manifolds, which are actually non-compact varieties. The mirror geometry can
be systematically constructed [97] and turns out to be essentially determined by a Riemann
surface, which is the counterpart of the spectral curve in matrix models. The mirror of
local CP2 is the main example we will discuss in this thesis—see section 2.4.
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The rest of this chapter will be divided in three sections. The first will include a brief
overview of the main elements of topological theories and topological strings. The second
will focus on the computation of free energies in the B-model using the holomorphic anomaly
equations. The last one will apply this theory to the example of local CP2, that will be used
later in chapter 4. There are several reviews and books on topological string theory that
cover in more detail the topics presented here, [11, 20, 98–101]. For questions on complex
and algebraic geometry we refer to [102–104].

2.2 Topological theories and topological strings

2.2.1 Topological theories

Topological field theories depend on a particular manifold but not on its metric, gµ⌫ . This
can be so either because the theory does not require a metric to be formulated—Schwarz
type —like Chern-Simons theory, or because one is able to show that physical observables
do not actually depend on the metric—Witten or cohomological type . Topological strings
are based on the second type.

Topological field theories of the Witten type include a symmetry, realized in an operator
Q, that squares to a bosonic symmetry of the theory, Q2 = LB. In some cases Q2 = 0. The
topological property of the theory is guaranteed if the energy-momentum tensor is exact
with respect to Q,

Tµ⌫ :=
�S

�gµ⌫
= {Q, Gµ⌫} (2.2)

for some Gµ⌫ . Indeed, if we consider a correlator involving operators that respect the sym-
metry, QO = 0, we find,

�

�gµ⌫
hO

1

. . .Oni =
�

�gµ⌫

Z

D�O
1

. . .On e�S[�]/~ = �1

~

Z

D�O
1

. . .On Tµ⌫

= �1

~hO1

. . .On {Q, Gµ⌫}i = 0, (2.3)

because we can write the operator in the correlator as a Q-exact term. (Here we can assume
that �Oi/�g

µ⌫ is Q-exact instead of zero to arrive at the same result). Q-exactness of the
energy-momentum tensor implies its closeness, which is always the case because Q represents
a symmetry. A way to enforce this is by requiring the action itself to be Q-exact,

S = {Q, V }. (2.4)

If this is the case one can go further and show that the correlators are actually independent
of ~—just repeat (2.3) but take the derivative with respect to ~�1 instead of gµ⌫ . This
means that the semiclassical limit of the theory (~ ! 0) is actually exact. This reduces
drastically the complexity of the path integral to be evaluated in a process called localization.
Equivariant cohomology is the theory that formalizes these arguments, see [4] for example.
We will see how topological string theory incorporates this property.
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2.2.2 Superconformal algebra and twisting

As we said in the introduction 2.1, we need to start with an N = (2, 2) superconformal
sigma model in two dimensions describing maps from a Riemann surface of genus g, ⌃g,
to a target space, X, which must be at least a complex Kähler manifold. The presence
of supersymmetry and R-symmetry will be the crucial ingredients needed to construct the
topological symmetry Q. Q will be di↵erent for the A and B models. The supersymmetry
algebra is given by

{Q↵+

, Q��} = �µ
↵� Pµ, {Q↵±, Q�±} = 0, (2.5)

{J,Q±a} = 0, (2.6)

{FV , Q±+

} = +
1

2
Q±+

, {FA, Q±+

} = ±1

2
Q±+

, (2.7)

{FV , Q±�} = �1

2
Q±+

, {FA, Q±+

} = ⌥1

2
Q±+

. (2.8)

Here, Q↵a are the supersymmetry generators, where ↵, � are spin indices and a, b are
R-charge indices—in the twisting of the algebra both indices will mix. J generates the
(Euclideanized) Lorentz symmetry and Pµ generates translations. FV and FA generate the
R-symmetries, vectorial and axial, respectively. See [20, 99] for more details.

We now define a set of chiral and antichiral multiplets, �i and �¯i, where i and ī run from
1 to the complex dimension of the target space, X. The action of this theory is given in
terms of a Kähler potential K(�, �̄), integrated over superspace.

The twisting of the algebra produces an odd but scalar symmetry Q that makes the
theory topological. It is obtained by modifying the Lorentz generator that assigns spin
values. There are two options, the A-twist or the B-twist,

JA := J + FV or JB := J + FA (2.9)

(the choice of relative signs is conventional). With respect to this new spin generator the
supercharges have now either spin zero or spin one, instead of one half. In the case of the
A-twist, Q

+� and Q�+

are scalars, whereas in the B-twist the scalars are Q
+� and Q��.

This allows us to define topological charges

QA := Q
+� + Q�+

, QB := Q
+� + Q��. (2.10)

It can be checked that Q2

A = Q2

B = 0, but we still need to show that the energy momentum
tensor is Q-exact. This is done separately for the two twists, showing that the metric
dependent parts of the actions are actually exact.

An important question to address is whether the vector and axial symmetries, generated
by FV and FA, are anomalous or not. One can see by looking at the actions (see [20, 99])
that only the axial symmetry is anomalous, and the obstruction is given by the index of the
Dirac operator acting on the fermionic sector. This can be calculated to be

Z

⌃g

x⇤ (c
1

(X)) . (2.11)
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c
1

(X) is the first Chern class of the target manifold X, which measures the nontriviality of
the canonical bundle on X. Since the A-twist is done by using FV we have no constraints to
impose, but the B-model will remain ill-defined unless c

1

(X) = 0. This is the Calabi–Yau
condition for the Kähler manifold X. For topological strings we will find that this condition
has to be imposed also on the A-model.

2.2.3 A-model

Let us turn our attention now to the observables of the theory, starting with the A-model.
One can find a perfect one-to-one correspondence between QA and the de Rham di↵erential
on X, so the operator ring can be described by the cohomology group H⇤(X). Since the axial
symmetry is anomalous, any correlation function must absorb a number of zero modes of
the twisted fermionic fields, as can be seen in the path integral formulation. For hO

1

. . .Oni,
the selection rule

n
X

k=1

deg(Ok) = 2d(1� g) + 2

Z

⌃g

x⇤ (c
1

(X)) (2.12)

must be satisfied. Here d = dimCX, g is the genus of ⌃g, and deg(Ok) is the degree of the
di↵erential form to which Ok corresponds. For Calabi–Yau threefolds, the right-hand-side
of (2.12) is 6(1 � g). Note that for g = 1 only the partition function (no insertions) is
nonvanishing, while for g � 2 all correlators must necessarily be trivial because the right-
hand-side is negative and the left can never be. As we mentioned before, this is due to the
fact that we are considering a fixed metric on the Riemann surface ⌃g and for g � 2 there
are no holomorphic maps. We couple the theory to gravity in order to have a richer theory.

If we focus on the g = 0 correlators, we must impose the insertion of three operators.
The localization of the path integral due to the exactness of the action imposes that only
holomorphic maps x : ⌃g ! X contribute to the observable. These maps turn out to be
classified by the homology group of two-cycles, H

2

(X). The correlation function depends on
Z

x⇤[(⌃g)]

!, (2.13)

where ! is the (complexified) Kähler form on X. x⇤[(⌃g)] is the homology class of the image
of ⌃g by x and it can be expanded in a basis of H

2

(X), call it [Si]. The general form of the
three point function turns out to be

hO
1

O
2

O
3

i = (D
1

\D
2

\D
3

) +
X

� 6=0

I
0,3,�(�

1

,�
2

,�
3

) Q�. (2.14)

Here Q� :=
Qb

2

(X)

i=1

e�ni ti , where b
2

(X) = dimH
2

(X), � =
P

i ni [Si] 2 H
2

(X) and ti =
R

[Si]
!

are the Kähler parameters. The first term in (2.14) is the contribution from the trivial class,
� = 0, and can be written in terms of the intersection number of divisors Dk dual to the
operators Ok. The second term includes (worldsheet) instanton corrections to the classical
result. The coe�cients I

0,3,� are related to the Gromov–Witten invariants, N
0,�, through the

formula

I
0,3,�(�

1

,�
2

,�
3

) = N
0,�

Z

�

�
1

Z

�

�
2

Z

�

�
3

, (2.15)
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where �k is the di↵erential form associated to Ok. These invariants can be collected into a
very important function called the prepotential,

F
0

(t) =
X

�

N
0,� Q� (2.16)

Note that it is associated to genus g = 0 and that it depends on the Kähler structure moduli
of X.

2.2.4 B-model

In the B-model the observables are in one-to-one correspondence with elements of the
Dolbeault cohomology group H⇤

¯@
(X,^⇤TX). We still have a selection rule to fulfill. Let

hO
1

. . .Oni an n-point function with Ok 2 Hpk
¯@

(X,^qkTX). Then,

n
X

k=1

pk =
n
X

k=1

qk = d(1� g), (2.17)

where we have already used that the target space must be Calabi–Yau. In this model the
localized configurations are simply the constant maps x : ⌃g ! X. This implies that the path
integrals reduce to regular integrals over the target space only. The correlation function for
g = 0, which includes three operators, makes use of the nowhere vanishing (3, 0)-form ⌦
that exists on every Calabi–Yau manifold. ⌦ allows to write the combination of di↵erential
forms associated to O

1

, O
2

and O
3

as one di↵erential form of top degree (d, d) which can
be integrated over X. Again, see [20, 99] for details. The correlation function turns out
to depend only on the complex structure of X, which can be parametrized by integrals of
⌦ over non-trivial three-cycles of X. More precisely, take a basis of H

3

(X), {(Aa, B
a)}h2,1

a=0

.
Here we use that dimH

3

(X) = h3,0 + h2,1 + h1,2 + h0,3 = 2(1 + h2,1). The moduli space of
complex structures of X has precisely dimension h2,1. If we define the periods of ⌦ as

za =

Z

Aa

⌦, Fa =

Z

Ba

⌦, (2.18)

we can take coordinates za for the moduli space and deduce that Fa must be a function
of them. Actually the coordinates are projective, so we can construct inhomogeneous ones
by ta = za

z
0

, which we call the complex structure parameters. Fa can be computed from a
function F(z) by taking a za-derivative. Dehomogeneizing, we can define the prepotential

F
0

(t) =
1

z
0

F(z). (2.19)

In terms of the prepotential, the periods (2.18) will be

1, ta, 2F
0

�
h2,1
X

i=1

ti
@F

0

@ti
,

@F
0

@ti
. (2.20)
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The theory that studies deformations and dependence on the complex structure goes by the
name of special geometry [105, 106]. A final result expresses the three point function as a
third derivative of the prepotential

hOiOjOki =
@F

0

@ti@tj@tk
. (2.21)

Here Oi is, in a precise sense, related to the coordinate ti, see [20]. For a general three point
function one would have to introduce covariant derivations. We call ti a flat coordinate. The
fact that we denote the prepotential, F

0

, by the same symbol in the A and B models is of
course no coincidence. Once the relation between Kähler and complex structure moduli is
found for two mirror geometries—this is called the mirror map—, the prepotential on the
A and B sides are equal. This equivalence is completed to all genera once we define the
appropriate free energies in topological string theory.

2.2.5 Topological strings

We have seen that the selection rule, originating in the axial anomaly, severely restricts the
nontrivial observables of the topological theories. The coupling to two-dimensional gravity
removes this obstruction because the degrees of freedom associated to the integration over
the space of metrics on the Riemann surfaces are enough to absorb all the necessary zero
modes. However this counting only works for Calabi–Yau manifolds in three dimensions,
since the Riemann surface moduli space has precisely dimension 3(g-1) for g � 2. The
Calabi–Yau condition and the particular complex dimension of three is so relevant because
of this matching. In more detail, we can define a nonzero, genus g, free energy by the
appropriate integration over the moduli space of Riemann surfaces of genus g, M̄g,

Fg :=

Z

¯Mg

h
3g�3

Y

k=1

(G, µk)(Ḡ, µ̄k)i. (2.22)

The field G = Gµ⌫ already appeared in the Q-exactness relation for the energy-momentum
tensor (2.2), and µk are the so-called Beltrami di↵erentials. For g = 1, the correlator h. . .i
has one insertion. For g = 0 the free energy is given by the prepotential, and no integration
over the moduli space is needed. The correlator can be computed on the A or B model,
giving rise to A or B topological string free energies. The respective dependence on the
Kähler and complex structure moduli of X remains. Our main interest will be on the B side
but let us mention that the Gromov–Witten invariants of (2.16) generalize to

Fg(t) =
X

�

Ng,� Q�. (2.23)

Recall that these count, in a particular sense, holomorphic maps from a genus g Riemann
surface to the Calabi–Yau X with fixed degree given by the class �.

Let us now focus on the B model and consider the question of whether topological string
theory is still topological, now that we have coupled the original topological theory to gravity.
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It turns out that, due to insertions of Gµ⌫ in (2.22), the usual argument does not give a
zero answer, which would prove the topological property, but it produces a quantity that
depends on the boundary of the moduli space M̄g, instead. This is so because the calculation
of hQ(. . .)i involves Q actions on Gµ⌫ that give back the energy-momentum tensor, which
in turn can be written as a variation of the action with respect to the metric. This finally
gives a total derivative in the integral over M̄g that translates into a contribution from the
boundary @M̄g.

An important consequence of this is that the dependence of the free energies on the
complex structure—or the Kähler structure for the A-model—is not entirely holomorphic.
Before coupling to gravity, dependence on t̄—the complex conjugate of the moduli t—was
washed away by Q-exactness. However, the integration over M̄g obstructs this argument
producing the so-called holomorphic anomaly. Let us notice that there is no anomaly for F

0

,
essentially because the moduli space for this genus is zero-dimensional under some technical
conditions. The precise way in which this failure of holomorphicity occurs is encoded in
the holomorphic anomaly equations of [23, 24], which we write here but explain in the next
section,

@̄
¯i@iF

(0)

1

=
1

2
Cijk Cjk

¯i
�
⇣ �

24
� 1

⌘

Gi¯j, (2.24)

@̄
¯iFg =

1

2
Cjk

¯i

 

DjDkFg�1

+
g�1

X

h=1

DjFh DkFg�h

!

, (2.25)

for g � 2. These equations can compute the topological string free energies very e�ciently.
All of them together can be packed into the perturbative closed topological string free energy

F (0)(gs; t, t̄) =
1
X

g=0

g2g�2

s F (0)

g (t, t̄), (2.26)

where gs is the string coupling constant, and we have added a superscript indicating the
perturbative nature, in gs of the free energies.

2.3 Perturbative free energies

2.3.1 Genus zero

We finished last section with the holomorphic anomaly equations. They provide a way to
compute the perturbative free energies in a very e�cient way due to the recursive nature of
the equations and their integrability, once the appropriate variables have been introduced.
Besides the holomorphic anomaly equations, there are other techniques to compute free
energies. On the A-model there is Kontsevich’s localization method on toric Calabi–Yau
manifolds [107], or the topological vertex [108, 109] can provide complete computations of
the free energies. Other approaches aiming at finding Gromov–Witten invariants include the
use of relative Gromov–Witten invariants for compact geometries or attempts at rigorous
formulations of the Gopakumar–Vafa invariants. One can also use type IIA string theory
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and heterotic duality in order to extract invariants. A very general but less e�cient approach
relies on the use of the topological recursion [18, 110]. Many of these techniques have a firm
mathematical basis.

In this section we will focus on the holomorphic anomaly equations of [24] for the B-
model. We will start with the genus-0 free energy and its relation to the periods of the
geometry. After briefly reviewing the origin and derivation of the equations we will focus on
their integration. We will follow the standard technique of introducing the propagators as
nonholomorphic integrating variables. Finally, the holomorphic ambiguity as subproduct of
the integration will be addressed.

The genus-0 free energy, F
(0)

0

, has no holomorphic anomaly, it is holomorphic, as we
mentioned in the last section. Equation (2.20) hints that we should be able to compute

F
(0)

0

by integrating one of the periods of ⌦ with respect to the complex structure moduli,
ti. An explicit computation of the periods as integrals on particular three-cyles is usually
a complicated task. However, all these periods satisfy a set of linear di↵erential equations
in the complex structure moduli that go by the name of Picard-Fuchs equations. These
equations can be obtained in several ways, and we will give an example in the next section
when we focus on local CP2. Once a basis of solutions is computed one has to determine
which combination reproduces each period. Having explicit expressions for ti and @tiF

(0)

0

we
can compute the free energy. Recall that from the prepotential we can calculate the three
point functions (2.21). The are known as Yukawa couplings and are denoted by Cijk. They
will be relevant for the integration of higher genus free energies. We leave the details for the
example of section 2.4.

2.3.2 Holomorphic anomaly equations

The holomorphic anomaly equations allow us to compute F
(0)

g , g � 1, recursively up to a
holomorphic function called the holomorphic ambiguity. As we saw in the previous section,
the failure of holomorphicity appears as a consequence of boundary terms in the moduli
space of Riemann surfaces of genus g. Riemann surfaces at the boundary can be obtained as
limits of surfaces by pinching one of the cycles. This can be done in two ways. In the first
the shrinking of the cycle produces two disconnected surfaces whose genera, h and g�h, add
up to the initial genus g. The second the contraction only removes one of the holes, thereby
leaving a surface of genus g � 1. Using the explicit form of the free energies (2.22) and
carrying out a careful analysis (see [24]) the holomorphic anomaly equations are produced

@̄
¯iF

(0)

g =
1

2
C̄jk

¯i

 

DjDkF
(0)

g�1

+
g�1

X

h=1

DjF
(0)

h DkF
(0)

g�h

!

, (2.27)

for g � 2. For genus 1 the equation has a di↵erent aspect,

@̄
¯i@iF

(0)

1

=
1

2
Cijk C̄jk

¯i
�
⇣ �

24
� 1

⌘

Gi¯j. (2.28)

and has a geometric interpretation as a Ray-Singer torsion [20]. Let us explain briefly what
the various ingredients in (2.27) and (2.28) are. Gi¯j is the (Weil–Peterssen) metric on the
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complex structure moduli space. It is derived from the Kähler potential K, related to the
nowhere vanishing form ⌦ by the formula

e�K =

Z

X

⌦̄ ^ ⌦. (2.29)

� is the Euler characteristic of the moduli space. Di is the covariant derivative in this space,
and it includes the Christo↵el symbol, �i

jk, associated to the metric Gi¯j, and @iK, associated
to a line bundle whose origin is the multiplicative ambiguity in the definition of the Calabi–
Yau three-form ⌦. @̄

¯i is the antiholomorphic derivative. Cijk are the Yukawa couplings.
Finally, Cjk

¯i
is given by

Cjk
¯i

= C̄
¯i¯j¯k G

¯ji G
¯kk e2K , (2.30)

with C̄
¯i¯j¯k = Cijk, the complex conjugate of the Yukawa couplings.

The genus-1 free energy, F
(0)

1

, can be integrated up to the holomorphic ambiguity [23],

F
(0)

1

= log
⇣

e
K
2

(3+h2,1� �
12

) det(G)�1/2 |f |2
⌘

, (2.31)

where f is the holomorphic ambiguity. We will review how to fix it later on.

2.3.3 Propagators

In order to compute the free energies for higher genera it is convenient and e�cient to
introduce the propagators [24, 111, 112]. To motivate their use we can note that the function
Cjk

¯i
in front of (2.27) complicates the integration in the antiholomorphic complex structure

coordinates. This is because Cjk
¯i

is not holomorphic and di�cult to calculate in practice.
However, this can be overcome with the definition of the propagators, Sij,

@̄
¯iS

ij = C̄ij
¯i

. (2.32)

Note that Sij is only defined up to a holomorphic function. This freedom has to be fixed
for every particular example. In order to a complete picture one needs to define further
propagators, Sj, S, by

@̄
¯iS

j = Gi¯i S
ij, @̄

¯iS = Gi¯i S
i. (2.33)

A very important property of these variables is that, while containing the nonholomorphic
dependence, they form a closed set under the action of the covariant derivative, as long as
we also include Ki := @iK. One can show that this is indeed the case [112] by starting by
with an identity from the theory of special geometry

@̄
¯i�

i
jk = �i

j Gk¯i + �i
k Gj¯i � Cjkl C̄

li
¯i . (2.34)

The idea is to write the expression for DiS
jk involving the Christo↵el symbols, �i

jk, for the
metric and the connection for the line bundle, Ki, and then apply a @̄

¯i-derivative. After
some manipulations one is able to write

@̄
¯i(DiS

jk) = @̄
¯i

�

�j
i Sk + �k

i Sj � Cilm Slj Slk
�

, (2.35)
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from which we determine DiS
jk in terms of the propagators and Ki, only,

DiS
jk = �j

i Sk + �k
i Sj � Cilm Slj Slk + f jk

i . (2.36)

Here, f jk
i is a holomorphic function to be fixed by some particular choice, and related to the

ambiguous definition of the propagator. A similar exercise can be done for Si, S and Ki. See
[112–115]. The next step is to apply the chain rule to express {t̄i} in terms of {Sij, Si, S, Ki},
and use this in (2.27),

@F
(0)

g

@Sij
=

1

2

 

DjDkF
(0)

g�1

+
g�1

X

h=1

DjF
(0)

h DkF
(0)

g�h

!

, (2.37)

0 = Sij @F
(0)

g

@Sj
+ Si @F

(0)

g

@S
+
@F

(0)

g

@Ki

. (2.38)

The nonholomorphic dependence of the free energies is stored in all the propagators. In
the holomorphic limit, t̄i 7! �i1 , the propagators acquire a holomorphic value. It turns
out that in the case of local, that is, noncompact, Calabi–Yau manifolds those values can
be chosen to vanish for Si and S—recall the ambiguity in the propagator definitions. For
local geometries K goes to a constant in the holomorphic limit so @iK vanishes. Sij does
not vanish in this limit. In many situations one is only interested in the holomorphic limit
of the perturbative free energies, mainly because they produce Gromov–Witten invariants
after the mirror map is applied. So it is customary to turn o↵ all propagators except for
Sij and proceed with the integration. It was shown in [112] that the dependence of the
free energies on the propagators is polynomial. This means that, at the formal level we can
treat the propagators as external parameters. In this thesis we study resurgent properties
of the nonperturbative free energy, and this implies an analysis of the large-order behavior
of di↵erent sectors. This is a formal operation in which Si, S and Ki can be considered as
parameters. This is indeed the view we set on Sij for this thesis. Therefore, in order to
simplify the analysis we choose to turn o↵ the other propagators from the start, knowing
that some nonperturbative dependence is stored in Sij and that a particular value of Sij

reproduces the holomorphic limit. Further resurgent analyses aiming at resummation for the
full nonholomorphic free energy should approach the complete problem. This being a first
analysis, we choose a simplified, yet relevant, setting. So we will focus on the holomorphic
anomaly equations

@F
(0)

g

@Sij
=

1

2

 

DjDkFg�1

+
g�1

X

h=1

DjFh DkFg�h

!

, (2.39)

with DiF
(0)

g = @iF
(0)

g and DiDjF
(0)

g = @i@jF
(0)

g � �k
ij @kF

(0)

g . For later use we mention that
from (2.34) the Christo↵el symbols can be written in terms of the propagator as

�i
jk = �Cjkl S

li + f̃ i
jk, (2.40)

where f̃ i
jk is a holomorphic function not unrelated to f ij

k . Also, one can show using (2.40)
that

DiF
(0)

1

=
1

2
Cijk Sjk + ↵i, (2.41)
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where ↵i = �1

2

f̃ j
ij + @i log f . Since DiF

(0)

1

is the starting point of the holomorphic anomaly
equations (2.39), and Sij reproduces itself under the action of Di, the higher genus free

energies, F
(0)

g , will have a polynomial dependence in the propagator.

2.3.4 Integration and ambiguities

The holomorphic ambiguities appear in the process of integration and must be determined
at each genus. One way to do it is by using the mirror map and comparing against previ-
ously computed Gromov–Witten invariants. This can only be done for a small number of
geometries and for low genus in general. Actually, the usual goal is to proceed the other
way around, obtaining invariants e�ciently from the B-model. As was argued in [116], in
the case of local Calabi–Yau manifolds, there is a systematic way to fix the holomorphic
ambiguity based on a well-understood behavior of the free energies for certain values of the
complex structure. We need to separate the cases g = 1 and g � 2.

For genus one, the explicit expression for F
(0)

1

as a correlation function can be computed,
in the holomorphic limit, near special points in the complex structure moduli space: the
large-radius point and the conifold point1. If ti denote flat coordinates (periods) around a
given special point, the holomorphic limit of the free energy satisfies [24]

lim
¯ti 7!�i1

F
(0)

1

= � 1

24

h2,1
X

i=1

ti

Z

X

c
2

^ Ji, (2.42)

where c
2

is the second Chern class and Ji is the i-th complex structure (1,1)-form (see [117]
for examples). We will review the application of this formula to the example of local CP2 in
the next section.

For g � 2, we must again look at the free energy F (0)

g near the conifold locus and the
large-radius point. There, the free energy has a well known behavior obtained from the
analysis of a supergravity sector in type IIA string theory. This boundary condition, along
with regularity of the free energies elsewhere in moduli space, is enough to fix the holomor-
phic ambiguity completely. We will be more precise and explicit with the concrete case of
local CP2 in the following section. For more comments and generalities of the procedure to
fix the holomorphic ambiguity see [116].

2.3.5 Antiholomorphic structure

Part of chapter 3 studies the antiholomorphic dependence of the di↵erent nonperturbative
sectors of the transseries free energy. In this subsection we review the analysis of the prop-
agator dependence for the perturbative free energies, F

(0)

g , as done in [112]. Their elegant
argument based on the introduction of a natural notion of degree cannot be carried over eas-
ily to the nonperturbative case, so we will repeat the argument in a more hands-on, explicit
way, that will work in chapter 3.

The e�cient integration of the holomorphic anomaly equations started with [111] for the
case of the quintic in P4. There it was noticed that the perturbative free energies, for each

1In general the conifold locus has dimension greater than zero. In those cases a specific point is chosen.
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genus, could be expressed in terms a set of generators which carried the full antiholomorphic
dependence. Moreover, they found that the free energies are polynomials of a specific degree
in these generators. For F

(0)

g the degree is 3g � 3, for g � 2. This construction was later
extended to any compact Calabi–Yau geometry in [112]. The results also covered the case of
several complex structure moduli and was formulated in terms of the propagator variables
we reviewed before. It was shown that Sij, Si, S, and Ki form a di↵erential ring with
respect to the covariant derivative Di, meaning that, apart from holomorphic functions
under control, no other antiholomorphic functions can appear in the process of integration
of the holomorphic anomaly equations. To show that the dependence of the free energies in
the set of propagators is polynomial of degree 3g � 3, a notion of degree compatible with
this one was introduced. It assigns degree +1 to Sij and Ki, degree +2 to Si and degree
+3 to S. Because we are only going to work with the propagator Sij we omit all the other
ones (see [112] or [113] for the general case). The argument is as follows. Let us assume

that the perturbative free energies have a well-defined degree, F
(0)

g 7! d(g). Because of the
relation between the covariant derivative and the propagator (2.36), one must assign degree
+1 to Di. Holomorphic quantities have degree zero. The proof that d(g) = 3g � 3 is done
by induction on g using the holomorphic anomaly equations (2.39). The base case is g = 2
which we do explicitly for the case of local CP2 in section 2.4. One finds d(2) = 3, see (2.81).
If we assume that for h < g, d(h) = 3h� 3, the right-hand-side of the holomorphic anomaly

equations (2.39) for F
(0)

g , have degree 3(g� 1) + 1 + 1 = 3g� 4. Since the left-hand-side, by
assumption, also has degree 3g � 3� 1 = 3g � 4, this concludes the proof.

As we mentioned, we will not be able to implement this type of proof for higher instan-
ton sectors. The essential reason is that the dependence on the propagators is not only
polynomial, but exponential, as well. Therefore, a more direct approach to studying the
antiholomorphic dependence will be needed. Let us exemplify on the perturbative free ener-
gies. To show that they are polynomials in the propagators we use induction again but we
write explicitly

F (0)

g = Pol(Sij; 3g � 3) =: Pol(3g � 3), g � 2. (2.43)

Here Pol(x
1

, . . . , xn; d) represents a polynomial of total degree d in the variables x
1

, . . . , xn.
If it is clear what the arguments are we drop them. The base case of the induction is done
as before. Assuming that F

(0)

h = Pol(3h� 3) for h < g, we can see that the right-hand-side
of (2.39) has the schematic form

Pol(3(g � 1)� 3 + 2) +
g�1

X

h=1

Pol(3(g � h)� 3 + 1)⇥ Pol(3h� 3 + 1) = Pol(3g � 4), (2.44)

where we have used that DiF
(0)

h = Pol(3h�3�1) and DiDjF
(0)

h = Pol(3h�3�2). Integrating
the right-hand-side of the holomorphic anomaly equations with respect to the propagator
increases the degree of the polynomial by one, arriving at the familiar result.

This fairly easy exercise will become a little bit more complicated in the case of higher
sectors of the free energy transseries. Nevertheless, general results will be proved following
this procedure.
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2.4 Local CP2

The last section of this chapter is focused entirely on the example of local CP2. We will
analyze this model in the framework of resurgence in chapter 4. Some of the points that were
left unspecified with respect to propagator definitions, ambiguities or holomorphic limits will
be addressed here in this concrete example. We follow closely [116], but useful references are
also [118, 119]. Our main objective is to describe how the perturbative free energies of this
topological string theories can be computed systematically to high genus. Since our analysis
in chapter 4 is a large-order one, we are interested in the behavior of the free energies, F

(0)

g ,
for very high g. We will also spend some time describing the periods of the geometry, not
only because they they determine the genus-zero free energy, the Yukawa coupling and the
holomorphic limit of the propagator, but because they will be relevant for the study of the
instanton actions that control the large-order.

2.4.1 Geometry and genus-zero free energy

We want to compute the perturbative free energies of the B-type topological string theory
on the mirror of the local CP2. Local CP2 is a noncompact Calabi–Yau three fold of toric
type. There is a standard method to construct the mirror manifold of a toric Calabi–Yau
[97, 120, 121], so we will follow this procedure. As a manifold local CP2 is a total bundle
of CP2, explicitly, O(�3) ! CP2. The property of being a Calabi–Yau comes from the
cancellation between the Chern class associated to CP2 and the one associated to the line
bundle. As a toric variety local CP2 can be described in terms of a quotient of Cn, with
some points removed, by a particular group action G,

(C4 � {x
1

= x
2

= x
3

= 0})/G. (2.45)

Here x
0

, . . . , x
3

are standard coordinates on C4. The group G = {(t�3, t, t, t) 2 (C⇤)4} acts
by component wise multiplication on C4, and is isomorphic to C⇤ (the complex plane minus
the origin). In this description the embedded CP2 can be seen by projection of C4 onto
the last three components. The first component, with the particular exponent of the action
group, �3, has the information about the fiber. The construction of the mirror manifold of a
toric Calabi–Yau depends on combinatorial data encoded in the group action. For our case
it is simply the vector Q = (�3, 1, 1, 1). The sum of the components being zero is equivalent
to the Calabi–Yau condition of the variety. An alternative description of the variety can be
given in which the presence of the Kähler parameter is present, and it is connected to the
Higgs branch of a supersymmetric two-dimensional linear sigma model [122]. There is only
one Kähler modulus in the A-geometry, which means that there is only one complex structure
modulus in the mirror geometry. This simplifies the computations, which is important if we
need to go to high genus.

The mirror construction produces a new Calabi–Yau manifold which can be described
very explicitly once we have introduced the appropriate coordinates,

w+w� =
3

X

i=0

Xi, (2.46)
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z =
3

Y

i=0

XQi
i . (2.47)

Here w+, w� 2 C. X
0

, . . . , X
3

2 C? are projective coordinates, Xi ⇠ �Xi, i = 0, . . . , 3,
8� 2 C?. Note the presence of the combinatorial numbers Qi, and the complex structure
modulus z. In principle z 2 CP1 although for some special values the geometry becomes
singular. These special points are very important for the computations ahead. In order
to make the B-geometry more explicit we can fix the homogeneity invariance by defining
xi := Xi/X0

, for i = 0, 2, 3. Equation (2.47) allows us to solve for x
2

. We can then
substitute the value back into (2.46) to find

w+w� = 1 + x + z
x3

y
+ y ⌘ H, (2.48)

where we have renamed x := x
0

and y := x
3

, and denoted by H the expression on the right.
In the local description (2.48) of the B-geometry we can see the presence of a Riemann
surface, H = 0, embedded in it. This lower dimensional geometry determines much of the
geometrical properties we need to find. The reason is that when computing periods of the
geometry, the cycles over which we integrate reduce to cycles of the Riemann surface. Recall
from section 2.2.4 that periods are integrals over cycles of the nonvanishing (3, 0)-form ⌦.
The explicit form of ⌦ in this kind of geometries the mirror of local CP2 belongs to, is given
by

⌦ =
dH ^ dx ^ dy

Hxy
, (2.49)

in local coordinates. Part of the integration, over the pair of lines w+w� = 0 can be
performed and the remaining form of the periods is

Z

�, where � = log y
dx

x
. (2.50)

There are two independent cycles A and B on the Riemann surface, plus a third integral
which essentially picks up a residue and gives a constant value. This is the C-period. Let
us stress that the periods are functions of the complex structure modulus z. The A and B
periods provide the redundant projective coordinates we described in section 2.2.4. From
the combination of the two the genus-zero free energy can be computed.

Before going into the computation of the periods we can anticipate that some values of
the complex structure modulus z the periods can have a singular behavior. This is because
there, the geometry shows some kind of singularity. The simplest example is the case of the
conifold point, z = �1/27, which is selected as special when looking at the j-function of the
torus H = 0. For that value, the function has a singularity. Another special point is z = 0,
the large-radius point. It can be shown that the mirror geometry acquires infinite volume
when approaching the corresponding value of the Kähler parameter. Finally, at z = 0 the
geometry becomes an orbifold, C3/Z

3

and we talk about the orbifold point. Around these
special points, the nonconstant periods have non trivial monodromies. The monodromy
group gives an indication of the modular symmetry that is present in the problem—see
[115, 119, 123] for example.
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The computation of periods as explicit integrals over cycles is a di�cult task. Fortunately,
it is possible to derive a so-called Picard–Fuchs equations that the periods, as functions of
the complex moduli, must satisfy (see for example [124]). The first step takes (2.46) and
(2.47) and rescales Xi ! aiXi by some numbers ai such that z =

Q

aQi
i = a�3

0

a
1

a
2

a
3

. Then
we notice that the operator

@3

a
0

� @a
1

@a
2

@a
3

=
�

X3

0

�X
1

X
2

X
3

�

@3

P , (2.51)

where P := w+w��
P

i aiXi, is zero because the term on the right vanishes on the manifold—
it is (2.47) in the rescaled variables. Using the chain rule the left side can be written, up to
a factor, in terms of z as

Dz = ✓3

z + 3z✓z (3✓z + 1) (3✓z + 2) , (2.52)

where we have used the logarithmic derivative ✓z := z@z. So any function on the complex
structure moduli space has to be annihilated by this operator. A standard analysis of this
equation shows that there are two regular singular points in the z-plane at finite distance.
One is the conifold point z = �1/27 and the other is the large-radius point at z = 0. Using
an inverse variable z�1 one can see that z�1 = 0; the orbifold point is also a regular singular
point. The existence of this regular singularities implies that if we try to look for power
series solutions, using Frobenius method, their radius of convergence will be equal to the
distance to the closest singularity. This means that the equations must be solved in di↵erent
patches around each special point and then analytically continued. Note that there is a global
constant solution of Dzf(z) = 0, which is associated to the C-cycle we mentioned before and
is always present for noncompact manifolds. Since the equation is of order 3 we expect two
other, nontrivial, solutions associated to A and B cycles. From the discussion in section
2.2.4, one of them will provide the flat coordinate around a special point (mirror map), and
the other the derivative of the prepotential, the genus-zero free energy, with respect to this
flat coordinate.

The classification of regular singular points depends on the coordinate we choose in the
di↵erential equation. There is a natural coordinate,  , that will become relevant in chapter 4,
for which the orbifold point is not regular singular anymore. Instead we have three di↵erent
conifold points, along with the remaining large-radius point. If we define  by the relation

 �3 = �27z, (2.53)

then the Picard–Fuchs equation becomes

f 000( )� 3 2

1�  3

f 00( )�  

1�  3

f 0( ) = 0. (2.54)

In the  -plane the only finite-distance singularities are at the cubic roots of 1, the three
conifold points. The point at infinity,  �1 = 0, is the large-radius point. We are going to
work with both coordinates. z will predominate in the perturbative calculation, whereas  
will be necessary to understand the large-order behavior.

Let us turn now to an account of the solutions of the Picard–Fuchs equation. See [125]
for a thorough analysis. Around the large-radius point z = 0 one can see, studying the
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equation, that besides the constant solution there are two power series with a log z term and
a log2 z term, respectively. A basis is given by

X(1) =
1

2⇡i
(log z + �

1

(z)) , (2.55)

X(1,1) =
1

(2⇡i)2

�

log2 z + 2�
1

(z) log z + �
2

(z)
�

, (2.56)

where

�
1

(z) =
1
X

n=1

3
(3n� 1)!

(n!)3

(�z)n = �6z + 45z2 � 560z3 + · · · , (2.57)

�
2

(z) =
1
X

n=1

18

 

3n�1

X

k=n+1

1

k

!

(3n� 1)!

(n!)3

(�z)n = �18z +
423

2
z2 � 2972z3 + · · · . (2.58)

X(1)(z) with that normalization provides the mirror map that relates the moduli spaces
of the mirror geometries around the large-radius point. A more complicated combination
produces the derivative of the prepotential.

T = X(1), (2.59)

�9 @T F
[LR](0)

0

= TD =
3

2
X(1,1) � 3

2
X(1) +

3

4
. (2.60)

See [116, 118] for more details. An important piece of information we can calculate from
these expressions is the Yukawa coupling, which appears explicitly in expressions necessary
to integrate the holomorphic anomaly equations, (2.36), (2.40), (2.41). We find

CTTT = (2⇡i)3

@3F
[LR](0)

0

@T 3

= �1

3
+O(z), (2.61)

Czzz =

✓

@T

@z

◆

3

CTTT = � 1

3z3(1 + 27z)
. (2.62)

The Yukawa coupling Czzz is a holomorphic rational globally defined function in moduli
space. The pole at the conifold point is a general feature.

Around the conifold point z = �1/27 we can do an analogous exercise. It is convenient
to use a coordinate centered at the special point, � = 1+27z. In this case we find a regular
solution at � = 0 and a logarithmic one. They are analytic continuations of the solutions
(2.59) and (2.60) in the following way

t
c

= � +
11

18
�2 +

109

243
�3 + · · · = � 2⇡p

3
TD, (2.63)

t
cD = @tcF

[c](0)

0

= �TD log � +O(�0) =
4⇡2i

3
p

3
T. (2.64)

The flat coordinate around the conifold point tc will be very important when we describe
the large-order of perturbative free energies in chapter 4.
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The last special point, the orbifold z�1 = 0, is interesting because the power series
solutions can be immediately identified as hypergeometric functions. Around this point it
is useful to use the coordinate  given in equation (2.53). The flat coordinate and the
derivative of the prepotential are given by

� = 3↵ 
3

F
2

✓

1

3
,
1

3
,
1

3
;
2

3
,
4

3

�

�

�

�

 3

◆

, (2.65)

@�F
[orb](0)

0

=
1

6
(3↵ )2

3

F
2

✓

2

3
,
2

3
,
2

3
;
4

3
,
5

3

�

�

�

�

 3

◆

, (2.66)

with ↵ = (�1)1/3. The periods computed around the special points are all related to each
other by analytic continuation. Since the expressions above are valid in all of the  plane we
can always write closed expressions for any of the other periods in terms of � and @�F

[orb](0)

0

.
For future use we show the closed expression for the large-radius and conifold flat coordinates,

T = � 1

2⇡i

p
3

2⇡
G22

33

✓
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2

3

1
0 0 0
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, (2.67)
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◆
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, (2.68)

where G22

33

is a Meijer function. In the next subsection we are going to make explicit use of
the periods in order to derive an expression for the holomorphic limit of the genus-one free
energy. This will provide an expression for the holomorphic limit of the propagator.

2.4.2 Genus-one free energy and holomorphic propagator

In sections 2.3.2 and 2.3.3 we saw the general expression for the genus-one free energy,
F

(0)

1

, and its relation to the propagator. For the computation of higher-genus free energies

we do not need to know the explicit expression of F
(0)

1

, but its holomorphic limit is going
to determine the holomorphic limit of the propagator. We will use that value to fix the
holomorphic ambiguities in the integration process and later in chapter 4. In section 2.3.4
we mentioned briefly that to fix the holomorphic ambiguity f(z) appearing in the general

expression for F
(0)

1

, (2.31), we need to use the known behavior of the holomorphic limit of
the free energy near the special points of the geometry. Near the large-radius point, the
following condition must be satisfied [23],

lim
z!0

F [LR](0)

1

= lim
z!0

� 1

24
2⇡iT

Z

M

c
2

J, (2.69)

where, for local CP2,
R

M
c
2

J = �2. A useful ansatz for f(z) is �r zb. Universal behavior at
the conifold point dictates that r = 1/12, always. This means, using the expression (2.59),
that b = 7

12

, so

f(z) = (1 + 27z)1/12 z7/12. (2.70)
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Finally, using the fact that the metric Gzz̄ is proportional to @zT in the holomorphic limit
[20], we find

F [LR](0)

1

= �1

2
log

@T

@z
� 1

12
log z7 (1 + 27z) , (2.71)

where we have omitted any additive constants. From this expression, the closed form of T
(2.67), and (2.62) we can write the holomorphic limit of the propagator. For that we need
to take equation (2.41) in the holomorphic limit and notice that indices only have one value
since the moduli space is one dimensional. We use the notation i = j = k = z. At this point
we need to completely fix the holomorphic function ↵z associated to the ambiguity in the
definition of the propagator. Following [116] we set ↵z to zero. All in all, we find

Szz
[LR],hol

=
2

Czzz

 

1

12z (1 + 27z)
� 2

F
1

�

2

3

, 4

3

, 1
�

�� 27z
�

6z
2

F
1

�

1

3

, 2

3

, 1
�

�� 27z
�

!

. (2.72)

In the expression (2.71) we have labelled the holomorphic free energy with a reference to
the special point near which the limit is taken. This label is necessary due to the nature of the
free energies on and o↵ the holomorphic limit. We briefly mentioned the modular symmetry
present in the example of local CP2. The nonholomorphic perturbative free energies are
modular functions and can be written as appropriate combinations of modular forms so
that the total weight is zero [119, 123]. In this language the propagator is represented
by a nonholomorphic modular form bE

2

(⌧, ⌧̄), which is the nonholomorphic extension of a
quasimodular form called the second Eisenstein series, E

2

(⌧). The modular symmetry of
the free energies is only present in the full nonholomorphic regime and is spoiled when
taking the holomorphic limit. Taking the holomorphic limit is actually associated to the
notion of frame, and modular transformations are equivalent to a change of frame. Because
holomorphicity breaks modularity to quasimodularity, taking a holomorphic limit carries a
frame label. Preferred frames can be associated to the special points in the geometry: the
large-radius, conifold, and orbifold points. We use the corresponding labels [LR], [c], and
[orb].

The same calculation that we did for the holomorphic limit of the genus-one free energy
in the large-radius frame can be carried over to the other frames. This results in expressions
analogous to (2.71) but with the flat coordinate T replace by either tc or �. For example,

F [c](0)

1

= �1

2
log

@tc
@z

� 1

12
log z7 (1 + 27z) . (2.73)

From F [c](0)

1

and F [orb](0)

1

we can calculate the corresponding holomorphic values of the prop-
agator,

Szz
[c],hol

=
z2

2

 

�1� 54z + 2
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(1 + 54z) + 2
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(1 + 54z)
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(1 + 54z)

!

, (2.74)
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27z
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2
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1
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1

3

, 1
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�� 1

27z
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!

. (2.75)

Here P⌫(x) and Q⌫(x) are Legendre functions, see [126], for example.
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2.4.3 Higher genus integration

Now that we have calculated the Yukawa coupling (2.62) and know how to take holomorphic
limits, we are almost ready to discuss the integration of the holomorphic anomaly equations
(2.39). First we need to compute the holomorphic functions f zz

z and f̃ z
zz in

DzS
zz = �Czzz (Szz)2 + f zz

z , (2.76)

�z
zz = �Czzz Szz + f̃ z

zz. (2.77)

Using the relation ↵z = �1

2

f̃ z
zz + @z log f , and the values ↵z = 0 and f = (1 + 27z)1/12 z7/12,

we find

f̃ z
zz(z) = � 7 + 216z

6z(1 + 27z)
. (2.78)

The function f zz
z is computed by taking the holomorphic limit of (2.77) and using that

(�z
zz)[LR],hol

= (@zT )�1@2

zT ,

f zz
z (z) = � z

12(1 + 27z)
. (2.79)

Now any covariant derivative on a holomorphic tensor or on the propagator is completely
defined.

Let us exemplify the integration of the holomorphic anomaly equations and fixing of the
ambiguity with the first g = 2 perturbative free energy. Its equations is

@SzzF
(0)

2

=
1

2

✓

D2

zF
(0)

1

+
⇣

@zF
(0)

1

⌘

2

◆

, (2.80)

which can be integrating in the propagator as soon as the right-hand-side is spelled out as a
polynomial in Szz. We need to use (2.76), (2.77) and (2.41). We obtain

F
(0)

2

= C2

zzz

✓

5

24
(Szz)3 � 3z2

16
(Szz)2 +

z4

16
Szz

◆

+ f
(0)

2

(z). (2.81)

The function f
(0)

2

(z) is the holomorphic ambiguity. The rest of the expression (2.81) is
completely determined and polynomial in the propagator. To fix the ambiguity we need to
use the values of the free energy near the large-radius and conifold points, in the holomorphic
limit, and the meromorphic properties as a function on the complex structure moduli space.
Due to the presence of the Yukawa coupling in (2.81) and the regularity of Szz

[c],hol

at the

conifold point, F (0)

2

has a pole at z = �1/27. This is actually the only pole of F (0)

2

as a
function in moduli space, no matter the frame. However the details of the singularity do not
match the universal behavior described by the gap condition [24, 93, 127–131],

F [c](0)

g =
cg�1 B

2g

2g (2g � 2) t2g�2

c

+O(t0
c

), g � 2. (2.82)

B
2g are the Bernoulli numbers, and with our normalizations c = 3. Equation (2.82) describes

a pole of order 2 for g = 2 with a given residue and then a regular tail. Recall that tc given
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by (2.68) vanishes at the conifold point. To agree with this behavior near the conifold, and
imposing that no other point is singular, leads to the ansatz

f (0)

g (z) =
p

(0)

g,0(z)

�2g�2

, (2.83)

where � = 1+27z. p
(0)

g,0 has to be a polynomial in z of degree 2g�2 to have regularity at the

orbifold point. All of the coe�cients of p
(0)

g,0 are fixed by the gap condition. The remaining
one is computed by comparing with the behavior of the free energy at the large-radius point.
It is given by the constant map contribution [24, 93, 129, 132, 133],

F [LR](0)

g =
(�1)g�1 �B

2g�2

B
2g

4g (2g � 2) (2g � 2)!
+O(z), g � 2, (2.84)

where � = 3 for local CP2. Putting everything together one can finally calculate the value
of the holomorphic ambiguity for g = 2,

f
(0)

2

(z) = C2

zzz z6

729z2 + 162z � 11

1920
. (2.85)

One can proceed recursively and compute higher-genus free energies, fixing the holomorphic
ambiguities in the same way. In general [112], the free energy F

(0)

g is a polynomial in the
propagator Szz of degree 3g � 3 whose coe�cients are rational functions of z.

The procedure we have reviewed above can be automatized and put on a computer.
Knowing the general structure of the solution can accelerate the computation significantly.
Fixing the ambiguity requires knowing the expansion of tc as a powers series in z and inverting
this relation, z = z(tc). This can be very time consuming. In order to thoroughly analyze the
large-order growth of the perturbative sector of the topological string free energy, we need
to be have data for very high genus. For the case of local CP2 we computed free energies,
F

(0)

g , up to g = 114. For some large-order calculations we do not need to use such high
genus because numerical convergence with good precision is obtained long before genus 114.
However, for other quantities, especially when analyzing the contribution of higher instanton
sectors, having such a number of free energies is helpful.
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Chapter 3

Nonperturbative holomorphic
anomaly equations

3.1 Introduction

The holomorphic anomaly equations [24] constitute a tower of di↵erential equations in the
complex structure moduli and the propagators. As such they have no reference to the
string coupling constant, gs. It is only when we construct the perturbative free energy as a
generating function that gs appears,

F (0)(gs; z
i, Sij) =

1
X

g=0

g2g�2

s F (0)

g (zi, Sij). (3.1)

The result is an asymptotic series in the small parameter, gs. The goal in this chapter is
to move from this perturbative series to a resurgent transseries, always at the formal level.
For this we need to find the generalizations of the holomorphic anomaly equations for the
higher instanton free energies. The idea is to write an equation for the perturbative series
involving not only the moduli and propagators but also gs. Such master equation was already
considered back in [24, 134]. The next step is to assume that the same equations will generate
a full transseries solution. To justify this important step we can use an analogy with an
ordinary di↵erential equation. If we try a power series solution on this example equation we
will typically find a recursive relation for the coe�cients that determines the perturbative
solution. The recursive relation is analogous to the holomorphic anomaly equations. On
the other hand, given that same relation it is not too di�cult to reconstruct the original
equation. But this equation may admit a family of solutions in the form of a transseries
ready to be discovered with a more general ansatz. This is what we do in this chapter. The
analogy is not quite perfect because the holomorphic anomaly equations are not equations
in the transseries variable gs. This is a consequence of the ample domain of validity of the
equations but results in a restriction to their computational power. There are holomorphic
ambiguities at the perturbative level and there will be analogous ones in the transseries.

In this chapter we construct various transseries solutions and describe their structure.
We study the general consequences of the asymptotic nature of the perturbative sector and

51
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make use of it to deal with the problem of the holomorphic ambiguities. This chapter is
based on the results presented in [135].

3.2 Rewriting the holomorphic anomaly equations

The holomorphic anomaly equations of [24] are a tower of infinite recursive equations for the
perturbative free energies in topological string theory. Since we want to go past perturbation
series into a transseries we can ask the question of whether there is information in the
perturbative equations that knows about nonperturbative sectors. From the point of view
of resurgence this should not be a surprise. A recurrent motive is that each sector of a
resurgent system knows about all others, although in a codified form. Our goal is to write a
single equation which we know is valid at the perturbative level, because it reproduces the
holomorphic anomaly equations (2.39), but such that it admits a full transseries ansatz.

The existence of such equation was already proposed originally in [23] under the name of
master equation. This would be a single equation for the perturbative free energy, or rather,
the partition function Z = exp F (0). An explicit master equation was put forward in [134],
in the form

✓

@
¯i �

1

2
g2

s C̄ jk
¯i

DjDk

◆

Z = 0. (3.2)

As it stands, equation (3.2) does not quite reproduce all the details of the holomorphic
anomaly equations. The resulting quadratic part of the equations for the free energies do
not have the appropriate lower and upper limits for the sum for h (h = 1 to h = g � 1,
see (2.39)), necessary for a proper recursion. The explicit master equation considered in

[24] focuses not on the full free energy but on bF :=
P1

g=1

g2g�2

s F
(0)

g . Note that F
(0)

0

is not
included. The equation

⇣

@
¯i � @

¯iF
(0)

1

⌘

e
bF =

1

2
g2

s C̄jk
¯i

DjDke
bF , (3.3)

reproduces the holomorphic anomaly equations for g � 2. Leaving out the genus-zero free
energy F

(0)

0

can be justified noting that its role in the equation is achieved only through the
Yukawa couplings. In the context of matrix models and their relations to topological string
theories, [22] considered the equation

1
eZ
@
¯i
eZ =

1

2
g2

s

1
bZ

C̄jk
¯i

DjDk
bZ, (3.4)

where the role of gs was identified with N�1 in the language of matrix models, up to the ’t
Hooft coupling, and

Z = exp
1
X

g=0

g2g�2

s F (0)

g , eZ = e
� 1

g2

s
F

(0)

0

�F
(0)

1 Z, bZ = e
� 1

g2

s
F

(0)

0 Z, (3.5)

Note how it is necessary here to separate F
(0)

0

and also F
(0)

1

. The genus-one free energy F
(0)

1

enters the holomorphic anomaly equations through its derivative, and this can be written
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in terms of the propagator (2.41). From this point of view, both F
(0)

0

and F
(0)

1

are in some
sense geometrical initial data for the recursive holomorphic anomaly equations.

(3.4) is already the equation we are looking for. It is constructed out of the tower of
perturbative holomorphic anomaly equations but it may admit a transseries ansatz. To be
able to use such ansatz directly we need to rewrite equation (3.4) in terms of Z alone. This

means that bZ and eZ will disappear at the cost of having F
(0)

0

and F
(0)

1

explicitly in the
equations. As we mentioned, we are going to think of these perturbative free energies as
initial data that set the recursion in motion, even at the transseries level, and are present in
the form of the Yukawa coupling and the propagator, respectively1.

Since we are going to work entirely in the language of propagators, Sij, we use these
antiholomorphic variables to write the master equation,

✓
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(UiDj + UjDi)�
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s DiDj

◆

Z =

✓

1

g2
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Wij + Vij

◆

Z. (3.6)

Equation (3.6) has the usual terms involving an antiholomorphic derivative and two covariant
derivatives. Together they resemble a generalized heat equation for the partition function.
See [134, 136, 137] for an exploration of the possibility of Z being a theta function. The

extra terms in (3.6), involving Ui, Vij, and Wij, are related directly to F
(0)

0

and F
(0)

1

. Their

presence ensures that plugging Z = exp
P1

g=0

g2g�2

s F
(0)

g reproduces the holomorphic anomaly

equations and nothing more, see below. Using the relation F (0) = log Z we can write the
master equation for the perturbative free energy

@F (0)
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UiDjF
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2
g2
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DiDjF
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(0)DjF
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1

g2

s

Wij + Vij. (3.7)

The extra step now requires assuming that this equation will give us relevant information
of the nonperturbative sector if F (0) is promoted from a perturbative series in gs, to a full
transseries, like the ones we saw in chapter 1. We will explore the consequences of this in
the rest of the chapter.

Let us conclude this section by computing the values of Ui, Vij, and Wij that reproduce
the holomorphic anomaly equations when a perturbative ansatz for F is used,

F (0) =
1
X

g=0

g2g�2

s F (0)

g . (3.8)

Let us stress that Ui, Vij, and Wij are functions of the complex structure moduli and the
propagator, but not of gs. The quadratic part of equation (3.7) gives

DiF
(0)DjF

(0) =
1
X

g=0

g2g�4

s

g
X

h=0

DiF
(0)

g�hDjF
(0)

h . (3.9)

1We will see that the instanton actions are given in terms of periods, so one can think of the genus-zero
free energy as being present through them as well.



54 CHAPTER 3. NONPERTURBATIVE HOLOMORPHIC ANOMALY EQUATIONS

Note that the sum in h does not have the appropriate upper and lower limits. The function
Ui will make sure that the extra two terms h = 0 and h = g are removed. If we collect
similar powers of gs in the equation we find

1
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In the third line, choosing the right value of Ui will reproduce exactly the holomorphic
anomaly equations (2.39). On the other hand, the first two lines must be taken care of by
Wij and Vij, so that no other equations remain. The correct values for the functions are

Ui = DiF
(0)

0

, (3.11)

Vij =
@F

(0)

1

@Sij
� 1

2
DiDjF

(0)

0

, (3.12)

Wij =
@F

(0)

0

@Sij
+

1

2
DiF

(0)

0

DjF
(0)

0

. (3.13)

The genus-zero free energy is holomorphic so the first term in (3.13) is actually zero.
Equation (3.7) must be promoted to an equation for the full nonperturbative free energy

F ,
@F

@Sij
+

1

2
(UiDjF + UjDiF )� 1

2
g2

s (DiDjF + DiFDjF ) =
1

g2

s

Wij + Vij. (3.14)

Note that this is not an equation in gs, but an equation in the complex structure moduli and
the propagators. This is a major di↵erence with respect to the usual di↵erential equations
studied in the framework of resurgence, in which the independent variable of the equation
coincides with the small parameter of the transseries. Such small parameter is gs here, but
the equation is not in gs. This has the important consequence that the equation will not
be able to fix all the ingredients of the transseries. Just as in the perturbative situation,
there will be holomorphic ambiguities, in the sense of quantities that are not computed by
the holomorphic anomaly equations and must be fixed in another way. This is not really
a surprise since the holomorphic anomaly equations must be valid for all geometries, and
although there is geometrical input from the start, we should not expect it to be enough.
For the nonperturbative situation, the resurgent properties of F and the analysis of the
large-order of the perturbative and other sectors, will be determinant to provide a way to
fix the holomorphic ambiguities.
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Finally, since our working example, local CP2, has a one-dimensional moduli space, and
a single propagator Szz, the master equation (3.14) simplifies to

@SzzF + U DzF � 1

2
g2

s

�

DzDzF + (DzF )2

�

=
1

g2

s

W + V. (3.15)

At this point in the discussion one may object against the importance that we have put
on the particular form of (3.14), and wonder if there are other possibilities for the equation
that F should satisfy. The first reason for the use of this particular equation is that its
solutions are able to reproduce every number obtained from a large-order analysis in the
example of local CP2 presented in chapter 4. This means that any possible extensions must
be compatible with what is obtained there. A possible class of extensions the inclusion of
exponentially suppressed terms in gs. This is, however, unnatural because the instanton
actions of those terms should be precisely tuned to match the instanton actions in each
particular model. Another variation would try to reproduce the perturbative holomorphic
anomaly equations not only for g � 2, but also g = 1 or even g = 0. Due to the di↵erent
nature of the free energies for g < 2 and g � 2 this approach is more di�cult to implement,
and we were not able to construct such an equation. At the end of the day it must be
resurgence the one who decides what master equation for F is the correct one.

3.3 One-parameter transseries

3.3.1 Tower of equations and instanton action

In this section we work out the example of a transseries ansatz with one parameter, that is,
depending on a single instanton action A. Although this not a very realistic example, because
one expects several instanton actions and resonance to play a role, it is useful to explore as
a first case. Some sectors of a multiparameter transseries are e↵ectively one-parameter
transseries, and many properties of the solutions can be generalized for the second case.
Indeed, in a multiparameter transseries with instanton sectors labelled by (n

1

| · · · |n↵| · · · |np),
the sectors of the form (0| · · · |n↵| · · · |0) satisfy equations involving only kA↵ with k < n↵

and no other sectors. To simplify the analysis we will assume the complex structure moduli
space to be one-dimensional. This is the case for local CP2. See appendix A for the general
case.

The equation we need to solve is (3.15), and the ansatz for the free energy is

F (�, gs) =
1
X

n=0

�n e�A(n)/gs F (n)(gs). (3.16)

This is a transseries like (1.17) where gs plays the role of x, the small parameter. � is a
constant (independent of gs, z and Szz) that will help us keep track of the instanton sector, n.
The sector n has total instanton action A(n) := n A. The instanton action A is, in principle,
a function A = A(z, Szz), although an important result is that it is actually independent of
the propagator, hence holomorphic. Around each instanton sector there is a perturbative
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expansion

F (n)(gs) =
1
X

g=0

gg+b(n)

s F (n)

g (z, S). (3.17)

As we mentioned in section 1.3.1, b(n) is an starting power that must be allowed for full
generality. Plugging the ansatz (3.16) into (3.15) requires the computation of

DzF =
X

n

�n e�A(n)/gs

✓

@z �
1

gs

@zA
(n)

◆

F (n), (3.18)

D2

zF =
X

n

�n e�A(n)/gs

✓

Dz �
1

gs

@zA
(n)

◆✓

@z �
1

gs

@zA
(n)

◆

F (n), (3.19)

(DzF )2 =
X

n

�n e�A(n)/gs

n
X

m=0

✓

@z �
1

gs

@zA
(m)

◆

F (m)

✓

@z �
1

gs

@zA
(n�m)

◆

F (n�m), (3.20)

where we have used that A(m) + A(n�m) = A(n). Collecting similar powers of � we find

X

n

�n e�A(n)/gs

⇢✓

@Szz � 1

gs

@SzzA(n)

◆

F (n) + U

✓

@z �
1

gs

@zA
(n)

◆

F (n)

�1

2
g2

s

✓

Dz �
1

gs

@zA
(n)

◆✓

@z �
1

gs

@zA
(n)

◆

F (n) (3.21)

�1

2
g2

s

n
X

m=0

✓

@z �
1

gs

@zA
(m)

◆

F (m)

✓

@z �
1

gs

@zA
(n�m)

◆

F (n�m)

��n,0

✓

1

g2

s

W + V

◆�

= 0. (3.22)

For n = 0, the perturbative sector, we recover the holomorphic anomaly equations once the
values (3.11), (3.12) and (3.13) are used. Let us focus on the nonperturbative sectors, n > 0.
If we collect together all the terms in involving F (n) we find

✓

@Szz � 1

gs

@SzzA(n)

◆

F (n) � 1

2
g2

s

✓

Dz �
1

gs

@zA
(n) + 2 @z

bF (0)

◆✓

@z �
1

gs

@zA
(n)

◆

F (n)

=
1

2
g2

s

n�1

X

m=1

✓

@z �
1

gs

@zA
(m)

◆

F (m)

✓

@z �
1

gs

@zA
(n�m)

◆

F (n�m). (3.23)

Here we have defined @z
bF (0)(gs) := @zF

(0)(gs) � 1

gs
U . Notice that the right-hand-side of

(3.23) depends exclusively on lower instanton sectors and comes from the quadratic term
in (3.15). Because of the instanton action, the covariant derivatives and antiholomorphic
derivatives pick up an extra term due to

@k
z

⇣

e�A(n)/gsF (n)

⌘

= e�A(n)/gs

✓

@z �
1

gs

@zA
(n)

◆k

F (n), k = 1, 2, . . . . (3.24)
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The left-hand-side of (3.23) can be compactly written in terms of the gs-dependent operator

D(n)(gs) := @Szz � 1

gs

@SzzA(n) � 1

2
g2

s

✓

Dz �
1

gs

@zA
(n) + 2 @z

bF (0)

◆✓

@z �
1

gs

@zA
(n)

◆

. (3.25)

The presence of bF (0)(gs) makes the operator into a formal power series

D(n)(gs) =
1
X

g=�1

gg
s D(n)

g , (3.26)

where D(n)

�1

= �@SzzA(n), and

D(n)

0

= @Szz � 1

2

�

@zA
(n)

�

2

, (3.27)

D(n)

1

=
1

2
D2

zA
(n) + @zA

(n)

⇣

@z + @zF
(0)

1

⌘

, (3.28)

D(n)

2

= �1

2
D2

z � @zF
(0)

1

Dz, (3.29)

D(n)

2h�1

= @zA
(n) @zF

(0)

h , h = 2, 3, . . . , (3.30)

D(n)

2h = �@zF
(0)

h @z, h = 2, 3, . . . . (3.31)

Notice the presence of the perturbative free energies. The power series D(n)(gs) is formally
multiplied by the gs-expansion of F (n) (3.17),

1
X

g=�1

gg
s

(

�@SzzA(n)F
(n)

g+1

+
g
X

h=0

D(n)

h F
(n)

g�h

)

= (3.32)

=
n�1

X

m=1

1
X

g=0

gg+B(n,m)

s

1

2

g
X

h=0

⇣

@zF
(m)

h�1

� @zA
(m)F

(m)

h

⌘⇣

@zF
(n�m)

g�1�h � @zA
(n�m)F

(n�m)

g�h

⌘

.

Having collected similar powers of gs leads to the definition of B(n, m) := b(m)+b(n�m)�b(n).
At the end of last section we mentioned that due to the fact that the equations are not in
gs but in the moduli, we would find quantities in the transseries that the equations cannot
fix, that is, holomorphic ambiguities. An example of this are the starting powers, b(n), or
more precisely, their combination into B(n, m). Even if these values are not fixed, we can
see from the equations (3.32) that a very negative value of B(n, m) will imply equations

in which no F
(n)

g or propagator derivative are present. This is because the left-hand-side
will be zero but not the right-hand-side. This is not necessarily an inconsistency because
such equations could simply realize symmetry constraints of the particular geometry and be
satisfied by themselves. Notice that the right-hand-side depends on lower instanton sector,
which in the recursive process of integration should be already computed. Therefore, there
is no problem with integrability properties of the equations. From now on we will assume
that B(n, m) � 0 for all n and m, and we will sometimes use the example B(n, m) = 1 to
give an explicit example.
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If we collect all the terms with the same power of gs we find the tower of holomorphic
anomaly equations for the higher sectors of the transseries

@SzzA(n)F
(n)

g+1

�
g
X

h=0

D(n)

h F
(n)

g�h+ (3.33)

+
1

2

n�1

X

m=1

g�B
X

h=0

⇣

@zF
(m)

h�1

� @zA
(m)F

(m)

h

⌘⇣

@zF
(n�m)

g�1�B�h � @zA
(n�m)F

(n�m)

g�B�h

⌘

= 0,

for g = �1, 0, 1, 2, . . . In the second sum over h we use the convention that F
(m)

h is zero if
h < 0. The first equation in (3.33), for g = �1 and any sector n, is simply

@SzzA(n)F
(n)

0

= 0. (3.34)

Since by definition F
(n)

0

6= 0 (otherwise we change b(n) by one), A must be independent of
the propagator,

@SzzA = 0. (3.35)

This means that the instanton action A = A(z) is holomorphic. This is a very important
result because it tells us that we can maintain the geometrical interpretation of the instanton
action as an object computed from the geometry, and dependent only on the moduli space
in a holomorphic way. In matrix models, which are closely related to topological strings,
some instanton actions can be interpreted a semiclassical way as the values of the action for
configurations that take eigenvalues from one saddle point to another [44, 138, 139]. The
expressions for these instanton actions can then be written as integrals over cycles of the spec-
tral curve describing the matrix model in the large N limit of the theory [30, 31, 36, 140–143].
The spectral curve can be identified with the Riemann surface embedded in the geometry
of toric Calabi–Yau manifolds [97]. The cycle integrals are nothing but the periods of the
geometry. One can move beyond the context of matrix models, but maintaining the spectral
curve interpretation, and conjecture that instanton action in topological string theories must
be combinations of periods of the Calabi–Yau geometry, which are holomorphic quantities
[143]. This interpretation of instanton actions as periods is crucial to obtain an explicit
expression for A, because from the point of view of the holomorphic anomaly equations the
instanton action is a holomorphic ambiguity. It is only fixed up to a holomorphic quantity,
that is the whole function itself.

Using the holomorphicity of A back into (3.33) we write the final set of equations
✓

@Szz � 1

2

�

@zA
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◆

F (n)
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� @zA
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(n�m)

g�1�B�h � @zA
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(n�m)

g�B�h

⌘

,

where we have explicitly written the form of the operator D(n)

0

on the left-hand-side. These
equations are valid for n > 1 and g � 0, and generalize the perturbative holomorphic
anomaly equations of [24]. They are recursive: in order to compute F

(n)

g we need to know all
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the previous free energies in the same instanton sector n, a finite number of lower instanton
free energies including the perturbative sector. The equations are second order in z, due to
D(n)

2

(for g � 2) and first order in the propagator due to the left-hand-side of (3.36).

3.3.2 Structure of the transseries solution

Now that the holomorphic anomaly equations for higher instanton free energies have been
computed (3.36) we can describe the integration procedure and the antiholomorphic depen-
dence of the solutions. In the same way we reviewed the structure of the perturbative free
energies in section 2.3.5, here we are going to show, with some more work, what is the prop-
agator dependence of the higher sectors of the transseries. During the integration of the
equations we will find the analog of the holomorphic ambiguities, f

(n)

g .
Let us denote the right-hand-side of equation (3.36) by G

(n)

g (z, Szz). By induction, this
expression has already been computed at instanton level n and coe�cient g. The equation
for F

(n)

g is very simple, and its general solution is

F (n)

g (z, S) = e
1

2

(@zA(n))
2

S

✓

f (n)

g (z) +

Z Szz

dS̃ e�
1

2

(@zA(n))
2

˜S G(n)

g (z, S̃)

◆

. (3.37)

The function f
(n)

g (z) is the holomorphic ambiguity. We will attack the problem of fixing it in
section 3.7. Due to the generalization to depend on the total instanton action we find explicit
exponentials that generalize the simple polynomial dependence on the propagators. Because
the equations are recursive, this exponential (and others) will be present generically2 in all
free energies.

To have a better idea of what these free energies look like in general, let us focus first on
the one-instanton sector, n = 1. For this sector, the quadratic term in (3.36) is zero because
the sum over m is empty, so

G(1)

g = �
g
X

h=1

D(1)

h F
(1)

g�h. (3.38)

This means that the one-instanton sector is independent of the values of B(n, m). For g = 0,

G
(1)

0

= 0 so F
(1)

0

satisfies
✓

@Szz � 1

2
(@zA)2

◆

F
(1)

0

= 0, (3.39)

and integrates to
F

(1)

0

= e
1

2

(@zA)

2Szz
f

(1)

0

(z). (3.40)

Notice the exponential dependence in the propagator and the holomorphic ambiguity, f
(1)

0

(z),

which by itself forms a polynomial of degree 0. The next equation is for g = 1. Now G
(1)

1

is
not zero but

G
(1)

1

= �D(1)

1

F
(1)

0

, (3.41)

2In the multiparameter case some sectors may have total instanton action zero due to resonance. We
investigate that case in section 3.5.2.
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where D(1)

1

is given by (3.28) with n = 1. When putting the explicit expression (3.40) for

F
(1)

0

in (3.41) we obtain the product of the same exponential and a polynomial of degree 2

in Szz. This polynomial appears when the derivative D(1)

1

acts on the propagator sitting in
the exponential, and this produces the square of a propagator according to (2.36). If we use

G
(1)

1

in (3.37), the exponentials in the integral cancel and the remaining polynomial has its
degree increased by one. So the final form of the g = 1, n = 1 free energy is

F
(1)

1

= e
1

2

(@zA)

2Szz
Pol(Szz; 3). (3.42)

where Pol(Szz; d) represents a polynomial of degree d in the propagator Szz. We could

continue with the calculation of F
(0)

2

and find that the structure is the same except that the
degree for this case is 6. Trying a few more cases we can convince ourselves that the general
structure for F

(1)

g should be

F (1)

g = e
1

2

(@zA)

2Szz
Pol (Szz; 3g) . (3.43)

To prove this we need to proceed by induction on g as explained in section 2.3.5. However,
it is just as easy to extend the proof to the instanton number n on top of g. To apply the
proof by induction we need to guess the structure of any free energy F

(n)

g .
The equations for the two-instanton sector, n = 2, depend explicitly on the value of

B(2, 1). In order to have concrete expression let us set b(1) = b(2) = 1 which gives B(2, 1) = 1.
At the end of this section we will provide a general proof for the antiholomorphic structure of
the free energies for any values of B(n, m). The free energies F

(2)

g comprise now two di↵erent
exponentials. The first one, exp 41

2

(@zA)2Szz, comes from the exponential term in front of
(3.37) for n = 2. The second one appears due to the quadratic term

g�1

X
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⇣
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� @zA
(1)F
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@zF
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⌘

. (3.44)

This is the product of two di↵erent one-instanton sector each proportional to an exponential
exp 1

2

(@zA)2Szz. Together they produce exp 21

2

(@zA)2Szz. Accompanying each exponential
there are polynomials of a certain degree. After studying the first few cases, one can conjec-
ture

F (2)

g = e
1

2

2(@zA)

2Szz
Pol (S; d

1

) + e
1

2

4(@zA)

2S Pol (Szz; d
2

) , (3.45)

where d
1

= 3(g + 1 � 2) and d
2

= 3(g + 1 � 1). The +1 in these degrees is given in the
general case by b(2), while 2 and 1 are combinatorial numbers to be described later (they also
depend on b(2) and b(1) so the final answer depends on B(2, 1) only). We use the convention
that a polynomial of negative degree is identically zero.

To guess the structure of the free energies in n we can calculate the first few cases and
see that the number of di↵erent exponentials will grow. For n = 3 and b(3) = 1 we find
exponentials exp a1

2

(@zA)2Szz with a 2 {3, 5, 9} and polynomials of degrees d = 3(g +1��),
for � 2 {3, 2, 1}, respectively. For general instanton number n, we guess the ansatz

F (n)

g =
X

{�n}

e
1

2

a(n;�n)(@zA)

nSzz
Pol (Szz; 3(g + 1� �(n; �n))) . (3.46)
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Here �n is a set of indices the number of which varies depending on n. For n = 1 there is
only one, for n = 2 there are 2, for n = 7 there are 13. For each value of n and �n there
are two combinatorial numbers a(n; �n) and �(n; �n) that generalize the examples we showed
above. Actually, this is the notation for the specific example of b(n) = 1 for all n. In the
more general situation we conjecture that

F (n)

g =
X

{�n}

e
1

2

a(n;�n)(@zA)

2Szz
Pol

�

S; 3
�

g + b(n) � �b (n; �n)
��

. (3.47)

The a-numbers remain the same but the � ones have to be modified. This expression for the
free energy contains the holomorphic ambiguity f

(n)

g . It sits in the polynomial accompanying
biggest exponential, exp n2

1

2

(@zA)2Szz, for which a = n2.
The combinatorial coe�cients a and � are determined the structure of the holomorphic

anomaly equations (3.36) only. They can be computed, as we prove in theorem 1, from the
following generating function,

�b =
1
Y

m=1

1

1� 'b(m) Em2 ⇢m
. (3.48)

This generating function has three formal variables: ', E, and ⇢. We can expand each term
in the product of (3.48) formally using (1� x)�1 = 1 + x + x2 + · · · and obtain

�b =
1
Y

m=1

1
X

r=0

'rb(m)

Erm2

⇢rm. (3.49)

Expanding the infinite product gives, taking care of relabeling r ! rm,

�b =
X

rm

'
P1

m=0

rmb(m)

E
P1

m=0

rmm2

⇢
P1

m=0

rmm. (3.50)

Similar powers of ⇢ are collected by considering the values of {rm} for which
P1

m=0

rmm = n.
This is actually the definition of an integer partition of n. Thus,

�b =
1
X

n=0

⇢n
X

{rm}:P
m rmm=n

'
P1

m=0

rmb(m)

E
P1

m=0

rmm2

. (3.51)

Now we separate the values {rm} within a given partition of n with respect to the values of
P1

m=0

rmm2. For each di↵erent value

a(n; �n) :=
1
X

m=0

rmm2 (3.52)

we introduce a label �n. So for each n, we have the partitions of n, {rm} such that
P

m rmm =
n. Those partitions are grouped in classes with the same value of a. The label �n distinguishes
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between all the possible values of a. In partition language, a is the sum of the squares of the
elements of the partition specified by {rm}. Now we can write

�b =
1
X

n=0

⇢n
X

{�n}

Ea(n;�n)

X

{rm}2�n

'
P1

m=0

rmb(m)

. (3.53)

Finally, we focus on the smallest power of ' for each class �n and give it a name

�b(n; �n) := min
{rm}2�n

( 1
X

m=0

rmb(m)

)

. (3.54)

So the generating function can be written as

�b =
1
X

n=0
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X

{�n}

Ea(n;�n)'�b(n;�n) O('0). (3.55)

The first terms of the series are

�b = 1 + ⇢E 'b(1) + ⇢2

⇣

E2 '2b(1) + E4 'b(2)
⌘

+ ⇢3

⇣

E3 '3b(1) + E5 'b(1)+b(2) + E9 'b(3)
⌘
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⇣

E4 '4b(1) + E8 '2b(2) + E6 '2b(1)+b(2) + E10 'b(1)+b(3) + E16 'b(4)
⌘

+ · · · (3.56)

The numbers a and �b and the label �n that we have defined after expanding the generating
function are the same as the ones appearing in (3.47). We prove this in theorem 1. So in
order to know the propagator structure of a given instanton sector we just need to expand
the generating function to the appropriate order, n, and read from the powers of E the
coe�cients in the exponentials, a(n; �n), and from the powers of ' the coe�cients �b(n; �n)
that determine the degree of the corresponding polynomial. Since the holomorphic anomaly
equations only depend on b(n) through the combination B(n, m) the description should only
depend on this function. See (3.75) in the footnote in page 65.

From the general discussion of the generating function and its interpretation in terms of
integer partitions we can see that for each n there is a special class b�n whose only element
is given by rm = �m,n. Equivalently a(n; b�n) = n2. Also, for this class �b(n; b�n) = b(n). This

is the class to which the holomorphic ambiguity, f
(0)

g , belongs. It will have a special role in
the proof of theorem 1.

Theorem 1. For any n � 1 and g � 0, the structure of the nonperturbative free energies
has the form

F (n)

g =
X

{�n}

e
1

2

a(n;�n)(@zA)

2Szz
Pol

�

S; 3
�

g + b(n) � �b (n; �n)
��

, (3.57)

where the set of numbers {a(n; �n)} and {�b(n; �n)} are read from the generating function

�b =
1
Y

m=1

1

1� 'b(m) Em2 ⇢m
=

1
X

n=0

⇢n
X

{�n}

Ea(n;�n)'�b(n;�n) O('0). (3.58)
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Here, Pol(Szz; d) stands for a polynomial of degree d in the variable Szz and whose coe�cients
have a holomorphic dependence on z. Whenever d < 0, the polynomial is identically zero.
We assume that b(m) + b(n�m) � b(n) � 0.

The proof of this theorem relies on a lemma that we state here and prove, in more
generality, in appendix B.

Lemma 1. The set of numbers {a(n; �n)} and {�b(n; �n)}, and the range of labels {�n},
appearing in (3.57) are determined by the recursions

{a(n; �n)}�n 6=b�n =
[0

m,�m,�n�m

{a(m; �m) + a(n�m; �n�m)} (3.59)

and
�b(n; �n) = min{�b(m; �m) + �b(n�m; �n�m)}, 8�n 6= b�n, (3.60)

where min ranges over m 2 {0, · · · , n}0, and �m and �n�m are such that

a(m; �m) + a(n�m; �n�m) = a(n; �n). (3.61)

The prime means that m = 0 and m = n are excluded from the range. Further, the following
initial data must be specified

a(n; b�n) = n2, 8n, (3.62)

�b(n; b�n) = b(n), 8n. (3.63)

Proof of theorem 1. The proof of the theorem is by induction both in n and in g. We
assume that the structure of the free energies F

(m)

h is given by (3.57) for m  n and h < g.

Then we analyze the propagator structure of G
(n)

g , the right-hand-side of the holomorphic
anomaly equation for F

(n)

g . We use the fact that a z-derivative on the propagator produces
a propagator squared. We also need to use that @zF

(0)

h is a polynomial of degree 3h � 2
in the propagators for h � 1. To simplify notation we are going to write E instead of
exp 1

2

(@zA)2Szz, and drop Szz in Pol(Szz; d). The dependence of the polynomial in the
propagator should always be understood.

The right-hand-side of (3.36), denoted by G
(n)

g , has a linear and a quadratic term. We
analyze both terms separately. The linear term gives

g
X

h=1

D(n)

h F
(n)

g�h =
X

{�n}

Ea(�n;�n) Pol
�

3
�

g + b(n) � �b(n; �n)
�

� 1
�

. (3.64)

To obtain the right-hand-side of this expression we focus on the terms will polynomial of
highest degree, as long as they accompany the same exponential. The leading term comes
from D(n)

1

F
(n)

h�1

.

The quadratic term in G
(n)

g is a little bit more di�cult to analyze. It involves a product
and requires using lemma 1. We calculate explicitly,

n�1

X

m=1

g�B
X

h=0

⇣

@zF
(m)

h�1

� @zA
(m)F

(m)

h

⌘⇣

@zF
(n�m)

g�1�B�h � @zA
(n�m)F

(n�m)

g�B�h

⌘

=
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=
n�1

X

m=1

g�B
X

h=0

8

<

:

X

{�m}

Ea(m;�m)Pol
�

3
�

h + b(m) � �b(m; �m)
��

9

=

;

⇥ (3.65)

⇥

8

<

:

X

{�n�m}

Ea(n�m;�n�m)Pol
�

3
�

g � h�B(n, m) + b(n�m) � �b(n�m; �n�m)
��

9

=

;

=

n
X0

m=0

X

{�m,�n�m}

Ea(m;�m)+a(n�m;�n�m)Pol
�

3
�

g + b(n) � �b(m; �m)� �b(n�m; �n�m)
��

.

In the last step we have made use of the definition of B(n, m) and dropped the sum over h.
We can simplify the di↵erent appearances of �, a and �b using lemma 1.

(3.65) =
X0

{�n}

Ea(n;�n)Pol
�

3
�

g + b(n) � �b(n; �n)
��

. (3.66)

The prime on the sum means that the special class b�n is not included. If we put (3.64) and
(3.66) together and separating the contribution from the special class bgn, we find

G(n)

g = Ea(n;b�n)Pol
�

3
�

g + b(n) � �b(n; b�n)
�

� 1
�

+

+
X0

{�n}

Ea(n;�n)Pol
�

3
�

g + b(n) � �b(n; �n)
��

. (3.67)

We make this separation because

Ea(n;b�n) = ea(n;b�n)

1

2

(@zA)

2Szz
= e

1

2

(@zA(n)

)

2Szz
(3.68)

cancels precisely the exponential inside the integral in (3.37). The integral in (3.37) can be
of two types

Z Szz

dS̃ Pol(S̃; d) = Pol(Szz; d + 1), (3.69)

Z Szz

dS̃ ec ˜SPol(S̃; d) = ec Szz
Pol(Szz; d), c 6= 0. (3.70)

Using this expression we calculate the free energy F
(n)

g

F (n)

g = e
1

2

(@zA(n))
2

S

✓

f (n)

g (z) +

Z Szz

dS̃ e�
1

2

(@zA(n))
2

˜S G(n)

g (z, S̃)

◆

= Ea(n;b�n)

(

f (n)

g + Pol
�

3
�

g + b(n) � �b(n; b�n)
�

� 1 + 1
�

+

+
X0

{�n}

Ea(n;�n)�a(n;b�n)Pol
�

3
�

g + b(n) � �b(n; �n)
��

)
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=
X

{�n}

Ea(n;�n)Pol
�

3
�

g + b(n) � �b(n; �n)
��

, (3.71)

which is exactly what we wanted to show.
The proof will be complete once we check the base case of the induction. The base case

is given by g = 0 for any n, and in order to prove it we need to use induction on n. The
general equation for g = 0 and any n is

✓

@Szz � 1

2

�

@zA
(n)

�

2

◆

F
(n)

0

=
1

2

n
X0

m=0,
B(n,m)=0

@zA
(m) @zA

(n�m) F
(m)

0

F
(n�m)

0

. (3.72)

For n = 1, the base case of this induction, the right-hand-side is zero and integration gives

F
(1)

0

= e
1

2

(@zA)

2Szz
= Ea(1;�

1

)Pol(Szz; 0), (3.73)

This expression agrees with the statement of the theorem we want to prove because for n = 1
there is only one class �

1

that is actually the special class b�
1

, for which (3.62) says a = 1.
Using this and (3.63) in (3.57) we prove the base case. Now we need to show that

F
(n)

0

=
X

{�n}
�b(n;�n)=b(n)

Ea(n;�n)Pol(Szz; 0), (3.74)

which is (3.57) evaluated for g = 0 taking into account that polynomials are zero if their
degree is negative. Since3 �b � b(n),

F
(m)

0

=
X

{�m}

Ea(m;�m)Pol
�

b(m) � �b(m; �m)
�

. (3.76)

This implies that the right-hand-side of (3.72) is equal to

n
X0

m=0,
B(n,m)=0

X

{�m,�n�m}

Ea(m;�m)+a(n�m;�n�m)Pol
�

b(n) + b(m) � �b(m; �m)� �b(n�m; �n�m)
�

=

=
X0

{�n}

Ea(n;�n)Pol
�

b(n) � �b(n; �n)
�

=
X0

{�n},
�b(n;�n)=b(n)

Ea(n;�n)Pol(0), (3.77)

where we have used that b(m) + b(n�m) = b(n) since B(n, m) = 0, and the recursions in
lemma 1. The integration of (3.72) concludes the proof of the base case and the proof of the
theorem.

3If we define �B (n; �n) := �b (n; �n)� b

(n), (3.60) and (3.63) become

�B (n; �n) = min {�B (m; �m) + �B (n�m; �n�m) + B (n, m)} , (3.75)

with �B (n; b�n) = 0. Because we assume B � 0, 8n, m, by induction on n, �B (n; �n) � 0.
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The generating function �b was found by guessing the pattern of the first few numbers a
and �b for b = 1 and it was later generalized for general values of b(n). The multiparameter
case, that will follow next, enjoys a similar generating function that was easily found from
the one-parameter case. Since we are only interested in the numbers a and �b that appear as
powers of the formal variables E and ', respectively, it could be possible that the generating
function is not unique. This is actually the case. It can be checked that for a generic power
series f(x), the composition f � R, where R(⇢) :=

P1
m=1

'b(m)

Em2

⇢m, provides the same
combinatorial numbers needed to describe the propagator dependence of the free energies—
the particular coe�cients will di↵er. The general formula for the composition of two formal
power series is given by the Faá di Bruno formula. It can be written in terms of Bell
polynomials that can also be described in terms of partitions (of sets). For the proof of
lemma 1 provided in appendix B the particular form of the generating function we have
been working with is useful. This function only describes the propagator dependence but we
could ask how di�cult it is to generalize it to describe the holomorphic dependence. This
is a much messier problem and it is even di�cult to give a heuristic description for the first
few instanton sectors—see appendix C for an attempt in the case of local CP2. However,
the problem of determining completely the structure of the free energies may prove to be a
necessary step in the resummation of the transseries in closed form. This is of course a long
term goal, far beyond the scope of this work.

3.4 Multiparameter transseries

In the previous section we analyzed the holomorphic anomaly equations for a one-parameter
transseries and study the structure of the solution with respect to the propagator. We saw
that the free energies F

(n)

g for n > 1 generalize the dependence on Szz from just polynomial
for perturbative F

(0)

g to combinations of polynomials and exponentials. Theorem 1 describes
precisely what the functional dependence on the antiholomorphic variable is. However,
in most situations a one-parameter transseries will not be general enough to describe the
complete solution of a problem. It may be the case that the transseries involves a number
of di↵erent instanton actions with no relation with each other. In a more common scenario
[38, 40, 41], some of the instanton actions satisfy Z-linear relations. This is the case of
resonance and its simplest incarnation is by having instanton actions come in pairs of opposite
signs. We mentioned this situation briefly in section 1.5.3. In this section we will derive the
holomorphic anomaly equations for the free energies of a multiparameter transseries and
analyze the structure of the solutions in the generic case. We leave the case of resonance for
the next section.

3.4.1 Multiparameter transseries

Most of this section is an almost direct generalization of the topics discussed in section
3.3. Notation there was already slightly adapted to this more general situation. We start by
assuming the existence of p di↵erent instanton actions A↵, ↵ = 1, . . . , p. The multiparameter
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transseries has the form

F (�, gs) =
X

n2Np

�n e�A(n)/gs F (n)(gs). (3.78)

Vector notation is the same as in section 1.3.1. The total instanton action is A(n) =
Pp

↵=1

n↵A↵. Each instanton action is in principle assumed to be a function of both z and
Szz. We saw in section 3.3.1 that for a one-parameter transseries the instanton action is
holomorphic. This result generalizes. Each sector F (n)(gs) is expected to be an asymptotic
series in gs of the form

F (n) =
1
X

g=0

gg+b(n)

s F (n)

g , (3.79)

where F
(n)

g depends on z and Szz and b(n) is the starting power.
Just as in the one-parameter case we plug in the transseries ansatz into the equation

(3.15) and collect similar powers of �. For n = 0 we recover the perturbative holomorphic
anomaly equations as it must be, and for n 6= 0 we have a set of recursive equations that
generalizes (3.23),
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Dz �
1

gs

@zA
(n) + 2 @z
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@z �
1
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@zA
(m)

◆

F (m)

✓

@z �
1

gs

@zA
(n�m)

◆

F (n�m). (3.80)

Here we just need to note that the sum over lower instanton sectors m with a prime on it
means

n
X0

m=0

:=

n
1

,...,np
X

m
1

,...,mp=0

m6=0, m6=n

. (3.81)

As in the one-parameter case, the two terms involving F (n) were moved to the left-hand-side
of (3.80). Next, we expand in gs and collect similar powers

@SzzA(n)F
(n)

g+1

�
g
X

h=0

D(n)

h F
(n)

g�h+ (3.82)

+
1

2

n
X0

m=0

g�B(n,m)

X

h=0

⇣

@zF
(m)

h�1

� @zA
(m)F

(m)

h

⌘⇣

@zF
(n�m)

g�1�B(n,m)�h � @zA
(n�m)F

(n�m)

g�B(n,m)�h

⌘

= 0,

for g = �1, 0, 1, . . .. Here B(n,m) = b(m) + b(n�m)� b(n). As we did in the previous section
we are going to assume general b(n) as long as B(n,m) � 0 to avoid the case of extra

equations coming form (3.82) with the first two terms vanishing. The operators D(n)

h are
straightforward generalizations of the ones in (3.27)–(3.31).

The first equation in (3.82), for g = �1, comprises only the first term. Since by definition

F
(n)

0

6= for every n we find
@SzzA(n) = 0. (3.83)
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If we focus on the one-instanton sectors, that is, those of the form (n) = (0| · · · |0|1|0| · · · |0)
we prove the holomorphicity of every instanton action in the transseries,

@SzzA↵ = 0, ↵ = 1, . . . , p. (3.84)

In section 3.6 we show the holomorphicity of the instanton actions directly through a large-
order argument involving only perturbation theory.

Using this information back into (3.82) and using the explicit expression for D(n)

0

we find
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@zF
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g�1�B(n,m)�h � @zA
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⌘

.

This is a equation for F
(n)

g , for each n 6= 0 and g � 0 which can be solved recursively because
the right-hand-side only depends on previously computed data. We study the structure of
the solutions next.

3.4.2 Structure of the transseries solution

Even though the transseries can become very complicated as we increase the number of
parameters, the antiholomorphic dependence can be systematically described in the generic
case. We follow the same line of argument presented in section 3.3.2 generalized to accom-
modate the indices ↵, �, . . . labeling the instanton actions. If we study the solutions of the
holomorphic anomaly equations (3.85) for low instanton sector n and small g we find the
following structure,

F (n)

g =
X

{�n}

exp

 

1

2

p
X

↵,�=1

a↵� (n; �n) @zA↵ @zA� Szz

!

Pol (Szz; db (n; g; �n)) . (3.86)

Here �n is an index running in a certain finite set, a↵�(n; �n) are nonnegative integers
independent of g, and db(n; g; �n) is the degree of the polynomial which can be parametrized
as

db(n; g; �n) = 3
�

g + b(n) � �b(n; �n)
�

. (3.87)

The numbers �b(n; �n) are also independent of g and do not carry any multiparameter labels,
unlike a↵�. Equation (3.86) generalizes the one-parameter case (3.47). The higher instanton

free energies F
(n)

g are given in terms of exponentials and polynomials of certain degrees in
the propagator.

All the numbers a↵�, �b and the labels �n can be computed from the following generating
function

�b ⌘ �b (', E, ⇢) :=

1
Y0

m=0

1

1� 'b(m)

Qp
↵,�=1

E
m↵m�

↵�

Qp
↵=1

⇢m↵
↵

, (3.88)
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which can be expanded into

�b =
X

{rm}

'
P1

m=0 rm b(m)

p
Y

↵,�=1

E
P1

m=0 rm m↵m�
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X
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X

{�n}

p
Y

↵,�=1

E
a↵�(n;�n)

↵� '�b(n;�n) O('0). (3.89)

Here the indices rm run from 0 to infinity. From the first to the second line we have
introduced a multi-index n such that

P1
m=0 rmm = n. This reduces to the characterization

of an integer partition in the one-parameter transseries case. Further, we have collected
similar powers of ⇢↵, E↵� and ', and defined

a↵�(n; �n) :=
1
X

m=0

rmm↵m�, for {rm} such that
1
X

m=0

rmm = n. (3.90)

There is a di↵erent value of the label �n for each di↵erent value of a↵�. Also,

�b(n; �n) := min
{rn}2�n

( 1
X

m=0

rm b(m)

)

. (3.91)

The relation between the free energies F
(n)

g in (3.86) and the generating function (3.88) is
justified in the following theorem

Theorem 2. For any n 6= 0 and g � 0, the structure of the nonperturbative free energies
has the form

F (n)

g =
X

{�n}

e
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↵,�=1

a↵�(n;�n)@zA↵ @zA� Szz

Pol
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��

, (3.92)

where the set of numbers {a↵� (n; �n)} and {�b (n; �n)} are read from the generating function
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↵� '�b(n;�n) O('0). (3.93)

Here Pol (Szz; d) stands for a polynomial of degree d in the variable Szz (and whose coe�-
cients have a dependence in z). Whenever d < 0, the polynomial is taken to be identically
zero. We assume that b(m) + b(n�m) � b(n) � 0.

The proof of this theorem follows exactly the same inductive argument used in theorem
1. In several occasions it mades use of the generalization of lemma 1, stated and proved in
appendix B. The proof concludes with the verification of the base case, which in this case
involves all the one-instanton sectors (0| · · · |0|1|0| · · · |0).
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In order to illustrate the theorem let us focus on a two-parameter transseries, and de-
termine the structure of the n = (2|1) free energies for every g. For definiteness we choose
b(n) = 1. We need to take the generating function �b=1

, expand it as explained earlier, and
collect the terms with powers ⇢2
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'3. (3.94)

By comparing with the general expansion (3.93) we can see that the �
(2|1)

runs over four
values. Out of these four classes, the special one b�
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has a
1,1 = 4, a

1,2 = a
2,1 = 2, and

a
2,2 = 1, along with �b=1

= 1 = b(2|1), as expected. The last three terms in (3.94) produce
the remaining classes. Collecting the corresponding values of a↵� and �b we can write
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This is an expression valid for every g if we follow the convention that negative degree
polynomials are zero. Therefore, for g = 0 only the first term is present. For g = 1 the
second and third are turned on and for g � 2 all of them contribute to the free energy.

3.5 Resonance

The concept of resonance in a resurgent transseries appears when two di↵erent instanton
sectors, n

1

and n
2

have the same total instanton action, A(n
1

) = A(n
2

). In the realm of
di↵erential equations, it is usually possible to write the di↵erential equation in the so-called
prepared form, see [71], for example. In such a form there is a matrix whose eigenvalues
give precisely the instanton actions. Resonance will present when, for example, two of the
eigenvalues have opposite signs, because the sector (1|1) in a two-parameter transseries will
have total instanton action equal to zero, the same as the perturbative sector. This is what
was found in the case of the Painlevé I equation [38]. In that case it was also discovered that
the transseries describing the solution to that di↵erential equation should include logarithmic
sectors, log gs, as in (1.19). Resonance of this sort was also studied in the quartic matrix
model, related to Painlevé I through a double scaling limit, in [40]. In that context it was
found that the logarithmic sectors '(n)[k], as functions, are not independent of '(n)[0]. In
this sense they do not carry any new information. It was also found that the asymptotic
series of sectors of the form (n|n) are genus expansions, in the sense of being series in g2

s ,
rather than in gs. Large-order relations are modified by the presence of logarithms but only
at subleading order and for higher instanton sectors. The physical interpretation of this
sectors is still unclear. As discussed in [39], from the interpretation of the instanton action
kA coming from k D-brane one could associate anti-D-branes to �kA [144], the incarnation
of ghost D-branes in topological string theory [145], because they are related by a change
of sign in gs that could be tied to a change of sign in the instanton action instead. This
interpretation would imply that the sector (n

1

|n
2

) should be equivalent to (n
1

�n
2

|0) because
a stack of D and anti-D-branes can be described in terms of only D or only anti-D-branes
[13, 144]. However, F (n

1

|n
2

) and F (n
1

�n
2

|0) are not equal. So this interpretation is at least
incomplete. See also the discussion in [40].
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In this section we study how a logarithmic transseries can be used as an ansatz for the
holomorphic anomaly equations, and how the results obtained in section 3.4 generalize. We
also prove that for sectors with vanishing total instanton action, the asymptotic series is an
expansion in g2

s under certain conditions.

3.5.1 Structure of the transseries solution

The logarithmic transseries has the generic form

F (�, gs) =
X

n2Np

�n e�A(n)/gs

k
(n)

max

X

k=0

logk (gs) F (n)[k](gs), (3.96)

where

F (n)[k](gs) =
1
X

g=0

gg+b(n)[k]

s F (n)[k]

g . (3.97)

Note that there is an extra index k in square brackets that runs from 0 to some number
k

(n)

max

. This upper limit is not fixed by the equations, but logarithms at a given sector can
only come from logarithms of lower sectors, so there must be some relations between the
di↵erent k

(n)

max

. The exact structure should be studied in each specific example. Here we are
going to use a generic value of k

(n)

max

.
The process of plugging the transseries ansatz into the holomorphic anomaly equation

(3.15) is analogous to the previous cases. On top of collecting similar powers of � and gs,
we also have to collect powers of log gs. As before, the first equations just tell us that the
instanton actions are holomorphic, even in this more general case. This has to be the case
because it is a direct consequence of the factorial growth of the perturbative free energies
and the holomorphic anomaly equations they satisfy; see section 3.6.

The rest of the equations are
✓
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2
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(n))2

◆
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g +
g
X
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D(n)

h F
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g�h = (3.98)
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g�B
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� @zA
(m) F

(m)[`]
h

⌘⇣

@zF
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(n�m) F
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.

Here, ` runs from max
⇣

0, k � k
(n�m)

max

⌘

to min
⇣

k, k
(m)

max

⌘

, and

B = B(n,m)[k, `] := b(m)[`] + b(n�m)[k�`] � b(n)[k] (3.99)

generalizes the definitions of B we have been using until now.
The structure of the solutions to equation (3.98) can be analyzed in the same way we have

done with the one-parameter and multiparameter transseries. The presence of logarithmic
sectors and the new index k can be incorporated in a extension of theorem 2. We find that
the free energies have the following antiholomorphic dependence

F (n)[k]

g =
X

{�n}

e
1

2

Pp
↵,�=1

a↵�(n;�n)@zA↵ @zA� S Pol
⇣

S; 3
⇣

g + b(n)[k] � �
[k]

b,k
max

(n; �n)
⌘⌘

. (3.100)
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The labels �n and the numbers a↵� are the same as in lemma 4—they only depend on the

quadratic structure of the equations—, while the numbers �[k]

b,k
max

have to be generalized
slightly to incorporate the logarithmic index. All of them can be read from the generating
function

�b,k
max

=

1
Y0

m=0

k
(m)

max

Y

`=0
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a↵�(n;�n)
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b,k
max

(n;�n)O('0), (3.101)

where  is the new formal variable associated to logarithmic sectors.
The analysis of the holomorphic anomaly equations with logarithmic sectors can be done

in the exact same way if logarithms are replaced by some other nonanalytic functions of gs

at zero. The equations do not determine that the monomial needs to be log gs unlike what
is found in Painlevé I equation, for example. The way to know the correct transseries is to
study the resurgence relations and deduce form them which monomial is the right one.

3.5.2 Genus expansions within transseries

When we talk about a genus expansion we refer to a power series in g2

s . The perturbative

sector satisfies such expansion,
P1

g=0

F
(0)

g g2g�2

s , and 2g � 2 has a direct interpretation as
the Euler characteristic of a Riemann surface of genus. In [38, 40, 41] it was found that the
free energies F (n|n)(gs) for certain polynomial matrix models and Painlevé equations are also
power series in gs. The topological interpretation is not known for these sectors, but we will
still use this language. The origin of this topological expansion seems to be the existence
of pairs of instanton actions A and �A. The relation A + (�A) = 0 implies a symmetry
gs ! �gs which is manifest in the free energies of sectors (n|n), and implies the topological
expansion. The holomorphic anomaly equations are supposed to be valid for any closed
topological string theory. Such generality is a disadvantage when trying to compute every
detail of the transseries solution, but it becomes useful when proving general statements.
One example is the existence of topological expansions within transseries when resonance is
present. This is what we show now, first for a two-parameter transseries and then in more
generality. Even if we are dealing with the case of resonance we will turn o↵ the logarithmic
sectors to make the argument easier.

We are going to work with the transseries

F (�, gs) =
X

n2Np

�n e�A(n)/gs F (n)(gs), (3.102)

and focus on F (n)(gs) as formal objects in gs (recall that these are asymptotic series so to talk
about functions requires a process of resummation). The holomorphic anomaly equations
applied to this transseries produce the equations

D(n)(gs) F (n)(gs) = T (n)(gs). (3.103)
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We have already seen the operator on the left-hand-side of (3.103),

D(n)(gs) = @Szz � 1

2
g2

s

✓

Dz �
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@zA
(n) + 2 @z
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◆

, (3.104)

where bF (0)(gs) ⌘ F (0)(gs) � 1

g2

s
F

(0)

0

(gs) =
P1

g=1

g2g�2

s F
(0)

g is an even series in gs. The right-

hand-side of (3.103) depends on lower sectors and is quadratic,

T (n)(gs) :=
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2
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s
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X0
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◆
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@zA
(n�m)

◆

F (n�m). (3.105)

We are going to study the parity properties of T (n)(gs) in gs and using H(m)(gs) as an
intermediate step will be convenient. The final goal will be to show that for any sector of
the transseries, r, with vanishing total instanton action, A(r) = 0,

F (r)(�gs) = F (r)(gs). (3.106)

Let us illustrate the strategy of the proof for the case of a two-parameter transseries with
opposite instanton actions,

A
1

= �A
2

. (3.107)

We say that the transseries has a Z
2

-symmetry. Let us define the following operation at the
level instanton sectors,

n? = (n
1

|n
2

)? := (n
2

|n
1

). (3.108)

Because of the Z
2

symmetry,

A(n) + A(n?
) = (n

1

A
1

+ n
2

A
2

) + (n
2

A
1

+ n
1

A
2

) = (n
1

+ n
2

)(A
1

+ A
2

) = 0. (3.109)

From this we can see that A(r) = 0 only if r? = r = (r|r). We want to study how the
ingredients of equation (3.103) behave under the action of ?. The key point is that this
action is equivalent to a change of sign in gs. For example, it is easy to see that

D(n)(�gs) = D(n?
)(gs). (3.110)

Let us suppose for a moment that the right-hand-side of (3.103) behaves similarly,

T (n)(�gs) = "(n)T (n?
)(gs), (3.111)

where "(n) is a number equal to +1 when n? = n. With this assumption we can calculate
that

D(n)(�gs)
�

F (n)(�gs)� "(n) F (n?
)(gs)

�

= D(n)(�gs)F
(n)(�gs)� "(n)D(n?

)(gs)F
(n?

)(gs) =

= T (n)(�gs)� "(n) T (n?
)(gs) = 0. (3.112)



74 CHAPTER 3. NONPERTURBATIVE HOLOMORPHIC ANOMALY EQUATIONS

From this equation we want to derive that

F (n)(�gs) = "(n)F (n?
)(gs), (3.113)

because if we choose the sector to be n = r = (r|r) = r? we conclude,

F (r|r)(�gs) = F (r|r)(gs). (3.114)

That is, the free energy F (r|r)(gs) has a genus expansion in gs.
The last assumption regarding the symmetry properties of the free energies in (3.113) is

the object of the next lemma.

Lemma 2. The solution, y(gs; z, Szz), of the di↵erential equation

D(n)(gs) y(gs; z, Szz) = 0, (3.115)

is the trivial solution if the corresponding holomorphic ambiguity y(gs; z, 0), obtained by
setting the propagator to zero, vanishes.

Proof. We expandD(n)(gs) and y(gs) as a formal series in gs, and obtain a tower of di↵erential
equations,

g
X

h=0

D(n)

h yg�h = 0, g = 0, 1, 2, . . . . (3.116)

We proceed by induction on g. The first equation, for g = 0, can be solved explicitly
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y
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= 0 ) y
0

(z, S) = e
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(@zA(n))
2

S v
0

(z), (3.117)

where v
0

(z) is the corresponding holomorphic ambiguity. If v
0

= 0 then y
0

= 0, and the base
case of the induction is proved. Assume that yh = 0, 8h < g. Then

D(n)

0

yg = 0 ) yg(z, S) = e
1

2

(@zA(n))
2

S vg(z). (3.118)

The assumptions of the lemma imply that yg = 0, and the proof is complete.

So we have shown that if (3.111) is true, the diagonal sectors (r|r) have a genus expansion.
We show this assumption in the proof of the following lemma, but first let us note that all
this discussion can be extended without problems to multiparameter transseries in which all
the instanton actions come in opposite pairs,

A
2

= �A
1

, A
4

= �A
3

, . . . , A
2q = �A

2q�1

. (3.119)

We say that we are in the (Z
2

)q-symmetric case. On top of this symmetry there could be
other resonances involving instanton actions in di↵erent pairs, for example, A

1

+A
2

+A
3

= 0.
We exclude this cases from the discussion so that whenever we have A(n) = 0, it means that
n

1

= n
2

, n
3

= n
4

, . . . , n
2q�1

= n
2q. Equivalently, that A(n) = 0 if and only if n? = n, where

we have extended the action of ? in the natural way
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|n
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4

|n
3

k · · · kn
2q|n2q�1

). (3.120)
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Lemma 3. A 2q-parameter transseries with (Z
2

)q-symmetry satisfies

F (n)(�gs) = "(n) F (n?
)(gs), (3.121)

for any sector n provided that the associated holomorphic ambiguity satisfies the correspond-
ing relation

f (n)(�gs) = "(n) f (n?
)(gs). (3.122)

The numbers " satisfy "(m)"(n�m) = "(n), for any m < n.

Proof. The proof is by induction on the instanton sector We show the base case at the end.
Assume that the statement of the lemma is true for every m < n, then
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)(gs). (3.123)

From this result, the same formula is valid for T (m),

T (n)(�gs) =
1

2
(�gs)

2

n
X0

m=0

H(m)(�gs) H(n�m)(�gs) =

=
1

2
g2

s

n
X0

m=0

"(m) "(n�m) H(m?
)(gs) H((n�m)

?
)(gs) =

= "(n)

1

2
g2

s

n?
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H(m?
)(gs) H(n?�m?

)(gs) = "(n) T (n?
)(gs). (3.124)

In the third line we have used that "(m)"(n�m) = "(n), that ? is a linear operation, and that

n
X0

m=0

=

n?
X0

m?
=0

. (3.125)

The di↵erential operator D(n)(gs) given by (3.104) satisfies

D(n)(�gs) = D(n?
)(gs). (3.126)

Together with (3.124) it implies,

D(n)(�gs)
�

F (n)(�gs)� "(n) F (n?
)(gs)

�

= D(n)(�gs)F
(n)(�gs)� "(n)D(n?

)(gs)F
(n?

)(gs) =

= T (n)(�gs)� "(n) T (n?
)(gs) = 0. (3.127)

From lemma 2, if f (n)(�gs)� "(n) f (n?
)(gs) = 0 then

F (n)(�gs) = "(n) F (n?
)(gs). (3.128)

The base case of the induction involves the one-instanton sectors (those with knk = 1). For
them T (n) is zero, so we can directly apply lemma 2.
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The precise statement for the existence of genus expansions within transseries in the case
of resonance is given in the following

Theorem 3. Consider a 2q–parameters transseries with (Z
2

)q-symmetry. If a sector r has a
vanishing total instanton action, A(r) = 0, then F (r)(gs) has a topological genus expansion in
the string coupling gs (an asymptotic expansion in powers of g2

s), provided the holomorphic
ambiguities respect the symmetry (as in (3.122) with "(r) = +1).

Proof. If A(r) = 0, then r? = r. Using lemma 3 we conclude that

F (r)(�gs) = +F (r)(gs), (3.129)

where we have used "(r) = +1.

The argumentation above can be extended to include transseries with logarithmic sectors,
which is expected in the case of resurgence. We only need to require that k

(n?
)

max

= k
(n)

max

. Also,
to simplify the notation we have worked in the case of one-dimensional moduli spaces, but
everything carries through in the general case.

The Z
2

-symmetry that acts on the instanton actions as A(n?
) = �A(n) is directly related

to changing the sign of the string coupling constant, gs ! �gs. From the point of view of
resurgence and large-order relations this seems to be the case. We need to have A and �A
sectors in order to have a g2

s expansion for sectors with vanishing total instanton action, like
the perturbative sector. At the level of the Borel plane, one can see that for each pole there
is a symmetrical one with opposite sign. But what happens when there is more resonance,
or symmetry, than just (Z

2

)q? In those cases the argument we used in the proofs above do
not go through anymore. One should define a new ? operation that accommodates the new
resonant symmetry, but in general it will not be represented by a change of sign in gs, like
in (3.110).

There is a strong assumption in theorem 3 involving the symmetry properties of the
ambiguities. From the holomorphic anomaly equations we cannot say anything about the
ambiguities but we should expect the (Z

2

)q-symmetry to validate this assumption. We will
see in chapter 4, regarding the case of local CP2, that the assumptions are satisfied and that
the (1|1k0|0k · · · )-sector has a genus expansion, in agreement with the general argument
presented in this section.

The antiholomorphic structure of the free energies in the resonant case deviates slightly
from the generic situation covered in theorem 2. Let us focus on the case with Z

2

-symmetry.
The results we present here heuristic and we have no proof for them. For free energies,
F

(n
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|n
2

)

g with n
1

6= n
2

, the description of the propagator structure in theorem 2 is still
valid, if we also impose E

11

= E
22

and E
12

= E�1

11

. These conditions come directly from
the interpretation of the formal variables E↵� as exponentials exp 1

2

@zA↵@zA�Szz, and the
resonant condition A

1

= �A
2

. For sectors with vanishing total instanton action, those of
the form (r|r), the description is more involved. Consider for example the specific case in

which b(n) = 1. Then F
(r|r)
2h as expected from theorem 3. The odd free energies F

(r|r)
2h+1

are
combinations of exponentials times polynomials, as in the general case. The coe�cients a↵�

in the exponentials are still given by the generating function (3.93). However for the special
class, b�

(r|r), the exponential becomes one because it depends on (@zA
(r|r))2 = 0. So the term
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associated to the special class is a just polynomial. The degrees of the polynomials can
still be described in terms of �b, coming from the generating function. We find, analyzing
a few examples, that if �b=1

�

(r|r); �
(r|r)

�

= 3, 4, 5, . . . then the degree of the polynomial is
still 3(g + 1 � �b=1

) with g = 2h + 1. There seems to be an exception for � = 4 and the
corresponding value of a is twice the sum of two squares4. In this case the degree is 5(h�1).
For � = 2 the degree of the polynomials is 5h. The case � = 1 only appears for a = 0
that corresponds to no exponential. We see that it is di�cult to find a common rule for
all the cases, and every example should be treated on its own. The problem of discovering
the antiholomorphic structure of the free energies is important for two reasons. The first is
that knowing the form of the solution beforehand can accelerate the process of computation.
The second is that the problem of resummation of the transseries can only be approached
when the structure of the transseries is well-understood. From [19, 34, 146] we should
expect a theta function structure for the resummation and the restitution of modularity in
the holomorphic limit. These are di�cult but natural problems in the context of resurgent
transseries in topological string theories. See [147] for a recent approach to the resummation
of the topological string perturbation series.

3.6 Holomorphicity from large-order

In the previous sections we have stressed the first result that is obtained from the integration
of the holomorphic anomaly equations (3.14) for any of the transseries ansätze we have
discussed: the instanton actions are holomorphic, independent of the propagator. This
result keeps intact the geometrical interpretation of the instanton action as integrals over
cycles of the Calabi–Yau geometry, that is, periods [143]. As we discussed in chapter 1,
the instanton actions appearing in the exponential monomials of the transseries are, loosely
speaking, identified as poles in the Borel plane. Using the alien derivative and the Stokes
automorphism one can derive large-order expressions describing the precise factorial growth
of the di↵erent sectors in the transseries, see (1.40) for example. Manipulating the large-
order relations we can extract nonperturbative information. We showed several examples of
this in section 1.5.1. In particular, we saw in equation (1.44) how the instanton action can
be expressed as a ratio of consecutive perturbative free energies in the large g limit. In the
language of this chapter

A2

�

zi, Sij
�

= lim
g!1

� (2g � b + 2)

� (2g � b)

F
(0)

g (zi, Sij)

F
(0)

g+1

(zi, Sij)
. (3.131)

At the beginning of this chapter we argued that the tower of holomorphic anomaly equations
could be written into a single equation for the perturbative free energy, and then promoted
to be valid for any transseries. This step was justified under the principle of resurgence

4Moreover, the value of a/2 can be neither in the list

{m2
1 �m1m2 + m

2
2}1m1<m2 = {3, 7, 12, 13, 19, 21, 27, . . .}, (3.130)

which corresponds to terms with � = 3, nor can it be a perfect square, which corresponds to � = 2.
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that says that all sectors of the transseries know about each other, and in particular, the
perturbative sector knows about the nonperturbative ones. Information of all the system is
stored in all the ingredients. From this vague idea we should expect to be able to reproduce
nonperturbative results of the previous sections just from perturbation theory and large-order
relations. It is di�cult to see how far this program can be taken, but the first consequence
of the extended holomorphic anomaly equations, the holomorphicity of A, can be done. The
idea is to take (3.131), apply a propagator derivative to both terms, and show that the limit
is zero. To get to this result we should only be able to use the perturbative holomorphic
anomaly equations (2.39) and the large-order growth of the perturbative free energies

F (0)

g = c(zi, S
ij) A(zi, Sij)�(2g�b) � (2g � b)

�

1 +O(g�1)
�

, (3.132)

from which (3.131) is derived. c(zi, Sij) is related to the one-instanton sector but we do not
need to use that information here.

If we take a derivative with respect to Sij on both sides of (3.131), and interchange
derivative and limit on the right-hand-side (we will show that the limit exists and is zero so
this step is justified), we find
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. (3.133)

The expression in brackets in (3.133) is, for large g,

A2g�b

� (2g � b) c
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1 +O(g�1)
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� A2g�b

� (2g � b) c
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1 +O(g�1)
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=
A2g�b

� (2g � b)
O(g�1), (3.134)

because the leading terms cancel each other. The prefactor in (3.133) can be written in
terms of lower genera through the holomorphic anomaly equations (2.39). We compute the
large-order growth of the derivatives of the free energies from (3.132),
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The second order derivative term Di@jF
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g�1

has two terms,
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, (3.137)
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The second term on the right-hand-side of the holomorphic anomaly equations is
Pg�1

h=1

@iF
(0)

h @jF
(0)

g�h,
and it involves free energies with large and small h. To deal with it we use the inequality (1.4)
that asymptotic series of this type satisfy (there is no rigorous proof that the perturbative
series is of Gevrey 1 type but we assume it is),
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Using the following inequalities involving products of gamma functions

� (2g � 2h + p) � (2h + p)  � (2g + p� 2) � (p + 2) , (3.141)
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for 1  h  g � 1, we conclude
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Note that there is a factor of order g coming from the sum in h that has to be taken into
accoutn. We put all the ingredients, (3.137), (3.138) and (3.143), into (3.133) and find the
bound

�

�@SijA2
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�

g�1
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. (3.144)

In the large g limit the right-hand-side goes to zero and this proves the holomorphicity of A.
Strictly speaking, this argument is only valid for the dominant instanton action, that is,

the smallest in absolute value, or closest to the origin in the Borel plane. Since the instanton
actions depend on the moduli it should be expected that di↵erent instanton actions take
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dominance as we move in moduli space. This is what we will see in local CP2. There may be
instanton actions which are never dominant and for those this argument does not apply. In
principle we can see subdominant instanton actions from large-order by doing resummation
(we do this in chapter 4), but an argument analogous to the one presented here is completely
impractical. Nevertheless, numerical calculations can give evidence to the holomorphicity of
these instanton actions.

The type of argument we have used above could in principle provide information about
higher instanton sectors of the transseries. The first piece of information we could demand is,
like for the instanton actions, the antiholomorphic dependence of the free energies. We have
seen that the propagator structure of the transseries is essentially independent of the model
we are considering. Since the perturbative holomorphic anomaly equations tells us about
the dependence on the propagator in terms of other objects, this type of questions should be
the easiest to approach. But let us stress that the large-order relations are powerful enough,
not only to determine the antiholomorphic dependence, but the complete free energies, see
(1.47) for instance. We will put this principle to work in the next section in the region
of moduli space near a conifold point. The relevant value of the propagator there is the
holomorphic one because the perturbative free energies are then given by the gap condition
(2.82). Another interesting value of the propagator is zero. Due to the polynomial nature of
the perturbative this value selects the holomorphic ambiguity. Something similar happens
for higher instanton sectors. So we can see the resurgent relations as a family of constraints
depending on the value of the propagator and is up to us to find out which member of the
family is the most appropriate to extract interesting information. For a vanishing value of
the propagator we obtain a net of relations involving essentially the holomorphic ambiguities.
We will not follow this route because the most relevant members of the family of relations
are the ones selected by a holomorphic limit.

3.7 Fixing the holomorphic ambiguities

The holomorphic ambiguities are holomorphic functions in the complex moduli that are left
undetermined by the holomorphic anomaly equations, and can be thought of as integration
constants that appear when solving the di↵erential equations with respect to the propaga-
tor. The computation of the holomorphic ambiguities at each order in perturbation theory
requires extra information not included in the equations. This is the price one pays for the
extreme generality of the holomorphic anomaly equations and the fact that it is not a set of
equations in gs but in the moduli. Other techniques, like the topological recursion [18, 142]
or the use of a string equation in polynomial matrix model [16], do not su↵er this problem, or
at least not so severely. In the latter example, the determination of the transseries solution
is obtained from a string equation whose exact form depends on the polynomial potential.
This implies that the solution is completely fixed up to set of constants that can be fixed by
comparing to the double-scaled solution [32, 40].

In topological string theory the determination of the holomorphic ambiguities has di↵er-
ent success depending on the nature of the Calabi–Yau geometry. For compact manifolds,
the holomorphic ambiguities can only be determined up to finite genus [131, 148, 149]. After
that there is not enough information to fix them completely. The situation is di↵erent for
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local, that is noncompact, geometries. In those cases the behavior of the free energies close
to special points in moduli space along with regularity properties is enough to determine the
ambiguities to all orders [113, 116]. This has been checked in several examples, including
local CP2, and the results compared against known Gromov–Witten invariants.

In section 2.4.3 we reviewed the fixing of the holomorphic ambiguities for local CP2. The
perturbative free energies in the holomorphic limit have only a singularity at the conifold
locus, and are regular elsewhere. This restricts the form of the ambiguity to be a rational
function of the modulus. The singularity at the conifold point is a pole order 2g � 2 for
genus g as dictated by the gap condition

F [c](0)

g =
cg�1 B

2g

2g (2g � 2) t2g�2

c

+O(t0
c

), g � 2. (3.145)

c = 3 for local CP2, and t
c

is the flat coordinate around the conifold point, a period of the
geometry given by (2.68). This condition alone determines all the coe�cients of the rational
function except for one, which must be tuned to match the constant map contribution at
the large-radius point (2.84).

We have seen in this chapter that the extension of the holomorphic anomaly equations
to admit a transseries ansatz retains the problem of having to fix a holomorphic ambiguity,
f

(n)

g , coming from integration, for each instanton sector n and order g. In contrast with
the perturbative sector, we have no a priori knowledge of the regularity properties of the
nonperturbative free energies near special points in moduli space. However, we expect the
full nonperturbative free energy to be represented by a resurgent transseries, and the di↵erent
sectors to be related by large-order relations. These relations determine some sectors in terms
of others, but extracting analytical information can be di�cult. In section 3.6 we were able
to conclude the holomorphicity of the instanton actions from large-order but not much more.
It may seem unlikely that we are able to extract enough information out of resurgence, in an
analytical way, to fix the holomorphic ambiguities for higher instanton sectors. However, for
some sectors of the transseries this is actually possible, as we will explain below. The reason is
the universality property of the conifold point as a phase transition point [24, 127, 150]. The
class of theories that present a gap condition behavior as in (3.145) near the conifold point,
undergo a phase transition at this point and are described by the c = 1 string at self-dual
radius [127]. The singular behavior of the perturbative free energies near the conifold locus
is enough to provide conditions that can fix the holomorphic ambiguity of nonperturbative
sectors associated to the conifold point, in a sense we explain below.

3.7.1 Fixing holomorphic ambiguities at the conifold

The computation we present here has been checked at the numerical level in the example
of local CP2, see section 4.2, but it is expected to be valid for other geometries lying in the
same universality class. We we will comment on generalizations of this method at the end
of this section.

Our goal is to use the large-order relations to extract as much information as we can
from the perturbative free energies near the conifold point, and use that information to fix
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the ambiguity of some sectors of the transseries. The gap condition can be written as
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2g (2g � 2) t2g�2
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+ a
0,g + a

1,gtc + · · · , g � 2. (3.146)

where a
0,g, a

1,g, . . . are numbers that depend on the particular geometry. We call the series
a

0,g + a
1,gtc + · · · the tail of the perturbative free energy. The Bernoulli numbers, B
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This means that the free energies near the conifold point grow like
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The dependence of the coe�cients ak,g on g is not known but we argue that it is irrelevant
when we consider also the limit tc ! 0. Let us be more precise on this by computing the
dominant instanton action around the conifold point. It can be obtained from the limit
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In the last step we notice that the tail O(t2g+2

c

) involving the coe�cients ak,g goes away in
the large g limit. That is, when taking the limit we regard the series in t

c

as a formal one
and as g grows the tail contributes less and less. Also, for this calculation we do not need
to use the exponentially suppressed terms 2�2g, 3�3g, etc of the asymptotic expansion of the
Bernoulli numbers. Those correction will be necessary when we extract information about
higher instanton sectors. The conclusion is that the instanton action is proportional to a
period

A
c

=
2⇡ip

c
t
c

. (3.150)

Along with A
c

there is also �A
c

. We call A
c

the conifold instanton action.
From the point of view of resurgence explained in chapter 1 we expect the large-order

of the perturbative sector to be controlled by di↵erent sectors of the transseries. When
the resurgent system answers to a bridge equation like (1.59), we can write the large-order
relations explicitly from the start, up to the Stokes constants, as in (1.62). In general we
should expect a similar structure. Analyzing expression (3.146) we can see that its large-
order has the form
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X

h=0

�(2g � c(k) � h)

(kA
c

)2g�c(k)�h

(S
1

)k

⇡i
eF (k)
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This expression is valid very close to the conifold point, so that any other contributions from
the transseries are subleading due to the corresponding instanton actions being larger in
absolute value. Recall that A

c

vanishes at the conifold point, and so does kA
c

for all k. The
objects eF (k)

h are expected to be free energies, or combinations of free energies, associated to
the instanton sector k and order h. Until we can determine their nature we use the notation
with a tilde. When the bridge equation determines the resurgence relations, these objects
are found to be the higher instanton free energies in the transseries themselves, but we will
see in the example of local CP2 that the situation is slightly more complicated, starting at
the two-instanton sector. Let us compute now what the ingredients of (3.151) are.

The instanton action has already been computed above. We focus next on the one-
instanton sector. The number c(1), which must be related to the perturbative and one-
instanton starting powers, can be calculated as in (1.45),
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Here we have used the value of A
c

in (3.150), (3.146), and the fact that the tail dependence
goes away for large g. This value of c(1) = 1 can be read directly from (3.148). Now we can

start extracting the quantities S
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⇡i
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h , for h = 0, 1, 2, . . ., in analogy to (1.46) and (1.47). We
find
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In both cases the dependence on the coe�cients ak,g is washed away by the large g limit.
The higher-loop one-instanton free energies are zero as can be shown by induction. We

illustrate the base case
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The fact that the large-order relation (3.151) at the one-instanton level truncates allows us
to go immediately to the two-instanton sector. For this we just need to move the two free
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energies, eF (1)

h , h = 0, 1 in (3.151) to the left-hand-side and repeat the same computation we
did above, but for the new large-order formula, that is
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Notice that the leading contribution to the asymptotics of the Bernoulli numbers is cancelled
because that information has already been used. Also, the large-order growth of the new
object H(1)

g is very similar to that of F (0)

g so the results will be the same modulo factors of
two. The functions eF (2)

h truncate after h = 1, as they did for the one-instanton sector, giving

c(2) = 1,
(S

1

)2

⇡i
eF (2)

0

=
1

2

Ac

2⇡2

,
(S

1

)2

⇡i
eF (2)

0

=
1

22

1

2⇡2

. (3.157)

One can go on to higher and higher sectors and obtain the general result for the large-order
growth of the perturbative free energies in the holomorphic limit of the conifold point (3.151)
with

c(n) = 1, (3.158)
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eF (n)

g�2

= 0. (3.161)

These expressions for higher instanton free energies appear when studying the discontinuity
on the string coupling plane of the c = 1 string at self-dual radius, which is a first step
to a resurgent analysis of the theory [36]. The information about the specific geometry of
local CP2 has been removed expcept for the particular dependence of the instanton action
on the complex modulus. As we said before, (3.151) is not the whole story because other
sectors exist and are relevant to the large-order growth for points in moduli space away form
the conifold.

Let us summarize the computation we have done. By focusing on the holomorphic limit
of the perturbative free energies near the conifold point we have been able to compute,
in closed form, the leading large-order growth of these free energies. Beyond this leading
order there will be other sectors of the transseries, but near the conifold point they are
subleading because nA

c

can be made arbitrarily small near z = �1/27. The importance of
this calculation is that it provides the necessary condition to fix the holomorphic ambiguities
of, at least, the one and two-instanton free energies associated to the conifold point. We will
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see this in chapter 4 for the case of local CP2, where compare the holomorphic limit of free
energies computed from the holomorphic anomaly equations will be compared against the
analytic functions computed above, and we will solve for the ambiguities.

3.7.2 Fixing holomorphic ambiguities in other cases

The universal character of the conifold point, and the fact that it is a phase transition point
for the perturbative free energies, is what has allowed us to perform a computation to all
instanton numbers and all orders. Models with this gap condition behavior are said to lie in
the universality class of the c = 1 string at self-dual radius. There are other topological string
theories which lie in other universality classes. The phase transition of the free energies at
the corresponding singular point is of a di↵erent form and is controlled by a characteristic
exponent �. If ⌧ denotes a flat coordinate around the singular point, then

F (0)

g ⇠ Hg ⌧
(1�g)(2��), as ⌧ ! 0, (3.162)

for g � 2. Here Hg is a genus dependent number, expected to grow like (2g)!. For topological
string theory on local CP2 � = 2, ⌧ = t

c

, and Hg is proportional to the Bernoulli numbers, so
that (3.146) is recovered. Another important class is � = 1

2

, the class of c = 0 string theory
or pure 2d gravity, see [150] for worked out geometries in this class. For general � there is
a correspondence with so-called minimal models [151], conformal field theories with central
charge characterized by two integers p and q,

cp,q = 1� 6(p� q)2

pq
and �p,q = � 2

p + q � 1
, (3.163)

see [9] for a computation in terms of matrix models. Even though topological string theories
belonging to these general classes have not been studied very much, the singular behavior
of the free energies could be enough to derive a set of conditions like (3.158)-(3.161), which
can be used to fix higher instanton holomorphic ambiguities. A precise computation would
require knowledge of the factorially growing coe�cients Hg, and of the nature of the sub-
leading tail in(3.162). For the class c = 1, the coe�cients are read from (3.146), and can be
identified as those appearing in the Gaussian matrix model and in the double-scaling limit
of other models. In general classes, the double-scaling limits turn out to be classified in hier-
archies like the KdV one [152]. In principle it should be possible to compute the coe�cients
Hg from there but it is a complicated problem.

With respect to other special points in moduli space that have transseries sectors natu-
rally associated to them, there is not a systematic way to approach the large-order behavior
of holomorphic perturbation theory. For starters there is no general classification of Calabi–
Yau threefold singularities and it may be di�cult to construct one [153]. This prevents
an algorithmic approach to the complete integration of the extended holomorphic anomaly
equations. The alternative is, as usual, to turn to resurgence and large-order analysis of the
sectors that we can integrate and have their ambiguities fixed. Codified in their factorial
growth is the fixing condition for every sector, even if it hides very deep in the asymptotics.
Further understanding of these ideas in a rigorous geometric formulation could shed some
light on the nature of the higher instanton free energies near special points in moduli space.
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Chapter 4

Resurgence in local CP2

In this chapter we develop the resurgent study of topological string theory on the mirror of
local CP2. It is based on the results presented in [154]. The geometry and integration of the
perturbative sector was explained in section 2.4. There we saw that the complex structure
moduli space is one-dimensional, parametrized by z or  . The antiholomorphic dependence
is captured by a single propagator Szz. The various holomorphic limits, depending on the
frame, are given in section 2.4.2, although some refinement will be needed. The large-order
analysis in the holomorphic limit will be important in order to understand how to fix the
holomorphic ambiguity. We have already explored this point in section 3.7.

The first section of this chapter focuses on the question of what di↵erent instanton actions
appear in the transseries for local CP2. Since the instanton actions are, for all purposes,
holomorphic ambiguities, we must rely on a large-order analysis to approach the problem. We
show the holomorphicity of the dominant instanton actions, as expected form the extended
holomorphic anomaly equations and proved in section 3.6. We check that instanton actions
are periods of the geometry and compare dominance between them. This last exercise
uncovers a more complicated structure for the Borel plane than it was expected.

A deeper analysis of the perturbative large-order involves one-instanton and two-instanton
sectors. Focusing on a region in moduli space near around the conifold we are able to repro-
duce the factorial growth to leading and subleading order in terms of free energies computed
from the holomorphic anomaly equations. At this point we can already see that the large-
order relations found on matrix models and string related di↵erential equations have to be
slightly modified, which implies that a simple bridge equation like (1.31) is not the right one
for this problem.

Next we analyze the large-order growth of the one-instanton sector. There the presence
of resonance between +A and �A is explicit, as was the case in the examples mentioned
above. The free energies controlling the growth can be computed form the holomorphic
anomaly equations, and the holomorphic and nonholomorphic dependence is checked against
numerical calculations.

The large-order numerical analysis requires some specific techniques of convergence ac-
celeration for limits and series resummation that were explained in chapter 1. We will make
reference to them as they appear.

We finish this chapter with a general discussion on the structure of the large-order rela-
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tions, the transseries, and the resurgence structure that is behind local CP2.

4.1 Instanton actions from large-order

As we saw in chapter 1, instanton actions can be seen from three complementary points of
view. As the coe�cients sitting in the exponential monomials of the transseries, e�A/gs ; as
poles in the Borel plane of a given asymptotic sector; or controlling the large-order factorial
growth of the coe�cients of an asymptotic sector. We will touch on all these interpretations
during this section.

In the description of the transseries solutions that we explained in chapter 3 we empha-
sized that the instanton actions are holomorphic. They are expected to keep their geometri-
cal interpretations as linear combinations of periods. A general large-order analysis near the
conifold point showed that the dominating instanton action there is actually proportional
to the conifold flat coordinate, t

c

. However, such general analyses are seldom possible to
perform and one has to rely on numerics. Even then large-order growth is mostly sensitive
to dominant instanton actions, that is smallest in absolute value. We cannot be sure if there
are other larger instanton actions unless we go very deep into the large-order growth. But
this also means that the corresponding sectors will be greatly suppressed in the transse-
ries (assuming positive large real part) and will have small e↵ect in the final resummation.
Another important point on this topic is that the instanton actions are not all linearly in-
dependent. We are assuming that they are combinations of periods, that is, solutions of
the Picard–Fuchs equation (2.52), and there are only three independent solutions. It may
well be that there are in fact Z-linear relations between instanton actions. We could inter-
pret this as resonance between all the corresponding sectors, and that should be reflected
in the various large-order relations. But we could also interpret this integer combination of
instanton actions as a multi-instanton sector that is not independent of the rest. The two
interpretations require to di↵erent transseries. In order to know which one is correct one
must study the large-order of di↵erent sectors carefully, looking for inconsistencies on one
or the other interpretation. The holomorphic anomaly equations are not powerful enough
to tell them apart. A gs-equation for the local CP2 free energy could provide that informa-
tion. In this chapter we are going to focus on the numerical results and provide analytical
formulae, computed from the holomorphic anomaly equations, to match them. We will rely
on some interpretations but it will take a more thorough and deeper analysis and a larger
interpretative framework, to put each part of the puzzle in its proper place.

4.1.1 Dominant instanton actions

The perturbative free energies, F
(0)

g , grow factorially with the genus g. This can be expected
from the behavior of the holomorphic limits, F (0)

g , near the conifold and large-radius points,
(2.82) and (2.84). We see an explicit (2g)! growth due to the Bernoulli numbers. This Gevrey-
1 growth is found for all present for all values of the complex modulus and propagator,

F (0)

g ⇠ �(2g � b)

A2g�b
dom

c(z, Szz). (4.1)
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This formula expressing the Gevrey-1 property is the leading term of a general large-order
formula that involves infinitely many other sectors of the transseries. We will worry about
those later in this chapter. This section is devoted only to the dominant instanton actions,
A

dom

.
As we move in moduli space A

dom

can change abruptly. This is because another instanton
actions that was larger in absolute value has become smaller, and thus, it is less exponentially
suppressed as g goes to infinity. Therefore, we can write

A
dom

= min
↵
{A↵}, (4.2)

where ↵ runs over the di↵erent sectors in the transseries, and the minimum is understood
with respect to the absolute value—the instanton actions can be complex in general but
their relevance to the perturbative large-order is determined by the absolute value. Before
analyzing in more detail A

dom

as a function on moduli space, we must provide numerical
evidence of the claims made in chapter 3 about the holomorphicity of the instanton actions.

At the numerical level we can extract the dominant instanton action as explained in
chapter 1 or equation (3.131),

A2

dom

= lim
g!1

4g2

F (0)g

F
(0)

g+1

. (4.3)

This limit is independent of the constant b because it appears in a subleading term that
goes to zero in the limit. Due to the (2g)! growth we can only extract the square of A

dom

.
This is related to the fact that there are instanton actions of opposite signs contributing and
implying the (2g)! instead of a simple g! growth. The numerical limit in (4.3) is obtained
using Richardson transforms on the right-hand-side sequence as explained in section 1.5.2.
To show holomorphic independence of the instanton actions we focus on a point in moduli
space, that is, a fixed value of  (or z), and study how A2

dom

changes with Szz. There are
some practical limitations to this approach due to the restricted number of perturbative
free energies to work with. The sequence of values {4g2F

(0)

g /F
(0)

g+1

}g=113

g=2

starts converging
to A2

dom

at di↵erent critical values of g depending on Szz. This means that if we depart
too much from the holomorphic value of Szz—for which convergence is good—we will fail to
see convergence because it happens outside the working domain, g  114. We can see an
example of this in figure 4.1. This practical inconvenience will be present throughout this
chapter, and it will force us to restrict ourselves to values of the propagator for which we
can show convergence and Richardson extrapolation can be used e↵ectively.

Having commented on the practical domain of work, we can present evidence of holomor-
phicity of the dominant instanton action near the conifold point. It is shown in figure 4.2.
Each point in the 3d plot is obtained as a Richardson extrapolation for fixed value of  and
Szz. If the sequence of numerical points is stable we can take a big number of Richardson
transforms (large n in equation (1.52)) and achieve great precision. We see that the value
of A2

dom

remains stable as we change the value of the propagator until we move too far away
from the holomorphic limit and the e↵ected illustrated in figure 4.1 takes over. A similar
exercise can be done in other points in moduli space.

Let us now explore the moduli space dependence of A
dom

and study the di↵erent regions
of dominance. Advancing results that we will explain later, we are going to parametrize the
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Figure 4.1: Convergence of the limit in the right-hand-side of (4.3) for  = 2ei⇡/6 and
values of the propagator far from the conifold holomorphic limit, S

zz = (4+4i)Szz
[c],hol

(left)
and S

zz = (5 + 6.5i)Szz
[c],hol

(right). The critical value of the genus for which convergence
begins increases as S

zz increases. S

zz
[c],hol

can be taken as the relevant scale for the value of
the propagator.

complex structure moduli space with  , which is related to the original z by z = (�3 )�3.
The  -plane is a triple cover of the z-plane. Thus we divide the former in three wedges

ReHyL

Im
HyL 1

2

3

Figure 4.3:  -plane split in
three wedges, each identified
with a complete z-plane.

as shown in figure 4.3. We are going to work on wedge 1, but
the other wedges will become relevant soon. As we explained
in section 2.4, the special points in the  -plane are the large-
radius point at infinity, and the three conifold points at the
cubic roots of unity. There is a Z

3

-symmetry relating all the
conifold points that can be associated to the orbifold point at
 = 0.

If we consider the line in moduli space passing through the
conifold point,  = 1, and  = 0, we find that A2

dom

is negative,
or equivalently, that A

dom

is purely imaginary. Taking the limit
(4.3) for several values of  on this line we obtain the result in
figure 4.4. We see two di↵erent instanton actions building up
to A

dom

. One of them, on the right part of the plot, has the
value 4⇡2i. This is the instanton action we would find using
the holomorphic value of the free energies near the large-radius
point,

F (0)[LR]

g =
(�1)g�13B

2g�2

B
2g

4g(2g � 2)(2g � 2)!
+O(z). (4.4)

Putting this expression in (4.3) and taking the large g limit we find

A2

dom

= (4⇡2i)2 +O(z). (4.5)

The 4⇡2i term comes directly from the constant map contribution in (4.4) and was addressed
in detail in [36]. The extra term O(z) can be shown to vanish if we assume that A

dom

has
to be a combination of periods [143]. Indeed, if that assumption is true then we can write

A
dom

= a T + b @T F
(0)

0

+ c, (4.6)
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Figure 4.2: On top, a three dimensional representation of the holomorphicity of the
instanton action at  = 2ei⇡/6. We display the real and imaginary parts of (4.3) for
di↵erent values of the propagator, S

zz = S

zz
[c],hol

· (1 + x � i y). The horizontal plane
represents the theoretical value given by (4.8). Below, an example of one of the points,
(x, y) = (4,�4). If S

zz is not too large the numerical convergence can be accelerated
greatly. Otherwise, like the point (x, y) = (4, 4), convergence starts at too high genus, see
figure 4.1

with T and @T F
(0)

0

given by (2.59) and (2.60), respectively, for some constants a, b, c. But

T and @T F
(0)

0

have a logarithmic dependence on z of di↵erent degree, so no combination of
them can ever amount to O(z). Thus, a = b = 0 and c = 4⇡2i. This constant instanton
action is always going to be present because the constant map contribution is universal.
Once understood, it is best to remove it from the perturbative free energies,

F (0)

g �! F (0)

g � (�1)g�1 3 B
2g�2

B
2g

4g (2g � 2) (2g � 2)!
. (4.7)

The other instanton action in figure 4.4, which dominates around the conifold point, was
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Figure 4.4: Dominant instanton action around  = 1 as a function of  2 R. Two
di↵erent instanton actions can be distinguished between the conifold and large-radius point.
The constant map contribution is included and produces an instanton action 4⇡2

i.

already computed in section 3.7 based on the gap condition (2.82). It is

A
1

( ) =
2⇡ip

3
t
c

( ), (4.8)

where t
c

( ) is the flat coordinate around the conifold point  = 1, (2.68),

t
c

=
2⇡p

3
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If we move around in moduli space we are going to find a picture similar to figure 4.4, but with
slightly di↵erent takeover point. A very important exception occurs when arg( ) = ±⇡/3.
These are the boundaries of wedge 1 in figure 4.3, or the real positive z-line. More on this
separate case below.

If we remove the constant map contribution from the free energies, as in (4.7), the
instanton action 4⇡2i disappears in figure 4.4. A

1

takes its place until a smaller instanton
action takes over, see figure 4.5. This instanton action is associated to the large-radius point,
and just like for the conifold, it is proportional to the corresponding mirror map period,

A
K

= 4⇡2iT, (4.10)

where the Kähler parameter T is represented in closed form by a Meijer function,

T ( ) = � 1

2⇡i

p
3

2⇡
G22

33

✓

1

3

2

3

1
0 0 0

� 1

 3

◆

. (4.11)

The numerical analysis near the large-radius point is not as stable and precise as near the
conifold point. This can be seen for instance in figure 4.6 that compares the numerical limit
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the large-order growth without the constant map contribution. For su�ciently large | |
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Figure 4.6: Real and imaginary parts of the dominant instanton action squared (4.3)
for  = 50 ei⇡/4, and with one Richardson transform. For values  near the large-radius
point the limit converges slowly and with oscillations, which makes limits the e↵ectiveness
of Richardson extrapolation. Agreement with the analytic value of A

2

K

, (4.10), is around
0.1%.

(4.3) and one Richardson transform with the analytic value of the instanton action. We see
how the convergence is oscillatory and the accelerating technique is not well suited for it.
Nevertheless, there is agreement between both calculations to less than one percent. This
numerical instability is also reflected in the poor resolution of the transition between |A

1

|
and |A

K

| in figure 4.5, where two of the points converge outside of the picture.
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Borel plane and AK

So we see that after removing the constant map contribution form the free energies, there
is an instanton action related to the Kähler parameter, T , that becomes dominant near the
large-radius point. Its explicit expression is given in (4.11). Around the conifold point, and
all the way down to  = 0, we expect |A

K

| to be larger than |A
1

| because we have seen that
A

1

is the dominant instanton action in that area. However if we plot |A
K

| in that range
we find that it approaches zero as  ! 0, meaning that at some small value of  , A

K

is
the least instanton action. How can A

K

have the smallest absolute value and still not be
controlling the leading large-order growth? To answer this question we must go back to the
origins of the large-order relation (4.1) that we reviewed in chapter 1. The factorial growth
of the perturbative sector is determined by the poles of the Borel transform of F (0)(gs),

B[F (0)](⇠) =
1
X

g=2

F
(0)

g

(2g � 2)!
⇠2g�2. (4.12)

In the general theory, the singularity structure of the Borel plane is codified in the action
of the alien derivatives and the Stokes automorphism. There can be poles and logarith-
mic branch cuts endowing the Borel plane with a potentially complicated Riemann sheet
structure. Up to leading order, the large-order growth of the perturbative coe�cients is de-
termined by the closest singularity to the origin. However, as we vary the complex structure
modulus,  , this picture changes accordingly. This change does not beed to be continuous.
Indeed, due to the branch cuts present, some of the poles may disappear as the modulus
is varied. A known explanation for this is that the pole has moved to another Riemann
sheet of the Borel complex surface and it is not visible anymore. In order to see if the pole
corresponding to A

K

actually disappears for some value of  as it approaches zero, we need
to have a look at the Borel plane. Since we do not know all the perturbative free energies to
compute the exact Borel transform—and even then resummation could be challenging—we
have to rely on Padé approximants of a truncation (partial sum) of the Borel transform.
Padé approximants have the form of a rational function and the poles tend to mimic the
singularities in the actual Borel plane. If we do this numerical exercise we can see that a
pole corresponding to A

K

disappears for some value of  around 1, a region where A
K

is still
very subleading. We show this in figure 4.7. This result points to the fact that the string
free energy has a complicated multibranched Borel structure in which the so-called higher
Stokes phenomenon [155] is present and has a relevant role. This phenomenon deserves more
investigation both at the numerical and, if possible, analytical level.

Instanton action at the large-radius point

We finish this section at the large-radius point,  �1 = 0. We have seen that for  near 0 the
conifold instanton action A

1

is dominant. As we increase the value of  inside wedge 1 of
figure 4.3 there is a change of dominance to the Kähler instanton action A

K

. This instanton
action dominates all the way to the large-radius point, increasing as  reaches infinity. At
 �1 = 0, A

K

diverges logarithmically. Since all the other instanton actions are subdominant,
that is, they have larger absolute values, we must conclude that the Borel plane has to be
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Figure 4.7: Padé analysis of the Borel singularity structure. We illustrate snapshots of
the Borel plane for di↵erent absolute values of the modulus  . The red circle shows the
analytical value of the conifold action A

1

, and the red line the trajectory it follows as the
modulus is varied. Similarly for the green square and trajectory, associated to the conifold
action A

2

, see section 4.1.2; and for the purple rhombus and trajectory, associated to the
large-radius action A

K

. The black dots are the Padé poles of the Borel transform of the
perturbative free energy, and their accumulation signals a branch cut. Around | | ' 1
the Padé pole associated to the large-radius action disappears from the principal Riemann
sheet of the perturbative sector.

free of singularities exactly at the large-radius point. This means that the perturbative free
energies cannot be of Gevrey-1 type and the F (0)(gs) series must be convergent. However,
this is not what we find. First of all, let us recall that we are working with a version of
the free energies where the constant map contribution has been removed. Therefore, in the
holomorphic limit, the free energies are exactly zero at the large-radius point. The zero series
is trivially convergent so let us explore the antiholomorphic dependence. If we fix the value
of the propagator and take the limit z ! 0 (equivalent to  �1 ! 0) we get a divergence for
the perturbative free energies at each genus. To prevent this we must rescale the propagator
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diverges for ⌃ = 1

2

. On the right plot we check formula (4.17). µH is nonanalytic at ⌃ = 1

2

.

accordingly, in the same way that the holomorphic limit does,

Szz
[LR],hol

= z2

✓

1

2
+ 9z + · · ·

◆

. (4.13)

So we define a new antiholomorphic variable ⌃ by Szz := z2⌃, and the rescaled free energies
at the large-radius point,

H(0)

g (⌃) := lim
z!0

F (0)

g (z, z2 ⌃). (4.14)

If we numerically analyze the large-order of H
(0)

g we find

H(0)

g ⇠ �(g � 1)

AH(⌃)g�1

µH(⌃). (4.15)

AH(⌃) is an instanton action whose functional dependence can be guessed easily from the
numerics,

AH(⌃) =
6

�

⌃� 1

2

�

3

. (4.16)

See the left plot in figure 4.8. The function µH(⌃) should be related to the one-instanton
sector associated to this instanton action. After some guess work we find,

µH(⌃) =
1

2⇡
exp

1

2

⌃� 1

2

. (4.17)

There are two important things to notice from the large-order behavior in (4.15). The first
is that the instanton action is nonholomorphic. From the results derived in chapter 3 and
the numerics in this section we would have expected no instanton action, or in any case, a
holomorphic one. Since we are looking at a particular point in moduli space this means a
constant instanton action. But we find a simple dependence in ⌃. Notice that the instanton
action AH blows up at ⌃ = 1

2

. This is exactly the holomorphic limit of the original F
(0)

g free
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energies which are vanishing. More precisely, H
(0)

g =
�

⌃� 1

2

�

2g�3

Pol(⌃; g). The factor µ(⌃)
also blows up at ⌃ = 1

2

. The second important feature of this behavior is that the factorial
growth is not (2g)! anymore, but simply g! (or actually (g � 2)!). Let us stress that the

new series H(0)(gs) defined from F
(0)

g by (4.15) is still a series in g2

s . This may be a simple
curiosity without further implications but investigating it further may help understand how
to take simultaneous limits of the propagator and the complex structure modulus. It would
also be nice to see in more detail how this transmutation from a (2g)! to a g! growth happens
exactly.

4.1.2 Other instanton actions

Beyond the dominant instanton actions we have analyzed above there may be, and indeed
there are, other instanton actions that cannot be directly detected at leading order. In this
subsection we show that there are at least two other instanton actions besides A

1

and A
K

that we denote by A
2

and A
3

. Just like A
1

is related to the first conifold point at  = 1,
A

2

and A
3

are related to the remaining conifold points in the  -plane at  = e+2⇡i/3 and
 = e�2⇡i/3, respectively. The e↵ect of these instanton actions is quite indirect to leading
order and one has to go to subleading terms of the perturbative large-order relation to see
them explicitly. We will do this later in section 4.2.2. Nevertheless, this is a good point to
introduce them and lay out a picture of what the transseries for local CP2 looks like.

Let us focus on a region of moduli space around the conifold point  = 1. We have
mentioned before that for almost all the points in wedge 1, the dominant instanton action
is A

1

. However, when arg( ) = ±⇡/3, the behavior of the perturbative free energies is
oscillatory in the genus g, and a dominant instanton action cannot be extracted by a large
g limit. For real values of the propagator we find

F (0)

g ⇠ �(2g � 1)

|A
1

|2g�1

|c| cos (✓A(2g � 1)� ✓c) (4.18)

where ✓A is the argument of A
1

and ✓c is the argument of c, recall (1.65). We show the
oscillations in g in figure 4.9. A full explanation for this plot, including frequency, phase,
and amplitude of oscillation will have to wait until section 4.2.1. Without going into details,
we can say that because the perturbative free energies are real, the right-hand-side of their
large-order growth must somehow be real as well. The instanton action A

1

is complex
for arg( ) = ±⇡/3 so a complex conjugate contribution must appear for everything to be
consistent. This contribution is either A

2

or A
3

depending on the sign of arg( ). These
are the instanton actions associated to the conifold points at  = e+2⇡i/3 and  = e�2⇡i/3

found across the border of wedge 1. The three conifold points at the cubic roots of unity are
related by a Z

3

-symmetry whose origin is the orbifold symmetry at  = 0. This symmetry
is naturally translated to the instanton actions by rotation of a third of a full turn in the
 -plane. In this way we define,

Ai( ) =
2⇡ip

3
t
c,i( ), i = 1, 2, 3, (4.19)

where

t
c,1( ) = t

c

( ), (4.20)
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t
c,2( ) = t

c

(e�2⇡i/3  ), (4.21)

t
c,3( ) = t

c

(e+2⇡i/3  ). (4.22)

This shows the importance of working on the covering  -plane. The wedges 1 to 3 in figure
4.3 are all equivalent to each other by rotational symmetry, so we only need to work with
one of them. We choose wedge 1. Notice that the perturbative free energies incorporate the
Z

3

-symmetry in their holomorphic dependence because they are functions of z, or  3. But
higher instanton free energies will break this symmetry, depending on the transseries sector,
as we will see later.

From the explicit form of A
2

and A
3

we can see that they are always subleading with
respect to A

1

except at the boundaries of wedge 1, as shown in figure 4.10. At those two
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Figure 4.10: Absolute value of the conifold points for | | = 2 (left) and | | = 1

4

(right),
as arg( ) is varied. A

2

and A

3

are always subdominant in the interior of wedge 1, and of
equal absolute value at the boundaries.

boundary lines in moduli space, A
1

and A
2

, or A
1

and A
3

, respectively, become complex
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conjugate of each other (up to a sign which is compensated by another sign in c in (4.18)).
In the interior of the sector, A

2

and A
3

are subdominant. We also see in figure 4.10 that the
instanton actions can have discontinuities on the  -plane. If we have a look at the functional
form of Ai, i = 1, 2, 3, expressed in terms of two hypergeometric functions, we see that there
are three potential branch cuts starting at the cubic roots of unity and going o↵ to infinity.
However, only two of the three are present. For A

1

there is no branch cut in wedge 1, and
similarly for A

2

and A
3

. This situation is represented in figure 4.11. In the numerical large-

ReHyL

Im
HyL

ReHyL

Im
HyL

ReHyL
Im
HyL

Figure 4.11: Branch points and cuts of the conifold instanton actions A

1

(left), A

2

(center) and A

3

(right), in the complex  plane. The branch points correspond to the
conifold points  = 1,  = e2⇡i/3,  = e�2⇡i/3.

order analysis we perform in this section and the rest of this chapter the discontinuities of the
instanton actions do not lead to any inconsistencies, although dominance and subdominance
regions do not allow for a thorough exploration. These discontinuities may be relevant when
discussing the resummation of the transseries. We show the discontinuities for a fixed value
of | | (greater than 1) and varying argument in 4.12 and a three-dimensional representation
in figure 4.13.

As we mentioned in the introduction to this section, there can only be three linearly
independent instanton actions because they are solutions of the Picard–Fuchs equation.
Since the conifold instanton actions are not constant, some combination of them must be.
From their explicit dependence in  and Z

3

-symmetry it is immediate to check that

A
1

+ A
2

+ A
3

= �4⇡2i. (4.23)

Notice that 4⇡2i is the instanton action associated to the constant map contribution, not
a mere complex number. Moreover, the relation between all these instanton actions is not
only C-linear but Z-linear. This leads to resonance between all the corresponding sectors.
Removing the constant map contribution should be done carefully because there may be a
full transseries sector associated with it. We will comment more on this later. Besides this
linear relation there is another one expressing the Kähler instanton action in terms of the
conifold ones. Due to brach cuts we have A

K

= A
1

� A
2

for arg( ) > 0 and A
K

= A
3

� A
1

for arg( ) < 0. Finally, there is resonance between each instanton action and its negative,
+A+(�A) = 0. This must be so in order to have a g2

s -expansion for the perturbative sector
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Figure 4.12: Real parts, imaginary parts, absolute values, and arguments of the three
instanton actions for fixed absolute value | | = 2 and varying arg( ). We did not include
the negative instanton actions, �Ai, i = 1, 2, 3.

and will be checked explicitly in the large-order of the one-instanton sector associated to A
1

in section 4.3. Also in the Borel plane in figure 4.7 poles of both signs appear. All in all the
transseries for local CP2 can be very complicated with a large number of parameters and
multiple resonances.

Phase diagrams

We end this section with some comments on the phase diagram of the local CP2 free energy.
This phase diagram encodes information about the transseries sectors that will be relevant
for resummation. To have a proper expansion beyond perturbation theory in gs, the expo-
nential monomials must vanish in the gs ! 0 limit. Otherwise the concept of perturbative
sector would be inconsistent. Therefore, the physical transseries expansion must only include
sectors for which Re(A/gs) > 0. For all the other sectors the transseries coe�cients �� must
vanish as we explained in section 1.3.2. Since the instanton actions are moduli dependent the
previous condition will be true only in some region in moduli space. We show two possible
phase diagrams, depending on the value of gs, where the relevant conifold sectors are de-
picted, in figure 4.14. The boundaries, where Re(A/gs) = 0, are called anti-Stokes lines, and
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Figure 4.13: On top, real and imaginary parts of the conifold instanton actions in the
 -plane. Below, the absolute values that show dominance and subdominance. Di↵erent
instanton actions are joined along branched cuts marked with black lines.

they mark the region where some exponentially suppressed sectors are not suppressed any-
more and a phase transition occurs. Further understanding of the phase diagrams, including
other instanton actions and in other regions in moduli space, will be crucial to attempt a
resummation of the transseries.

4.2 Large-order analysis of perturbation theory

The resurgent analysis of local CP2 presented in this chapter follows a kind of constructive
approach. We start with data of which we are certain, the perturbative free energies, and
extract all the information we can from it using numerical large-order analysis. This infor-
mation regards higher instanton sectors of the transseries, starting with the one-instanton,
two-instanton sectors, etc. We then proceed to understand the newly discovered free en-
ergies in terms of solutions of the holomorphic anomaly equations explained in chapter 3.
Once all the numerical results are reproduced by analytic expressions we go on to analyze
the large-order growth of the higher instanton sectors. This systematic approach would,
in principle, allow us to to uncover the complete resurgent structure of the model and the
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Figure 4.14: Phase diagrams for local CP2. On the left, gs 2 R+; on the right gs 2 iR+.
The anti-Stokes phase boundaries satisfy Re (A( )/gs) = 0 and in the plots we mark which
instanton actions satisfy Re (A( )/gs) > 0, in each region of the complex  plane. Straight
double lines on the right plot indicate a branch-cut jump in Re (A( )/gs) from positive to
negative value.

form of the transseries including all possible sectors. In practice, we restrict ourselves to
the study of perturbative large-order growth to leading and subleading order (O(2�g)) in
this section, and the one-instanton large-order growth in the following section. We focus on
conifold instanton sectors for which we have a strategy to fix the holomorphic ambiguities.

The notation used to refer to the di↵erent sectors of the transseries can become very
long and distracting because we have many parameters or instanton actions. We order the
instanton actions in the following way

A
1

, �A
1

, A
2

, �A
2

, A
3

, �A
3

, A
K

, �A
K

, . . . (4.24)

We allow for the possibility of further sectors associated to other instanton actions. Even
though we do not find them in our analysis, we cannot discard their presence. In any case,
their influence would remain deep in the large-order and it would be very subleading. In this
section we only have to deal with pure sectors. These are of the form (0| · · · |0|n|0| · · · |0). If
the nonnegative integer n sits in the i-th position we use the notation

(n"i) := (0| · · · |0|n|0| · · · |0). (4.25)

Since we have a resonant pairing of +Ai and �Ai for all instanton actions and there is a
symmetry between the corresponding free energies, as explained in section 1.5.3, we end up
working with the free energies associated to +Ai. Therefore, we introduce the notation

(nei) := (n"
2i�1

). (4.26)
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For example, (3"
3

) = (3e
2

) corresponds to (0|0k3|0k0|0k0|0k0 · · · ), where we have used a
double bar to show more clearly the separation between sectors of di↵erent instanton action
up to a sign. In this section we will only encounter the following sectors,

(e
1

) = (1e
1

) = (1"
1

) = (1|0k0|0k0|0k0 · · · ), (4.27)

(e
2

) = (1e
2

) = (1"
3

) = (0|0k1|0k0|0k0 · · · ), (4.28)

(e
3

) = (1e
3

) = (1"
5

) = (0|0k0|0k1|0k0 · · · ), (4.29)

(2e
1

) = (2"
1

) = (2|0k0|0k0|0k0 · · · ). (4.30)

We learn in this section that the leading order growth of perturbation theory is controlled,
in most of the moduli space near the conifold point  = 1, by the one-instanton sector (e

1

)
free energies. Subleading to this contribution there are several competing sectors: (2e

1

),
(e

2

), and (e
3

), depending on the particular value of  . Schematically,

F (0)

g ⇠ �(2g � 1)

A2g�1

1

[(e
1

)]

+ max

⇢

�(2g � 1)

(2A
1

)2g�1

[(2e
1

)],
�(2g � 1)

A2g�1

2

[(e
2

)],
�(2g � 1)

A2g�1

3

[(e
3

)]

�

. (4.31)

However, on the boundaries of wedge 1, at arg( ) = ±⇡/3, either (e
2

) or (e
3

) also become
dominant along with (e

1

). For example, at arg( ) = +⇡/3,

F (0)

g ⇠ �(2g � 1)

A2g�1

1

[(e
1

)] +
�(2g � 1)

A2g�1

2

[(e
2

)], (4.32)

and |A
1

| = |A
2

|. The goal of this section is to make this schematic formula precise, both at the
level of numerical large-order computations—our principal guide in the study of resurgence—
and at the level of analytical expressions from the extended holomorphic anomaly equations.

4.2.1 Leading contribution

We separate the discussion into the two qualitatively di↵erent large-order growths: the
interior of wedge 1, �⇡/3 < arg( ) < +⇡/3; and the boundaries, arg( ) 2 {+⇡/3,�⇡/3}.

Interior case around conifold point

In this regime |A
1

| is always smaller than |A
2

| and |A
3

|, and all the other instanton actions
of the transseries. We checked the dominance of A

1

in section 4.1.1. Here we go deeper in
the large-order growth of the perturbative coe�cients and find a structure very similar to
what we described around (1.40). That equation was derived based only on the assumption
of resurgence and a particular form for the bridge equation (1.31). The first condition of
resurgence is still believed to hold, but we do not know what form of the bridge equation
this model satisfies. Therefore we must take an exploratory approach. This means taking
suitable numerical large g limits of particular combinations of the perturbative free energies,
F

(0)

g , in order to uncover the g-expansion of these coe�cients. We do not expect strong
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Figure 4.15: Numerical calculation of the limit limg!1 2g
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1� A2
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4g2

F
(0)

g+1

F
(0)

g

◆

computed at

 = 2 and S

zz = S

zz
[1],hol

. The result equal to 1 implies a �(2g � 1) growth for the
perturbative free energies.

deviations from (1.40); there will be Gamma functions of gs, exponentials of g, and so on.

What can di↵er is the precise role of the higher instanton coe�cients, F
(n)

h , in this large-g
expansion. We will explain the di↵erences as they appear.

To first order we find the following asymptotics

F (0)

g ⇠ �(2g � 1)

A2g�1

1

S
1,1

⇡i
F

(e
1

)

0

. (4.33)

Before focusing on the one-instanton contribution, F
(e

1

)

0

, let us note that the factorial de-
pendence is �(2g�1). In particular, the number �1 should be related to the starting powers
b(0) = �2 and b(e

1

). If the usual bridge equation (1.31) were to hold we would have a de-
pendence like �(2g + b(0) � b(e

1

)), which would imply b(e
1

) = �1. We will see later that this
result is not consistent with other numerical calculations and with computations from the
holomorphic anomaly equations. Notice that the dependence on �(2g � 1) is the one we
found analytically in the previous chapter from equation (3.152). The large g limit there can
be done numerically for the case of local CP2 (not necessarily in the holomorphic regime)
and we obtain the same result. See figure 4.15.

The one-loop one-instanton contribution to the perturbative large-order growth is given
by

S
1,1

⇡i
F

(e
1

)

0

. (4.34)

Here S
1,1 is the Stokes constant coming from whatever bridge equation is at work. The

denominator is one over ⇡i instead of 2⇡i because (4.34) is actually the combination of

symmetric contributions from the sectors ("
1

) and ("
2

), as in (1.62). F
(e

1

)

0

is found to
be, after comparing to numerical results, the free energy one computes from the extended
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Figure 4.16: Large-order check of S
1,1

⇡i F

(e
1

)

0

at three points in moduli space:  = 1

2

e�i⇡/5

(left),  = 2

2

e+i⇡/4 (center),  = 2 (right). Variation on the horizontal x-axis is equivalent
to changing the value of the propagator,Szz, as S

zz = S

zz
[1],hol

· (1+ ix). Real and imaginary
parts of the limit (4.35) are represented by blue and and green dots, respectively. The lines
plot the analytic value of the one-instanton free energy.
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Figure 4.17: Real (left) and imaginary (right) parts of the limit (4.35) along with three
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holomorphic anomaly equations. The numerical value of (4.34) is given by the limit

S
1,1

⇡i
F

(e
1

)

0

= lim
g!1

A2g�1

1

�(2g � 1)
F (0)

g , (4.35)

that can be evaluated for di↵erent values of  and Szz. In figure 4.16 we show the propagator
dependence of (4.35) for three di↵erent values of  . Each point in the plots is obtained by
taking a few Richardson transforms on the g-sequence in order to reach enough significant
figures. We show an example for a particular value of Szz in figure 4.17 In both figures 4.16
and 4.17 we have included the exact result that the numerical limit tends to. It is computed
form the holomorphic anomaly equations in the following way.

Since we are working with a pure one-instanton sector the distinction between one and
multi-parameter transseries vanishes. Thus, we can borrow the description of the solution
for F

(1)

0

in section 3.3.2 around (3.40). Using that the relevant instanton action is A = A
1
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we can write
F

(e
1

)

0

= f
(e

1

)

0

(z)e
1

2

(@zA
1

)

2Szz
, (4.36)

where f
(e

1

)

0

(z) is the holomorphic ambiguity. To fix it we have to recall the general analysis
of the perturbative free energies performed in the conifold holomorphic limit in section 3.7.
There we found that due to the divergent nature of the gap condition (2.82) at the conifold
point—in this case  = 1—the large-order growth can be spelled out in great detail to many
orders. In particular we found

F (e
1

)

g ⇠ �(2g � 1)

A2g�1

c

A
c

2⇡2

. (4.37)

This is the piece of information we need to fix the ambiguity, up to the Stokes constant. We
conclude

S
1,1

⇡i
F (e

1

)

0

=
A

1

2⇡2

, (4.38)

where we have specified that the particular conifold instanton action is A
1

. For the one-
instanton sector we find that we can drop the tilde in (3.151). The curly F on the left-hand-
side indicates in this case the holomorphic regime with respect to the first conifold point, for
which

Szz ! Szz
[1],hol

. (4.39)

Putting all the ingredients together determines the full form of the one-loop one-instanton
free energy

S
1,1

⇡i
F

(e
1

)

0

=
A

1

2⇡2

e
1

2

(@zA
1

)

2(Szz�Szz
[1],hol

). (4.40)

Two comments on this result. First, the holomorphic limit (4.38), which is universal, can
be checked for the example of local CP2 in figure 4.16 by looking at the value of the graphs
crossing the vertical axis. Second, the exponential dependence on the propagator matches the
large-order numerical calculations as shown in figure 4.16. If we did not have an extension
of the holomorphic anomaly equations from which to compute (4.40) we could still have
been able to guess the exponential dependence, and from that gain some information about
the equation that F

(e
1

)

0

satisfies. This guessing game is not the most e↵ective road to
nonperturbative exploration but in some cases it could give a clue to continue.

The next correction to (4.33) is

F (0)

g ⇠ �(2g � 1)

A2g�1

1

S
1,1

⇡i
F

(e
1

)

0

+
�(2g � 2)

A2g�2

1

S
1,1

⇡i
F

(e
1

)

1

. (4.41)

The second term is subleading in 1

g
with respect to the first one. Using the analytical

expression for S
1,1

⇡i
F

(e
1

)

0

we can perform the limit

S
1,1

⇡i
F

(e
1

)

1

= lim
g!1

A2g�2

1

�(2g � 2)

✓

F (0)

g � �(2g � 1)

A2g�1

1

S
1,1

⇡i
F

(e
1

)

0

◆

. (4.42)

We can explore this limit for various values of  and Szz. All the numbers we find from
Richardson transform on this sequence can be reproduced to great precision if F

(e
1

)

1

is com-
puted from the holomorphic anomaly equations in the same way as before. In chapter 3 we
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learned that this free energy is the product of an exponential times a polynomial of degree
3,

F
(e

1

)

1

(z, Szz) = e
1

2

(@zA
1

)

2(Szz�Szz
[1],hol

)
⇣

f
(e

1

)

1

(z) + R
1

Szz + R
2

(Szz)2 + R
3

(Szz)3

⌘

. (4.43)

Here Ri = Ri(z, A1

, @zA1

, @2

zA1

) is rational as a function of z and polynomial in A
1

, @zA1

and @2

zA1

. This is because in the equation for F
(e

1

)

1

there are several rational functions of
z coming from the Yukawa coupling Czzz in (2.62), f̃ z

zz in (2.78) and f zz
z in (2.79). Also,

the dependence of the equation on F
(e

1

)

0

brings down powers of Szz
[1],hol

from the exponential.

Due to the relation to @zF [c](0)

1

in (2.73) we can write

Szz
[1],hol

= � 1

Czzz

✓

@2

zA1

@zA1

� f̃ z
zz

◆

. (4.44)

The derivative @zA1

in the denominator is always cancelled by a similar positive power
coming from the quadratic term (@zA1

)2 in the exponential, leading to the final polynomial
dependence.

The holomorphic ambiguity is fixed against (3.154), that is,

S
1,1

⇡i
F (e

1

)

1

=
1

2⇡2

. (4.45)

The higher order corrections to the factorial growth of F
(0)

g can be written as

F (0)

g ⇠
1
X

h=0

�(2g � 1� h)

A2g�1�h
1

S
1,1

⇡i
F

(e
1

)

h . (4.46)

Each term S
1,1

⇡i
F

(e
1

)

h can be extracted by a large-g limit as explained in chapter 1,

S
1,1

⇡i
F

(e
1

)

h = lim
g!1

A2g�1�h
1

�(2g � 1� h)

 

F (0)

g �
h�1

X

h0=0

� (2g � 1� h0)

A2g�1�h0

1

S
1,1

⇡i
F

(e
1

)

h0

!

. (4.47)

We show two examples of this limit, for h = 2 and h = 4 in figure 4.18. A visual check
for the propagator dependence of the free energies is shown in figure 4.19 for h = 1, 2, 3.
The di↵erence between the numerical and analytical results can be made very small by
increasing the number of Richardson transforms. The only constraint is the finite number
of perturbative coe�cients. Note that in order to keep su�cient numerical precision when
going to high loop number h, we have to use the exact expressions for every function on
the right-hand-side of (4.47). Otherwise errors propagate quickly and the numerical limit is
impossible to take.

For h � 2 the holomorphic ambiguity f
(e

1

)

h is fixed by requiring that the holomorphic
limit of the free energies vanishes. This is in agreement with 4.19 and what we found in
equation (3.161). For general h, the structure of the solution is

S
1,1

⇡i
F

(e
1

)

h = e
1

2

(@zA
1

)

2(Szz�Szz
[1],hol

)Pol(Szz; 3g). (4.48)
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Figure 4.18: Real (left) and imaginary (right) parts of the limit (4.47) and the analytic
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i).

The coe�cients of the polynomial are rational functions of z and polynomials in A
1

, @zA1

and @2

zA1

. No higher derivative terms appear because we can trade them for lower ones
using the Picard–Fuchs equation. At the practical level this is a necessary step in order to
have moderately compact formulae. For local CP2 we can push the computation to h = 21
but at a great cost in memory. See appendix C for more details on the structure of the free
energies. We finish this part with several comments.

The large-order growth of the perturbative sector that we find has the same form as the
one derived from a bridge equation like (1.31). The free energies appearing there have the
interpretation of one-instanton coe�cients of the transseries. They are computed from the
extended holomorphic anomaly equations (3.85), for (n) = (e

1

). Notice that the quadratic
term in the equations drops so there is no dependence of the solutions on the starting power
b(e

1

). One has to go to higher sectors to see it. The complete computation of the free energies
needs information about the resurgence relations in order to fix the ambiguity. This implies
that only the combination S

1,1

⇡i
F

(e
1

)

h is known. The ambiguity on the value of the Stokes
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Figure 4.19: Numerical check of the propagator dependence of the one-instanton higher-
loop free energies for three value of the modulus:  = 1

2

e�i⇡/5 (left),  = 2

2

e+i⇡/4 (center),
 = 2 (right). As in figure 4.16, S

zz = S

zz
[1],hol

· (1 + ix). The lines plot the analytic value
of the one-instanton free energies (4.48).

constants is not actually a problem by itself because the only situation where we need them
is in the physical resummation of the transseries. But there we also need to worry about
the value of the transseries parameter �

1

, and the dependence is such that only the product
�

1

/S
1,1 has to be determined.

On the topic of the Stokes constants we have implicitly assumed that they are actually
complex numbers. However, the general arguments that lead to a bridge equation allow for
them to be dependent on any parameters in the problem, other than gs. This means that,
potentially, we could have

S
1,1 = S

1,1( , Szz). (4.49)

This turns out not to be the case and the evidence comes from the large-order numerics.
First of all let us notice that the ambiguity fixing condition is valid in the holomorphic limit.
So (4.38) is actually,

S
1,1

⇣

 , Szz
[1],hol

⌘

⇡i
F (e

1

)

0

=
A

1

2⇡
. (4.50)

Once the ambiguity is fixed, we can plug the result back in the asymptotic expression for
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F
(0)

g which involves the full Stokes “constant”, S
1,1( , Szz). So (4.33) would read

F (0)

g ⇠ �(2g � 1)

A2g�1

1

0

@

S
1,1 ( , Szz)

S
1,1

⇣

 , Szz
[1],hol

⌘

1

A

A
1

2⇡2

e
1

2

(@zA
1

)

2(Szz�Szz
[1],hol

). (4.51)

But the numerical analysis of the propagator dependence of this expression shows that

S
1,1( , Szz) = S

1,1

�

 , Szz
[1],hol

�

, (4.52)

so the Stokes “constant” is at least holomorphic. To show that it is a constant we have
to notice that the equation for F

(e
1

)

1

involves z-derivatives F
(e

1

)

0

because of recursion. This

would add an extra term for F
(e

1

)

1

involving @zS1,1/S1,1 which we did not consider because
the numerics is not compatible with it. Thus,

@zS1,1 = 0. (4.53)

A way to understand why the Stokes constants do not carry any parameter dependence, even
when they are allowed to do it, is by looking at what happens in other examples. For di↵er-
ential equations there are usually no external parameters. However, in the computation of
the transseries, the one-loop coe�cient of the one-instanton sector is usually not determined
by the recursion due to homogeneity, and it is set to unity by convention. The ambiguity is
regarded as an integration constant associated to the transseries parameter �. Analyzing the
perturbative large-order would give in that case a numerical value for the Stokes constant
since F

(1)

0

was set to one. So already here we see some ambiguity and freedom to set certain
quantities to simple values and letting others carry important information. In our case the
nature of the equations is di↵erent and F

(1)

0

is determined, up to the holomorphic ambiguity.
It cannot be set to unity because it has modulus and propagator dependence. In this way
it is not so surprising to see that S

1,1 is independent of  and Szz because F
(e

1

)

0

is already
carrying that information. In matrix models it is found that the Stokes constant can depend
on the ’t Hooft parameter.

Boundary case around conifold point

As we saw in the previous section, A
2

and A
3

are always subdominant to A
1

in wedge 1,
except when

arg( ) 2 {+⇡/3,�⇡/3}. (4.54)

In figure 4.10 one can see the takeover of dominance when leaving wedge 1 through the
boundaries. For the sake of definiteness let us focus on arg( ) = +⇡/3, where both A

1

and
A

2

are dominant. More precisely,

A
1

= �A⇤
2

, (4.55)

@zA1

= � (@zA2

)⇤ , (4.56)

@2

zA1

= �
�

@2

zA2

�⇤
, (4.57)

Szz
[1],hol

= +
�

Szz
[2],hol

�⇤
. (4.58)
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The last equation can be derived from the previous two by expressing the holomorphic limit
of the propagator in terms of the instanton actions, as in (4.44).

In this region of moduli space, the perturbative free energies have the following asymp-
totics

F (0)

g ⇠ �(2g � 1)

A2g�1

1

S
1,1

⇡i
F

(e
1

)

0

+
�(2g � 1)

A2g�1

2

S
1,2

⇡i
F

(e
2

)

0

, (4.59)

which combines contributions from (e
1

) and (e
2

) on the same footing. F
(e

2

)

0

can be computed

from the holomorphic anomaly equations equations in the same way that F
(e

1

)

0

was. The
corresponding ambiguity is fixed up to the Stokes constant by the equation analogous to
(4.38). The two solutions are formally the same. Using the explicit expressions for the free
energies and (4.55)-(4.58) we find

F (0)

g ⇠ �(2g � 1)

A2g�1

1

A
1

2⇡2

e
1

2

(@zA
1

)

2(Szz�Szz
[1],hol

) +
�(2g � 1)

(A⇤
1

)2g�1

A⇤
1

2⇡2

e
1

2

((@zA
1

)

⇤
)

2(Szz�(Szz
[1],hol

)
⇤
). (4.60)

The two contributions are almost complex conjugate to each other. This is the case if the
propagator Szz has a real value. The right-hand-side of (4.60) would then be real, agreeing
with the left-hand-side—arg( ) = ⇡/3 implies z 2 R+ so the perturbative free energies are
real. Introducing some notation we can provide a compact expression for (4.60) that shows
the dependence on g clearly. Let

A
1

= |A
1

| ei✓A
1 , µ = |µ| ei✓µ :=

A
1

2⇡2

e
1

2

(@zA
1

)

2(Szz�Szz
[1],hol

), (4.61)

Then the perturbative free energies show an oscillatory behavior in g with frequency con-
trolled by the argument of A

1

, and amplitude and global phase controlled by F
(e

1

)

0

,

F (0)

g ⇠ �(2g � 1)

|A
1

|2g�1

2|µ| cos (✓A
1

(2g � 1)� ✓µ) . (4.62)

In figure 4.20 we show an example of the oscillations and the prediction for large g. In this
case there is no clean way to extract ✓A

1

, ✓µ, etc, to check against the analytical result,
so the comparison is qualitative. This oscillatory behavior, result of complex conjugate
combination, is a consequence of having a complex instanton action but real perturbative
coe�cients. However the oscillations can be present in more general cases in which there is
no reality condition. This is what happens when the propagator is chosen not to be real.

Let us define

eµ = |eµ| ei✓eµ :=
A⇤

1

2⇡2

e
1

2

((@zA
1

)

⇤
)

2(Szz�(Szz
[1],hol

)

⇤), (4.63)

to find

F (0)

g ⇠ �(2g � 1)

|A
1

|2g�1

n

+ |µ| cos (✓A
1

(2g � 1)� ✓µ) + |eµ| cos (✓A
1

(2g � 1) + ✓eµ)
o

+

+ i
�(2g � 1)

|A
1

|2g�1

n

� |µ| sin (✓A
1

(2g � 1)� ✓µ) + |eµ| sin (✓A
1

(2g � 1) + ✓eµ)
o

. (4.64)
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Figure 4.20: Same numerical data as in figure 4.9 for  = 1.25ei⇡/3 and S

zz = 10�5 along
with the analytic prediction (4.62) represented by a dashed red line. This line is obtained
by joining the values of (4.62) for integer g rather than letting g be real. The latter way
of doing it would produce a wave of larger frequency.

0 20 40 60 80 100

-0.04

-0.02

0.00

0.02

0.04

g

Re
†A 1§

2
g-
1

GH2
g
-
1LF

gH0L

0 20 40 60 80 100

-0.04

-0.02

0.00

0.02

0.04

g

Im
†A 1§

2
g-
1

GH2
g
-
1LF

gH0L

Figure 4.21: Large-order oscillatory behavior of the perturbative sector due to simulta-
neous contributions of A

1

and A

2

, for a value of  = 1.1 ei⇡/3 and S

zz = �(1 + i)10�4.
The free energies are complex because the propagator is. Dashed lines are given by (4.64)

Now there is a real and an imaginary part. We show an example in figure 4.21.
We have only considered for these tests the one-loop free energies, F

(e
1

)

0

and F
(e

2

)

0

. In-
cluding higher terms would reproducing more and more accurately the oscillations shown in
the figures, up until the optimal truncation point. This is because the 1

g
series expansion of

|A
1

|2g�1

�(2g � 1)
F (0)

g (4.65)

is asymptotic. We will show that this is the case in section 4.2.2, on the subleading correction
to the large-order growth.
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4.2.2 Subleading contribution

Now that we have analyzed the leading contribution to the perturbative large-order growth,
we can start looking at the subleading terms. This is a very rewarding task because beyond
the sector (e

1

) there are three other competing sectors: (2e
1

), (e
2

) and (e
3

). We have rep-
resented this situation schematically in (4.31). In order to study the free energies associated
to these sectors we need to do a resummation of the one-instanton contribution. This is
an asymptotic series in 1

g
. In chapter 1 we have explained how to do this in various ways,

depending on what the situation demands.
However, there is a special regime for a particular value of the propagator, for which

resummation is trivial and coincides with the identity operator. In the holomorphic limit
Szz ! Szz

[1],hol

the (e
1

) free energies truncate after just two terms. The holomorphic limit is
quite rich, though. Since the instanton actions are holomorphic they can be studied entirely
in this regime. Also, we know from the analysis in section 3.7 what the holomorphic limit of
the subleading contribution near  = 1 should be. A numerical check for this confirms the
ambiguity fixing condition that will be used in the general nonholomorphic situation.

We separate this subsection in the natural holomorphic and nonholomorphic cases.

Holomorphic case

The holomorphic limit here refers to the one with respect to the first conifold point,

Szz ! Szz
[1],hol

. (4.66)

From here on, the curly F will always denote this limit, even if we do not include the
corresponding frame label.

In this situation the perturbative free energies have the asymptotic behavior

F (0)

g ⇠ �(2g � 1)

A2g�1

1

S
1,1

⇡i
F (e

1

)

0

+
�(2g � 2)

A2g�2

1

S
1,1

⇡i
F (e

1

)

1

(4.67)

=
�(2g � 1)

A2g�1

1

A
1

2⇡2

+
�(2g � 2)

A2g�2

1

1

2⇡2

=
�(2g � 1)

A2g�1

1

A
1

2⇡2

✓

1 +
1

2g � 2

◆

. (4.68)

Subleading contributions to the asymptotics are exponentially suppressed in g with respect
to the leading one. To study them we define the following quantity,

X (e
1

)

g :=
A2g�1

1

�(2g � 1)

 

F (0)

g �
1

X

h=0

�(2g � 1� h)

A2g�1�h
1

S
1,1

⇡i
F (e

1

)

h

!

. (4.69)

The large-order behavior of this quantity has information about contributions from (2e
1

),
(e

2

) or (e
3

), depending on the value of the complex structure modulus  . Which sector it is
depends on the ratio

✓

A
subl

A
1

◆

2

where A
subl

2 {2A
1

, A
2

, A
3

}. (4.70)
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Figure 4.22: Absolute values of the three conifold points, Ai, i = 1, 2, 3, of 2A

1

and
the Kähler instanton action A

K

, for | | = 2 (left) and | | = 1

4

(right). The subdominant
instanton action, second smallest, depends on the point in moduli space. For | | small
2A

1

is never subdominant, while for | | larger it can be around arg( ) = 0. A

K

does not
appear in the right plot because it has moved to another Riemann sheet; see discussion
around figure 4.7.

Using the analytic expression for the instanton actions we can immediately see which sector
dominates in which region. We see in figure 4.22 that there are two di↵erent situations de-
pending on the value of | |. If this quantity is small enough then 2A

1

is never the subleading
instanton action, while it is the two-instanton sector dominates the central region around
arg( ) = 0. We can also see this separation of the  -plane is regions of subdominance in
figure 4.23.

The general structure of X (e
1

)

g is

X (e
1

)

g ⇠
✓

A
1

A
subl

◆

2g�1

1
X

h=0

�(2g � 1� h)

�(2g � 1)

S
1,subl

⇡i
F (subl)

h . (4.71)

To extract A
subl

we take the limit

lim
g!1

X (e
1

)

g+1

X (e
1

)

g

=

✓

A
subl

A
1

◆

2

. (4.72)

We select two values of  associated to two di↵erent subleading instanton actions, and show
the perfect agreement with the analytic expressions in figure 4.24. The calculation of the
value of A

2

outside the boundary (arg( ) = ⇡/3) of wedge 1 proves that the instanton sectors
associated to the conifold points at e±i⇡/3 are as real as the one at  = 1, and that they all
contribute to the large-order growth of perturbation theory.

We can be systematic in the computation of the limit (4.72) and the comparison with
the right-hand-side, and display one on top of the other for di↵erent values of | | and arg( )
like in figure 4.22. See figure 4.25.

Let us explore now in more detail the di↵erent regions of this plot and uncover what is
the form of the free energies involved in (4.71). The regions where A

2

and A
3

subdominate
are essentially equivalent so we focus on A

2

and arg( ) > 0.
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Figure 4.23: On the left plot we show the separation of the  -plane according to which
instanton action controls the subleading growth of the perturbative sector. The conifold
point  = 1 lies inside the orange region dominated by 2A

1

because that instanton action
vanishes there. Around that area A

2

and A

3

are subleading with respect to A

1

, and further
away it is A

K

. Beyond that AK and A

1

interchange their subdominant and dominant roles.
Plots in figure 4.22 show circular sections of this plot for | | constant and small. On the
right plot we show the absolute value of the instanton actions along the dotted line and
we stress the subleading contribution with thickened lines.

For (subl) = (e
2

) the free energies, F (subl)

h are precisely those computed from the holo-
morphic anomaly equations and evaluated at Szz = Szz

[1],hol

. That is,

X (e
1

)

g ⇠
✓

A
1

A
2

◆

2g�1

1
X

h=0

�(2g � 1� h)

�(2g � 1)
Ah

2

S
1,2

⇡i
F

(e
2

)

h (z, Szz
[1],hol

). (4.73)

The form of F
(e

2

)

h (z, Szz) is the same as that for (e
1

) but with A
2

substituting A
1

in every
instance. We have already seen before the case h = 0 when arg( ) = ⇡/3 and the same
applies to higher loops. For general values of the propagator,

S
1,2

⇡i
F

(e
2

)

h = e
1

2

(@zA
2

)

2(Szz�Szz
[2],hol

)Pol(Szz; 3h), (4.74)

where the fixing of the ambiguity has been done by comparing against the natural holomor-
phic limit Szz ! Szz

[2],hol

. At that value we recover (3.159)-(3.161) for n = 1 and A
c

= A
2

.
These free energies have to be evaluated not at Szz

[2],hol

, but at Szz
[1],hol

,

F (e
2

)

h = F
(e

2

)

h (z, Szz
[1],hol

). (4.75)
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Figure 4.24: Numerical value for the limit (4.72) for  = 2 ei⇡/4 and  = 2. In the first
plot we plot both real and imaginary parts, along with the first Richardson transforms.
The agreement is better than one part in 106. In the second the exact result must be
exactly 4.

This means that there is no truncation of the large-order growth in this region of moduli
space. We show the agreement between the numerical free energies and the ones computed
from the holomorphic anomaly equations in figure 4.26 for h = 0, 1, 2.

We turn to the region in moduli space where 2A
1

is the subdominant instanton action.
In this case we need to reproduce the analytical results that we obtained in section 3.7.1,

X (e
1

)

g ⇠ 1

22g�1

1
X

h=0

�(2g � 1� h)

�(2g � 1)
(2A

1

)h (S
1,1)2

⇡i
eF (2e

1

)

h , (4.76)

where
(S

1,1)2

⇡i
eF (2e

1

)

0

=
1

2

A
1

2⇡2

,
(S

1,1)2

⇡i
eF (2e

1

)

1

=
1

22

1

2⇡2

, eF (2e
1

)

h�2

= 0. (4.77)

the reason for having put a tilde on top of the free energies, eF (2e
1

)

h can only be seen outside
the holomorphic regime. For now we just need to take the appropriate large g limits to
extract the objects in (4.77) and compare against (4.76). We do this for a particular value
of  and show the result in figure 4.27.
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Figure 4.25: The real and imaginary parts of the subleading instanton action squared,
A

2

subl

, where A

subl

can be 2A

1

(red), A

2

(green) or A

3

(blue) depending on the point in
moduli space. The numerical values are obtained from ratios of coe�cients X (e

1

)

g , for
| | = 2 (top) and for | | = 1

4

(bottom). The results are in correspondence with figure
4.22. Jumps are not due to branch cuts—not even the bottom one since the cuts start at
| | � 1—but to a change in dominance of the subleading instanton action.

Nonholomorphic case

For any value of the propagator, other than Szz
[1],hol

, the one-instanton contribution to the per-
turbative growth does not truncate. We have to worry then about the problem of performing
the resummation of the series

I(g) :=
1
X

h=0

�(2g � 1� h)

�(2g � 1)
Ah

1

S
1,1

⇡i
F

(e
1

)

h , (4.78)

which we can use to define the nonholomorphic extension of X (e
1

)

g ,

X(e
1

)

g :=
A2g�1

1

�(2g � 1)
F (0)

g � Resum[I(g)]. (4.79)

The choice of resummation technique is based on the comparison between the error of the
resummation and the order of magnitude of the subleading contribution, which is the infor-
mation we want to access. See section 1.5.2 for more details.
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Figure 4.26: (e
2

) free energy coe�cients, at  = 2 ei⇡/4, up to three loops. Numerical
results after several Richardson transforms are compared to analytic expressions (4.75).
The holomorphic limit is with respect to the first conifold point.
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Figure 4.27: Numerical tests of the holomorphic free-energy coe�cients (4.77), for the
(2e

1

) sector, with  = 2. Numerical results after several or no Richardson transforms are
compared against the analytic expressions. All higher-loop coe�cients, h � 2, are zero.

In the particular case that we are considering we can distinguish between the two situ-
ations in which we separated the discussion in the holomorphic case. When the subleading
contribution is (e

2

) or (e
3

), optimal truncation (ot) on I(g) is enough to study the large-

order growth of X
(e

1

)

g . Indeed, consider a particular choice of parameters,  = 2e2⇡i/9 and
Szz = 10�8, along with g = 50. Let

exact =
A2g�1

1

�(2g � 1)
F (0)

g , (4.80)

ot =
hot
X

h=0

ah

gh
, (4.81)

where we have expanded I(g) around g = 1 as in (1.55) and truncated the sum to its
optimal value. Then we can calculate

exact� ot ' 10�24, ot error ' 10�33, (4.82)

where the optimal truncation error is estimated by the next term in the series as in (1.7).
This error is much smaller than the order of magnitude of the subleading contribution,
estimated by

✓

A
1

A
2

◆

2g�1

' 10�24. (4.83)

On the other hand, when the subleading term is controlled by the (2e
1

) free energies and
2A

1

, the order of magnitude of this contribution is

✓

A
1

2A
1

◆

2g�1

' 10�30, (4.84)
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that is large but still rivals the optimal truncation error. One has, then, to use a more
powerful resummation method, like Borel–Padé, as explained in section 1.5.2.

When  is such that |A
1

| < |A
2

| < · · · the situation described around equation (4.73)
generalizes very mildly to

X(e
1

)

g ⇠
✓

A
1

2A
1

◆

2g�1

1
X

h=0

�(2g � 1� h)

�(2g � 1)
Ah

2

S
1,2

⇡i
F

(e
2

)

h . (4.85)

Now we can evaluate the propagator to any value of choice. See figure 4.28 for some examples.

The situation in which the subleading contribution is given by 2A
1

is more complicated and
new features appear that had not been seen before. The large-order behavior of X

(e
1

)

g is in
this case,

X(e
1

)

g ⇠ 1

22g�1

1
X

h=0

�(2g � 1� h)

�(2g � 1)
(2A

1

)h (S
1,1)2

⇡i
eF

(2e
1

)

h . (4.86)

Because we are not in the holomorphic limit anymore the sum over loops extends all the way
to infinity instead of truncating at h = 1. The other, more important surprising, di↵erence
is that the free energies sitting in (4.86) do not directly have the interpretation of elements
of the transseries that we can compute from the holomorphic anomaly equations. What we
know about the objects eF

(2e
1

)

h is that in the holomorphic limit they reduce to (4.77). However
if we start computing two-instanton free energies out the holomorphic anomaly equations
and fix the holomorphic ambiguities against this limit, we cannot reproduce the propaga-
tor dependence of eF

(2e
1

)

h computed numerically out of (4.86). Note that the holomorphic
anomaly equation (3.85) for (n) = (2e

1

) depends on the value

B(e
1

, 2e
1

) = 2b(e
1

) � b(2e
1

). (4.87)

We do not know what the value of this number is but we find disagreement for any choice.
The only situation in which the free energy computed out the holomorphic anomaly equation
and fixed with (4.77) agrees with the numerics is when B is such that the quadratic term in
(3.85) drops for each g. But this would put a value of infinity of B, which cannot be.

Fortunately, even though the function eF
(2e

1

)

h cannot be written as a single free energy, it
can in fact be written as the combination of two,

eF
(2e

1

)

h = F
(2e

1

)

h � bF
(2e

1

)

h . (4.88)

Both functions F
(2e

1

)

h and bF
(2e

1

)

h are calculated from the holomorphic anomaly equations as
two-instanton elements of the transseries, with

B(2e
1

, e
1

) = 0. (4.89)

For example, for g = 0 the holomorphic anomaly equation reads
✓

@Szz � 1

2
4(@zA1
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)

0

=
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2
(@zA1

)2
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F
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⌘
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, (4.90)



4.2. LARGE-ORDER ANALYSIS OF PERTURBATION THEORY 121

0 20 40 60 80
-66

-64

-62

-60

-58

g
0 20 40 60 80

-200

-198

-196

-194

-192

-190

g

S
1,2

⇡i
F

(e2)

0

= �63.059 684� 197.660 388 9 i

5 Richardson Transforms = �63.059 646� 197.660 384 1 i

0 20 40 60 80

20.0

20.5

21.0

21.5

22.0

22.5

23.0

g
0 20 40 60 80

21.0

21.5

22.0

22.5

23.0

23.5

24.0

g

S
1,2

⇡i
F

(e2)

1

= 20.958 451 4 + 22.089 526 167 i

5 Richardson Transforms = 20.958 453 5 + 22.089 526 107 i

0 20 40 60 80
4.4

4.6

4.8

5.0

5.2

5.4

5.6

g
0 20 40 60 80

8.8

9.0

9.2

9.4

g

S
1,2

⇡i
F

(e2)

2

= 4.804 186 3 + 9.002 264 0 i

5 Richardson Transforms = 4.804 185 4 + 9.002 263 2 i

Figure 4.28: Nonholomorphic counterpart of figure 4.26 for the sector (e
2

). Here  =
2 ei⇡/4 and S

zz = 10�5.

whose solution is a combination of two exponentials. The holomorphic ambiguities, f
(2e

1

)

0

and bf
(2e

1

)

0

, are fix di↵erently. f
(2e

1

)

0

is calculated like f
(e

1

)

0

, by comparing the holomorphic
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limit of F
(2e

1

)

0

against 1

2

A
1

2⇡2

. On the other hand, bf
(2e
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)

0

is obtained from the condition that
bF (2e
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0

vanishes. The end result is such that
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= F
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� bF
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2(Szz�Szz
[1],hol
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Higher loop free energies are computed and fixed in a similar way. See appendix C for a
more detailed description on the structure of the solutions. We can compare some numerical
values against these functions. See figure 4.29. The numerical convergence acceleration is
not as e↵ective for higher loops as it was in the previous cases due to loss of precision in the
resummation process.

4.3 Large-order analysis of the one-instanton sector

In this section we explore the asymptotic behavior of the one-instanton sector (e
1

) around
 = 1. We restrict to this sector and domain in moduli space because it is the most natural
continuation of the analysis done so far, and it contains many interesting properties needed
to understand resurgence in local CP2. These are resonance, triviality of the holomorphic
limit, and the connection to the subleading contribution to F

(0)

g incarnated in eF
(2e

1

)

g .
To study the large-order growth of the free energies F

(e
1

)

g (z, Szz) we must have a su�cient
number of them. That is, we must be able to compute recursively out of the holomorphic
anomaly equations free energies up to large enough g. This turns out not to be an easy task
in comparison with what is needed in the perturbative sector. In that case the size of the
free energies F

(0)

g did not grow too fast with g. The reason is that the free energies have the
form

F (0)

g = (Czzz)
2g�2 Pol(Szz; 3g � 3) (4.92)

and the coe�cients are polynomials in z of degree at most 8(g � 1). This combination of
linear growths can be maintained under control on the computer. For the one-instanton free
energies, on the other hand, we have an extra element to work with which makes their size
impossible to handle after a few orders, namely, the instanton action. The structure of the
functions F

(e
1

)

g is similar to that of the perturbative free energies,

F (e
1

)

g = e
1

2

(@zA
1

)

2(Szz�Szz
[1],hol

)Pol(Szz; 3g), (4.93)

but now the coe�cients have more structure due to the presence of the instanton action A
1

and its derivatives. The size of the coe�cients grows very fast with g and the free energies
quickly become too big. The recursive nature of the computation makes this even worse,
having to store in memory very large functions at a time. Some improvement comes after
substituting higher derivatives of A

1

in terms of lower ones, as we mentioned once before,
and seeing several cancellations happen. This allows us to compute up to around g = 20, but
still it does not provide us with a su�cient number of free energies to perform a large-order
analysis (some computations to leading order can be attempted but the results are poor).
To solve this bottleneck we must turn to a numerical approach. To be precise we want to fix
a point in moduli space, that is, a value of z or  , and evaluate as many free energies at that
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S
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point as we can. The dependence on the propagator remains symbolic, hence exact, because
the antiholomorphic structure stays simple and under control as g grows. Since we have to
perform up to second order derivatives in z to solve the holomorphic anomaly equations we
need to carry along not only the value of the free energies at z, but also at values close to
it, so that we can take those derivatives numerically as finite di↵erences. Precision drops as
the order g grows and it does so linearly, so we must start with precise enough initial data,
that is, values of z, A, @zA, perturbative free energies, etc. Because we already know the
propagator structure of the solution form general results, and we have checked it against
analytic calculations and large-order analysis, we can use it in the design of the algorithm.
The form of the free energies (4.93) can be spelled out as

F (1)

g = c eb Szz �

a
0

+ a
1

Szz + a
2

(Szz)2 + · · ·+ a
3g(S

zz)3g
�

, (4.94)

where b = 1

2

(@zA)2, c is a number involving the Stokes constant S
1

and factors of 2, ⇡ and
i, that we separate for convenience. The coe�cients of the polynomial, ak, are functions of
z evaluated at the point of choice. See appendix C for the general form of these coe�cients.
We store this information in lists,

F (1)

g 7! L := {c, b, {a
0

, a
1

, . . . , a
3g, 0, . . . , 0}} (4.95)

that will be manipulated as the algorithm runs. Because we have to keep the values of the
free energies for nearby values of z we need several, say N , of such L-lists. We collected
them in another list,

⇤ = {L
1

, L
2

, . . . , LN}. (4.96)

Working with numerical lists has the advantage of being able to apply fast operations on
them. These operations represent actions of usual functions such as taking a derivative with
respect to z or Szz, adding or multiplying two free energies, or any operation appearing
in the holomorphic anomaly equations. The first part of the algorithm translates all these
into actions on L and ⇤ lists. The second part implements the integration and fixing of the
holomorphic ambiguity in this syntax. With respect to the latter, the fixing condition can be
carried out in this way because it only implies the comparison of a holomorphic limit—easy
to implement in this language—and a prescribed function at a single point in moduli space,
namely (3.159)-(3.161). The whole procedure would break at this point if the fixing of the
ambiguity involved a global condition as is the case in perturbation theory. To check that the
numerical integration is correct we can compare the first loop free energies against the ones
computed in the traditional way. The complexity of the algorithm seems to be quadratic in
the order, based on experience, which allows us to reach up to g = 80 in about one day and
with small memory impact.

Even though we have only implemented the seminumerical algorithm for the one-instanton
sectors, it must be possible to extend it to higher sectors without too big a penalty on speed
or memory consumption. The main disadvantage of the method is that it has to be carried
out one point in moduli space at a time. But, on the other hand, we are able to retain full
dependence on the propagator.

From the examples of Painlevé I and II and the quartic matrix model [38, 40, 41], we
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expect the following asymptotic behavior for the one-instanton sector, see (1.64),

F (e
1

)

g ⇠ �(g + c)

(+A
1

)g+c
µ

0

(2e
1

) +
�(g + c)

(�A
1

)g+c
µ

0

(e
1,1). (4.97)

The notation here is the following. c is a constant that has to be found with the appropriate
large-order relation, see (4.100), and should be a function of the starting powers b(e

1

), b(2e
1

),
and b(e

1,1). We will discuss this point in the next section. (e
1,1) is shorthand for the mixed

sector of "
1

and "
2

,
(e

1,1) = (1|1k0|0k0|0k0 · · · ). (4.98)

µ
0

(2e
1

) and µ
0

(e
1,1) are quantities that, in the light of the examples mentioned above, are

expected to be proportional to the corresponding one-loop (h = 0) free energies. We have not

yet met the free energy F
(e

1,1)

0

but we have already encountered eF
(2e

1

)

0

in (4.91). However,
this is not the free energy that corresponds to µ

0

(2e
1

). The simplest reason is that their

holomorphic limits are di↵erent. Indeed, eF (2e
1

)

0

6= 0, see equation (4.77), while µ
0

(2e
1

) ! 0
as Szz ! Szz

[1],hol

. This has to be the case because the left-hand-side of (4.97) is zero in the
holomorphic limit for g � 2. By consistency µ

0

(2e
1

) and µ
0

(e
1,1) must also be zero in that

limit. So we see that the resurgence relations that hold for the Painlevé equations and the
quartic matrix model must be modified for the case of local CP2. See next section for more
details. Let us stress that at this point we are not certain µ

0

(2e
1

) or µ
0

(e
1,1) should exactly

be. A study of the resurgence relation (4.97) should tell us.
About (4.97) we must also mention that the factorial growth is in g, not 2g, as expect

from a sector, (e
1

), whose asymptotic series is in gs, not g2

s . Also the presence of both A
1

and �A
1

as dominant instanton actions shows explicitly the phenomenon of resonance, first
found in [38]. Because both signs of A

1

appear the large-order is oscillatory in g. However,
letting g be either even or odd eliminates any numerical obstacle associated with this issue.

Let us then go on and extract the value of the number c and also check that the dominant
instanton action is A

1

. In these calculations we have chosen  = 2 as the moduli space to
work with. A

1

can be calculated by the usual ratio of free energies, adapted to even or odd
orders,

A2
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)

2g+3

. (4.99)

We perform the limit for a nonholomorphic value of the propagator showing once again the
holomorphicity of the instanton action. The value of c is computed from the expression,

� 2c� 1 = lim
g!1

2g

 

1� A2

1

4g2

F
(e

1

)

2g+2

F
(e
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)

2g

!

. (4.100)

We show both limits in figure (4.30).
The numerical values of µ

0

(2e
1

) and µ
0

(e
1,1) are calculate from the following two limits,
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where we have multiplied F
(e

1

)

g by S
1,1

⇡i
since that is the combination that we can determine.

The results, for di↵erent values of the propagator are shown in figure 4.31, where  =
2e�i⇡/36. After looking at for a while at this plot and similar ones for other values of  , we
can figure out what the antiholomorphic dependence is. With a little more e↵ort we can
guess the rest of the functional dependence. It is
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Let us notice the quadratic dependence on A
1

, the coe�cients 2 and 4 in the exponentials of
(4.103) and the constant term in (4.104). Also, as expected, the holomorphic limit vanishes
for both functions.

The question now is, do these functions have an interpretation as elements of the trans-
series and can they be computed from the holomorphic anomaly equations? The answer to
the second question is yes, they can, but their role in the transseries is more subtle. We will
discuss it in section 4.4. With respect to µ

0

(e
1,1) it can be calculated as an (e

1,1), h = 0, free

energy bF
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from which we calculate
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Figure 4.31: Real and imaginary parts of (S
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, following equation (4.104) (bottom), for  = 2 e�i⇡/36 and varying
propagator S

zz = 10�8 (1 + ix), compared against numerical data from the large-order
growth in (4.97).
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The extra factor 1

2

is natural from the point of view of a resurgent relation derived from

a standard bridge equation, see (1.64). eS�1,1 is the Stokes constant associated to F
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)

0

.

This free energy is the same as F
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0

but with the sign of A
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reversed. The zero in (4.105)
corresponds to A(e
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+ (�A
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) = 0.
With respect to µ
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) we can calculate its functional form as a two-instanton sector
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satisfying a holomorphic anomaly equation with B(e
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) = 0, just like (4.90). The

condition bF (2e
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fixes the holomorphic ambiguity. This identifies bF
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with the free energy
of the same name in (4.91) in the context of the subleading contribution to perturbation
theory. Thus,
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Identifying µ
0

(2e
1

) and µ
0

(e
1,1) as free energies that can be computed from the holomor-

phic anomaly equations and that can have their ambiguities fixed e�ciently, is the crucial
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step to then be able to check the more complicated higher order contributions to (4.97). In
practice we find the following asymptotics for the one-instanton coe�cients,
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The free energies bF
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h have the general form
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The exponents 2 and 4 are the ones dictated by the general combinatorial solution described
in theorem 2.

The functions bF
(e

1,1)

h have a di↵erent structure due to resonance as we anticipated in
section 3.5.2. Since it is a sector with total instanton action it has only even coe�cients,
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while bF
(e

1,1)

h = 0 for h odd. See appendix C for more details. In order to check (4.109) we
can do the exercise of summing the right-hand-side to low order and observe the agreement
with the left-hand-side. More precisely, rewrite (4.109) as
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(4.112)
and compute the left-hand-side and right-hand-side for fixed g = 75,  = 2, and Szz = 10�8,
and increasing values of h⇤. We expect better and better agreement between the two, up
until the optimal truncation point—the right-hand-side is an asymptotic series in 1

g
. We

show the comparison in the following table,

h⇤ rhs(h⇤) lhs � rhs(h⇤)

0 0.112 257 517 800 +8 · 10�4

1 0.113 083 826 046 �3 · 10�5

2 0.113 054 511 927 +3 · 10�9

3 0.113 054 512 813 +2 · 10�9

4 0.113 054 514 589 �7 · 10�11

5 0.113 054 514 517 +1 · 10�12

lhs 0.113 054 514 518

Note that the agreement is bettered the most for h⇤ even. That is because there is no
contribution for bF

(e
1,1)

odd

due to resonance.
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4.4 General discussion

In this chapter we have explored in detail some of the resurgence relations between free en-
ergies. Anticipating discrepancies with respect to the standard results out of a simple bridge
equation, we decided to follow a route of discovery, based on a numerical analysis, rather
than checking analytic predictions from chapter 3. The resurgent analysis of topological
strings on local CP2 was approached with the example of the quartic matrix model in mind.
There all the resurgence relations that were numerically checked could be derived from first
principles out of a simple bridge equation like (1.31), or its generalization to a two-parameter
resonant transseries. The validity of such a bridge equation was justified, although not rig-
orously proved, on the basis of the string equation for the free energy (technically for the
coe�cients rn in the three-term recursion for orthogonal polynomials). Such a starting point
is not available in local CP2 which should warn us about the possibility of deviations from
the, let us call it, standard situation. Let us compare both cases to see where the di↵erences
are and what options we have to explain them.

We focus on the asymptotic growth of the perturbative and one-instanton sectors which
are the ones we have studied in this thesis. In the standard situation, the bridge equation
provides a way to compute all the alien derivatives for every sector in the transseries. Note
that we must have a su�ciently general ansatz for the transseries if we want to accommodate
for every type of large-order relation we find. In chapter 1 we reviewed the derivation of
the large-order growth of the perturbative coe�cients of a one-parameter transseries, ending
with (1.62),
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For multiparameter transseries with resonance in ±Ai the formula generalizes straightfor-
wardly by summing over sectors. This formula provides a role for the higher instanton
coe�cients a

(ei)

h , because it says where to put each element of the transseries in the asymp-
totic formula. It even lays the starting powers b(n) in their appropriate place. Similarly, the
large-order relation for the one-instanton sector has the form shown in (1.64) that we repeat
here,
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Note again that the appearance of the starting powers. We have seen in this chapter that
most of the structure of (4.113) and (4.114) is respected in the case of local CP2: the 2g-

factorial growth for F
(0)

g , the g-factorial growth for F
(e

1

)

g , the role of the instanton actions,
and, in part, the higher instanton coe�cients on the right-hand-sides of the relations. How-
ever, not everything matches. The most important, fundamental discrepancy is the role
of the two-instanton sectors in both relations (4.113) and (4.114), or rather, in (4.86) and
(4.109). In the standard case the two-instanton free enrgies in both asymptotic relations are

the same, but in local CP2 they are di↵erent. More precisely, eF
(2e
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)

h in (4.86) is made out

of two free energies, one of which is bF
(2e
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)

h that appears in (4.109). Besides this discrepancy,
the standard prediction for the starting powers b(0) = �2, b(e

1

), b(2e
1

) does not agree with
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what is found. If the standard case were right we would need to match the following factorial
growths,
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�
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which does not have a consistent solution. The standard situation based on a simple bridge
equation is not valid anymore. A new resurgent framework has to be found in which every
detail discovered in the numerical analysis is naturally explained.

Let us go over the most natural and simple generalizations of the standard case. We are
not certain whether any of them will be part of the final explanatory framework, but at least
they can suggest new routes to explore.

First we devise a situation in which the compositeness of eF
(2e

1

)

h can be accommodated,
at least in part. For this we need to go back to the language of alien derivatives and the
Stokes automorphism that we reviewed in chapter 1. In the standard case the following alien
derivatives hold,
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where a and c are some constants. Here we have focused on the sector associated to A
1

only to simplify the discussion. To derive the large-order relations one has to use the Stokes
automorphism (1.28) that in this schematic version reads

S� 1 = e�A
1

/gs �A
1

+ e�2A
1

/gs

✓

�
2A

1

+
1

2
�2

A
1

◆

+ · · · . (4.120)

The first term in (4.120) generates the leading contribution to large-order involving the one-
instanton sector F (e

1

). The second term generates subleading corrections in (2A
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)2g, and
contains two parts. The first is zero in the standard case and the second gives
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Complementary to this, the asymptotics of F (e
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) to leading order depends only on (4.119)
(again, we are ignoring contributions from ��A
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). To generalize the standard case we could
allow �
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F (0) to be nonzero. And if we want to be as close to the local CP2 asymptotics
we can postulate,
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) on the last line so that now the second term in (1.28) gives
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which may have a chance to produce eF (2e
1

) in (4.88). The constants a, b, c should be related
to the Stokes constants as a2 = b = (S

1,1)2 and c = �2S
1,1, but the minus sign propagates

to the large-order of F (e
1

) and there should be none there, see (4.109). However, a bigger
problem than this sign is the mismatch with the starting powers we have already mentioned.
The inclusion of a right-hand-side to �

2A
1

F (0) does not cure this issue. A new ingredient
must be included to make everything work.

A natural extension, but still unsuccessful, is to allow the asymptotic series to be resurgent
functions but not simple ones. Simple resurgent functions satisfy (1.22) and (1.23). A mild
extension that allows for higher order poles of the Borel transform suggests,
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This would change the constraints (4.115)-(4.117) into
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but still this system has no solutions for the starting powers and ↵, �, �. Even if this does
not immediately solve the problem with the starting powers it should be kept in mind as a
possible ingredient of the final framework that explains the resurgent structure.

Another possibility that should be considered is the presence of sectors which are more
complicated than (2e

1

) but have the same total instanton action. These sectors cannot be
discarded from first principles because their contribution does not violate any resurgence
principle. Also one can see that their propagator dependence is compatible with the results
we have obtained from large-order. We can consider two examples. For the first,

n = (1|0k0|1k0|1k0 · · · k0|1), (4.131)

where the last two entries entries correspond to sectors associated to the instanton actions
±4⇡2i. This sector has total instanton action 2A

1

. The calculation of F
(n)

0

from the holo-
morphic anomaly equations is a little bit lengthy because the recursion goes through several
intermediate sectors. A di�culty we encounter is that we do not know how to fix the holo-
morphic ambiguities of all those sectors, so they are carried along during the calculation.
The final answer for the free energy consists of five exponentials with di↵erent exponents.
Two of them are the same as those appearing in F

(2e
1

)

0

and eF
(2e

1

)

0

, that is exp 4! and exp 2!
with ! = 1

2

(@zA1

)2Szz. The other three have coe�cients that depend on the holomorphic
ambiguities just mentioned. It is not di�cult to imagine that the three coe�cients are zero
due to cancellations between ambiguities, and one ends with a valid candidate for an element
of the perturbative asymptotics. Another example is n = (2|0k0|1k0|0k0 · · · k1|1) for which

F
(n)

0

has only one extra exponential.
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It is clear that the standard situation is not the correct framework to explain all the
details of the resurgence relations the local CP2 free energies satisfy. Moreover, it is not
clear what is the role in the transseries of some of the two-instanton sectors that we find
in the large-order growth, or if those should actually have the interpretation of more higher
instanton free energies like (4.131). At the end of the day there must be a consistent and
comprehensive picture that explains both the transseries in all its resonant complexity, and
the web of large-order relations. In the best case scenario there is a generalization of the
simple bridge equation (1.31) from which the relations can be derived. Understanding the
transseries and understanding the resurgent structure are two di↵erent, but of course related,
problems. In the case of local CP2 both problems have to be considered at the same time
so that we can use information gained from one in the other and back. This is the strategy
that we followed in sections 4.2.2 and 4.3.

Besides the possible generalizations that we discussed above, there are two features of
resurgence in local CP2 that will most likely play an important role in understanding the
overall structure. These are resonance and the multisheeted structure of the Borel plane.

Having a look a the di↵erent instanton actions that we found in this chapter, A
1

, A
2

, A
3

,
4⇡2i, A

K

, along with their opposites, and the various relations they satisfy, we can expect a
large amount of resonant behavior in the large-order relations. First of all one needs to devise
a method to distinguish which instanton actions have transseries sectors associated to them
from those that are simply combinations of more fundamental instanton actions. That is, we
need to specify the number of the parameters of the transseries and the amount of resonance.
At this point the most direct strategy requires a careful combination of numerical large-order
analysis and solutions of the holomorphic anomaly equations, along with the constraint of
self-consistency. One problem is that fixing the holomorphic ambiguity and decoding the
large-order relations require sometimes some guessing that may be successful or not. In the
sectors that we have analyzed in this chapter we were able to provide analytic expressions
for every number out of the computer, so one may be able to go quite deep in the resurgent
structure this way. From an overall perspective the requirement of self-consistency applied to
as many resurgent relations as possible may provide new information to help put the pieces
of the puzzle in place.

The multisheeted structure of the Borel plane and its relation to higher order Stokes
phenomenon will need more study in the future. For now we can say that it will very likely
play an important part in understanding the structure of the large-order relations, especially
as we move around in moduli space. We have already seen how varying the propagator and
tuning it its holomorphic values can have drastic e↵ects in the resurgent structure of the
theory. However, the dependence on  , or z, seems to be more subtle and interesting.

There is another source of information to understand the resurgence in local CP2 that we
have not considered, and that is resummation. The physical resummation of the transseries
must provide the full nonperturbative value of the topological string free energy. In the case
of local CP2 we have nothing to compare this result to, expect for other nonperturbative
proposals for the same model. However, for other geometries for which there is a dual
nonperturbative definition, such comparison should be possible. The physical resummation
considers sectors that are exponentially suppressed as gs goes to zero, so this is a criterion for
their presence in the transseries. At the practical level, however, it is di�cult to think that
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we could go past the one or two-instanton sectors and still be sensitive to their contribution.
To end on a more optimistic note, there are still several avenues that have not been ex-

plored yet including contributions beyond subleading to the perturbative sector, subleading
corrections to the one-instanton free energy large-order growth, exploration of moduli space
further from the conifold points. Also, the content and results of this thesis need to be put
on more rigorous grounds, both from the point of view of topological string theory and com-
plex geometry, and of resurgence theory. An analysis from the perspective and language of
modular forms should be pursued, along with the inclusion of all the propagators. The same
techniques we developed here must be applied to fairly well-understood examples like poly-
nomial matrix models or ABJM. Progress in any of these areas will provide useful insight for
the other and for the general problem of defining topological string theory nonperturbatively.



134 CHAPTER 4. RESURGENCE IN LOCAL CP2



Chapter 5

Summary and conclusions

The main theme of this thesis is the study of nonperturbative aspects of topological string
theory. The tools we use are the theory of resurgence and the holomorphic anomaly equations
that the topological string free energies satisfy.

The theory of resurgence, developed by Écalle, has become in recent years the natural
framework in which to discuss and analyze nonperturbative computations. It is most pow-
erful when applied to solutions of di↵erential equations, but it has found room in problems
in quantum field theory and string theory. The best example should be matrix models, a
theory a random matrices that finds connections with all of the examples above and pro-
vides intuition to approach new problems. One of them is topological string theory due to
its large N duality with matrix models. Topological string theory is defined perturbatively
in the string coupling constant, but as it happens in numerous physical systems, this series
expansion is asymptotic and does not converge. The origin of this divergence is the exis-
tence of other nonperturbative sectors. Resurgence theory provides a way to collect this
nonperturbative results into a single object called the transseries which, after a process of
resummation, will yield the full nonperturbative definition of the theory. This long term
goal starts with the computation and understanding of the new nonperturbative sectors and
their connection to perturbation theory. This connection has a quantitative description in
resurgence theory. This thesis focuses on the computation of the transseries, exploiting the
holomorphic anomaly of topological string theory and studies analytically, and numerically
the resurgence relations linking its components.

In chapter 1 we present a short introduction to the theory of resurgence, focusing on the
main ingredients necessary for the derivation of the large-order growth of the coe�cients in
the transseries.

The language of resurgence and resurgent transseries is the natural one when describing
the solutions to di↵erential equations. It is often found here how a complete family of
solutions involves not only powers series in the equation variable, x, but also nonanalytic
functions like e�A/x, where A is a number called the instanton action. The existence of a
singularity at the origin is represented in the asymptotic nature of the power series solution
and the factorial growth of their coe�cients. This behavior is actually ubiquitous not only in
mathematics but also in physics. The formal solutions to a problem involving the monomials

135
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x and e�A/x, are called transseries. In order to move this solution from the space of formal
series to the space of functions a resummation procedure is needed. Borel resummation is
a natural option because it deals with the divergent series by first removing the factorial
growth and working with the so-called Borel transform. Resummation may not always be
well-defined due to the existence of singularities in the Borel plane where the Borel transform
lives. This leads to the so-called nonperturbative ambiguity which is cured when all the
sectors of the transseries are taken into account. Actually, these singularities know about
the factorial growth because they carry information about other sectors. This resurgence
of the function in di↵erent sectors is formalized with the notion of alien derivative. This
operator captures precisely the singularities in the Borel plane and thus, the relation between
di↵erent sectors of the transseries. Going one step further leads to the concept of Stokes
automorphism, an operator that can be written in terms of the alien derivative and codifies
the di↵erence between resummations for di↵erent values of x. The Stokes automorphism
has an important practical purpose. It is the key ingredient that allows to write the various
formulae describing exactly how the coe�cients of a given sector of the transseries grow for
large order. The precise formula involves very explicitly many of all the other sectors of the
transseries. The first example of such a large-order relation expresses the factorial growth of
the perturbative coe�cients in the solution of a given problem, in terms of nonperturbative
coe�cients. For the construction of the large-order relations it is necessary to know the
action of the alien derivatives on the elements of the transseries. This di�cult problem is
sometimes overcome with a bridge equation that links alien and usual derivatives. However,
the form of the bridge equation is not always known and the details of the resurgence relations
must be discovered by studying the large-order of known sectors. This can be the case in
topological string theory. Nevertheless, the existence of large-order relations coming from
resurgence and linking all sectors of the transseries stands as a very useful tool to extract
nonperturbative information when only perturbation theory is available.

In chapter 2 we review the main aspects of topological string theory and present the
example of local CP2. Topological string theory is defined as a conformal topological field
theory coupled to two-dimensional gravity. Like physical string theory it is concerned with
the dynamics of maps from a Riemann surface, the worldsheet the string describes as it
moves, to a target space. In topological string theory this target space is a complex three-
dimensional Calabi–Yau manifold. This manifold appears in the compactification of physical
string theory and the topological string free energies define the couplings of the e↵ective
supergravity theory.

There are two types of topological string theory, A and B, depending on the type of
underlying topological theory. Both types are related to each other by mirror symmetry in
the sense that a type A topological string theory on a Calabi–Yau manifold is equivalent to
a B-type theory on a mirror Calabi–Yau. Type A and B theories depend on the Kähler and
complex structure of the Calabi–Yau manifold, respectively. This dependence is inherited
from the underlying topological supersymmetric sigma model and, at that level, still holo-
morphic. However, the coupling to worldsheet gravity produces a holomorphic anomaly that
makes the observables of the theory depend nonholomorphically on the appropriate moduli
space. These observables are, among others, the free energies. Their definition depends on
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the genus of the Riemann surface and they can be put together in a generating function with
parameter equal to the string coupling constant, gs. This defines the perturbative topolog-
ical string free energy. The free energies of mirror models are equal but the calculation is
easier for the B-type working with complex structure dependence. The main and most e�-
cient technique to compute B-type free energies on noncompact Calabi–Yau manifolds is the
holomorphic anomaly equations. These equations quantitatively describe how a free energy
of genus g fails to be holomorphic. A detailed computation shows that it depends on lower
genus free energies. This allows for a recursive integration of the the free energies to high
order once the holomorphic ambiguities, linked to the integration process, are conveniently
fixed. The procedure is made easier using a carefully chosen antiholomorphic variable called
the propagator. The dependence of the free energies on this variable is polynomial. The
final part of this chapter is devoted to the computation of a particular example: the mir-
ror of local CP2. This is a classical example, simple enough to allow for the computation
of over a hundred perturbative free energies. Along with the free energies we review the
computation of the periods. These are integrals on the Calabi–Yau geometry, they depend
on the complex structure moduli, and they have a fundamental role as instanton actions
controlling the large-order growth of the perturbative free energies. For this geometry the
complex structure moduli space is one-dimensional and has points of special relevance: a
large-radius point, and three copies of the conifold point, related by a Z

3

orbifold symmetry.
The conifold points are singular in the sense that perturbative free energies become infinite
there. This behavior imposes constraints on the large-order of the perturbative free energies
that are found useful in the nonperturbative context.

In chapter 3 we develop the construction of transseries expressions for the nonperturbative
topological string free energy based on a natural extension of the holomorphic anomaly
equations that govern perturbation theory.

The tower of holomorphic anomaly equations can be packaged into a single di↵erential
equation with respect to the complex structure moduli and the propagators, in which the
string coupling constant, gs, is explicitly present. This equation is solved by the perturbative
free energy asymptotic series. Such master equation was consider before in the literature
and further rewriting prepares it to accept not only a perturbative series in the string cou-
pling but a full transseries. The transseries ansatz solving this equation may have several
parameters, that is, several instanton actions sitting in the nonanalytic exponential mono-
mials, e�A/gs . The holomorphic anomaly equations are not di↵erential equations on gs but
on the moduli and this reduces the computation power of the equations at the expense of
being extremely general. This means that this lack of determination must be replaced by
resurgent constraining in the form of large-order relations.

The simplest situation is the one involving a one-parameter transseries, although many of
the properties of the solution generalize to multiparameter ones. The transseries is composed
by a perturbative part and a series of multi-instanton nonperturbative contributions. The
free energies in all these sectors are found to satisfy an extension of the holomorphic anomaly
equations. The structure is still recursive: the antiholomorphic derivative of a nonpertur-
bative free energy, at instanton level n and order g, depends on lower order free energies of
the same and lower instanton levels. The presence of the instanton action is manifest and a
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subset of equations addresses it directly. These equations are all equivalent and imply that
the instanton action is holomorphic. This conclusion is important because it retains the
natural interpretation from matrix models of instanton actions as geometrical objects. In
fact, instanton actions are found to be combinations of periods that can be computed from
Picard–Fuchs equations.

The integration of the equations is analogous to the perturbative case. A careful analysis
of the antiholomorphic (propagator) dependence shows that the polynomial structure asso-
ciated to perturbative free energies is here generalized to linear combinations of products of
exponentials and polynomials. The degree of these polynomials and the particular coe�-
cients appearing in the exponentials can be characterized precisely in terms of a generating
function. A detailed proof for this is provided based on induction on the instanton sector and
the order. Generalizations of these results to multiparameter transseries, in which several
instanton actions appear, is presented next. The latter are found to be holomorphic even
in this generalized situation. The structure of the higher instanton free energies is analyzed
in the same manner as before and a generalized generating function is provided to describe
their antiholomorphic dependence.

The phenomenon of resonance, in which two sectors of the transseries have the same
total instanton action, is considered by introducing logarithmic blocks in the transseries.
It was found in matrix models and string related di↵erential equations that the transseries
must include an instanton action and its negative and also logarithms in the string coupling.
The holomorphic anomaly equations admit such solutions, even if logarithms are replaced
by other nonanalytic monomials. After describing the structure of the solutions, we focus on
the diagonal sectors of the transseries, those with vanishing total instanton action. In the
models mentioned above such sectors presented, due to resonance, a topological expansion in
gs, that is, they are power series in g2

s We show that this behavior is possible in the context of
topological string theory. The proof relies on the fact that a change in sign on the instanton
action can be balanced by another change in the coupling, gs. This is what occurs at the
perturbative level, where the topological expansion is recovered, at the level of large-order
relations, by having both A and �A sectors in the transseries.

The large-order growth of the perturbative sector can be studied at the analytical level
and exploited to obtain nonperturbative results in closed form. This general approach to
extract nonperturbative information out of large-order is di�cult in general (without relying
on numerical methods) but in some situations it can be done. An example is an independent
proof of the holomorphicity of the instanton action based only on large-order growth of
perturbation theory and the holomorphic anomaly equations these free energies satisfy.

The final aspect we cover in this chapter is the important problem of determining the
holomorphic ambiguity associated to nonperturbative sectors. At the perturbative level, the
ambiguities are fixed by looking at the behavior of the free energies at the conifold and large-
radius points, and comparing against independently known behavior. This is not a possibility
at the nonperturbative level, so we have to turn to the only tool we have, resurgent large-order
analysis. By exploiting the singular behavior of the perturbative free energies at the conifold
point we can determine, analytically, the precise large order growth of the free energies close
to this point. Since this calculation is actually done in the holomorphic limit, and large-
order relations involve other sectors of the transseries, this must provide information to fix
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the holomorphic ambiguities associated to conifold sectors of the transseries. This is checked
for the case of local CP2 in the following chapter.

In chapter 4 we work out the details of the resurgent and large-order properties of local CP2.
The B-type topological string theory on the mirror of this geometry depends on a one-
dimensional complex structure moduli space. The antiholomorphic dependence is captured
by a single propagator. For a particular value of the propagator the holomorphic limit of the
free energies is recovered. This holomorphic limit is not unique, but it is actually dependent
on the frame, a label related to modular symmetry. Special points in moduli space have
preferred frames associated to them.

We start the resurgent analysis by studying the large-order growth of the perturbative free
energies. The first important element we focus on is the dominant instanton action. From
the previous chapter we know this is a holomorphic, propagator independent, quantity.
The label dominant refers to the smallest, in absolute value, of all the instanton actions
in the transseries. As we explore moduli space the dominant instanton action changes.
A numerical analysis shows strong evidence of holomorphicity, and we find two distinct
dominant instanton actions. One is associated to a conifold point. The other is constant and
coming from a universal constant contribution to the free energies. Removing it uncovers
another instanton action dominating near the large-radius point. Both conifold and large-
radius instanton actions are proportional to the corresponding flat coordinates around these
points in moduli space. They are periods of the geometry. They are not the only instanton
actions in the transseries. Two other instanton actions associated to the second and third
conifold points exist. They can be first detected in a section of moduli space where their
absolute value is equal to the first instanton action. The behavior of these free energies is
oscillatory there due to the combination of two conjugate contributions coming from the
first and second (or third) conifold instanton actions. All these four, three conifold and one
large-radius, instanton actions and their negatives indicate a very complicated transseries
with a large amount of potential resonance. From an analysis of the Borel plane of the
perturbative sector we show how the pole associated to the large-radius instanton action
disappears, changing to another Riemann sheet, as we move in moduli space towards the
orbifold point where this instanton action should dominate. This is evidence that the Borel
plane and the resurgence structure is more intricate than what was found in other examples
in the past.

We turn next to the study of the higher instanton sectors appearing in the large-order re-
lations. The first is the one-instanton sector associated to the first conifold point. It controls
the leading factorial growth of the perturbative free energies. In the corresponding holomor-
phic limit the large-order series truncates, in agreement with the general analysis done in
chapter 3. This allows for the fixing of the holomorphic ambiguity of the one-instanton free
energies computed from the extended holomorphic anomaly equations as described in that
chapter. We make numerical tests on both holomorphic and antiholomorphic dependence
of this sector, using accelerating techniques for convergence like the Richardson transform,
and find excellent agreement with the theoretical results. The same exercise gives evidence
that the Stokes constants cannot depend on the moduli, so they really are complex num-
bers. Since the large-order relations are used to fix the holomorphic ambiguities, there is no
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remaining information to compute the Stokes constants. The oscillatory behavior of the free
energies signaling the presence of other conifold instanton actions can be reproduced by a
large-order formula involving both one-instanton sectors. Amplitude and frequency of the
oscillations are matched by the theoretical predictions.

A study of the other one-instanton sectors associated to conifold points can be done by
resumming the leading contribution to perturbation growth. The resummation technique we
need to use has to be more or less powerful depending on the particular subleading sector.
Depending on the point in moduli space we also find a subleading two-instanton contribution
associated to the first conifold point. We perform numerical checks both on the holomorphic
limit (where resummation is actually not needed due to truncation) and for general values of
the propagator. All results are matched by theoretical predictions involving the appropriate
free energies computed from the holomorphic anomaly equations.

The one-instanton free energies can be computed from the equations to high order with
a seminumerical integration process. This procedure fixes a complex structure while leaving
the propagator dependence free. An analytical computation in both variables becomes im-
practical after around twenty free energies, which makes subsequent studies impossible, or
very deficient. The large-order growth of this sector reveals clearly the presence of resonance
between sectors with instanton actions of opposite signs. A two-instanton and a mixed
sector, involving A and �A, control the growth. The corresponding free energies can be
computed from the holomorphic anomaly equations. Their ambiguities are fixed by noting
that the one-instanton free energies are zero in the holomorphic limit (for high order), so
the same must be the case with the former free energies. High precision numerical checks
support these conclusions.

At this point it becomes apparent that the pair of two-instanton free energies found in
the large-order growth of the one-instanton sector and of perturbation theory, respectively,
are not the same. That they were would have been the expected result if the usual bridge
equations were valid but the resurgent structure is slightly di↵erent here. We present di↵erent
possibilities that could have a role here, from the consideration of non-simple resurgent
functions to the existence of similar sectors with di↵erent conditions to fix the holomorphic
ambiguity.

The conclusions of this thesis are the following:

• The holomorphic anomaly equations can be extended beyond perturbation theory and
can be applied to a transseries ansatz.

• The generality of the holomorphic anomaly equations leaves undetermined a number of
ambiguities: holomorphic ambiguities at all instanton orders, concrete structure of the
transseries, number of parameters, nonstandard monomials in the coupling constant,
instanton actions and starting powers. They all must be calculated from the constraints
that resurgence imposes.

• The structure of the solutions generalizes that of the perturbative sector and can be
described using combinatorial numbers out of a generating function. The detailed
holomorphic dependence requires more e↵ort and no general patterns can be found.
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• The instanton actions are holomorphic. This is proved with the extended holomorphic
anomaly equations and directly from a large-order argument involving only perturba-
tive information.

• Resonant transseries include sectors with topological expansions.

• The singular and universal behavior of the perturbative free energies around the coni-
fold point determines their large-order growth near that special point. This analysis
becomes the substitute for the holomorphic ambiguity fixing condition in the nonper-
turbative sectors associated to the conifold points. This approach should be explored
further on other special points in moduli space and other types of singularities.

• The transseries describing the topological string free energy of the mirror of local CP2

involves a number of instanton actions, coming in both signs to respect the topolog-
ical expansion of the perturbative sector. There are three conifold instanton actions,
related by Z

3

-symmetry, and another instanton action associated to the large-radius
point. They are periods of the geometry, proportional to flat coordinates around the
corresponding points.

• The large-order growth of the nonholomorphic perturbative free energies can be un-
derstood, around the conifold point, using higher-instanton free energies computed out
of the extended holomorphic anomaly equations. The two-instanton sector is a com-
bination of free energies whose holomorphic ambiguities are fixed di↵erently. Di↵erent
sectors of the transseries compete for the subleading contribution depending on the
region in moduli space.

• One-instanton free energies must be computed seminumerically in the modulus and
propagator to reach a su�ciently high number of them. The large-order growth exhibits
explicit resonance and a mixed instanton sector with a topological expansion.

• Every numerical quantity obtained from large-order computations can be reproduced
from an analytic function derived from the extended holomorphic anomaly equations.
This is done for several resurgence relations on and o↵ the holomorphic limit.

• The resurgent relations found do not completely agree with the naive predictions based
on a simple bridge equation and inspired by related models. Di↵erent scenarios for a
resurgent framework are suggested including dropping the requirement of simple resur-
gence, or taking into account the influence of resonance between conifold and large-
radius sectors. No final coherent solution is obtained. Further study in local CP2

and other geometries is needed in order to understand not only the underlying resur-
gence structure but also the general problem of fixing the holomorphic ambiguity, and
eventually the resummation of the transseries into a nonperturbative function.
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Chapter 6

Resumo e conclusións

O tema principal desta tese é o estudo de aspectos non perturbativos da teoŕıa de cordas
topolóxica. As ferramentas que utilizamos son a teoŕıa da resurxencia e as ecuacións de
anomaĺıa holomorfa que satisfán as enerx́ıas libres de cordas topolóxicas.

A teoŕıa da resurxencia, desenvolvida por Écalle, tense convertido nos últimos anos no
marco natural onde discutir e analizar cálculos non perturbativos. Acada a súa maior efec-
tividade cando se aplica á solucións de ecuacións diferenciais pero tamén atopa o seu espazo
en problemas de teoŕıa cuántica de campos de teoŕıa de cordas. O mellor exemplo é o de
modelos de matrices, unha teoŕıa de matrices aleatorias que ten conexións con todos os
examplos mencionados é proporciona intuición para atacar novos problemas. Un deles é a
teoŕıa de cordas topolóxica debido á súa dualidade de gran N con modelos de matrices. A
teoŕıa de cordas topolóxica está definida perturbativamente na constante de acoplamento
de cordas, pero tal e como ocorre en numerosos sistemas f́ısicos, esta expansión en serie é
asintótica e non converxe. A orixe desta diverxencia atópase na existencia doutros sectores
non perturbativos. A teoŕıa da resurxencia ofrece unha forma de recoller estes resultados non
perturbativos nun único obxecto chamado transerie que, despois dun proceso de resumación,
fornecerá a definición completa e non perturbativa da teoŕıa. Este obxectivo a longo prazo
comeza co cálculo e comprensión dos novos sectores non perturbativos e a súa conexión coa
teoŕıa perturbativa. Esta conexión ten unha descrición cuantitativa na teoŕıa da resurxencia.
Esta tese céntrase no cálculo da transerie, tirando proveito da anomaĺıa holomorfa da teoŕıa
de cordas topolóxica, e estuda anaĺıtica e numericamente as relacións de resurxencia que
unen as súas compoñentes.

No caṕıtulo 1 preséntase unha pequena introdución á teoŕıa da resurxencia, centrándose
nos ingredientes necesarios para a derivación do crecemento de alta orde dos coeficientes da
transerie.

A linguaxe da resurxencia e das transeries resurxentes é a máis natural cando se queren
describir solucións de ecuacións diferenciais. Encóntrase a miúdo que unha familia completa
de solucións involucra non só unha serie de potencias na variable da ecuación, x, senón
tamén funcións non anaĺıticas como e�A/x, onde A é un número nomeado como a acción
de instantón. A existencia dunha singularidade na orixe ven representada pola natureza
asintótica da solución en serie de potencias e no crecemento factorial dos seus coeficientes.
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Este comportamento é de feito ubicuo non só en matemáticas senón tamén en f́ısica. As
solucións formais a un problema que están compostas de monomios x e e�A/x denomı́nanse
transeries. Para transferir esta solución do espazo das series formais ao espazo de funcións
neceśıtase un proceso de resumación. A resumación de Borel é unha opción natural porque
no seu tratamento de series diverxentes elimina primeiro o crecemento factorial deixando o
que se coñece como transformada de Borel. A resumación non ten sempre por que estar ben
definida debido a existencia de singularidades no plano de Borel onde vive a transformada
de Borel. Isto leva á chamada ambigüidade non perturbativa que se cura cando todos os
sectores da transerie son tidos en conta. De feito estas singularidades coñecen o crecemento
factorial porque levan información sobre outros sectores. Esta resurxencia da función nos
distintos sectores ven formalizada pola noción de derivada estraña. Este operador captura
con precisión as singularidades no plano de Borel e desta maneira a relación entre os distin-
tos sectores da transerie. Indo un paso máis aló chégase ao concepto de automorfismo de
Stokes, un operador que pode ser escrito en termos da derivada estraña e codifica a diferenza
entre resumacións para diferentes valores de x. O automorfismo de Stokes ten unha apli-
cación práctica importante. É a peza fundamental que permite escribir as distintas fórmulas
que describen con exactitude como crecen os coeficientes dun sector da transerie para alta
orde. A fórmula precisa involucra explicitamente moitos dos outros sectores da transerie. O
primeiro exemplo destas relacións de alta orde expresa o crecemento factorial dos coeficientes
perturbativos na solución dun problema dado en termos de coeficientes non perturbativos.
Para a construción de relacións de alta orde é necesario coñecer a acción das derivadas es-
trañas nos elementos da transerie. Este problema é dif́ıcil e ás veces pódese superar cunha
ecuación ponte que relacione derivadas estrañas e usuais. Con todo, a forma da ecuación
ponte non se coñece sempre e os detalles das relacións de resurxencia deben descubrirse es-
tudando o comportamento a alta orde de sectores coñecidos. Este pode ser o caso na teoŕıa
de cordas topolóxica. De calquer modo, a existencia de relacións de alta orde provenientes
da resurxencia e que ligan todos os sectores da transerie son unha ferramenta moi útil para
a extracción de información non perturbativa cando soamente se está a disposición da parte
perturbativa.

No caṕıtulo 2 repasamos os principais aspectos da teoŕıa de cordas topolóxica e presenta-
mos o exemplo de CP2 local. A teoŕıa de cordas topolóxica def́ınese como unha teoŕıa de
campos conforme e topolóxica, acoplada á gravidade en dúas dimensións. Como a teoŕıa
de cordas f́ısica preocúpase da dinámica de funcións dunha superficie de Riemann, a super-
ficie de universo que describe a corda ao moverse, a un espazo final. En teoŕıa de cordas
topolóxica este espazo final é unha variedade de Calabi–Yau de tres dimensións complexas.
Esta variedade aparece na compactificación da teoŕıa de cordas f́ısicas e as enerx́ıas libres de
cordas topolóxicas definen os acoplamentos da teoŕıa efectiva de supergravidade.

Existen dous tipos de teoŕıa de cordas topolóxica, A e B, dependendo do tipo de teoŕıa
topolóxica subxacente. Os dous tipos están relacionados entre si pola simetŕıa espello no
senso de que unha teoŕıa de cordas topolóxica de tipo A nunha variedade de Calabi–Yau
é equivalente a unha teoŕıa de tipo B nun Calabi–Yau especular. As teoŕıas de tipo A e
B dependen da estrutura de Kähler e da estrutura complexa da variedade de Calabi–Yau,
respectivamente. Esta dependencia hérdase do modelo sigma supersimétrico e topolóxico
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subxacente e, a ese nivel, é áında holomorfa. Non obstante, o acoplamento coa gravidade na
superficie de universo produce unha anomaĺıa holomorfa que fai que os observables da teoŕıa
dependan de forma non holomorfa do correspondente espazo de módulos. Estes observables
son, entre outros, as enerx́ıas libres. A súa definición depende do xénero da superficie de
Riemann e pódense xuntar todas elas nunha función xeratriz con parámetro igual a constante
de acoplamento de cordas, gs. Isto define a enerx́ıa libre perturbativa da teoŕıa de cordas
topolóxica. As enerx́ıas libres de modelos especulares son iguais pero o cálculo e máis sinxelo
para o tipo B onde se traballa coa dependencia da estrutura complexa. A técnica principal e
máis eficiente para calcular enerx́ıas libres de tipo B en variedades de Calabi–Yau non com-
pactas son as ecuacións de anomaĺıa holomorfa. Estas ecuacións describen cuantitativamente
como unha enerx́ıa libre de xénero g non consegue ser holomorfa. O cálculo detallado revela
que depende das enerx́ıas libres de menor xénero. Isto permite integrar recursivamente as
enerx́ıas libres até alta orde unha vez que as ambigüidades holomorfas ligadas ao proceso de
integración sexan convenientemente fixadas. Pódese facilitar este procedemento usando unha
variable antiholomorfa escollida axeitadamente e denominada propagador. A dependencia
das enerx́ıas libres nesta variable é polinómica. A parte final deste caṕıtulo está dedicado
ao cálculo dun exemplo particular: a xeometŕıa especular de CP2 local. Este é un exemplo
clásico, suficientemente simple como para poder calcular algo máis dun cento de enerx́ıas
libres perturbativas. Xunto coas enerx́ıas libres tamén revisamos o cálculo dos peŕıodos.
Estes son integrais na xeometŕıa de Calabi–Yau, dependen dos módulos de estrutura com-
plexa, e teñen un papel fundamental como accións de instantón que controlan o crecemento
de alta orde das enerx́ıas libres perturbativas. Para esta xeometŕıa o espazo de módulos de
estrutura complexa é unidimensional e ten puntos de especial relevancia: un punto de gran
radio, e tres copias do punto de conifold, relacionadas por unha simetŕıa de orbifold Z

3

. Os
puntos de conifold son singulares no sentido de que as enerx́ıas libres perturbativas toman
valor infinito neles. Este comportamento impón restricións no comportamento de alta orde
das enerx́ıas libres perturbativas que son de utilidade no contexto non perturbativo.

No chapter 3 desenvolvemos a construción da transerie para a enerx́ıa libre non perturbativa
da teoŕıa de cordas topolóxica baseada nunha extensión natural das ecuacións de anomaĺıa
holomorfa que gobernan a teoŕıa de perturbacións.

A torre de ecuacións de anomaĺıa holomorfa pódese compactar nunha soa ecuación di-
ferencial con respecto aos módulos de estrutura complexa e aos propagadores, e na que a
estrutura de acoplamento de cordas, gs, está presente explicitamente. A serie asintótica
que describe a enerx́ıa libre perturbativa resolve esta ecuación. Tal ecuación mestra xa foi
considerada na literatura e reescrib́ındoa un pouco máis déixaa preparada para recibir non
só unha serie perturbativa senón tamén unha transerie completa. A proposta de transerie
que resolve a ecuación pode ter varios parámetros, é dicir, varias accións de instantón que
aparecen nos monomios non anaĺıticos de tipo exponencial, e�A/gs . As ecuacións de anomaĺıa
holomorfa non son ecuacións diferenciais en gs senón nos módulos e isto reduce o poder de
cálculo das ecuacións a expensas de ser extremadamente xerais. Isto significa que a falta de
determinación ten que ser substitúıda por restricións de tipo resurxente na forma de relacións
de orde alta.

A situación máis sinxela é a que involucra unha transerie dun parámetro, áında que moitas
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das propiedades desta solución xeneraĺızanse para o caso multiparamétrico. A transerie está
composta por unha parte perturbativa e por unha serie de contribucións non perturbativas
de multiinstantón. As enerx́ıas libres de todos estes sectores cumpren unha extensión das
ecuacións de anomaĺıa holomorfa. A estrutura é áında recursiva: a derivada antiholomorfa
da enerx́ıa libre non perturbativa, a nivel de instantón n e orde g, depende de enerx́ıas libres
de orde menor e de nivel de instantón igual ou menor. A presencia da acción de instantón é
manifesta e un subconxunto de ecuacións alude a ela explicitamente. Todas estas ecuacións
son equivalentes entre si e implican que a acción de instantón é holomorfa. Esta conclusión é
importante porque permite reter a interpretación natural de modelos de matrices de accións
de instantón como obxectos xeométricos. De feito, encóntrase que as accións de instantón
son combinacións de peŕıodos que se poden calcular como solucións das ecuacións de Picard–
Fuchs.

A integración das ecuacións é análoga ao caso perturbativo. Unha análise coidadosa
da dependencia antiholomorfa no propagador amosa que a estrutura polinómica propia das
enerx́ıas libres perturbativas ten aqúı unha xeneralización a combinacións lineais de produtos
de exponenciais e polinomios. O grao destes polinomios e os coeficientes particulares que
aparecen nas exponenciais pódense caracterizar de forma precisa en termos dunha función
xeratriz. Inclúese unha proba detallada baseada en indución sobre o sector de instantón e
a orde. De seguido se presentan xeneralizacións destes resultados a transeries con múltiples
parámetros onde aparecen varias accións de instantón. Tamén estas son holomorfas incluso
neste caso máis xeral. Anaĺızase a estrutura de enerx́ıas libres de maior orde de instantón
da mesma forma que antes e xeneraĺızase a función xeratriz que describe a dependencia
antiholomorfa.

Considérase o fenómeno de resonancia, no que dous sectores da transerie teñen a mesma
acción de instantón total, introducindo bloques logaŕıtmicos na transerie. Atopouse en mo-
delos de matrices e en ecuacións diferencias asociadas á teoŕıa de cordas que as transeries
deben inclúır unha acción de instantón e a súa oposta ademais de logaritmos na constante
de acoplamento de cordas. As ecuacións de anomaĺıa holomorfa admiten estas solucións, in-
cluso cando os logaritmos son substitúıdos por outros monomios non anaĺıticos. Despois de
describir a estrutura das solucións, centrámonos nos sectores diagonais da transerie, aqueles
cunha acción de instantón total igual a cero. Nos modelos mencionados antes estes sectores
presentan, debido á resonancia, unha expansión topolóxica en gs, é dicir, teñen unha ex-
pansión en potencias de g2

s . Amosamos que este comportamento é posible no contexto da
teoŕıa de cordas topolóxica. A proba baséase no feito de un cambio de signo na acción de
instantón pódese compensar por outro cambio na constante de acoplamento, gs. Isto é o
que acontece a nivel perturbativo, onde a expansión topolóxica pódese recuperar, a nivel das
relacións de alta orde, tendo tanto sectores con A e �A na transerie.

O crecemento a orde alta do sector perturbativo pódese estudar a nivel anaĺıtico e tirar
partido diso para obter resultados non perturbativos de forma exacta. Este enfoque xeral
para extraer información non perturbativa das relacións de alta orde é complicado en xeral
(sen basearse en métodos numéricos) mais en certas situacións pódese levar a cabo. Un
exemplo é unha proba independente da holomorf́ıa da acción de instantón baseada soamente
no crecemento a orde alta da teoŕıa perturbativa e nas ecuacións de anomaĺıa holomorfa que
estas enerx́ıas libres satisfán.
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O aspecto final que tratamos neste caṕıtulo é o importante problema de determinar a
ambigüidade holomorfa asociada cos sectores non perturbativos. A nivel perturbativo, as
ambigüidades f́ıxanse mirando o comportamento das enerx́ıas libres nos puntos de conifold e
de gran radio, e comparando co comportamento destas obtido de maneira independente. Isto
non é posible a nivel non perturbativo, aśı que temos que volvernos cara á única ferramenta
dispoñible, a análise resurxente de alta orde. Aproveitando a dependencia singular das en-
erx́ıas libres perturbativas no punto de conifold podemos determinar analiticamente o crece-
mento preciso a alta orde das enerx́ıas libres preto deste punto. Xa que este cálculo reaĺızase
no ĺımite holomorfo, e as relacións de alta orde involucran outros sectores da transerie, isto
debe proporcionar información coa que fixar as ambigüidades holomorfas asociadas os sec-
tores de conifold da transerie. Isto é o que se comproba para o caso de CP2 local no caṕıtulo
seguinte.

No caṕıtulo 4 explicamos con detalle as propiedades de resurxencia a alta orde de CP2

local. A teoŕıa de cordas topolóxica de tipo B no espello desta xeometŕıa depende dun
espazo de módulos de estrutura complexa unidimensional. A dependencia antiholomorfa é
capturada por un único propagador. Para un valor particular do propagador recupérase
o ĺımite holomorfo das enerx́ıas libres. Este ĺımite holomorfo non é único e é, de feito,
dependente do marco, unha etiqueta asociada á simetŕıa modular. Os puntos especiais no
espazo de módulos teñen marcos preferentes asociados a eles.

Comezamos a análise resurxente estudando o comportamento a alta orde das enerx́ıas
libres perturbativas. O primeiro elemento importante no que nos centramos é a acción
de instantón dominante. Polo caṕıtulo anterior sabemos que é unha cantidade holomorfa,
independente do propagador. A etiqueta de dominante refire ao menor, en valor absoluto,
de todas as accións de instantón da transerie. Segundo exploramos o espazo de módulos
a acción de instantón dominante cambia. Unha análise numérica amosa fortes evidencias
de holomorf́ıa e atopamos dúas accións dominantes distintas. Unha está asociada a un
punto de conifold. A outra é constante e provén dunha contribución universal constante
ás enerx́ıas libres. Eliminándoa atópase outra acción de instantón que domina preto do
punto de gran radio. Tanto a acción de instantón de conifold como do punto de gran radio
son proporcionais ás correspondentes coordenadas planas sobre estes puntos no espazo de
módulos. Son peŕıodos da xeometŕıa. Non son as únicas accións de instantón da transerie.
Existen outras dúas accións asociadas a un segundo e terceiro punto de conifold. Pódense
detectar primeiro nunha sección do espazo de módulos para a que as accións de instantón
teñen o mesmo valor absoluto. O comportamento das enerx́ıas libres é oscilatoria aĺı debido
a combinación de dúas contribucións conxugadas das accións do primeiro e segundo (ou
terceiro) puntos de conifold. Estas catro accións de instantón, tres de conifold e un de gran
radio, e as mesmas co signo trocado indican unha transerie moi complicada con abundante
cantidade de resonancia potencial. Dunha análise do plano de Borel do sector perturbativo
amosamos como o polo asociado á acción de gran radio desaparece, mudando a outra folla
de Riemann, segundo nos movemos no espazo de módulos cara ao punto de orbifold onde
esta acción debeŕıa ser a dominante. Isto é evidencia de que o plano de Borel e a estrutura
resurxente son máis intricados que o que se encontrou noutros exemplos no pasado.

Viramos a atención cara ao estudo de sectores de maior instantón que aparecen nas
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relacións de alta orde. O primeiro é o sector dun instantón asociado ao primeiro punto de
conifold. Este controla o crecemento factorial principal das enerx́ıas libres perturbativas.
No ĺımite holomorfo correspondente, a serie de alta orde trúncase, de acordo coa análise
xeral realizada no caṕıtulo 3. Isto permite fixar a ambigüidade holomorfa das enerx́ıas li-
bres dun instantón calculadas coas ecuacións de anomaĺıa holomorfa estendidas como se de-
scribiu nese caṕıtulo. Facemos probas numéricas da dependencia holomorfa e non holomorfa
deste sector, utilizando técnicas de aceleración para a converxencia como a transformada de
Richardson, e achamos excelentes concordancias cos resultados teóricos. O mesmo exercicio
fornece evidencias de que as constantes de Stokes non poden depender dos módulos, aśı
que son realmente números complexos. Dado que as relacións de alta orde xa se utilizaron
para fixar as ambigüidades holomorfas non resta información para calcular as constantes de
Stokes. O comportamento oscilatorio das enerx́ıas libres, que sinalaban a presenza de accións
de instantón doutros puntos de conifold, pódese reproducir mediante unha fórmula de alta
orde que involucra dous sectores dun instantón. A amplitude e a frecuencia das oscilacións
coinciden coas predicións teóricas.

Pódese facer un estudo dos outro sectores dun instantón asociados a puntos de conifold
resumando primeiro a contribución principal ao crecemento perturbativo. A técnica de
resumación necesaria ten que ser máis ou menos potente dependendo do sector que veña
despois do principal. Dependendo do punto no que esteamos no espazo de módulos tamén
podemos atopar contribucións secundarias de dous instantóns asociadas ao primeiro punto de
conifold. Realizamos comprobacións numéricas tanto no ĺımite holomorfo (onde a resumación
xa non é necesaria debido ao truncamento da serie) e para valores xerais do propagador.
Todos os resultados coinciden coas predicións teóricas das correspondentes enerx́ıas libres
calculadas coas ecuacións de anomaĺıa holomorfa.

As enerx́ıas libres dun instantón pódense calcular das ecuacións até alta orde cun proceso
de integración seminumérico. Este procedemento fixa unha estrutura complexa e deixa a
dependencia no propagador libre. Unha computación anaĺıtica nas dúas variables vólvese
impracticable despois de vinte enerx́ıas libres, aproximadamente, o que fai o subseguinte
estudo imposible ou moi deficiente. O crecemento a alta orde deste sector revela claramente
a presenza de resonancia entre sectores con accións de instantón de signo oposto. Un sector
de dous instantóns e outro mixto, con A e �A, controlan este crecemento. As enerx́ıas
libres correspondentes pódense calcular coas ecuacións de anomaĺıa holomorfa. As súas
ambigüidades son fixadas reparando en que as enerx́ıas libres dun instantón son cero no
ĺımite holomorfo (a orde alta), aśı que o mesmo ten que pasar coas enerx́ıas libres anteriores.
Comprobacións numéricas de alta precisión validan estas conclusións.

Neste punto resulta claro que a parella de enerx́ıas libres de dous instantóns que se
atoparon no crecemento a orde alta de sector dun instantón e do sector perturbativo, re-
spectivamente, non son iguais. Que o foran seŕıa o resultado agardado se as ecuacións ponte
usuais fosen válidas mais a estrutura resurxente é lixeiramente diferente neste caso. Pre-
sentamos diferentes posibilidades que podeŕıan ter algún papel, desde a consideración de
funcións resurxentes non-simples á existencia de sectores similares con diferentes condicións
para fixar a ambigüidade holomorfa.
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As conclusións desta tese son as seguintes:

• As ecuacións de anomaĺıa holomorfa pódense estender máis aló da teoŕıa de pertur-
bacións e pódense aplicar a unha solución en forma de transerie.

• A xeneralidade das ecuacións de anomaĺıa holomorfa deixan sen determinar una serie
de ambigüidades: as ambigüidades holomorfas a toda orde de instantón, a estrutura
concreta da transerie, o número de parámetros, monomios non estándar na constante de
acoplamento, accións de instantón e potencias iniciais. Todas elas deben ser calculadas
a partir das restricións que impón a resurxencia.

• A estrutura das solucións xeneraliza a do sector perturbativo e pode describirse uti-
lizando números combinatorios que saen dunha función xeratriz. A dependencia de-
tallada da parte holomorfa require un esforzo maior e non se encontraron patróns
xerais.

• As accións de instantón son holomorfas. Isto próbase coas ecuacións estendidas de
anomaĺıa holomorfa e directamente cun argumento de orde alta usando soamente in-
formación perturbativa.

• Transeries con resonancia inclúen sectores con expansións topolóxicas.

• O comportamento singular e universal das enerx́ıas libres perturbativas arredor do
punto de conifold determina o seu crecemento a orde alta preto dese punto especial.
Esta análise convértese no substituto da condición para fixar a ambigüidade holomorfa
nos sectores non perturbativos asociados a puntos de conifold. Este enfoque teŕıa que
ser explorado mellor noutros puntos especiais do espazo de módulos e para outros tipos
de singularidade.

• A transerie que describe a enerx́ıa libre de cordas topolóxicas da xeometŕıa especular de
CP2 local involucra varias accións de instantón que veñen a pares con signos opostos
para respectar a expansión topolóxica do sector perturbativo. Hai tres accións de
instantón de conifold, relacionadas por unha simetŕıa Z

3

, e outra acción asociada ao
punto de gran radio. Son peŕıodos da xeometŕıa e proporcionais ás coordenadas planas
arredor dos puntos correspondentes.

• O crecemento a orde alta das enerx́ıas libres perturbativas e non holomorfas pódese
comprender, arredor do punto de conifold, utilizando enerx́ıas libres de maior instantón
calculadas dunha extensión das ecuacións de anomaĺıa holomorfa. O sector de dous in-
stantóns é unha combinación de enerx́ıas libres cuxas ambigüidades holomorfas f́ıxanse
de forma distinta. Diferentes sectores da transerie compiten pola contribución que
segue á principal dependendo da rexión no espazo de módulos.

• As enerx́ıas libres dun instantón teñen que ser calculadas seminumericamente no módulo
e no propagador para obter un número suficientemente alto delas. O crecemento de
orde alta amosa resonancia explicitamente e un sector de instantón mixto con expansión
topolóxica.
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• Toda cantidade numérica obtida de cálculos a alta orde pode ser reproducido por unha
función anaĺıtica derivada das ecuacións estendidas de anomaĺıa holomorfa. Isto faise
para varias relacións de resurxencia tanto no ĺımite holomorfo como fóra del.

• As relacións de resurxencia encontradas non se corresponden completamente coas
predicións baseadas nunha ecuación ponte sinxela e inspiradas en modelos relaciona-
dos. Sux́ırense diversos escenarios para un marco resurxente que inclúen eliminar o
requirimento de resurxencia simple, ou ter en conta a influencia de resonancia entre
os sectores de conifold e de gran radio. Non se obtén unha solución final coherente.
Prećısase un estudo máis profundo de CP2 local e doutras xeometŕıas para entender
non só a estrutura de resurxencia subxacente, senón tamén o problema xeral da fixación
das ambigüidades holomorfas, e finalmente a resumación da transerie nunha función
non perturbativa.



Appendix A

Holomorphic anomaly equations for
multidimensional moduli space

All calculations and derivations done in chapter 3 have been oriented to the case of only one
complex structure modulus because that is true for local CP2. However, the same exercise
can be done for multidimensional moduli spaces. In this appendix we perform a detailed
derivation of the holomorphic anomaly equations for a general multiparameter transseries
with logarithmic sectors. Instanton actions are labelled by greek indices ↵, �, whereas
complex structure moduli are labelled by latin indices, i, j, running from 1 to h2,1, the
dimension of moduli space. We take the opportunity to introduce new notation in terms
of moduli derivatives that extend the usual covariant derivates by including an instanton
action contribution. Their geometrical interpretation is an open problem.

The starting point is the holomorphic anomaly equation (3.14),

@F

@Sij
+

1

2
(Ui DjF + Uj DiF )� 1

2
g2

s (DiDjF + DiF DjF ) = g�2

s Wij + Vij. (A.1)

The transseries ansatz is,
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where all ingredients were already explained in chapters 1 and 3. The covariant derivatives
that appear in the master equation (A.1) are easy to compute,
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In the last equation we have used A(m) + A(n�m) = A(n) to group the exponential terms in
one. From these expressions, the holomorphic anomaly equation (A.1) reads
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As explained in section 3.2, the perturbative sector n = 0 gives back the ordinary holomor-
phic anomaly equations (2.39), as long as (3.11–3.13) are satisfied. We focus on sectors with
n 6= 0. For that we need to separate the terms corresponding to m = 0 and m = n from
the sum in m, and collect them together with the Ui. We find, for each n 6= 0,
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Here we have used that the Christo↵el symbols, �k
ij inside the covariant derivative Di, are

symmetric in the lower indices. As we announced at the beginning, the form of the di↵erential
operators in the equation above suggests the definition of a derivative extending Di. It has
a label on the instanton sector (n) because it depends on the corresponding total instanton
action.
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With the new notation the holomorphic anomaly equations read,
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This is a recursive equation in the indices n and ` for the di↵erent asymptotic series that make
up the transseries. The objects F (m)[`] depend on the propagators, the complex structure
moduli, and also gs.

Now we expand the equation (A.12) in gs. As we did in chapter 3, we introduce a set of
di↵erential operators for the gs-series expansion of the left-hand-side of (A.12),
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For g = �1, D(n)
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:= �@SijA(n), which is actually the zero operator because the instanton
actions are holomorphic. The powers series expansion of the free energies is,
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while the right-hand-side is
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We collect similar powers of gs and end up with
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for g = �1, 0, 1, 2, . . ., k = 0, 1, 2, . . . , 1  i  j  h2,1, and n 6= 0. We have introduced the
combination of starting powers,
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The explicit form the derivatives on the left-hand-side of (A.17) is
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The holomorphicity of the instanton action is derived from the first equation of the tower,
for n = (0| · · · |1| · · · |0), k = 0, and g = �1,

@SijA(0|···|1|···|0) F
(0|···|1|···|0)[0]

0

= 0. (A.24)

By construction F
(0|···|1|···|0)[0]

0

6= 0, so @SijA↵ = 0 for all i, j, and ↵. This simplifies the
holomorphic anomaly equations to

✓

@Sij � 1

2
@iA

(n)@jA
(n)

◆

F (n)[k]

g = �
g
X

h=1

D(n)

ij;hF
(n)[k]

g�h + (A.25)
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+
1

2

n
X0

m=0

X

`

g�B
X

h=0

⇣

@iF
(m)[`]
h�1

� @iA
(m)F

(m)[`]
h
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@jF
(n�m)[k�`]
g�1�B�h � @jA

(n�m)F
(n�m)[k�`]
g�B�h

⌘

.

Besides a few more indices in the notation, the structure of the equations is the same that we
discussed in chapter 3. They are recursive equations in the instanton sector n, logarithmic
sector k, and the order g. The range of ` is the same as in (A.5), and B is defined by (A.18).
The prime in the sum over m means that m = 0 and m = n are excluded.

The structure of the solutions is completely analogous to the one described in theorem
2, and is summarized in the following

Theorem 4. For any n 6= 0, k 2 {0, . . . , k(n)

max

}, and g � 0, the structure of the nonpertur-
bative free energies has the form

F (n)[k]

g =
X

{�n}

e
1

2

Pp
↵,�=1

a↵�(n;�n)

Ph2,1

i,j=1

@iA↵ @jA� Sij

Pol
⇣

Sij; 3
⇣

g + b(n)[k] � �
[k]

b,k
max

(n; �n)
⌘⌘

,

(A.26)

where the set of numbers {a↵� (n; �n)} and
n

�
[k]

b,k
max

(n; �n)
o

are read from the generating

function

�b,k
max

=

+1
Y0

m=0

k
(m)

max

Y

`=0

1

1� 'b(m)[`]  `
Qp

↵,�=1

E
m↵m�

↵�

Qp
↵=1

⇢m↵
↵

=

=
+1
X

n=0

⇢n
k
(n)
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X

k=0

 k
X

{�n}

p
Y

↵,�=1

E
a↵�(n;�n)

↵� '�
[k]

b,k
max

(n;�n)O('0). (A.27)

Here Pol (Sij; d) stands for a polynomial of total degree d in the variables {Sij} and whose
coe�cients have a dependence in {zi}. Whenever d < 0, the polynomial is taken to be

identically zero. We are assuming that b(m)[`] + b(n�m)[k�`] � b(n)[k] � 0, and k
(n)

max

� k
(m)

max

�
k

(n�m)

max

� 0.

The proof analogous to that of theorem 1, but one has to keep track of the dependence
on the indices i, j and the logarithmic sectors. Let us notice that the multidimensionality
of the moduli space does not change the structure of the solutions or the combinatorial
coe�cients. This is because all the propagators are on equal footing, which is not the case
for the instanton sectors.
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Appendix B

Proof of set recursion lemma

In this appendix we give a proof for the natural generalization of lemma 1 to multiparameter
transseries. It provides the equivalence between two ways of describing the combinatorial
numbers a(n; �n) and �b(n; �n), in terms of a generating function or recursively. It is used
to prove theorems 1 and 2 in chapter 3.

Lemma 4. The set of numbers {a↵� (n; �n)} and {�b (n; �n) }, and the range of the labels
{�n}, which appear in

�b =

1
Y0

m=0

1

1� 'b(m)

Qp
↵,�=1

E
m↵m�

↵�

Qp
↵=1

⇢m↵
↵

=

=
1
X

n=0

⇢n
X

{�n}

p
Y

↵,�=1

E
a↵�(n;�n)

↵� '�b(n;�n) O('0). (B.1)

are determined by the recursions

{a↵� (n; �n)}�n 6=b�n
=

[0

m,�m ,�n�m

{a↵� (m; �m) + a↵� (n�m; �n�m)} (B.2)

and
�b (n; �n) = min {�b (m; �m) + �b (n�m; �n�m)} , 8�n 6= b�n, (B.3)

where min ranges over m 2 {0, . . . ,n}0, and �m, �n�m are such that

a↵�(m; �m) + a↵�(n�m; �n�m) = a↵�(n; �n), 8↵, �. (B.4)

The prime means that m = 0 and m = n are excluded. Further, we have to specify the
initial data:

a↵� (n; b�n) = n↵n�, 8n,↵, �, (B.5)

�b (n; b�n) = b(n), 8n. (B.6)
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Proof. The proof involves calculating (�b � 1)2 in two di↵erent ways and comparing the
results. In the first way we square the generating function as a formal power series,

(�b � 1)2 =

0

@

+1
X0

n=0

⇢n
X

{�n}

Ea(n;�n) '�b(n;�n)O('0)

1

A

2

= (B.7)

=

+1
X00

n=0

⇢n

n
X0

m=0

X

{�m ,�n�m}

Ea(m;�m )+a(n�m;�n�m ) 'min{�b(m;�m )+�b(n�m;�n�m )} O('0).

Here we have used the shorthand notation

Ea(m;�m ) :=
p
Y

↵,�=1

E
a↵�(n;�n)

↵� . (B.8)

The double–prime ( 00) means that perturbative and one-instanton sectors are excluded from
the sum, that is knk 6= 0, 1.

In the second way we first expand the square and then the generating function,

(�b � 1)2 = �2

b � 2�b + 1, (B.9)

with

�2
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+1
Y0

m=0

1
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1� 'b(m)

Qp
↵,�=1

E
m↵m�

↵�

Qp
↵=1

⇢m↵
↵

⌘

2

. (B.10)

We use the formal expansion (1�x)�2 = 1+2x+3x2+4x3+· · · and the similar manipulations
to the ones done below (3.48),

�2

b =
+1
X

n=0

⇢n
X

{�n}

Ea(n;�n)

X

{rm}2�n

'
P

+1
m=0 rm b(m)

+1
Y

m=0

(rm + 1) . (B.11)

Since (B.7) does not have terms with knk = 0, 1 we must check that (B.9) does not have
them either. For knk = 0,

�2

b

�

�

knk=0

= 1, �b|knk=0

= 1 ) (�b � 1)2

�

�

knk=0

= 1� 2 · 1 + 1 = 0. (B.12)

For knk = 1 there is only one class, (b�n), so

�2

b

�

�

knk=1

=
p
X
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⇢↵ E↵↵ '
b(n)
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=
p
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(B.13)
Altogether we can write (�b � 1)2 as

+1
X00

n=0

⇢n
X

{�n}
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X

{rm}2�n

'
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Finally, the coe�cient at the end of this expression satisfies

+1
Y

m=0

(rm + 1)� 2 � 0, (B.15)

where the equality only holds for the special class b�n. Thus,

(�b � 1)2 =

+1
X00

n=0

⇢n
X0

{�n}

Ea(n;�n) '�b(n;�n) O
�

'0

�

. (B.16)

Comparing (B.7) and (B.16) concludes the proof.

A similar result can be proved when logarithmic sectors are included.
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Appendix C

Structure of free energies in local CP2

In this appendix we provide a description of the holomorphic and antiholomorphic depen-
dence of the free energies in local CP2 with low instanton number. These are the free energies
that have appeared in the resurgent study of chapter 4. The propagator dependence was
analyzed in detail in chapter 3 but the dependence of the complex modulus is more compli-
cated and, even though there is some structure, it is not simple to describe. The skeleton of
the free energies is a combination of exponentials and polynomials in the propagators. The
exponents and the degrees of the polynomials are determined by theorem 2. The coe�cients
are rational functions of z and polynomials in the the instanton actions, their derivatives,
and the holomorphic limit of the propagator. Because of the Picard–Fuchs equation we can
make it so that only second order derivatives of Ai appear. Also, Szz

i,hol

can be expressed in
terms of the instanton actions and rational functions of z,

Szz
i,hol

= � 1

Czzz(z)

✓

A00
i (z)

A0
i(z)

� f̃ z
zz(z)

◆

, (C.1)

with Czzz and f̃ z
zz given by (2.62) and (2.78), respectively. The inverse power of A0

i(z) in
(C.1) always gets cancelled in the final expressions for the nonperturbative free energies due
to the term (@zAi)2 in the exponentials.

One-instanton free energies

The one-instanton free energies associated to any of the instanton actions, ±Ai, are the
product of an exponential in the propagator and a polynomial. We use simplified notation
where we drop the index i and we denote by A any of the instanton actions. We have,

F (1)

g (z, Szz) = e
1

2

(@zA)

2(Szz�Szz
hol

)
3g
X

k=0

p
(1)

g,k(z)[A, @zA, @2

zA] (Szz)k , (C.2)

where the coe�cients are

p
(1)

g,k(z)[A, @zA, @2

zA] =
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⌘2X (1)

g,k
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zA
�⌘

2 . (C.3)
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The p
(1)

g,k,⌘(z) are rational functions of z, and each ⌘ 2 X (1)

g,k is written in the form ⌘ =

(k; ⌘
0

, ⌘
1

, ⌘
2

). X (1)

g,k is a set of such vectors for which we can give a heuristic description. Start

with k = 3g where there is only one ⌘ = (3g; 1, 3g, 0) 2 X (1)

g,k=3g, and apply the recursion

n

⌘
�

� ⌘ 2 X (1)

g,k
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� ⌘̃ 2 X (1)
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, (C.4)

� 2 {(�1; 0, 0, 0), (�1; 0,�2, 0), (�1; 0,�1, +1), (�1;�1, +1, 0)}
o?

.

The star (?) indicates that ⌘’s of the form

(k; 1, 0, 0), (k; 0, 1, 0), (k; 0, 0, 1), (C.5)
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, ⌘
2

) if ⌘
1

+ ⌘
2

= 3g + 1, (k; 0, 0, 0) if k  3
hg

2

i

, (C.6)

have to be discarded, along with ⌘’s that have negative components. For g = 1 we have to
discard (0; 1, 1, 0), as well. Let us display the g = 1 free energy is a schematic way, where

we omit the rational functions p
(1)

1,k,⌘(z) and show only the polynomials in A, A0 and A00.

F
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(z, Szz) ' e
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2(Szz�Szz
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)
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AA0 + AA03 + AA00 + AA02A00 + AA0A002�+

+ 1 + A02 + AA03 + A0A00 + AA02A00 + AA0A002 + AA003
o

. (C.7)

From the definition of the set X (1)

g,k we can derive how the free energies change as we flip the
sign of the instanton action. If we do the transformation A ! �A in C.3 then we can show
by induction on k that F

(1)

g acquires a factor (�1)g+1. The base case is k = 3g, for which
(�1)

P
2

i=0

⌘i = (�1)3g+1 = (�1)g+1. Because no addition of a vector � in (C.4) changes the
result holds for all k. Thus,

F (1)

g

�

�

A!�A
= (�1)g+1 F (1)

g . (C.8)

If we restore the notation in terms of ("
2i�1

) and ("
2i) we conclude

S
1,i

2⇡i
F ("

2i�1

)

g = (�1)g+1

eS�1,i

2⇡i
F ("

2i)
g . (C.9)

This is one of the necessary conditions to recover a genus expansion for the perturbative
sector out of the large-order growth, (1.61).

Using a program in Mathematica we computed one-instanton free energies for all the
conifold sectors up to g = 21 in closed analytic form and with the holomorphic ambiguity
fixed. The computation becomes impossible around this order due to the enormous require-
ment in memory—the size of X (1)

g,k increases quickly with g. To overcome this one has to keep
track of the holomorphic dependence numerically while leaving the propagator dependence
analytic. This allows us to go as high as g = 80. The caveat is that the computation has to
be done for a particular point in moduli space at a time.
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Two-instanton and mixed free energies

The large-order of the one-instanton free energies is controlled, to leading order, by the
sectors bF

(2e
1

)

h and bF
(e

1,1)

h , see (4.112). Both have a vanishing holomorphic limit, indicated
by the hat. In what follows A and Szz

hol

refer to the first conifold point.

The two-instanton free energies bF
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g have the structure,
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with
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The sets X (2e
1

)

r;g,k are similar to X (1)

g,k but we have not found a recursive definition as before.

However, it seems that X (2e
1

)

2;g,k = X (2e
1

)

4;g,k . In schematic notation the g = 1 free energy is
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The mixed sector bF (e
1,1) has the general structure
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and bF
(e

1,1)

odd

= 0 due to resonance. We have not found a heuristic description for the coe�cients

p
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1,1)

2;2g,k(z) or p
(2e

1

)

2;2g,k(z). The first nontrivial example of free energy is for g = 2, that has the
rather long expression,
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+ (Szz)3
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In practice, we have computed the nonperturbative free energies, bF
(2e

1

)

g and bF
(e

1,1)

g , up to
genus g = 8. Just like for the one-instanton sector it is necessary to introduce a seminumerical
method to reach higher orders.

The two-instanton contribution that appears in the large-order growth of the perturbation
theory at subleading order, eF

(2e
1,1)

g , is a combination of two-instanton free energies computed
out of the holomorphic anomaly equations. One is bF
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g that has been described above. The
other, F
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g , is calculated in the same way but with a nonvanishing holomorphic limit—
see (4.77). The antiholomorphic dependence of F
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We have computed these free energies up to order g = 8. They satisfy a similar symmetric
property as (C.8) when the sign of A is changed.
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