S C UNIVERSIDADE DE SANTIAGO DE COMPOSTELA
UNIVERSIDADE

DE SANTIAGO FACULTADE DE QUIMICA

DE COMPOSTELA

PhD Thesis

R, of

drfaces

UNIVERSIDADE
DE SANTIAGO
DE COMPOSTELA

UNIVERSIDADE DE SANTIAGO DE COMPOSTELA
FACULTADE DE QUIMICA

DEPARTAMENTO DE QUIMICA FISICA

Cifelus

Centro Singular de Investigacion CAMPUS

en Quimica Bioléxica e CAMPUS DE EXCELENCIA INTERNACIONAL
Materiais Moleculares

PhD Thesis

GAFit:
A computational tool kit
for parameterizations of

potential energy surfaces

Roberto Rodriguez-Fernandez

Santiago de Compostela, June 2014

SC

UNIVERSIDADE
DE SANTIAGO
DE COMPOSTELA

Dr. Emilio Martinez-Nunez e Dr. Saulo A. Vazquez-Rodriguez, Pro-
fesores titulares do Departamento de Quimica Fisica da Universidade
de Santiago de Compostela, autorizan a presentacion da tesis doctoral
titulada “GAFit: A computational tool kit for parametrizations of po-
tential energy surfaces” realizada por D. Roberto Rodriguez-Fernandez,
Licenciado en Quimica pola Universidade de Santiago de Compostela,
para optar ao grao de Doctor en Quimica.

E para que asi conste, asinamos o presente documento.

En Santiago de Compostela a 13 de xuno do 2014.

Dr. Emilio Martinez-Nunez Dr. Saulo A. Vazquez-Rodriguez

Aos meus:

meus pais, Gloria e Primo,

mina irma, susana,

mina dona, Marysol,

meus fillos, Lois e Victoria Uxia,
e a0s amigos...

s

GAFit:
A computational tool kit for parametrizations of potential
energy surfaces

RESUMO

A superficie de enerxia potencial (PES) de un sistema goberna moitas das stias propiedades
quimicas, e particularmente, a dinamica, isto é, a evolucién espacial dos nticleos co tempo.
Hoxe en dia, moitas das simulaciéns feitas integran as ecuaciéns clésicas do movemento,
calculando as forzas sobre os 4tomos a cada paso directamente por calculos de estruturas
moleculares —dindmica directa— ou por PES analiticas.

Incluso, en sistemas pequenos, o uso dunha superficie analitica pode ser unha eleccién
axeitada. Sen embargo, ata o que conecemos, non hai un coédigo xenérico que permita
aos usuarios parametrizar superficies analiticas de unha forma facil. O motivo final deste
traballo é escribir un conxunto de programas que axuden aos usuarios no desenvolvemento
de superficies analiticas.

GAFit foi inicialmente desenvolvido para facilitar o axuste de potenciais intermolecu-
lares e a reparametrizaciéon de hamiltonianos semiempiricos usando un alogritmo xenético.
Sen embargo, pode ser facilmente configurado para outros propésitos nos que se necesiten
axustar series de pardmetros.

A funcionalidade do paquete foi estendido separando o nucleo dos obxetivos a axustar.
Os usuarios poden escoller, dependendo dos seus cofiecementos de programacion, dende
introducir os seus propios potenciais directamente no coédigo, usar un esquema facil de
encher co potencial requerido, ou para eses sen conecementos, empregar unha expresion
analitica ou os potenciais méais comins xa listos para usar. Para facilitar a creaciéon e con-
figuracion dos arquivos de entrada engadironse un conxunto de ferramentas especializadas
ao paquete.

A maiores, desenvolveuse unha interface externa para interactuar con programas exter-
nos. Usando esta interface crearonse as ferramentas necesarias para parametrizar o MO-
PAC. Co gallo de solucionar certos problemas atopados perante o primeiro estadio de
desenvolvemento, creouse unha interface mellorada que incluso permite lanzar procesos
MOPAC concorrentes acelerando os calculos.

PALABRAS CHAVE

algoritmo xenético superficie enerxia potencial

LR\

SUMMARY

The potential energy surface (PES) of a molecular system governs many of its chemical
properties, and particularly, the dynamics, that is, the spatial evolution of nuclei with time.

viii

Most of the chemical dynamics simulations performed nowadays involve integration of the
classical equations of motion, calculating the forces on atoms at each step either directly
by electronic structure calculations —direct dynamics— or from analytical PES.

Even for small-size systems, the use of an analytical surface may be a convenient choice.
However, to our knowledge, there is not a general code that allows users to parametrize
analytical surfaces in a relatively easy way. The aim of the present work was to write a
suite of programs to assist users in developing them.

GAFit was initially developed to facilitate fittings of intermolecular potentials and
reparametrizations of semiempirical Hamiltonians using a genetic algorithm. However, it
can be easily adjusted for other purposes in which fittings of a series of parameters are
needed.

The functionality of the package was extended separating the core itself from the fitting
targets. Users can choose, upon their programming skills, from introducing their custom
potentials directly into code, use an easy pre-coded potential template to do so, or for
those with no programming knowledge at all, that can use an analytical expression or the
most used potentials coded just ready to use. A complete set of tools were added to the
package to facilitate the creation and configuration of input files.

In addition, an external interface was developed to interact with external programs.
Using this interface the tools needed to use GAFit to parametrize the MOPAC program
were developed. A further MOPAC enhanced interface permits running parallel copies
of MOPAC to speed up calculations and face up some problems encountered during the
first stage development.

KEYWORDS

genetic algorithm potential energy surface

Uolok)

RESUMEN

La superficie de energia potencial (PES) de un sistema molecular gobierna muchas de sus
propiedades quimicas, y particularmente, la dindmica, esto es, la evolucién espacial de los
ntcleos con el tiempo. Muchas de las simulaciones dindmicas realizadas hoy en dia involu-
cran la integraciéon de las ecuaciones clasicas del movimiento, calculando las fuerzas sobre
los atomos a cada paso mediante calculos de estructuras electréonicas —dinamica directa— o
mediante PES analiticas. Incluso para sistemas de pequeno tamaifo, el uso de una super-
ficie analitica es una opcién conveniente. Sin embargo, de acuerdo a nuestro conocimiento,
no hay un codigo genérico que permita a los usuarios parametrizar superficies analiticas
de una forma relativamente facil. El motivo del presente trabajo es escribir un conjunto
de programas para asistir a los usuarios en su desarrollo. GAFit fue inicialmente desa-
rrollado para facilitar el ajuste de potenciales intermoleculares y reparametrizaciones de
hamiltonianos semiempiricos usando un algoritmo genético. Sin embargo, puede ser facil-
mente configurado para otros propésitos dénde sea necesario ajustar series de parametros.

La funcionalidad del paquete se extendié separando el nucleo de los objetivos. Ahora, los
usuarios pueden escoger dependiendo de sus conocimientos de programacién, desde intro-
ducir sus propios potenciales directamente dentro del coédigo, o usar un esquema a rellenar
con lo necesario, o para los que no tienen ningin conocimiento de programacién, emplear
una expresion analitica o los potenciales mas comunes ya implementados. Se afniadi6 un
conjunto completo de de utilidades para facilitar la creaciéon y configuracion de los ficheros
de entrada. También desarroll6 una interface externa para interactuar con otros progra-
mas. Usando esta inteface se desarrollaron las herramientas necesarias para usar GAFit
en la parametrizacion del MOPAC. Para solucionar los problemas encontrados durante
el primer desarrollo, se escribié una interface mejorada que incluso permite correr copias
concurrentes de MOPAC para acelerar los calculos.

PALABRAS CLAVE

algoritmo genético superficie energia potencial

Contents

1 Introduction and objectives

I Maths

2 Optimization methods
2.1 Introductiono
2.2 Linear programmingo v oeoee .
2.3 Convex optimization
2.4 Nonlinear optimization
2.4.1 Local optimization
2.4.2 Global optimization

3 Evolutionary Algorithms
3.1 Genetic Algorithms
3.1.1 Mutation
3.1.2 Permutation,
3.1.3 Crossover
3.2 Genetic Programming

4 The Genetic Algorithm
4.1 Tournament Selection
4.2 Genetic operations

Xi

12
12
13
13
14

17
18
19
19
21
21

xii CONTENTS

421 Crossover. 28

4.2.2 Mutation 31

4.3 Elitism 32

II Program Details 33
5 GAFit 35
5.1 Imtroductiono L 35
5.2 Installation 36
0.3 Usage. o 37
53.1 Overview 37

5.3.2 Examples. oL 38

6 Input files 41
6.1 Typesofjobs0 . 43
6.2 Section [parameters|ol oL L 44
6.3 Section [job]o 45
6.4 Section [print] Lo ee oL L 54
6.5 Section [coefficient names| Lo 55
6.6 Section |analytical] « . oo o000 55

7 Output files 57
7.1 Other output files 61
7.2 Using TAGS 61

8 Specifiying a new interaction potential 63
8.1 Modifiying potentials.f and userpotential.f 63
8.1.1 VGLOBALES module 63

8.1.2 Interface subroutines and functions 63

8.1.3 Adding a new potential to potentials.f 65

8.1.4 Changing userpotential.f 70

8.2 Analytical expression 73

9 MOPAC interface 77
9.1 External potential 7

9.1.1 Autoconfigure 78

CONTENTS xiii

9.1.2 Stopping an external job 79

9.2 Interfacing with MOPAC 2009 80
9.3 External command 83
9.4 injector 83
94.1 Configuration 84

9.4.2 Normal operation 85

9.5 extractor Lo 86
9.6 fitter 89
9.7 Caveats.o 92
9.8 MOPAC 2012 93
10 shepherd 95
10.1 Controling freezes . . « 97
10.2 Operating modes L 97
10.3 Parallel processes 98

11 Fpu 107
11.1 Fpuoverview . « 0 e 107
11.2 Mode of operation 109

12 Tools 115
12.1 needle SEC L0000 400 .. 115
12.2 bedit 117
12.3 fitview Lo 120
124 ufpu 121
12.5 JobTreeEditor 123
IITI Step by step examples 127
13 Xe + [Li(Uracil)]" example 129
13.1 Preparing input files 130
13.2 Running the example 136
13.3 Examining resultso 141
14 User designed analytical expressions 145

14.1 Preparing input files 146

Xiv CONTENTS

14.2 Running and examining results 153

15 External Interface example 155

15.1 Input files L 155

15.2 Running the example and examining results 159

16 MOPAC Interface example 169

16.1 Prerequisites 169

16.2 Input and executable files 169

16.3 Running the example and examining results 175

17 Enhanced MOPAC Interface example 181

17.1 Input and executable files 181

17.2 Running the example 182

IV Applications 185
18 Collision-induced dissociation mechanisms of [Li(uracil)] " 187

18.1 Abstract . . .o . oo 187

18.2 Introduction o . oo L0 188

18.3 Computational details 190

18.3.1 Potential energy surface 190

18.3.2 Chemical dynamics simulations 191

18.4 Results and Discussion 194

18.4.1 Trajectory types 194

18.4.2 Aditional fragmentation channels of [Li(uracil)]™ 198

18.4.3 Comparison with experiment 203

18.4.4 Emergy transfer 204

18.5 Conclusions 206

18.6 Acknowledgements. L. 208

18.7 Electronic Supplementary Information 208

18.7.1 Intramolecular [Li(uracil)]™ Potential Energy Sur-
faceo 208
18.7.2 LJ parameters for |Li(uracil)|™ 209

18.7.3 Tables 209

CONTENTS XV
19 Ab initio and RRKM study of the HCN/HNC elimina-
tion channels from vinyl cyanide 217
19.1 Introduction 218
19.2 Computational details 220
19.3 Results and Discussion 222
19.4 Conclusions 229
19.5 Acknowledgement 230
19.6 Supporting Information 235
19.6.1 Frequencies of all stationary points found in this
study . .o oL 235
19.6.2 Cartesian Coordinates (in A) of all stationary points
found.n this study 235
V Conclusions 239
20 Conclusions 241
Appendices 247
A Source code 247
Al Sourcefileso 247
A.2 Analytical job 248
A.3 Potential base routines L. 249
A4 Fpuroutines 249
Ab GAFit 250
A.6 Genetic Algorithm Core 250
A6.1 Crossover. 250
A.6.2 Mutation L 250
A.6.3 Selection 250
A6.4 Stats 250
A6.5 Utils 250
A7 Externaljob L. 251
A71 Flyetl.o L 251

A72 Mopac 251

Xvi

A.8 Miscellaneous
A81 Arguments
A.8.2 Autoweights
A83 Bounds
A84 Cnames
A85 InputLine
A86 Integer
AR.T7 Literals
A.8.8 Parameters.
A889 Rand
A.8.10 Rstrings

A9 Tools
A91 Bedit oL
A92 Fitview
A.9.3 JobTreeEditor«
A94 Needle
A95 Ufpu

B Resumo

References

Other interesting references to the reader
Index

List of tables

List of figures

List of files

CONTENTS

257

267

275

279

285

287

293

Acknowledgements

First and foremost, I have to thank my thesis directors, Emilio Martinez
Nunez and Saulo A. Véazquez Rodriguez, for their support and under-
standing over these past years.

I would also like to thank Francisco Baptista Pereira and Jorge M. C.
Marques. Without their help this thesis would not have been possible.

Last, but not least, I would like to thank my family and friends for
their support.

XVii

Conventions

Symbols

— tabs

- blank spaces

. or |...| more output not shown

2 wrapped line

¢ wrapped line continuation

Acronyms

3C
4C

AM1
AM1-SRP
BLX-a
BSSE
CESGA
CID

CPU

three-centered 218
four-centered 219
Austin Model 1....... 187
AMI1 Specific Reaction Parameters.................. 198
Blend Alpha Crossover............................... 31
Basis Set Superposition Error....................... 191
"Centro de Supercomputacion de Galicia" 208
Collision-Induced Dissociation 187
Central Processing Unit.............., 5

1

DNA
DPC

ESI
TR-FTIRES

FPU
GA
GUI
IDE
ITPs
IVR
KMC
LJ
MEP
MOPAC
MPX
NFS
PBS
PDF
PES
PNG
QCT
RNA
RRKM
SBX
SPC
SRP
VvC

CONTENTS

deoxyribonucleic acid L 18

Double Point Crossover (or TPX, Two Point Crossover)
21

Electronic Supplementary Information.............. 190
time-resolved Fourier transform infrared emission

SPECETOSCOPY -+« + v v vttt 218
Floating Point Unit............. 73
Genetic Algorithm 6
Graphical User Interface............................ 123
integrated development environment................ 266
Inner Turning Points 193

Intramolecular Vibrational Energy Redistribution. .. 189

Kinetic Monte Carlo................................ 193
Lennard-Jones. i 194
minimum energy path 220
Molecular Orbital PACkage.......................... 36
Multiple Point Crossover............................. 21
Network File System................................ 100
Portable Batch System 262
portable document format 263
Potential Energy Surface.............................. 5
portable network graphics 263
Quasiclassical Trajectory 191
ribonucleic acid.......... 189
Rice-Ramsperger-Kassel-Marcus 189
Simulated Binary Crossover.......................... 30
Single Point Crossover (or SPX) 21
Specific Reaction Parameters 208

vinyl cyanide 169

CONTENTS 3
ZPE zero-point vibrational energies...................... 220

Input, output and files

e A command line interactive shell session:

tar -xvzf gafit-VERSION.tar.gz
cd gafit-VERSION

./configure

make

make install

e A program output to interactive terminal or redirected to a file:

Build: 2122

Settings for job

Geometries: [coord.molden]

Energies: [energies]

Atom2type: [atom2type.txt]

Bounds: [bounds.txt]

Charges: [charges.txt]

Potential read: 2

All coefficients: no, Read and repeat subset
Fitting: absolute

[...]

e An input or output file:

File 1: Input file example.

evaluations:__5000000
Geometries: ___moldeni.dat

Energies:____._ energies .dat
Atom2type:____atom2types. txt
Bounds:_____.oo bounds. txt
Charges:____._. charges . txt
Potential:____1

All_coefficients:_0

e Source code file:

File 2: C source code

34
35 int

CONTENTS

36 build (void)

a7 {

33 char *xbuild = "$Rev:_3521_8$";

39 return atoi (index (build, ’:’) + 1);
10 }

e Command line tool syntax:

command [-al[-b c] [-d [el] [-f {glhli}] mandatory-argument [optional-argument] ‘

options or flags consist of '-” characters and single letters or digits,
such as -a’ or -1’ which enable a feature. Some of them have an
option argument too, like the '-b ¢’, where 'c’ is the argument for
option ’-b’. Here ¢’ is used to 'tune’ the 'feature’ enabled with
-b’.

Arguments or option-arguments enclosed in the ’[and ']’ notation
are optional and can be omitted like the ’[optional-argument]’
or 'le]” or ’[-d [e]]’. The ones not enclosed like 'mandatory-
argument’ must be set.

If the '-b’ feature is enabled '¢’ must be set, but if the '-d’ feature

is enabled, e’ is optional.

{’ and '}’ notation represents a set of options to select. Arguments
separated by the ’|” bar notation are mutually-exclusive, and only
one of them must be chosen from the set enclosed with "{" and "}’

e Menu selection sequence: |Edit) Tree) Internal job) Analytical|

e keystrokes:

— +@: A key plus O key at the same time.
— , @: A key, then O key.

Introduction and objectives

To invent, you need a good
imagination and a pile of junk.

Thomas A. Edison

One of the key concepts in chemistry is that of Potential Energy
Surface (PES)!. It comes from the Born-Oppenheimer approximation,
which facilitates the solution of the time-independent Schrédinger equa-
tion for molecular systems. Fortunately, the errors associated with this
approximation are negligible for many of the systems and conditions
of interest to chemists. The potential energy surface of a molecular
system governs many of its chemical properties, and particularly, the
dynamics, that is, the spatial evolution of nuclei with time. Most of the
chemical dynamics simulations performed nowadays involve integration
of the classical equations of motion, calculating the forces on atoms at
each step either directly by electronic structure calculations (i.e., “on-
the-fly” or direct dynamics) or from analytical PESs. In principle, the
direct dynamics approach may be the preferred option for simulations
of reactive systems that include a small number of atoms, because one
avoids the construction of the analytical surface. The use of analytical
PESs, however, has a clear advantage in terms of Central Processing
Unit (CPU)-time costs, being mandatory in molecular dynamics simu-
lations of systems composed of thousands of atoms'. Even for small-size

In molecular mechanics and molecular dynamics, the analytical potential energy surface of a
system is generally known as the force field.

6 1. INTRODUCTION AND OBJECTIVES

systems, the use of an analytical surface may be a convenient choice.
If it is developed with care, it may be almost as accurate as the ex-
act surface corresponding to the electronic structure method used as a
reference for its construction.

The development of analytical PESs or force fields may be facilitated
by using optimization methods, and many research groups have been us-
ing them for their particular purposes. However, to our knowledge, there
is not a general code that allows users to parametrize analytical surfaces
or force fields in a relatively easy way. The aim of the present work was
to write a suite of programs to assist users in developing analytical sur-
faces. This suite of programs will be called GAFit. We used this name
because, with this computational tool kit, a Genetic Algorithm (GA)
conducts the fitting —Fit— or parametrization of a desired potential en-
ergy surface. The genetic algorithm was not developed in this work;
rather it was taken from the literaturel?®l. For our purposes, the advan-
tages of a genetic algorithm against other type of optimization methods
are detailed later on. In this work, the GAFit program is applied to
the development of an intermolecular potential for the interaction be-
tween Xe and the [Li(Uracil)|Tcomplex, and to the reparametrization
of a semiempirical Hamiltonian?. The program, however, can be easily
adapted to conduct any type of fittings or parametrizations of analyt-
ical surfaces or force fields, as well as other optimization problems in
chemistry.

2Semiempirical Hamiltonians supplemented with specific reaction parameters were first pro-
posed by Truhlar*l as a practical method for direct dynamics calculations.

Optimization methods

A mathematician is a device for
turning coffee into theorems.

Alfréd Rényi

2.1 Introduction

An optimization, mathematical optimization or mathematical program
is a problem that consists of finding the best element from some pos-
sible set, using some criteria. Usually, it implies the maximization or
minimization of the so called objective function. Here, the term program
antedates computers and means preparing a schedule of tasks.

The generic mathematical optimization problem’! can be expressed

asll;

Optimize f(x) (2.1.1)
g(x) € 5

Subject to the constraints:
T €Sy

where x is a vector of variables which are used to maximize or min-
imize the function, f(x), that expresses the objective algebraically. S}
and Sy are any set to reflect the constraints that must obey g(z) and
the variables respectively.

10 2. OPTIMIZATION METHODS

flaxg + Bxy) < af(xo) + Bf(x1)
a+pf=1

S

Figure 2.1: Convex function.

By convention, the standard form of an optimization problem is
stated in terms of minimization because minimizing f(x) is the same
as maximizing an adequate function h(z) and viceversa.

A point x is feasible if it satisfies all constraints. The feasible region is
the set of all feasible points: those for g(x) belongs to Sy and = belongs
to Sa. A mathematical optimization is feasible if its feasible region is
not empty.

An important concept to take into account is convezity as we see in
2.3. A function is convexr —see Fig. 2.1— if it satisfies the inequality:

flaz + By) < af(x)+Bf(y) ¥ ayeR (212)
{& th=1 V a,0€R
a>0,6>0

A linear function is a special case of conver where

flax + By) = af(x) + Bf(y) (2.1.3)

Many different types of problems embrace the mathematical program-
ming problem!6l:

e linear programming problem: if f(x) and g(x) are linear and the
x’s are individually non-negative.

2.1. INTRODUCTION 11

e integer programming problem: if the x € Sy restriction requires
some z’s to take on integer values.

e nonlinear programming problem: if f(x) and g(x) are general non-
linear functions with S5 being nonnegativity conditions.

e ctc.

Examining the different parts of the whole problem, we can have
different types of mathematical optimization!”!:

e Abstract

e Biconvex

e Bilinear

e Composite concave
e Continuous

e Convex

e Discrete

e Disjunctive

e Dynamic

e Factorable

e Fractional

e Geometric

e Integer

e Infinite

e Lattice

e Linear

e Mixed-Integer
e Multilevel

e Nonlinear

e Pseudo-boolean
e Reverse convex
e Semi-definite

e Semi-infinite

e Separable

12 2. OPTIMIZATION METHODS

In behalf of clarity, a simpler and practical classification can be used
as in Boyd and Vandenberghe [7] taking into account convexity and
linearity.

2.2 Linear programming

A linear programming problem is a problem of minimizing a linear func-
tion —(2.1.3)— with linear constraints of the inequality and/or the equal-
ity typelsl:

Maximize Z = cx1 + cor9 + + ¢y,
subject to a;nry + appxrs + + apr, < b
+ = +
Am1T1 + Am2T2 + + AmnTn S bm
r1 20 x9 = 0 T, >0

Z is the objective function to be minimized, ¢, s, ..., ¢, are the cost
coefficients and xy, x9, ..., , are the decision variables. Finally, a;; are
the technological coefficients forming the constraint matriz.

There are effective methods for solving linear programming problems
as the simplex method or the interior-point methods.

2.3 Convex optimization

A convex optimization problem is one in which the objective and con-
straint functions are convex, which means they satisfy the inequality
(2.1.2). Linear programming and least-squares problems are special
cases of convex problems. Convex programming problems have a well
developed theory, and can be solved numerically very reliably and effi-
ciently, using interior-point methods or other special methods for convex
optimizationm .

Convex optimization has also found wide application in global op-
timization, where it is used to find an optimal value as approximate
solutions.

2.4. NONLINEAR OPTIMIZATION 13

2.4 Nonlinear optimization

Nonlinear optimization is the term used to describe an optimization
problem when the objective or constraint functions are not linear, but
not known to be convex!.

There are no effective methods for solving the general nonlinear pro-
gramming problem. The simple ones with a dozen of variables are dif-
ficult to solve, and those with one hundred variables may become an
impossible task.

2.4.1 Local optimization

In local optimization we search for a good feasible point, z*, that is the
best compared with nearby feasible points in the same region:

|z —x*|| < o
f(@*) < f(z)

But it may not coincide with the globally optimal solution.

e.g., if 2" is a minimum (2.4.1)

Ve 46 >0 {

There are some facts about local optimization methods:

e For most local optimization methods differentiability of the ob-
jective and constraint functions, with respect to the variables or
parameters, is the only requirement.

e You have to experiment with the choice of algorithm to find a
suitable one to the problem at hand.

e They are often sensitive to algorithm parameters and must be ad-
justed depending on the problem to be solved.

e In many cases, an initial guess —seed— is needed. This has a huge
influence on the solution.

In figure 2.2 we can see an example of a surface with local minima
(green), and an absolute minimum (in red). Using our initial guess, and
the gradient to move over the surface, we can find one of the minima,
but it may not be the global one.

14 2. OPTIMIZATION METHODS

2.4.2 Global optimization

Global optimization is the task of finding the absolute minimum (or best
solution). It is considered “the hardest part of a subject called nonlinear
programming!®)”. In the worst case, complexity grows exponentially with
the sizes of parameters and constraints, so it can take a long time to
solve.

If the number of variables is big —hundreds—, the cost in computation
time can make the problem intractable!’l. An intractable problem in
complexity theory is a a problem in which no algorithm can exist com-
puting all instances of it in polynomial time!**!; When the execution time
of a computation, m(n), is no more than a polynomial function of the
problem size, n. More formally m(n) = O(n*) where k is a constant!!!l.

Global optimization algorithms can be classified according to the
method of operation into two different types!™?: deterministic and prob-
abilistic.

Deterministic At least one way to proceed exists in each execution
step. If there is not any way, the algorithm ends. Deterministic
algorithms are often used if there is a clear relation to the fitness
of the possible solutions. If so, the search space could be efficiently
explored to find good solutions.

Probabilistic If the relation is not obvious, if it is difficult or if the
search space has a high dimensionality, then probabilistic algo-
rithms are used. In general, to obtain an optimal solution, you
must spend time exploring the search space.

Examples of deterministic are State Space Search, Branch and Bound
and Algebraic Geometry.

Examples of probabilistic are Hill Climbing, Random Optimization,
Simulated Annealing, Genetic Algorithms etc..

2.4. NONLINEAR OPTIMIZATION

Figure 2.2: Global search.

Evolutionary Algorithms

I am turned into a sort of machine
for observing facts and grinding out
conclusions.

Charles Darwin

Evolutionary algorithms are a good tool in Global Optimization be-
cause they make no assumptions about the problem, and therefore, they
usually perform very well in all types of problems!'?l.

These algorithms employ techniques inspired in biology such as re-
production, mutation, recombination and selection applied to a set of
candidates used as a population to find optimal ones.

Evolutionary algorithms proceed according to the scheme shown in
Figure 3.1. A population is initialized; then, each member is evaluated
according to some objective function. And finally, some of the members

| initialize |

population

— T~

I‘epI‘OdUCtiOI} | ‘evaluation
\|\ /

selection |

Figure 3.1: Evolutionary algorithms.

17

18 3. EVOLUTIONARY ALGORITHMS
B
(¢

V:.elik—@ +—.
L

Figure 3.2: Genes and chromosome example: 4™ potential from Table 6.2.

are selected to create a new population using reproduction techniques.
The process continues until a population member turns out to be a good
solution, or a maximum number of populations are reached.

There are many evolutionary algorithm types with distinctive fea-
tures depending on how the populations are used, how the individuals
are represented, how the individuals are selected to reproduction, how
the offspring are included in the population of the next generation, etc.

The population of the next generation can be formed from:

e a combination of the current population and its offspring,

e some or all of the offspring, and none of the current generation
individuals,

e none or some of the best individuals ~known as elitist algorithm-
are propagated to the next generation.

We describe here two types of evolutionary algorithms of our interest:
Genetic Algorithms and Genetic Programming,.

3.1 Genetic Algorithms

The individuals are described by an array of elementary types —the
genes: any suitable representation, including bits and bytes— similar
to a deoxyribonucleic acid (DNA) string, and are also called a chromo-
some.

Each gen can describe a characteristic, e.g. a double precision poly-
nomial coefficient value like the example in Fig. 3.2 where is represented
the 4" potential from Table 6.2.

3.1. GENETIC ALGORITHMS 19

i

Figure 3.3: Single gene mutation.

3

Figure 3.4: Multiple gene mutation.

Chromosomes could be fixed or variable length strings. The type,
number, characteristics, etc of genes and how they are related in the
chromosoma is a problem type dependent matter.

There are some genetic operators which can be applied over a chro-
mosome string: Mutation, permutation and crossover.

3.1.1 Mutation

Mutation randomly changes one or more genes. If the chromosomes
are of fixed length, we may have a single gene mutation (Fig. 3.3) or
a multiple gene mutation (Fig. 3.4), and if the chromosomes are of
variable length, there can be an insertion (Fig. 3.5) or a deletion (Fig.
3.6).

3.1.2 Permutation

Permutation exchanges a pair of genes. Fig. 3.7.

20 3. EVOLUTIONARY ALGORITHMS

—>

Figure 3.5: Variable lenght insertion.

—>

Figure 3.6: Variable lenght deletion.

X

Figure 3.7: Permutation.

3.2. GENETIC PROGRAMMING 21

Figure 3.8: Single point crossover.

H

Figure 3.9: Variable lenght single point crossover.

T TI i1

3.1.3 Crossover

Crossover recombines two chromosomes to obtain a new one. Some
crossover types are described in the literature as Single Point Crossover
(SPC), Double Point Crossover (DPC), and Multiple Point Crossover
(MPX). As above, the chromosomes can be of fixed or variable length.
See Fig. 3.8, 3.9, 3.10 and 3.11.

3.2 Genetic Programming

We do not use in this Thesis Genetic Programming, but we do not
disregard its use in the future as it provides a new means to implement
new capabilities in the program. One of those capabilities that would be
of great interest to us is the optimization of the functional form of the
potentials we employ to fit a set of ab initio energies for two interacting
species.

Genetic Programming includes all evolutionary algorithms that cre-

22 3. EVOLUTIONARY ALGORITHMS

HEEEEEEEEEEE

Figure 3.10: Multiple point crossover.

Figure 3.11: Variable lenght multiple point crossover.

ate and modify programs or algorithms. The genes are instructions,
inputs or constants, and the chromosomes pieces of interpretable code.
The goal is to find a representation of code that, when ran with a known
input, shows some kind of desired behavior.

Genetic Programming usually uses tree representations of chromo-
somes. The Fig.3.12 is a good example where a simple calculation of
“Ter is represented as a tree chromosome. Leaf nodes are inputs or con-
stants, the non leaf nodes are operations.

The potentials implemented in potentials.f, shown in Table 6.2, are
easily calculated with the routines from Fpu —section 11—, and hence
suitable to be employed in a search with Genetic Programming using

tree chromosomes as represented in Fig.3.13.

3.2. GENETIC PROGRAMMING

div

/\

sum C

/N

Figure 3.12: Tree choromosome.

Br C E
vl
AR TF

Figure 3.13: 4" potential from Table 6.2.

23

The Genetic Algorithm

In mathematics you don’t
understand things. You just get
used to them.

John von Newmann

The genetic algorithm used here was developed by Marques [2] and
co-workers and slightly modified to support integer parameters in the
function employed to fit interaction energies. The GA main loop is
shown in File 4.1. As expected, it begins creating and evaluating the
first population prior to run into the main loop —a do-while between
lines 109-179-.

File 4.1: ga.c
64
65 void
66 ga (int evaluations, int pop_ size, double p cx, double blx alpha,
67 double eta sbx, double p mt, int elite ,
68 int size k, int cx_ type, int mutation type, int
mutation integer ,
69 double sigma, p ind all time best, vect domain bounds, int dir
)
70 {
71 int generation = 1;
72 int current evaluations = 0;
73 ind best, new best, dummy;
74 p_ind population;
75 p_ind new population, temp;
76 int last evals;
77 int print;
78 static int flag = 0;

25

26

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102

103
104

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

121
122
123
124

125
126
127

4. THE GENETIC ALGORITHM

int 1i;

// make and evaluate population

population = make population (pop size, bounds);
best .genes = malloc (sizeof (double) * N);
new best.genes = malloc (sizeof (double) x N);

current evaluations += evaluate pop (population, pop size, N);

dummy = get best (population, pop size, dir);
copia_ind (&dummy, &best, N);
if (flag = 0)

flag = 1;
copia_ind (&best, all time best, N);

}

else
update all time best (best, all time best, N, dir);

stats (population, generation, current evaluations, pop_size,
best , N, 1);

last evals = current evaluations;

// allocates memory for individuals (to generate the new
population)

new_population = malloc (sizeof (ind) * pop_size);

for (i = 0; i < pop_size; i++)

{
}

// evolution cycle
do

{

new population[i]. genes = malloc (sizeof (double) * N);

generation—++;

// tournament selection
tournament selection (population, new population,
pop_size, size k, dir, N);

// applies genetic operators
apply crossover (new population, pop size, N, p cx,

cx_ type, blx alpha, eta sbx, bounds, dir);

apply mutation (new population, pop size, N, p mt,
mutation type,
mutation integer, bounds, sigma);

// evaluate populations
current evaluations += evaluate pop (new population,
pop _size, N);

// GA simples
temp = population;

128
129
130
131
132

134
135
136
137

139
140

141
142
143
144
145
146
147
148
149
150
151
152
153

154
155
156
157
158

160
161
162
163
164
165
166
167
168

170
171
172
173
174
175
176
177
178

27

population = new population;
new population = temp;

// Get best from new generation
dummy = get best (population, pop size, dir);
copia_ind (&dummy, &new best, N);
if (elite)
{
if (dir = 1)
{

if (new_best.fitness < best.fitness)

{

apply elite (population, pop size, best, dir, N)

}

else if (new best.fitness > best.fitness)

{

copia_ind (&new best, &best, N);

}

)

}

else

{

if (new best.fitness > best.fitness)

{

apply elite (population, pop size, best, dir, N)

}

else if (new best.fitness < best.fitness)

{

copia_ind (&new best, &best, N);

}

)

}
}
update all time best (best, all time best, N, dir);
// output

if ((current evaluations < 100)
[| ((current evaluations < 1000)

&& (current evaluations — last evals > 100))

|| (current evaluations — last evals > 250))

{
print = 1;
last evals = current evaluations;

}

else
print = 0;

stats (population, generation, current evaluations,
pop size, best, N, print);

28 4. THE GENETIC ALGORITHM

7o while (current_evaluations < evaluations);
L

The system is configured reading an input file —Section 6-. Once
configured, the GA main loop routine starts and continues till a maxi-
mum number of evaluations is reached as shown in Figure 4.1. The GA
only comunicates with the external world —internal or external routines
or programs— through the evaluation phase and when some subroutines
print outputs.

Table 4.1: GA subroutines

subroutine ‘ source ‘ comments

ga ga.c main loop

tournament_selection | selection.c tournament algorithm

apply _elitism selection.c elitism algorithm

apply _crossover Crossover.c | Crossover

apply mutation mutation.c mutation

evaluate pop evaluation.c | this subroutine works as an inter-
face switching the evaluation to
the desired type of application

get best selection.c

4.1 Tournament Selection

A subset of K individuals are selected randomly from the old population.
The best of the set is selected and introduced in the new population.
This operation is repeated till the new population is completed. K is
the tournament controlling parameter: Tournament size.

4.2 Genetic operations

4.2.1 Crossover

For all the population, each two consecutive individuals, a random num-
ber between 0 and 1 is obtained and if it is greater than the crossover
rate a crossover is performed obtaining two new offspring replacing their
parents. The type of crossover selects the operator to apply:

e Single point crossover. A random point is selected and the offspring
are obtained from the parents by exchanging the tail segments.

4.2. GENETIC OPERATIONS

[Conﬁrgure systemj

Create first population

v
Evaluate first population

Y
>0

\4
| Tournament selection

Y

Genetic operations G A

| Evaluation IZD

\V4
| Elitism |

v best.txt
3 4.000000000000
/ Save all time best / 5 100000000000
\{> -5.000000000000

0.000000000000
1.000000000000

Fitness: 0.000000000000

Current evaluations
<
evaluations

Figure 4.1: GA main loop

29

! interface

30 4. THE GENETIC ALGORITHM

e Double point crossover. Two random points are selected and the
offspring are obtained from the parents by exchanging the center
segments.

e Simulated Binary Crossover (SBX)I?l. SBX simulates a SPC op-

erator on binary strings obtaining two offspring having some inter-

esting properties to self-adaptation!4l:

— high probability to mantain the extend between them like the
parents

— high probability to be near the parents values

SBX works as follows:

— A random value between 0 and 1 is selected: u € [0, 1]!.

— Using a uniform distribution we calculate 8 so the area under
probability curve from 0 to § is equal to u:

B=Qum ifpu < 05

1

B= o) if n>05

— Now, we obtain the two children, C and C, from the parents,
P1 and PQZ

Ci=5[1+8)P = (1-08)P]

DO | —

Cy = % (1—B)P, + (1+ B)P)

The controlling parameter is n —eta_ sbx, Table 6.1- which is a
real non negative number. Larger values increase probability of
children close to their parents while small ones increase probability
of distant children!?!.

'Really, here the coded implementation is u € [0,0.99] to avoid a divide by zero problem in the
calculation of 8

4.2. GENETIC OPERATIONS 31

e Blend Alpha Crossover (BLX-a)"l. BLX-a crossover creates new
offspring choosing a random value for each gene in the range:

[Gmm - AO‘; Gmcwc + Aa]

Here G.in and G4, are the smallest and largest of the two parents
gene values. A is Guer — Gmin. The value obtained is checked and
limited to the acceptable values for the gene, called the bounds.

BLX-« crossover has the first interesting self-adaption property of
SBX: high probability to mantain the extend between them like
the parents!™l.

The controlling parameter is a —blx alpha, Table 6.1 which de-
termines the degree of variability. It was reported that a value @ =
0.52 performs better than other values for many test problems!*.

SBX and BLX-« are calculated crossovers. In both cases, if an integer
gene type is used, they revert to a Single Point crossover.

4.2.2 Mutation

The application is slighty different from the crossover operators. Here
mutation rate operates over genes while crossover rate operates over
individuals:

e For all individuals in the population, a call to mutation subroutines
is performed obtaining a new offspring replacing the parent.

e For each individual’s gene, a random number between 0 and 1 is ob-
tained, and if it is greater than the mutation rate the corresponding
mutation is performed in the gene?.

There are four types of mutation to apply upon coefficient nature and
user choice:

e Real coefficients: Random and sigma.

2Known as BLX-0.5 crossover
3 As the mutation rate drops to zero, the probability that the parent replaces itself increases.

32 4. THE GENETIC ALGORITHM

— Random mutation. The parent gene is replaced by a random
number obtained from the acceptable set of values for the gen
~bounds-.

— Sigma mutation. The child gene, Gpi1q, is replaced by a new
value calculated from parent Gpgpent as:

Gchild - Gparent + O(Gmax - Gmm)N(Oa 1)

Gmaz and G, are bounds, N (0, 1) is a random value sampled
from a standard normal distribution and o —sigma, Table 6.1—
is the control parameter.

The value is checked against the bounds, and if in five tries a
suitable value between bounds is not found, a random mutation
is performed.

e Integer coefficients: Random and adjacent.

— Random mutation. The parent gene is replaced by a random
integer number between bounds.

— Adjacent mutation. Adjacent changes the parent gene by a
unit amount as follows:

Gmin 7. if Gparent - Gmm
G — Gmaw —1 if Gparem‘ - Gmaa:
child — o o
otherwise randomly: { parent
Gparent - 1

4.3 Elitism

Finally, elitism is applied: A random individual of the new generation is
replaced with the best from parent generation ensuring that the quality
of the best does not decrease along the time.

Part 11

Program Details

33

GAFit

DNA is like a computer program
but far, far more advanced than
any software ever created.

Bill Gates

5.1 Introduction

GAFit is a package of programs initially developed to facilitate fit-
tings of intermolecular potentials and reparametrizations of semiempir-
ical Hamiltonians. However, it can be easily adjusted for other pur-
poses in which fittings of a series of parameters are needed. The core
of the package is the genetic algorithm developed by Marques [2| and
co-workers.

The functionality of the package was extended separating the core
itself from the fitting targets —See Figure 4.1-. Now, users can choose,
upon their programming skills, from introducing their custom potentials
directly into code, use an easy pre-coded potential template to do so,
or for those with no programming knowledge at all, use an analytical
expression or the most used potentials coded just ready to use. A com-
plete set of tools were added to the package to facilitate the creation
and configuration of input files.

In addition, a external interface was developed to interact with exter-
nal programs. Using this interface were developed the tools needed to

35

36 5. GAFIT

use GAFit to parametrize the Molecular Orbital PACkage (MOPAC).
A further MOPAC enhanced interface permits running parallel copies of
MOPAC to speed up calculations and face up some problems encoun-
tered during the first stage development.

5.2 Installation

The configuration, compilation and installation phases are done by the
GNU autotools utilities.

The binaries go into SHOME /bin and other files into $HOME /share.
To install into /usr/local (note that you need superuser permissions.),
use:

To force a fortran compiler (e.g. ifort) use:

To force a C compiler (e.g. icc) use:

Or any combination above:

To compile with debug options:

In addition, the usual targets of Autotools apply (i.e. make distcheck,
make clean etc).

5.3. USAGE 37

5.3 Usage

5.3.1 Overview
Internal job

Internal job means here a job where an internal intermolecular poten-
tial energy function is parametrized to fit a set of interaction energies
between two fragments.

You must have the files: geometries, energies and charges if needed.
See 6.3.

To edit and/or build the atom2type file, you can use the needle tool
with the geometries file as input. See 12.1. It is compulsory to check
the atom2type file if you employed the needle tool.

Once you know how many different interactions you have in your
system you can write the bounds file, page 48.

Write the job.tat, see 6.3. Run the GAFit executable in the folder
where all the files are located.

If you want to run more than one GAF'it process from the same folder
—with the same configuration—, you can use a command line argument
to distinguish the output files:

$ gafit alpha

Build: 2427

TAG:alpha
OUTPUT_FILE: stats.alpha.txt
OUTPUT_BEST: best.alpha.txt

Settings for job

and change their names accordingly to prevent overwriting. See 7.2.

External job

The files needed for an external job depend on the type of job to be
done. In this case, an external program or tool evaluates the coefficients

38 5. GAFIT

vector. Of all the files needed in a internal job, only the bounds.txt file
is needed to execute an external job.

In an external job, for instance, an ab initio, density functional theory
or semiempirical program can be employed to calculate the properties
of our system, that will be employed as targets. So far, scripts and bina-
ries are provided with the program to work with MOPAC, a program for
semiempirical calculations, fitting the properties of a molecular system:
energy barriers for the unimolecular decomposition channels, geometries
and frequencies of the corresponding transition states, etc... See Sec-
tion 9.

5.3.2 Examples

There are several folders with examples:
e Internal examples

uracil-example Here the interaction between Xe and the [Li(Uracil)| " complex
is studied. Explained in Section 13.

Figure 5.1: |Li(Uracil)| "~ Xe example.

analytical-example Same as the uracil-ezample but using an an-
alytical expression as potential. Explained in Section 14.

nonqo-example Here the interaction between two nitrogen molecules
is studied. A fully custom potential can be implemented using
userpotential.f file.

e External examples

Generic external example

An external-example, with a generic external fit. The given
test code supports both external and external bulk options

5.3. USAGE 39

(section 9.1). This code fits data from file external.values —
value pairs “(x, f(x))” to fit—, using file bounds.tzt as upper and
lower limits, to a polynomial of degree n.

ant” 4+ ap 12"+ .+ apx + ag

The polynomial degree is the number of coefficients minus one.
Explained in Section 15.

MOPAC interface

Change and/or set MOPAC EXECUTABLE and MOPAC _
LICENSE in file external-mopac2009.sh to run with MOPAC
2012,

— mopac-example. It employs the interface with MOPAC
2009. Source code for the interface tools is in the sre/mopac
folder and explained in the Section 16.

— shepherd-example. It employs the enhanced interface with
MOPAC 2009. Explained in Section 17.

— ve-example. As in the previous one, it uses the enhanced
interface with MOPAC 2009. Taken from Section 19.

Input files

Garbage in, garbage out.

George Fuechsel. IBM instructor.

The input files names are of your choice, except for job and parame-
ters file.
The job and parameters file was hardcoded as job.tzt!.

File 6.1: job.txt. Genetic algorithm parameters and job settings

[job]

evaluations:__5000000
Geometries:___moldeni.dat

Energies:____. energies .dat
Atom2type:____atom2types. txt
Bounds:_______ bounds. txt
Charges:____.._ charges . txt
Potential:____1
All_coefficients:_no
fitting :oooooo relative

[parameters |
population:______ 50
crossover _rate:__0.75

blx alpha:______. 0.5
mutation_rate:___0.1
elitism:_____oooo yes
tournament_size :_5
CTOSSOVer:__ oo oo sbx
mutation:_______. sigma
SIgMa:___ooooooon 0.1

Defined in ga.h

41

42 6. INPUT FILES

[print |

geometries: _yes

There are four fixed sections, which can be put in any order, have
their own parameters, which can also be used in any order; these pa-
rameters specify:

parameters These parameters affect the genetic algorithm working
mode.

job The job to be done.
print Diverse printing options.

analytical Mandatory if an analytical espression as potential is cho-
sen. See Section 8, Specifiying a new potential.

Each option, including the whole sections, can be avoided?, but the
file job.txt itself must be present. In case of omited parameters, the
program takes some default values (See table 6.1), so you can write a
job.txt file like 6.2.

File 6.2: Reduced job.txt.

[job]
TUNS Lo ooo 1
evaluations:__5000000
Geometries: ___moldeni.dat
Energies:____._ energies .dat
Atom2type: ____atom2types. txt
Bounds: _______ bounds. txt
Charges:____.. charges . txt
Potential:____1
All_coefficients:_0

False bool values can be written as “0” or “no”. True bool values can
be written as a “number <>0" or “yes”. Some parameters have a set
of valid values to choose from. If the chosen parameter is out the set,
the default will be taken. Optionally, according to the potential value,
there could be additional sections to define the analytical expression
used. Parameters and sections are case-insensitive, but in parameters

2Except for the analytical expression configuration section if chosen.

6.1. TYPES OF JOBS

names with more than one word whitespace matters! Please, use one

space between words.

6.1 Types of jobs

There are two types of jobs. Default is internal job, where the potential

can be:

e defined by GAFit (in potentials.f file —File 8.1—, table 6.2).

e user defined (in potentials.f or userpotential.f —File 8.2 files, sec-

tions 8.1.3 and 8.1.4).

e user defined analytical expression as potential, section 8.2.

Table 6.1: Job file default value parameters

‘ Section Parameter ‘ Type ‘ Valid set Default ‘
parameters
population | integer 100
crossover rate | real 0.75
crossover | string {spc, dpc, blax, sbx} sbhx
blx alpha | real 0.5
eta sbx | real non negative 2.0
mutation rate | real 0.1
mutation | string {random, sigma} sigma
sigma | real 0.1
integer mutation | string {random, adjacent} random
elitism | bool {yes, no} yes
tournament size | integer 5
direction | string {min, max} min
job
type | string {internal, external, exter- internal
nal bulk, external auto}
internal options
test | unsigned integer | O, integer number 0
runs | integer 1
evaluations | integer 5000
geometries | string geometries.txt
energies | string energies.txt
atom2type | string atom2type.txt
bounds | string bounds.txt
charges | string charges.txt
potential | integer 1
all coefficients | bool {yes, no} no
fitting | string {absolute, relative, user} relative
auto weights | bool {yes, no} no
external options
test | unsigned integer | 0, integer number 0
runs | integer 1
evaluations | integer 5000
bounds | string bounds.txt

44 6. INPUT FILES

‘ Section Parameter ‘ Type ‘ Valid set ‘ Default ‘
command | string ./external
external input | string external.input
external fit | string external.fit
coefficients | integer 0
print
geometries | bool {yes, no} yes
runs | bool {yes, no} yes
ga settings | bool {yes, no} no
analytical | bool {yes, no} yes
auto weights | bool {yes, no} yes

An external job implies that the user only employs the genetic algo-
rithm to fit the parameters and evaluate them by an external program.

6.2 Section [parameters]

The section [parameters| contains the genetic algorithm settings.
population Population size
elitism Elistism strategy. Section 4.3.

® 1O

® yes

tournament size Tournament selection size. Section 4.1.
crossover rate Crossover rate. Section 3.1.3.

blx alpha BLX-« crossover coefficient

eta sbx SBX crossover coeflicient

crossover Crossover type.

e spc: Single Point Crossover
e dpc: Double Point Crossover
e blax: Blend Alpha Crossover

e sbx: Simulated Binary Crossover
mutation rate Mutation rate. Section 4.2.2.

mutation Mutation type

6.3. SECTION [JOB] 45

e random = Random mutation

e sigma = Sigma mutation
sigma Sigma mutation coefficient

integer mutation Mutation operator for integer variables. Section
4.2.2.
e random

e adjacent
direction Search direction

e min: Minimization

e max: Maximization

6.3 Section [job]

This section defines the run parameters for the present job. It also
indicates the names of the different files for the calculation.
The job parameters from the job section are:

Type type of job: external or internal. In case of external could be:

external Each gene is passed to the external program, one per
run.

external bulk All the genes of the same generation are passed to
the external program, an entire generation per run, reducing
the overall load, speeding up calculations.

external auto GAFit is configured by the external command.
See 9.1.

Test If it is not equal to zero, the integer is used as random seed, break-
ing the system randomness. This is useful for testing purposes. For
as standard job you should use a random number: set to zero this
value or do not put anything. The used seed in a job is printed in
the output as shown below to recover it when needed .

46 6. INPUT FILES

[...]
#seed#1348550422#seed#

[...]

Runs Number of runs. Remember to change this setting if you are
using auto weights, page 52.

Evaluations Number of generations

Geometries Continuous set of molden format Cartesian geometries
without any empty lines between them.

File 6.3: Geometries file. Molden xyz coordinates

uuuuuuuuuu 116

uuuuuuuuuuuu), I 2T/
Neoo —13.694289 .00 —0.182672 Lo 0.000000
JHo oo —13.299638 L 0.824476 ____. 0.000000
2Cloe—12.403476 ... —0.960776 ... 0.000000
JHe oo —14.263389.00—0.348152_ .. —0.831048
JHo oo —14.263389 000 —0.348152 L 0.831048
JCloe —11.316612 L. 0.153002_____ 0.000000
JHo oo —12.348018 00 —1.588139__.._—0.892698
JHe oo —12.348018 .00 —1.588139 o0 0.892698
2Ol —11.719020 0o 1.326881_ ... 0.000000
HHHHHHHHHH 116

HHHHHHHHHHHH),) ST/
Neooe —9.694289 00 —0.182672 Lo 0.000000
JHe ool —9.299638 L0 0.824476 ____. 0.000000
Clooe—8.403476 ... —0.960776 ..o 0.000000
JHe oo —10.263389_ .00 —0.348152__._—0.831048
JHo oo —10.263389 000 —0.348152 L 0.831048
Cloee—7.316612_ . 0.153002_____ 0.000000
JHe oo —8.348018 00 —1.588139_ ... —0.892698
JHe oo —8.348018 000 —1.5688139 ..o 0.892698
Ol —7.719020 e 1.326881____. 0.000000
HHHHHHHHHH 116

uuuuuuuuuuuu),) U/
Neooo —6.694289 .00 —0.182672__ 0.000000
JHe ool —6.299638 0 0.824476 _____ 0.000000
Clooe—5.403476 .0 —0.960776 ..o 0.000000
JHe ool —7.263389 000 —0.348152_ .. —0.831048
CHo oo —7.263389 00 —0.348152 L. 0.831048
Clooe—4.316612_ ... 0.153002____. 0.000000
JHe ool —5.348018 000 —1.588139_ ... —0.892698
JHe oo —5.348018 L0 —1.588139 ... 0.892698
Ol —4.719020 e 1.326881_____ 0.000000

6.3. SECTION [JOB] 47

|

Energies File with energies and weights for each geometry listed at
geometries file. It must be in sync with the geometries file. Weights
are taken into account when the potential is calculated.

File 6.4: Energies file. Energies and weights

—0.016881788__1
—0.024242894__1

—0.033981373__1

o © 0o

File 6.5: Energies file. Structure

energie of first geometry__first weight
energie of second geometry__second weight
energie of third geometry__third weight

- e

If the option auto weights in the [job] section is used, each con-
tain the type, tolerance and delta columns needed for the desired
automatic weights calculations. See 6.3.

File 6.6: Energies file. Energies with auto weights

—0.006436_1_1_.5_0.5
—0.012603_1_1__.5_0.5
—0.024660_1_1__.5_0.5

File 6.7: Energies file. Structure of Energies file with auto weights

energie first geometry__first weight_auto_tolerance_delta
energie second geometry__second weight_auto_tolerance_delta
energie third geometry__third weight_auto_tolerance_delta

— 00 o

Atom2type File to map atom numbers to type numbers. The first line
has the required parameters as integer numbers:

e Number of atoms in Fragment A. In this example, 18 (File 6.8).

e Total number of atoms.

The rest of the lines, three columns, specify:

48 6. INPUT FILES

e Atom number. Atom numbering must follow the order given
in the coordinate file.

e Atom symbol (two character max).

e Atom type number. A positive integer used as a type index.

From these parameters, all the different interactions are calculated.
The total number of interactions is obtained from the number of
atoms in Fragment A times the number of atoms in Fragment B.
The coefficients of some interactions are repeated: those that cor-
respond to interactions between atoms of the same type.

So, the number of different interactions is just the different atom
types in Fragment A multiplied by the number of different atom
types in Fragment B. See 5.3.2 for an example.

File 6.8: Atom2type. Atom to atom types mapping

e el

el

el

—

et

—

—

e

—

[SRRA}

el

(RURAWAS SRR

© 00 I O T W
OEEOFEOEZ
(

C
C
C
o

el

el

File 6.9: Atom2type. Structure
_AtmFEFrA__AtmTotal

o oo AtomNumberl____AtomSymboll______ AtomTypeNumberl
o oo AtomNumber2____AtomSymbol2____.__ AtomTypeNumber2
o oo AtomNumber3____AtomSymbol3______ AtomTypeNumber3
oo AtomNumberd ____AtomSymbold______ AtomTypeNumber2
oo AtomNumber5_ . _AtomSymbol5______ AtomTypeNumber2
oo AtomNumber6____AtomSymbol6______ AtomTypeNumber4
o oo AtomNumber7____AtomSymbol7____.__ AtomTypeNumberb
oo AtomNumber8____AtomSymbol8______ AtomTypeNumber5
o oo AtomNumber9____AtomSymbol9______ AtomTypeNumber6

w 00 o

This file can be created with the needle tool. See 12.1, page 115.

Bounds The variation range of the coefficients is specified here. The
third column specifies if the coefficient will be treated as a real

6.3. SECTION [JOB] 49

(0) or integer (1) number. The number of lines depends on All
coefficients parameter —[job] section— and the chosen potential
in job file.

It could be edited by the bedit tool. See 12.2, page 115.

File 6.10: Bounds. Variation range of the coefficients
TEXT_OR_EMPTY

—100 100. 0
> 0. ».100.0—0
———1500.—5000.0—0
»3.5 5.5 0

File 6.11: Bounds. All Coefficients=0. Structure

TEXT_OR_EMPTY_LINE

IstMinimum ——— 1stMaximum———1stType
2ndMinimum———2ndMaximum———2nd Type
3rdMinimum——— 3rdMaximum———3rd Type
4thMinimum ———4thMaximum———4thType

nthMinimum———nthMaximum———nthType

File 6.12: Bounds. All Coefficients<>0. Structure

TEXT_OR_EMPTY_LINE_—_interaction_1_coefficients _set
IstMinimum ——— 1stMaximum———1stType
2ndMinimum———2ndMaximum————2nd Type
3rdMinimum———3rdMaximum———3rd Type
4thMinimum ———4thMaximum———4thType

nthMinimum ———nthMaximum———nthType
TEXT_OR_EMPTY_LINE__—_interaction_2_coefficients_set
IstMinimum —— IstMaximum———1stType
2ndMinimum ——— 2ndMaximum———2nd Type
3rdMinimum———3rdMaximum———3rd Type
4thMinimum———4thMaximum———4thType

nthMinimum———nthMaximum———nthType

TEXT_OR_EMPTY_LINE__—_interaction _N_coefficients_set
IstMinimum ——— 1stMaximum———1stType
2ndMinimum——— 2ndMaximum———2nd Type
3rdMinimum—— s 3rdMaximum————3rd Type
4thMinimum ———4thMaximum———4thType

nthMinimum ———nthMaximum———nthType

The text line between each interaction is skipped when reading
bounds. Using the bedit tool, labels can be written automatically
as in File 6.13.

50 6. INPUT FILES

Note that BLX-a and SBX revert to SPC crossover for integer
coefficients.

File 6.13: Bounds file written with the bedit tool

TYPE_1:_C(1)—Xe(14)

uuuuuuuuuuuuuuu +0.00000___-+1000000.00000___0
uuuuuuuuuuuuuuu +0.00000__ccceeo+10.00000. 1
HHHHHHHHHHHH —1500.00000__cceceeo+0.00000_._0
HHHHHHHHHHHHHHH +4.00000___cooeeo+8.00000__._0
TYPE_2: _N(2)—Xe(14)

uuuuuuuuuuuuuuu +0.00000___-+1000000.00000___0
uuuuuuuuuuuuuuu +0.00000_____o_..+10.00000___0
HHHHHHHHHHHH —1500.00000_ oo +0.00000___0
,,,,,,,,,,,,,,, +4.00000___coeeeo+8.00000___0
TYPE_3: _C(3)—Xe(14)

uuuuuuuuuuuuuuu +0.00000___-+1000000.00000__.0
uuuuuuuuuuuuuuu +0.00000_____o_..+10.00000___0
HHHHHHHHHHHH —1500.00000_ oo +0.00000_._0
HHHHHHHHHHHHHHH +4.00000___cooeeo+8.00000___0
TYPE_4: JN(4)—Xe(14)

uuuuuuuuuuuuuuu +0.00000___-+1000000.00000__.0
uuuuuuuuuuuuuuu +0.00000_.cceeo+10.00000__.0
HHHHHHHHHHHH —1500.00000__cccceee+0.00000___0
HHHHHHHHHHHHHHH +4.00000__.coooo+8.00000__._0
TYPE_5: _C(5)—Xe(14)

HHHHHHHHHHHHHHH +0.00000___-+1000000.00000__.0
uuuuuuuuuuuuuuu +0.00000_.cceee+10.00000_..0
HHHHHHHHHHHH —1500.00000__cccceeo+0.00000___0
HHHHHHHHHHHHHHH . Cecuuoowo+8.00000__.0

Charges This file must include partial charges (in a.u.) for all atoms
when potential 4 is selected (see Table 6.2). Partial charges may
be specified for atom types (File 6.14 and 6.15).

The types must be the same as those from Atom2type file. See 6.8.
It depends on the chosen potential. Note that the type number can
be any one, as long as they are different between them.

The file can be edited by the bedit tool, and generated from needle.
See 12.1 and 12.2.

File 6.14: Charges. Type to charges mapping

... 0.027
oo 0.113
..—0.057
..—0.01

[SRORR}

el et

—

—

Ol s W N~

6.3. SECTION [JOB]

51

File 6.15: Charges. Structure

oo AtomTypel ___Chargel
oo AtomType2___Charge2
oo AtomType3___Charge3
oo AtomTyped___Charged
oo AtomType5___Chargeb

e e

Potential An integer, that specifies the chosen potential as defined in

potentials.f source fortran file.

Table 6.2: Potential values from potentials.f code file

Value Coefficients Potential
-1 any any user defined potential
0 any any analytical expression as potential
1 4 V=A4P"+5
2 6 V=AebBr+ £+ £
3 8 V=Ae B+ S+ 54+ G
1 3 plus charges V=4[(8)7-(2)°] + 332053282

Table 6.2 shows the available potentials where:

r is the distance between the two atoms whose interaction is cal-

culated
332.0532 A conversion factor

A, B, C, D, E, F, G The coefficients to be fitted

¢i,q; Charges

All coefficients Drives the reading mode of Bounds file. If this vari-
able is not set, it reads a sequence of coefficients for only one inter-
action, and then, the program assumes all the interactions have the
same bounds. If it is set, it reads the bounds for all the coefficients.

See Files 6.10,6.11 and 6.12

52

6. INPUT FILES

Fitting Can be absolute or relative (see below).

absolute

3 | (vi — Pot(i))* Weight(i)
relative

3 (Vi_fv);t“)) Weight (i)

user this option redirects to a user defined fitting function in the
userpotential.f file. See 8.1.4 section.

Auto weights Boolean parameter. Activate automatic weights: At the

end of every run, the potential for each geometry is calculated
and compared with the reference value. If the difference is larger
than tolerance, the weight is increased by delta as detailed below.

In this case, each energies file line must contain:

energy The energy of the geometry

weight The initial weight

type The type of check performed.
0 None, a 0 must be typed.

1 Relative. Weight is incremented by delta if tolerance is less
than the relative value between calculated energy and the

energy.
[Energy—Calculated]’

Energy”
2 Absolute. Weight is incremented by delta if tolerance is less

than the absolute value between calculated energy and the
energy.
|Energy — Calculated|

tolerance The tolerance. A real number.

delta The value to increment weight. A real number.

See page 47 for energies file details. Note in file example 6.16 the
runs and evaluations parameters. In this case, 10 times (10 runs)
the checks are performed at the end of each run.

6.3. SECTION [JOB] 53

File 6.16: Job settings with auto weights

[job]

runs: ———— 100
evaluations :——_50000
auto_weights: _yes

Command External job, the command to be run.

File 6.17: External job settings

[job]

TUNS : Lo neoooon 1
evaluations:____500000

tyPe: e external _bulk
command : __ .. external . sh
coefficients:___5

external _input:_external.input
external _fit:___external. fit
bounds: ____ooooo bounds. txt

External input External job, the input for the external command,
File 6.18. Here GAFit writes a coefficient vector to be evaluated
by the external command. If the option external bulk is chosen,

all the coefficients for a complete generation are passed, separating
each one by a blank line, File 6.19.

File 6.18: External input

4.894146
0.013449
—6.092118

—0.003859
1.216052

File 6.19: External bulk input

4.894146
0.013449
—6.092118
—0.003859
1.216052

4.894410
0.013449
—6.091149
—0.003859
1.215979

4.894332
0.013449

54 6. INPUT FILES

—6.091579
—0.003859
1.216001

External fit External job, the evaluation of the coefficients returned
to GAFit. If the option external bulk is used, a complete set must
be returned. Examples: 6.20 and 6.21.

File 6.20: External fit: one individual fit

25647.561250 I

File 6.21: External bulk fit: entire generation fit

25647.561250
3.000000
13.011250
6417.651250
3.000000
3.000000
3.000000
18.055000
13.011250
3.000000
25647.561250
7012.161250
4715.805000

[...]

Coefficients Number of coefficients to be considered in a external job.

6.4 Section [print]

This section controls how much is printed.

Geometries This parameter controls if the read geometries are printed
on standard output. See 7.

Runs This parameter controls if the intermediate results are printed on
standard output. See 7.

GA settings Prints genetic algorithm settings.
Analytical Prints output from analytical expressions routines.

Auto weights Prints auto weights checks between runs.

6.5. SECTION [COEFFICIENT NAMES] 55

6.5 Section [coefficient names]

GAFit coefficient names default to the sequence {A, B, ..., Z, AA,
AB, ..., BA, ..., ..., AAA ...} names and so on. If you want to
use your own ones, write a new section [coefficient names] with each
name in a line. You must specify at least the same number of lines as
the number of coefficients to be used; if not, GAFit stops. An example
can be viewed in File 9.1.

These routines are also used internally to no related tasks like to
name temporary files.

6.6 Section [analytical]

The reader is referred to Section 8.2, where this is explained in detail.

QOutput files

On two occasions I have been
asked, "Pray, Mr. Babbage, if you
put into the machine wrong figures,
will the right answers come out?" ...
I am not able rightly to apprehend
the kind of confusion of ideas that
could provoke such a question.

Charles Babbage

standard output The standard output is used to print job results. An
example of the output is below. Some of the output is controlled
by options into the [print] section. See 6.4.

Build: 2122

Settings for job

Geometries: [coord.molden]

Energies: [energies]

Atom2type: [atom2type.txt]

Bounds: [bounds.txt]

Charges: [charges.txt]

Potential read: 2

All coefficients: no, Read and repeat subset
Fitting: absolute

Print options:
geometries yes
runs yes
ga settings yes
analytical yes

...now reading data

57

7. OUTPUT FILES

Different interaction types: 13,
with 4 coefficients each,
so, we need a 52 elements vector.
Choosen potential=2
Fragment A atoms 13, Fragment B atoms 1
13 types in fragment A, 1 in Fragment B
13 different interactions

Reading bounds for 4 coefficients

1 A +0.00000 - +1000000.00000 (real)
2 B +0.00000 - +10.00000 (real)
3 C -1500.00000 - +0.00000 (real)
4 D +4.00000 - +8.00000 (real)

Creating a 52 bounds vector...

52 BOUNDS VECTOR

INTERACTION TYPE 1

C(1)-Xe(14)

Coefficients:

1A +0.00000 - +1000000.00000 (real)

2 B +0.00000 - +10.00000 (real)

3C -1500.00000 - +0.00000 (real)

4D +4.00000 - +8.00000 (real)
INTERACTION TYPE 2
N(2)-Xe(14)

Coefficients:

5 A +0.00000 - +1000000.00000 (real)

6 B +0.00000 - +10.00000 (real)

7C -1500.00000 - +0.00000 (real)

8D +4.00000 - +8.00000 (real)
[...]
#seed#1351155784#seed#
run 1
50 1 2290090179083.717285156250 9.635496575595e+03
200 4 15290009321005.964843750000 3.633024843375e+03
350 7 7630038244343.797851562500 3.275150020838e+03
500 10 1919724358228.594482421875 2.661055597153e+03
650 13 42486949205.559173583984 2.661055597153e+03
800 16 9432708886029.101562500000 2.374854855353e+03
[...]
#
#Results
#

INTERACTION TYPE 1
Cc(1)-Xe(14)
Coefficients:
1A +560362.1769717000
2 B +3.1916051065
3C -1433.0179704333
4D +6.5900203399

INTERACTION TYPE 2

59

N(2)-Xe(14)
Coefficients:
5 A +985812.3248912474
6 B +4.9449172106
7C -1500.0000000000
8D +4.9264827631
[...]
#
#Evaluation
#
#Geometry Energy Calculated Difference
1 -0.006436000000 -0.037892707550 +488.76
2 -0.012603000000 -0.061285488548 +386.28Y
3 -0.024660000000 -0.105859323488 +329.28%
4 -0.053662000000 -0.199490133092 +271.75Y%
5 -0.151027000000 -0.422816767398 +179.96Y%
6 -0.208324000000 -0.521290713046 +150.23Y%
[...]

[f the runs option is set in section [print], like above, the number
of the current run is printed —just below the random number seed—,
and also four columns indicating:

e The number of individuals evaluated up to now, 800 in the last
line before # Results.

e The current generation, 716 in the same line.

e The average objective function of the current population:
9432708886029.101562500000.

e And the objective function best value up to now: 2.374854855353e+035.

When an analytical expression is selected, the names of the coeffi-
cients selected by the user are printed .

[...]

Settings for job

Geometries: [coord.molden]

Energies: [energies.txt]

Atom2type: [atom2type. txt]

Bounds: [bounds.txt]

Charges: [charges.txt]

Potential read: Analytical expression

All coefficients: no, Read and repeat subset
Fitting: absolute

Print options:
geometries yes
runs yes
ga settings yes

60

analytical yes

Analytical expression

expression name: "potential 5"

potential: pot
distance: dist
coefficients: aaa, bbb, cl1, c2, d1, d2,

Expression found:

vl
v2
v3
v4

pot

= aaa * exp (-bbb * dist)
= c1 / pow (dist , c2) ;

= dl / dist ** d2 ;

= el / dist ~ e2 ;

= vl + v2 + v3 + v4Q

el, e2

>

7. OUTPUT FILES

Variables found in expression: vl aaa bbb dist v2 cl c2 v3 dl1 d2 v4 el e2 pot

Expression code 0K

pot index 13

dist index 3

8 coefficients found
...now reading data

14
C 0.0000000 0.0000000 0.0000000
N 0.0000000 0.0000000 1.3545491
C 1.1521430 0.0000000 2.1275020

Creating a 104 bounds vector...

104 BOUNDS VECTOR

INTERACTION TYPE 1

C(1)-Xe(14)

Coefficients:

1 aaa +0.00000 - +1000000.
2 bbb +0.00000 - +10.
3 cl -1500.00000 - +0.
4 c2 +4.00000 - +8.
5 d1 +0.00000 - +1000000.
6 d2 +0.00000 - +10.
7 el -1500.00000 - +0.
8 e2 +4.00000 - +8.

INTERACTION TYPE 2

N(2)-Xe(14)

Coefficients:

9 aaa +0.00000 - +1000000.
10 bbb +0.00000 - +10.
11 cl -1500.00000 - +0.
12 c2 +4.00000 - +8.
13 d1 +0.00000 - +1000000.
14 d2 +0.00000 - +10.
15 el -1500.00000 - +0.
16 e2 +4.00000 - +8.

[...]

run 1

50 1 62550614237885.890625000000

200 4

1319338879864 .184570312500

00000
00000
00000
00000
00000
00000
00000
00000

00000
00000
00000
00000
00000
00000
00000
00000

(real)
(integer)
(real)
(integer)
(real)
(integer)
(real)
(integer)

(real)
(integer)
(real)
(integer)
(real)
(integer)
(real)
(integer)

1.415158910538e+10

2.876907390518e+08

7.1. OTHER OUTPUT FILES

[...]

#
#Results
#

INTERACTION TYPE 1

C(1)-Xe(14)
Coefficients:
1

W N0 WN

INTERACTION TYPE 2

N(2)-Xe(14)
Coefficients:

9
10
11
12
13
14
15
16

aaa
bbb
cl
c2
d1
d2
el
e2

aaa
bbb
cl
c2
di
d2
el
e2

+105671.
+4.
-1085.
+6.
+974559.
+9.
-990.
+6.

+680324.
+3.
-204.
+4.

+0.

+7.
-1178.
+4.

4794050544
0000000000
2285321549
0000000000
2805542682
0000000000
8034563390
0000000000

6698314144
0000000000
2193705419
0000000000
0000000000
0000000000
8818235065
0000000000

61

best.txt This file contains the best set of coefficients. It is updated
every time GAFit finds a better set, and it can be used by fitview
-see 12.3-to obtain the coefficient values.

NOTE: This file is NOT loaded at the beginning of any run, so it
can be overwritten when a new run begins if you do not save it

beforehand.

7.1 Other output files

Other intermediate output files are:

e stats.txt

7.2 Using TAGS

You can also use a command line tag to run multiple GAFit processes
changing the output names, as stated in Section 5.3.

62

7. OUTPUT FILES

$ gafit TAG
The file names are changed inserting the tag before the .txt suffix:
o best. TAG.txt

o stats. TAG.txt

You cannot use TAGS with external potentials.

Specifiying a new interaction
potential

Simplicity is the ultimate
sophistication.

Apple II pc slogan, 1977

Besides the interaction potentials implemented in this code —See Ta-
ble 6.2—, the user can specify a new potential to fit the interaction en-
ergies of the system. The new potential can be introduced by:

e adding it in the file potentials.f
e modifying the file userpotential.f using it as a template

e writing an analytical expression.

8.1 Modifiying potentials.f and userpotential.f

8.1.1 VGLOBALES module

You can use the variables exported by the VGLOBALES module in
addition to your own variables from the USERDATA module to cus-

tomize your potential or your fitting function. These are shown in Table
8.1.

8.1.2 Interface subroutines and functions

For an easy customization, some functions and subroutines are provided
in addition to the module VGLOBALES.

63

64 8. SPECIFIYING A NEW INTERACTION POTENTIAL
Table 8.1: Module VGLOBALES variables
variable ‘ type dimension ‘ comments
r double precision | (geometries, nprox, nsam) | Calculated interatomic distances
for each interaction
v double precision geometries Potential energy for each geome-
try. Read from energies file
w double precision geometries Weights. Read from energies file
wdelta double precision geometries Delta for each weight. Read from
energies file
wtol double precision geometries Tolerance. Read from energies
file
wtype integer geometries Type of weight. Read from ener-
gies file
q double precision natom Charges. Read from charges file.
geometries integer - Number of geometries
nprox integer - Number of atoms in fragment A
nsam integer - Number of atoms in fragment B
natom integer Number total of atoms
ptypes integer - Different types of atoms in frag-
ment A
stypes integer - Different types of atoms in frag-
ment B
potential integer - Type of potential
interactions | integer - Number of different interactions
coefficients | integer - Number of coefficients
charges logical - If charges file is needed
autoweights | logical - If autoweights is active
atom character*2 natom Two character atom labels

ix function

The function ix(%,j,k) organizes the different coefficients into the coef-
ficient vector.

k is the index of a given coefficient, i.e.: k=1 means A, k=2 means B,
etc. k ranges from 1 to the number of coefficients

i, j are the atoms that define a given interaction for which the coeffi-

cients are defined.

Atom i belongs to fragment A and j belongs to fragment B. The
atoms of Fragment A range from 1 to nprox, and those of fragment B
range from nprox+1 to natom. See also the needle tool output, page

116.

8.1. MODIFIYING POTENTIALS.F AND USERPOTENTIAL.F 65

coordinates subroutine

The coordinates(geo,atom,x,y,z) subroutine can access the Cartesian
coordinates.

geo is the geometry index, ranging from 1 to geometries
atom the atom index in the geometry, ranging from 1 to natom

X, y, Z the coordinates returned by subroutine.

8.1.3 Adding a new potential to potentials.f

Introducing a new potential in the program implies to implement it into
potentials.f —File 8.1, to modify setcoefs (line 3), getcharges (line
28), potRouter (line 51) and curRouter (line 74) functions, and to
write the corresponding potential functions. Finally, the program has
to be recompiled.

File 8.1: potentials.f

1 ¢ POTENTIALS

2 ¢ sets the number of coefs required by potential
3 C

4 integer function setcoefs(potential)
5 implicit none

6 integer potential

7 integer angetncoefs

8 integer usetcoefs

9 external angetncoefs

10 if (potential .eq. —1) then

11 setcoefs=usetcoefs ()

12 else if (potential .eq. 0) then

13 setcoefs=angetncoefs ()

14 else if (potential .eq. 1) then

15 setcoefs=4

16 else if (potential .eq. 2) then
17 setcoefs=6

18 else if (potential .eq. 3) then

19 setcoefs=8

20 else if(potential.eq.4) then

21 setcoefs=2

22 else

23 stop ’setcoefs:_not_implemented’
24 endif

25 end

26

27 ¢ if a charge file is needed

28 C

66

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

74
75
76
7
78
79
80
81

8. SPECIFIYING A NEW INTERACTION POTENTIAL

logical function getcharges(potential)

implicit none

integer potential

logical ugetcharges

if (potential .eq. —1) then
getcharges=ugetcharges ()

else if (potential .eq. 0) then
getcharges=.false.

else if (potential .eq. 1) then
getcharges=.false .

else if (potential .eq. 2) then
getcharges=.false.

else if (potential .eq. 3) then
getcharges=.false.

else if(potential.eq.4) then
getcharges=.true.

else

stop ’'getcharges:_not_implemented’

endif

end

¢ Potential Router, route calculations to the desired potential

C

subroutine potRouter (geo ,x,nmax, vpot)

use vglobales

integer nmax, geo

double precision vpot, x(nmax)

if (potential .eq. —1) then
call userpot (geo,x,nmax,vpot)

else if (potential .eq. 0) then
call pot0(geo,x,nmax,vpot)

else if (potential .eq. 1) then
call potl(geo,x,nmax,vpot)

else if (potential .eq. 2)then
call pot2(geo,x,nmax, vpot)

else if (potential .eq. 3) then
call pot3(geo,x,nmax,vpot)

else if(potential .eq.4) then
call pot4(geo,x,nmax, vpot)

else
stop ’not_implemented_potential’

endif

end

¢ Curve Router, route calculations to the desired potential

()

subroutine curRouter(d,atoml,atom2,x,nmax, vpot)
use vglobales

integer nmax,atoml ,atom2,index

double precision vpot, x(nmax) ,d

double precision analytical ,userv ,vl,v2,v3,v4
integer ix

if (potential .eq. —1) then

8.1.

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
Ui
98

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

131
132
133
134

¢ Now,

MODIFIYING POTENTIALS.F AND USERPOTENTIAL.F 67

vpot=userv (d,atoml ,atom2,x,nmax)
else if (potential .eq. 0) then
index=ix (atoml ,atom2,1)
vpot=analytical (d,index,x)
else if (potential .eq. 1) then
vpot=V1(d,atoml,atom2,x,nmax)
else if (potential .eq. 2)then
vpot=V2(d,atoml ,atom2 ,x ,nmax)
else if (potential .eq. 3) then
vpot=V3(d,atoml ,atom2,x,nmax)
else if(potential .eq.4) then
vpot=V4(d,atoml ,atom2,x,nmax,q(atoml) ,q(atom2))
else
stop ’not_implemented_potential’
endif
end

each potential calculation down from here.

-—-—- analytical
subroutine pot0(geo ,x,nmax, vpot)
use vglobales
integer nmax,geo,i,j,k,index
double precision d,vpot,analytical
external analytical
double precision X(nmax)
integer ix
vpot=0.0d0
do i=1,nprox
do j=1,nsam
k=j+nprox
d=r(geo,i,j)
index=ix (i,k,1)
vpot=vpottanalytical (d,index ,x)
enddo
enddo
return
end

1
subroutine potl (geo,x,nmax,vpot)
use vglobales

integer nmax,geo,i,j,k

double precision d,vpot,Vl
double precision X(nmax)
vpot=0.0d0
do i=1,nprox

do j=1,nsam

k=j+nprox

d=r(geo,i,j)

vpot=vpot+V1(d,i, k,x,nmax)
enddo
enddo

68

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

164
165
166
167

169
170
171
172

174
175
176
177

179
180
181
182

184
185
186
187

8. SPECIFIYING A NEW INTERACTION POTENTIAL

return
end

FUNCTION V1(r,i,j,x,m)

implicit none

integer i,j,m,ix

dimension x(m)

double precision x,r,a,b,c,d,vl
Ax(ix(i,,1))
B=x(ix (i,j,2))
C=x(ix(i,j,3))
D==x(ix(i,j,4))
V1=A+EXP(—B*R)+C/Rx*D
RETURN

END

2
subroutine pot2(geo,x,nmax,vpot)
use vglobales
integer nmax,geo,i,j,k
double precision d,vpot,V2
double precision X(nmax)
vpot=0.0d0
do i=1,nprox
do j=1,nsam
k=j+nprox
d=r(geo,i,j)
vpot=vpot+V2(d,i ,k,x,nmax)
enddo
enddo
return
end

FUNCTION V2(r,i,j,x,m)

implicit none

integer i,j,m,ix

dimension x(m)

double precision x,r,a,b,c,d,e,f, v2

A=x(ix(i,j,1))
B=x(ix(i,j,2))
C=x(ix(i,j,3))

D=x(ix (i,j,4))
E=x(ix(i,]j,5))
Fx(ix(i116))
V2=A+EXP(—B+R)+C/R*+*D+E /R* +F
RETURN

END

Q
subroutine pot3(geo,x,nmax,vpot)
use vglobales

integer nmax,geo,i,j,k

8.1. MODIFIYING POTENTIALS.F AND USERPOTENTIAL.F

188 double precision d,vpot,V3
189 double precision X(nmax)

190 vpot=0.0d0

191 do i=1,nprox

192 do j=1,nsam

193 k=j+nprox

104 d=r(geo,i,j)

195 vpot=vpot+V3(d,i,k,x,nmax)
196 enddo

197 enddo

198 return

199 end

200

201 FUNCTION V3(r,i,j,x,m)

202 implicit none

203 integer i,j.,m,ix

204 dimension x(m)

205 double precision x,r,a,b,c,d,e,f,g,h,v3
206 A=x(ix(1,j,1))

207 B=x(ix(i,j,2))

208 C=x(ix(i,j,3))

209 D=x(ix(i,j.,4))

210 E=x(ix(i,],5))

211 F=x(ix(i,],6))

212 G=x(ix(i,j.7))

213 H=x(ix(i,j,8))

214 V3=A«EXP(—B+R)+C/R*+D+E /R*+xF+G /R xH
215 RETURN

216 END

217

218 C 4

219 subroutine pot4(geo,x,nmax, vpot)
220 use vglobales

221 integer nmax,geo,i,j,k

222 double precision d,vpot,V4
223 double precision X(nmax)

224 vpot=0.0d0

225 do i=1,nprox

226 do j=1,nsam

227 k=j+nprox

228 d=r(geo,i,])

229 vpot=vpot+V4(d,i ,k,x,nmax,q(i),q(j))
230 enddo

231 enddo

232 return

233 end

234

235 FUNCTION V4(r,i,j,x,m,qi,qj)
236 implicit none

237 integer i,j,m,ix

238 dimension x(m)

239 double precision x,r,a,b

240 double precision v4,qi,qj

69

70 8. SPECIFIYING A NEW INTERACTION POTENTIAL

241 A=x(ix(i,j,1))

242 B=x(ix(i,j,2))

243 V4=Ax((B/R)*x12—(B/R) **6)+qi*xqj /Rx332.0532d0
244 RETURN

245 END

setcoefs returns the number of coefficients used per potential.

getcharges returns true if the formula needs the charges file, if not
false.

potRouter selects the function to calculate.

curRouter is used by fitview to plot two body interactions.

Some other variables are loaded into functions via the use statement
or they are available via interface functions or subroutines —see 8.1.1—.

8.1.4 Changing userpotential.f

The user potential file is a template. Using potential=-1 in the [job]
section, the program understands that it has to employ this file. The
included template (File 8.2) contains, as an example, potential number
1 (see 6.2 table). To implement a new potential function you only have
to:

change line number 34, the number of coefficients.

change line 44 if the charges file is needed.

change lines from 86 to 91 to code the potential formula.

additionally, you can specify here a user fitting function —page 52—

if you need to share or load some variables, you can use the USER-
DATA module.

You can use the function ix (see page 64) to access individual coef-
ficients or use the subroutine coordinates to access individual atom
coordinates.

8.1.

MODIFIYING POTENTIALS.F AND USERPOTENTIAL.F

File 8.2: userpotential.f

71

¢ USER POTENTIAL
¢ please change as needed

USER DATA MODULE

module userdata
implicit none

L e S N R
o

save
10 ¢ v————CHANGE-ME v
11 define your variables here

12

13 ¢ ~————CHANGE-ME -
14 end module userdata

15

16

17 ¢ USERREAD SUBROUTINE

= e
© 0o

subroutine userread ()

use userdata
¢ vV———CHANGE-ME v
your code to read external files here

[V
o

NN NN
W N =
o

~———CHANGE-ME .

end

NN NN
® I o «
o

Q

USETCOEEFS FUNCTION

w
o

integer function usetcoefs ()
here specify the number of coefficients
¢ v———CHANGE-ME A%
usetcoefs=4
~—————CHANGE-ME .

end

W W
PR
o

w W
B

W W W W
© I o O
o

> UGETCHARGES FUNCTION

B W
o ©
(@]

logical function ugetcharges()
specify if you need a charges file
¢ v———CHANGE-ME %
ugetcharges=.false .
"—————CHANGE-ME -
end

S
[
o

L
B W

B
N o O
@]

USERPOT SUBROUTINE

SR
©
o

subroutine userpot (geo,x,nmax, vpot)
use vglobales

o ;o
= o

at
S
o

72

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84

O o0 o0 o o0

85 C

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

O 0O 0 0 0 0 0 06

8. SPECIFIYING A NEW INTERACTION POTENTIAL

to use your external data
use userdata

integer nmax,geo,i,j,k
double precision d,vpot ,userv
double precision X(nmax)
v———CHANGE-ME-IF-NEEDED————v
vpot=0.0d0
note: here all interactions are calculated
do i=1,nprox
do j=1,nsam
k=j+nprox
d=r(geo,i,j)
vpot=vpot+userv (d,i, k,x,nmax)
enddo
enddo
— —CHANGE-ME-IF-NEEDED—————— "
return
end

FUNCTION USER POTENTIAL

write userv using ix function to access
individual coefficients.

use CALL coordinates (geometry ,atom,x,y,z)
to access individual coordinates.

double precision FUNCIION userv (r,i,j,x,m)

implicit none

integer i,j,m,ix

dimension x(m)
note: here ONE interaction is calculated
v———CHANGE-ME %

double precision x,r,a,b,c,d
Ax(ix (i) ,1))
B=x(ix(i,j,2))
C=x(ix(i,j,3))
D=x(ix(i,j.,4))
userv=A«EXP(—B«*R)+C/R*xD

~———CHANGE-ME .

RETURN

END
USER FITTING FUNCTION
write here the user fitting function
if you only need the fitting function
leave the line "call potRouter..." unchanged
and change the line "userfitting=..." with your
fitting function.
if you have a userv function (above this), you can
use it here, or access it via potRouter

8.2. ANALYTICAL EXPRESSION 73

106 double precision function userfitting (x,m,geo)
107 use vglobales

108 use userdata

109 double precision x,vpot

110 integer m, geo

111 dimension x(m)

112 ¢ v———CHANGE-ME v

113 call potRouter(geo,x,m,vpot)

114 userfitting=(v(geo)—vpot)*(v(geo)—vpot)
115 ¢ "————CHANGE-ME °

116 return

117 end

The subroutine userread is called after reading the job settings and
associated data, so it can be used to load data to the userdata module for
later use in the user potential function or subroutine (userv or userpot).
A complete example can be found in the folder n2n2-example.

8.2 Analytical expression

If you do not want to write code, the potential function can be intro-
duced as an analytical expression just by writing an analytic expres-
sion or analytic formulae in a file. Note that an analytical expression
runs about ten times slower compared with the above compiled version.

The analytical expression introduced by the user must be checked,
compiled to intermediate code, and finally, run in a virtual Floating
Point Unit (FPU) with the correct variables loaded. The number of
coefficients per interaction is automatically counted from the expression.

First of all, you have to select potential: 0 in the [job] section, and
a mandatory [analytical] section must be fulfilled with each of its pa-
rameters. The table 8.2 shows and explains them.

An example can be seen in File 8.3. It also shows different forms to
express the potential.

As you see in File 8.3, “potential 5" is selected so the section [poten-
tial 5] contains the expression to be calculated.

The distance variable is named “dist”, and potential “pot”. The
coefficients are: “aaa”’, “bbb”, “c1”, “c2”, “d1”, “d2”, “el” and “e2".

The expression is divided in five parts, using intermediate variables
“v17,v27 *“v3” and “v4” to hold partial calculations. These variables are
automatically defined by the compiler algorithm. In fact, this potential

74 8. SPECIFIYING A NEW INTERACTION POTENTIAL

Table 8.2: Analyltical potential parameters

Section Parameter Type comments

analytical

exbrossion strin Specifies a whole section where
P & the expression is defined

potential string Variable used for potential

. . Variable used for distance be-
distance string
tween atoms

Comma-separated value lists of
coefficients used in expression.
coefficients string These, taking in account interac-
tions, build the vector optimized

by GAFit

is number 8 standard potential defined in table 6.2.

The section [potential 3] shows a different way to use the same
potential. Section [potential 1] and [potential 2] are the first and
second standard potentials from table 6.2.

File 8.3: job.txt. Analytical expression options

[parameters |
population: ——_50
crossover _rate —_0.75
blx alpha:———_0.5
mutation_rate:—_0.1
elitism: — _yes
tournament_size :_5

sigma: ——_0.1
direction : ————_min

[job]

runs : ———— 1
evaluations:——_5000000
Geometries:___coord.molden
Energies:__energies . txt
Atom2type: _atom2types. txt
Bounds: _bounds. txt
Charges:_charges. txt
Potential:_0
All_coefficients :_no

8.2. ANALYTICAL EXPRESSION 75

[print |
geometries: _yes
runs:_yes
ga_settings:_yes
analytical : _yes

[analytical]

expression:_potential_5

distance:_dist

potential : _pot
coefficients:_aaa,_bbb,_cl,_c2,_dl,_d2,_el,_e2

[potential _1]
V=A«EXP(—BxR)-+C/Rx*D);

[potential _2]
v=axexp(—bxr)+c/rxxkdte/rxxt;

[potential _3]

enum_=_27.182818284e—1_;
vl_=_aaa_*x_pow_(_enum_,_—bbb_x_dist_)_;
v2_=_cl_/_pow_(_dist_,_c2_)_;
v3_=_dl_/_dist_xx_d2_;

vd _=_el_/_dist_*x_e2_;
pot_=_vl_+_v2_+_v3_+_v4

[potential _5]
vl_=_aaa_x_exp_(__.—bbb_x_dist_)_;
v2_=_cl_/_pow_(_dist_,_c2_)_;
v3.=_dl_/ disto%x_d2_;

vd —_el_/_dist_"_e2_;
pot_=_vl_+_v2_+_v3_+_v4

Operators and functions supported in expressions are shown in table
8.3. Note that a’ can be input as “axb”, “a~b” or “pow(a,b)"!.
Defining constants and using floating point notation is also supported
as shown in File 8.3, section [potential 3].
To check your potential definition you can use ufpu. See 12.4.

Like fortran, basic or C languages, respectively

76

8. SPECIFIYING A NEW INTERACTION POTENTIAL

Table 8.3: Operators and functions supported in expressions

Operators Precedence Example
= assignment 0 a=b
+ addition 1 a-+b
- subtraction 1 a-b
* multiplication 2 axb
/ division 2 a/b
unary + unary plus 3 +a
unary - unary minus 3 -a
xx a raised by power b, a® 4 a**b
~ a raised by power b, a® 4 a”~b
Puntuaction
() change precedence (a+b)*c
, comma, separate arguments in func- pow(a,b)
tions
; semicolon, separate individual ex- a=b+c; d=e+f
pressions
Functions
exp number e raised by power a, e° exp(a)
pow a raised by power b, a’ pow(a,b)

MOPAC interface

To err is human, but to really screw
things up you need a computer.

Bill Vaughn

An additional feature of GAFit is the possibility of parametrizing
a semiempirical Hamiltonian. The current version of GAFit supports
MOPAC —2009 and 2012— as the external program to compute the PES
of our system. In the example given in Section 16 the MOPAC interface
is used to parametrize the intramolecular PES of vinyl cyanide.

The details of how GAFit works with an external interface —or ex-
ternal potential- are explained in the following.

9.1 External potential

The external potential works as follows:

e GAFit generates a whole generation, where each individual is a
coefficient vector.

e for each individual,

— the coefficients are written in the file named in the external
input option of the [job] section.

— the external program specified in the option command is run.

77

78 9. MOPAC INTERFACE

« The external program must read the external input file,
x doing its calculations,
x and writing the file named in the external fit option of
the [jobl].
— GAFit reads the external fit file.

e GAFit using the fit, given by the external program, applies the
genetic operators to create a new generation.

If the bulk option is chosen, an entire generation is written to the
external input file, and the external command must write into the
external fit file all the individuals fitting values. This option speeds
up calculations.

In all cases, the command is executed passing one argument in the
command line: the number of the individuals that were written to the
external input file.

For example, if the command is mopac2009.sh, and the job is an
external bulk passing an entire generation of 100 coefficient vectors,
the command line executed by the shell is:

$ mopac2009.sh 100

external input examples are given in Files 6.18 and 6.19. external
fit examples are the Files 6.20 and 6.21

GAFit only evaluates if there is a command processor available —i.e.
sh— and the coefficients value. No other checks are performed.

Note that you cannot use TAGS with external potentials.

9.1.1 Autoconfigure

If the option external auto is chosen, the external command can config-
ure GAFit. At the beginning, GAF'it executes the external command
passing an argument of "0". If the external command is mopac2009.sh,
the command line executed by the shell is:

$ mopac2009.sh 0O

The external command must answer with a file named "response" with
the options requested. This file follows the job.txt format. An example
from the MOPAC interface is shown below.

9.1. EXTERNAL POTENTIAL 79

File 9.1: response

[job]

type:_external _bulk
coefficients:_16
external_input:_mopac2009.input
external_fit:_mopac2009. fit
bounds:_bounds. txt

[coefficient _names|
BETAS_H
ZS_H
ATLP_H
GSS_H
USS_C
UPP_C
BETAS_C
BETAP_C
ZS_C
ZpP_C
ALP_C
GSS_C
GSP_C
GPP_C
GP2_C
HSP_C

Note that GAFit does not check if there is a response file before
the call. All is ok if it finds one, independently of whether it has been
created by the system call or not.

9.1.2 Stopping an external job

You can stop a running job writing a stop file in the folder where
it is running. The stop file’s name is STOP | and the text it
contains is whatever you want.

$ echo ‘‘stop job’’> __STOP__

A first approach to the general problem of launching an external
program is shown as a guideline for development to complement section
9.1 with a useful case: MOPAC 2009.

Later, a better solution —shepherd—, specifically designed to solve
some problems found while testing these scripts, is developed and dis-
cussed in Section 10,

80 9. MOPAC INTERFACE

9.2 Interfacing with MOPAC 2009

Interfacing with MOPAC 2009 is achieved using three new tools:

injector Written in C, is responsible for:

e answering the GAFit external auto configuration option.
e creating the MOPAC’s external file parameters.
e creating the MOPAC’s input file.

extractor Written in perl and using perl’s special characteristics to
extract text, it is in charge of:

e cxtracting and digesting data from the MOPAC output to a
intermediate file with a format for easy retrieve by the next
tool.

e dealing with MOPAC’s calculation failures.
fitter Written in fortran,

e calculates the fitting.
e writes the file with the fits to be read by GAFit.

Two templates are used to create the files needed by MOPAC 20009.

coefficients template (COEFS TEMPLATE) is used to extract
the coefficients values and replace them with the ones obtained by
GAFit and to count and assign names to GAFit coefficients too.

MOPAC calculation template (MOPAC TEMPLATE), contains
one or more calculations. For example: one for the reactants, one
for the TS and a third one for the products (calculations 1, 2 and
3 respectively).

It is used to generate a continuous and unique file with all calcu-
lations, which is employed as input of MOPAC 2009. There are
places, marked with an @, where the symbol is replaced by the
file name of the coefficients template, containing the coefficients
obtained by GAFit.

81

9.2. INTERFACING WITH MOPAC 2009

WLV aaIovaLXd dON ™ DVAOI
g =
! -~ EIVIdNAL_ DYdON

1
’

: /- @IV IdNAL SAE0D

rﬁﬂ.mgoﬂ%qg _

o dON_ DVION | \

N I030vI1)X0) N>
(proyddys o) _

[[1g-TeuIexe | eyep-pajorIixa] N 1031y 600COVJOIN N lojoalur

(LOINI TVNUELXA

N Us'600goedoumi-[eura)xo

(LI TVNUALXA

uorjyerodo reurIou :00RJINNUI 6002 DVIOIN T°6 2InSIg

82 9. MOPAC INTERFACE

Figure 9.2: MOPAC 2009 interface: autoconfigure
GAFit ----- -

~
~
~

\Y
external-mopac2009.sh 0

v \
injector 0 \

\VA
COEFS_TEMPLATEj

V
response "

If there are two calculations in the MOPAC calculation template
and GAFit exports 100 sets of coefficients per generation, then the
unique file generated contains 200 calculations, and also, there are 100
independent files generated from the coefficients template, each one with
a complete set of coefficients replaced.

These files are named A ... 7Z, AA ... AZ ... and so on.

Figures 9.1 and 9.2 show the relations between programs and files:
e Dashed blue lines indicate that a tool uses the file as input.

e A red line indicates that a tool creates the file.

e Black lines indicate calls to execute a tool.

e Files fill in yellow indicate that they must be created or given by
the user.

There are environmental variables, shown in Table 9.1, which can be
set to control the file names.

Notice that for the fitter point of view, EXTERNAL FIT and E
XTRACTED DATA are command line arguments.

9.3. EXTERNAL COMMAND 83

Table 9.1: Environmental variables

Variable Default value Tools
COEFS_TEMPLATE template.coefs injector
MOPAC TEMPLATE template.mop injector

MOPAC_ MOP mopac_input.mop injector, MOPAC 2009, ex-
tractor, shepherd
EXTERNAL INPUT mopac2009.input GAFit, injector

EXTERNAL FIT mopac2009.fit GAFit
EXTRACTED DATA extracted.data extractor
BOUNDS FILE bounds.txt GAFit, injector

9.3 External command

GAFit only calls an external shell script: external-mopac2009.sh, or
the name given in job.txt. There is a complete example in the folder
mopac-example which can be examined in the File 9.2. A minimal im-
plementation due to the defaults could be the one in File 9.4.

File 9.2: external-mopac2009.sh

#!/bin /sh

export MOPAC LICENSE-$HOME/ mopac2009

1
2
3
4 export COEFS TEMPLATE="template.coefs"
5 export MOPAC TEMPLATE="template .mop"
6 export MOPAC MOP="mopac input.mop"

7 export EXTERNAL INPUT="mopac2009.input"
s export EXTERNAL FIT="mopac2009. fit"

9 export EXTRACTED DATA="extracted.data"
10 export BOUNDS FILE="bounds. txt"

11

12 injector $1

13 if ["$1" —ne "0" |

14 then

15 $MOPAC_LICENSE/MOPAC2009. exe $MOPAC MOP
16 extractor $1

17 fitter $1 $EXTRACTED DATA $EXTERNAL FIT
18 fi

9.4 injector

injector is a program written in C. The syntax is

injector number-of-vectors [bulk]

84 9. MOPAC INTERFACE

where number-of-vectors and bulk are parameters explained below.

9.4.1 Configuration

If the external auto option is used, GAFit calls the external command
passing a “0” as first parameter, so the injector creates the file response
and GAFit uses this information to configure itself. This file is deleted
the first time injector runs in the normal operation.

File 9.3: job.txt in mopac-example

[parameters |
population : ——_100
crossover _rate —_0.75
blx alpha:———_0.5
mutation_rate:—_0.1
elitism : ——_yes
tournament_size :_b

sigma: —+>—_0.1
direction : ————_min

[job]
runs : ————1
evaluations:——5000

type: oo ooooon external _auto
command : __ oo external —mopac2009 . sh
[print |

print _runs:_yes

The data needed to create the response file is obtained from envi-
ronmental variables and from the COEFS TEMPLATE file!. If it
is not set, there are default values for them (see Table 9.1).

A minimal external script is shown in File 9.4. In this case, the
external auto option defaults to external. To override defaults use bulk
option to change to external bulk.

INumber and name of the coefficients.

9.4. INJECTOR 85

File 9.4: Minimal external-mopac2009.sh

! /bin /sh

export MOPAC_LICENSE-$HOME/ mopac2009
export MOPAC MOP="mopac_input.mop"
injector $1

if [H$1H —ne "0"]
then

© 00 9 O o ks W N =

$MOPAC_LICENSE/MOPAC2009. exe SMOPAC MOP
10 extractor $1

11 fitter $1

12 fi

9.4.2 Normal operation

If the parameter is not “0”, it must be the number of coefficient vectors,
which are written in the file EXTERNAL INPUT.

The injector reads EXTERNAL INPUT and using COEFS T
EMPLATE and MOPAC TEMPLATE it creates the MOPAC _MOP
file and its relative external coefficients files, which are named according
to the default option for the coefficients names. See 6.5.

File 9.5: COEFS TEMPLATE file: template.coefs

BETAS_ H_______ —6.173787
ZS__ Ho__o_o_ooooo 1.188078
ATP_ _H_o___ooooo 2.882324
GSS__Ho oo 12.848
USS_ .Cllcoooe —52.028658
UPP__CL__oooe —39.614239
BETAS_C____.o —15.715783
BETAP_C_____.. —7.719283
ZS__.Coioooooon 1.808665
ZP___Colcoooon 1.685116
ALP_ _CLoooooooe 2.648274
GSS__CLiicoeoe 12.23
GSP__C_L_ oo 11.47
GPP__CL__ooooe 11.08
GP2__CL_cooocon 9.84
HSP__C_L_Looooooe 2.43

At the configuration stage, the file COEFS TEMPLATE is ana-
lyzed; this file provides the number of coefficients and their names.

In a normal operation, the file is replicated to generate the files needed
to complement the jobs in MOPAC TEMPLATE.

86 9. MOPAC INTERFACE

File 9.6: MOPAC TEMPLATE file: template.mop

AMI_precise_external=Q_geo—ok_nosym

Hooo. 0.00000000 _+0____0.0000000_+0____0.0000000 _+0__cooeeoeeooon
oo 0.1275

o Coiiil 1.09852142_+1___.0.0000000_+0____0.0000000 _+0_____ Tocoon Oconn
COooooon —0.1565

G 1.33416836_+1__123.1900576 _+1____0.0000000 _+0_____ Do 1.
C0eoeeee ~0.0994

CHoL L 1.09879509 _+1__115.3226363 _+1__.179.9929115_+1_____ 2 1o
SE I 0.1270

JHoLL 1.10533055 _+1_.122.1640414 _+1__179.9944757 +1_____ 3 D,
Colemmoeen 0.1514

G 1.41933576_+1__114.5208739 _+1__179.9977508 _+1_____ 3 5en
C20oon —0.1114

o\ 1.16399609_+1__179.1128557 _+1____1.2752342 _+1_____ 6o 3en
CBemnee —0.0387

oldgeo _AMI_precise_external=Q_force_geo—ok_nosym

AMI_precise_ts_external=Q_geo—ok_nosym

.CCee0.000000.00...0.000000_0.._.0.000000_0__ccccc Ocoec0oo0l0
Coooc1.310566.1....0.000000.0____0.000000_0__cccce 1000020
Cooec2.179061.1..104.132782_.1_...0.000000_0__cccen 20.o.10.0.0
Neooo1.160916.1..160.493759.1....0.000000_1 oo Soooc2oo01
JHeooo1.076805.010.126.972862.1....0.000000_1 00 cn 1ooo0200003
JHeoo.01.084538_1..114.088127_1__180.000000_1__cccce 1ooo0200003
JHeooo1.208813.0100.35.831474.1..180.000000_1Ccccce 2 3ooo 4

el

MOPAC MOP is created clonning MOPAC TEMPLATE and
replacing the symbol @ with the files obtained changing parametres in
the COEFS TEMPLATE file, one per each different coefficient vec-
tor.

Therefore, if the external bulk option is used, and there are 100 coeffi-
cients per generation, one MOPAC MOP file is generated referencing
100 different files, each one being a COEFS TEMPLATE clone with
the parameters obtained from GAFit external input changed.

9.5 extractor

extractor is a perl script which analyses the MOPAC 2009 output file,
the MOPAC MOP file replacing the .mop extension by .out. Le. if

9.5. EXTRACTOR 87

MOPAC MOP is the default mopac_input.mop then the MOPAC
2009 output is mopac__input.out.
Syntax:

extractor number-of-vectors ‘

File 9.7: Extractor first lines

1 #! /usr/bin/perl

2

3 use strict;

4

5 use constant {

6 HEATFCAL = 0,

7 HEATFJUL = 1,

8 NUMATOMS = 2,

9 CARTESIAN = 3,

10 NUMFREQ = 4,

11 FREQUENCIES => 5,

12 CALCPERIND => 6,

13}

14

15 my (%odefaults) = (

16 "COEFS_TEMPLATE’ => "template.coefs",

17 'MOPAC_TEMPLATE’ => "template .mop" ,

18 'MOPAC_MOP’ => "mopac_input.mop" ,

19 "EXTERNAL INPUT’ => "mopac2009.input",

20 "EXTERNAL_FIT”’ => "mopac2009. fit ",

21 'EXTRACTED DATA’ => "extracted.data",

ar)

23

24 my (

25 $CoefsTemplate , $MopacTemplate, $MopacMop, $Externallnput ,
26 $ExternalFit , $MopacOut , $Extracted

27) ;

28

20 my (Q@QmopErrors) = (

30 "TOO_MANY_ITERATIONS_IN _LAMDA_BISECT" ,

31 "CALCULATION_ IS _.TERMINATED_TO_AVOID_ZERO_DIVIDE" |

32 "GRADIENT_IS _TOO_LARGE_TO_ALLOW_FORCE_MATRIX_TO_BE_CALCULATED"
33 "THIS_IS _A_FATAL_ERROR, _RUN_STOPPED_IN _GMEIRY" ,

34 "TS_FAILED_TO_LOCATE_TRANSITION_STATE" ,

35 "A_FAILURE_HAS_OCCURRED, _-TREAT_RESULTS_WITH_CAUTION!! " |
36 "EXCESS_NUMBER_OF_OPTIMIZATION_CYCLES" ,

37 "SHEPHERD_NON_RECOVERABLE_ERROR"

38) ;

39

40 my (@QmopSTOPErrors) = ("EXTERNAL_ file:_’.x’_does_not_exist!");

The gathered information is saved in an intermediate file - EXTRA
CTED DATA- with a suitable format to be processed later.

88 9. MOPAC INTERFACE

extractor accepts one command line parameter: the number of indi-
vidual coefficients vectors used. The rest of the configuration data must
be passed through environmental variables or use the defaults. See Table
9.1 and File 9.7, line 15.

extractor also checks for MOPAC 2009 failure, i.e., when MOPAC
2009 is not able to achieve a result with the given parameters. Special
care must be taken to test this and, if needed, change the @QmopErrors
array in the line 29 of the script —File 9.7—, adding the new error texts
not listed before in the array found in the MOPAC 2009 output.

Also, change the QmopSTOPErrors array in line 40 of the script
adding the fatal error texts? found in the MOPAC 2009 output which
must stop the entire job.

File 9.8: extracted.data

0.0_6

3

13.0_.0

—879.04453

13_.0_1

—3677.92230

13.0_2

7

13_.0_.3
1_H_0.0000_.0.0000_0.0000
13.0_.3
2.C_50.4746._0.0000_0.0000
13_.0_.3
3.C_84.8574_.36.9379_0.0000
13_.0_3
4_H_54.3105_-50.2347_-0.8804
13_0_3

5. H_122.4161_78.0661_-0.2120
13_.0_.3
6.C_52.1018_1.8440_.0.2744
13.0_3
7T.N_51.2886.0.9219_0.1372
13.0_4

0

13.1_2

7

13.1_4

15

13.1.5

1_-7.23

13_1.5

2.-7.20

2They could be a REGEX expression as in this case. Note the .*’ in the middle of the string.

9.6. FITTER 89

13_.1.5
3.—-6.01
13_1.5
4_-5.91
13_1_5
5.—4.20

The EXTRACTED DATA file format takes two lines per each
kind of data. The first line indicates:

o the coefficient vector used from EXTERNAL INPUT,
e the number of calculations from MOPAC TEMPLATE, and

e the code type.

The second line has the data itself.

Table 9.2: Extracted data

mnemonic ‘ code | data fields ‘ data

HEATFCAL 0 1 Heat of formation in kcal /mol

HEATFJUL 1 1 Heat of formation in kJ/mol

NUMATOMS 2 1 Number of atoms

CARTESIAN 3 5 Sequence number in structure,
atom symbol and x, y, z coordi-
nates

NUMFREQ 4 1 Number of total frequencies

FREQUENCIES 5 2 Sequence number and value in
em ™!

CALCPERIND 6 1 Total number of different calcu-
lations per coefficient vector

The different types of extracted data are shown in table 9.2 and in the
line 5 of the File 9.7. An example is given in File 9.8. Failed calculations
are not written to the file.

The tool lsexdata can be used to show the contents of the EX-
TRACTED DATA file.

9.6 fitter

fitter reads the EXTRACTED DATA file to calculate a fit for each
coefficient vector using the conditions in the conditions.tat file. The

90 9. MOPAC INTERFACE

variables that can be used to calculate the fit are shown in table 9.3. It
is written in fortran and the syntax:

fitter number-of-vectors [extracted-data-file [external-fit-file]] ‘

The optional parameters —extracted-data-file and external-fit-file— de-
faults to the ones shown in the table 9.1 - EXTRACTED DATA
and EXTERNAL FIT, respectively.

Table 9.3: Fitter conditions

‘ Condition ‘ data fields ‘ data ‘ comment
heat 3 calcA value weight Heat of formation of cal-
culus calcA
delta 4 calcA calcB value weight Difference between heat

of formation of calcula-
tion calcA and calcB.
A = (calcA — caleB) in
kcal/mol

frequency 4 calcA N value weight Frequency number N of
the calculation calcA
distance 5 calcA atoml atom2 value weight Distance between atom1
and atom?2 into calcula-
tion calcA

angle 6 calcA atoml atom?2 atom3 value weight | Angle between atoml,
atom?2 and atom$ into
calculation calcA

dihedral 7 calcA atoml atom2 atom3 atom4 value | Dihedral angle between
weight atoml1, atom2, atoms,
and atom/ into calcula-
tion calcA
penalty 1 penalty Fit if any of the MOPAC

2009 calculations failed
for a given coeflicient
vector

Each line references the calculation index into the MOPAC TEM
PLATE file, atom indexes, frequency numbers, etc, a reference value
to check against the calculated one, and a weight.

An example of the conditions.tat file is shown in the File 9.9. The
overall fit per coefficient vector is the sum of relative differences in each
line calculation multiplied by its weight.

9.6. FITTER 91

2
Ref lue, —Calculated value, . : L
5 | (Reference value, —Caleulated value)} Weight,; if calculation is done.

Reference Value;

fit

penalty if calculation fails.

Due to the fact that distances, angles and dihedral angles are calcu-
lated from the Cartesian coordinates, the intervening atoms may not be
connected in any other way:.

The dihedral angles follow the usual convention, shown in the figure
9.3.

Figure 9.3: Dihedral angles convention

o | e

To express a condition, only the four first characters are needed, as
shown in bold in table 9.3.

An example of fitter calculations using the file conditions.taxt shown
in File 9.9 is presented in File 9.10, where the type of condition, the
calculated value, the reference value, the weight used, and the individual
contributions to the final fit were printed.

File 9.9: conditions.txt

delt___1_.2_.100.6____.0.1
frequency___2____15__.3271.0__1e—4

distance___3_____ 1oooooe Teeeo3.700309096,..100.0
penalty_1el0

9. MOPAC INTERFACE

92

€L8F6T6€9979CC8 L9 ™" "=131377001""""""" "7 renpratput””
0060¢0LGLL966€9 FT1 ™~ "=3u0d"""""""(00000000000000 00T "~ "=oM"""%
TTTT866666656060600L €T T T=FRIT T T T TN TEY9LGGLEIT6CTIITTIGT T =18 T T T T T T T THONVLSIA T
G00—HS8S8T09LT6086E0EFTIS €™ =3U02""F00—HS0000000000000000 T~ =M™
~7770000000000000°TLEETTT=3R 17T TTT000000000006° TEET T T=o1R0 7T 7T T T AONHNOHA”
S8GIVET6ELEFICIT €S~ "=3Uu0d™"""2271000000000000000T 0~ "=oM" "%
TTTT66666666666665 00T "=321""""""720000000T€LEE TV T T =18 T T T TN T T T T T OVIAAT
CCITYPGEETIR6096FTIC 0" =413 766" """"""""""[enplarpur™"
¢00—HT66TC099TGLOTETIGL 67 =3U02""""""700000000000000°00T "~ "=RM"""%
TTTT866666656060€00L €T "= 17" """ TT006606GTEGCI8GTI]ET T =218 """ T T T THONV.LSIA ™
G00—H0ET6STIV6CLELSOIT ¥ 7 "=3U02""F00—HS0000000000000000 T~ "=0M"""7Y
~7770000000000000°TLEETTT=F2 177" T T00000000008€ 980T T T=2100 "7 TN T T ADNHNOHYA”
68¥TGT8089CLE6ELTIT 0" "=3U0d""""""71000000000000000T 0" "=oM" "%
TTTT66666666666665 00T "= 1" """ T T TF6666666666TT00F 8— " "=2182 """ T TN T T T OVITAAT
L89€0CL9960LG9 STT ™" "=13137786 """ """ """ [enprarpur””
GOLTE698GL689GT FI ™~ "=3u0d7"""""700000000000000 00T~ "=oM"""Y
TTTT866666696060€00L €T T T=FRIT T T TR06665969169€€6¢° ¢ =212 T T T T T T THDNVILSIA”
G00—HCCE060C69T8ESSFLS T~ =3U02""F00—HSG0000000000000000 T~ "=PM"""Y
77770000000000000°TLEETTT=3RITTTTTTT1000000000060°69GF T =218 777 T T ADNHNOHYA™
G699¢9€EERTO0C FOT ™~ "=3u0d™""""""1000000000000000T 0~ "=oM"""%
TTTT66666666666665 001" "=301""""""720000000G€EL6°LYEET T T=o1R T T TN T T OVITAAT
LE€LTE008TIVI6069T 97" "=313""L6"""""" """ "7 [enplatpur””
12CEITT606GFLG0L G~ "=3uo0"""""""00000000000000° 00T~ "=PM"""y
TTTT866666656060600L €T =01 T TTTT0699L98EFCLETITR G T =18 T T T T T T T THONV.LSIA™
G00—HEEH688L6CTTOCTTIOLL T =3U02""F00—HSG0000000000000000 T~ "=PM""7Y
~7770000000000000°TLEETTT=F217T 7000000000006 F68T T T=2100 "7 T T ADNANOHA™
698€8LGFL08LTEEIT 0™ =3U0d"""" "7 T(000000000000000T° 07 "=oM ™"y
TTTT66666666666665 00T "=321"""""77¢00000000T0CFTIATET T "= T T TN TN T T OVITAAT

ordurexo suoryenored 1033y 0T°6 oL

9.7 Caveats

Some problems may arise when using a long MOPAC input file if the

tial parameters are far from the optimized ones:

ni

o If MOPAC crashes, it can freeze the entire job and you have to

you may use

Alternatively,

kill the MOPAC process manually.
shepherd to control this. See 10.

9.8. MOPAC 2012 93

e It can be worse: a failed MOPAC calculation can spoil all the
previous calculations in the input file. These failed calculations are
the ones which the fitter assigns a penalty. See 9.6. You must use
the injector default option to calculate one vector at once, or use
shepherd to deal with it.

9.8 MOPAC 2012

MOPAC 2012 output differs a little from that of MOPAC 2009. From
our point of view, the most important change is that some cartesian
coordinates printout are missing, so internal coordinates must be used
and converted to Cartesian. This job must be done by extractor using
quaternion maths to calculate 3D rotations. The Karney [16] article is
a good reference about this subject.

shepherd

Computers are good at following
instructions, but not at reading
your mind.

Donald Knuth

shepherd launches and controls the running MOPAC processes. It
is written in C. Also, it can deal with the problems shown in section 9.7.
It can:

e Detect and kill a MOPAC frozen/crashed process.

e Split the job sent by GAFit from one individual once at a time to
a bunch of them.

The default behavior is to send a sole calculation —a MOPAC _TEMPLATE
clone— per MOPAC process. You can change defaults modifying the
source code and compiling it again: Details in section 10.2.

e Run, control and maintain a suitable number —equal or near to the
number of resources available: CPUs, cores or hyperthreads, etc—
of parallel MOPAC processes.

shepherd calculates a good value to this number. It dynamically
changes depending on the node load.

Syntax:

95

96 10. SHEPHERD

shepherd ‘

The external command to be used is slightly different with shepherd
as shown in File 10.1:

e To use the special characteristics of shepherd the line 12 is changed
to pass an entire parameters vector (bulk) .

e Also line 15 is changed, where shepherd replaces the entire "§$MOPAC _LICENSE/
MOPAC2009.exe SMOPAC _MOP" line. shepherd calls itself the
MOPAC executable as needed.

File 10.1: external-mopac2009.sh with shepherd

£l / bin /sh

export MOPAC LICENSE-$HOME/ mopac2009

export COEFS TEMPLATE="template.coefs"
export MOPAC TEMPLATE="template .mop"
export MOPAC MOP="mopac_input.mop"
export EXTERNAL INPUT="mopac2009.input"
export EXTERNAL FIT="mopac2009. fit"
export EXTRACTED DATA="extracted.data"
export BOUNDS FILE="bounds.txt"

© 0 N O o s W N

=
- o

injector $1 bulk
if ["g1" —_pe "Q"]

=
w N

14 then

15 shepherd

16 extractor $1

17 fitter $1 $EXTRACTED DATA $EXTERNAL FIT
18 fi

A shorter version of File 10.1 is 10.2 using the default values. shepherd
is totally configured by the environmental variables.

File 10.2: Shorter external-mopac2009.sh with shepherd

1 #!/bin /sh

2 export MOPAC LICENSE=$HOME/ mopac2009
3

4 injector $1 bulk

5 if [”$1” —ne ”0”]

6 then

7 shepherd

8 extractor $1

9 fitter $1

10 fi

10.1. CONTROLING FREEZES 97

10.1 Controling freezes

If a MOPAC 2009 process crashes, it freezes and blocks all the entire
job (see 9.7).

In these cases, glibc will produce output on the process controlling ter-
minal, so the environment variable LIBC FATAL STDERR =1 must
be set to send fatal errors to stderr in order to check it.

shepherd forks itself and execs the MOPAC process in an environ-
ment with the LIBC_FATAL STDERR _ variable set, and establishing
a pipe with the child process to read MOPAC’s stderr.

If a fatal error is noticed, shepherd Kkills the child process avoid-
ing the freeze and creates a fake MOPAC output file suitable for the

extractor.

[...]
shepherd #flocks:4
shepherd errno 2 forrtl: severe (174): SIGSEGV, segmentation fault occurred

Image PC Routine Line Source

libc.so.6 B760BEEA Unknown Unknown Unknown
libc.so.6 B7610050 Unknown Unknown Unknown
MOPAC2009.exe 08267594 Unknown Unknown Unknown
MOPAC2009.exe 08089053 Unknown Unknown Unknown
MOPAC2009.exe 0822AA58 Unknown Unknown Unknown
MOPAC2009.exe 081E835E Unknown Unknown Unknown
MOPAC2009.exe 0818392E Unknown Unknown Unknown
MOPAC2009.exe 0804A141 Unknown Unknown Unknown
libc.so.6 B75B1DB6 Unknown Unknown Unknown
MOPAC2009.exe 0804A051 Unknown Unknown Unknown

in file BE-BE.out lost sheep:56
shepherd elapsed time:17.611128
[...]

In the above example, shepherd notices a runtime error, so it kills

the MOPAC 2009 process, creates the fake BE-BE.out file and continues
processing. In the case of MOPAC 2012, the output is the same but with
less detail.

10.2 Operating modes

shepherd takes the file MOPAC MOP as input to build a MOPAC MOP.out
file, suitable for the extractor.

[t calculates the number of individuals ~how many MOPAC TEMPLATEs
are in the file—, and it can split the input in slices' from one individual?

IFlocks in shepherd parlance
2Sheep

98 10. SHEPHERD

to many, running a MOPAC 2009 process on each slice.

The temporary files for the slices are in the form FIRST-LAST.eat,
where FIRST and LAST are the first and last individuals in the file us-
ing the same naming convention as the coefficient names default option
—see 6.5—, and ezt is the extension corresponding to the type of file.

For example:

e BE-BE.mop is the MOPAC 2009 input file corresponding from 56th
to 56th individuals.

o A-F.out is the MOPAC 2009 output file corresponding from 1st to
5th individuals as a result of calculations on A-FE.mop input file.

The default is to launch a MOPAC 2009 process with an individual
~i.e.. A-A.mop—, an individual per slice?.

The other mode ~burst- is disabled but it can be enabled recompiling
the source code changing the line 613 in the main function setting burst

to a value different from zero, File 10.3. burst mode is discouraged. See
9.7.

File 10.3: Shepherd, main function.

603
604 int

605 main (int argc, char sxargv)
606 {

607 int burst = 0;

In this mode, the slice can contain more than one individual and it will
be calculated by one MOPAC 2009 process.

10.3 Parallel processes

Tracking the minimum time elapsed, processing an entire population and
running a fixed number of concurrent MOPAC 2009 processes, yields the
blue line shown in figure 10.1.

There is an optimum number from which a further increase in the
number of parallel processes provides little gain in performance, or no
gain at all. shepherd maintains the number of parallel processes around
this number.

3A sheep per flock

10.3. PARALLEL PROCESSES 99

T T
— Minimun time
—e— moment A

moment B

Ny —1

Ng —1

Time

Na+1 Np +1

— T~

\/

_A

Running processes in parallel

Figure 10.1: Shepherd algorithm: minimum time

Using the taskset utility, some experiments were performed. Figure
10.2 shows the results in a real four core CPU running repeatedly the
same GAFit task —same seed— selecting from one to four cores.

The same experiment was performed in an eight virtual cpu system.
The host really had only a four core CPU. The results are shown in
figure 10.3. Notice that the algorithm behaves as if there were only four
core CPU.

In figure 10.1, the red and green lines represent two different moments
in the calculations. In both cases, shepherd steps down to find the first
minimum. The minimum found is considered the optimum for this run
-noted as N4 and Np—.

shepherd processes entire populations cycling between N, N+1 and
N — 1 as the number of concurrent processes and it counts the real time
spent. The time recorded changes dynamically, changing N in turn.

The number of times a number of parallel processes are chosen by

100 10. SHEPHERD

—o— 1 Core
——2 Cores

3 Cores
——4 Cores

Time

1 2 3 4 5 6 7 8 9 10
Running processes in parallel

Figure 10.2: Real four core CPU: minimun time vs maximum concurrent parallel
processes per run

shepherd are shown in figures 10.4 and 10.5.

This information can be summarized taking into account the average
N in both cases, as shown in figure 10.6.

The algorithm presents a weakness: if shepherd writes to a local
storage, the algorithm works well. However, if it writes to a share, it
fails.

Figure 10.7 compares the same job —using the same seed, executed
in a one CPU node- writing to a local storage and to a Network File
System (NFS) share?.

As shown, writing to a local storage stabilizes the minimum time
from one running process —it is a one core CPU-. But writing to a NF'S

share, minimum times stabilize over 12 running processes, as if there
were 12 core CPUs.

4A typical configuration where the user’s HOME is shared with all cluster nodes.

10.3. PARALLEL PROCESSES

101
180 |- |
L
» \‘ -1 vcpu B
\‘ s D vcpu
-.,‘ 3 vepu
140 + \ 5 e |
\ 5 vepu
\\ —a- 7 vCcpu
) 7 - A 8 vCphu —
£ 100 \ :
- \
80 \\ |
\
60 | ._—_\.—.”_\./. |
k
40| 2N
._::. o \\\\\\’ e eenn . ol p0ccas N - :
20 \.ﬂ:.-.\\:~?_=,_.—__= é__‘__:.ﬁv';-‘_ﬁ":':: _(\— :“—‘;':— =@ % .
O | ‘ ‘ | | | | | | |

9 10
Running processes in parallel

Figure 10.3: Virtual eight core CPU: minimum time vs maximum concurrent parallel
processes per run

There are a utility, lstimes, to show the current number of parallel
processes, the time spend, the number of times the algorithm choose a
particular number of processes and the maximum and minimun time.

102 10. SHEPHERD

60 - -
—— 1 Core
—— 2 Cores
50 ——3 Cores
——4 Cores
40 - -
“ 3] |
20 -
10 | -
0 | |

1 2 3 4 5 6 7 8 9 10
Running processes in parallel

Figure 10.4: Real four core CPU: number of times (N) vs parallel processes per run

10.3. PARALLEL PROCESSES

40

35

30

25

20

15

10

Figure 10.5:

run

4 5 6 7 8 9 10
Running processes in parallel

Virtual eight core CPU: number of times (N) vs parallel processes

103

per

104 10. SHEPHERD

—o— real
5 ——virtual | |

Average number of processes
w
I
|

4 5 6 7 8
Number of cores

—
[\)
w

Figure 10.6: Average parallel processes per run. 4 core real CPU vs 8 core virtual
CPU (4 real)

10.3. PARALLEL PROCESSES 105

1,600 | 8

—o— Minimum time NFS
1,400 | —e— Minimum time local

1,200

1,000 | 8

Time

800 |- 8

600 - :

400 |
S—
200] e e e e |

0 2 4 6 8 10 12 14 16
Running processes in parallel

Figure 10.7: Behavior in the same one core CPU writing output to a NFS share vs
local storage.

Fpu

CKOJIBKO A3BIKOB Thl 3HACIIDb -
CTOJIBKO pa3 Thbl Y€JIOBEK..

Anonymous

11.1 Fpu overview

Figure 11.1: uCompiler compiles the expression into fpu machine code.

uCompiler

V=A*EXP(-B*R)+C/R**D 2%) % Hy’: é’] ﬁ‘ﬁﬁ %& ﬁ fk

Fpu is a function that emulates a Floating Point Unit (FPU) with
its own instruction set in order to calculate analytical expressions. A

related function, uCompiler, compile each source expression to fpu
machine bytecode —Figure 11.1—, so it can be executed by a Fpu instance
~Figure 11.2-.

Source code is included in the folders fpu, compiler, pack, bytecodes
and nullist. A complete implementation is the ufpu tool. See Section
12.4.

Figure 11.3 shows a Fpu overview. It contains:

address stack used to operate, like to a real CPU stack pointer.

107

108 11. FPU

Figure 11.2: Fpu load the machine code and process the variables to obtain V value.

kMR R A

¢ fpu
ABCDR %) v

Table 11.1: Fpu source code

Folder Comments

fpu implements the Fpu function
compiler implements the bytecode compiler
pack bytecode packaging (as file or in memory)
bytecodes bytecode instructions helper functions
nullist implements stacks using null terminated lists of strings

memory pool an array referencing each allocated double, always grow-
ing up. There is no mechanism to resize down allocated memory;,
except resetting or deleting the Fpu from memory. It is like a real

CPU stack.

program counter memory address pointing to the instruction to be
processed, like a real CPU program counter.

status flags register which is set on error like a real CPU flags.

program A continuous memory block containing the loaded program
opcodes. The data and the program code does not share the same
"memory”, so conceptually this is a virtual machine with a Harvard
architecture!.

The supported instruction set is shown in table 11.2.

!The opposite is the von Neumann’s architecture where data and program code are loaded in
the same memory. This is the most widely used if not the unique.

11.2. MODE OF OPERATION 109

Figure 11.3: Fpu overview
Main Memory

Double

/lgloublev\ 4
V\ Memory Pool

Double ™~ N9 Address

//gouble :\\ N8 Address
Double \ N7 Address

Addrgés St < T
‘ /I'?{S /9& / \ N6 Address

A Addreslsﬁ% Double o \N5 Address
Address#%/ Double o N4 Address
Address#3 Double N3 Address
Address#2 u N2 Address
Address#1 Double < N1 Address
v Address#0 Double < NO Address ®

Program Counter Flags @@@
Program bytecode| - - - |apush apush

11.2 Mode of operation

A program example is shown in File 11.2, which is generated using the
job.tat file configuration 11.1. Semicolons are interpreted as comments.

File 11.1: Job.txt to generate the File 11.2

[analytical |
expression:_potential_1
distance:_r

potential:_v
coefficients:_a,_b,_c,_d

[potential _1]
V=A«EXP(—BxR)+C/Rx*D);

110

11. FPU

Table 11.2: Fpu instruction set

Instruction Parameters

Comments

NOP
APUSH
PUSH

POP
MOVE

STORE
CLRF
ADD

SUB
MULT
DIV
NEG

POW

EXP

N
A

No operation

pushes address of memory pool N onto stack

allocates memory for value A incrementing memory pool,
and pushes its address onto stack

pops from stack

copies top of stack value to N** memory pool reference
and leaves stack unchanged

moves value of top of stack to allocation referenced by
top of stack - 1. Pops both addresses from stack

clears status flags

adds two top most referenced values of stack, pops both
from stack, and allocates memory for result pushing its
address onto it

same as add but substracting

same as add but multiplicating

same as add but dividing

pops out top of stack reference, allocating memory for
its negated value and pushing onto it

raises power of the two top most values of stack popping
them, allocates memory for result and pushes onto it
allocates memory for the result of efoPmeststack ops the
top most stack references, and pushes onto it the result
reference

File 11.2: Bytecode source example

-
U
-
-

—) -

Q0o Rr O <4
=~ W N = O

_;.d:b
_apush_0
~apush_1
_apush_2
_neg
_apush_3
_mult
_exp
_mult
_apush_4
_apush_3
_apush_5
_pow
_div
~add

_store

11.2. MODE OF OPERATION 111

As shown in File 11.2, a memory block must be passed to Fpu con-
taining the variables v, a, b, r, ¢, d in the correct order, as it could be
seen in the first lines of the file -comments which are generated by the
compiler as a remark—. At this time, the Address Stack is empty, so v,
a and b are pushed.

empty -b r -b*r
v a -b a

A% a A%

apush 0 apush 1 apush 2 neg apush 3 mult

Next, the value of the top of the stack is negated (—b). r is pushed
and multiplied by —b, so on top of the stack we have —b * r.

The e~ is calculated and multiplied by @ leaving it in the top of
stack again.

Figure 11.4: Initial status

Memory Block
address of d — — passed as

i parameter
address of r 7 X

address of b \\b?
address of a —— 5

address of v *{>z

Address Stack Memory Pool =~ Main Memory

address of ¢ —]

From the memory management point of view, the first six operations
from File 11.2 are shown in figures 11.4 to 11.8. A memory block with
the program variables is passed to Fpu.

New intermediate results generate new allocations of memory, all of
them are taken into account by the Memory Pool array, which always
grows. At the end, all of them are freed except the initial memory block
with the initial variables returned to the caller.

112

Figure 11.5: apush 0, apush 1, apush 2

]
RN c]
address of d =
address of ¢ < %
address of r |

address of b

address of b

address of a

address of a

address of v

address of v

/§7

Address Stack

Memory Pool

Figure 11.6: neg

AN

Main Memory

;{ddress of\—kK

address of d

address of ¢

address of r

ANEANEANED "¢

address of -b

address of b

address of a

address of a

address of v

address of v

Address Stack

Memory Pool

Z
~

Allocated

Main Memory

11. FPU

11.2. MODE OF OPERATION

Figure 11.7: apush 3

-

address of r

address of -b

address of d

address of ¢

address of r

address of r

address of -b

address of b

address of a

address of a

address of v

address of v

v
B

Wy

Address Stack

femory Pogol

7L

ain Memory

Figure 11.8: mult

address of —bx*r

address of a

address of v

Address Stack

o
b
ad essof—b*r/ v
/ address of r %
/ address of -b [~
address of d =~ .
address of ¢ \\[> d
Tl |
address of r 1
address of b — [} |
address of a o
address of v 7’5z

Memory Pool

Allocated

Main Memory

113

Tools

Contrary to popular belief, Unix is
user friendly. It just happens to be
very selective about who it decides
to make friends with.

Anonymous

12.1 needle

needle is a perl script used to distinguish different types of atoms, which
are needed to calculate the different types of interactions between Frag-
ment A and Fragment B.

$ needle -h
needle v0.4
(c) Roberto Rodriguez-Fernandez - 2010-2013
collects sets of equivalent atoms
input: any geometries input file

-d debug
-p N fragment A atoms
-0 creates needed files

The atoms considered are: F, H, Si, O, N, S, C and Au. If any atom
is different from those, it must be previously coded.

$ needle -p 18 moldeni.dat
needle v0.2
(c) Roberto Rodriguez-Fernandez - 2010-2013
collects sets of equivalent atoms
input: any geometries input file

115

116 12. TOOLS

Number (Atom)

1(W)

2(H) 4(H) 5(H)

3(C)

6(C)

7(H) 8(H)

9(0)

10(N)

11 (H)

9. 12(C)

10. 13(C)

11. 14(H) 15(H)

12. 16(0)

13. 17(0)

14. 18(H)

15. 19(C) 22(C) 33(C) ...
16. 20(C) 21(C) 34(C) ...
17. 23(F) 24(F) 29(F) ...
18. 25(F) 26(F) 27(F) ...

0 ~NO U WN -

Results:

10

11

12

13

14 15

16

17

18

19 22 33 ...
20 21 34 ...
23 24 29 ...
25 26 27 ...

Fragment A atoms:18

There are 18 different atom types. Fragment A:14, Fragment B:4, Common types:0
Total diff interactions: a vector of 56 coefs, X(k)

Vector Atom2Type:

Atom2Type(i)={1 2 3 2 2 4 ... 17 17 17 17 }

Options:
-d Debug output.

-p N Indicates the number of atoms into fragment A, required if -o is
used.

-o Creates output files: atomZtype.txt and charges.tzt as a template
to be modified as desired. Note that charges.txt assigns a dummy
value of 0 to each type of atom, therefore the file must be manually
edited or edited using bedit tool. See 6.3.

12.2. BEDIT 117

Notice that needle only reads the first molden geometry in the file, so
its input can be the geometries file used for the job.

The algorithm used in needle is not bulletproof, so pay special atten-
tion to the atomZ2type.tzt file.

12.2 bedit

bedit is an interactive editor to:

e cdit atom types and charges
e edit bounds

e copy and clone bounds across the bounds vector

All options are self explained in the example below. The first option
changes atom2type and charges files.

Bedit v0.2 Interactive editing
(c) Roberto Rodriguez Fernandez 2010

actual interaction: [1]

a Interactive modify atom types
b Interactive modify bounds
c Interactive copy bounds

z Quit
Option:
Option:a
Type Atoms
1.- N(1)
2.- H(2) H(4) H(5)
3.- C(3)
4.- C(6)
5.- H(7) H(8)
6.- 0(9)
7.- N(10)
8.- H(11)
9.- c(12)
10.- €(13)
11.- H(14) H(15)
12.- 0(16)
13.- 0(17)
14.- H(18)

15.- C(19) C(22) C(33) ...
16.- €(20) C(21) C(34) ...
17.- F(23) F(24) F(29) ...
18.- F(25) F(26) F(27) ...

use ’c3=766’ to change atom 3 to type 766

118

’c4=100 c5=1000’ to change atom 3 to type 100
and atom 5 to type 1000
’q3=-0.33" to set type 3 charge to -0.33
’w’ to save types to file
’z’ to quit
Input:

12. TOOLS

The second option changes bounds file.

Option:b

INTERACTION TYPE 1

N(1)-C(19) N(1)-C(22) N(1)-C(33) N(1)-C(40) N(1)-C(45) N(1)-C(49)
N(1)-C(56) N(1)-C(65) N(1)-C(72) N(1)-C(79) N(1)-C(84) N(1)-C(85)
N(1)-C(98) N(1)-C(101)

Coefficients:
1A -100.00000 - +100.00000 (real)
2 B +0.00000 - +100.00000 (real)
3¢C -1500.00000 - +5000.00000 (real)
4D +3.50000 - +5.50000 (real)
5 E -1500.00000 - +1500.00000 (real)
6 F +5.50000 - +9.50000 (real)

use ’a:1=1.03’ to change A:lower to 1.03
’c:u=1000’ to change C:upper to 1000
’b:1=100 b:u=1000’ to change B:lower and B:upper
’a:r c:i’ to change A to real, C to integer
’xx’ to list and select interaction xx
where xx is a number
’w’ to save to file (writing labels)
’z’ to quit
Input:

The third option can copy and clone the bounds across the bounds

file.

Option:c

INTERACTION TYPE 1

N(1)-C(19) N(1)-C(22) N(1)-C(33) N(1)-C(40) N(1)-C(45) N(1)-C(49)
N(1)-C(56) N(1)-C(65) N(1)-C(72) N(1)-C(79) N(1)-C(84) N(1)-C(85)
N(1)-C(98) N(1)-C(101)

Coefficients:
1A -100.00000 - +100.00000 (real)
2B +0.00000 - +100.00000 (real)
3cC -1500.00000 - +5000.00000 (real)
4D +3.50000 - +5.50000 (real)
5E -1500.00000 - +1500.00000 (real)
6 F +5.50000 - +9.50000 (real)

use ’c1=2,3,4’ to copy 1 to 2,3,4
?¢20=30,40,52 c21=31,41,53’ to copy 20 to 30,40 and 52;
and to copy 21 to 31,41 and 53 too
’xx’ to list interaction xx
where xx is a number
’w’ to save to file (writing labels)
’z’ to quit’
Input:

12.2. BEDIT 119

bedit reads the job.txt file and follows the configuration therein.

Note that the last two options can change the bounds file, but they
cannot modify the parameter all coefficients accordingly in the job.txt

file.

Bedit changes slightly its behavior if an analytical expression is in
use, as shown below.

Bedit v0.2 Interactive editing
(c) Roberto Rodriguez Fernandez 2010

actual interaction: [1]

a Interactive modify atom types
b Interactive modify bounds

c Interactive copy bounds

z Quit

Option:b

INTERACTION TYPE 1

C(1)-Xe(14)

Coefficients:
1(A) aaa +0.00000 - +1000000.00000 (real)
2(B) bbb +0.00000 - +10.00000 (integer)
3(0) cl -1500.00000 - +0.00000 (real)
4(D) c2 +4.00000 - +8.00000 (integer)
5(E) d1 +0.00000 - +1000000.00000 (real)
6(F) d2 +0.00000 - +10.00000 (integer)
7(G) el -1500.00000 - +0.00000 (real)
8(H) e2 +4.00000 - +8.00000 (integer)

[11ower [ulpper

use ’a:1=1.03’ to change A:lower to 1.03
’c:u=1000’ to change C:upper to 1000
’b:1=100 b:u=1000’ to change B:lower and B:upper
a:r c:i’ to change A to real, C to integer
’xx’ to list and select interaction xx

where xx is a number
’w’ to save to file (writing labels)
’z’ to quit
NOTE: use the letters in parenthesis
to select the desired coefficients
Input:

The coefficient names are printed, but the operative details remain the
same using the A, B, C...coefficient letters to access them.

In case of an external potential, only the second option (Interactive
modify bounds) is available.

120 12. TOOLS

12.3 fitview

An utility to write and plot data from results. fitview generates two
files per plot, one contains the data (file.dat) and the other (file.plt) the
gnuplot! commands to print out the plot. So to plot, you can type:

$gnuplot file.plt

The plots produced by fitview are one per two body interaction, a
general evaluation including all geometries found in the geometry file
and all the two body interactions in the same plot for a quick look:

e general evaluation.plt

general evaluation.dat

2body-type-1.dat

2body-type-1.plt

2body-type-2.dat

2body-type-2.plt

2body-type-n.dat

2body-type-n.plt

2body-type-all.plt

$ fitview -h
Usage: fitview [tag] [-1 value]l [-u value]l [-d value] [-h]
-1 lower bound
-u upper bound
-d delta
-e gnuplot supports enhanced terminal
-h this help
[tag]l process this TAG
default [0.500000,10.000000] delta: 0.010000

In the command line you can specify the lower and upper bound, the
increment delta and whether your local version of gnuplot supports the
enhanced terminal to print the subscripts needed for the data labels.

'Home page: http://www.gnuplot.info/. Gnuplot is a portable command-line driven graphing
utility for Linux, OS/2, MS Windows, OSX, VMS, and many other platforms.

http://www.gnuplot.info/

12.4. UFPU 121

Figure 12.1: Two body interaction example plot.

Interaction type 10

18000 | | | | | |
Ex: H (10)-Xe(14) ——
16000 —

14000 |- -

12000 [-

10000 H- -

8000 H -

Potential

6000 -

4000 -

2000 .

-2000 | | | | | | | | |

fitview loads the best.tat coefficients and honors the job configura-
tion found in the current working directory using the job.txt file therein.

If a tag is included in the command line, it processes the best.tag.txt
and the output files overwrites the previous ones. Note that the result
file names do not change.

In case of an external potential, fitview refuses to run.

12.4 ufpu

An utility to test analytical expressions configuration, following the next
steps:

1. ufpu searches the job file in the current working directory for an
[analytical] section?.

2. Checks and validates the expression if found.

3. Compiles generating two files: prog.uzxe and prog.usm, and extracts
the variables to be used. prog.uze is the packed bytecode result of

2Regardless the potential value in the [job] section.

122 12. TOOLS

compilation. prog.usm is the result assembler for the same expres-
sion.

Loads the prog.uzxe file.
Asks for each variable.

Runs and shows the results.

NS o

Resets and goes to 5

The analytical subroutines do the same. At GAFit initialization,
performs the steps from 1 through 4.

Each time a potential calculation is requested, it loads the Fpu with
the appropriate values in a memory block, runs it, extracts the result
and resets again the Fpu. See 11.

The output shown was generated using File 8.3.

uFpu v0.2 (c) Roberto Rodriguez-Fernandez

expression name: "potential 5"

potential: pot
distance: dist
coefficients: aaa, bbb, cl, c2, di, d2, el, e2

Expression found:

vl = aaa * exp (-bbb * dist) ;
v2 = cl / pow (dist , c2) ;

v3 = dil / dist ** 42 ;

vd = el / dist "~ e2 ;

pot = vl +v2 + v3 + v4

Variables found in expression: vl aaa bbb dist v2 cl c2 v3 dl d2 v4 el e2 pot

Expression code 0K

pot index 13

dist index 3

8 coefficients found
INPUT

distance variable (dist)=1

coefficient aaa=1

coefficient bbb=1

coefficient cil=1

coefficient c2=1

coefficient di=1

coefficient d2=1

coefficient el=1

coefficient e2=1

After run: Memory (total used 27) v1=0.367879 aaa=1.000000 bbb=1.000000
dist=1.000000 v2=1.000000 c1=1.000000 c2=1.000000 v3=1.000000 d1=1.000000
d2=1.000000 v4=1.000000 e1=1.000000 e2=1.000000 pot=3.367879

RESULT POTENTIAL:3.367879

Press ’q’/INTRO to quit, another key/INTRO to repeat

12.5. JOBTREEEDITOR 123

12.5 JobTreeEditor

The JobTreeEditor is a little Graphical User Interface (GUI) tool
written in Java, useful to create and modify the configuration and pa-
rameters file: job.txt described in Section 6—. It can run in any Java
correctly enabled graphical system: MS Windows or any Unix clone —
Linux, BSD, Solaris, Mac OS X, etc—. JobTreeEditor takes special
care with defaults parameters summarized in Table 6.1 and potentials
values from Table 6.2.

Figure 12.2: Job Tree Editor main window.
=10l x|

Job File Z Edit

7 jobb.txt
? [analytical]
coefficients:
distance:
expression:
potential:
¢ [job] r’ Set default db Cut defauits

all coefficients: no

atom2type: ctoriliype. b @ Move up x Delete

[»

Mo section selected!

Tools

auto weights: »no
bounds: bounds 2
charges: charges @ Move down :ﬁ Default file
coefficients: ¢
command: /external New section
energies: energies it + —
evaluations: 5000

external input: external input i
externalfit: external /it Newlexisection
fitting; relative + Add
geometries: goometries o
potential: f

runs: J

test:

oo SN ' a I [T

7 [parameters]

blx_alpha: 0.5 New keywvalue pair
crossover rate: 75

crossover: shr == + Add

direction: rin
elitism: pes

[
D

1]

Job Tree Editor v0.1 {c) RRF

The configuration and parameters file —job.tat— is displayed as a tree
in the left panel, see Figure 12.2. The tree root is the file name to be
edited: jobb.txt in this case as shown. In the right panel, there are a
text information box, some buttons and text boxes to modify the tree
in the selected section or key/value pair in the left panel.

124 12. TOOLS

From up to down, left to right:

o Set default]: Sets the selected key to its default value.
e Cut defaults|: Deletes the key/value pairs from tree if the value is

the default one. If the key is not present, GAFit takes its default
value.

e [Move up): Moves up a key/value pair or a whole section.

o [Delete]: Deletes key/value pair or a whole section. The key or the
whole section keys take their default values.

e [Move down}: Moves down a key/value pair or a whole section.

° : Clears all the tree and load a default one: an internal
job with potential type 1 and all default values.

After loading defaults, check the remaining tree inmediatly when

you apply the [Edit>> Cut Defaults] option menu or |Cut defaults| button.

e New section : Adds a new empty section.

e New text section [Add): Adds a new text section with the required
text. Useful to introduce an analytical expression as potential.

e New key:value pair : Adds a new key/value pair to the
selected section.

Also, there is a menu, see Figure 12.3:

e [File) Open file or [alt])+[O }: To open a file.

e [File) Save| or [alt]+ S | To save the current file.

e [File) Save as|or | alt]+[A]: To save the current file changing its name.

° [Edit>> Tree>> Clear all, empty fiIe]; To clear the whole tree.

° \Edit Tree) Internal job) Internal default]: Same as |Default file| button.

° [Edit>> Tree>>|nterna| job>> Analytical]: Defaults to use an analytical ex-
pression as potential. You must introduce the analytical expression
by hand using the new text section button. Section 6.6, 8.2
and 14.

12.5. JOBTREEEDITOR 125

Figure 12.3: Job Tree Editor menu.

RI=IE
Job | File Z Edit‘
?‘E Tree 3 % Clear all, empty file
<3 == |
d‘b Cut defaults ;%5 Internal job] \\:g] Internal default
ﬁ Add known keyialue pair |"//jI External ju@@namﬁcal
TEXUETTII 2 XIEFFI il Tools
fitting: relative \ L=erraned
geometries: gecretries bt (Set detaun o LI
potential: 7
runs: J . @ Move up x Delete
test:
type: internal =
¢ [parameters] @ Move down \% Defauilt file
blx_alpha: .5

New section
crossover rate: (75

crossover: thy L# Add

direction: min
elitism: yes New text section

eta_shx: 2
integer mutation: ramdor + Add
mutation rate: 7
mutation: sigra
population: {7
sigma: 7
towrnament size: 5 4] Il [Dl
7 [print]
analytical: yes New keyavalue pair

auto weights: yes
ga settings: 1o = + Add

geometries: yes
mns: pas

D

Job Tree Editor v0.1 {c) RRF

1]

° [Edit Tree) Internal job) User defined]: Defaults to use an user defined

potential. You must introduce your potential changing the code:
Check Section 8.1.4.

Note that you can use a new potential adding your own one giving
it a number different from those in Table 6.2 as shown in Section
8.1.3. In this case, also change the key potential to the newly
defined potential.

o[Edit Tree) External job ExternaIHEdit Tree) External job) External bulk]

and [Edit Tree)) External job)) External auto]: External jobs configura-
tions. Check Sections 9.1, 9, 10, 15, 16 and 17.

° [Edit Cut Defaults]; Same as |Cut defaults| button.

° [Edit Add known key/value pair]; Shows up a menu to pick up one of

126 12. TOOLS

the not present keys with their default values to just edit and add
to the selected section. See Figure 12.4.

Figure 12.4: Job Tree Editor editing a key-value pair with a context menu.

R
Job | File Z Edit

? jobb.txt Default values deleted

? [analytical]
coefficients:
distance:
expression:
potential: Tools

7 [job] p Set default % Cut defaults

coefficients:

xternalfit: excternal /it
: LB Rl t Mowve up x Delete
[parameters

[print] ==
‘ ‘ Move down E\;’_}\ Default file
-l

Section: [parameters]
* Add

e faniom [+
blx_alpha ext section
crossover rate
crossover L Add
direction :| ’:
4]] [l |
New keyvalue pair
&

Job Tree Editor v0.1 (c) RRF

Part 111

Step by step examples

127

Xe + [Li(Uracil)] T example

As a rule, software systems do not
work well until they have been
used, and have failed repeatedly, in
real applications.

Dave Parnas

O7 Hyg
\ /
Cs3—Ny
H137N2 C5=OS“L197K/WWV\WX614
/
C1 :C6
/ \
Hio Hyy

We shall use the Xe + [Li(Uracil)|™ system as an example taken
from Section 18. In this example, we fit one of the potentials shown in
Table 6.2 to the interaction energies between Xe and the [Li(Uracil)| " complex,
computed by ab initio calculations.

These files are included in the uracil-example folder. You can run
it typing:

$ make test

Once this command is employed, some files are extracted and GAFit
is run.

129

130 13. XE + [LI(URACIL)]* EXAMPLE

13.1 Preparing input files

The input file coord.molden contains the set of geometries employed in

the ab initio calculations. The geometries can be viewed using molden
(see Fig. 13.1):

$ molden coord.molden

Figure 13.1: Viewing the points with Molden

| MOLDEN)|

Caloulate 3
Distance |
Angle |
Dihedral |

ZHAT Editor |
Postscript |

e
[~ Solid
[~ stickColor
[~ Shade
| Perspect.
| Label

ccccc

Els [l EEEERREE

| BackBone

Staty

atu
Foint 005

The very first lines of this file are shown in File 13.1.

File 13.1: coord.molden geometries file first lines.

14

C 0.000000 0.000000 0.000000

N 0.000000 0.000000 1.354549

C 1.152143 0.000000 2.127502
N 2.311655 0.000000 1.343162

C 2.393034 0.000000 —0.016579
C 1.152592 0.000000 —0.718330
O 1.169220 0.000000 3.330930
O 3.523582 0.000000 —0.559509
Li 4.968935 0.000000 —1.513449

H 3.175968 0.000000 1.870824

H 1.142155 0.000000 —1.793856
H —-0.971622 0.000000 —0.471648
H —-0.866367 0.000000 1.874333
Xe 17.488048 0.000000 —9.776123

14

C 0.000000 0.000000 0.000000
N 0.000000 0.000000 1.354549
C 1.152143 0.000000 2.127502
N 2.311655 0.000000 1.343162
C 2.393034 0.000000 —0.016579
[.

o

13.1. PREPARING INPUT FILES 131

Also, we need the interaction energies corresponding to each geome-
try in coord.molden. These energies are used to fit our model potential
and they are listed in the file energies.txt (see File 13.2). This file follows
the specifications described in 6.3.

File 13.2: energies.txt file.

—0.006436
—0.012603
—0.024660
—0.053662
—0.151027
—0.208324
—0.298249
—0.443987
—0.576097
—0.762092
—1.031527
—1.431174
—2.022694
—2.554913
—3.208230
—3.966854
—4.767595
—5.448579
—5.645469
—5.658691
—5.387761
—4.692701
—3.377588
—1.167944
2.322455 1
7.633202 1
15.516838 1
27.007602 1
66.979582 1
146.056144 1
297.072019 1

—
There are two columns, the first one is the interaction energies and

the second one is the weight of each geometry. The order must be the
same of the geometries file.

Taking into account that some of the atoms in the [Li(Uracil)| * complex
(Fragment A below) can be equivalent, we have to determine the dif-
ferent atom types. To achieve this, we shall use the needle tool-see
12.1-.

$ needle -p 13 -0 coord.molden

RFRRRRRRRRRRRRERRRERRERRRRRRR B

Fragment A atoms:13

There are 14 different atom types. Fragment A:13,
Fragment B:1, Common types:0

Total diff interactions: a vector of 13 coefs, X(k)
Vector Atom2Type:

Atom2Type(i)={1 2 3456 7 89 10 11 12 13 14 }
two files created: atom2type.txt and charges.txt

132 13. XE + [LI(URACIL)]* EXAMPLE

When we run needle using the -p and -o switches, we have to provide
the number of atoms present in fragment A. Additionally, with these
options needle creates the atomZtype.tzt —File 13.3— and charges.tzt—
File 13.4- files (see section 6.3). As seen above, the output informs that,
in this case, there are no equivalent atoms. In our example, there are
14 different atom types, and 13 different interactions between fragment
A and fragment B (Xe)

File 13.3: atom2type.txt file.

13 14

© 0D U A WN =
o
OO0~ Uk WN -

10
11
12

o
-

13
14

BrxzzzSooaazaza

==
- w N

The number of different types of atoms determines the charges.tzt file
with a line per atom type. The generated charges.tzt file is a dummy file
to be used as a template and you need to edit it, if you use a potential
with charges.

File 13.4: charges.txt file.

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

—

= e e
B WNFEO©WTDU A WN -

We shall use the implemented potential number 1 with four coeffi-
cients —from Table 6.2—.

C
—Br
V:AG +']”‘_D

So we need a file with the lower and upper limits of the coefficients
—the bounds—. Here we can specify the same limits for all interactions
or different limits per each interaction. We choose the former option, as
shown in File 13.5.

13.1. PREPARING INPUT FILES 133

File 13.5: bounds.txt file.

TEXT TEXT TEXT TEXT

0. 1000000. 0
0. 10.0 1
—1500. 0. 0
4.0 8.0 1

To edit the atom2type and the bounds file we can use the bedit tool
~12.2- using option | a |. Option | b | is employed to edit the bounds.tst
file, and option is needed when we want to specify different bounds
for the parameters corresponding to the different interaction types.

$ bedit

Bedit v0.2 Interactive editing
(c) Roberto Rodriguez Fernandez 2010

Job type: internal

actual interaction: [1]

a Interactive modify atom types
b Interactive modify bounds
c Interactive copy bounds

z Quit

Option:a

Type Atoms
1.- Cc(1)
2.- N(2)
3.- C(3)
4.- N(4)
5.- C(5)
6.- C(6)
7.- 0(7)
8.- 0(8)
9.- Li(9)
10.- H(10)
11.- H(11)
12.- H(12)
13.- H(13)
14.- Xe(14)

use ’c3=766’ to change atom 3 to type 766
?c4=100 c5=1000’ to change atom 3 to type 100
and atom 5 to type 1000
’q3=-0.33" to set type 3 charge to -0.33
’w’ to save types to file
’z’ to quit

Input:z

actual interaction: [1]

a Interactive modify atom types
b Interactive modify bounds

c Interactive copy bounds

z Quit

Option:b

INTERACTION TYPE 1

134 13. XE + [LI(URACIL)]* EXAMPLE

C(1)-Xe(14)

Coefficients:
1(8) A +0.00000 - +1000000.00000 (real)
2(B) B +0.00000 - +10.00000 (integer)
3(C) ¢ -1500.00000 - +0.00000 (real)
4(D) D +4.00000 - +8.00000 (integer)
[1]ower [ulpper

use ’a:1=1.03’ to change A:lower to 1.03
’c:u=1000’ to change C:upper to 1000
’b:1=100 b:u=1000’ to change B:lower and B:upper
a:r c:i’ to change A to real, C to integer
’xx’ to list and select interaction xx
where xx is a number
’w’ to save to file (writing labels)
’z’ to quit
Input:

Next, we have to edit the job.tat file to configure GAFit. The file
job.txt that comes with the uracil example is the one shown in the File
13.6.

File 13.6: job.txt file.

[parameters]

population : 100
crossover rate: 0.75
blx alpha: 0.5
mutation rate: 0.1
elitism : yes
tournament size: 5
crossover : sbx
mutation : sigma
sigma : 0.1
direction: min
[job]

runs: 1
evaluations: 5000
Geometries : coord . molden
Energies: energies . txt

Atom2type: atom2type.txt
Bounds: bounds. txt
Charges: charges.txt
Potential: 1

All coefficients: no
auto weights: no
fitting: relative

[print]
geometries: no
runs: no

g
job.txt is split in some sections, the text between square brackets,
with options as key-value pairs.
You can also construct this file using the JobTreeEditor tool, sec-
tion 12.5, and use the menu command [Edit Tree) Internal job) Internal default]7
Figure 13.2, and change some defaults for this job:

e section [parameters|: none to change.

e section [job]: Change the geometries key to coord.molden.

13.1. PREPARING INPUT FILES 135

Figure 13.2: Job Tree Editor editing the ’job.txt’ file included in the uracil example.
=0l

Job File z Edit

? job.txt
7 [parameters]
population: 700
crossover rate: (075
blx_alpha: (.5
mutation rate: o f
elitism: pos a Set default dh Cut defaults
touwrnament size: 5

crossover: shr
mutation: sigra ﬁ Move up x Delete

sigma: 0 7
direction: i @ Move down E@;\Defaultﬁle
? [job]
runs: 7 New section
evaluations: 5000 + —
Geometries: coord molden
Energies: energiostit
Atom2type: womlippe b
Bounds: »ounds ta + Add
Charges: charges txd
Potential: 7
All coefficients: no
auto weights: no
fitting: relative] T D
7 [print]
geometries: no
runs: Ho

Tools

New text section

[L]

HNew key-value pair

== + Add

Job Tree Editor v0.1 (c) RRF

e section |print]: Change the keys geometries and runs to no.

If you select the option |Edit) Cut defaults| you get a "standard" file
where some options are omitted because they are assigned default values,

as you can see in Figure 13.3

The different sections and their possible options are discussed in sec-
tion 6. In the [job] section we have potential: 1 and All coefficients:
no.

As you can see in Table 6.2, this potential function has a total of 4
coefficients and we want the same bounds (All coefficients: no) for
all two-body interactions. This is specified in the bounds.txt shown in
File 13.5, with only 4 lower and 4 upper bounds for the coefficients.

The last column of this file is employed to specify whether the coef-
ficient is an integer or a real number.

136 13. XE + [LI(URACIL)]* EXAMPLE

Figure 13.3: Appliying ’cut defaults’.

Job File Z Edit

7 job.txt Defaultwvalues deleted
[parameters]
7 [job]
Geometries: coord molden
7 [print]
geometries: no

L o a Set default d‘h Cut defaults
ﬁ Move up x Delete
@ Move down Q] Default file

New section
+ Add
+ Add

=lol |

Tools

New text section

[HINNRD

1] 1 [] |

New key:value pair

== l* Add

Job Tree Editor v0.1 (c) RRF

13.2 Running the example

If you run GAFit from the folder where all the above files are located
you get the output file shown in Files 13.7, 13.8, 13.9, 13.10 and 13.11.

$ gafit > output.txt

As we mentioned above, there are 13 different two-body interactions
with four coefficients each one, so we have a vector of 52 coefficients to

optimize. Two of the coefficients, B and D, are integer, as indicated in
File 13.5.

13.2. RUNNING THE EXAMPLE 137

File 13.7: Uracil example output: output.txt (i)

sk K K ok K K Kk K K
gafit 0.6.3
Build: 2569

sk sk sk ok sk koK ok sk Ok ok sk ok
Job type: intermnal

Settings for job

Coordinates : [coord . moldd Settings for JOb
Energies :[energies . txt]
Atom2type: [atom2type . tx
Bounds : [bounds. txt]
Charges : [charges . txt
Potential read: 1

All coefficients: no,
Fitting: relative
Auto weights: no

Choosen potential

Output options

Print options:
geometries no
runs no
ga settings no
analytical no
auto weights no

...now reading data

Interactions info

Different interaction types: 13,
with 4 coefficients each,
so, we need a 52 elements vector.
Choosen potential=1
Fragment A atoms: 13, Fragment B atoms: 1
Fragment A types: 13, Fragment B types: 1
A and B common types: 0
Different interactions: 13

Bounds read from

Reading bounds for 4 coefficients bounds.txt file
A +0.00000 — +1000000.00000 (real)
B £0.00000 — £10.00000 (integer)
C —1500.00000 — +0.00000 (real)
D +4.00000 — +8.00000 (integer)

Creating a 52 bounds vector ...

52 BOUNDS VECTOR

First interaction
INTERACTION TYPE 1 type

C(1)—Xe(14)
Coefficients:

1 A +0.00000 — +1000000.00000 (real)
2 B +0.00000 — 10.00000 (integer)
3 C —1500.00000 — +0.00000 (real)
4 D +4.00000 — 8.00000 (integer)

—

File 13.8: Uracil example output: output.txt (ii)

INTERACTION TYPE 2

N(2)—Xe(14)
Coefficients:

5 A +0.00000 — +1000000.00000 (real)

6 B +0.00000 — +10.00000 (integer)

7 C —1500.00000 — +0.00000 (real)

8 D +4.00000 — +8.00000 (integer)
INTERACTION TYPE 3
C(3)—Xe(14)

Coefficients:

9 A +0.00000 — +1000000.00000 (real)

10 B +0.00000 — +10.00000 (integer)

11 C —1500.00000 — +0.00000 (real)

12 D +4.00000 — +8.00000 (integer)

INTERACTION TYPE 4

N(4)—Xe(14)
Coefficients:
13 A +0.00000 — +1000000.00000 (real)

138 13. XE + [LI(URACIL)]* EXAMPLE

14 B +0.00000 — +10.00000 (integer)
15 C —1500.00000 — +0.00000 (real)
16 D +4.00000 — +8.00000 (integer)
INTERACTION TYPE 5
C(5)—Xe(14)
Coefficients:
17 A +0.00000 — +1000000.00000 (real)
18 B +0.00000 — +10.00000 (integer)
19 C —1500.00000 — +0.00000 (real)
20 D +4.00000 — +8.00000 (integer)
INTERACTION TYPE 6
C(6)—Xe(14)
oefficients:
21 A +0.00000 — +1000000.00000 (real)
22 B +0.00000 — +10.00000 (integer)
23 C —1500.00000 — +0.00000 (real)
24 D +4.00000 — +8.00000 (integer)
INTERACTION TYPE 7
O(7)—Xe(14)
Coefficients:
25 A +0.00000 — +1000000.00000 (real)
26 B +0.00000 — +10.00000 (integer)
27 C —1500.00000 — +0.00000 (real)
28 D +4.00000 — +8.00000 (integer)
INTERACTION TYPE 8
O(8)—Xe(14)
Coefficients:
29 A +0.00000 — +1000000.00000 (real)
30 B +0.00000 — +10.00000 (integer)
31 C —1500.00000 — +0.00000 (real)
32 D +4.00000 — +8.00000 (integer)
INTERACTION TYPE 9
Li(9)—Xe(14)
Coefficients:
33 A +0.00000 — +1000000.00000 (real)
34 B +0.00000 — +10.00000 (integer)
35 C —1500.00000 — +0.00000 (real)
36 D +4.00000 — +8.00000 (integer)
INTERACTION TYPE 10
H(10)—Xe(14)
Coefficients:
37 A +0.00000 — +1000000.00000 (real)
38 B +0.00000 — +10.00000 (integer)
39 C —1500.00000 — +0.00000 (real)
40 D +4.00000 — +8.00000 (integer)
INTERACTION TYPE 11
H(11)—Xe(14)
Coefficients:

—

In the output, next lines explain how the interactions are and their
per coefficient bounds. In this case, the bounds are equal for any inter-
action.

13.2. RUNNING THE EXAMPLE 139

File 13.9: Uracil example output: output.txt (iii)

41 A 4+0.00000 — +1000000.00000 (real)
42 B +0.00000 — +10.00000 (integer)
43 ¢) —1500.00000 — +0.00000 (real)
44 D +4.00000 — +8.00000 (integer)
INTERACTION TYPE 12
H(12)—Xe(14)
Coefficients :
45 A +0.00000 — +1000000.00000 (real)
46 B -+0.00000 — +10.00000 (integer)
47 C —1500.00000 — +0.00000 (real)
48 D -+4.00000 — +8.00000 (integer)
INTERACTION TYPE 13
H(13)—Xe(14)
Coefficients : .
49 A The seed used in .00000 (real)
50 B this calculation -00000 (integer)
51 (¢] .00000 (real)
52 D .00000 (integer)

#seed #1380143828# seed#

Here begins results

#
#Results
#

INTERACTION TYPE 1

C(1)—Xe(14)
Coefficients :

1 A +671108.3835272372
2 B +5.0000000000
3 C —480.5115189276
4 D +8.000000000(. q
Second interaction
INTERACTION TYPE 2 type results

N(2)—Xe(14)

Coefficients:
5 A +807732.6068476612
6 B +4.0000000000
7 C —363.5238706214
8 D +6.0000000000

INTERACTION TYPE 3

C(3)—Xe(14)
Coefficients :
9 A +501056.2925643864

10 B +4.0000000000
11 C —522.8650438224
12 D +7.0000000000

INTERACTION TYPE 4

N(4)—Xe(14)
Coefficients :
13 A +441674.4181581688

14 B +10.0000000000
15 C —554.1423215544
16 D +6.0000000000

INTERACTION TYPE 5

C(5)—Xe(14)
Coefficients :
17 A +1000000.0000000000

18 B +8.0000000000
19 C —1271.2989060403
20 D +5.0000000000

INTERACTION TYPE 6
—

The calculations employ random numbers, so if you take the same
seed used in a given run, you will reproduce the whole output. The de-
tails are in Section 6.3 and it is useful for testing —for example, adjusting

140 13. XE + [LI(URACIL)]* EXAMPLE

weights— and debugging purposes. Each interaction with the coefficients
found are printed. This is the information saved in the file best.tat.

File 13.10: Uracil example output: output.txt (iv)

INTERACTION TYPE 6

C(6)—Xe(14)
Coefficients:
21 A +912220.2325137885

22 B +7.0000000000
23 C —1307.7763470169
24 D +7.0000000000

INTERACTION TYPE 7

O(7)—Xe(14)

oefficients:

25 A +83922.2858810042
26 B +8.0000000000
27 C —491.9348306627
28 D +6.0000000000

INTERACTION TYPE 8

O(8)—Xe(14)
Coefficients:
29 A +463280.5928098704

30 B +4.0000000000
31 C —724.6517550236
32 D +4.0000000000

INTERACTION TYPE 9

Li(9)—Xe(14)
Coefficients:
33 A +758522.1087732586

34 B +5.0000000000
35 C —1268.3315068897
36 D +7.0000000000

INTERACTION TYPE 10

H(10)—Xe(14)
Coefficients:

37 A +71043.3370584520
38 B +7.0000000000
39 C —213.4004863545
40 D +6.0000000000

INTERACTION TYPE 11

H(11)—Xe(14)
Coefficients:
41 A +923403.5894252134

42 B +8.0000000000
43 C —1142.7749517176
44 D +5.0000000000

INTERACTION TYPE 12

H(12)—Xe(14)
Coefficients:
45 A +586877.5618903312
46 B +6.0000000000
47 C —673.3113060535
48 D +8.0000000000

—

Finally, an objective function is calculated for each geometry:

lcul —E
(Calculated nergy) . 100

Difference =
Energy

Where Cualculated is the energy calculated using the best.txt coeffi-
cients, and the geometry energy —Energy— from the file energies.txt.

13.3. EXAMINING RESULTS 141

File 13.11: Uracil example output: output.txt (v)

INTERACTION TYPE 13
H(13)—Xe(14)
Coefficients :
49 A +347409.2736768266
50 B +10.0000000000
51 C —941.8487944828
52 D +8.0000000000
#
#Evaluation
4
#Geometry Energy Calculated Difference Weight
1 —0.006436000000 —0.010530628758 +63.62 % -+1.00
2 —0.012603000000 —0.017699130419 +40.44 % +1.00
3 —0.024660000000 —0.032091913786 +30.14 % +1.00
4 —0.053662000000 —0.064429793016 +20.07 % +1.00
5 —0.151027000000 —0.149580503099 —0.96 % +1.00
6 —0.208324000000 —0.190470092759 —8.57 % +1.00
7 —0.298249000000 —0.246469158730 —17.36 % +1.00
8 —0.443987000000 —0.325030021284 —26.79 % +1.00
9 —0.576097000000 —0.387854637179 —32.68 % 1.00 Geometry fit evalu-
10 —0.762092000000 —0.467207988967 —38.69 % +1.00 ation
11 —1.031527000000 —0.569012154888 —44.84 % +1.00
12 —1.431174000000 —0.702078775309 —50.94 % +1.00
it3) —2.022694000000 —0.879834493862 —56.50 % +1.00
14 —2.554913000000 —1.032893122931 —59.57 % +1.00
15 —3.208230000000 —1.222805807243 —61.89 % +1.00
16 —3.966854000000 —1.458467698450 —63.23 % +1.00
17 —4.767595000000 —1.745074243069 —63.40 % +1.00
18 —5.448579000000 —2.068595213586 —62.03 % +1.00
19 —5.645469000000 —2.224172704913 —60.60 % -+1.00
20 —5.658691000000 —2.347883233893 —58.51 % -+1.00
21 —5.387761000000 —2.396779068486 —55.51 % +1.00
22 —4.692701000000 —2.294965536523 —51.09 % 1.00
23 —3.377588000000 —1.910862831798 —43.43 % +1.00
24 —1.167944000000 —1.019365059710 —12.72 % 1.00
25 +2.322455000000 +0.760929895293 —67.24 % +1.00
26 +7.633202000000 4.071415893533 —46.66 % 1.00
27 +15.516838000000 +9.984437384988 —35.65 % +1.00
28 +27.007602000000 +20.283675639687 —24.90 % +1.00
29 +66.979582000000 +67.773763282783 +1.19 % +1.00
30 +146.056144000000 +201.103957775714 +37.69 % +1.00
&3l +297.072019000000 +564.308380397447 +89.96 % 4+1.00

—

13.3 Examining results

The best individual from the program run is stored in the file best.txt,
File 13.13. You must save this file, because it is overwritten in each run,
and it is used to load coefficients by some tools. The last line of the file
shows the above objective function calculated with the best coefficients.
Executing the fitview tool in the same folder, it reads the configuration
and the best.txt file creating some useful graphs. See 12.3.

File 13.12: 2body-type-2.plt

set terminal x11

set title "Interaction type 2"

set xrange [0.500000:10.000000]

set xlabel "R"

set ylabel "Potential"

plot "2body—type —2.dat" using 1:2 title "Ex: N (2)—Xe(14)" with linespoints

pause —1

Files 13.12 and 13.14 are the gnuplot commands and data file, repec-
tivelly, to plot Potential vs r for the interaction type 2 between N(2)

142 13. XE + [LI(URACIL)]* EXAMPLE

and Xe(14), Figure 13.4.

671108.383527237223 A, B, G, D for in-
5.000000000000 teraction type 2,
—480.511518927649 N(2)-Xe(14)
8.000000000000
807732.6068476612
4.0000000000
363.5238706214
6.0000000000
501056.292564386385
4.000000000000
—522.865043822352
7.000000000000
441674.418158168846
10.000000000000
—554.142321554391
6.000000000000
1000000.000000000000
8.000000000000
—1271.298906040291
5.000000000000
912220.232513788505
7.000000000000
—1307.776347016855
7.000000000000
83922.285881004180
8.000000000000
—491.934830662740
6.000000000000
463280.592809870373
4.000000000000
—724.651755023580
4.000000000000
758522.108773258631
5.000000000000
—1268.331506889747
7.000000000000
71043.337058452002
7.000000000000
—213.400486354491
6.000000000000
923403.589425213402
8.000000000000
—1142.774951717634
5.000000000000
586877.561890331213
6.000000000000
—673.311306053478
8.000000000000
347409.273676826560
10.000000000000
—941.848794482794
8.000000000000

Result from evalu-
ate this coefficients
set

Fitness: 7.063407502683

—

In File 13.12 you can change, for example, set terminal x11 with set
terminal svg and add a line with set output "plot.svg”. Next, you can
run:

$ gnuplot 2body-type-2.plt

to obtain a svg graphic file named plot.svg like Figure 13.4.
File 13.14: 2body-type-2.dat

#
#INTERACTION TYPE 2

#
N(2)—Xe(14)
Coefficients:
5 A +807732.6068476612
6 B +4.0000000000
7 C —363.5238706214

FFHE I

13.3. EXAMINING RESULTS 143

8 D +6.0000000000

#

T \%4
+0.5000000000 +86049.1934074035
+0.5100000000 +84369.3067962544
+0.5200000000 +82523.1214674791
+0.5300000000 +80552.1812067841
+0.5400000000 +78490.6317286889
+0.5500000000 +76366.5400842072
+0.5600000000 +74202.9648699068
+0.5700000000 +72018.8274757875
+0.5800000000 +69829.6238311471

[

.

Figure 13.4: Interaction type 2 plot.
Interaction type 2

T T T
Ex: N (2)-Xe(14) ——
80000

70000
60000
50000

40000

Potential

30000

20000

10000

-10000 | | | | | | | | |

One of the plots produced by fitview is the evaluation of the fit, that
can help you to adjust the geometry weights, Figure 13.5.

144 13. XE + [LI(URACIL)]* EXAMPLE

Figure 13.5: General evaluation plot.
General Evaluation

600 T T T T

T
Ab initio

Calculated

500

400

300

Energy

200

100

-100 | | | | | !
0 5 10 15 20 25 30

Geometry number

User designed analytical
expressions

The only way for errors to occur in
a program is by being put there by
the author. No other mechanisms
are known. Programs can’t acquire
bugs by sitting around with other
buggy programs.

Harlan D. Mills

O7 Hyg
\
C3—Ny
H137N2 C5:08—Lig*‘\/\f\/\/\/\/\/\/\ﬁX614
/
C1 :C6
/ \
Hio Hyy

Instead of using a potential function already implemented in GAFit,
the user can type manually a new analytical expression directly in the
job.txt file. We shall use the previous example, Xe + [Li(Uracil)]"
system, taken from Section 18.

In this example, we fit an analytical expression to the interaction en-
ergies between Xe and the [Li(Uracil)| " complex, computed by ab initio
calculations. Next, it is shown how to use this feature using the previous
example.

145

146 14. USER DESIGNED ANALYTICAL EXPRESSIONS

14.1 Preparing input files

The files for this example are in the folder analytical-example. The input
files are the same than the previous one, except for the job.tat file —File
14.1- which is the unique file to modify.

File 14.1: Uracil example with an analytical expression

[parameters]

population : 100

crossover rate: 0.75

blx _alpha: 0.5

mutation rate: 0.1

elitism : yes

tournament size: 5

crossover : sbx

mutation : sigma

sigma : 0.1

direction : min

[job]

runs: 1

evaluations: 50(.
Geometries: coordWaSiEINARTEIN S0 YEE
Energies: energiesliteysR:t-0: 1o e)n=11at:1l

Atom2type: atom2ty]
Bounds: bounds. txt
Charges: charges,. txt
Potential: O
All coefficients: no
fitting: relative

[print]
geometries: no . .
runs: no Analytical section

[analytical]
expression: potential 3
distance: dist
potential: pot
coefficients: a, b, cl, c2, dl,

& Analytical expres-
[potential 1] sions for internal
V=A*EXP(—Bx*R)+C/Rx*D; potentials 1, 2 and

3 from Table

[potential 2]
v=a*exp(—bx*r)+c/r*xdte/r*xf;

[potential 3]
vli=axexp(—bxdist) ;
v2=cl/dist*xc2;
v3=dl/dist *xd2;
vd=el/dist *xxe2;
pot=vl4v24+v34v4

B —————————

Potential type, according to Table 6.2, must be changed to 0. Next
we have to write a new section, [analytical], with some configuration
data:

expression : This is the expression employed for the potential. In this
example it is configured as potential 5.

distance : Name of the variable distance —r in the formula from Table
6.2—. dist in the example.

potential : Name of the variable potential energy. In the example pot.

14.1. PREPARING INPUT FILES 147

coefficients : The names of the coefficients to be optimized. In the
example a, b, cl, c2, d1, d2, el and e2.

This can be done with the JobTreeEditor—12.5— too: openning the
job.trt from analytical-ezample and doing |Edit) Cut defaults|: Figure 14.1

shows the changes needed from default configuration. You can create a
new job.tzt file by |Edit) Tree) lternal job) Analytical| also.

Figure 14.1: Appliying ’cut defaults’.

RI=TE
Job rile zEdit
? job.txt Defaultvalues deleted

[parameters]
7 [job]
Geometries: coord molden
Atom2type: ofomlippes id
Potential: o
¢ [print] (’ Set default db Cut defaults
geometries: o

POt iile ﬁ‘ Move up x Delete

7 [analytical]
expression: potentia! 7 @ ==
distance: dist Move down \% Default file
potential: pot
coefficients: « b, cf, 2 dI, d2 ef
7 [potential 1] l# Add
W=ATERP-BER)+CIRTD,
7 [potential 2] New text section
y=aTexp -REn i e Add
7 [potential 3] : i
yl=a*exp-hb*dist); section hatme
vi=cirfdist™el;
yI=d 1 dist™d2;
wi=elfdist™el,
pot=wT a3 eed 4] M [I*]

Tools

New section

New key:value pair

== l* Add

[] Il D Job Tree Editor v0.1 (c) RRF

We have to change or write the key/value pairs:

e section [job]

— geometries to coord.molden
— atom2type to atom2types.txt —note the final s’
— potential to 0

148 14. USER DESIGNED ANALYTICAL EXPRESSIONS

e section |analyticall

— expression to potential 3. It could be any text, but it must
be equal letter by letter, including spaces, to the section con-
taining the desired potential.

— distance to the variable used as the distance between atoms,
in this case dist.

— potential to the variable used as the potential.

— coeflicients to the list of coefficients that GAFit must deal
with.

e section [potential 3| write the analytical expression using the vari-
ables potential, dist, a, b, c1, c2, di, d2, el and e2, like:

vi=a*xexp(-bxdist);
v2=cl/dist**c2;
v3=d1l/dist**d2;
vd=el/dist**e2;
pot=vi+v2+v3+véd

Do not worry about the intermediate variables v1, v2, v3 and v4;

they will be created as needed by the compiler subroutines. See
6.6.

If you want to use other potential like potential 1 or potential 2
you must change the whole [analytical] section accordingly.

You can use the JobTreeEditor tool too: |Edit) Tree) Internal job
to create a default analytical job. |Edit) Cut defaults| to clean
configuration cutting off keys with default values. Edit the coefficients
key, writing a,b,c1,c2,d1,d2,el,e2.

Edit the distance key writing dist and the potential key writing
pot.

Using the new text section in the right panel, you can type the
analytical expression. In this case the section containing the expression
is named this is the analytical expression. See Figures 14.2 and
14.3.

14.1. PREPARING INPUT FILES 149

Figure 14.2: Adding new text section.
=10ix|

Job File Z Edit

? jub.txt Default values deleted
7 [analytical]
coefficients: « b ol c2 didlel el
distance: dist
expression: this is the analptical oxprd —
potential: pot
¢ [job] (’ Set default 44 Cut defaults
potential: -
[parameters] @ Move up x Delete
[print]
‘ Move down T\j] Default file
New section
iiindd
New text section
this i= the anahtical expression + Add
Z=CTIdsT o,
I=d1dist™d2;
4=l idist™el;
pot=l +wl+yE+id
q I |
New keyvalue pair
== + Add
] M [[» Job Tree Editor v0.1 (c) RRF

You can test the job.trt file using ufpu —section 12.4— and type some
values to distance and coefficients and check the calculated poten-
tial.

$ ufpu
uFpu v0.2 (c) Roberto Rodriguez-Fernandez

expression name: "this is the analytical expression"

potential: pot
distance: dist
coefficients: a,b,cl,c2,d1,d2,el,e2

Expression found:

vl = akexp(-b*dist);
v2 = cl/dist**c2;
v3 = dl/dist**d2;
v4d = el/dist**e2;
pot = vi+v2+v3+vd

Variables found in expression: vl a b dist v2 cl c2 v3 dl d2 v4 el e2 pot

150

14. USER DESIGNED ANALYTICAL EXPRESSIONS

Figure 14.3: Analytical job after adding the text section.

SI=

Job File Z Edit

7 job.txt
7 [analytical]
coefficients: @b ol o2 didief el
distance: dist
expression: this is the analytical exprd
potential: pot
7 [job]
potential:
[parameters]
[print]
7 [this is the analytical expression]
wl=aexpi-hedist),

[this is the analytical expression] text section added

Tools

o Set default db Cut defaults

@ Mowve up x Delete
@ Move down g] Default file

v2=clidist™c 2,
w3=d 1 fdist~d2;
wid=elidist™el;
pot=wl +u2+yE+ad

q]

New section

+ Add

New text section

this is the anabdical expression + Add

WI=CTIs e,
F=d1fdist™2,
d=e1idist™e2;

pot=yl +y2+y3+id
4] i |

New keyvalue pair

== + Add

Job Tree Editor v0.1 {c) RRF

Expression code 0K
pot index 13
dist index 3

8 coefficients found

INPUT

distance variable (dist)=1

coefficient
coefficient
coefficient
coefficient
coefficient
coefficient
coefficient
coefficient

After run: Memory (total used 27)

a=1

b=1

cl=1
c2=1
di=1
d2=1
el=1
e2=1

v1=0.367879 a=1.000000 b=1.000000

dist=1.000000 v2=1.000000 c1=1.000000 c2=1.000000 v3=1.000000 d1=1.000000
d2=1.000000 v4=1.000000 e1=1.000000 e2=1.000000 pot=3.367879

RESULT POTENTIAL:3.367879

Press ’q’/INTRO to quit, another key/INTRO to repeat

The bytecode result of compiling the analytical expression is shown

14.1. PREPARING INPUT FILES 151

in File 14.2.

The resulting job.txt is shown in File 14.3 after adjusting the geome-
tries and atom2type files. Also a bounds.txt file, with 8 bounds like
the one included in the example, must be used.

: Asembler bytecode produced

‘Where each vari-
5 el able is on the mem-
i b:i2 ory pool. Figure

; pot:13
apush 0
apush 1
apush 2
neg
apush 3
mult
exp
mult
store
apush
apush
apush
apush
pow
div Program to calcu-

store .
apush late the expression

apush
apush
apush
pow
div

W ot

© w00

store
apush 10
apush 11
apush 3
apush 12
pow

div
store
apush 13
apush 0
apush 4
add
apush 7
add
apush 10
add
store

—

152 14. USER DESIGNED ANALYTICAL EXPRESSIONS

File 14.3: Analytical expression job

[job]

geometries: coord.molden
atom2type: atom2types.txt
potential: 0 Analytical expres-

sion named section

[analytical]

coefficients: a,b,cl,c2,dl,d2,el, e2

distance: dist

expression: this is the analytical expression
potential: pot

[parameters]

[print] Analytical expres-
sion

[this is the analytical expression |
vl=axexp(—bx*dist) ;

v2=cl/dist **c2;

v3=dl/dist *x*d2;

vd=el/dist x*xe2;

pot=vl4v2+v34v4

—

File 14.4: Analytical expression job output

ok ok ok ok K oK K K K
gafit 0.6.3
Build: 2569

3k 3k ok ok ok ok ok ok ok ok ok ok ok
Job type: internal

Settings for job

Coordinates : [coord . molden |
Energies :[energies . txt]
Atom2type:[atom2types. txt]

Bounds : [bounds. txt |

Charges : [charges . txt]

Potential read: Analytical expression

All coefficients: no, Read and repeat subset
Fitting: relative

Auto weights: no

Print options:
geometries yes
runs yes
ga settings no
analytical yes
auto weights no

Analytical expression

expression name: "this is the analytical expression"
potential: pot

distance: dist

coefficients: a,b,cl,c2,dl,d2,el,e2

Expression found:

vl = axexp(—bxdist);
v2 = cl/dist**xc2;
v3 = dl/dist**xd2;
vd = el/dist*xe2;

pot = vl4v24v34v4@

Variables found in expression: vl a b dist v2 ¢l c¢2 v3 dl d2 v4 el e2 pot
Expression code OK
pot index 13
dist index 3
8 coefficients found
.now reading data

(...
—

14.2. RUNNING AND EXAMINING RESULTS 153

14.2 Running and examining results

The output is similar to the previous one —section 13—, except for the
potential. Here we use the number 3 from Table 6.2 but coded as an
analytical expression.

External Interface example

The nice thing about standards is
that you have so many to choose
from.

Andrew S. Tanenbaum

Before examining the MOPAC interface, we are going to study a
simple case: fitting a polynomial to a set of values.

15.1 Input files

Whe have some (x, f(x)) pair values shown in Table 15.1 to fit to a
polynomial of fifth degree. These value pairs are in the input File 15.1.

File 15.1: external.values file

Obviously, the data fits to any polynomial who has roots at -2, -1, 1
and 2 like the one shown in Figure 15.1. Also, we need a bounds.txt file
to fix upper and lower limits as the included example in File 15.2. In
this case, we want integer values, so the righmost column is set to 1.

155

156 15. EXTERNAL INTERFACE EXAMPLE

Table 15.1: Example values to fit.

z | f(x)
3 40
2| 0
100

0| 4

1| 0

21 0

3| 40

Figure 15.1: Example polynomial plot
f(x)

+4

—~
—~
S—
l
s
|
n
S

=

File 15.2: bounds.tzt file

TEXT TEXT TEXT TEXT
—10. 10.
—10. 10.0
—10. 10.
—10. 10.0
—10. 10.

e

An external tool example is provided in File 15.4. This code inputs
the coefficients values provided by GAFit and the external known values
—Table 15.1, File 15.1- to calculate a fit to a generic polynomial of degree
n:

an " + anp_ 12"+ .+ ajx + ag

The given test code supports both external and external bulk options
(section 9.1): It can read to evaluate a set of coefficients —a individual-

15.1. INPUT FILES 157

or a whole population set of coefficients. To test each one change in File
15.3 —the job.txt file— the type of job.

File 15.3: External example job.txt: fitting a polynomial

[parameters]

population : 100

crossover rate: 0.75

blx _alpha: 0.5

mutation rate: 0.1

elitism : yes

tournament size: 5

crossover : sbx

mutation : sigma

sigma : 0.1

direction : min

ECE External command Nl sET 6fF @o=

UL 4 effients

evaluations : 50000

type: external bulk

command : ./ external

coefficients : 5 ~

external input: external.input

external fit: external . fit

bounds : bounds . txt

[print] .

print runs: yes Section to name
coefficients

[coefficient names]|

first

second

third

fourth

fifth

—

In the configuration file —job.txt, File 15.3— is included a [coefficients
names)| section to name each coefficient with a user provided string. So,
ag becomes first, a; becomes second and so on —note how is defined
double func(double x, double al], int n) at lines 13-14, File 15.4—.

File 15.4: external.c

1 /%

2 (¢) baaden@gmail.com $Id: external.c 3323 2013—11—15 09:33:52Z ro
$

3 %/

4+ #if HAVE CONFIG H

5 #include <config.h>

6 #endif

7 #include <stdio .h>

s #Ainclude <math.h>

9 #include <stdlib .h>

10

11 #define MAXLINE 100

12

13 double

14 func (double x, double a[], int n)

15 {

16 double ret = 0;

17 int 1i;

18 for (i = 0; i < n; i++)

19 ret += a[i] * pow (x, (double) 1i);

20 return ret;

158

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

}

15. EXTERNAL INTERFACE EXAMPLE

int
main (void)

{

char line [MAXLINE + 1];

double xcoef = NULL;

double xvaluesx = NULL, *valuesy = NULL;
double fit , number0, numberl, tmp, div;
int i, j, ncoefs, mvalues, tcoefs;

int first , ok;

FILE =f, xout;

mvalues = 0;
f = fopen ("extermal.values", "r");
while (fgets (line, MAXLINE, f) != NULL)

{
sscanf (line, "%L{%l{", &number0, &numberl) ;

valuesx = (double %) realloc (valuesx, sizeof (double) * (
mvalues + 1));
valuesy = (double *) realloc (valuesy, sizeof (double) x (
mvalues + 1));
valuesx [mvalues| = number0;
valuesy [mvalues| = numberl;
mvalues+-+;
}
fclose (f);
ok = 1;
first = 1;
ncoefs = 0;
out = fopen ("external.fit", "w");
f = fopen ("extermal.input", "r");
if (If)

{

printf("no_file _external.input\n");
exit (EXIT FAILURE) ;

}
while (ok)

while (fgets (line, MAXLINE, f) != NULL)
{

char *xp = line;

while (xp = .’ || *p = ’\t’)
P

if (xp = "\1’ || *p — "\n’)
break;

sscanf (line, "%lf", &number0) ;
ncoefs++;

15.2. RUNNING THE EXAMPLE AND EXAMINING RESULTS 159

72 if (first)

73 {

74 coef = (double #*) realloc (coef, sizeof (double) x (
ncoefs));

75 tcoefs=ncoefs;

76

77 coef[ncoefs — 1] = number0;

78 }

79 if (feof(f))

80 ok=0;

81 first = 0;

82 ncoefs = 0;

83 fit = 0;

84 for (i = 0; i < mvalues; i++)

85 {

86 tmp = func (valuesx|[i], coef, tcoefs);

87 //check div by zero

88 if (valuesy|[i] = 0)

89 div = 1; //use absolute

90 else

91 div = valuesy[i]| % valuesy|[i]; //use relative

92 fit += (tmp — valuesy[i]) * (tmp — valuesy[i]) / div;

93 }

94

95 fprintf (out, "%lf\n", fit);

96 1

o7 fclose (out);

98 fclose (f);

99 }

15.2 Running the example and examining results

To create the needed files and run the test you only have to type in the
GAFit’s distribution folder:

$ cd external-example
$ make test

Some things happen, e.g. compiling external.c source code to produce
external binary, and the example begins to run. What is on way?

<fisoil GAFIt is launched. It finds two input files: bounds.txt and exter-
nal.values.

<fis0 4 GAFit writes a whole population of coefficients to be evaluated in
the external.input file —File 15.5— using as upper and lower bounds

160 15. EXTERNAL INTERFACE EXAMPLE

Figure 15.2: [siigerit: GAFit is launched
°

bounds.txt

TEXT TEXT TEXT TEXT
210, 10,0 1
210, 100 1
210, 10, 1
210, 100 1
210, 10, 1

external.values
-3 40

those specified in the file bounds.txt —File 15.2—. If the file exists,
1t 1s overwritten.

If we want only one coefficients set at a time, the type of job must
be changed from external bulk to external in File 15.3.

The coefficients must be integers —bounds.txt last column set to 1—.

<iiser sl GAFit launches the external binary.

<iiser‘t external using external.input evaluates the external.values and
overwrites if the file exists, or it creates the external.fit file —File
15.6—.

sl GAFit reads the external. fit file with the results. If minimizing,
the lesser best, so a 0, or near it, means a very good fit. I the file
shown, File 15.6, the 13" value is worse than 6'".

15.2. RUNNING THE EXAMPLE AND EXAMINING RESULTS 161

Figure 15.3: [Siigei?d: GAFit overwrites or creates the external.input file.

external.values external.input
-3 40
2 0 0.000000
10 9.000000
4 -4.000000
0 0.000000

0
1
2 0 0.000000
3 40

The n'* value, (0, 9, -4, 0, 0), from File 15.5 represents the poly-
nomial:
p(x) = 02* + 023 — 42?2 + 92 40

Table 15.2: nt* set of coefficients fit.

v | f(z) | pla) = —4a® + 90 | BEICL
S 40 63| 6.630625
20 234 | 1156.000000
L0 213 | 169.000000
0] 4 0 1.00000
10 5 25.00000
21 0 2 4.00000
3| 40 9| 1500625

> b S |1363.131250

The calculations are shown in Table 15.2 for the n'” coefficients set:
Files 15.5 and 15.6.

Note that, in the external.c program, File 15.4, lines 88-92, we do
a trick to avoid dividing by zero: we use a relative fit, but if divisor
equals zero, we use 1 for the divisor which in the other hand it is
converted in an absolute fit.

162 15. EXTERNAL INTERFACE EXAMPLE

Figure 15.4: : GAFit launches the external binary

bounds.txt
TEXT TEXT TEXT TEXT
210, 10, 1
210, 100 1
210, 100 1
210, 100 1
210, 10, 1 e a
external.values external.input
-3 40 "
2 0 0.000000
100 8.000000
0 4 -4.000000
10 0.000000
2 0 0.000000
3 40 .

it GAFit finds it in the external.fit file, the best fit is overwritten
if exists, or creates the best.txt file —File 15.7. Note that this file
always will be overwritten: If you have some fit to save, copy it out
there or rename it.

The values shown represent the polynomial:

flz)=a2*=5z>+4

File 15.5: external.input file

[

0.000000
0.000000
—7.000000
0.000000
0.000000 coefficients set n

0.000000
9.000000
—4.000000
0.000000
0.000000 coefficients set n + 1

0.000000
0.000000
0.000000
—4.000000
0.000000

(-]
—

15.2. RUNNING THE EXAMPLE AND EXAMINING RESULTS 163

Figure 15.5: [Siissisll: external using external.input evaluates the external.values
and overwrites or creates the external.fit file

bounds.txt

TEXT TEXT TEXT TEXT
210, 10, 1
2100 100 1
2100 10, 1
210, 100 1

-10. 10. 1 e a II

external.values external.input external.fit
-3 40
2 0 0.000000 43.045000
10 $.000000 3,000000
0 4 -4,000000 1680.261250
10 0.000000 1363.131250
2 0 0.000000 2097.580000
3 40

File 15.6: external.fit file

th

evaluation of n
coefficients set

...
1680.261250
1363.131250
2097.580000

[

File 15.7: best.txt

best till now coeffi-
cients set

0.000000000000
—5.000000000000
0.000000000000
1.000000000000

4.000000000000
coefficients set

fit value of the best

Fitness: 0.000000000000

The output of the whole process is sumarized in Files 15.8 and 15.9.

Configuring GAFit to work with an external program is a complex
task. You can begin with this example changing the code and the con-
figuration until it covers all your needs. A good tip is to use the test
option in the [job] section of the job.tzt file to set always the same seed
and compare between changes —See 6.3

164 15. EXTERNAL INTERFACE EXAMPLE

Figure 15.6: : GAFit reads the external.fit file

bounds.txt
TEXT TEXT TEXT TEXT
210 10, 1
210 100 1
210 10, 1
210, 100 1
210 10, 1
external.values external.input external.fit
-3 40
2 0 0.000000 43.045000
a0 9.000000 3.000000
0 4 -4,000000 1680.261250
10 0.000000 1363.131250
§ 43 0.000000 2097.580000

File 15.8: external.output

../src/gafit

ok ok ok ok Ok KOk Kok KOk jOb type and ex-
gafit 0.6.3 ternal command to
Build: 2569
K K oK oK KK K K K KK K run
Job type: external bulk SEttingS for jOb:
Command : ./external command and

number of coeffi-
cients provided.
Command:[./ external] The rest are de-
Bounds : [bounds. txt | faults

External input:[external.input]
External fit :[external.fit |
Coefficients: 5

Settings for job

Print options:
runs yes
ga settings no
.now reading data

coefficients name,
limits and type

Reading bounds for 5 coefficients

1 first —10.00000 — +10.00000 (integer)
2 second —10.00000 — +10.00000 (integer)
3 third —10.00000 — 10.00000 (integer)
4 fourth —10.00000 — +10.00000 (integer)
5 fifth —10.00000 — +10.00000 (integer)

15.2. RUNNING THE EXAMPLE AND EXAMINING RESULTS 165

Figure 15.7: FSiisior@l: if the fit is the best till now, GAFit overwrites or creates
the best.tzt file

best.txt
4.000000000000
0.000000000000
-5.000000000000
0.000000000000
1.000000000000

Fitness: 0.000000000000

bounds.txt

external.values external.input external.fit
-3 40
2 0 0.000000 43,045000
-1 0 9.000000 3.000000
0 4 -4.000000 1680.261250
10 0.000000 1363.131250
20 0.000000 2097.580000
3 40

File 15.9: external.output (cont.)

[-..]
5 BOUNDS VECTOR
; firs; lgggggg . individuals calcu-
q 10. g .
3 setﬁﬁlrld seed for this run 10.00000 i lated till now, num-
4 fourth 10.00000 (i P ber of generations,
® i 1000000 . best evaluation and
#seed #1384731417#seed# best fit
run 1
100 1 28162.612712500002 5.707075000000e+02
300 3 4235.713475000000 5.896375000000e+01
500 5 2559.175325000000 4.068250000000e-+01
700 7 2715.567500000000 3.189250000000e-+01
900 9 3434.814662500000 1.805500000000e+01
[-..]
49500 495 2798.209387500000 0.000000000000e+00
49800 498 4389.045750000000 0.000000000000e+00
ﬁR e Last best written
esu S
to best.txt
1 first +4.000000000000
2 second +0.000000000000
3 third —5.000000000000
4 fourth +0.000000000000
5 fifth +1.000000000000

You can use also the JobTreeEditor —See 12.5— application to build
a default job.txt, issuing an |Edit) Tree) External job) External|| modifiying

the key/value pairs and at last [File) Save as|

More information on this subject on 9.1. To test further this example,
we can do some modiffcations:

166 15. EXTERNAL INTERFACE EXAMPLE

e change the number of coefficients to 6
e add a new name to [coefficients names] section

e add a new line to the bounds.txt file.

and run it some times.
There are distinct results from each run, because the GA explores all
the space limited by the bounds and by the type of coefficients: only

integers. Some results are shown in Table 15.3 and plotted in Figure
15.8.

Table 15.3: Some results running
the example with 6 coefficients.

ap | a1 | as | as | a4 | as fit*
O 0] 0O} O Of O 3.0
41 0|5 0] 1] 0| 0.0
0| 4] 5] 0| O0|-1]|210
0|-8] 010 O|-2|75.0

& The lesser best.

15.2. RUNNING THE EXAMPLE AND EXAMINING RESULTS 167

Figure 15.8: Table 15.3 polynomial plots.

L "
\

|— z* =522 44 Fit: 0.0
| —e— —12° + 522 + 4z Fit:21.0
| —— =225 4+ 1022 — 8z Fit:75.0

!
]
e
#
Wl

T

—10 —8 —6 —4 — \ M 4 10
2 \

T
~—

MOPAC Interface example

I'm doing a (free) operating system
(just a hobby, won’t be big and
professional like gnu) for 386(486)
AT clones.

Linus Torvalds. 1991

In this Section, a semiempirical Hamiltonian is reparametrized to fit
the energetics and also geometries and frequencies for a decomposition
channel of vinyl cyanide (VC). The ab initio calculations for this system
are shown below —see Section 19-.

16.1 Prerequisites

You must have installed MOPAC 2009 in your system. You must know
where it is installed or which is the value of the MOPAC LICENSE
shell variable.

16.2 Input and executable files

The complete interface was explained in the Section 9. To create and
run the example you must type:

$ cd mopac-example
$ tar xvzf mopac.tgz
$ make test

169

170 16. MOPAC INTERFACE EXAMPLE
Some files are extracted from the compressed example and the ex-

ecutables are copied from the src folder where they were compiled if
needed. This is a small piece from the Section 19 application.

Table 16.1: Files in the mopac-example folder after run make test.

‘ File ‘ Type ‘ Provided by ‘
bounds.txt text file example
conditions.txt text file example
external-mopac2009.sh | shell script example
job.txt job configuration example
template.coefs mopac2009 external coefficients | example
template.mop mopac2009 job template example
extractor Perl script GAFit
fitter binary GAFit
injector binary GAFit

File 16.1: External example job.tzt: fitting MOPAC 2009 coefficients

[parameters]

population : 100

crossover rate: 0.75

blx alpha: 0.5

mutation rate: 0.1

elitism : yes

tournament size: 5

crossover : sbx

mutation : sigma

sigma : ©, 1

direction : min

Lialb | External command
runs : 1

evaluations: 5000

type: external auto

command : external —mopac2009.sh
[print]

print runs: yes

B |

As shown in File 16.1, the job is declared as external auto, so the
external scripts and/or binaries must configure the system by them-
selves.

16.2. INPUT AND EXECUTABLE FILES 171

File 16.2: MOPAC 2009 coefficient limits: bounds.tzt file

TEXT TEXT TEXT TEXT
—10. 10. 0
—10. 10.0 0
—10. 10. 0
—20. 20.0 0
—100. 100. 0
—100. 100. 0
—100. 100.0 0
—10. 10. 0
—10. 10.0 0
—10. 10. 0
—10. 10. 0
—20. 20.0 0
—20. 20. 0
—20. 20.0 0
—20. 20. 0
—10. 10. 0

The objective is to obtain a suitable combination of coefficients, File
16.3, to satisfy the constrains declared in File 16.5 using the MOPAC
2009 task shown in File 16.4 where the @ symbol will be replaced by
the name of a copy of File 16.3 where the coefficients are generated by
GAFit between some limits expressed in the File 16.2.

Note that these randomly generated coefficients are prone to err and
crash MOPAC.

You can edit the job.trt using the JobTreeEditor —Section 12.5-.
The bounds.txt can be edited using the bedit tool in the example folder.
A Makefile rule is provided to do it:

$ make bedit

Bedit v0.2 Interactive editing
(c) Roberto Rodriguez Fernandez 2010

autoconfiguring...

Job type: external
Command : external-mopac2009.sh

actual interaction: [1]

b Interactive modify bounds
z Quit

Option:b

—

1(8)
2(B)
3(0)
4(D)
5(E)
6(F)
7@
8(H)
9(I)
10(J)
11(K)
12(L)
13(M)
14(N)

BETAS
Z8
ALP
GSS
Uss
UPP
BETAS
BETAP
Z8

ZP
ALP
GSS
GSP
GPP

oo mmmm

-10.
-10.
-10.
-20.
-100.
-100.
-100.
-10.
-10.
-10.
-10.
-20.
-20.
-20.

00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000

+10.
+10.
+10.
+20.
+100.
+100.
+100.
+10.
+10.
+10.
+10.
+20.
.00000

+20

+20.

00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000

00000

(real)
(real)
(real)
(real)
(real)
(real)
(real)
(real)
(real)
(real)
(real)
(real)
(real)
(real)

172 16. MOPAC INTERFACE EXAMPLE

15(0) GP2 C -20.00000 - +20.00000 (real)
16(P) HSP C -10.00000 - +10.00000 (real)
[1]ower [ulpper

use ’a:1=1.03’ to change A:lower to 1.03
’c:u=1000’ to change C:upper to 1000
’b:1=100 b:u=1000’ to change B:lower and B:upper
’a:r c:i’ to change A to real, C to integer
’w’ to save to file (writing labels)
’z’ to quit
Input:

As an external job, bedit only can edit the bounds file.
File 16.3: MOPAC 2009 coefficients to fit. template.coefs file

BETAS H —6.173787
ZS H 1.188078

ALP H 2.882324
GSS H 12.848

Uss C —52.028658
UPP C —39.614239
BETAS C —15.715783
BETAP C —7.719283
ZS (@] 1.808665
zpP (@] 1.685116
ALP C 2.648274
GSs C 12.23

GSp C 11.47

GPP C 11.08

GP2 C 9.84

HSP C 2.43

e — e

Here, File 16.3 only a small set of coefficients to fit. The whole coef-
ficients list and their default values can be obtained from the MOPAC
source.

The interface utilities count the number of coefficients to fit and con-
figure GAF'it accordingly as shown in Figure 9.2 and explained in sec-
tion 9.4.1. Here, the File 16.7 is used to pass to GAFit the configura-
tion.

File 16.4: MOPAC 2009 task.

AM1 precise external=Q geo—ok nosym

H 0.00000000 -+0O 0.0000000 +0 0.0000000
C 1.09852142 +1 0.0000000 -0 0.0000000
C 1.33416836 +1 123.1900576 +1 0.0000000
H 1.09879509 +1 115.3226363 +1 179.9929115
H 1.10533055 +1 122.1640414 +1 179.9944757
C 1.41933576 +1 114.5208739 —+1 179.9977508
N 1.16399609 +1 179.1128557 +1 1.2752342

oldgeo AMI1 precise external=@ force geo—ok nosym

AM1 precise ts external=@ geo—ok nosym

Third calculation

C 0.000000 O 0.000000 O 0.000000 O 0 0 0
C 1.310566 1 0.000000 O 0.000000 O 1 0 0
C 2.179061 1 104.132782 1 0.000000 O 2 1 0
N 1.160916 1 160.493759 1 0.000000 1 3 2 1
H 1.076805 1 126.972862 1 0.000000 1 1 2 3
H 1.084538 1 114.088127 1 180.000000 1 1 2 3
H 1.208813 1 35.831474 1 180.000000 1 2 3 4

16.2. INPUT AND EXECUTABLE FILES 173

In File 16.4 we have three calculations:

Figure 16.1: Vinyl cyanide drawn using the coordinates of the first calculation (op-
timization of the minimum energy structure).

e The first one, an AM1 geometry optimization of the vinyl cyanide.
Figure 16.1.

e The second one, using the optimized geometry from first one (key-
word oldgeo), it calculates vibrational frequencies (keyword force)

e The third one, a transition state search (keyword ts). Figure 16.2.

Figure 16.2: Three-centered transition state drawn using the coordinates of the last
calculation.

The number of calculations presents in the task are detected parsing
MOPAC output. Some semiempirical parameters are taken at run time
by use of EXTERNAL=@), where GAFit will replace all @ with the
name of a file which contains the generated parameters to fit as explained
before. For those parameters not in file, MOPAC take its defaults.

174 16. MOPAC INTERFACE EXAMPLE

File 16.5: Constrains: conditions.txt file

delt 3 1 100.6 0.1
frequency 2 15 3271.0 le—4
distance 3 1 7 3.700309096 100.0

penalty 1lelO

Constrains are explained in Section 9.6. Here, we have:

delt 3 1 100.6 0.1 Difference of heat of formation between calculation
3 (optimized transition state) and calculation 1 (optimized geome-
try) must be 100.6 kcal /mol and it has a weight of 0.1.

frequency 2 15 3271.0 1e-4 Vibrational frequency number 15, ob-

tained from calculation 2, must be 3271.0 and it has a weight of
0.0001.

distance 3 1 7 3.700309096 100.0 Distance in calculation 3 between
atom 1 and atom 7 must be 3.700309096 and having a weight of
100.0.

penalty 1e10 If any of the calculations in the template fails, it be
assigned a penalty of 10.000.000.000.

Each set of semiempirical parameters is evaluated taking into account
MOPAC output with:

2
[(100.6—(HEAT[1St calculation] _HEAT[Srd ca]culation]))] * 0 1

100.6
+
if calculation 2
[(3271'0_FREqUENCY[number 15 from 2nd calculation]) * 16_4
18 done: 3271.0
fit = <
|

3.700309096

2
(3700309096_DISTANCE[at0ms 3-1 from 3rd calculation])
* 100.
\

| if calculation fails: 1e10

GAFit shall run to minimize the fit.

16.3. RUNNING THE EXAMPLE AND EXAMINING RESULTS 175

16.3 Running the example and examining results

The file external-mopac.sh performs all the above operations, as shown
in File 16.1.

To run the example, type:

$ cd mopac-example
$ make test

The external program provided is shown in File 16.6. The operation
mode is similar but slightly more complicated than 15. These are the
steps:

File 16.6: external program: external-mopac.sh file

#!/bin /sh Environmental
variables setting

export MOPAC LICENSE=3HOME/mopac2009
export MOPAC EXECUTABLE-MOPAC2009. exe the system
export COEFS TEMPLATE="template.coefs"
export MOPAC TEMPLATE="template .mop"
export MOPAC MOP-|
export EXTERNAL INE@fe3stsl-ait QWA AI et
export EXTERNAL:F and create files
export EXTRACTED I
export BOUNDS FILE="Hounds. tkt "

Extract data

injector $1
if ["$1" —ne "O"]
then

$MOPAC _LICENSE/$MOPAC EXECUTABLE $MOPA
extractor $1 N
fitter $1 $EXTRACTED_ DATA $EXTERNAL_FIT

<iisoiil GAFit runs the external program to configure the system as:

external-mopac2009.sh 0

A file with the configuration is generated by running injector 0 in
turn. This file is shown in File 16.7. All the options are taken from
the environment variables set in File 16.6.

176 16. MOPAC INTERFACE EXAMPLE

File 16.7: external auto: response file

[job]

type: external

coefficients: 16

external input: mopac2009.input
external fit: mopac2009. fit
bounds: bounds. txt

[coefficient names]|
BETAS H
ZS H
ALP H
GSS H
Uss C
UPP C
BETAS C
BETAP C
Zs C

ZP C
ALP C
GSSs C
GSP C
GPP C
GP2 C
HSP C

—

<iise 2t GAFit using the information from File 16.7 configures itself.

<fis 2l GAFit creates a whole population of individuals. Each individual
is a coefficient set.

sl s GAFit writes the file mopac2009.input with one set of coefficients
—or a whole population, depending upon configuration—. File 16.8.

File 16.8: mopac2009.input file

3.963742
4.707052
8.613357
—13.268145
—30.000657
—74.414557
—22.103403
—4.673270
4.940829
—1.073867
2.199698
—14.336436
—8.429824
—3.522071
—10.090874
—8.412029

—

<iisiersl GAFit launches the external program with one parameter: the
number of coefficients.

external-mopac2009.sh 16

<fis00 8 external-mopac2009.sh launches injector 16 which create the
needed files to run the MOPAC 2009 task:

16.3. RUNNING THE EXAMPLE AND EXAMINING RESULTS 177

e mopac_ input.mop, a copy of File 16.4 where the @ is replaced
to point the file below —File 16.8—.

e a copy of File 16.8.

external-mopac2009.sh launches MOPAC 2009 on mopac_inp
ut.mop, as input file, running the task with mopac_input.out as
output: File 16.9, where near most the lines are omitted and the
tree individual task are shown.

File 16.9: mopac_input.out file
[‘

3k >k 3k %k 3k >k 3k %k 3k >k 3k %k 3k >k 3k >k 3k %k 3k >k 3k %k 3k %k 3k %k 5k %k 3k %k 5k %k 3k %k 5k %k > 3k 5k %k > 3k 3% 3k > 3k 5% 3k 5% 3k % 3k % 3k %k 3k %k 3k %k 3%k %k 3k %k 3%k %k 3% %k 3 %k 3k %k 3k %k 3% %k 3% %k % %
* %k * %k
* % MOPAC2009 *ook

* ok * ok

sk sk sk ok sk sk ok ok ok ok sk sk sk ok ok sk sk sk ok ok sk sk sk sk ok sk sk sk ok ok sk sk sk ok sk sk sk ok Ok sk sk sk ok ok sk ok sk ok Sk sk ok sk ok Sk sk ok sk sk Sk sk ok sk sk Sk Sk ok ok sk ok Ok sk ok ok ok Ok ok ok ok ok

AM1 precise external=A geo—ok nosym

Sheep #A#
ATOM CHEMICAL BOND LENGTH BOND ANGLE TWIST ANGLE
NUMBER SYMBOL (ANGSTROMS) (DEGREES) (DEGREES)
(I) NA: I NB:NA: I NC:NB:NA: I NA NB NC
1 H 0.00000000 0.0000000 0.0000000
2 C 1.09852142 * 0.0000000 0.0000000 1 0 0
(-]
TOTAL CPU TIME: 0.08 SECONDS

== MOPAC DONE ==

(...

oldgeo AM1 precise external=A force geo—ok nosym
[..]

TOTAL CPU TIME: 0.16 SECONDS

== MOPAC DONE ==

[...]
AM1 precise ts external=A geo—ok nosym

(...

TOTAL CPU TIME: 0.24 SECONDS

== MOPAC DONE ==
ﬁ

<iisoe) external-mopac2009.sh launches extractor which extracts data
from the mopac 2009 output —mopac_input.out— writing it to ez-
tracted.data, File 16.10.

178 16. MOPAC INTERFACE EXAMPLE

File 16.10: extracted.data file

00 6

3

000
—285.89460
001
—1196.18301

.0000 0.0000 0.0000

.5565 0.0000 0.0000

—ONO OO
oQoITo o
—wagwow N

The structure is described in Section 9.5.

<iise) external-mopac2009.sh launches fitter which using the extracted. data
file evaluate the coefficients —File 16.11— writing the result to mopac2009.fit

—File 16.12—.
File 16.11: Output: fitter evaluation

DELTA calc= 140.22725000000014 ref= 100.59999999999999 we= 2
¢€0.10000000000000001 cont= 1.55164336304490329E—-002

FREQUENCY calc= 98.739999999999995 ref= 3271.0000000000000 we= 2
¢1.00000000000000005E—-004 cont= 9.40538249390785976E—005

DISTANCE calc= 3.6829195484017840 P Eit= 3.7003090959999998 we= 2
¢100.00000000000000 cont= 2.20851605509992830E—003

individual 1 fit= 1.78190035104880407E—002

=i} external-mopac2009.sh finishes, and control returns to GAFit
which apply the mopac2009.fit values to genetic selection.

File 16.12: mopac2009.fit file

1
1.78190035104880407E—002 I

<iice BE GAFIt runs steps from [sidsier“s to here for each coefficient set to

evaluate.

<l 2 if GAFit does not meet a condition to stop, it jumps to fsiisierss.

A reduced output example is shown in File 16.13. At the end, there
are the best coefficients set, which also can be found in the file best.tat.

A trick to evaluate the best.txt again and examine the fitting details
is to copy best.txt over mopac2009.input and run the external script
external-mopac2009.sh with 1 as its argument as shown below:

16.3. RUNNING THE EXAMPLE AND EXAMINING RESULTS

180

16. MOPAC INTERFACE EXAMPLE

File 16.13: GAFit output

>k %k %k %k 3k ok %k %k >k %k k k%
gafit 0.6.3
Build: 2569

3k 3k 3k 3k 3k ok kK 3k >k >k 3k k Xk

autoconfiguring ...

Job type: external
Command external —mopac2009.sh
Settings for job

Command: [external —mopac2009 . sh]
Bounds: [bounds. txt |

External input:[mopac2009.input
External fit :[mopac2009. fit]

16 BOUNDS VECTOR
[...]
#seed #1387754553# seed#

run 1

[...]

external evaluation

extractor correct/total:0/1
PENALTY cont=
individual

[--]

external

1 fit=

evaluation

extractor correct/total:1/1

¢100.00000000000000
individual 1

[...]

fit=

Coefficients: 16
Print options:
runs yes
ga settings no
.now reading data

Reading bounds for 16 coefficients
1 BETAS H —10.00000 — +10.00000 (real)
2 ZS H —10.00000 — +10.00000 (real)
3 ALP H —10.00000 — +10.00000 (real)
4 GSS H —20.00000 — +20.00000 (real)
5 Uss C —100.00000 — +100.00000 (real)
6 UPP C —100.00000 — +100.00000 (real)
7 BETAS C —100.00000 — +100.00000 (real)
8 BETAP C —10.00000 — +10.00000 (real)
9 ZS C —10.00000 — +10.00000 (real)
10 ZP C —10.00000 — +10.00000 (real)
11 ALP C —10.00000 — +10.00000 (real)
12 Gss C —20.00000 — +20.00000 (real)
13 GSP C —20.00000 — +20.00000 (real)
14 GPP C —20.00000 — +20.00000 (real)
15 GP2 C —20.00000 — +20.00000 (real)
16 HSP C —10.00000 — +10.00000 (real)

10000000000.000000

#

#Results

#
1 BETAS H —5.452765783429
2 ZS H +1.812760345726
3 ALP H +5.837755188701
4 GSS H +15.317101171297
5 USs C +2.854251382320
6 UPP C +35.398050378277
7 BETAS C +45.582866967845
8 BETAP C —9.090224794790
9 zS C —8.294661718821
10 ZP C —3.351313187157
11 ALP C +6.549632365488
12 GSs C +0.829685862335
13 GSP C +15.745782081940
14 GPP C +14.404053853550
15 GP2 C —16.514534230484
16 HSP C —5.122967116645

|

10000000000.000000

DELTA calc= 83.978449999999953 PEi= 100.59999999999999 we= 2
¢0.10000000000000001 cont= 2.72990214184575886E—-003

FREQUENCY calc= 434.80000000000001 ref= 3271.0000000000000 we= 2
¢1.00000000000000005E—004 cont= 7.51817823005893499E—005

DISTANCE calc= 3.7084044655350095 ref=— 3.7003090959999998 we= 2

cont= 4.78627171380651393E—-004
3.28371109552699986E—-003

—

Enhanced MOPAC Interface

example

Giving the Linus Torvalds Award
to the Free Software Foundation is
a bit like giving the Han Solo
Award to the Rebel Fleet.

Richard Stallman

This example is the same as the Section 16, so we shall only show
the differences.

17.1 Input and executable files

The complete enhanced interface was explained in the Section 10. To
create and run the example you must type:

$ cd shepherd-example
$ tar xvzf mopac-shepherd.tgz
$ make test

After this, the files created are shown in Table 17.1.
Checking files against the previous section example, you figure out
that the external-mopac.sh file —17.1- is slighty different:

e the line "injector $1" is changed to "injector $1 bulk". As
stated in 9.4, the option bulk brings the system to an external
bulk configuration.

181

182 17. ENHANCED MOPAC INTERFACE EXAMPLE

Table 17.1: Files in the shepherd-example folder after run make test.

| File Type Provided by |
bounds.txt text file example
conditions.txt text file example
external-mopac2009.sh | shell script example
job.txt job configuration example
template.coefs mopac2009 external coefficients | example
template.mop mopac2009 job template example
shepherd binary GAFit
extractor Perl script GAFit
fitter binary GAFit
injector binary GAFit
File 17.1: external program: external-mopac.sh file
— Environmental
Cho Mo BT .|

export COEFS TEMPLATE="template.coefs"
export MOPAC TEMPLATE="template .mop"
export MOPAC MOP="mopa
export EXTERNAL INPUT- [N@fe3slit-qbiNWAVEIRCY ool
export EXTERNAL FIT="m|

export EXTRACTED DATA— and create file 15ynches MOPAC
export BOUNDS FILE="bounds.txt" tasks running in

parallel Extracts data

injector $1 bulk
a0 [1§11 _pe "QM]
then

shepherd < P
extractor $1 ™~ >
fitter $1 $EXTRACTED_DATA S$EXTERNAL_FIT N

fi

Here —See Section 6.3— a whole population of coefficient sets are
passed from GAFit—siisiel s in page 176—.

e the line "$SMOPAC LICENSE/$MOPAC EXECUTABL
E $SMOPAC MOP" is replaced by "shepherd" only.

17.2 Running the example

The big difference with Section 16 is where shepherd launches
and controls MOPAC 2009 tasks running in parallel feeding them with
one or various coefficient sets. The time spent processing each popula-
tion is used to calculate the optimal number of concurrent tasks which

17.2. RUNNING THE EXAMPLE

varies around some optimal one.

A maximum of four
parallel MOPAC
task to process this
population

[...]

run 1

File 17.2: shepherd example output

183

Time spent pro-
cessing this popula-
tion by four paral-
lel task

The population is
of 100 coefficient
sets and only 9
yield correct results

shepherd #flocks:4 >
shepherd elapsed time:53.160538 _ N
extractor correct/total:9/100 ~J
PENALTY cont= 10000000000.000000

individual 1 = 10000000000.000000
[..]
DELTA calc= 7181.9406700000000 ref= 100.59999999999999 we= 2
¢0.10000000000000001 cont= 495.49013755040392
FREQUENCY calc= 1973.5500000000000 ref= 3271.0000000000000 we= 2
¢1.00000000000000005E—004 cont= 1.57333126328749341E—-005
DISTANCE calc= 3.8125655102568405 ref= 3.7003090959999998 we= 2
¢100.00000000000000 cont= 9.20335818859331217E—002
individual 12 fit= 495.58218686560247

PENALTY cont= 10000000000.000000
individual 100 I 10000000000.000000
100 1 9100000596.463308334351 8.602835950342e+00
shepherd #flocks:3
shepherd elapsed time:59.095997
extractor correct/total:15/100

Coefficient set with
correct results. Fit:

DELTA calc= —4814.1148300000004 ref= 100.59999999 GPEERBINNEYYRLEYRY (V)
€0.10000000000000001 cont= 238.67156761441231
FREQUENCY calc= —8564.2099999999991 ref= 3271.000
¢1.00000000000000005E—004 cont= 1.309154335671368)
DISTANCE calc= 2.2739708397426739 ref= Coefficient set we= 2
¢100.00000000000000 cont= 14.85829767479578 JRERIPE
253.53117444354376

individual 1 fit=
L 1
T
PENALTY cont= 10000000000.000000

individual 100 fit= 10000000000.000000

i h 3L f1 1 3
hrepherd itoecks+3

shepherd elapsed time:37.518653

[...]
DELTA

cale= 60.117649999999998 ref= 100.59999999999999 we= 2
€0.10000000000000001 cont= 1.61933040081825158E—002
FREQUENCY calc= 1896.5699999999999 ref= 3271.0000000000000 we= 2
¢1.00000000000000005E—004 cont= 1.76556684120226501E—005
DISTANCE calc= 3.6998361990769268 ref= 3.7003090959999998 we= 2
€100.00000000000000 cont= 1.63326618279242223E—006
individual 100 fit= 1.62125929427773298E—002
#
#Results
#
1 BETAS H 13.742722536450
2 ZS H 1+2.452440978714 :
3 ALP H +2.008292084018 The best of all in
4 GSS H —7.976934072834 this run. Saved
5 USS C —8.767498674896 .
6 UPP C —17.380794123604 into best.tzt file
7 BETAS C —15.645160881834
8 BETAP C —2.524336159684
9 ZS C +3.400840391719
10 ZP C —0.531486822561
11 ALP C 15.087837269451
12 GSS C —10.748657465697
13 GSP C —1.973897569441
14 GPP C —7.256002543392
15 GP2 C +7.265166397026
16 HSP C 15.160470194181

So there are a lot of files named A, B, C, ..., AA, AB, ... —following
the GAFit’s automatic coefficient names convention, as explained in
Section 6.5—, each of them containing a unique coefficient set to be used
as external file for the mopac template —See in page 176—. In
the example, 100 sets comprised from A to CV.

184 17. ENHANCED MOPAC INTERFACE EXAMPLE

Also, the mopac template file is cloned to a file named taking into
account the first and last coefficient set to calculate in the task. For
example, if the first coefficient set is the first of all —A coefficient set
file- and the last the 29" ~AB coefficient set file-, the file cloned would
be A-AB.mop. This is a "flock" of 29 "sheep".

This behaviour is restricted in the code to a one set only: one set
per MOPAC 2009 task —a sheep per flock—, so the mopac template file
is cloned to files like A-A.mop, B-B.mop, ..., CV-CV.mop. See Section
10.2 about burst mode if you want to change this behaviour.

After processing an entire population by shepherd, extractor ex-
tracts the data and fitter evaluates it as shown in Section 16.

Here, we can use the same trick —Section 16.3— evaluating the best.txt
to examine the fitting details:

$ cp best.txt mopac2009.input
$./external-mopac2009.sh 1

shepherd #flocks:1

shepherd elapsed time:0.338015

extractor correct/total:1/1

DELTA calc= 22.545130000005884 ref= 100.59999999999999
we= 0.10000000000000001 cont= 6.02010474994563588E-002

FREQUENCY calc= 2117.2900000000000 ref= 3271.0000000000000
we= 1.00000000000000005E-004 cont= 1.24403393046421793E-005

DISTANCE calc= 3.6747770408556764 ref= 3.7003090959999998
we= 100.00000000000000 cont= 4.76097105301748029E-003

individual 1 fit= 6.49744588917784832E-002

$

Part 1V

Applications

185

Collision-induced dissociation
mechanisms of [Li(uracil)] T

Chemistry is a class you take in
high school or college, where you
figure out two plus two is 10, or
something.

Dennis Rodman, ex NBA player

Roberto Rodriguez-Fernandez, Saulo A. Véazquez and Emilio Martinez-
Ninez

Departamento de Quimica Fisica and Centro Singular de Investi-
gacion en Quimica Biologica y Materiales Moleculares, Campus Vida,
Universidad de Santiago de Compostela, 15782 Santiago de Compostela,
Spain

18.1 Abstract

The Collision-Induced Dissociation (CID) of the [Li(uracil)|*complex
with Xe is studied by means of quasi-classical trajectory calculations.
The potential energy surface is obtained “on the fly” from Austin Model
1 (AM1) semiempirical calculations, supplemented with two-body ana-
Iytical potentials to model the intermolecular interactions. The simula-
tions show that LiTproduction is the primary channel, in agreement with
a previous experimental study [M.T. Rodgers and P.B. Armentrout. In:
J. Am. Chem. Soc. 122 (2000), pp. 8548-8558|. Collision-induced iso-
merization of [Li(uracil)| *was found to be very important as well in the

187

188 18. COLLISION-INDUCED DISSOCIATION MECHANISMS OF [LI(URACIL)]*

2.5-10 eV collision energy range. Three minor channels are also identi-
fied: complex formation between Xe and [Li(uracil)|™, ligand exchange
to form LiXe™, and fragmentations of the uracil ring, which are strongly
nonstatistical. Additional quasi-classical trajectory calculations carried
out to investigate in more detail the fragmentations of the uracil ring
reveal the presence of bifurcations in the potential energy surface, as tra-
jectories starting from a transition state give rise to four different prod-
uct channels. The integral cross sections for LiTproduction calculated in
this work agree well with those obtained in the experiments only for the
lowest collision energies, being ~ 20 times greater than the experimental
values for a collision energy of 10 eV. Finally, the initial translational en-
ergy is transferred preferentially to the |Li(uracil)|"vibrational degrees
of freedom, with energy transfer to rotation being modest. The amount
of energy transfer to the different degrees of freedom as a function of
the collision energy follows quite nicely a model recently proposed in our

group.

18.2 Introduction

Collision-Induced Dissociation (CID) is an experimental technique con-
sisting of an initial energy activation of a molecular ion (or projectile),
through collisions with a neutral target (usually a rare gas atom), and a
subsequent dissociation of the projectile. CID studies have helped eluci-
date the structure, bond energies and kinetics of molecular ions, ranging
from small molecules to peptides.['83

The initial step in CID involves energy transfer to the molecular ion.
For collision energies below 100 eV, only the ro-vibrational states of the
ion are involved in the energy transfer process, i.e., no electronic exci-
tation is expected.?®40-42l Previous theoretical studies have shown that
the initial relative translational energy can be preferentially transferred
to the vibrational or rotational degrees of freedom of the molecular ion,
depending on its structure.[*> %8l Rotational excitation of the projectile
usually occurs when it presents a planar structurel*l, whereas for spher-
ically shaped molecules, translational to vibrational energy transfer is
usually preferred.[*34]

The dissociation process can take place by two limiting mechanisms.

18.2. INTRODUCTION 189

One is a direct, or “shattering”*>*l mechanism, in which one or more
bonds of the ion break within one vibrational period. The other limiting
mechanism can be described by the Rice-Ramsperger—Kassel-Marcus
(RRKM) or related statistical theoriesl®!l, as fragmentation occurs after
Intramolecular Vibrational Energy Redistribution (IVR) redistribution
takes place. The collisions with the target activate just a subset of nor-
mal modes of the projectile and, if a complete IVR does not take place,
the molecular ion can dissociate following pathways that are not among
the lowest energy ones.’>%¥ The importance of “shattering” and non-
RREKM mechanisms to understand CID in small molecules, amino acid
and peptides has been highlighted in a number of previous experimental
and simulation studies.[455>-8l

In this paper, the CID of |[Li(uracil)|*with Xe atoms is studied by
means of quasi-classical trajectory calculations. Uracil is one of the four
nucleobases of ribonucleic acid (RNA), and its fragmentation mecha-
nisms in gas phase induced by ion, electron or proton impact, or by
photoionization have been thoroughly investigated.[?? %8l All these stud-
ies agree in that the initial step of the fragmentation gives rise to iso-
cyanic acid (HCNO) and the C3H3NO fragment through a retro Diels-
Alder!® 7 mechanism. Litforms stable complexes with uracil, binding
more strongly at the oxygen atoms. The O——Li" bond dissociation
energy was derived using guided ion beam mass spectrometry and ab
initio calculations, and is ~ 48 keal/mol.'l In their study, Rodgers and
Armentrout studied the CID of a number of [M(L)|" complexes with
Xe, with MT=Lit, NaT and K*, and L=uracil, tymine and adenine./'"!
The primary channel found in their study is the endothermic loss of the
neutral molecule, but some of the [M(L)|* complexes experience lig-

and exchange to form MXe™". For [Li(uracil)| ", only LiTwas detected,
though.!'7]

The present simulation study complements the previous experimen-
tal study of Rodgers and Armentrout on the CID of [Li(uracil)| " with
Xe.'l The integral cross sections for LiT production obtained in our sim-
ulation will be compared with those obtained in the experiments. Addi-
tionally, the differential cross sections for LiTproduction, not measured
experimentally, will be reported here. Our quasi-classical trajectory

190 18. COLLISION-INDUCED DISSOCIATION MECHANISMS OF [LI(URACIL)]*

calculations identify minor fragmentation products of |Li(uracil)| ", not
detected in the experiments. The present paper will also show how some
of these new mechanisms can only be described by dynamical model like
those employed here. Finally, the efficiency of energy transfer in the CID
process is studied with the help of a recently developed energy transfer
model.["172]

18.3 Computational details

18.3.1 Potential energy surface

The potential energy surface of the system is expressed as:
V= V;ntra + ‘/z'nter (1831)

where Vi is the intramolecular energy of |Li(uracil)]Tand Vi,
models the interaction energy between Xe and [Li(uracil)]™. The in-
tramolecular potential is calculated “on the fly” from semiempirical cal-
culations. In particular, the AMI1 Hamiltonian!™! is employed with
parameters that have been reparametrized to reproduce the main fea-
tures of the [Li(uracil)| "energy landscape. Specifically, Li*can bind to
the oxygen atoms (labeled here as O4 and Oj) or to the m-electrons
of uracil (see Figure 18.1). Oy is the preferred binding site, being
the complex formed with Litbound to Oy ~ 4 kecal/mol less stable.
When LiTbinds to the m-electrons, the geometry of uracil is strongly
distorted and the energy of this complex is ~ 30 kcal/mol above the
Oy global minimum.!'” MP2(FC)/6-31+G(d) calculations, carried out
in this work, serve as a benchmark for the reparametrization of the
AM1 Hamiltonian, which is described in detail in the Electronic Supple-
mentary Information (ESI). The MP2(FC)/6-31+G(d) level of theory
affords energy values for the stationary points of Figure 18.1 and for
the uracil + LiTdissociation limit that agree very well with previous
MP2(full) /6-311+G(2d,2p)//MP2(full) /6-31G(d) calculations (see Ta-
ble 18.6 of the ESI).I!7]

The Xe/|Li(uracil)|"interaction potential V. was obtained from
RI-MP2(FC)/def2-QZVPP!I™ single point energy calculations for the
twelve relative orientations of Xe and [Li(uracil)| Tshown in Figure 18.10

18.3. COMPUTATIONAL DETAILS 191

Figure 18.1: Atomic labeling and geometries of [Li(uracil)|"optimized in this work
at the MP2/6-314+G(d) level of theory.

04 02 i
B tio) i o
W f ‘//
H1¥ é\a@ F13 MN Xﬁ Og#%
Hi2 o ©

O

of the ESI. The ab initio calculations, carried out with Turbomolel™!,

include the counterpoise correction to account for the Basis Set Super-

position Error (BSSE).Il The analytical function employed to fit the

fp-CCSD(T)/CBS interaction energies is a sum of generalized two-body
Buckingham potentials:

C; E

V;nter - ; Aie_BZRl + @ + RZE

(18.3.2)

where i represents each of the atoms of [Li(uracil)]™, R; is the Xe-i
interatomic distance and A;, B;, ... F; are the parameters. During the
fit, which was conducted using a genetic algorithm/?!, some restrictions
were imposed to the parameters to avoid the Buckingham catastrophe,
namely, all F; parameters are positive and F; > D; + 3. The resulting
parameters and the fit are shown in Table 18.7 and Figure 18.10 of the
ESI. The stratified root-mean-square error of the fit is 0.2 kcal/mol
for energies lower than 2 kcal/mol; and 2.6 kcal /mol for energies in the
range 2-200 kcal/mol.

18.3.2 Chemical dynamics simulations

Quasiclassical Trajectory (QCT) calculations for the CID of [Li(uracil)| T with
Xe were carried out with the general molecular-dynamics package VENUS05.177]
The initial conditions were selected to simulate the experimental CID
study of Rodgers and Armentrout.'”l In particular, the internal ener-

gies of [Li(uracil)|Tare described by a Maxwell-Boltzmann distribution

of states at 300 K. The |Li(uracil)] "ions were randomly oriented and the
initial separation between its center of mass and Xe was 15 A. The tra-
jectories are integrated using a sixth-order Adams—Moulton predictor-

192 18. COLLISION-INDUCED DISSOCIATION MECHANISMS OF [LI(URACIL)]*

corrector algorithm with a fixed time step of 0.02 fs, which ensured
an average energy conservation of 99.997% of the total energy. Each
trajectory was halted when Xe is 20 A away from [Li(uracil)|*, which
corresponds to an integration time between 0.6 and 1.5 ps, depending on
the collision energy. Then, the geometries are checked for possible O—
LiTbond dissociations, O4 —> 2 isomerizations, Li™Xe formation,
and other possible fragmentations channels of [Li(uracil)|™. From the
final geometries and the momenta, the relative translational energies of
the Xe and [Li(uracil)| " fragments, and the rotational and vibrational
energies of [Li(uracil)|"are also computed.

Table 18.1: Computational details of the quasi-classical trajec-
tory simulations carried out in this work to calculate the cross
sections and energy transfer.

Nirq;® | Collision energies (eV) binaz (A)

Cross section 10% 2.5 3.0
3 4.0

4 4.5

5 5.2

6 5.3

7 5.3

8 5.4

9 5.4

10 5.5

Energy transfer 103 3,4,5,6,7,8,9, 10 12P

& Number of trajectories in each ensemble.
> The maximum impact parameter is 12 A for all collision energies.

Two different QCT simulations are carried out in this work. One sim-
ulation type was devised to calculate cross sections for LiTproduction.
In the other one, the focus is on calculating average energy transfer effi-
ciencies. The details of each calculation are summarized in Table 18.1.
In the cross sections calculation, the impact parameters b were chosen
randomly from the equation b = bnas R 2 where R is a random number
and the maximum impact parameters b,,,, are selected in separate runs
using batches of 103 trajectories. Then, the O-LiTdissociation cross
sections are obtained from

. Nuiss

tot

mb? (18.3.3)

max

o

18.3. COMPUTATIONAL DETAILS 193

where Nyss and N, are the number of trajectories leading to uracil
+ LiTand the total number of trajectories, respectively. A particular
type of dissociations are those that occur in a very short time scale after
the collision; this mechanism has been observed in previous workl45%2
and is called “shattering”. “Shattering” dissociations are identified by
the number of O-Li" Inner Turning Points (ITPs) after the collision,

i.e., this mechanism takes place if the number of [TPs is < 1.

In order to make a detailed comparison with the experiments, possible
O-LiT dissociations taking place in the experimental time scale of 10~*s
should be considered in our study.!'”l This was accomplished by running
Kinetic Monte Carlo (KMC) simulations!™™! for the [Li(uracil)|*ions
that remain undissociated after the QCT simulation and have vibra-
tional energies greater than the O-Litdissociation energy (including
the zero-point energy). KMC is a very useful Monte Carlo simula-
tion for modeling the transient behavior of various molecular species
that participate in highly coupled chemical reactions. The method is
an alternative to the traditional procedure of numerically solving the
deterministic reaction rate equations. The chemical processes employed
in our KMC simulations are the O4 —> 02 and O2 —> 04 iso-
merizations, and the O-LiTdissociations from the O2 and O4 isomers.
To calculate the dissociation-isomerization probabilities needed in the
KMC calculations, RRKM rate constants are employed. For the dis-
sociation reactions, variational RRKM calculations®! were carried out,
using an average of 20 Hessians!®l per dissociation path to obtain the
corresponding sums of states. The [Li(uracil)|"ions are monitored for
10~*s, and the dissociations taking place in this time window are re-
garded as statistical or following an RRKM mechanism. The inclusion of
other channels in this analysis, like other fragmentations of |Li(uracil)| ",
does not change the KMC simulation results.

Additionally, the energy transfer efficiencies are calculated in separate
QCT runs (see Table 18.1 for the details). Since low impact parameter
trajectories contribute more significantly to energy transfer, the initial
impact parameter is chosen with importance sampling!®! from the dis-
tribution

194 18. COLLISION-INDUCED DISSOCIATION MECHANISMS OF [LI(URACIL)]*

db

bmaaz

f(b)db =

(18.3.4)

The average amount of energy transfer <AEtmj> can then be calcu-
lated as

traj 1 = 2bl
AE]:NZ AE; (18.3.5)

with AFE; and b; being the amount of energy transfer and impact pa-
rameter of trajectory i, respectively. The maximum impact parameter
bmaz Was 12 A for all collision energies, for which the change in the in-
ternal energy of [Li(uracil)|™ is less than 30 em™!. The energy transfer
values calculated from the trajectories <AEm‘j > can be related to ex-
perimental obtained quantities (AFE) by the ratio of the collision cross
sections. 5253

AB = —Tomae A p 18.3.6
= 702,007 (18.3.6)

where the product wa2 ;22* is the Lennard-Jones (LJ) collision

cross-section that has been obtained using the program COLRATE.[5
The Lennard-Jones parameters for Xe are taken from the literaturel>:56l
and those for [Li(uracil)]Tare obtained employing the Lorentz-Berthelot
combining rulesl®’! after fitting a Lennard Jones potential for the in-
teraction of Xe with [Li(uracil)|"to the intermolecular potential energy
surface obtained above using eqn (18.3.2). The intermolecular function
of eqn (18.3.2) has been properly averaged over thousands of configura-

tions for each distance between Xe and the center of mass of the cation
(see the ESI for further details).

18.4 Results and Discussion

18.4.1 Trajectory types

Figure 18.2 shows the percentage of the different processes found in our
CID study as a function of the collision energy. As seen in the top
panel of the figure, O-LiThond dissociations dominate at most of the

18.4. RESULTS AND DISCUSSION 195

Figure 18.2: Percentage of the different channels found in this study, with respect
to the total number of trajectories (upper panel) and percentage of RRKM and
“shattering” found in the O-Litdissociations (lower panel).

T T T T T |

T I T I
104 Total
1 1 —o— O-Li" dissociation

7)) E —~— |somerization E
Q] —7— Complex formation
= —O— Ligand exchange
8 o015 —0— Other fragmentions -
o 3 3
2,
o
"'0’01_'|'|'|'|'l'|'|-|_-
h - —
o) g
> 801 O-Li diss. -
-t 1 o
C 60 -
8 . —e— RRKM
Iq-, 40 - —&— Shattering i
m 4

20 - i

0 - — T T T T

2 3 4 5 6 7 8 9 10 M1
E (eV)
col

collision energies. This process experiences a 50-fold increase in the
collision energy range of our study. As seen in the lower panel of Figure
18.2, the vast majority (more than 85%) of the O-Li"bond dissociations
follow an RRKM mechanism. The percentage of prompt or “shattering”
O-LiTdissociations is modest and increases with collision energy. The
maximum percentage of “shattering” is 15% and occurs for the highest
collision energy of 10 eV .

The amount of “shattering” dissociations found in this study is signif-
icantly lower than that found in previous CID studies in our group.*>%?
In particular, when Cr(CO)gr collides with Xe at E.,; = 5 eV, “shatter-
ing” amounts 63% of the total Cr-O dissociations.l*”l At a collision en-

196 18. COLLISION-INDUCED DISSOCIATION MECHANISMS OF [LI(URACIL)]*

ergy of 21.7 eV, “shattering” accounts for more than 80% of the CH3SH™
fragmentations, induced by collisions with Ar; for this ion the fragmen-
tation products are CHy, CHJ and CH;S .12

The small percentage of “shattering” found in the present study, com-
pared with our previous CID studies, can be explained by looking at the
different sizes/number of bonds of the projectiles. [Li(uracil)| Tis rather
big and the O-LiTbond is located in one end of the ion, which means
that the probability of Xe hitting this part of the molecule is small. By
contrast, CH3SH™ is much smaller and each of the bonds is susceptible
to suffer prompt dissociations. Also, in Cr(CO)g all the collisions with
Xe affect at least one Cr—O bond.

Figure 18.3: Scattering maps for uracil obtained for the collision energies of 6, 8 and

10 eV.

E=6eV E=8eV E =106V

Additional analysis of the CID dynamics can be obtained from the
angle-velocity distributions of the scattered uracil molecules. In Fig-
ure 18.3 we depict polar uracil scattering maps at the collision energies
of 6, 8 and 10eV; cylindrical symmetry is assumed in the scattering
process.*3l These plots are obtained from the angular distributions of
the uracil fragments at the end of the reactive trajectories, i.e., those
leading to O-LiTdissociations. It should be noted that these plots only
reflect the distributions of the prompt O-LiTdissociations and do not
consider the dissociations that occur through an RRKM mechanism.
The uracil fragments are scattered anisotropically, with a change from
backward scattering to forward scattering as the collision energy in-
creases; at E.,; = 8 eV the products are more sideways scattered. This
trend has also been observed in other CID studies and can be explained
by the fact that, as the collision energy increases, there are more grazing
collisions leading to O-LiTdissociation.!*>5?!

18.4. RESULTS AND DISCUSSION 197

After O-Litdissociations, the second major process observed in our
study is the O4 —> 2 isomerization reaction (see Figure 18.2 top
panel). Even though the isomerization barrier is well below the O-Li™
dissociation energy (25.7 kcal /mol vs 49.1 kcal /mol, respectively), the
O-LiTdissociation is a barrierless process and its RRKM rate constants
are much larger than those for the isomerization, because the entropic
factor favors dissociation over isomerization. The collision-induced iso-
merizations are enhanced with collision energy plateauing at around 4%
for energies above 5 — 6 eV.

Three minor channels have been identified in this study. The forma-
tion of complexes between Xe and [Li(uracil)|Tis one of them. Although
previous CID studies pointed out the importance of complex-mediated
mechanisms!*l, in the present study, though, formation of complexes is
unimportant. The percentage of trajectories forming those complexes is
about 0.1% at the lowest collision energy, being the average lifetime of
the complexes 3.6 ps. For E.,; > 5 eV all collisions are direct, without
complex formation. The observation of a negligible number of collision
complexes is consistent with the above anisotropic angle-velocity distri-
bution plots, since the existence of transiently bound rotating collision
complexes lead to isotropic angular distributions. On the other hand, in
Figure 18.10 of the ESI it can be seen that the deepest potential well in
the intermolecular potentials is ~ —6 kcal/mol and corresponds to Xe
interacting with Li™. This value is less than half that obtained for the
interaction between Xe and Cr*, which amounts —13.5 kcal /mol.1*!
This and direct ejection of one (sometimes two) CO ligands upon colli-
sion with Xe explain why in the Xe + Cr(CO), CID study the formation

+
of | XeCr(CO), | (n < 6) complexes was very important.

Ligand exchange to form LiTXe is another minor channel found in
this study. The collision energy dependence of ligand exchange is at
variance with that found above for complex formation. In particular,
ligand exchange does not take place for collision energies lower than
6 eV. Nevertheless, for high collision energies it is also a negligible chan-
nel. Actually, Rodgers and Armentrout did not observe this process for
[Li(uracil)|*, although for other complexes like [Na(uracil)|*, it repre-
sents a feasible mechanism, whose cross sections increase with E, ;.11

198 18. COLLISION-INDUCED DISSOCIATION MECHANISMS OF [LI(URACIL)]*

According to our simulations, ligand exchange to form LitXe has a
cross section ~ 200 times lower than those for LiTproduction, which
might difficult the experimental detection. Even though this channel
is insignificant, two different mechanisms leading to Li™Xe have been
identified in our simulations. In the first one, Xe hits the LiTside of
the molecular ion and directly strips away the LiTcation. The second
mechanism is an indirect process, where the O-Li™bond is broken first,
with LiTscattering in the same direction as Xe, allowing Li™Xe to be
formed.

Finally, a small number of trajectories experience other fragmenta-
tions of [Li(uracil)]™, where the uracil ring is broken. These additional
channels are analyzed in more detail in the next section.

18.4.2 Aditional fragmentation channels of [Li(uracil)]™

The fragmentation channels of the ion that involve ring opening increase
in importance as the collision energy increases. At E.,; = 10 eV, be-
sides O-LiTdissociations, which amounts 24% of the total number of
trajectories, 0.21% of all trajectories experience additional fragmenta-
tion channels of the |Li(uracil)| " complex. All these channels involve the
rupture of the C5——N7 bond (see Figure 18.1 for the atom labeling),
and in many of them the C3——N8 bond is also broken.

As seen in Figure 18.4, cleavage of the C5——N7 and C3——N8
bonds produce isocyanic acid (HCNO) and the C3sHsNO fragment, with
Litdissociated (channel P0), attached to a nitrogen atom (channels P1
and P2), or to an oxygen atom (channels P3 and P4) of any of the
fragments. A recent DFT study of the fragmentation channels of uracil
reveals that the C5——N7 and C3——N8 bonds are more easily cleaved
than any other one in the molecule.l®¥IThe same pattern is observed here
for [Li(uracil)| ™. Figure 18.4 also collects the dissociation energies cal-
culated for each of the channels at the MP2/6-314+G(d) and AM1 Spe-
cific Reaction Parameters (AM1-SRP) levels of theory. Since the AM1
Hamiltonian was not reparametrized to reproduce these additional frag-
mentation channels, it provides energies that are systematically lower
than those obtained with MP2. However, both methods agree that
the lowest energy channel is P1 and the highest energy channel is PO,

18.4. RESULTS AND DISCUSSION 199

Figure 18.4: Fragmentation channels of [Li(uracil)|Tinvolving ring opening. The
MP2/6-314+-G(d) and AM1-SRP dissociation energies are indicated in kcal/mol.

MP2 AM1I
Q‘/p:cr.'ﬂo
P4 qb + % 69.1
me Q*Qb
773 65.3
P3 =
3 o0
Py _ g % 812 55.4
)
)
' 3 63.3 38.3
P1 B0
G %,

PO + + O 108.2 96.8
‘-’% Q% Li*
),

the energy difference between both channels being ~ 45(58) with the
MP2(AM1) method.

Of the 21 reactive trajectories mentioned above, 2/1/11/1/1 trajec-
tories gave rise to PO/P1/P2/P3/P4, respectively, with the remaining
5 trajectories breaking only the C
the vast majority of the trajectories give rise to P2, which is not the
lowest energy channel. This nonstatistical behavior is a consequence of
weak couplings between the reaction coordinates involved in these frag-
mentation channels and the remaining internal degrees of freedom of
the molecule and/or to non-IRC dynamics.’”l The combination of col-
lisional activation, which results in a nonrandom vibrational excitation,
with weak couplings among the various degrees of freedom, explains why
nonstatistical behavior is sometimes manifested in CID.1%53]

200 18. COLLISION-INDUCED DISSOCIATION MECHANISMS OF [LI(URACIL)]*

Figure 18.5: Potential energy profiles involved in the [Li(uracil)|Tring opening chan-
nels PO-P2. The profiles are computed at the MP2/6-31+G(d) level of theory and
energies are given in kcal/mol.

A close inspection of the 21 trajectories revealed that, in all of them,
the C5——N7 bond is broken first, with LiTremaining close to N7 for
quite a long time, which suggests the presence of a flat area of the sur-
face associated to these geometries. To investigate this in detail some
snapshots were taken from the 21 trajectories to be subsequently em-
ployed as input geometries in MP2/6-31+G(d) optimizations. Using this
procedure, the transition states TSI1-b and TSbh-b of Figure 18.5 were
obtained. Specifically, the transition state TSI1-b connects, according
to an intrinsic reaction coordinate (IRC) calculation,® the 6-membered
ring I1 with the lowest energy isomer O4. The reaction coordinate is
primarily composed of a rotation about the C3——N8 bond. However,
additional trajectory calculations started at TSI1-b (vide infra) indi-
cate the presence of a bifurcation,®?! in the reaction path, i.e., TSI1-b
is actually connected to TSO4-0O2, as seen in Figure 18.5. Addition-

18.4. RESULTS AND DISCUSSION 201

ally, from the TSI1-b structure, the molecule can break the C3——N&
bond, after surmounting a second order saddle point S2, which lies only
5.3kcal /mol above TSI1-b. A geometry optimization from a geometry
close to 2S leads to the 12 complex, which can go on and dissociate to
either PO, P1 or P2. 12 is not the only possible complex between LiT,
the isocyanic acid and C3H3NO and several were optimized in this work
but, for simplicity, in Figure 18.5 only 12 is depicted.

The reaction coordinate associated with the other transition state
TSb-b, which is nearly planar, primarily involves wagging of Li*. An
IRC calculation from TSb-b shows that going downhill in either di-
rection leads to the O4 minimum. However, quasi-classical trajectory
calculations (vide infra) that start from this transition state show that a
bifurcation exists in the reaction path, as drawn in Figure 18.5. Just like
for TSI1-b, a second order saddle point that connects TS1b-b with the
P0-P2 fragmentation products could be located, but only with the HF
method; at the HF /6-31+G(d) level of theory this saddle point lies only
6.6kcal /mol above TSb-b. Finally, TSI1-b and TSb-b differ by only
~ Tkcal /mol and a path obtained by interpolation of the geometries of
both transition states shows a small barrier of 2.7kcal /mol from TSb-b.
Attempts to locate a saddle point connecting these two transition states
were unsuccessful.

Table 18.2: Simulation results for the trajectories starting from the
TSI1-b and TSh-b transition states.

Results?
Initialization Nipaz® I1 PO-P4 04 02
TSI1-b 157 58 56 18 25
TSb-b 160 — 105 46 9

& Number of trajectories in each ensemble.

P Number of trajectories that finish in each of the stationary points indicated at
the top. The trajectories labeled under P0O-P4 indicate that they either finish
in the 12 complex or in a related complex or dissociate to the PO-P4 products
(see text).

To further investigate the fragmentation dynamics of [Li(uracil)]™,
quasi-classical trajectory simulations, starting from either TSI1-b or
TSh-b, were run “on the fly” at the HF/3-21G level of theory, using

an interface between VENUSITl and NWCHEM. 29I The trajectories
were integrated for 500 fs with a Hessian-based predictor-corrector algo-

202 18. COLLISION-INDUCED DISSOCIATION MECHANISMS OF [LI(URACIL)]*

rithm!® with a step size of 0.2 fs, using the quasiclassical normal mode
sampling method®>! to prepare a quantum mechanical microcanonical
ensemble with a total energy of 100kcal/mol above the corresponding
transition state. The summary of the trajectory results is shown in Ta-
ble 18.2. As indicated above, 12 is not the unique complex found in
this study and others exist with similar energies and low interconversion
barriers. The results under the column P0-P4 involve those trajecto-
ries ending up in the I2 complex or in any other complex between LiT,
isocyanic acid and C3H3NO. A small fraction (1%) of the trajectories
that followed this mechanism dissociated to P1, the lowest energy dis-
sociation channel. Following the trajectories for longer times would give
more fragmentations.

Starting from TSI1-b, 37% of the trajectories led to 11, 36% to the
P0-P4 dissociation products and 27% to the 02/04 isomers. The O2
isomer is 1.4 times more abundant than O4, even though, as indicated
above, the IRC calculation connects TSI1-b with O4. The 160 trajec-
tories initiated at TSb-b led primarily to dissociation (66%) with 34%
leading to O2/04, in this case the O4:02 ratio being 5:1. Even though
the P0O-P4 dissociation channels involve a barrier (second order saddle
point), dissociation is the second most important channel for the tra-
jectories that start from TSI1-b, and the most important one by far for
those starting from TSh-b. These results point out very weak couplings
between the torsion about the C3-N8 bond and the C3-N8 stretching,
and also between LiTout-of-plane and the C3——N8 stretching.

The potential energy surface involved in the P0-P4 fragmentation
channels is very flat and makes necessary the study of this system by
dynamical models like quasi-classical trajectories. It is actually very
interesting to see how trajectories that start from a transition state lead
to four different products (like those starting from TSI1-b), a result
which is difficult to anticipate by a simple inspection of the PES. The
presence of plateaus on the potential energy surface like those found
here around TSI1-b and TSb-b and/or bifurcations precludes the use
of kinetic models like RRKM or transition state theory, as they cannot
predict the product ratio.l?790:91.97]

18.4. RESULTS AND DISCUSSION 203

18.4.3 Comparison with experiment

Figure 18.6: Comparison between QCT and experimentall'”l integral cross sections
for LiTproduction. The error bars in the simulation results represent the 95% confi-

dence limits. The experimental error bars are taken from Rodgers and Armentrout
[17].

T
T
~O— Exp.

@ Simulations

E _(eV)

col

In Figure 18.6 the cross sections for Litproduction calculated in
this work are compared with the experimental results of Rodgers and
Armentrout.'”l While the agreement between the experimental and the
simulation results is very good for the lowest collision energies (E.y <
3.5 V), for higher energies though, the simulation cross sections are an
order of magnitude greater than the experimental ones. The experimen-
tal values of o present a maximum at around 7 eV and then decrease
with E.., while those obtained in the simulations steadily increase with
the collision energy.

Previous CID studies in our group show that the simulation cross sec-
tions are systematically higher than the experimental ones in the high
energy region.*9253 This trend is clearly enhanced in the system that
is being studied here. Much of the disagreement between the experi-
mental data and the simulation results might arise from the inherent
difficulties of experimental CID techniques to collect efficiently product

204 18. COLLISION-INDUCED DISSOCIATION MECHANISMS OF [LI(URACIL)]*

ions as the collision energies increases. This is because the electric field
generated by the octopole (in a typical CID apparatus) does not trap
very efficiently ions resulted from sideways scattering, especially when
the ions are light, as in the present case.[’®%! In fact, Anderson and
coworkers?®%! advised for the need of care in interpreting guided-ion-
beam cross sections at high collision energies. However, the ~ 30-fold
difference between simulations and experiment observed here can not be
explained based on the above arguments alone, and possible inaccuracies
of the potential energy surface lead to large errors in the o computed
values.

18.4.4 Energy transfer

A phenomenological model for energy transfer has been recently devel-
oped in our group.["™ The model is an adaptation of two limiting mod-
els of energy transfer, originally developed for atom-diatom collisions.
One limit of the model refers to the adiabatic (ad) or low-collision en-
ergy regime and the other one is applied to impulsive (imp) collisions.
The model was successfully employed for gas-surface collisions, ™ just
by replacing the original diatom by a projectile, and with the surface
playing the role of the atom. The amount of energy transfer to each of
the degrees of freedom of the projectile is thus:

AE = AE™ + AE™

= ap + aj exp (\;%) + as cosech? < %200[> (18.4.1)

with ag determined assuming complete accommodation of the pro-
jectile at low energies and a1, b1, as and by being adjustable parameters.
Eqn (18.4.1) predicts for (AFE) a linear dependence on F,, for high col-
lision energies; the E,,; — 0o limit of (AEj,) /E. = as/by.?% Fairly
constant values of (AF;,:) /FEeq (for high E.,;) were previously found
for a number of gas-surface and gas-molecule systems, 3711001021 which
lends support to the model. The energy transfer results of the present
work also show the same trend, with (AF;,;) / E., being nearly constant
and in the range 0.22 — 0.24.

18.4. RESULTS AND DISCUSSION 205

Figure 18.7: Average energy transfer values computed in this work for Xe +
[Li(uracil)| Taccording to eqn (18.3.6).

70 T T T T " T j !
® Rotational energy
604 @ Vibrational energy
® |[nternal energy

&)
o
L

I
o
1 M

N
o
T

<AE> (kcal/mol)

o
L

0 '60'1é0'1é0'2210'300
E. (kcal/mol)

Table 18.3: Parameters of the energy
transfer model (eqn 18.4.1) fitted to our
simulation data.

Parameters®

al b1 a9 b2
Rotation 39.8 13.7 0.0 0.0
Vibration 6.5 10.0 20.2 11.1

2a; and ag are in kcal/mol and b; and by in
(kcal /mol)'/?

It is of interest to see if the above model can predict energy trans-
fer efficiencies, irrespective of the nature of the collision partners. For
that reason, the model is fit here to the energy transfer values in Xe
+ [Li(uracil)| Tcollisions. Figure 18.7 and Table 18.3 show the fit of
eqn (18.4.1) to the trajectory data and the adjusted parameters, respec-

206 18. COLLISION-INDUCED DISSOCIATION MECHANISMS OF [LI(URACIL)]*

tively. As seen in the figure, except for the lowest collision energies,
(Eyip) is greater than (E,.,). The percentages of energy transferred
to vibration (rotation) are 13 (10); 14 (10); 13 (10); 14 (9); 14 (9);
15 (8); 15 (8); 16 (7) for E.q = 3,4,5,6,7,8,9 and 10 eV respec-
tively. The values of (E,;,) /FE.o remain fairly constant with E,,, while
those of (E,u) /FE. diminish with the collision energy. In previous
work, it has been shown that the relative percentages of (Eyi) /Eco
and (E,y) /E.y depend on the structure of the projectile.l*3%8l Energy
transfer to rotation (R) was found to be very important for Ar + proto-
nated ureal®®! and Ar + planarAl clusters, namely, Alg (Cyy,), and Aljs
(Do, and Dﬁh).[43] On the contrary, collisions with spherically shaped
molecules, like Cr(CO)gand Alg (Oy,) or Alyz (Dsg), translational (7T)
to vibrational (V') energy transfer is preferred.[*>*IThe presence of low
vibrational frequencies is very important to enhance T — V energy
transfer.*3 In fact, while T"— R dominates in Ar + protonatedurea

2+
collisions,*¥l Ar + [Ca(urea)} simulation results show the opposite
trend, with 7 — V energy transfer being preferred.*”l The results of

2+
the present paper seem to resemble those of Ar + [Ca(urea)] , with

T — V being clearly the predominant energy transfer pathway, and
are at odds with previous work on Ar + planarAl clusters.*3l This is a
surprising result, as being |Li(uracil)| " planar, one would expect, on ac-
count of the previous CID studies,**l an enhancement of T'— R energy
transfer. Cleary more work is needed to understand the dynamics of
energy transfer in CID studies.

18.5 Conclusions

Quasi-classical trajectory calculations are employed in this work to study
the dynamics of CID of the [Li(uracil)|"complex with Xe. The AMI
semiempirical Hamiltonian is reparametrized to reproduce the main fea-
tures of the [Li(uracil)]* — uracil + Li™ potential energy surface. Ad-
ditionally, two-body Buckingham potentials are employed to model the
interaction of [Li(uracil)|"with Xe.

The analysis of our simulations indicates that the vast majority of the
reactive trajectories either dissociate to give uracil + LiTand /or result in

18.5. CONCLUSIONS 207

isomerization from O4 to O2. Three minor but interesting channels are
also found here: Formation of complexes between Xe and [Li(uracil)| ™,
LiXeTproduction and fragmentations of the uracil ring. All of them
account for less than 0.25% of the trajectories. While LiXe ™ production
and fragmentations of the uracil ring are increasingly important with
collision energy, complex formation is more frequent as the collision
energy decreases. Ligand exchange to produce LiXe™ can be achieved by
two different mechanisms: a direct collision of Xe with Li™, which results
in an immediate LiT—Xe bond formation. The second mechanism
involves O——Lit dissociation with LiTscattering side-by-side with Xe.

The uracil ring can be broken to give isocyanic acid + C3H3NO with
LiTbound to one of the fragments. The most abundant channel is that
where LiTis bound to the N atom of icocyanic acid. The fragmenta-
tions of the uracil ring present interesting dynamical effects, namely,
weak couplings between the normal modes of the molecular ion and the
presence of bifurcations in the potential energy surface. Slow [VR is
manifested in the CID dynamics, as the major fragmentation product
of the uracil ring is not the lowest energy channel. The presence of bi-
furcations in the PES has been identified in additional quasi-classical
trajectory calculations at the HF/3-21G level of theory, as trajectories
that start from a transition state lead to four different channels.

Computed integral cross sections only agree with the experimental
values at the lowest collision energies. At the highest collision energy of
10 eV, the simulation cross sections are two orders of magnitude higher
than the experimental ones. The differential cross sections computed
here indicate strong side-ways scattering, which might affect the exper-
imental detection of ions.

Even though [Li(uracil)|Tis planar, energy is preferentially trans-
ferred from translation to vibration, rather than to rotation. This result
is at odds with a previous theoretical CID study, which shows that the
rotational degrees of freedom are preferentially excited when the projec-
tile has a planar structure. A model recently proposed in our research
group fits very well the simulation energy transfer data as a function of
the collision energy.

208 18. COLLISION-INDUCED DISSOCIATION MECHANISMS OF [LI(URACIL)]*

18.6 Acknowledgements

The authors thank "Centro de Supercomputacion de Galicia" (CESGA)
for the use of their facilities

18.7 Electronic Supplementary Information

18.7.1 Intramolecular [Li(uracil)]™ Potential Energy Surface

Figure 18.8 shows a contour plot for LiTorbiting around uracil calculated
at the MP2(FC)/6-31+G(d) level of theory. The plot clearly shows the
two minima at O4 (lower right corner, § ~ 120°) and O2 (lower left cor-
ner 6 ~ 0°) and the transition state connecting both (6 ~ 60°. The AM1
contour plot fails to describe the main features of the energy landscape.
Therefore the AM1 Hamiltonian is reparametrized to fit MP2(FC)/6-
31+G(d) calculations. The resulting AM1 Hamiltonian is termed AM1
with Specific Reaction Parameters (SRP). Only the parameters for H,
Li and O have been optimized in the fitting. In practice the following
function is minimized using the general optimization program SUPOPT:

B G vy \U (18.7.1)

where X; is a semiempirical molecular property of our system (an
energy difference, the geometry of a stationary point or the frecuencies)
and X;"9" is the corresponding target value, taken in our case from
MP2(FC)/6-31+G(d) calculations. In our case we selected the energies
for several values of R and 6 (see Figure 18.8 and Table 18.4 and also
some properties of the O4 and O2 minima (distances, angles and fre-
quencies). The values of X in Table 18.4 correspond to the AMI1-SRP
optimized values. The AMI-SRP optimized parameters are collected
in Table 18.5. Figure 18.8 shows how the reparametrized potential
(AM1-SRP) nicely reproduces the MP2(FC)/6-31+G(d) features. Table
18.6 collects the energies of the main stationary points in the PES. Quite
interestingly, the high energy isomer 7 and the transition state connect-
ing O4 and O2 are also nicely reproduced by our AM1-SRP Hamilto-
nian, even though those structures are not included in the optimization

18.7. ELECTRONIC SUPPLEMENTARY INFORMATION 209

procedure. Figure 18.9 compares the main geometrical features of the
stationary points of Table 1. Overall, the AM1-SRP potential seems to
account for the most important details of the [Li(uracil)|™ PES.

18.7.2 LJ parameters for |Li(uracil)]™

The LJ paremters ¢ and € of the ion, needed in eqn (18.3.6), are obtained
by fitting a L.J potential for the interaction between Xe and [Li(uracil)] ™
to the intermolecular potential of Figure 18.10. In particular, for each
distance between Xe and the center of mass of the cation a total of 10*
configurations are generated by randomly rotating the molecular over its
Euler angles to obtain an average intermolecular potential between both
species. Figure 18.11 shows both the averaged intermolecular potential
(black line), and the fitted LJ potential (red line). The resulting LJ
parameters are: € = 12.7 keal/mol and ¢ = 5.6 A.

Once the L.J parameters are determined, the collision integral €2
which is a function of the reduced temperature 7% = kgT'/e, is approx-
imated by:[1%3l

(2,2)x*

Q2% = (0.636 4 0.567 logyo T*) " (18.7.2)

Q22 = (0.697 + 0.518log,y T%) (18.7.3)

QZY* = 1.161(T*) 1487 40.525 exp(—0.773T*)+2.162 exp(—2.438T)

(18.7.4)

Equation (18.7.2 is accurate within 7% in the range 0.3<7*<500,

Eqn (18.7.3) within £2.5% in the range 3<77*<300, and Eq. (18.7.4)
within £0.16% in the range 0.3<7™<100.

18.7.3 Tables

210 18. COLLISION-INDUCED DISSOCIATION MECHANISMS OF [LI(URACIL)]*

Table 18.4: Molecular properties selected for the reparametriza-
tion of the AM1 Hamiltonian.

Property® X Xtarget wj

D, of O4 49.1 48.9 1

D, of O4 45.0 45.5 1
dri—oa in O4 1.803 1.755 100
dri_o2 in 02 1.811 1.760 100
ari—oa—c in O4 171.8 171.9 0.5
ari—o2—c in 02 174.3 173.8 0.5
Freq(30™) of O4 3098 3100 0.01
Freq(31°%) of O4 3206 3200 0.01
Freq(32™?) of O4 3396 3400 0.01
Freq(33™) of O4 3402 3400 0.01
E(4,40) 42.5 42.0 1

F(4.3,40) 43.3 41.7 1
FE(4.5,40) 44.4 42.1 1

E(7,40) 47.3 47.1 1

E(10, 40) 48.7 49.0 1

E(4,50) 53.8 53.9 1

F(4.3,50) 50.2 50.2 1
E(4.5,50) 49.6 49.1 1

E(7,50) 47.9 48.0 1

E(10, 50) 48.6 49.0 1

E(4,60) 56.2 57.0 1

FE(4.3,60) 51.1 52.0 1
E(4.5,60) 50.1 50.4 1

E(7,60) 47.7 47.9 1

E(10, 60) 48.6 48.9 1

E(4,70) 48.1 48.6 1

E(4.3,70) 45.9 45.9 1
E(4.5,70) 46.0 45.3 1

E(7,70) 46.9 46.9 1

E(10,70) 48.3 48.6 1

E(4,80) 31.3 32.6 1

FE(4.3,80) 34.2 33.5 1
E(4.5,80) 36.6 34.8 1

E(7,80) 45.4 45.1 1

E(10, 80) 47.9 48.1 1

& D, is the dissociation energy in kcal/mol, d is a distance in A, ais an an-
gle in degrees, Freq(ith) is the ith frequency in em ™! of the O4 minimum
and E(R,) is an energy in kcal/mol (with respect to the O4 minimum) of
a geometry defined by R (in A), and @ (in degrees) defined in Figure 18.8.

18.7. ELECTRONIC SUPPLEMENTARY INFORMATION 211

Table 18.5: AM1-SRP optimized param-

eters.
Parameter Atom Value
USS H -11.481457
7S H 1.178108
BETAS H -6.060738
GSS H 13.038821
ALP H 2.920401
USS Li -3.938666
UPP Li -4.680952
7S Li 0.732507
7P Li 0.823119
BETAS Li -1.124105
BETAP Li -1.282833
GSS Li 12.136146
GSP Li 5.721065
GPP Li 5.626132
GP2 Li 5.679185
HSP Li 0.859623
ALP Li 1.367705
USS 0O -96.991556
UPP O -80.094474
7S O 3.108050
7P O 2.549183
BETAS O -29.014009
BETAP O -29.202568
GSS O 15.258495
GSP O 13.592248
GPP O 16.023733
GP2 (@) 13.051632
HSP O 0.997777
ALP O 4.428909

Table 18.6: Computed relative energies (in kcal/mol) of the main stationary
points of the [Li(uracil)|Tsystem.

MP2(full)? MP2/6-31+G(d) AM1-SRP
04 0.0 0.0 0.0
02 3.7 3.7 4.1
T 33.3 31.6 28.9
TSO4-02P 27.9 25.7
Uracil + LiT 49.6 48.9 49.1

a MP2(full)/6-311+G(2d,2p) single point calculations at the MP2(full)/6-31G(d) opti-
mized geometries from Rodgers and Armentrout [17].
b Transition state connecting the O4 and O2 isomers.

212 18. COLLISION-INDUCED DISSOCIATION MECHANISMS OF [LI(URACIL)]*
Table 18.7: Parameters for the two-body intermolecular potentials®.
| Al B | a D | b F|
Xe -C1 | 14225.136 | 2.5347848 | -595.35486 | 4.3007982 | 20.837055 | 15.909242
Xe-N8 | 65267.206 | 3.0366646 | -1178.7832 | 5.3567748 | 78.400985 | 13.299376
Xe-C3 | 28869.129 | 2.9870266 | -780.21341 | 4.945167 | 36.73045 | 12.22095
Xe-NT7 | 54992.446 | 2.9437494 | -1128.5838 | 5.2205507 | 173.21272 | 15.460329
Xe-Ch | 40173.943 | 3.2052366 | -2396.0069 | 6.3649598 | 65.69321 | 17.478756
Xe-C6 | 37601.016 | 2.8349989 | -954.5515 | 6.0897463 | 56.451637 | 15.054894
Xe-02 | 58784.833 | 3.1539858 | -1369.1143 | 6.3463582 | 92.669704 | 18.552539
Xe-04 | 45122.726 | 2.9442868 | -2398.5717 | 7.1839886 | 88.763898 | 18.26193
Xe-Li9 | 54362.191 | 3.2662061 | -1288.3261 | 4.5772667 | 23.394276 | 20.90295
Xe-H10 | 46485.505 | 4.1310207 | -626.04702 | 6.8741713 | 54.815288 | 18.079876
Xe-H11 | 28641.731 | 3.5712266 | -805.23429 | 6.6524242 | 138.38928 | 11.721251
Xe-H12 | 28010.424 | 3.6458042 | -597.21566 | 6.9939478 | 253.36613 | 13.223736
Xe-H13 | 52490.15 | 4.0446817 | -950.87406 | 6.5572047 | 895.17585 | 16.716528

2 Parameter A is given in kcal mol~', B in A_l, D and F are dimensionless. The units for

C and E are such that the potential energy is in kcal mol™ ', with R in A.

Figure 18.8: Contour plots for LiTaround uracil computed at the MP2/6-31+G(d),
AM1 and AM1-SRP levels of theory.

Q
e
Li+

MP2/6-31+G(d) AM1

A\ i
20 40 60 80 100 120 0

6 (degrees)

i’ 4
0 20 40 60 80 100 120 0 20 40 60 80 100 120

6 (degrees) 6 (degrees)

18.7. ELECTRONIC SUPPLEMENTARY INFORMATION

213

Figure 18.9: Stationary points found in our study for [Li(uracil)|"at the MP2/6-
314+G(d) and AM1-SRP levels of theory. Distances are given in

04

1755
W

i

0.0,

L 2

)

e 0. 0

MP2/6-31+G(d)
02 n

0 17600 z.ea's},% 2.466

VoW 7 2.187
ol =

AM1-SRP

02 T
1.8119
i 259@’@ 2.192
A (o=
S} F
)

TS04-02
!5
@@f{ose

TS04-02

2.954

)
:M’zmz

214 18. COLLISION-INDUCED DISSOCIATION MECHANISMS OF [LI(URACIL)]*

Figure 18.10: Analytical potential of eqn (18.3.2) (solid lines) fitted to the RI-
MP2(FC)/def2-QZVPP ab initio calculations (circles) for different orientations of
Xe and |Li(uracil)| .

©
N

—_ asf \ Q I \ .-'o [o0
= t ; - ; t 14 beon
o 12f fé’ﬁ ! ‘D r 8-
E S V 7% k. .*j A T A —
R L F
6 LV
e L

V(kcal/mol)
y—-b-?/e-
o e
. 0
- /-
o o
v
L]
o
_-—-5""“
L
o
%
é

[
e o 9
©
o
/
:
o e
o
_____.X
%
®
S
o]

V(kcal/mol)

I
190
L \ <.$

V(kcal/mol)

b >—e/ -
3 0

- G 4k . -

i I8 |

sk {10

1 L 1 1 1 1 1 1 1 1
0 3 6 9 12 15 0 3 6 9 12 15 0 3 6 9 122 15

R(A) R(A) R(A)

V(kcal/mol)

18.7. ELECTRONIC SUPPLEMENTARY INFORMATION 215

Figure 18.11: Average intermolecular potential and fitted LJ intermolecular potential
for different Xe-|Li(uracil)|"distances.

T T T
50
.g Average intermolecular potential
§ —— LJ potential
o
o
+
=254
‘c
g
2
=
o 0+
X
T T T
4 8 12 16

Xe---[Li(uracil)]” center-of-mass distance (A)

Ab initio and RRKM study of
the HCN/HNC elimination
channels from vinyl cyanide

Research is what I'm doing when I
don’t know what I'm doing.

Wernher Von Braun

Zahra Homayoon,*” Saulo A. Vazquez,* Roberto Rodriguez-Fernandez,?
Emilio Martinez-Nunez,*

*Departamento de Quimica Fisica y Centro Singular de Investigacion
en Quimica Biologica y Materiales Moleculares, Campus Vida, Univer-
sidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
and PDepartment of Chemistry, College of Sciences, Shiraz University,
Shiraz 71454, Iran.

Ab initio CCSD and CCSD(T) calculations with the 6-311+G(2d,2p)
and the 6-311++G(3df,3pd) basis sets were carried out to characterize
the VC dissociation channels leading to hydrogen cyanide (HCN) and
its isomer hydrogen isocyanide (HNC). Our computations predict three
elimination channels giving rise to HCN and another four channels lead-
ing to HNC formation. The relative HCN/HNC branching ratios as a
function of internal energy of VC were computed using RRKM theory
and the KMC method. At low internal energies (120 kcal/mol), the
total HCN/HNC ratio is about 14, but at 148kcal/mol (193nm) this
ratio becomes 1.9, in contrast with the value 124 obtained in a previ-

217

19. AB INITIO AND RRKM STUDY OF THE HCN/HNC ELIMINATION CHANNELS FROM VINYL
218 CYANIDE

ous ab initio/RRKM study at 193 nm [A. Derecskei-Kovacs and S.W.
North. In: J. Chem. Phys. 110 (1999), p. 2862]. Moreover, our the-
oretical results predict a ratio of rovibrationally excited acetylene over
total acetylene of 3.3, in perfect agreement with very recent experimen-
tal measurements [M. J. Wilhelm et al. In: J. Chem. Phys. 130 (2009),
p. 044307].

19.1 Introduction

The eliminations of hydrogen halides (HX, X = F, Cl and Br) in photofrag-
mentations of haloethylenes have been the subject of numerous theo-
retical and experimental studies.'9 1301 Photoexcitation of these com-
pounds at 193nm leads to several competing channels for HX formation.
HX eliminations may proceed either via three-centered or four-centered
transition states. The analysis of the product energy partitioning in the
photodissociation of haloethylenes indicates that HX eliminations take
place on the ground electronic state PES after internal conversion from
the electronic excited statel!13:114,119,120,130]

The photodissociation of the more complex VC chemical species has
also been studied recently,194:105:131-135] T ike for the haloethylenes, VC
exhibits radical and molecular elimination channels when it is photoex-
cited at 193 nm. Fahr and Laufer!') suggested that the formation
of triplet vinylidene (:CCHj) and HCN is a dominant channel in the
photodissociation of the molecule at 190 nm using time-resolved UV
absorption spectroscopy. Blank et al.'2l later on, suggested that all
dissociation channels occur on the ground electronic state .S after in-
ternal conversion from the electronically excited S; state. The reaction
mechanism leading to triplet vinylidene and HCN was ruled out based on
energy conservation arguments.'?l In a more recent study, Wilhelm et
al.l'%] rendered further support to the exclusion of the triplet vinylidene
+ HCN reaction path, using time-resolved Fourier transform infrared
emission spectroscopy (TR-FTIRES).

Derecskei-Kovacs and North!'® performed ab initio calculations of
the dissociation channels of VC and found two different pathways for
HCN formation. The first one proceeds via a three-centered (3C) tran-
sition state forming singlet vinylidene and hydrogen cyanide (HCN) and

19.1. INTRODUCTION 219

the second one proceeds via a four-centered (4C) transition state giving
rise to acetylene (HCCH) and hydrogen isocyanide (HNC) as coprod-
uct. According to their RRKM calculations, the 3C process is 124 times
faster than the 4C process for an energy corresponding to a photon
wavelength of 193 nm. This means that, according to the HCN(HNC)
reaction paths described above, the HCN/HNC ratio would be 124; i.e.,
HNC formation is negligible. Later on Letendre and Dail'*¥l, using the
TR-FTIRES technique, found significant IR emission from acetylene and
HNC, which is in contradiction with the ab initio results of Derecskei-
Kovacs and North.'" However, the relative importance of the HCN
and HNC reaction mechanisms was not determined in the experimental
study.

In the most recent experimental study on the photodissociation of VC
and perdeuterovinyl cyanide at 193 nm, Wilhelm et al.l'%l were able to
discern the relative abundance of the HCN and HNC products. They
deduced the HCN /HNC ratio assuming that the ab initio calculations of
Derecskei-Kovacs and North" mentioned above were correct. In par-
ticular they assumed that HCN is formed alongside with vinylidene and
HNC is formed with acetylene. Additionally, if vinylidene is formed as a
coproduct of HCN, the rapid vinylidene-acetylene isomerization process
will lead to highly rovibrationally excited acetylene, since the process is
very exothermic.l'?l When acetylene is formed as a coproduct of HNC,
no isomerization takes place and its rovibrational energy distribution
will be colder. Following these arguments and their measured ratio of
excited acetylene to total acetylene formation (0.77) they obtained a
value for the HCN/HNC branching ratio of 3.3 (0.77/0.23). Wilhelm
et al.l'%! claimed that the ab initio calculations of the transition states
for the HCN and HNC formation processes should be re-examined since
the RRKM branching ratio calculated in the ab initio study is 124,104
in sharp contrast with their experimentally determined value of 3.3. In
particular, Wilhelm et al.l'%l suggest that the 4C transition state should
be ~ 10.5 kcal/mol below the 3C transition state to reconcile theory
with experiment. However, the previous ab initio study predicts the 4C
transition state to lie ~ 9 kcal/mol above the 3C transition state.!'94
In our opinion, it seems more plausible that new HCN(HNC) reaction

19. AB INITIO AND RRKM STUDY OF THE HCN/HNC ELIMINATION CHANNELS FROM VINYL
220 CYANIDE

paths, not found in the previous ab initio study,'° may contribute
significantly to the formation of HCN or its isomer HNC.

In this paper further electronic structure calculations were performed
to characterize the relevant regions of the ground state PES associated
with the HCN and HNC eliminations from VC. Microcanonical k(E)
rate constants were also computed as a function of the internal energy
of VC using RRKM theory. With the calculated k(E) and modeling
the kinetics using a Monte Carlo technique the HCN and HNC product
abundances were evaluated for the different reaction paths and compared
with the recent experimental results of Wilhelm et al.[1%%]

19.2 Computational details

A. Electronic structure calculations.

Ab initio calculations were carried out to model the ground state PES of
the HCN and HNC elimination channels from VC cyanide. The calcula-
tions involve CCSD/6-311+G(2d,2p) optimizations and frequency anal-
yses to characterize the stationary points as minima or saddle points,
and to evaluate zero-point vibrational energies (ZPE). The minimum
energy path (MEP)!30 was followed at the MP2/6-31+C(d,p) level of
theory to make sure that a transition structure connects with the ex-
pected minima.

In order to obtain accurate energies, we also performed CCSD(T) /6
-311+4+G(3df,3pd) single point calculations at the CCSD/6-311+G(2d,
2p) optimized geometries [these calculations are referred as CCSD(T)/
6-311+-+G(3df,3pd)//CCSD/6-3114+G(2d,2p)|.

The GAUSSIANO9 program package.'3" was employed for all the
electronic structure calculations.

B. Kinetic calculations.

In this study, the following elementary steps associated with the elimi-
nation of HCN (paths [-III) and HNC (paths IV-VII) were taken into
account (see also Figures 19.1 and 19.2):
Path I: .

Vo —%— :CCH; + HCN (1)

19.2. COMPUTATIONAL DETAILS 221

Path IL:
VC —2—> HCCH + HCN (2)
Path III:
3 -
Ve k Intl- 111 (3)
Intl-II —>— HCCH + HCN (4)
Path I'V:
6 -
Ve k Intl-IV (5)
Intl- IV ——— HCCH + HNC (6)
Path V: "
9
VC kmk Intl V (7)
IntlV —» :CCH, + HNC (8)
Path VI: ’
Intl-III —2-> :CCH, + HNC (9)
Path VII: ’
Intl- TIT —2— HCCH + HNC (10)

Rate coefficients ks(F) were calculated assuming that Int1-1V is con-
nected with the products via TS3-IV, since the energy of Int2-IV, after
adding the ZPEs, is above that of TS2-IV (see Figure 19.2). Addition-
ally, for the rate coefficients k11 (F), the assumption is that once TS2-V
is overcome, vinylidene and HNC are obtained. Both assumptions seem
reasonable but nevertheless, as will be seen below, the contribution of
paths IV and V to the formation of HNC and HCN is negligible in
the whole range of energies studied here, in comparison with the others
paths.

The microcanonical rate coefficients k;(E) (with i = 1 — 13) were
calculated using RRKM theory:!!38]

) . 615571'
() = o2]]jp(fE) n (19.2.1)

19. AB INITIO AND RRKM STUDY OF THE HCN/HNC ELIMINATION CHANNELS FROM VINYL
222 CYANIDE

where o is the reaction path degeneracy, p;(E) is the density of states
at the reactant, P;(E) is the one-dimensional tunneling probability as
a function of energy E and €% are the vibrational energy levels of
the transition state for elementary step 7. In the classical limit of no
tunneling, the numerator of eqn 19.2.1 tends to the total number of
states at the transition state with energy less than or equal to E. A
generalized Eckart potential was used to calculate P;(F), and the density
of states were evaluated by direct count of the harmonic vibrational
states using the Beyer-Swinehart algorithm. The CCSD(T)/6-311++G
(3df,3pd)//CCSD/6-311+G(2d,2p) energies and the CCSD/6-311+G(2
d,2p) frequencies were employed for these calculations. The vibrational
frequencies for all the stationary states are collected in Table 19.2 of the
Supporting Information.

The method used here to model the time evolution of reactants, in-
termediates and products is KMC.I"8™ KMC is a very useful Monte
Carlo simulation for modeling the transient behavior of various molecu-
lar species that participate in many highly coupled chemical reactions.
The method is an alternative to the traditional procedure of numerically
solving the deterministic reaction rate equations.

To calculate the populations of all the species involved in the pho-
todissociation of VC as a function of time, the above reaction paths were
considered and the RRKM rates calculated as above were employed. To
obtain an average value of these populations, 10 KMC runs were per-
formed for each internal energies of VC with the same initial conditions.
Each of the 10 KMC runs differ in the random number seed used in
the stochastic procedure. Using a higher number of KMC runs for each
energy does not change the branching ratios obtained in this study.

19.3 Results and Discussion

A. Electronic structure calculations.

The different paths found in our electronic structure calculations for the
HCN and HNC eliminations from VC are shown graphically in Figures
19.1 and 19.2, which include relative energies and ZPE contributions.
A total of three HCN elimination channels (paths I-III in Figure 19.1)

19.3. RESULTS AND DISCUSSION 223

and four HNC elimination channels (paths [V-VII in Figure 19.2) were
found in this study. The geometries of all the stationary points found in
this study is collected in section 19.6.2 of the Supporting Information.

Path [proceeds via a three-centered transition state (TS1-I) and is
the same as that found by Derecskei-Kovacs and North!'%! (see Figure
3 of their paper) in their ab initio study. The energies of the stationary
points found in our study agree very well with their QCISD(T)/6-311
++G(d,p)//MP2/6-31C(d,p) calculations.'%! In particular, TSI-I lies
100.6 kcal/mol above VC according to our CCSD(T)/6-311++G(3df,
3pd)//CCSD/6-311+G(2d,2p) calculations, in comparison with 100.8
kcal /mol, found by Derecskei-Kovacs and North (their transition state
structure is called A2 in Figure 3 of their paper).[104

Figure 19.3 shows the path connecting vinylidene (:CCHs) and acety-
lene (HCCH). The CCSD(T)/6-311++G(3df,3pd)//CCSD/6-311+G(2
d,2p) calculations predict an isomerization transition state that lies only
1 kcal/mol above vinylidene, suggesting a rapid isomerization process.
In a previous chemical dynamics simulation study, conducted in our re-
search group, a lifetime of only 37 fs was found for vinilydene.l'?0l This
value is in agreement with that estimated by Ervin et al.,l'3%l 40—200 fs,
based on negative ion photodetachment spectral linewidths. Considering
the vinylidene-acetylene potential energy profile, it was also suggested
that part of the reverse isomerization barrier (of 43.3 kcal/mol) may be
released as translational energy of the fragments in the photodissocia-
tion of vinyl chloride."'* This suggestion was confirmed in our previous
chemical dynamics study and the snapshots of the trajectories showed
a concerted mechanism with isomerization (of vinylidene to acetylene)
and (HCI) elimination occurring at the same time in the dissociation of
vinyl chloride.l'?] A similar mechanism was invoked by Blank et al.l'3?!
to explain the product energy partitioning found in the photodissocia-
tion of VC at 193 nm.

The other two paths that generate HCN (II and III in Figure 1) were
not found in the previous ab initio study.'% Path II proceeds via a
four-centered planar transition state (TSI1-II) that lies 118.0 kcal/mol
above VC. HCN is produced with acetylene (instead as vinylidene)
as coproduct. Path III first involves the isomerization of VC to vinyl

19. AB INITIO AND RRKM STUDY OF THE HCN/HNC ELIMINATION CHANNELS FROM VINYL
224 CYANIDE

isocyanide (Int1-II1).1"9 Then, vinyl isocyanide gives rise to HCN and
acetylene, a process that goes through a five-centered transition state
(TS2-III). The energy of this transition state is 115.3 kcal/mol with
respect to VC.

Paths IV—VII in Figure 19.2 form hydrogen isocyanide (HNC). Path
[V proceeds via a planar three-centered transition state (T'S1-IV), which
is the same as transition state Al in the previous ab initio study.l'4
They refer to this path as a four-centered mechanism, because they claim
it connects the reactant with acetylene and HNC directly (see Figure 4 of
their paper).l% However, MEP calculations performed here show that
TS1-IV actually connects the reactant with cycloprop-2-enimine (intl-
IV in Figure 2), which lies 49.8 kcal /mol above the reactant. Cycloprop-
2-enimine can give rise to acetylene and hydrogen isocyanide (HNC)
after isomerizing via the unstable intermediate Int2-IV. The energy of
TS1-1V is 107.2 kcal/mol with respect to VC, in comparison with the

109.6 kcal /mol found in the previous ab initio study.'"!

Three more mechanisms that form HNC have been identified in this
study. Path V proceeds through allen-1-imine (Int1-1V), an intermediate
formed after H transfer between the C and N atoms of VC. The H trans-
fer transition state TS1-V is planar and lies 105.0 kcal/mol above VC.
Allen-1-imine can react back to the reactant or dissociate to vinylidene
and HNC via the Van der Waals minimum Int2-V.

Paths VI and VII share the first part (the isomerization of VC to vinyl
isocyanide) with path III. Vinyl isocyanide (Int1-11T) can dissociate via
either three-centered or four-centered planar transition states giving rise
to vinylidene + HNC(channel VI) and acetylene + HNC(channel VII),
respectively (see Figure 19.2). The energies of these two transition states
are 110.1 and 115.2 kcal /mol with respect to the global minimum (VC),
respectively. These two transition states resemble the corresponding
three-centered and four-centered transition states from VC (TS1-1 and
TS1-1T). The main difference is the HCN(HNC) isomer formed in each
process; TS1-I and TSI1-IT form HCN, whereas TS1-VI and TS1-VII
form HNC. The energies of the three-centered transition states (TS1-I
and TS1-VI) are 5 — 7 kcal /mol lower than those of the corresponding
four-centered transition states (TS1-II and TS1-VII). As will be seen

19.3. RESULTS AND DISCUSSION 225

below, the three-centered and four-centered mechanisms from VC (paths
[and II) and vinyl isocyanide (paths VI and VII) are major channels
for the HCN and HNC formation, respectively.

B. Kinetics calculations.

As indicated above, the population of the various species involved in
paths [-VII can be modeled using combined RRKM and KMC calcu-
lations. The RRKM calculations are used for the rate coefficients and
the KMC ones for the relative population of all the molecular species.
In particular, we are interested in the t —> HCN and HNC relative
populations for different VC internal energies. Figure 19.4 shows these
populations as a function of time and reaction path for three different
energies: 120, 148 and 200 kcal/mol. The energy of 148 kcal/mol
corresponds to a photon wavelength of 193 nm, and was selected to

compare with the experimental results of Wilhelm et al.l*0%]

At the lowest energy of 120 kcal/mol, Path I is, by far, the most
important one and HCN is formed via this mechanism with a probability
of 93% (see also Table 19.1). Paths II and III contribute to the HCN
abundance only 0.6%. The total HNC yield amounts 6.3%, with path V
being slightly favored over the other HNC paths. The total HCN/HNC
branching ratio, which reaches a constant value after 300 ns (see Figure
19.4), is 13.7 at this energy.

At 148 kcal /mol (193 nm), the percentage of HCN formed via path I
decreases to 55%, with respect to the 93% calculated at 120 kcal /mol.
At this energy HCN is also formed significantly via the four-centered
mechanism 11 (8.2%) and to a less extent via path III (2.2%). HNC
is formed primarily through paths VI (17.6%) and VII (12.0%). The
fact that paths VI and VII, which proceed via relatively high-energy
transition states become increasingly important as the internal energy
increases is due to the presence of very low vibrational frequencies for the
associated transition states (TS1-VI and TS1-VII; see Table 19.2 of the
Supporting Information) that makes these processes entropically more
favorable. The total HCN/HNC branching ratio at 193 nm obtained in
our study decreases (with respect to the value at 120 kcal/mol) to 1.9,

supporting the recent experimental papers of Dai and co-workers!10:134]

19. AB INITIO AND RRKM STUDY OF THE HCN/HNC ELIMINATION CHANNELS FROM VINYL
226 CYANIDE

that the relative presence of HNC is more important than expected from
the previous ab initio calculations.'% This point will be discussed in
more detail below.

At the highest energy considered in this study (200 kcal /mol), HCN
formation via the four-centered mechanism (path II) becomes the dom-
inant channel with a percentage of 32% vs 28% obtained for the three-
centered mechanism (path I). As discussed above, the increasing im-
portance of path II with internal energy can be understood in terms of
entropic effects. As the energy increases the entropic factor becomes
more important than the relative magnitude of the energy barriers (en-
thalpic factor). The presence of low vibrational frequencies in TS1-I1
makes the numerator of eqn 19.2.1 to increase more rapidly with energy
for path II than for path I. Again this entropic factor explains why HNC
produced via path VII is more important at the highest energy than that
produced via path VI, even though the corresponding transition state
for path VII is 5 kcal/mol higher in energy than that for path VI.

Finally, the relative abundance of the HCN and HNC isomers pro-
duced in each path is depicted graphically in Figure 19.5 for a range of
internal energies. For all energies except the lowest ones, only paths I,
I, VI and VII contribute significantly to the abundance of HNC and
HCN isomers. As seen in the figure, the three-centered HCN forma-
tion mechanism (Path I) dominates up to an energy of 195 kcal/mol.
For higher energies, the four-centered mechanism (Path II) is the ma-
jor one. In the whole range of energies, the HCN abundance is always
greater than the HNC abundance; the HCN /HNC ratio however, shows
a minimum value of 1.3 at 180 kcal/mol. This minimum ratio coincides
with the maximum in the curve for the HNC abundance produced in
channel VII. At this energy the relative importance of Paths I, II, VI
and VII is: 1, 0.75, 0.62 and 0.71, respectively. These results indicate
that the dissociation channels that produce HNC are major dissociation
channels that compete with those that generate HCN. This results is in
agreement with the most recent experimental results.!'%!

19.3. RESULTS AND DISCUSSION 227

C. Comparison with experiment.

The HCN/HNC branching ratio calculated by Derecskei-Kovacs and
North!'" at 148 kcal /mol (193 nm) was 124. As mentioned above, the
previous ab initio results are incorrect since what they call four-centered
dissociation (Fig. 4 of their paper!'% or TS1-IV in this paper) does not
actually connect VC with acetylene and HNC; this path is more complex
and involves the intermediate cycloprop-2-enimine, as explained above.
Nevertheless, taking only paths I and IV into account, as the previous
ab initio study predicted,'%4 the HCN /HNC branching ratio, calculated
with our computed paths and frequencies, would be 79. This value is
lower than that obtained using by Derecskei-Kovacs and North!'%4 of
124 because the corresponding transition state (TS1-IV in our paper and
A1 in their paper) is 2.4 kcal/mol higher in energy in their calculations
compared to our results and also because path IV is different in their
study. In any case, paths I and IV alone are not enough to explain the
experimental results of Wilhelm et al.l'%l as they claim in their paper.
Taking into account all the channels found in our study, the computed
HCN/HNC branching ratio is 1.9 at 193 nm. This value is much smaller
than 124 (or 79) and tells us about the importance of the new channels
found in this study. Moreover, as detailed below, our computed paths
and kinetic results are in perfect agreement with the recent experimental

data of Wilhelm et al.[10]

Wilhelm et al.l'%! estimated the HCN/HNC branching ratio indi-
rectly. They measured the ratio of highly rovibrationally excited acety-
lene population to the total acetylene population formed as a function
of time in the photodissociation of VC at 193 nm. Analyzing their time-
resolved infrared spectra, they obtained a value of 0.77 for the nascent
population ratio of excited/total acetylene molecules. This means that
the ratio of rovibrationally excited acetylene to minimally excited acety-
lene is 0.77/0.23 = 3.3. To interpret this value, they suggest that
highly excited acetylene comes from vinylidene, since the vinylidene-
acetylene isomerization process adds an additional 42.3 kcal/mol (see
Figure 19.3) of internal excitation on top of any energy originally par-
titioned to vinylidene. In addition, the fraction of minimally excited
acetylene is formed directly in the photodissociation of VC as one of

19. AB INITIO AND RRKM STUDY OF THE HCN/HNC ELIMINATION CHANNELS FROM VINYL
228 CYANIDE

the photofragments.!'%! In addition, based on the two mechanisms pro-
posed in the ab initio study of Derecskei-Kovacs and North,'4 Wil-
helm et al.l'®! regarded the total population of vinylidene as the HCN
population, since these are the two photofragments of the 3C process
from VC (Path I here and see also Figure 3 of Derecskei-Kovacs and
North [104]), whereas acetylene is formed directly (without a previous
isomerization) alongside with HNC according to Figure 4 of Derecskei-
Kovacs and North [104]. Therefore, they equated the population of
highly rovibrationally excited acetylene (or vinylidene) to that of HCN
and the population of minimally rovibrationally excited acetylene to
that of HNC, determining a HCN/HNC ratio of 3.3.

As indicated above, the present ab initio calculations show that HCN
may be formed either with vinylidene as coproduct (Path I) or with
acetylene as coproduct (Paths Il and III). Moreover, HNC can be formed
as well alongside with acetylene (Paths IV and VII) or vinylidene (Paths
V and VI). Assuming, as Wilhelm et al.l'! did, that rovibrationally ex-
cited acetylene comes from vinylidene and that the population of rovi-
brationally unexcited acetylene is a consequence of the direct formation
of this molecule, one can recalculate theoretically, using our ab initio
and kinetic modeling results, the vinylidene/acetylene ratio to compare
with that measured by Wilhelm et al.'%’l Using the populations of Table
19.1 at 148 kcal/mol, the vinylidene/acetylene ratio (calculated as the
sum of the populations of Paths I, V and VI divided by the popula-
tions of Paths II, 111, IV and VII) is 3.3, in perfect agreement with the
experimental measured value of Wilhelm et al.['%l

Table 19.1: Final relative populations of HCN and HNC
obtained in channels I-VII.

E? HCN HNC HCN/HNC

I Imjar|imv,| v VI | VII
120 1 92.7| 05 (0.1 |04 |38 | 24| 0.1 13.7
148 | 553 | 82122 (0.7 40| 17.6 | 12.0 1.9
200 | 28.1 | 31.8 | 3.6 | 0.6 | 2.6 | 14.1 | 19.2 1.7

2 Energy in kcal /mol.

19.4. CONCLUSIONS 229

19.4 Conclusions

The ab initio calculations performed in this work provide seven channels
for HCN(HNC) elimination from VC, five of which are new; previous ab
initio calculations found only two channels. Three of these new paths are
extremely important to explain the experimentally observed HCN/HNC
branching ratios. Among the new paths found here the major ones to
generate HCN or HNC are:

1. A four-centered transition state that leads to acetylene and hydro-
gen cyanide (Path II).

2. Paths VI and VII that involve, as a first step, the isomerization of
VC to vinyl isocyanide.

Then, from vinyl isocyanide there is a three-centered mechanism leading
to vinylidene and hydrogen isocyanide (Path VI) and a four-centered
mechanism leading to acetylene and hydrogen cyanide (Path VII).

Additionally, one of the paths reported in a previous ab initio study!**
was found to be wrong, since the transition state does not really connect
the expected chemical species (VC and HCCH+ HNC). This path (IV
in our study) proceeds via cycloprop-2-enimine and is more complex, as
it involves more steps than previously thought. This path was found
to be unimportant to calculate the HCN/HNC branching ratios. The
remaining two paths are also not very important and involve isomer-
izations of VC to vinyl isocyanide (Path III) and allen-1-imine (Path
V).

With this new ab initio picture of the HCN(HNC) elimination chan-
nels, the HCN/HNC branching ratios were calculated from the RRKM
rate coefficients and KMC simulations. The predicted HCN /HNC branch-
ing ratio at 193 nm is 1.9, which differs markedly from the previous
theoretical value of 124. Moreover the theoretical calculations of the
present work also explain the recently measured value for the ratio of
rovibrationally excited acetylene to total acetylene in the photodissoci-
ation of VC at 193 nm. The value obtained experimentally is 3.3, in
perfect agreement with that calculated in this work using our ab ini-
tio/RRKM/KMC results.

19. AB INITIO AND RRKM STUDY OF THE HCN/HNC ELIMINATION CHANNELS FROM VINYL

230 CYANIDE

19.5 Acknowledgement

The authors thank CESGA for the use of their computational devices.
S.A.V. and E.M.N. thank “Xunta de Galicia” for financial support (“Ax-
uda para a Consolidacion e Estructuracion de unidades de investigacion
competitivas do Sistema Universitario de Galicia, 2007/50, cofinanciada
polo FEDER 2007-2013"). Z. H. acknowledges financial support from
the Ministry of Science, Research and Technology of Iran.

19.5. ACKNOWLEDGEMENT 231

Figure 19.1: Schematic potential energy diagram for paths I-III (leading to HCN
formation). The values are the relative energies (in kcal/mol).

Path |

° TS1-
-

- i
-
100.6 p—

ﬁ‘l.a
1 "
>o+0
¢ e
:CCH, + HCN

‘.
o
4 4

Path Il

°
!4' TS1-Il

S0
118.0 e—

39.6

[Ny = .
+
L 2 B

e VC HCCH + HCN

9
Path lll + / Ts2-m
)DJJ

TSI, @
ey

4 2
57.4 e— 39.6

ha
=
-

L 9
(o = Y
+
*DH

@ 9 HCCH + HCN
had ve Int1-11l

19. AB INITIO AND RRKM STUDY OF THE HCN/HNC ELIMINATION CHANNELS FROM VINYL

232 CYANIDE

Figure 19.2: Schematic potential energy diagram for paths IV-VII (leading to HNC
formation). The values are the relative energies (in kcal/mol).

Path IV
TS1-V
'f- TS2lvV Int2-IV ng-lv
¥ » . -
107.2 ’ > 3 »
. o *\ » l“ j"'.
808 *) » B5.6
80.9
53.8
— I
.
° ;o
A Int1-V 9.0
=] - J J
o4
4 J. 49.8
> VC HCCH + HNC
c Path V
TStV be TS2-V Int2-V
J‘ J‘, “ \L‘ rl
105.0 = 8y, 955 P00 961
S —— S—
4 4
94.6 >0+ pe
39.1 y 3
— :CCH, + HNC
‘yeae Int1-v
4 o
|
]
2
»a VC
-]
’ Paths VI and VII
2
£ TS1-vIl
Ts1-vi % 1152 JO9
& .:L — 061
TS1-1 , @2 ¢ 110.1 —
=¥ 2 @
— @%@ .CCH,+HNC
7.4 I
211 538 3 2
. +
— $ "9 HCCH+HNC
2
I 4 .
¥ 2@ Inti-m
9 4 F]

19.5. ACKNOWLEDGEMENT 233

Figure 19.3: Schematic potential energy diagram for the vinylidene-acetylene iso-
merization process. The values are the relative energies (in keal /mol).

Tsisu
~

+&9
ﬂa ﬁ 43.3
9

1"._
e 0.0
:CCH, L@
HCCH

Figure 19.4: Populations, as a function of time, of HCN and HNC obtained in paths
[-VII for three different energies and total HCN/HNC ratio.

E = 120 keal/mol
—— 0 .

100
—
F 2 HCM-I
! 5
1 —— HCN-II S
& e | HCN-III -
| o
g HNC-IV B e
g | HNC-V g
1| T
2 (o HNEC=WI S =5
® 20 S
2 CHNC-VII
g
z: ol
@ i 200 A0¢ B00 800 1000 0 200 400 B00 B0 1000
Time ns Time ns
E = 148 keal/mol
V0D v . . F) <
&1 3
= |
st
g
‘E | - '% 2
€ a0
3 |/ 5
@ ! R
= g
g | '
— 8 = E ; o .
oo 0.5 1.0 1.5 20 a.0 0.5 1.0 15 z0
Time (ns) Time (ns)
E = 200 kcal/mol
100 7 T - F] .
80 s
g |
@ 807 2
= | [
-E 40 g
g 5
@ g N
=
=
& o

- - . ——— . .
120 160 200 o ao ED 120 160 200

Time (fs) Time (fs)

19. AB INITIO AND RRKM STUDY OF THE HCN/HNC ELIMINATION CHANNELS FROM VINYL
234 CYANIDE

Figure 19.5: Final populations of HCN and HNC obtained for paths I-VII and total
HCN/HNC ratio as a function of energy.

100

. HCN-I 14
HEN-II

&0 \\ 12
. HCN-1I

\

\ —— HNC-1V 10

80 AN —— HNC-V
“«

HCN/HNC ratio
@

Relative abundance (%)
R

o

Energy (keal/mol) Energy (keal/mol)

19.6. SUPPORTING INFORMATION 235

19.6 Supporting Information

Supporting Information Available. Vibrational frequencies and ge-
ometries of all stationary points. This material is available free of charge
via the Internet at http://pubs.acs.org/.

19.6.1 Frequencies of all stationary points found in this study

Table 19.2: Frequencies of all stationary points found in this study

Species | Frequencies (cm™1)

VC 235; 344; 570; 696; 872; 980; 1005; 1118; 1331; 1467; 1689; 2322; 3173; 3214; 3271
TSI-T | 14174, 127; 184; 276; 521; 596, 778; 898; 953; 1353; 1615; 2187; 2272; 3153; 3271
:CCH2 417; 765; 1253; 1680; 3141; 3235
HCN 736(2); 2158; 3451
TS2-1 9761 ; 573; 915; 1836; 2552; 3377
HCCH | 607(2); 747(2); 2029; 3415; 3511
TS1-1I 163414; 49; 106; 301; 384; 627; 696; 760; 790; 907; 1853; 2085; 2168; 3353; 3427
TSI-IIT | 4514; 237; 413; 604; 685; 958; 1013; 1044; 1303; 1415; 1652; 1079; 3175; 3264; 3280
Int1-ITT 192; 237; 520; 707; 893; 942; 988; 1141; 1345; 1458; 1698; 2208; 3182; 3230; 3284
TS2-IIT | 13164; 124; 253; 338; 405; 600; 678; 891; 000; 976; 1759; 1877; 2123; 3303; 3403
TS1-1V 14361%; 411; 469; 570; 597; 753; 954; 970; 1076; 1272; 1365; 1778; 2120; 3047; 3211
Int1-IV | 452; 457; 713; 844; 845; 890; 930; 1048; 1146; 1281; 1576; 1832; 3245; 3281, 3516
TS2-IV | 461¢; 346; 392; 503; 633; 715; 917; 989; 1088; 1278; 1444; 2113; 3050; 3124; 3718
Tnt2-IV | 229; 344; 516, 591; 670; 739; 941; 990; 1156; 1254; 1414; 2122; 2981; 3116; 3692
TS3-IV | 474¢; 78; 282; 525; 630; 632; 687; 871; 882; 1156; 1708; 1837; 3320; 3364; 3625
HNC 419(2); 2091; 3842
TS1-V 20361; 208; 255; 428; 584; 718; 881; 972; 1081; 1481; 1686; 1974; 2338; 3126; 3220
Int1-V | 162; 221; 379; 589; 866; 904; 953; 1073; 1147, 1489; 1707; 2206; 3132; 3214; 3498
TS2-V 1473; 84; 115; 272; 401; 436; 474; 664; 803; 1289; 1651; 2113; 3128; 3284; 3839
nt2-V | 74; 76; 148; 157; 164; 436; 743; 772; 779; 1258; 1704; 2093; 3137; 3230; 3579
TS1-VI 12634; 111; 150; 210; 447; 466; 835; 853; 920; 1308; 1624; 2053; 2176; 3143; 3260

TS1-VII | 13323; 40; 132; 330; 395; 615; 682; 855; 877; 935; 1813; 2060; 2097; 3329; 3409

19.6.2 Cartesian Coordinates (in A) of all stationary points
found in this study

Table 19.3: :CCH2.xyz

X y z
C [0.000000 | 0.000000 | -0.481254
C | 0.000000 | 0.000000 | 0.822130
H | 0.000000 | 0.938709 | -1.022626
H | 0.000000 | -0.938709 | -1.022626
Table 19.4: HCCH.xyz

C [0.000000 | 0.000000 | 0.601899

C | 0.000000 | 0.000000 | -0.601899
H | 0.000000 | 0.000000 | 1.663563

H | 0.000000 | 0.000000 | -1.663563

http://pubs.acs.org/

19. AB INITIO AND RRKM STUDY OF THE HCN/HNC ELIMINATION CHANNELS FROM VINYL
236 CYANIDE

Table 19.5: HCN.xyz

N [0.000000 | 0.000000 [0.652578
C [0.000000 | 0.000000 | -0.500525
H | 0.000000 | 0.000000 | -1.564896
Table 19.6: Int1-I1I.xyz
H [1.728243 [1.892979 [0.000000
C | 1.320636 | 0.894959 | 0.000000
C | 0.000000 | 0.725214 | 0.000000
H | -0.701092 | 1.544974 | 0.000000
C | -1.137810 | -1.574041 | 0.000000
N | -0.588772 | -0.538465 | 0.000000
H | 1.997293 | 0.054512 | 0.000000
Table 19.7: Int1-IV.xyz
C [-0.979481 [-0.651941 | -0.000072
H | 1.999891 | 0.786895 | 0.000095
H | -1.587159 | -1.539544 | 0.000111
C [-0.962037 | 0.681350 | -0.000129
H | -1.546591 | 1584752 | 0.000154
C | 0.303023 | -0.015183 | 0.000299
N | 1566404 | -0.131066 | -0.000135
Table 19.8: Int1-V.xyz
C [0.088169 | 1.909407 | 0.000000
H | -0.798096 | 2.531221 | 0.000000
H | 1.047627 | 2.411050 | 0.000000
C [0.000000 | 0.593153 | 0.000000
H | 0.681248 | -2.437335 | 0.000000
C | -0.019514 | -0.684988 | 0.000000
N | -0.191816 | -1.915767 | 0.000000
Table 19.9: Int2-IV.xyz
C [0.752231 [0.512909 | 0.010709
H | -2.363819 | -0.456989 | 0.594247
H | 0.979149 | 1574844 | 0.056239
C | 1592936 | -0.610264 | -0.006023
H | 2.632464 | -0.247184 | 0.036993
C | -0.566987 | 0.155356 | 0.006348
N | -1.702410 | -0.174096 | -0.107669

Table 19.10: Int2-V .xyz
0.941823 | -3.205479 | 0.000000
0.002627 | -2.663768 | 0.000000
-0.936309 | -3.205959 | 0.000000
0.002093 | -1.366377 | 0.000000
-0.003832 | 2.924519 | 0.000000
-0.001548 | 1.756679 | 0.000000
0.000000 | 0.748448 | 0.000000

oz QO | Q=

19.6. SUPPORTING INFORMATION 237

Table 19.11: TS1-ITI.xyz

C [1.425012 [-0.263427 | 0.079283

C | 0.354129 | 0.498225 | -0.121163
C | -1.120426 | 0.188334 | 0.593364

N | -1.145832 | -0.412558 | -0.440426
H | 2.404215 | 0.125561 | -0.158428
H | 0.372692 | 1.481893 | -0.554674
H | 1.345628 | -1.258340 | 0.487184

Table 19.12: TS1-11.xyz

C [-1.123017 | 1.530547 | 0.000000
C | -1.251470 | 0.297002 | 0.000000
C | 0.965619 | -0.541190 | 0.000000
N [1.618519 | -1.510187 | 0.000000
H | -1.450019 | 2.546888 | 0.000000
H | -1.426411 | -0.756012 | 0.000000
H | 0.000000 | 1.062279 | 0.000000

Table 19.13: TS1-1V .xyz

C [0.098171 [-1.392816 [0.000000
H | -1.270267 | -0.014155 | 0.000000
H | 0.644486 | -2.342959 | 0.000000
C | 0.951278 | -0.306501 | 0.000000
H | 2.022457 | -0.173053 | 0.000000
C | 0.000000 | 0.737394 | 0.000000
N | -1.099053 | 1.185958 | 0.000000
Table 19.14: TS1-I.xyz
C [-0.044176 [-1.730040 [0.000000
H | -1.094048 | -1.490714 | 0.000000
H | 0.256536 | -2.772055 | 0.000000
C | 0.957042 | -0.884377 | 0.000000
f | 1.162350 | 0.306873 | 0.000000
C | 0.000000 | 1.073269 | 0.000000
N | -0.828862 | 1.886112 | 0.000000

Table 19.15: TS1-VI.xyz

C [1.293549 | 1.121106 | 0.000000
C | 0.000000 | 1.074190 | 0.000000
N | -1.165554 | -0.833953 | 0.000000
C | -0.364829 | -1.706840 | 0.000000
H | 1.720937 | 2.119168 | 0.000000
H | -1.073535 | 0.530804 | 0.000000
H | 1.939154 | 0.256966 | 0.000000
Table 19.16: TS1-V .xyz
C [1.791655 [0.127867 [0.000020
H | 1.992513 | 1.193394 | 0.000108
H | 2.647592 | -0.532279 | 0.000039
C | 0555741 | -0.367625 | -0.000073
H | -0.970507 | -1.029273 | 0.000255
C | -0.716863 | 0.187548 | -0.000026
N | -1.921829 | 0.097346 | 0.000011

19. AB INITIO AND RRKM STUDY OF THE HCN/HNC ELIMINATION CHANNELS FROM VINYL
238 CYANIDE

Table 19.17: TS2-111.xyz

-1.916255 | 1.816458 | 0.000000
-1.185312 | 1.030689 | 0.000000
-1.149921 | -0.223557 | 0.000000
-1.076098 | -1.289589 | 0.000000
1304753 | 0.124243 | 0.000000
1.233604 | -1.039622 | 0.000000
0.000000 | 1.162233 | 0.000000

T Z| QI Q=

Table 19.18: TS2-1V .xyz

C [0.819819 [0.591947 | -0.009475
H | -2.180138 | -0.827002 | 0.384548
H | 1.153138 | 1.611530 | 0.158940
C | 1.368336 | -0.662794 | -0.042733
H | 2.443028 | -0.710931 | 0.161078
C | -0.493515 | 0.170351 | 0.001644
N | -1.654838 | -0.095803 | -0.057311
Table 19.19: TSiso.xyz
C [0.078325 [0.519890 | 0.000000
C | 0.078325 | -0.732774 | 0.000000
H | -1.041882 | -0.311646 | 0.000000
H | 0.101977 | 1.588950 | 0.000000
Table 19.20: TS2-V .xyz
H [1.786035 | -1.336957 | 0.000000
C | 0.835235 | -1.839086 | 0.000000
H | 0.801039 | -2.926625 | 0.000000
C | -0.371884 | -1.319233 | 0.000000
C [0.000000 | 1.028607 | 0.000000
N | -0.599762 | 2.028314 | 0.000000
H | -1.168847 | 2.843656 | 0.000000

Table 19.21: TS3-1V .xyz

C [-1.008648 | -0.552746 | -0.000053
H | 2.489365 | 0.123182 | 0.000350
H | -1.393511 | -1.550668 | -0.000283
C | -1.447043 | 0.635924 | 0.000000
H | -1.114538 | 1.652427 | 0.000339
C | 0.698849 | -0.543933 | 0.000218
N | 1.508534 | 0.362797 | -0.000201
Table 19.22: VC.xyz
C [-0.583152 [-0.536271 | 0.000000
N | -1.068238 | -1.586302 | 0.000000
C [0.000000 | 0.785121 | 0.000000
H | -0.694962 | 1.611652 | 0.000000
C | 1.321786 | 0.978464 | 0.000000
H | 2.013999 | 0.149805 | 0.000000
H | 1.726828 | 1.978777 | 0.000000

Part V

Conclusions

239

Conclusions

There are two ways of constructing
a software design: One way is to
make it so simple that there are
obviously no deficiencies, and the
other way is to make it so
complicated that there are no
obvious deficiencies. The first
method is far more difficult.

Sir Charles Antony Richard Hoare

The main conclusions of this Thesis are enumerated as follows:

Core GA routines were isolated and GA was modified to deal with
integer parameters in the functions employed to fit intermolecular
interactions.

A flexible interface was designed with a well known logic to help
adding new features sharing code between distinct package utilities
to maintain the oneness of the whole. In deep coding was done to
increase portability between different systems.

Robust routines to read input files were coded. Over these reading
routines, a configuration system was created. This system supports
configuration sections featuring key/value pairs ready to expand
new capabilities with no effort.

241

242

20. CONCLUSIONS

Specifying a new intermolecular potential energy function can be
done modifying clear and explained source code or using a file tem-
plate to fill up with user code.

To use an analytical expression, a complete virtual FPU was devel-
oped with its own machine instruction set, a compiler to translate
the expression to binary executable code or to its assembler rep-
resentation. Also a new utility was developed to test analytical
expressions compiling and running the resulting executable.

To interface with external programs a communication protocol was
developed, so with a minimum effort, the external programs can
configure GAFit behavior. This characteristic was used to build
the two MOPAC interfaces but it is general to deal with any exter-
nal program.

A first MOPAC interface was built coding a set of tools and gluing
them all together in a shell script, the external-mopac2009.sh:
The injector, in C, to configure GAFit and create MOPAC input
files, the MOPAC binary executable to run each job, the extrac-
tor, in Perl, to process the output files and write results to a file,
extracted.data, with a well known file format, and the fitter, in
Fortran, to evaluate the results upon the user requirements. If the
variables to control and fit are the same as in MOPAC, it only
must be changed the injector and extractor tools to use a new
external program.

In the case of MOPAC 2012, where some output in Cartesian coor-
dinates are missing, the extractor utility also translates internal
coordinates to Cartesian coordinates using quaternion maths to
calculate 3D rotations.

An enhanced MOPAC interface was coded replacing the MOPAC
executable with a new tool: shepherd, which can launch and con-
trol running MOPAC jobs maintaining an optimal number of par-
allel MOPAC processes, depending on available resources, to speed
up calculations.

243

1 A perl tool, needle, was developed to identify types of atoms,
which are needed to calculate the different types of interactions
between two fragments and automatically build the atom2type file
from Cartesian coordinates.

The bedit tool, source code in C and Fortran, was designed to help
modifying atom types, charges and bounds in the corresponding
input files.

A GUI program, JobTreeEditor, was developed in Java using the
swing widget toolkit to create and modify the job configuration file
job.tuxt.

fitview, written in C and Fortran, an utility to write and plot data
from results generating gnuplot files was developed.

A complete set of case examples is included with code and ex-
plained.

The package was automated with the GNU build system?. It can be
deployed, compiled, installed and run in many systems, including
MacOSX.

LAlso known as the autotools: http://www.gnu.org/software/automake/manual/html node/
Autotools-Introduction.html

http://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html
http://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html

Source code

A.1 Source files

Source files are listed in les are related to each
other. Same functions and led from any compiled
executables. So, a behaviour a change in the others.

Crossover.c
crossover.h

crossover code
crossover header

evaluation.h evaluation header

248

A. SOURCE CODE

File/Directory | Description | Comments
finput.c read variables and setup system
fitview.c plots data
flyctl rutines to stop running jobs
fpu virtual FPU
ga.c main program
ga.h ga header
global.h C common variables
InputLine subroutines to read files from C | it heavily depends on the libc function
getdelim
integer.c helper functions to integer coef-
ficients
integer.h integer header

interface.f
interface.h

glue to link all together
interface header

job.txt job configuration modify as per job basis
JobTreeEditor | job configuration gui java: it runs in linux, mac, windows...
literals subroutines to support auto-
matic coefficient names
mopac MOPAC interface stuff
mutation.c mutation code
mutation.h mutation header
needle analise system structure use it to generate atom2type and
charges files
nullist implements null-terminated list
pack code and decode bytecode fpu
programs
parameters parameters and settings code
potentials.f potentials stuff modify to introduce new potentials
rand.c random stuff code
rand.h random header
rstrings strings generic functions

selection.c
selection.h

selection code
selection header

stats.c stats stuff, prints intermediate
results

stats.h stats header

ufpu.c ufpu code

userpotential.f

utils.c
utils.h

user potential fortran template

helper functions
utils header

modify to introduce a fully custom po-
tential

A.2 Analytical job

This code deal with expressing potentials as analytical expressions. It
depends on A.4. C language.

e analytical.h

A.3. POTENTIAL BASE ROUTINES 249

e analytical.c

A.3 Potential base routines

Potential base routines like the implemented internal and user-coded
potentials. C and Fortran languages.

o eval.f
e final.h
e final.c
e finput.c
global.h

interface.h

interface.f

potentials.f

userpotential .f

A.4 Fpu routines

This code implements a virtual calculator: it compiles analytical expres-
sions to packed chunks of bytecode, and run the bytecode in a virtual
FPU. C language.

e bytecodes.h

bytecodes.c
e nllist.h
e nllist.c
e pack.h
e pack.c
e ucompiler.h

e ucompiler.c

250 A. SOURCE CODE

A.5 GAFit

Entry routines and main loop. C language. It depends on A.2. A.3,
A4, A7, A7.2, A.6 and A.8. See section 4 and Figure 4.1.

e ga.h

® ga.c

A.6 Genetic Algorithm Core

GA routines. C language.

A.6.1 Crossover

e crossover.h

® Crossover.c

A.6.2 Mutation

e mutation.h

e mutation.c

A.6.3 Selection

e selection.h

e selection.c

A.6.4 Stats
e stats.h

e stats.c

A.6.5 Utils
e utils.h

e utils.c

A.7. EXTERNAL JOB 251

A.7 External job

Here is implemented the interface with external programs. C, Fortran
and Perl languages.

A.7.1 Flyctl

This code addresses the external job stopping problem.
e flyctl.h

o flyctl.c

A.7.2 Mopac
Interface with MOPAC.

e cxtractor
o fitter.f

e injector.c
e mopac.h

e mopac.c

e shepherd.c

Istimes.c

e lsexdata.f

A.8 Miscellaneous

A.8.1 Arguments

Program arguments stuff. C language.
e arguments.h

e arguments.c

252 A. SOURCE CODE
A.8.2 Autoweights
Code to implement the auto-weights feature. C language.

e autoweights.h

e autoweights.c

A.8.3 Bounds

Custom routines to read bounds files. C language.
e bounds.h

e bounds.c

A.8.4 Cnames

Coeflicient names stuff. C language.
e cnames.h

® Clames.c

A.8.5 InputLine

Custom routines to read lines and text from configuration and data files.
C language.

e line.h

e line.c

A.8.6 Integer

Code to support integer coefficients. C language.
e integer.h

e integer.c

A.9. TOOLS 253

A.8.7 Literals

Routines to support automatic coefficient names. C language.
e literals.h

e literals.c

A.8.8 Parameters

Code to deal with program parameters. C language.
e parameters.h

e paramenters.c

A.8.9 Rand
Random stuft. C language.

e rand.h

e rand.c

A.8.10 Rstrings

C strings custom routines. C language.
e rstrings.h

e rstrings.c

A.9 Tools

C, Java and Perl languages.

A.9.1 Bedit

Terminal utiltiy to edit atom2type, bounds and charges files.

e bedit.c

254 A. SOURCE CODE

A.9.2 Fitview
Tool to create some gnuplot plots.

o fitview.c

A.9.3 JobTreeEditor
Java graphical interface to create and edit the configuration file job.txt.

e DoubleString.java

e EditorComboBox.java
e EditorRoot.java

e EditorSectionTextField.java
e EditorTextArea.java
e EditorTextField.java
e FilterTxt.java

o Flve.java

e IniData.java

e IniEditor.java

e IniModel.java

e IniRenderer.java

e JobTreeEditor.java

e JobTxtConf. java

e KnownValues.java

e RoFileFilters.java

A.9.4 Needle
Perl tool to create the atomZ2type file from a geometry file.

e needle

A.9. TOOLS

A.9.5 Ufpu

Utility to test analytical expressions as potentials.

e ufpu.c

Resumo

Un dos conceptos chaves na quimica é o da superficie de enerxia po-
tencial, —Potential Energy Surface (PES), en inglés— a cal vén da apro-
ximacion de Born-Oppenheimer que facilita a solucion da ecuacion de
Schrodinger independente do tempo para sistemas moleculares, e afor-
tunadamente, os erros asociados con esta aproximacion son depreciabeis
para a maioria dos sistemas e condicions de interese para os quimicos.
A PES dun sistema molecular goberna a maiorfa das stas propiedades
quimicas, e particularmente a dinamica, ¢ dicir, a evolucion espacial dos
ntucleos co tempo. Moitas das simulacions dinamicas realizadas hoxe en
dia envolven a integracion das ecuacions clasicas do movemento, calcu-
lando as forzas sobre os atomos en cada paso, directamente mediante
calculos da estrutura electronica —dindmica directa, cilculos “ao voo™
ou por PES analiticas.

Nun principio, o enfoque da dindmica directa pode ser a opcién pre-
ferida para a simulacion de sistemas reactivos que inclien un pequeno
numero de atomos, porque se evita a construcion da superficie analiti-
ca. Sen embargo, o uso das PES analiticas ten unha clara vantaxe en
termos de custos en tempos de CPU —Central Processing Unit (CPU),
unidade de proceso central, sinénimo do microprocesador ou procesador
dos modernos computadores—, sendo obrigada en simulaciéns dindmicas
de sistemas compostos por miles de atomos. Incluso para sistemas de
pequeno tamano, o uso dunha superficie analitica —tamén xeralmente
chamada campo de forzas en mecdanica molecular e dinamica molecular—

257

258 B. RESUMO

pode ser unha boa eleccion. Se se fai con coidado, pode ser, como mini-
mo, tan boa como a superficie exacta correspondente ao método calculo
da estrutura electréonica usado como referencia para a siia construcion.

O desenvolvemento das PES analiticas ou campos de forza podese
facilitar usando métodos de optimizacion, e varios grupos de investiga-
cion xa as usaron para diversos obxectivos do seu interese. Sen embargo,
ata o que sabemos, non hai un programa xeral que permita aos usua-
rios parametrizar superficies analiticas ou campos de forza dunha forma
relativamente facil. O motivo do presente traballo é escribir unha suite
de ferramentas que axuden aos usuarios a desenvolver superficies ana-
liticas. Esta suite de programas chdmase GAFit. Usamos este nome
porque neste kit de ferramentas un GA —Algoritmo xenético, Genetic
Algorithm (GA)- conduce o axuste —fit— ou parametrizacion da su-
perficie de enerxia potencial desexada. O algoritmo xenético non foi
desenvolvido neste traballo, senon que foi recollido da literatura: [F V;
Pereira F B; Almeida M M; Maniero A M; Fellows C E Marques J M
C; Prudente. “A new genetic algorithm to be used in the direct fit of
potential energy curves to ab initio and spectroscopic data’. In: Jour-
nal of Physics B: Atomic, Molecular and Optical Physics 41.8 (2008),
p. 085103. URL: http://stacks.iop.org/0953-4075/41/i=8/a=085103] e
[Marcos M Almeida et al. “Direct fit of spectroscopic data of diatomic
molecules by using genetic algorithms: II. The ground state of RbCs”.
In: Journal of Physics B: Atomic, Molecular and Optical Physics 44.22
(2011), p. 225102].

Para os nosos obxectivos, a vantaxe dun algoritmo xenético fronte
a outro tipo de método de optimizacion é dado polo tipo de proble-
ma a resolver. Por unha banda, ¢ necesario un algoritmo que realice
unha optimizacion global atopando unha posible resposta dentro dun
tempo razoable. Por outra banda, outra caracteristica desexable é non
ter que adaptar o algoritmo ao tipo de problema. Neste caso, os al-
goritmos xenéticos postien as dias: exploran todo o posible espazo de
solucions co engadido de que non fan ningtn tipo de asunciéons a prior:
sobre a tarefa a realizar, e polo tanto traballan ben con calquera tipo de
problema. Pédese comparar, en contraposicion, cun algoritmo tipo, dos
usados normalmente para as optimizacions, o cal necesitaria de informa-

http://stacks.iop.org/0953-4075/41/i=8/a=085103

259

cion inicial: a semente ou o punto de comezo, a partires do cal empeza a
optimizacion. Dependendo da semente, é obvio que posiblemente atopa-
rd un minimo préximo, que non ten por que ser o minimo global. E polo
tanto, é necesario ter un conecemento a priori do sistema a axustar.

Neste traballo, o programa GAFit aplicase ao desenvolvemento de
un potencial intermolecular para a interacciéon entre o Xe e o complexo
[Li(Uracil)|*, e para a reparametrizacion de un Hamiltoniano semiem-
pirico. Os Hamiltonianos semiempiricos modificados con parametros de
reaccion especificos —Specific Reaction Parameters (SRP)- foron pro-
postos por primeira vez por [Angels Gonzalez-Lafont, Thanh N Truong,
and Donald G Truhlar. “Direct dynamics calculations with NDDO (ne-
glect of diatomic differential overlap) molecular orbital theory with spe-
cific reaction parameters”. In: The Journal of Physical Chemistry 95.12
(1991), pp. 4618-4627| como un método préctico de calculo de dindmi-
cas directas. O programa, sen embargo, pode ser facilmente adaptado
para conducir calquera tipo de axuste ou parametrizacion de superficies
analiticas ou campos de forza, asi como tamén, para outros problemas
de optimizacion na quimica.

No GAFit a funcionalidade do ntcleo do GA foi estendida en varias
direccions: illando o niicleo do resto do codigo, modificando o mesmo
para permitir o uso de valores enteiros nos coeficientes a parametrizar
das funcions de axuste para as interacciéons intermoleculares, engadindo
utilidade e usabilidade coas novas caracteristicas e titeis de axuda, e por
ultimo, unha codificaciéon coidadosa para permitir a portabilidade entre
distintos sistemas operativos.

No caso do illamento do core, isto facilitou o deseno dunha interfa-
ce flexible e ben estruturada que permite o engadido de caracteristicas
novas de forma sinxela compartindo cédigo entre as distintas partes, in-
cluindo os programas illados de utilidade co fin de que as distintas partes
se interrelacionan facendo o todo unha tnica unidade facil de manter.

As caracteristicas engadidas permiten agora aos usuarios escoller, de-
pendendo das stias habilidades de programacion, desde codificar directa-
mente os seus potenciais no propio codigo fonte do GAF'it ata, para eses
usuarios que non tenen ningin conecemento, poder usar os potenciais
mais comuns na literatura xa codificados no propio programa. Outra

260 B. RESUMO

opcién para os que non tenen conecementos de programacion ¢ o uso
de expresions analiticas que son compiladas ao c6digo maquina dunha
FPU virtual que o interpreta como o potencial a parametrizar.

Para usuarios intermedios que queiran codificar un potencial axus-
tado as stuias necesidades, pero que tenan medo de modificar o codigo
fonte do GAFit, incliese un modelo en Fortran a cubrir polo usuario
co seu potencial e a sta funciéon de axuste. En ambolos dous casos, o co-
digo fonte do propio GAFit ou o modelo, estan claramente codificados
e comentados para ir conducindo ao usuario na direccion axeitada.

Ademais, engaddese, como complemento para facilitar o traballo, unha
completa coleccion de ferramentas para a creacion e configuracion dos
arquivos de entrada e examinar os resultados: needle, bedit, JobTre-
eEditor, fitview e ufpu.

Para o uso de expresions analiticas como potenciais, desenvolveu-
se unha Floating Point Unit (FPU) virtual co seu propio conxunto de
instrucions maquina, un compilador para traducir as expresions analiti-
cas a un binario executable pola propia FPU —ou a sta representacion
na linguaxe ensambladora da FPU para facilitar a deteccion de erros—.
Co fin de testar as expresions analiticas, a compilacion e execucion das
mesmas, construiuse unha nova utilidade: ufpu, que usa directamente
o arquivo de configuraciéon do traballo de célculo para realizar os tests.

Codificaronse rutinas robustas para a lectura de arquivos de entrada.
Sobre estas rutinas creouse un sistema de configuraciéon que soporta a
division loxica das distintas partes a configurar en secciéons, podendo in-
troducir os pardmetros individuais de cada seccion mediante un método
sinxelo de pares chave/valor. Este sistema de division loxica e o feito de
usar pares chave/valor facilitan o engadido de novas caracteristicas sen
moito traballo. Estas facilidades permitirian ao propio usuario parame-
trizar os seus propios moédulos usando o mesmo arquivo de configuracion
xenérico do programa ou outro calquera ao seu gusto.

Usando a nova interface co core, desefiouse como nova caracteristica
unha interface de segundo nivel para interactuar con programas exter-
nos e usar os seus resultados como axuste dos parametros obtidos polo
algoritmo xenético. O protocolo establecido permite que calquera uti-
lidade externa configure o comportamento do propio GAFit de forma

261

automatica.

Usando este interface, desenvolvéronse as ferramentas necesarias para
parametrizar algin dos Hamiltonianos semiempiricos implementados no
programa de calculo de estrutura electronica MOPAC co GAFit facendo
duas interfaces. A primeira serfa o exemplo a seguir polo usuario para
interactuar cun programa externo diferente ao MOPAC. Sen embargo,
atopéaronse certas deficiencias inherentes ao MOPAC, co cal fixose de
seguido unha interface mais sofisticada para solventar estas eivas.

A primeira foi feita codificando un conxunto de ferramentas e xuntan-
doas nun shell script, o external-mopac2009.sh: O injector, escrito
en C, para configurar o GAF'it e crear traballos MOPAC, o executable
binario do MOPAC para correr cada traballo, o extractor, feito en Perl,
para procesar os arquivos de saida, e o fitter, en Fortran, para avaliar
os resultados dependendo dos requirimentos do usuario. Se se usa un
novo programa externo que use as mesmas variables co MOPAC so é
necesario reescribir o injector e o extractor para adaptar o sistema ao
NOVO programa.

O injector usando os conxuntos de coeficientes pasados polo GA-
Fit crea os arquivos necesarios para que sirvan de entrada de datos
ao MOPAC. Tamén ¢é responsable de configurar ao GAFit se se usa a
configuracion automatica —autoconfigure—.

O extractor le os arquivos de saida e recolle toda a informacion inte-
resante gravandoa nun arquivo intermedio cunha estrutura ben conecida.
O fitter usa este arquivo para coller a informacion necesaria tendo en
conta o especificado polo usuario nun arquivo de texto no que especifica
que variables hai que ter en conta para o axuste e que peso van ter. No
caso do MOPAC 2012, onde parte dos resultados en coordenadas carte-
sianas xa non se escriben no arquivo de saida, o extractor traduce as
coordenadas internas a cartesianas usando operacions con quaternions
para calcular as rotacions 3D necesarias para esta tarefa.

O fitter recolle os requirimentos do usuario para os axustes e usa 0s
datos recopilados polo extractor para calcular o resultado do axuste.
Entre as distintas variables que se poden usar estin as calores de for-
macion ou a sua diferenza entre distintos calculos —entre un produto e
un estado de transicion, por exemplo—, distancias entre atomos, angu-

262 B. RESUMO

los entre tres dtomos e angulos diedros entre catro atomos. En todos
os casos —distancias, angulos e angulos diedros— non tenen que estar
unidos por enlaces para podelos usar como variables de axuste. Outras
variables tipicas neste tipo de axustes son as frecuencias de vibracion
tanto dos minimos como dos estados de transicion que poidan presentar
0 noso sistema obxecto de estudo. Comunmente os pesos que tenen estas
variables son totalmente diferentes.

As deficiencias detectadas son de dous tipos: Por unha banda, algins
dos traballos lanzados quedaban colgados por mor de parametros non
axeitados, sendo necesario matar os procesos & man. Por outra ban-
da, os traballos fallados inflien nos seguintes gravados dentro do mesmo
ficheiro estragandoos. Iso fixo que fora necesario crear unha interface me-
llorada, da que se falou arriba, que foi codificada cambiando o MOPAC
executable no shell script cunha nova ferramenta: shepherd.

O shepherd pode lanzar e controlar traballos MOPAC, incluindo
terminar os procesos colgados automaticamente, mantendo un ntmero
6ptimo de procesos MOPAC paralelos, tendo en conta os recursos dis-
ponibles, e polo tanto acelerando os céalculos. Este sistema foi pensado
tendo en conta o uso de sistemas de execucion en batch como o Por-
table Batch System (PBS) de amplo uso en clusters de computacion.
shepherd ten un rendemento 6ptimo sempre e cando o espazo para os
arquivos do calculo, incluidos os temporais, estean en dispositivos de
almacenamento locais ao nodo onde corre o calculo, xa que, ao basearse
o algoritmo de calculo do nimero de procesos concorrentes 6ptimo nos
tempos de execucion das tarefas, sistemas de arquivos en rede, como o
NE'S, distorsionan o resultado pola latencia debida a transferencia de
datos a través da rede.

Co motivo de calcular os diferentes tipos de interaccions entre os
fragmentos e automaticamente construir o arquivo atom2type, que co-
rrelaciona os atomos individuais co seu tipo, a partir das coordenadas
cartesianas desenvolveuse unha ferramenta, needle, en Perl para iden-
tificar os tipos diferentes de &tomos equivalentes. Esta ferramenta, cons-
trie os enlaces tendo en conta as distancias entre &tomos e as valencias.
Posteriormente, desenreda secuencias lineais de a&tomos conectados onde
as cadeas mais longas, comparanse para determinar os atomos equiva-

263

lentes a partir dos seus vecinos. Esta configuracion escribese no arquivo
atom2type que permite ao sistema reconecer e aplicar potenciais iguais
a interaccions atomicas iguais. E dicir, empregar os mesmos coeficientes
do potencial para interaccions entre atomos que son equivalentes dous a
dous.

Para axudar a editar os arquivos de entrada, escribiuse a utilidade
bedit, permitindo modificar o arquivo atomZ2type, as cargas e os limites
dos coeficientes nos correspondentes arquivos de entrada. O codigo fonte
¢ en C e Fortran.

JobTreeEditor é un programa con interface grafica, Graphical User
Interface (GUI), feito en Java e usando a biblioteca grafica para Java
swing que inclie widgets graficos para crear e modificar o arquivo de
configuracion job.trt dunha forma visual e sinxela empregando como so-
porte da informaciéon unha arbore onde as polas son as distintas seccions
e as follas os pares chave/valor.

fitview, escrito en C e Fortran, ¢ unha utilidade que escribe un par
de arquivos por cada grafica: un arquivo gnuplot coas ordes para repre-
sentar graficamente os resultados e outro de datos Estes podense editar
para permitir escribir arquivos graficos directamente: PNG —portable
network graphics (PNG), gréafico de rede portabel- ou PDF —portable
document format (PDF), formato de documento portabel-, por men-
cionar algiins dos mais conecidos. Os graficos xerados incliien todas as
interaccions entre pares de dtomos, todas as interacciéons nun sé grafico
e unha avaliacion do axuste incluindo todas as xeometrias usadas para
a parametrizacion. Esta utilidade ¢ de grande axuda para os usuarios
no caso de que estean interesados no desenvolvemento de potenciais in-
termoleculares xa que é importante comprobar se existe un equilibrio
entre os distintos tipos de interaccion, é dicir, que estean compensa-
das. Ademais no caso de que o usuario faga uso de funciéns baseadas
en potenciais con termos exponenciais para representar as interaccions
de corto alcance, é importante para evitar a denominada catdstrofe de
Buckingham.

ufpu, codificado en C, é unha ferramenta para testar as expresions
analiticas. Usa o propio arquivo de configuracion do GAFit para ler a
expresion analitica configurada, compilala a c6digo maquina, e cargar

264 B. RESUMO

e executar o resultado da compilaciéon nunha instancia da FPU virtual.
A compilacién xera dous arquivos: o cédigo binario e o correspondente
en ensamblador da FPU virtual. Se hai variables na expresion, pide ao
usuario que entre os valores necesarios para realizar o calculo.

O paquete de software foi automatizado co GNU build system, tamén
conecido como autotools. Pode ser implantado, compilado, instalado e
executado en multitude de sistemas, incluindo ao Mac OS X, asi como
distintas distribucions de Linux e sistemas tipo Unix.

Co codigo fonte, incliese un conxunto completo de casos de exemplo
cos seus arquivos de datos e codigo correspondentes, que son explicados
paso & paso. No primeiro, tsase o sistema Xe -+ [Li(Uracil)]™ para
ilustrar o uso mais sinxelo: a parametrizacion dun potencial dos maéis
usados e xa incluido no programa. Cos arquivos de datos empréganse as
distintas ferramentas da suite para ir construindo os arquivos de entrada,
e finalmente executar o GAFit. Amoésanse tamén os arquivos de saida
e a sta interpretacion.

O segundo exemplo enfoca o uso dunha expresion analitica cos mes-
mos arquivos de entrada que a seccion anterior. A expresion analitica
vai ser introducida no arquivo de configuracion usando unha ferramenta
visual como o JobTreeEditor e testada co ufpu.

No terceiro exemplo, faise un axuste dun polinomio de grado N para
ilustrar o interface con programas externos. Proporcionase o codigo en
C do programa encargado de calcular o valor do polinomio segundo
os valores dos coeficientes proporcionados por GAFit e discutese polo
mitdo a mecanica da interface.

No cuarto, reparametrizase un Hamiltoniano semiempirico para axus-
tar as enerxias, xeometrias e frecuencias para a descomposicion dun can-
le do cianuro de vinilo —ou acronitilo, vinyl cyanide (VC)-, traido da apli-
cacion do estudio ab initio e RRKM ~Rice-Ramsperger-Kassel-Marcus
(RRKM)- dos canles de eliminacion de HCN/HNC do VC, para ensinar
paso a paso a aplicacion do interface externo co MOPAC e a intercone-
xion entre as distintas ferramentas que componen o interface: injector,
extractor e fitter.

No derradeiro exemplo exponse o interface mellorado usando o cuar-
to exemplo como base e destacando as diferenzas, mostrase o uso da

265

ultima utilidade do interface co MOPAC: shepherd. No codigo fonte
incliiese outro exemplo baseado no VC, tamén traido da mesma aplica-
cion, onde se fai fincapé noutras condicions de axuste onde incliie moitas
mais variables na parametrizacion da PES, sendo polo demais, igual co
anterior.

Na primeira aplicacion esttudase a disociacion inducida por colision —
Collision-Induced Dissociation (CID)- do complexo [Li(uracil)|t + Xe.
A dinédmica faise “ao voo”, tomando a enerxia e os gradientes de calculos
semiempiricos Austin Model 1 (AM1) complementados con potenciais
analiticos de dous corpos para modelar as interaccions intermoleculares.
Para a parametrizacion do potencial intermolecular, tomaronse como
valores de referencia enerxias de interacciéon obtidas co nivel de calcu-
lo CCSD(T)/CBS para un total de 13 orientacions distintas entre os
fragmentos. No axuste co GAFit impuxéronse algunhas restricions aos
valores posibles dos pardmetros para evitar a catdstrofe de Buckingham.
O axuste final obtido foi moi bo con valores do erro cuadratico medio de
0,2 kcal/mol e 2,6 kcal /mol para enerxias de interaccion no rango —6 —
2 kecal/mol e 2 — 100 kecal /mol, respectivamente.

Na segunda aplicacion, lévanse a cabo célculos ab initio para mode-
lar a PES do estado fundamental das canles da eliminacion do HCN
e HNC desde o VC. Os célculos comprenden optimizacions CCSD /6-
311+G(2d,2p) e analises de frecuencias para caracterizar os puntos es-
tacionarios como minimos ou puntos cadeira e para avaliar as enerxias
vibracionais do ZPE —punto cero, zero-point vibrational energies (ZPE)-
. Os resultados obtidos neste traballo, serven para a parametrizacion dun
Hamiltoniano semiempirico, parte dos cales empréganse nesta tese para
testar o interface co MOPAC 2009 e 2012, e tamén como exemplos cara
ao usuario final. A idea é agora complementar estes traballos previos
seleccionado o semiempirico mais axeitado para facer o axuste global
da PES do VC co gallo de levar a cabo calculos de traxectorias clasicas
intensivas 4s enerxias empregadas nos experimentos de fotodisociacion.

Dada a complexidade da tarefa a desenvolver, e das facilidades que
presentan as diferentes linguaxes de programacion para resolver certo
tipo de problemas, a codificacion das utilidades fixose usando a linguaxe
mais axeitada en cada caso.

266 B. RESUMO

Por exemplo, o Fortran empregouse naquelas partes onde era necesa-
rio facer calculos en coma flotante, dada a sta facilidade de programa-
cion para esta tarefa, e ademais a meirande parte dos posibles usuarios
tenen conecementos en maior ou menor medida desta linguaxe de pro-
gramacion. Por esta razon, as partes a modificar polos usuarios estan
codificadas en Fortran.

O Perl usouse naquelas partes onde se examinaron arquivos de tex-
to e extraéronse datos necesarios para guiar o proceso de parametriza-
cion, dada a sta tremenda capacidade para este tipo de tarefas. Non
¢ necesario sublinar de que unha das linguaxes cunha implementacion
mais completa e potente das regex —reqular expressions, expresions re-
gulares— usadas para a busca e extraccion de texto, aparte do Tcl, é
precisamente Perl.

A linguaxe C usouse como o esqueleto do GAF'it, de todas as sub-
rutinas de compilacion e execucion de codigo da méaquina virtual, do
sistema de procesado dos arquivos de configuracion, parte dos tuteis da
interface externa e o propio core.

Java e as stias librerfas graficas xunto cunha boa IDE —integrated de-
velopment environment (IDE), contorno de desenvolvemento integrado—
de programaciéon como a netbeans facilitan a construcion de programas
GUL

O shell script sirve para executar os procesos mais complexos que
requiren de varias utilidades da suite & vez.

E por fin, as autotools, que inclien linguaxes esotéricos como o m4,
facilitan a tarefa de portar o paquete a outros contornos.

References

[1] Ira N. Levine. Quantum Chemistry. 7Tth ed. Pearson Education Inc, Boston,
Feb. 2014, p. 720.

[2] F V; Pereira F B; Almeida M M; Maniero A M; Fellows C E Marques J M C;
Prudente. “A new genetic algorithm to be used in the direct fit of potential energy
curves to ab initio and spectroscopic data”. In: Journal of Physics B: Atomic,
Molecular and Optical Physics 41.8 (2008), p. 085103. URL: http://stacks.iop.org/
0953-4075/41/i=8/a=085103.

[3] Marcos M Almeida et al. “Direct fit of spectroscopic data of diatomic molecules
by using genetic algorithms: II. The ground state of RbCs”. In: Journal of Physics
B: Atomic, Molecular and Optical Physics 44.22 (2011), p. 225102.

[4] Angels Gonzalez-Lafont, Thanh N Truong, and Donald G Truhlar. “Direct dy-
namics calculations with NDDO (neglect of diatomic differential overlap) molec-

ular orbital theory with specific reaction parameters”. In: The Journal of Physical
Chemistry 95.12 (1991), pp. 4618-4627.

[5] A. Holder, ed. Mathematical Programming Glossary. Originally authored by
Harvey J. Greenberg, 1999-2006. Accessed 1 April 2014. http://glossary.computing.
society.informs.org: INFORMS Computing Society, 2006-08.

[6] Bruce A. McCarl and Thomas H. Spreen. Applied Mathematical Programming
using Algebraic Systems. Accessed 1 April 2014. Texas A&M University, 2011.
URL: http://agecon2.tamu.edu/people/faculty/mccarl-bruce/mccspr/thebook.pdf.

[7] Stephen Boyd and Lieven Vandenberghe. Convez optimization. Accessed 1 April
2014. Cambridge university press, 2004. 1SBN: ISBN 9780521833783. URL: http:
//www_.stanford.edu/~boyd/cvxbook/bv%5C cvxbook.pdf.

[8] MS Bazaraa and John J Jarvis. Linear programming and network flows. Wiley

(New York), 1977.

267

http://stacks.iop.org/0953-4075/41/i=8/a=085103
http://stacks.iop.org/0953-4075/41/i=8/a=085103
http://glossary.computing.society.informs.org
http://glossary.computing.society.informs.org
http://agecon2.tamu.edu/people/faculty/mccarl-bruce/mccspr/thebook.pdf
http://www.stanford.edu/~boyd/cvxbook/bv%5C_cvxbook.pdf
http://www.stanford.edu/~boyd/cvxbook/bv%5C_cvxbook.pdf

268 REFERENCES

[9] Arnold Neumaier. Introduction to Global Optimization. Accessed 1 April 2014.
Self-Published, May 2013. URL: http://www.mat.univie.ac.at/ " neum/glopt/intro.
html.

[10] Paul M. Sant. "intractable”. in Dictionary of Algorithms and Data Structures
[online|, Vreda Pieterse and Paul E. Black eds. accessed 1 April 2014 (Modified
December 17 2004). Dec. 2004. URL: http://www.nist.gov/dads/HTML /intractable.
html.

[11] Paul M. Sant. "big-O notation”. in Dictionary of Algorithms and Data Struc-
tures |online|, Vreda Pieterse and Paul E. Black eds. accessed 1 April 2014 (Mod-
ified August 31 2012). Aug. 2012. URL: http://www . nist.gov /dads /HTML/
bigOnotation.html.

[12] Thomas Weise. Global Optimization Algorithms - Theory and Application. en.
Second. Online available at http://www.it-weise.de/ Accessed 1 April 2014. Self-
Published, June 2009. URL: http://www.it-weise.de/.

[13] Kalyanmoy Deb and Ram Bhushan Agrawal. “Simulated binary crossover for
continuous search space”. In: Complex Systems 9 (1994), pp. 1-34.

[14] Kalyanmoy Deb and Hans-georg Beyer. “Self-Adaptive Genetic Algorithms
with Simulated Binary Crossover”. In: Fvol. Comput. 9 (2 June 2001), pp. 197
991. 1SSN: 1063-6560. DOI: http: //dx.doi org/10.1162/106365601750190406.

[15] Larry J. Eshelman and J. David Schaffer. “Real-Coded Genetic Algorithms
and Interval-Schemata”. In: FOGA. Ed. by L. Darrell Whitley. Morgan Kaufmann,
1992, pp. 187-202. 1SBN: 1-55860-263-1.

[16] Charles FF Karney. “Quaternions in molecular modeling”. In: Journal of Molec-
ular Graphics and Modelling 25.5 (2007), pp. 595-604.

[17] M.T.Rodgers and P.B. Armentrout. In: J. Am. Chem. Soc. 122 (2000), pp. 8548—
8558.

[18] P.B. Armentrout. In: Top. Curr. Chem. 225 (2003), p. 233.
[19] P.B. Armentrout. In: J. Am. Soc. Mass Spectrom. 13 (2002), p. 419.

[20] P.B. Armentrout, D.A. Hales, and L. Lian. Advances in Metal and Semicon-
ductor Clusters. Greenwich, CT: JAI, 1994.

[21] P.B. Armentrout, H. Koizumi, and M. MacKenna. In: J. Phys. Chem. A 109
(2005), p. 11365.

[22] W. Buchmann et al. In: J. Mass Spectrom. 42 (2007), p. 517.

[23] D.R. Carl, R.M. Moision, and P.B. Armentrout. In: Int. J. Mass Spectrom.
256 (2007), p. 308.

[24] R. Chawla, A. Shukla, and J. Futrell. “Collision-induced dissociation of ni-
trobenzene molecular cations at low energies by crossed-beam tandem mass spec-
trometry”. In: J. Phys. Chem. A 105.2 (2001), p. 349.

[25] R. G. Cooks. Collision Spectroscopy. New York: Plenum, 1978.

http://www.mat.univie.ac.at/~neum/glopt/intro.html
http://www.mat.univie.ac.at/~neum/glopt/intro.html
http://www.nist.gov/dads/HTML/intractable.html
http://www.nist.gov/dads/HTML/intractable.html
http://www.nist.gov/dads/HTML/bigOnotation.html
http://www.nist.gov/dads/HTML/bigOnotation.html
http://www.it-weise.de/
http://dx.doi.org/http://dx.doi.org/10.1162/106365601750190406

REFERENCES 269

[26] E.R. Fisher, B.L. Kickel, and P.B. Armentrout. In: J. Phys. Chem. 97 (1993),
p. 10204.

[27] Y.J. Fu, J. Laskin, and L.S. Wang. In: Int. J. Mass Spectrom. 255 (2006),
p. 102.

[28] N. Hallowita et al. In: J. Phys. Chem. A 112 (2008), p. 7996.
[29] A.L. Heaton and P.B. Armentrout. In: J. Phys. Chem. A 112 (2008), p. 10156.

[30] J. Laskin, E. Denisov, and J. H. Futrell. “Fragmentation energetics of small
peptides from multiple-collision activation and surface-induced dissociation in FT-
ICR MS”. In: Int. J. Mass. Spectr. 219.1 (2002), p. 189.

[31] J. Laskin and J. H. Futrell. “Collisional activation of peptide ions in FT-ICR
mass spectrometry”. In: Mass Spectrometry Reviews 22.3 (2003), pp. 158-181.

[32] J. Laskin and J. H. Futrell. “On the efficiency of energy transfer in collisional
activation of small peptides”. In: J. Chem. Phys. 116.10 (2002), pp. 4302-4310.

[33] F Muntean and P.B. Armentrout. In: J. Chem. Phys. 115 (2001), pp. 1213~
1228.

[34] C.-Y.Ng. In: J. Phys. Chem. A 106 (2002), p. 5953.

[35] M.T. Rodgers and P.B. Armentrout. In: Mass. Spectrom. Rev. 19 (2000),
p. 215.

[36] J.-Y. Salpin and J. Tortajada. In: J. Mass Spectrom. 37 (2002), p. 379.

[37] A. K. Shukla and J. H. Futrell. “Tandem mass spectrometry: Dissociation
of ions by collisional activation”. In: Journal of Mass Spectrometry 35.9 (2000),
p. 1069.

[38] A. K. Shukla and J. H. Futrell. “Collisional activation and dissociation of
polyatomic ions”. In: Mass Spectrometry Reviews 12.4 (1993), p. 211.

[39] R. E. Tosh, A. K. Shukla, and J. H. Futrell. “Energy transfer, scattering and
dissociation in ion atom collisions: CO2 +/Ar”. In: J. Chem. Phys. 114.7 (2001),
p- 2986.

[40] D.J. Douglas. In: J. Phys. Chem. 86 (1982), p. 185.

[41] V.H. Wysocki, H.I. Kenttdmaa, and R. G. Cooks. In: Int. J. Mass Spectrom.
Ion Processes 75 (1987), pp. 181-208.

[42] H. Yamaoka. In: J. Phys. Chem. 86 (1982), p. 185.

[43] P. DeSainteClaire, G. H. Peslherbe, and W. L. Hase. “Energy transfer dynam-
ics in the collision-induced dissociation of Al6 and All3 clusters”. In: J. Phys.
Chem. 99.20 (1995), pp. 8147-8161.

[44] Y. Jeanvoine et al. In: Int. J. Mass Spectrom. 308 (2011), pp. 289-298.

[45] E. Martinez-Nunez et al. “Quasiclassical dynamics simulation of the collision-
induced dissociation of Cr (CO)6 + with Xe”. In: J. Chem. Phys. 123 (2005),
p. 154311.

270 REFERENCES

[46] O. Meroueh and W. L. Hase. “Energy transfer pathways in the collisional
activation of peptides”. In: Int. J. Mass. Spectr. 201.1-3 (2000), pp. 233-244.

[47] R. Spezia et al. In: Phys. Chem. Chem. Phys. 14 (2012), pp. 11724-11736.
[48] R. Spezia et al. In: J. Phys. Chem. A 113 (2009), pp. 13853-13862.

[49] T. Raz and R. D. Levine. In: J. Chem. Phys. 105 (1996), p. 8097.

[50] D.G. Schultz and L. Hanley. In: J. Chem. Phys. 109 (1998), p. 10976.

[51] T Baer and W. L. Hase. Unimolecular Reaction Dynamics. Oxford, 1996.

[52] E. Martinez-Nunez et al. “Quasiclassical trajectory study of the collision-
induced dissociation dynamics of Ar+CH3SH-+ using an ab initio interpolated po-
tential energy surface”. In: J. Phys. Chem. A 110.4 (2006). 010MF Times Cited:1
Cited References Count:22, pp. 1225-1231. 1SSN: 1089-5639. DOI: Doil0.1021/
Jp052325d.

[53] E. Martinez-Nunez, S. A. Vazquez, and J. M. C. Marques. “Quasiclassical tra-
jectory study of the collision-induced dissociation of CH3SH-++Ar". In: J. Chem.
Phys. 121.6 (2004). 840JX Times Cited:3 Cited References Count:32, pp. 2571
2577. 1SSN: 0021-9606. DOI: D0il10.1063/1.1769364.

[54] Y.-J. Chen et al. In: J. Phys. Chem. A 106 (2002), p. 9729.
[55] P.T. Fenn et al. In: J. Phys. Chem. A 101 (1997), p. 6513.

[56] J. Liu et al. “Direct dynamics study of energy transfer and collision-induced

dissociation: Effects of impact energy, geometry, and reactant vibrational mode
in H2CO+ - Ne collisions”. In: J. Chem. Phys. 119.6 (2003), p. 3040.

[57] U. Lourderaj and W. L. Hase. “Theoretical and Computational Studies of Non-
RRKM Unimolecular Dynamics”. In: J. Phys. Chem. A 113.11 (2009). Lourderaj,
Upakarasamy Hase, William L., pp. 2236-2253. 1SSN: 1089-5639. por: 10.1021/
jp806659f.

[58] S. O. Meroueh, Y. Wang, and W. L. Hase. “Direct dynamics simulations
of collision- and surface-induced dissociation of n-protonated glycine. Shattering
fragmentation”. In: J. Phys. Chem. A 106.42 (2002), p. 9983.

[59] B. Coupier et al. In: Fur. J. Phys. J. D 20 (2002), p. 459.

[60] M. Imhoff, Z. Deng, and M. Huels. In: Int. J. Mass Spectrom. 154 (2007),
D. 262.

[61] M. Imhoff, Z. Deng, and M. Huels. In: Int. J. Mass Spectrom. 245 (2005),
p. 68.

[62] A. Le Padellec et al. In: J. Phys.:Conf. Ser. 101 (2008), p. 012007.
[63] T. Schlatholter et al. In: ChemPhysChem 7 (2006), p. 2339.

[64] T. Schlatholter, F. Alvarado, and R. Hoekstra. In: Nucl. Instrum. Methods
Phys. Res. Sect. B 233 (2005), p. 62.

[65] J. Tabet et al. In: Int. J. Mass Spectrom. 292 (2010), p. 53.

http://dx.doi.org/Doi 10.1021/Jp052325d
http://dx.doi.org/Doi 10.1021/Jp052325d
http://dx.doi.org/Doi 10.1063/1.1769364
http://dx.doi.org/10.1021/jp806659f
http://dx.doi.org/10.1021/jp806659f

REFERENCES 271

[66] J. Tabet et al. In: Phys. Rev. A 82 (2010), p. 022703.
[67] J. Tabet et al. In: Phys. Rev. A 81 (2010), p. 012711.
[68] J. de Vries et al. In: Eur. Phys. J. D 24 (2003), p. 161.

[69] H. Budzikiewicz, J.I. Brauman, and C. Djerass. In: Tetrahedron 21 (1965),
p. 1855.

[70] R.C. Dougherty. In: J. Am. Chem. Soc. 90 (1968), p. 5780.

[71] M Monge-Palacios, J. J. Nogueira, and E Martinez-Nunez. In: J. Phys. Chem.
C' 116 (2012), pp. 25454-25464.

[72] J. J. Nogueira et al. In: J. Phys. Chem. C' 115 (2011), pp. 23817-23830.

[73] M.J.S. Dewar, E.G. Zoebisch, and E.F. Healey. In: J. Am. Chem. Soc. 107
(1985), pp. 3902-3909.

[74] F. Weigend, F. Furche, and R. Ahlrichs. In: J. Chem. Phys. 119 (2003),
pp- 12753-12762.

[75] TURBOMOLE v6.4 2012, a development of University of Karlsruhe and Forschungszen-
trum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH. Computer Program.
URL: http://www.turbomole.com.

[76] S. F. Boys and F. Bernardi. In: Mol. Phys. 19 (1970), pp. 553-566.
[77] W. L. Hase et al. In: QCPE 16 (1996), p. 671.

[78] A.B. Bortz, M. H. Kalos, and J.L. Lebowitz. In: J. Comput. Phys. 17 (1975),
pp. 10-18.

[79] D.T. Gillespie. In: J. Comput. Phys. 22 (1976), pp. 403—434.
[80] X. Hu and W. L. Hase. In: J. Chem. Phys. 95 (1991), p. 8073.

[81] R.N. Porter and L.M. Raff. Dynamics of Molecular Collisions. Vol. B. New
York: Plenum Press, 1976.

[82] A. Linhananta and K.F. Lim. In: Phys. Chem. Chem. Phys. 4 (2002), pp. 577—
585.

[83] J. M. C. Marques et al. “Trajectory dynamics study of the Ar+CH4 dissocia-
tion reaction at high temperatures: the importance of zero-point-energy effects”.
In: J. Phys. Chem. A 109.24 (2005). 936PC Times Cited:11 Cited References
Count:64, pp. 5415-5423. 1SSN: 1089-5639. DOI: Doi10.1021/Jp044707+.

[84] K.F. Lim. In: Quantum Chem. Program Ezchange Bull. 14.1 (1994), p. 3.
[85] J. Hippler, J. Troe, and H.J. Wendelken. In: J. Chem. Phys. 78 (1983), p. 6709.
[86] F.M. Mourits and F.H.A. Rummens. In: Can. J. Chem. 55 (1977), p. 3007.

[87] A.J. Stone. The Theory of Intermolecular Forces. Oxford: Oxford University
Press, 1996.

[88] L. Sadr Arani et al. In: Phys. Chem. Chem. Phys. 14 (2012), pp. 9855-9870.

http://www.turbomole.com
http://dx.doi.org/Doi 10.1021/Jp044707+

272 REFERENCES

[89] K. Fukui. In: Acc. Chem. Res. 14 (1981), p. 363.
[90] D.H. Ess et al. In: Angew. Chem. Int. Ed. 47 (2008), p. 7592.

[91] J. Rehbein and B.K. Carpenter. In: Phys. Chem. Chem. Phys. 13 (2011),
p. 20906.

[92] E. J. Bylaska et al. NW Chem, A Computational Chemistry Package for Par-
allel Computers, Version 5.1. Computer Program. 2007.

[93] R. A. Kendall et al. In: Comput. Phys. Chem. 128 (2000), p. 260.

[94] U. Lourderaj et al. “Direct dynamics simulations using Hessian-based predictor-
corrector integration algorithms”. In: J. Chem. Phys. 126.4 (2007), p. 044105.

[95] W. L. Hase et al. “Translational and vibrational energy dependence of the
cross section for H + C2H4 af’ C2H5”. In: J. Phys. Chem. 85.8 (1981), p. 958.

[96] C.S. Sloane and W. L. Hase. In: J. Chem. Phys. 66 (1977), p. 1523.
[97] B.K. Carpenter. In: J. Phys. Org. Chem. 16 (2003), p. 858.
[98] D. Gerlich. In: Adv. Chem. Phys. 82 (1992), p. 1.

[99] J. Liu, B. van Devener, and S.L. Anderson. In: J. Chem. Phys. 116 (2002),
p. 5530.

[100] K. Song, O. Merouch, and W. L. Hase. “Dynamics of Cr(CO)6 + collisions
with hydrogenated surfaces”. In: J. Chem. Phys. 118.6 (2003), pp. 2893-2902.

[101] J. Wang et al. “Efficiency of energy transfer in protonated diglycine and diala-
nine SID: Effects of collision angle, peptide ion size, and intramolecular potential”.
In: Int. J. Mass. Spectr. 230.1 (2003), pp. 57-63.

[102] L. Yang et al. In: J. Phys. Chem. C 112 (2008). Yang, Li Mazyar, Oleg A.
Lourderaj, U. Wang, Jiangping Rodgers, M. T. Martinez-Nunez, Emilio Addepalli,
Srirangam V. Hase, William L., pp. 9377-9386. 1SSN: 1932-7447. por: 10.1021/
jp712069b.

[103] J. Troe. In: J. Chem. Phys. 66 (1977), p. 4758.

[104] A. Derecskei-Kovacs and S.W. North. In: J. Chem. Phys. 110 (1999), p. 2862.
[105] M. J. Wilhelm et al. In: J. Chem. Phys. 130 (2009), p. 044307.

[106] S. A. Abrash et al. In: J. Phys. Chem. 99 (1995), p. 2959.

[107] M. Bahou and Y. P. Lee. “Photodissociation dynamics of vinyl chloride inves-
tigated with a pulsed slit-jet and time-resolved Fourier-transform spectroscopy”.
In: Aust. J. Chem. 57.12 (2004), pp. 1161-1164. 1SSN: 0004-9425. DOI: Doil0.1071/
Ch04117.

[108] M. Barbatti, A.J.A. Aquino, and H. Lischka. In: J. Phys. Chem. A 109 (2005),
p- 5168.

[109] D. A. Blank et al. In: J. Chem. Phys. 108 (1998), p. 5414.
[110] T.R. Fletcher and S.R. Leone. In: J. Chem. Phys. 88 (1988), p. 4720.

http://dx.doi.org/10.1021/jp712069b
http://dx.doi.org/10.1021/jp712069b
http://dx.doi.org/Doi 10.1071/Ch04117
http://dx.doi.org/Doi 10.1071/Ch04117

REFERENCES 273

[111] J. Gonzalez-Vazquez et al. “Dissociation of difluoroethylenes. I. Global po-
tential energy surface, RRKM, and VTST calculations”. In: J. Phys. Chem. A
107.9 (2003), pp. 1389-1397. 1SsN: 1089-5639. DOI: Doi10.1021/Jp021901s.

[112] J. Gonzalez-Vazquez et al. “Dissociation of difluoroethylenes. II. Direct Clas-
sical Trajectory Study of the HF elimination from 1,2-difluoroethylene”. In: J.
Phys. Chem. A 107.9 (2003), pp. 1398-1404. 1ssN: 1089-5639. DOI: Doil10.1021/
Jp021902k.

[113] G. He et al. In: J. Chem. Phys. 103 (1995), p. 5488.

[114] Y. Huang et al. In: J. Chem. Phys. 103 (1995), p. 5476.

[115] W. A. Jalenak and N. S. Nogar. In: J. Chem. Phys. 79 (1983), p. 816.
[116] S. Kato and K. Morokuma. In: J. Chem. Phys. 74 (1981), p. 6285.
[117] H.S. Ko et al. In: J. Chem. Phys. 117 (2002), p. 6038.

[118] Y.R. Lee et al. In: J. Chem. Phys. 113 (2000), p. 5331.

[119] S. R. Lin et al. “I. Three-center versus four-center HCl-elimination in photol-
ysis of vinyl chloride at 193 nm: Bimodal rotational distribution of HCI (v <= T7)
detected with time-resolved Fourier-transform spectroscopy”. In: J. Chem. Phys.
114.1 (2001), pp. 160-168. 1sSN: 0021-9606.

[120] S. R. Lin et al. “Three-center versus four-center elimination in photolysis of
vinyl fluoride and vinyl bromide at 193 nm: Bimodal rotational distribution of HF
and HBr (v <= 5) detected with time-resolved Fourier transform spectroscopy”.
In: J. Chem. Phys. 114.17 (2001), pp. 7396—7406. 1SSN: 0021-9606.

[121] E. Martinez-Nunez et al. “Product energy distributions for the four-center

HF elimination from 1,1-difluoroethylene. a direct dynamics study”. In: Chem.
Phys. Lett. 348.1-2 (2001), p. 81.

[122] E. Martinez-Nufiez and S. Vazquez. “Rotational distributions of HBr in the
photodissociation of vinyl bromide at 193 nm: An investigation by direct quasi-
classical trajectory calculations”. In: Chem. Phys. Lett. 425.1-3 (2006), p. 22.

[123] E. Martinez-Nunez and S. Vazquez. “Quasiclassical trajectory calculations
on the photodissociation of C F2 CHCI at 193 nm: Product energy distributions
for the HF and HCI eliminations”. In: J. Chem. Phys. 122.10 (2005), p. 1.

[124] E. Martinez-Nuniez and S. Vazquez. “Rovibrational distributions of HF in
the photodissociation of vinyl fluoride at 193 nm: A direct MP2 quasiclassical
trajectory study”. In: J. Chem. Phys. 121.11 (2004), p. 5179.

[125] E. Martinez-Nufiez and S. A. Vazquez. “Three-center vs. four-center HF elim-
ination from vinyl fluoride: A direct dynamics study”. In: Chem. Phys. Lett. 332.5-
6 (2000), p. 583.

[126] E. Martinez-Nufez et al. “Further investigation of the HCI elimination in the
photodissociation of vinyl chloride at 193 nm: A direct MP2/6-31G(d,p) trajectory
study”. In: Chem. Phys. Lett. 386.4-6 (2004), p. 225.

http://dx.doi.org/Doi 10.1021/Jp021901s
http://dx.doi.org/Doi 10.1021/Jp021902k
http://dx.doi.org/Doi 10.1021/Jp021902k

274 REFERENCES

[127] J.-F. Riehl and K. Morokuma. In: J. Chem. Phys. 100 (1994), p. 8976.

[128] T. Takayanagi and A. Yokoyama. In: Bull. Chem. Soc. Japan 68 (1995),
p. 245,

[129] T. Tarrazo-Antelo, E. Martinez-Nunez, and S. A. Vazquez. “Ab initio and
RRKM study of the elimination of HF and HCI from chlorofluoroethylene”. In:
Chem. Phys. Lett. 435.4-6 (2007). 140AR Times Cited:0 Cited References Count:35,
pp. 176-181. 18SN: 0009-2614. DOL: DOI10.1016/j.cplett.2006.12.075.

[130] M. Umemoto et al. In: J. Chem. Phys. 83 (1985), p. 1657.

[131] C.A. Bird and D.J. Donaldson. In: Chem. Phys. Lett. 249 (1996), p. 40.
[132] D. A. Blank et al. In: J. Chem. Phys. 108 (1998), p. 5784.

[133] A. Fahr and A.H. Laufer. In: J. Phys. Chem. 96 (1992), p. 4217.

[134] L. Letendre and H.-L. Dai. In: J. Phys. Chem. A 106 (2002), p. 12035.
[135] S. W. North and G. E. Hall. In: Chem. Phys. Lett. 263 (1996), p. 143.

[136] C Gonzalez and H. B. Schlegel. In: J. Phys. Chem. 94 (1990), p. 5523.

[137] M. J.; Frisch et al. et. al. Gaussian 09. Computer Program. 2009.

[138] W. H. Miller. In: J. Am. Chem. Soc. 101 (1979), p. 6810.

[139] K.M. Ervin, J. Ho, and W.C. Lineberger. In: J. Chem. Phys. 91 (1989),
p. 5974.

[140] J.B. Moffat. In: J. Phys. Chem. 81 (1977), p. 82.

http://dx.doi.org/DOI 10.1016/j.cplett.2006.12.075

Other interesting references to
the reader

Erling D. Andersen. Linear optimization: Theory, methods, and extensions. Accessed
1 April 2014. Self-Published, 1998. URL: http://plato.asu.edu/ftp/linopt.pdf.

M.S. Bazaraa, H.D. Sherali, and C.M. Shetty. Nonlinear Programming: Theory and
Algorithms. Wiley, 2006. 1SBN: 9780471787761.

Kent Beck. Una explicacion de la programacion extrema. Pearson Educacion, 2002,
189 pages. ISBN: 8478290559.

John Calcote. Autotools: A Practioner’s Guide to GNU Autoconf, Automake, and
Libtool. 1st. San Francisco, CA, USA: No Starch Press, 2010. 1SBN: 1593272065,
9781593272067.

Bruce Eckel. Piensa en Java. Pearson Educacion, 2002, 906 pages. ISBN: 9788420531922.

Brian Foy, Tom Phoenix, and Randal Schwartz. Learning Perl. "O’Reilly Media,
Inc.", 2011, 363 pages. ISBN: 9781449303587

Daniel Gilly and O’Reilly & Associates. UNIX in a nutshell. O'Reilly & Associates,
1992. 1SBN: 9781565920019.

H. J. Greenberg. Myths and Counterexamples in Mathematical Programming. (ongo-
ing, first posted October 2008, Accessed 1 April 2014.) http://glossary.computing.
society.informs.org: INFORMS Computing Society, Feb. 2010.

David Gunter and Jack Tackett. Utilizando Linux. Prentice Hall, 1996, 846 pages.
ISBN: 9788489660557.

Francisco Herrera, Manuel Lozano, and Jose L. Verdegay. “Tackling real-coded ge-
netic algorithms: Operators and tools for behavioural analysis”. In: Artificial
intelligence review 12.4 (1998), pp. 265-319.

Jarkko Hietaniemi, John Macdonald, and Jon Orwant. Mastering Algorithms with
Perl. O’Reilly Media, Inc., 1999, 684 pages. ISBN: 9781565923980.

275

http://plato.asu.edu/ftp/linopt.pdf
http://glossary.computing.society.informs.org
http://glossary.computing.society.informs.org

276 OTHER INTERESTING REFERENCES TO THE READER

C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations. Frontiers in
Applied Mathematics 16. Accessed 1 April 2014. STAM, 1995. URL: http://www.
siam.org/books/textbooks/fr16 book.pdf.

C. T. Kelley. Iterative Methods for Optimization. Vol. 19. Accessed 1 April 2014.
SIAM Frontiers in Applied Mathematics, 1999. URL: http://www.siam.org/
books/textbooks/fr18 book.pdf.

Olaf Kirch. Linuz. O'Reilly Media, 1995, 335 pages. ISBN: 9781565920873.

Donald Ervin Knuth. The art of computer programming. Vol. 1,2,3,4A. Pearson
Education, 1968-2011.

Jesse Liberty. C++ para principiantes. Pearson Educacion, 2000, 422 pages. ISBN:
9789701704165.

H. A. Luther, James O. Wilkes, and Brice Carnahan. Cdlculo numérico. Rueda,
1979, 639 pages. ISBN: 8472070131.

Félix Garcia Merayo. Programacion en FORTRAN 77. Paraninfo, 1991, 399 pages.
ISBN: 9788428318181.

James Newkirk et al. La programacion extrema en la practica. Pearson Educacion,
2002, 200 pages. ISBN: 8478290575.

Francisco José Baptista Pereira. “Estudo das interacgoes entre evolugao e apren-
dizagem em ambientes de computacao evolucionaria”. PhD thesis. 2002. URL:
http://hdl.handle.net/10316/1744.

Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. A field guide
to genetic programming. (With contributions by J. R. Koza. Accessed 1 April
2014.) Published via http://lulu.com and freely available at http://www.gp-field-
guide.org.uk, 2008. URL: http://www.gp-field-guide.org.uk.

William H. Press et al. Numerical Recipes 3rd Edition: The Art of Scientific Com-
puting. Cambridge University Press, 2007. ISBN: 0521880688.

Eric S. Raymond. The Art of UNIX Programming. Pearson Education, 2003. ISBN:
0131429019.

Herbert Schildt. C. Osborne MacGraw-Hill, 1989, 358 pages. ISBN: 9788476153819.

Fco. Javier Ceballos Sierra and Francisco Javier Ceballos Sierra. C/C++. RA-MA
S.A. Editorial y Publicaciones, 2001, 704 pages. ISBN: 9788478974801.

Kathy Sierra and Bert Bates. Head First Java, 2nd Edition. O’Reilly Media, 2005.
ISBN: 0596009208.

Nick Sofroniou, Apostolos Syropoulos, and Antonis Tsolomitis. Digital Typography
Using LaTeX. Springer, 2003, 510 pages. ISBN: 9780387952178.

James C. Spall. Introduction to Stochastic Search and Optimization. Wiley-Interscience,
2003, 595 pages. ISBN: 9780471330523.

S. Srinivasan. Advanced Perl programming. A Nutshell handbook. O’Reilly, 1997.
ISBN: 9781565922204.

http://www.siam.org/books/textbooks/fr16_book.pdf
http://www.siam.org/books/textbooks/fr16_book.pdf
http://www.siam.org/books/textbooks/fr18_book.pdf
http://www.siam.org/books/textbooks/fr18_book.pdf
http://hdl.handle.net/10316/1744
http://lulu.com
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk

OTHER INTERESTING REFERENCES TO THE READER 277

Johan Vromans. Perl 5 pocket reference. O'Reilly Media, 2000, 90 pages. ISBN:
9780596000325.

Kurt Wall. Programacion en Linuz con ejemplos. Prentice-Hall, 2000, 541 pages.
ISBN: 9789879460092.

L. Wall, T. Christiansen, and J. Orwant. Programming Perl. O’Reilly Series. O’Reilly,
2000. 1SBN: 9780596000271.

L. Darrell Whitley, ed. Proceedings of the Second Workshop on Foundations of Ge-
netic Algorithms. Vail, Colorado, USA, July 26-29 1992. Morgan Kaufmann,
1993. 1SBN: 1-55860-263-1.

Stephen Wright and Jorge Nocedal. Numerical Optimization. Springer Verlag, 2006,
664 pages. ISBN: 9780387303031.

Index

n-SBX, 30, 44 AMI1, 173, 187, 190, 198, 206, 208
o, 45 analytical expression, 35, 42, 43, 51,
b4, 59, 63, 73, 107, 119, 121,
ab initio, 21, 38, 129, 145, 169, 189, 124
191, 217, 219, 220, 223, 224, bedit, 119
228, 229 example, 38, 145
address stack, 107 JobTreeEditor, 124

algorithm, 99, 117
Adams—Moulton predictor-corrector
192

operators and functions, 75
"text section, 148

~ ufpu, 121
]Cgoeri(;r{lizv 1?§hart’ 2 variables, 73, 111, 122, 148
elitism, 18 angf, 980 .
evolutionary, 17 angle, JU,
array, 18

genetic, 18, 25, 35, 42, 44, 54,
191 mopErrors, 88

genetic programming, 21 mopSTOPErrors, 88

global, 14 atom2type, 37, 47, 50, 116, 117,
deterministic, 14 132, 151
probabilistic, 14 bedit, 117
Hessian-based predictor-corrector, needle, 116
202 auto weights, 52
all coefficients, 49, 51, 135 runs, 46
bedit, 119 autoconfigure, 78

279

280

bedit, 49, 50, 116, 117, 133, 171
best.txt, 140, 141, 165
fitting, 178, 184

Blend Alpha crossover, see BLX-a

BLX-«, 31, 44
bounds, 37, 48, 51, 132, 151
bedit, 117
labels, 49
bounds.txt, 133, 155, 159, 171
burst mode, 98
bytecode, 121

CALCPERIND, 89
CARTESIAN, 89
cartesian coordinates, 91
charges, 37, 50, 116, 132

bedit, 117

vglobales, 64
charges.txt, 132
chromosome, 18
coefficient names, 55

analytical, 59

defaults, 55, 183

example, 157
coefficients

external job, 54

vglobales, 64
convex, 10, 12
crossover, 21

double point, 30, 44

DPC, 21

integers, 31

MPX, 21

rate, 28, 44

simulated binary

see SBX, 30

INDEX

single point, 28, 44
SPC, 21

debug options, 36

defaults
coefficient names, 55, 183
environmental variables, 82
external auto, 84
job file, 42, 43
type of job, 43

delt, 90

delta, 90

density functional theory, 38

dihe, 90

dihedral angle, 90, 91
convention, 91

dist, 90

distance, 90, 91, 174

Eckart
potential, 222
elitism, 18, 32, 44
energies, 37, 47
energies.txt, 131
energy barriers, 38
engergies.txt, 140
environmental variables, 82, 84
evaluations, 46, 52
example
analytical, 38
analytical expression, 145
coefficient names, 157
external, 38
mopac interface, 39
shepherd, 39
uracil, 38, 129
userpotential .f, 38

INDEX

ve, 39
external, 62

auto, 45, 78, 80, 84

defaults, 84

bedit, 119

bulk, 45, 53, 54, 78, 86

coefficients, 54

command, 53, 77, 84

fit, 54, 78, 83, 90

fitview, 121

input, 53, 77, 83, 85

stop job, 79
external auto, 170
external bulk, 181
external job, 125
external.c, 159, 161
extractor, 80, 86, 177

feasible, 13
feasible point, 10
file
atom2type, 37, 47, 50, 116, 117,
132, 151
atom2type.txt, 117
best.txt, 61, 121, 140, 141, 165
bounds, 37, 132, 151
bounds.txt, 133, 155, 159, 171
BOUNDS FILE, 83
charges, 37, 116, 132
charges.txt, 132
COEFS TEMPLATE, 80, 83—
85
conditions.txt, 89
energies, 37, 131
energies.txt, 140
external.c, 159, 161

281

EXTERNAL_ FIT, 83, 90

EXTERNAL INPUT, 83, 85

EXTRACTED DATA, 83, 87,
90

geometries, 37, 131, 151

job.txt, 37, 41, 42, 78, 109, 119,
121, 123, 134, 149, 151, 157,
171

MOPAC MOP, 83, 85, 86

MOPAC TEMPLATE, 80, 83,
85

potentials.f, 43, 51, 63, 65

response, 78, 79, 84

stop, 79

userpotential .f, 43, 63

fitter, 80, 90, 178

angle, 90, 91

conditions
example, 90

delta, 90

dihedral angle, 90, 91

distance, 90, 91

example, 91

fitter equation, 90

frequency, 90

heat, 90

penalty, 90

weights, 90

fitting, 35, 38, 194, 209

best.txt, 178, 184

fitter tool, 80

job option, 43, 52

user function, 52, 63, 70

fitview, 70, 120, 141
fortran, 80

282

compiler, 36
icc, 36
ifort, 36
fpu, 22, 73, 107, 122
instruction set, 108
freg, 90
FREQUENCIES, 89
frequencies, 38
frequency, 89, 90
frozen, 95
function
getcharges, 65
ix, 64, 70
setcoefs, 65
userv, 73

genes, 18
genetic operators, 19
genetic programming, 21

geometries, 37, 38, 46, 117, 151
geometry optimization, 173

glibe, 97

global optimization, 14
GNU autotools, 36
gnuplot, 120, 142
gobal optimization, 17

Harvard

architcture, 108
heat, 90
heat, 90
heat of formation, 89, 90
heat of formation , 174
HEATFCAL, 89
HEATFJUL, 89
HOME, 100

INDEX

injector, 80, 83, 93, 175, 176, 181
bulk, 84, 96
interactions, 48
analytical, 74
curRouter, 70
needle, 115
plot, 120
vglobales, 64
intractable, 14

job

external, 37

internal, 37

test mode, 45

type, 45
job section, 49

all coefficients, 49, 51, 119, 135
job.txt, 37, 123, 134, 149, 151, 157,

171

JobTeeEditor

cut defaults, 124, 125
JobTreeEditor, 123, 134, 171

cut defaults, 135, 148

labels

bounds, 49
linear, 10, 12
linear programming, 12
local optimization, 13
Istimes, 101

mathematical programming, 9
memory pool, 108, 111
module

userdata, 63, 73

vglobales, 63
MOPAC, 36

INDEX 283

MOPAC2009 potentials.f, 22
caveats, 92 print
example, 39 analytical, 54
failure, 80, see array mopErrors, analytical expression, 54
89, 90 auto weights, 54
interface, 77, 78 ga settings, 54
MOPAC2012, 93 geometries, H4
mutation, 19 runs, 54
adjacent, 32, 45 process
random crash, 92, 97
integer, 45 freeze, 92
integers, 32 program counter, 108
real, 32, 45 random seed, 45
rfate, 31, 44 runs, 46, 52
sigma, 32, 45
SBX, 30
needle, 37, 48, 50, 115, 131,132 search direction, 45
NF'S, 100 section
nonlinear, 11, 13 analytical, 42, 73
NUMATOMS, 89 coefficient names, 55
NUMFREQ), 89 joh, 42

parameters, 42

optimization, 9 .
print, 42, 54, 57

pena, 90 seed, 13

penalty, 90, 93, 174 semiempirical, 38

perl, 80, 86, 115 reparametrization, 169, 190, 2006,

permutation, 19 208

pipe, 97 shepherd, 92, 95

plot, 120 flocks, 97

population, 18, 44 sheep, 97

potential, 51 Simulated Binary crossover
analytical expression, 73 see n-SBX, 44
external, 77 status flags register, 108
user potential, 63, 70 stderr, 97
userpotential .f, 52, 70 subroutine

vglobales, 64 coordinates, 65, 70

284 INDEX

curRouter, 65
potRouter, 65
userpot, 73
userread, 73

tags, 37, 61, 78, 121
taskset, 99
template, 80
tournament, 28
size, 28, 44
transition state, 173
transition states, 38

uCompiler, 107
ufpu, 75, 107, 121, 149
unimolecular decomposition chan-
nels, 38
uracil
example, 134
user defined potential, 125
userpotential.f
example, 38
utility
Isexdata, 89
Istimes, 101

vibrational frequencies, 173
vibrational frequency, 174
von Neumann

architecture, 108

weights, 47, 90
auto, H2
auto weights, 47
auto, print, 54
vglobales, 64
whitespace, 43

List of Tables

4.1

6.1
6.2

8.1
8.2
8.3

9.1
9.2
9.3

11.1
11.2

15.1
15.2
15.3

16.1

17.1

GA subroutineso 28
Job file default value parameters 43
Potential values from potentials.f code file 51
Module VGLOBALES variables 64
Analyltical potential parameters 74
Operators and functions supported in expressions . . . 76
Environmental variables 83
Extracted data 89
Fitter conditions 90
Fpu sourcecode 108
Fpu instruction set 110
Example values to fit. 156
n' set of coefficients fit. 161
Some results running the example with 6 coefficients. . 166

Files in the mopac-example folder after run make test. 170
Files in the shepherd-example folder after run make test. 182

285

286

18.1

18.2

18.3

18.4

18.5
18.6

18.7
19.1

19.2
19.3
194
19.5
19.6
19.7
19.8
19.9
19.10
19.11
19.12
19.13
19.14
19.15
19.16
19.17
19.18
19.19
19.20
19.21

LIST OF TABLES

Computational details of the quasi-classical trajectory
simulations carried out in this work to calculate the

cross sections and energy transfer. 192
Simulation results for the trajectories starting from the
TSI1-b and TSb-b transition states. 201
Parameters of the energy transfer model (eqn 18.4.1)
fitted to our simulation data. 205
Molecular properties selected for the reparametrization
of the AM1 Hamiltonian. 210
AM1-SRP optimized parameters. 211
Computed relative energies (in kcal/mol) of the main
stationary pointsof the [Li(uracil)|Tsystem. 211

Parameters for the two-body intermolecular potentials. 212

Final relative populations of HCN and HNC obtained

in channels I-VIT. 228
Frequencies of all stationary points found in this study 235
(CCH2.XyzZ . . . e o i b e e v e o 235
HCCH.xyz . .4 . @0 G0 . oo 4000 . .. 235
HCN.xyz . . SO0 Lo g . . 236
Intl-Ill.xyz . . .o 00 o o o s 236
Intl-IV.xyz 0o o e 236
Intl-Vxyz oo 236
Int2-IV.xyz oo 236
Int2-V.xyz o 236
TSI-IIIxyz oo o 237
TSI-IIxyz o o 237
TSI-IVxyz o o 237
TS1-Ixyz o 237
TS1-VIxyz o 237
TSI-V.xyz . . . oo 237
TS2-IIIxyz oo 238
TS2-IV.Xyz o oo 238
TSiso.xyz 238
TS2-V.xyz 238

TS3-IV.Xyz . . . o o oo 238

LIST OF TABLES

19.22 VC.xyz

A1 Sourcefiles

List of Figures

2.1
2.2

3.1
3.2

3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

4.1
5.1

9.1
9.2

Convex function.
Global search. . . . &

Evolutionary algorithms.
Genes and chromosome example: 4™ potential from Ta-
ble 6.2. . & . o o e
Single gene mutation.
Multiple gene mutation.
Variable lenght insertion.
Variable lenght deletion.
Permutation.
Single point crossover. L.
Variable lenght single point crossover.
Multiple point crossover.
Variable lenght multiple point crossover.
Tree choromosome.
4™ potential from Table 6.2.

GAmainloop

[Li(Uracil)|"- Xe example.

MOPAC 2009 interface: normal operation
MOPAC 2009 interface: autoconfigure

289

18

290

9.3

10.1
10.2

10.3

10.4

10.5

10.6

10.7

11.1

11.2

11.3
11.4
11.5
11.6
11.7
11.8

12.1
12.2
12.3
12.4

13.1
13.2

13.3

LIST OF FIGURES

Dihedral angles convention 91
Shepherd algorithm: minimum time 99
Real four core CPU: minimun time vs maximum con-
current parallel processes perrun 100
Virtual eight core CPU: minimum time vs maximum
concurrent parallel processes per run 101
Real four core CPU: number of times (N) vs parallel
Processes Per Ul o v v v v v v e 102
Virtual eight core CPU: number of times (N) vs parallel
Processes Per Il v v v v v e e 103
Average parallel processes per run. 4 core real CPU vs
8 core virtual CPU (4 real) 104
Behavior in the same one core CPU writing output to
a NFS share vs local storage. 105
uCompiler compiles the expression into fpu machine
code. A G " W - - 107
Fpu load the machine code and process the variables to
obtain Vvalue. 0000 108
Fpuoverview 109
Initial status oo L 111
apush 0, apush 1, apush 2 112
NEE . . e e e e e e e e 112
apush 3o 113
mult 113
Two body interaction example plot. 121
Job Tree Editor main window. 123
Job Tree Editor menu. 125
Job Tree Editor editing a key-value pair with a context
1001810 126
Viewing the points with Molden. 130
Job Tree Editor editing the ’job.txt’ file included in the
uracil example.o 135

Appliying ’cut defaults’. L. 136

LIST OF FIGURES 291

13.4
13.5

14.1
14.2
14.3

15.1
15.2

15.3

15.4
15.5

15.6
15.7

15.8
16.1

16.2

18.1

18.2

18.3

18.4

Interaction type 2 plot. 143
General evaluation plot. 144
Appliying ‘cut defaults’. 147
Adding new text section. 149
Analytical job after adding the text section. 150
Example polynomial plot 156
EISEN: GAFit is launched 160
: GAFit overwrites or creates the external.input

file. 161
: GAFit launches the external binary 162

Sl Y. external using external.input evaluates the
external.values and overwrites or creates the external.fit

file ... N .. & .47 0 . 163
sl oy GAFit reads the external fit file 164
: if the fit is the best till now, GAFit over-

writes or creates the best.tat file 165
Table 15.3 polynomial plots. 167

Vinyl cyanide drawn using the coordinates of the first
calculation (optimization of the minimum energy struc-

ture). QRO 173
Three-centered transition state drawn using the coordi-
nates of the last calculation. 173

Atomic labeling and geometries of [Li(uracil)| T optimized
in this work at the MP2/6-31+G(d) level of theory. . . 191
Percentage of the different channels found in this study,
with respect to the total number of trajectories (upper
panel) and percentage of RRKM and “shattering” found

in the O-Li"dissociations (lowe