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A method for context-based adaptive QRS
clustering in real-time
Daniel Castro*, Paulo Félix, and Jesús Presedo

Abstract—Continuous follow-up of heart condition through
long-term electrocardiogram monitoring is an invaluable tool for
diagnosing some cardiac arrhythmias. In such context, providing
tools for fast locating alterations of normal conduction patterns
is mandatory and still remains an open issue. This work presents
a real-time method for adaptive clustering QRS complexes from
multilead ECG signals that provides the set of QRS morphologies
that appear during an ECG recording. The method processes the
QRS complexes sequentially, grouping them into a dynamic set of
clusters based on the information content of the temporal context.
The clusters are represented by templates which evolve over time
and adapt to the QRS morphology changes. Rules to create,
merge and remove clusters are defined along with techniques for
noise detection in order to avoid their proliferation. To cope with
beat misalignment, Derivative Dynamic Time Warping is used.
The proposed method has been validated against the MIT-BIH
Arrhythmia Database and the AHA ECG Database showing a
global purity of 98.56% and 99.56%, respectively. Results show
that our proposal not only provides better results than previous
offline solutions but also fulfills real-time requirements.

Index Terms—Adaptive clustering, Electrocardiogram (ECG),
Dominant Points, Dynamic Time Warping, QRS clustering.

I. INTRODUCTION

NOWADAYS the surface electrocardiogram (ECG) is rec-
ognized as an invaluable tool for monitoring heart con-

dition, since its analysis provides decisive information that
can reveal critical deviations from normal cardiac behavior.
Recent developments in mobile sensors and mobile computing
have enabled new scenarios for continuous ECG monitoring
as an inexpensive tool for the early detection of some cardiac
events [1], especially in those cases where symptoms appear
intermittently.

As the monitoring period increases, the interpretation task
becomes more time consuming and decision-support tools are
needed to help cardiologists to reduce the time spent on it.
If a continuous follow-up is required, these tools become
imperative. Their main aim is to provide the cardiologists with
a summary of all the acquired signals, enhanced with a fast
locating of those anomalies detected.

Cardiac arrhythmias are the most relevant among the ECG
findings. There are two main sources of arrhythmias: an
automatism disorder, that is, a set of alterations in the beat
activation point due to changes in its location or activation
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frequency; or a conduction disorder, that is, an abnormal
propagation of the beat wavefront through the cardiac tissue.
They both have an effect on the ECG, affecting the beat
morphology and/or beat rhythm. In order to support their
identification, a method for separating the beats by their
activation point and conduction pattern should be provided.

Beat classification arises as the task of assigning each
beat in an ECG a label identifying its physiological nature.
Machine learning techniques have been applied to this task
by estimating the underlying mechanisms that produce the
data of a training set. The main drawback of this approach
is its strong dependence on the pattern diversity present in the
training set. Thus, inter-patient differences show that it cannot
be assumed that a classifier trained on data of a large set of
patients will yield valid results on a new patient [2]–[4], and
intra-patient differences show that this cannot be assumed even
for the same patient throughout time. In addition, class labels
only provide gross information about the origin of the beats
in the cardiac tissue, loosing all the information about their
conduction pathways. This approach does not distinguish the
multiple morphological families present in a given class, as
occurs in multifocal arrhythmias.

In contrast, beat clustering aims at dividing the ECG record-
ing in a set of beat clusters, each one of them preserving
some similarity properties. Previous proposals have focused
on an offline approach, from a priori maximum number of
clusters [5]–[8] and they imply processing the ECG signal
once the acquisition has been completed. This approach has
given good noise robustness, but as a side effect a single mor-
phology is usually replicated in several clusters and rare beat
morphologies can be missed. It also omits the dynamic aspect
of ECG and, in particular, ignores the temporal evolution of
morphologies. Furthermore, the detection of critical events can
be deferred too long to provide timely attention. For all these
reasons, a dynamic online approach must be considered.

In this paper, we present a real-time method for adaptive
beat clustering, with a potential application not only as a
previous step for classification [9], but also as a summary
about those beat morphologies present in a certain period,
their temporal evolution and variability, or even to detect the
presence of alternating morphologies. The proposed method
emulates the experts behavior in exploiting the temporal
context for assigning each new beat to the most appropriate
cluster. To this end, clusters are continuously adapting to
the temporal evolution of beat morphologies, and they can
be dynamically created, merged or modified, resulting in a
variable number of clusters.

Beat clustering requires extracting from the ECG a set
of representative measurements for every beat. Bibliography
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Fig. 1. Flow-chart of the method proposed for QRS clustering. The different stages involved in beat processing are shown and the creation of a new cluster
is exemplified. Each block refers to the corresponding section.

shows a variety of proposals for beat representation that can be
grouped into four categories: morphological features where the
signal amplitude is directly used [2], [4], [7], [9]; segmentation
features like area, amplitude or interval duration from beat
waves [2], [4], [7], [10] or amplitude and angle values from
vectorcardiogram [3]; statistical features derived using high
order cumulants [4], [11], [12] and finally, transformed space
features, defined in an alternative space using different trans-
forms like Karhunen–Loewe transform [13], Hermite basis
functions [4], [5], [12], discrete Fourier transform [9], [14] or
wavelet transform [3], [14]. All the previous works complete
their feature sets with rhythm information to complement their
description capabilities.

The present paper proposes a new approach to represent
a beat by reducing the QRS complex to a set of relevant
points and support regions. This representation has some
nice properties for beat clustering: it is stable against the
usual variability and the presence of noise in the ECG, and
it explicitly represents the temporal location of some QRS
features.

The proposed method processes a real-time multilead ECG
signal through a set of data-driven stages as shown in Fig. 1. In
order to obtain comparable results, signals from two standard
ECG signal databases are used as data source (section II).
The pre-processing stage comprises real-time beat detection
and baseline filtering (section III). Then, a fixed-length signal
segment is selected for extracting and characterizing the QRS
complex (subsection IV.A). QRS complexes are compared to
the current set of clusters following a context-based criteria
to obtain the best matching cluster (subsections IV.B–D).
Afterwards, the current cluster set is updated in one of three
ways: creating a new cluster, modifying the most similar one or
merging two or more clusters (subsection IV.E). The next stage
performs a noise analysis for each lead in order to detect noisy

intervals and avoid the processing of noisy beats or discard
the clusters created from them (section V). Finally, the beats
are classified by their rhythm type and a set of groups with
common morphology and rhythm is obtained (section VI).

The ECG databases have been processed and their beat class
labels have been used to validate the purity of the final cluster
and group sets (section VII). These results are discussed in
section VIII along with the conclusions of the work.

II. ECG SIGNAL DATABASES

The ECG databases recommended by the ANSI/AAMI
EC57 [15] standard for reporting the performance of arrhyth-
mia detectors were used for validation purposes: the MIT-BIH
Arrhythmia Database and the AHA ECG database.

The MIT-BIH Arrhythmia Database [16] [17] can be re-
ferred to as the golden standard for beat clustering and
classification tasks and it is the reference database for almost
all the literature in this field. This database is composed of
48 recordings of ambulatory ECG, obtained from 47 different
patients which comprise a very complete set of examples of
common and rare arrhythmias. Each record has a duration of
30 min, and includes two channels with the same leads in
almost all of them: a modified-lead II (MLII) in the first one
and lead V1 in the second one. MLII was replaced by lead V5
in three records and V1 was replaced by MLII, V2, V4 or V5
on eight records. The signals were digitized at fs“360Hz and
bandpass filtered with cutoff frequencies at 0.1 and 100Hz. All
beats present in the database were annotated by at least two
expert cardiologists, and assigned a class label using a 16 label
set.

The AHA ECG database was compiled by the American
Heart Association and it is composed of 155 recordings of
ambulatory ECG digitized at fs“250Hz containing the most
relevant types of ventricular arrhythmias. Each record is three
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hours long with two channels but only the last 30 minutes
have been manually annotated by experts.

III. PRE-PROCESSING

The major drawback of processing long-term ECG signals
is the presence of a high level of noise with multiple man-
ifestations —baseline wandering, power line interference or
electromyographic activity— so an initial filtering stage needs
to be performed. The efforts have been focused on filtering
the baseline wandering, as this is the most relevant source
affecting the reliability of the clustering algorithm because of
the distortion it can cause on the QRS morphology.

A. Baseline filtering

The baseline filtering is performed through the estimation of
the baseline wandering and its posterior elimination from the
original ECG. To achieve this goal, each signal is processed
by two sequentially connected median filters of 200ms and
600ms, respectively, as described in [2]. A global delay of
400ms is added by this process, independently of the sampling
rate.

B. Beat detection

In order to carry out an evaluation of the clustering method
separately from beat detector and provide a fair comparison
framework for future algorithms, we used the beat position
provided by the ECG databases as fiducial points.

A beat detector is required for real scenarios, affecting the
quality of results. However, it virtually does not increment the
global computational complexity as QRS detection represents
only a small fraction of it. The global delay would not be
affected either, since the beat detection can be performed
concurrently with baseline filtering with a shorter delay.

IV. CLUSTERING

In this paper the following notation is used. Bold face
variables (e.g., x) to represent vectors and sequences, lower
case alphabets with subscripts to represent their components
(e.g., xi) or superscripts when a temporal index is used as a
subscript (e.g., xin), upper case alphabets (e.g., X) to represent
sets, and calligraphic letters to represent functions (e.g., F).

The aim of the clustering method is to group in real-
time those beats which share the same activation area and
propagation pattern in the cardiac tissue. The propagation of
the electrical impulse through the heart is reflected in the
ECG as a sequence of waves corresponding to the activity
in the atria and ventricles. P wave and QRS complex are of
particular interest since they show the atria and ventricular
depolarization, respectively, thereby providing a fingerprint of
the conduction pathway. Since the noise level of ambulatory
signals makes the detection of the P wave a very difficult
task, we focus on the QRS morphology to characterize the
beat. As a consequence, beats with different atrial activation
points or even with nodal activation points can share the same
QRS morphology, and will be assigned to the same cluster. In
the absence of a P wave analysis, rhythm information can be

useful in some cases to detect this situation, as explained in
section VI.

The proposed method is intended to provide a real-time
resume of the ECG signal as a dynamic set of clusters.
Whenever a new beat is detected, the set of clusters is updated.
Let C denote a time series C “ tC1, C2, ..., Cn, ...u where
Cn “ tC

c
n | 1ď cďNnu is the set of clusters that represents

those QRS morphologies which appeared from the beginning
of the recording up to the beat n, Ccn is the set of beats
assigned to cluster c and Nn the number of clusters, both
at beat n.

The clustering follows a data-driven flow triggered by the
beat detector as shown in Fig. 1. Each new beat is compared
to the set of clusters Cn using concordance and dissimilarity
measures in order to find the best matching and giving prefer-
ence to those in its temporal context. A detailed explanation
of this process follows in the remaining subsections: first, a
beat characterization and a template-based representation of
the clusters; next, the alignment technique and the measures
used to compare beats and clusters; afterwards, the criteria for
cluster selection and, finally, the process of updating the set
of clusters.

A. QRS characterization

We adopt a strategy inspired by dominant point detection
[18] to characterize the QRS morphology through its con-
stituent waves. Let S “ tst | st P RL ^ t P Nu denote a time
series which represents the multilead ECG signal, where L
is the number of leads and st “ ps

1
t , ..., s

L
t q is the vector of

samples at time t for all leads. When the nth beat is detected
with fiducial mark at time t, a fixed-length subsequence of
w“w´`w` samples (w´ before and w` 1́ after t) is selected
from each lead l to represent its QRS complex (see Fig. 2):

qln “ tq
l
1, . . . , q

l
j , . . . , q

l
wu (1)

where qlj “ slt´w´́ 1`j . We set w´“ r0.1ˆ fss and w`“
r0.2ˆfss, which are wide enough to capture the longest QRS
of abnormal beats [19] (V, F and f beat types, typically).

Most of this section describes operations over one lead, so
for the sake of notation simplicity the l superscript will be
obviated unless multiple leads are involved.

We define the curvature K at qj Pqn as:

Kpqj , qnq “ max
iPI´

j ,kPI
`
j

cos {qiqjqk, (2)

where 2ďjďw´1. The terms I´j and I`j denote the intervals
used for calculating the curvature, and they are given by:

I´j “ti | pj´θqď iăj ^

@aPpi, jq, p max
bPpa,jq

∆qj,b´∆qj,aqăρminu (3)

I`j “tk | jăkďpj`θq ^

@aPpj, kq, p max
bPpj,aq

∆qj,b´∆qj,aqăρminu (4)

where ∆qj,x“|qj´qx|. The term θ is the maximum physio-
logically meaningful width of a QRS wave between its peak
location and its left or right end, so that it is the upper limit
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Fig. 2. Example of a subsequence ql
n for lead l “ 2, of a beat at sample

4102, n“13, from record 108 of the MIT-BIH database. The relevant points
detected by the algorithm are marked with *. The parameters involved in the
relevant point detection are also shown.

of I´j and I`j . The term ρmin is the minimum height for a
signal deflection to be considered physiologically relevant and,
therefore, to be excluded from the calculation of curvature.

We define the dominance region of a sample qj as:

dominancepqjq“rr
´, r`s, (5)

where r´“minparg maxiPI´
j

cos {qiqjqkq for any fixed kPI`j
and r`“maxparg maxkPI`

j
cos {qiqjqkq for any fixed iPI´j .

We define the set of dominant points of qn as:

Dn“tpj |pj“qj^j“ arg max
aPdominancepqjq

Kpqa, qnq^∆qjąρminu,

(6)
where ∆qj“minp∆qj,r´ ,∆qj,r`q.

We define the set of relevant points of qn as:

Rn“tpj |pj PDn ^∆qjąρQRSu (7)

where ρQRS is the minimum height for a signal deflection to
be considered a relevant QRS wave, with ρQRS ą ρmin. If
Rn“H, then it is redefined as: Rn“targ maxpjPDn

∆qju.
The limits of dominancepqjq can be located at any point

in the edge of a wave. Since we are interested in capturing its
full extent, the support region of a relevant point pj PRn is
defined as:

supportppjq“rj
´, j`s (8)

where j´ď r´ and j`ě r` are the sample numbers nearest
to r´ and r` where slope sign changes:

j´“min
iPI´

j

pti | iďr´^ @aPri, r´s,∆qj,aą∆qj,a`1uq (9)

j`“max
kPI`

j

ptk |kěr`^ @aPrr`, ks,∆qj,aă∆qj,a`1uq. (10)

In consequence, adjacent support regions can now overlap.
A relevant point pj is said to be in a concave wave if qjąqj´

and qjąqj` . Otherwise, it is said to be in a convex wave. The
wave height is defined as ∆pj“minp∆qj,j´ ,∆qj,j`q.

Finally, the nth beat is represented by the QRS signal
segment and the set of its relevant points and support regions
Pn“tppj , supportppjqq |pj PRnu and denoted by:

Bn“ă qn, Pną . (11)

There is not a consensus in the literature about the limits
for width and height of QRS complex or individual QRS
waves. The AAMI standard [20] recommends a minimum
amplitude of 50µV and duration of 10ms for a QRS wave
to be detected, and 150µV for peak-to-peak QRS amplitude,
with a minimum duration of 70ms. On the other hand, the
AHA [21] and CSE [19] report lower amplitude for QRS
waves (down to 20µV and 10ms), based on measures over
averaged beats with increased Signal-to-Noise ratio. These
limits were not established for physiological reasons, but for
signal noise level or instrumentation limitations. Nothing is
stated about maximum QRS width beyond a reference to
case-based duration values (e.g. the CSE study [19] reports
a maximum QRS width of 210ms). In our case, due to the
Signal-to-Noise ratio present in the ambulatory signals, the
value of ρQRS is set to 150µV in order to avoid the detection
of small waves caused by noise and the value of θ is set
to 100ms to accept QRS waves with a maximum width of
200ms. The value of ρmin is set to 50µV following the AAMI
standard [20] and will be useful to detect noise contaminated
QRS complexes.

In order to perform the comparison between a new beat Bn
and the current set of clusters Cn´1, each cluster Ccn´1 is
represented by a template:

T cn´1“ăqcn´1, P
c
n´1ą, (12)

where qcn´1 “ tqc1, . . . , q
c
wu is derived from the QRS of the

beats assigned to Ccn´1 as will be explained in section IV-E.

B. QRS temporal alignment

In order to compare a beat Bn with a cluster template
T cn´1, a temporal alignment of qn and qcn´1 is performed
using Dynamic Time Warping (DTW) [22]. The aim of this
alignment process is twofold. First, to correct any temporal
misalignment due to a misplaced fiducial mark. And second,
to reduce the contribution of the height and width variability
of the QRS waves to the dissimilarity measure.

DTW was previously used for this purpose in [6], providing
a relation m “ pm1, ...,mKq between qn and qcn´1 called
warping path, with mk“pxk, ykq P r1,wsˆr1,ws, k P r1,Ks
and Kěw. Each mk represents the alignment of the index xk
of qn with the index yk of qcn´1 under three conditions: first,
m1“p1,1q and mK“pw,wq; second, xiďxk and yiďyk @iăk;
and third, mk`1´mk Ptp1,1q, p1,0q, p0,1qu. These conditions
preserve the time-ordering of points and prevent some point
being missed in the alignment.

Let G denote the cost function associated to a warping path
defined by Gpmq“

řK
k“1 Glpxk, ykq, where Glpx, yq“|qx́ qcy|

is the local cost function associated with each element of m.
The optimal warping path is the one that minimizes G.

DTW aligns the original signal samples, so any component
k from m where mk`1´mk P tp1,0q, p0,1qu introduces a
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Fig. 3. Example of the DDTW alignment process. For each subfigure, the
upper solid and dashed lines represent the beat and template data, respectively;
bottom solid lines represent their absolute difference. (a) Shows qn and qc

n´1
subsequences; (b) 9qn and 9qc

n´1 derivative approximations; (c) optimally-
aligned derivatives of length Kěw´1; (d) subsequences pqn and pqc

n´1 of
length K 1̀ obtained from the optimally-aligned derivatives. In (b) and (c), the
difference is equivalent to the local cost function Glpx, yq“| 9qx´ 9qcy |. Notice
the temporal increment K´w in (c) and (d) as a result of the process. The
absolute difference may also be increased in (d) outside the support regions,
but this is irrelevant.

horizontal segment into the aligned signals. Since this can lead
to unacceptable distortion of the QRS, we adopt the Derivative
Dynamic Time Warping (DDTW) [23] which uses the estima-
tion of the derivative instead of the signal itself. The derivative
is approximated by the first difference: 9qn“p 9q1, ..., 9qw´1q and
9qcn´1“p 9qc1, ..., 9qcw´1q with 9qx“qx`1´qx and 9qcy“q

c
y`1´q

c
y .

We imposed some additional conditions on the selected
warping path so as to restrict the alterations of aligned signals.
A global restriction is set in the search process by defining a
warping window δ (named Sakoe-Chiba band [22]) to limit the
temporal distance between aligned samples so |xk´yk| ă δ.
We set δ “ 5, which corresponds to a distance of 14ms
with fs “ 360Hz, and is long enough to deal with small
misalignments of beat marks. A local restriction is also used
to limit the number of times the same sample can be aligned,
setting a slope constraint: mk`a´mk Rtp0, aq, pa, 0qu,@aąλ.
We set λ “ 2 to limit the variation in the amplitude of the
aligned signals. Both conditions together allows the DDTW
to cancel out wave differences up to three times in amplitude
and up to δ samples in width.

Finally, after the optimal warping path m is found, the
aligned signals pqn and pqcn´1 are obtained with coordinates
pqk`1 “ pqk` 9qxk

and pqck`1 “ pqck` 9qcyk for k P r1,Ks, where
pq1“ q1 and pqc1“ q

c
1. Fig. 3 shows the result of the alignment

of the current QRS complex and a template.

C. Template matching
In order to assign a beat Bn to an existent cluster Ccn´1,

we design a similarity calculation that only considers the

difference between signals over the support region of each
relevant point, thus limiting the comparison to the constituent
waves of the QRS. Given a pair ppj , rj´, j`sq P Pn, we are
interested in verifying whether T cn´1 contains a similar wave
in the same location of the QRS. In order to do so, the
interval rqj´,qj`s of qcn´1 aligned with the interval rj´, j`s
of qn must be obtained (see Fig. 4). To this end, the warping
path m is used to map j and rj´, j`s from qn into pqn
obtaining the equivalent index pj for the relevant point, and
rpj´,pj`s for its support region where: pj “ maxtk | xk“ ju,
pj´ “ mintk | xk “ j´u and pj` “ maxtk | xk “ j`u,
being pxk, ykq P m. Afterwards, since pqcn´1 and pqn are
already aligned by the application of DDTW, the same interval
rpj´,pj`s from pqcn´1 is selected and mapped into qcn´1 using
the warping path. The interval rqj´,qj`s is given by qj´“ y

pj´

and qj`“y
pj` .

Once the aligned intervals are obtained we proceed to
evaluate the concordance of both vectors. The segment qcn´1 is
said to concord with qn at pj and denoted by qcn´1«pjqn if
qcn´1 contains a deflection in rqj´,qj`s with height ∆pc

qj
ąρmin

likely to be considered a significant waveform, where ∆pc
qj
“

minp|qcpeaḱ qc´|, |q
c
peaḱ qc`|q being peak“arg miniPrqj ,́qj s̀ q

c
i ,

qc´“maxiPrqj ,́peaks q
c
i and qc`“maxiPrpeak,qj`s

qci for pj in a
convex wave (see Fig. 4a). Otherwise, min and max functions
are interchanged.

We define the concordance ratio of qcn´1with respect to
qn at pj , denoted by Cpj pqcn´1, qnq, as:

Cpj pqcn´1, qnq“
minp∆pj ,∆p

c
qj
q

maxp∆pj ,∆pc
qj
q

(13)

if qcn´1«pjqn. Otherwise, Cpj pqcn´1, qnq“0.
We define the local dissimilarity of qcn´1 with respect to qn

at pj , and denoted by Dpj pqcn´1, qnq, as a weighted relative
area difference between pqcn´1 and pqn at the interval rpj´,pj`s:

Dpj pqcn´1, qnq “

˜

p∆A´j q
2

A´j
`
p∆A`j q

2

A`j

¸

ˆ
1

A´j `A
`
j

(14)

The terms ∆A´j and ∆A`j represent the areas under a “

|pqn´ pqcn´1| over the intervals rpj´,pjs and rpj,pj`s, respectively
(see Fig. 4b). Computing the area at each side of pj indepen-
dently allows us to minimize the effect of vertical misalign-
ment or amplitude variation on each interval by subtracting
their own median. Using the trapezoidal rule:

∆A´j “
ÿ

kPppj ,́pjq

ak`
1

2
pa

pj´`a
pjq´p

pj ´ pj´qM´ (15)

∆A`j “
ÿ

kPppj,pj`q

ak`
1

2
pa

pj`apj`q´ppj
`´ pjqM` (16)

where M´“mediankPrpj ,́pjsak and M`“mediankPrpj,pj s̀ak.

The terms A´j and A`j represent the areas below rpj´,pjs

and rpj,pj`s intervals of pqn, respectively (see Fig. 4c). They
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pj

j´ j j`

qn

pj´
pj pj`

pqn

pqc
n´1

qcpeakqc´ qc`

∆pc
qj

ρmin

qj´
qj`

qc
n´1

(a)

∆A´
j

∆A`
j

pqn

pqń 1

pj

(b)

A´
j

A`
j

pqn

pqń 1

pj

(c)

Fig. 4. Parameters involved in calculating the concordance and local dissimi-
larity of a cluster with respect to a beat at a relevant point pj . Solid and dashed
lines represent beat and template data, respectively. (a) Shows parameters
involved in concordance checking; the support region rj´, j`s and the
derived intervals rpj´,pj`s and rqj´,qj`s are drawn; (b) signal segments within
the interval rpj´,pj`s with a vertical alignment performed in the subintervals
rpj´,pjs and rpj,pj`s independently; ∆A´j and ∆A`j areas are shaded; (c) the
same signal segments shown in (b) with A´j and A`j areas shaded.

are estimated using the trapezoidal rule:

A´j “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

kPppj ,́pjq

pqk `
1

2
ppq

pj´`pq
pjq ´ p

pj´pj´qpq´

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(17)

A`j “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

kPppj,pj q̀

pqk `
1

2
ppq

pj`pq
pj q̀ ´ p

pj`´pjqpq`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(18)

where pq´“maxkPrpj ,́pjsqk and pq`“maxkPrpj,pj s̀qk for pj in a
convex wave. Otherwise, max is replaced by min.

We define the piecewise similarity of qcn´1 with respect
to qn, denoted PSpqcn´1, qnq, as the sum of two bounded
contributions from the set of concordant and non-concordant
relevant points:

PSpqcn´1, qnq “
ÿ

pjPRn

Cpj pqcn´1, qnq. sigpDpj pqcn´1, qnqq

´ max
pj |qc

n´1ffpj
qn

Dpjpqcn´1,qnq (19)

where the sigmoid function sigpxq“1´αx{
a

1`pαxq2 keeps
the contribution of each point in the interval r0, 1s. The
parameter α determines the decrease rate of the contribution
as the local dissimilarity increases and, as a consequence, the
weight of a high dissimilarity value in the final piecewise
dissimilarity. We limit the contributions of those points out
of a range of admissible local dissimilarity. In order to set
such range we consider the effect of amplitude and temporal
variability of QRS waves. A temporal misalignment of one
signal sample between the QRS waves of pqn and pqcn´1 can

lead to local dissimilarities of around 20%. Then we set an
interval of r0, 25%s with a slightly greater upper bound and
α“4 so the maximum contribution out of this interval is 0.30.

The previous measure is asymmetric since it depends on
the relevant points and areas of one signal, so we define the
similarity between Bn and T cn´1 as:

Spqn, qcn´1q“PSpqcn´1, qnq ` PSpqn, qcn´1q (20)

thus obtaining a value which captures the concordance, simi-
larity and morphological complexity of both signal segments.

This measure allows us to select the most similar template
within a set, but we need a reference scale to evaluate the
degree of matching. To this end, we define the normalized
piecewise similarity as:

ĎPSpqcn´1, qnq“PSpqcn´1, qnq{|Rn| (21)

and the normalized similarity as:

S̄pqn, qcn´1q“Spqn, qcn´1q{p|Rn| ` |R
c
n´1|q, (22)

where Rcn´1 is the set of relevant points of qcn´1.

D. Cluster selection

The occurrence of different QRS morphologies in a segment
of ECG signal is usually limited by a reduced set of activation
points and conduction pathways. Thereby we expect that
the majority of QRS complexes in an ECG recording share
their morphology with some of the QRS complexes present
in a short previous temporal interval. For that reason, the
search for the cluster Cwinn´1 P Cn´1 that best matches a
beat Bn is first performed in the set of clusters present in
its temporal context Cctxn´1 Ă Cn´1 (see Fig. 5). We define
the temporal context as the set of τ beats previous to Bn,
τ–ctx´pBnq“tBn´i |1ď iď τu and Cctxn´1“tC

c
n´1 PCn´1 |

DBi P τ–ctx´pBnq^Bi P Ccn´1u. The context length is set
to τ “ 15 beats, the number of beats displayed in the typical
10s ECG strip used by cardiologists for a heart rate of 80
beats/min. This context is long enough to include every QRS
morphology present in multifocal arrhythmias. Throughout
this section, the l superscript is used to denote the lead.

The similarity measure is used to identify the most similar
template for each lead as siml “ arg maxc Spqln, q

c,l
n´1q and

then the best matching cluster is obtained by majority vote as
sim“modetsiml | lPr1, Lsu. If multiple clusters are selected,
a second vote is performed to obtain a single one using the
normalized similarity.

Beat Bn is assigned to Csimn´1 if the condition S̄pqln, q
sim,l
n´1 qą

γ is fulfilled in all leads. Then Cwinn´1“C
sim
n´1. We set a value of

γ“0.30 which corresponds to the maximum contribution of a
point with local dissimilarity outside the admissible interval.

When Bn and Csimn´1 are not similar enough, a new compar-
ison is performed within the subset Cn´1´ Cctxn´1, obtaining
the most similar cluster Csim˚n´1 . If Bn and Csim˚n´1 are similar
enough, the beat is assigned and Cwinn´1“ Csim˚n´1 . Otherwise,
the beat is not assigned to any existing cluster and its most
similar cluster Cwinn´1 is selected between Csimn´1 and Csim˚n´1

using the same voting criteria previously seen.
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sim˚,l
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Fig. 5. Flow-chart of the cluster selection and cluster set updating processes.

E. Cluster set updating

In order to adaptively respond to the changing behavior of
the ECG, clusters must be dynamically created, modified or
merged whenever a new beat is detected:

1) Cluster creation: If Bn is not assigned to Cwinn´1, a new
cluster Cnewn is created and its template is initialized for each
lead using the beat representation: Tnew,ln “ Bln. Then the
cluster set is updated as Cn“Cn´1Y tC

new
n u.

2) Cluster modification: If Bn is assigned to Cwinn´1, then
the cluster is updated to Cwinn “Cwinn´1YtBnu and the template
Twin,ln´1 “ăqwin,ln´1 , P

win,l
n´1 ą is modified to Twin,ln for each lead.

To this end, qwin,ln is calculated from qln and qwin,ln´1 :

9qwin.ly,n “p1´ βq 9qwin,ly,n´1 ` βmeanpt 9qlx,n | px, yqPmuq (23)

qwin,ly,n “qwin,ly´1,n ` 9qwin,ly,n (24)

where qwin,l1,n “ qwin,l1,n´1. The term β is the coefficient of the
exponential update. Setting a value for β implies a trade-
off between plasticity and stability of the cluster template.
We set β “ 1{8 so the last 16 beats assigned to the cluster
provide 90% of the contributions to the current template. This
allows the template to be adapted to the evolution of the QRS
morphology. Afterwards, the set of relevant points and support
regions Pwin,ln is obtained from qwin,ln and assigned to the
template: Twin,ln “ăqwin,ln , Pwin,ln ą.

3) Cluster merging: During the clustering process, different
clusters can evolve to represent the same QRS morphology,
so they should be merged. This situation is common when

QRS complexes suffer from transient distortions in their
morphology due to intrinsic variability, which makes them fall
below the similarity threshold for their proper clusters. In this
case, a new cluster is created which is subjected to an initial
transient period during which the template for each lead can
evolve getting closer to its most similar cluster.

In order to detect this situation, we define a relation closest
which links each cluster with its most similar one among
previous clusters. The relation is set for each new cluster as
Cwinn “ closestpCnewn q. As templates evolve with new as-
signed QRS complexes, the relation could have to be updated.

When Bn is assigned to Cwinn´1, the cluster is updated
to Cwinn and its most similar cluster may change. The
closest relation is updated when multiple clusters in the
same set than Cwinn´1, be it either Cctxn´1 or Cn´1 ´C

ctx
n´1,

fulfill the assigment condition S̄pqln, q
c,l
n´1q ą γ in all leads

(see subsection IV-D). Since Cn has been updated, getting
more similar to Bn, the best matching cluster Csn´1 for Bn
is selected within the remaining subset of clusters, where
s“arg maxCc

n´1‰C
win
n´1
p
řL
l“1 Spqln, q

c,l
n´1q{Lq and the oldest

of both clusters, Cwinn´1 or Csn´1, is set as the new most
similar cluster for the other. Then the clusters Cwinn and Csn
are checked for possibly merging, since their templates have
evolved to be similar enough to the last beat (see Fig. 5).
The condition for merging those clusters will be analogous to
the condition for beat assignment: S̄pqs,ln , qwin,ln qąγ1, where
γ1“0.40, which corresponds to the maximum contribution of
a point with local dissimilarity over 20%. The threshold value
is increased with respect to γ since both signal segments are
promediated templates with increased Signal-to-Noise ratio.

Afterwards, the special case of clusters within its transient
period is considered. We establish the duration of this transi-
tory state in terms of the number of assigned beats. Hence, if
Bn is assigned to Cwinn´1 and |Cwinn |ăµ, the cluster is checked
for merging with its closest one Csn“closestpC

win
n q (see Fig.

5). We set µ as the minimum number of beats assigned to the
cluster to confirm it represents an independent morphology
and we consider µ“10 enough for this purpose.

When two clusters Cwinn and Ccn are merged, the cluster set,
cluster template and closest relation are updated accordingly
(we suppose that Ccn“closestpC

win
n q):

1) Ccn is updated to Ccn“C
c
n Y C

win
n .

2) qc,ln is calculated by merging qc,ln´1 and qwin,ln :

9qc,ly,n“p1´βq 9qc,ly,n`β
ÿ

pt 9qwin,lx,n | px, yqPmuq (25)

qc,ly,n“q
c,l
y´1,n ` 9qc,ly,n (26)

where qc,l1,n remains unmodified.
3) The template is modified to T c,ln “ăqc,ln , P

c,l
n ą, where

P c,ln is the set of relevant points and support regions
obtained of qc,ln .

4) The closest relation is updated by removing the
pCcn, C

win
n q pair and replacing Cwinn by Ccn in all the

pairs where the former appears.
After the cluster Cwinn gets merged, all the modified pairs

of the closest relation are checked for merging. Afterwards,
the Ccn cluster is also checked for merging with its closest one.
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V. NOISE-CLUSTER PROLIFERATION CONTROL

The dynamic creation of clusters entails the problem of
identifying those QRS complexes contaminated by noise that
could cause the proliferation of clusters. When noise appears
in an ECG lead, the QRS can show different changes. In some
cases, ECG segments with low Signal-to-Noise ratio present
a high number of waves, and these can be detected by an
abnormal number of dominant points. In other cases, domain
knowledge is needed to discern if changes respond to a new
QRS morphology or to a noisy version of a previous one. Some
alterations are well known and described in literature, but
others can be challenging even for an expert cardiologist, who
compares every beat with those present in its temporal context
in order to identify if it is related to a repetitive morphology
change, a noisy interval or an isolated noisy beat. We follow
a twofold, beat-based and context-based, approach to detect
noisy QRS complexes. Noise can be present in one or more
leads, and the influence of each lead in the clustering of a
given beat will be analyzed in the following.

A state variable lead noiseln is defined to denote the
existence of a noisy interval in lead l containing the nth beat.
Such noisy interval begins when the first noisy beat is detected
in that lead just after a sequence of previous noise-free beats.
The beats contained within this interval can be either noisy
or noise-free in l and such condition will be represented as
an attribute of the beat denoted by beat noiseln. During the
noisy interval, the characterization of any new beat Bn can
represent not only QRS waves but also noise artifacts, so the
cluster selection and assignment rules (subsection IV-D) are
modified in lead l: the dominant points of the beat are ignored,
replacing Spqln, q

c,l
n´1q by PSpqln, q

c,l
n´1q and S̄pqln, q

c,l
n´1q by

ĎPSpqln, q
c,l
n´1q. Therefore, the condition for beat assignment

is: ĎPSpqln, q
win,l
n´1 qąγ.

The ending of a noisy interval in lead l is set just before
κ“3 contiguous beats are considered noise-free in that lead. A
beat Bn is considered noise-free if beat noiseln“false and it
is assigned either to its winner cluster with sSpqln, q

win,l
n´1 qąγ

or to a new cluster.
The beat-based noise detection is triggered when a new

beat Bn is detected. Then the number of waves in the QRS is
estimated as |Dl

n| for each lead l. If |Dl
n|ąη, Bn is considered

noisy in lead l and beat noiseln is set to true. The term η
is the maximum number of waves that could be present in a
noise–free QRS. We set η“6 to admit complexes with Q, R
and S waves, mixed with R’, S’ or spikes as occurs in paced,
fusion or bundle branch block beats. Additionally, if |Rln|ąη,
the QRS complex is considered distorted with relevant waves
caused by noise. If this happens in some but not all leads, such
leads are ignored for cluster assignment and updating, but if
it happens in all leads, the beat is considered failed and it is
assigned to its most similar cluster.

The context-based noise detection is activated when a new
cluster is created for Bn. Then two possible explanations are
explored. A first explanation represents a hypothesis of noise,
and every noisy beat will be assigned to its most similar
cluster. A second explanation simply represents a change in
morphology, so creation of new clusters is allowed. The evalu-

ation of these hypothesis is performed over a temporal context
of τ beats defined as τ–ctx`pBnq“tBn`i |0ď iă τu which
is long enough to check the evolution of cluster diversity.

A hypothesis of noise, denoted by hyp noiseln`i, is set over
each lead for every beat Bn`i Pτ–ctx`pBnq. The hypothesis
is initialized using the current noise state for the first beat,
hyp noiseln“ lead noiseln´1, and the value of the previous
beat for each new one, hyp noiseln`i “ hyp noiseln`i´1.
This value can be further modified for a beat Bn`i under
three circumstances:
‚ If Bn`i is considered noisy in lead l by the beat-

based noise detection, beat noiseln`i “ true, then the
hypothesis is set to hyp noiseln`i“ true.

‚ If a new cluster is created for Bn`i, we define Lnoisen`i

as the set of leads with S̄pqln`i, q
win,l
n`i´1qďγ, which are

responsible for its creation and candidates to be set as
noisy. For these leads, we check the assignment under
noisy interval conditions, ĎPSpqln`i, q

win,l
n`i´1qąγ. If the

assignment condition is now fulfilled in all leads, the
signal still resemble a previous QRS morphology and we
set hyp noiseln`i“ true,@lPL

noise
n`i .

‚ If Bn`i is the last of κth consecutive noise-free beat, we
set hyp noiseln`i´j“false,@j P r0, κ́ 1s.

Once the τ beats have been processed, the detection of noisy
leads is addressed. Let Cctx´newn`τ´1 denote the set of new clusters
created in τ–ctx`pBnq. If |Cctx´newn`τ´1 | ą τ{3 we consider that
an abnormal cluster proliferation exists since the appearance
of more than 5 new QRS morphologies within an interval of
15 beats is an extremely rare condition. Hence any lead l that
is a common cause of creation, that is, l P Lnoisen`i , for all i
such that Bn`i P Ccn`i ^ Ccn`i P C

ctx´new
n`τ´1 , is discarded as

noisy, setting hyp noiseln`i“ true,@i P r0, τ 1́s.
Finally, the hypothesis is reviewed for every beat Bn`i P

τ–ctx`pBnq which caused the creation of a new cluster so
as to decide about its noisy condition. If hyp noiseln`i “
true, @l P Lnoisen`i then we set beat noiseln`i “ true, the
created cluster is deleted and its beats assigned to its closest
cluster. Afterwards, lead noiseln`i is updated for the whole
τ–ctx`pBnq using the beat noiseln`i data to set the begining
and ending of noise intervals for each lead. The resulting
lead noiseln`τ´1 is the new noise state used in the analysis
of the subsequent beats.

VI. RHYTHM ANALYSIS

The absence of an analysis of the P wave leads to the
inability to discriminate premature, normal or ectopic beats
which share a common QRS morphology. All previous clus-
tering proposals include rhythm information within their beat
characterization and claim its separation capabilities for this
kind of arrythmias. In order to make our results comparable,
we include a rhythm processing stage that allows us to separate
those beats into different groups.

A. RR-Interval characterization

The beat to beat interval (RR) between normal beats,
commonly known as NN interval, is the result of a non-
stationary stochastic process regulated by the sympathetic and
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Fig. 6. An excerpt of the temporal evolution of RR distance for record 117 of
MIT-BIH database is shown. Solid points and squares represent normal and
premature beats respectively. The solid line represents yNNn and the dotted
lines enclose the ˘2pσn and ˘3pσn intervals.

parasympathetic nervous systems. This implies that the RR
value for beat Bn, denoted by RRn, should be put in context
using the rhythm of the surrounding beats to analyze its
normality. To this end, we model the NN series as a stochastic
process with marginal distribution N pĚNNn, σ

2
nq at the nth

beat. The mean is estimated as yNNn“θRRn´1̀ p1́ θqyNNn´1,
with θ“0.2 for RRn´1 values labeled as normal (as explained
in next section). Otherwise, yNNn “ yNNn´1. The standard
deviation is estimated as pσ2

n“
ř

iNNi´
yNN i using the last τ

beats with normal rhythm. Fig. 6 shows the evolution of the
RR in an excerpt with a premature beat from the record 117
of the MIT-BIH database to illustrate this point.

The first complete context, τ–ctx´pBτ`1q, is used to ini-
tialize yNNn and pσn. Let TC denote the set of the first τ
values of RR and let Ki denote any subset of RR values
from consecutive beats. A value RRj P TC is said to be
normal if DKi such that RRj P Ki ^ σKi

ă 0.1, where
σKi

is the normalized standard deviation of the Ki set.
Let TCN “ tRRj | RRj is normalu. If TCN “ H, then
TCN “tRRj |RRj PrĎTC´2σTC , ĎTC`2σTCsu, where ĎTC and
σTC are the mean and standard deviation of TC. If TCN “H
then the context in TC is repeatedly moved forward one beat
until TCN ‰H for a context τ–ctx´pBτ`1`iq. Finally we set
yNNn“ĎTCN and pσn“σTCN

, @nPr1, τ` 1`is.

B. Rhythm labeling

The aim of rhythm processing is the discrimination of those
abnormal RR values associated with arrhythmic beats from the
normal ones. To this end, the rhythm of the Bn beat is charac-
terized through a vector rrn “ pRRn, RR

´
n , RR

`
n ,

yNNn, pσnq
where RR´n and RR`n are the RR values for the previous
and next beat, respectively. Then, the model described in the
previous section is used to establish a range of validity for
the RRn value which allows us to detect any alteration in the
normal rhythm.

TABLE I
RULES FOR RHYTHM LABEL SELECTION. ∆RRn STANDS FOR RRn´yNNn .

THE SUPERSCRIPTS REFER THE CONDITIONS LISTED BELOW AND USED
WHEN MULTIPLE CANDIDATE LABELS EXIST. THEY IMPOSE A MINIMUM

DISTANCE BETWEEN NORMAL AND PREMATURE OR DELAYED BEATS. THE
PRECEDENCE OF LABEL CANDIDATES IS SET BY ORDER OF APPEARANCE.

Rhythm label for the previous beat
∆RRn GP P N´ N N` C D

P p3pσn,8s
D6 D2,6 D D1|10 D2|11 D D

C C N` N`

P p2pσn, 3pσns
C C N` N` N` D5,6 D6|9

N` N`

P r´2pσn, 2pσns N N N N N N N

P r´3pσn,´2pσnq

GP 8 N1
´ N´ P 3,4,6 N´ P 6 P 4

N´ GP GP 3,8 GP 8 N´
N´ N´

P r´8,´3pσnq

GP GP P 3,4,7 P 3,4,7 P 4 P 4,7 P 4

GP 3,12 GP 3 GP GP GP

N´ N´

1. RRn ą RR´n ` 4pσn 7. RR`n ą yNNn ´ 3pσn

2. RRn ą RR´n ` 3pσn 8. RR`n ă yNNn ´ 3pσn

3. RRn ă RR´n ´ 3pσn 9. RR`n ą yNNn ´ 2pσn
4. RRn ă RR`n ´ 3pσn 10. RR`n ą RR´n ` 4pσn

5. RR´n ą yNNn ` 3pσn 11. RR`n ą RR´n ` 3pσn

6. RR`n ą yNNn ` 3pσn 12. RR`n ă RR´n ´ 3pσn

We use seven rhythm labels to discern between four beat
rhythm types: normal, with (C) or without (N ,N´,N`) com-
pensatory pause, premature (P ), group of prematures (GP )
and delayed (D). The explicit domain knowledge contained
in Table I models, for each rhythm type, the relation of an
RR value with the normal rhythm from its temporal context.
It also reflects the dependence of the rhythm type for an RR
value on the rhythm type of its adjacent beats. This model
allows us to assign a rhythm label to the beat Bn based on
the rrn values and the rhythm label of the previous beat.

VII. RESULTS

We have applied our clustering method to all the records of
the MIT-BIH database. The parameters and threshold values of
this method have been neither trained nor adjusted to fit this
database. These values have been justified by physiological
reasons, or by the expertise or intuition of experienced cardi-
ologists. The method shows low sensitivity to small changes in
parameter values; the results either improve or worsen slightly.
Although better results could be obtained by a fine tunning of
these parameters for each specific database, this is not the aim
of this work but proving the validity of the present approach
for continuous ECG monitoring.

For each record, a set of clusters is obtained reflecting the
QRS morphologies present in them. Afterwards, the rhythm
labels are used to split each cluster into groups of beats with
the same rhythm type. In order to compare our results with
the proposal in [5] under equivalent conditions, we adopted
a fixed number of clusters (25) as the maximum number of
groups. Thus, if that limit is exceeded for a record, a merging
process is applied to obtain a reduced set of groups with the
most prevalent rhythm and morphologies. If necessary, we
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TABLE II
NUMBER OF CLUSTERS PER RECORD IN MIT-BIH DB. N COLUMN

INDICATES THE NUMBER OF CLUSTERS CREATED USING QRS
MORPHOLOGY; NRR , THE NUMBER OF GROUPS AFTER USING RHYTHM

LABELS; AND Nc
RR , THE NUMBER OF GROUPS AFTER THE MERGING

PROCESS.

Rec. N NRR Nc
RR Rec. N NRR Nc

RR
100 4 7 7 201 15 32 10
101 4 6 6 202 9 18 18
102 10 13 13 203 33 87 25
103 10 12 12 205 14 20 20
104 16 25 25 207 61 96 25
105 10 16 16 208 28 63 22
106 27 49 18 209 10 26 9
107 11 21 21 210 27 65 13
108 22 35 7 212 5 8 8
109 13 18 18 213 17 29 11
111 8 10 10 214 21 36 11
112 4 7 7 215 16 32 8
113 5 9 9 217 28 50 19
114 8 13 13 219 14 24 24
115 11 11 11 220 2 5 5
116 10 15 15 221 14 24 24
117 4 5 5 222 8 19 19
118 3 8 8 223 23 43 17
119 6 13 13 228 14 25 25
121 5 7 7 230 3 5 5
122 1 1 1 231 5 6 6
123 3 5 5 232 4 9 9
124 14 18 18 233 24 48 15
200 20 46 16 234 5 7 7

keep merging the groups with the lowest number of assigned
beats until the maximum is reached. Table II shows the results
before and after the merging process.

Each group is labeled with the majority class label of the
beats assigned to this group from the database. An assigned
beat is considered as correctly grouped if the class label in the
database match the label of the group. A confusion matrix is
obtained for each record comparing both labels for every beat.
These matrices are summed to obtain the global confusion
matrix for the whole validation set shown in Table III. Table
IV shows the results using the AAMI class labels obtained
from MIT-BIH labels as described in [15]. Table V shows the
results on AHA database.

A. Real-time considerations

The proposed method processes an ECG recording with
a bounded time delay comprising the intrinsic latency and
computation time for the different stages. Only the baseline
filtering and rhythm labeling stages present an intrinsic latency
due to non-causality: 400ms and one beat, respectively. Since
they both are executed concurrently, their contribution to the
delay is given by the maximum of both. The computation
time can be evaluated through the time complexity which is
constant in all stages but two: QRS alignment and template
matching. In both cases, the time complexity is constant for
the best case, corresponding to beats assigned to a cluster in
the context; this happens in 95.35% of the total number of
beats in MIT-BIH database. The time complexity is linear
(Op|Cn|q) for the worst case, which corresponds to beats
assigned to a new or an out-of-context cluster, representing
the remaining 4.65% of the total number of beats. Given the

high degree of parallelism in both stages and the computational
cost of processing a single cluster, it can be guaranteed that
a beat is clustered before the next one arrives even with a
set of hundreds of clusters. In order to support this claim,
the MIT-BIH Arrhythmia database was processed with a non-
optimized, non-parallelized MATLAB implementation of the
method using a single core of an Intel Q9550 CPU. The
following computation times for a single beat were obtained:
QRS characterization (maximum, mean): 4ms, 3ms; cluster
set selection: 323ms, 16ms; cluster set updating: 110ms, 5ms;
noise analysis: 9ms, ă1ms; and rhythm-based labelling: 10ms,
5ms. Globally, the whole method summed a maximum of
358ms and mean of 32ms. Additionally, reducing groups for
validation required a maximum of 190ms.

B. Clustering performance measures

Purity is usually used to measure the goodness of a clus-
tering method. Nevertheless, in a multiclass problem like this
one, after characterizing the clusters, the values of sensitivity
(Se), positive predictivity (+P), and false positive rate (FPR)
should also be provided for each class, in order to obtain a
multidimensional measure of the quality of the results from the
perspective of each class involved. A global purity of 98.56%
is obtained for MIT-BIH Arrhythmia database (98.84% with
AAMI class labels) and a 99.56% for the AHA ECG database.
The other values are shown in the last row of Tables III–V.

VIII. DISCUSSION AND CONCLUSION

We propose a new clustering method to dynamically sep-
arate QRS morphologies as they appear in a multichannel
ECG signal, representing them with a dynamic number of
clusters. This objective has not been previously addressed in
the literature and only some partial solutions can be found,
all of them restricted to offline processing [5]–[7] and some
of them even limited to single channel signals and to a fixed
subset of beat classes [6], [7].

The performance of the QRS clustering technique without
using rhythm data shows a global purity of 97.15% and
99.43% for MIT-BIH and AHA databases, respectively. This
confirms the validity of our approach, since no method, as
far as we know, neither offline nor online, achieve this perfor-
mance without using RR derived information. As expected, the
main source of error is the group of supraventricular classes
A, N, J, j, and e, that can only be separated using P wave
and rhythm information. This is the reason for the difference
between both results since AHA database does not contain this
type of beats.

The validation results after using rhythm labels show a
high sensitivity and positive predictivity for almost all classes
while the purity increases. We observe in accordance with
[5], that the largest number of errors in Table III are caused
by beats with similar morphology. Fusion (F) of ventricular
(V) and normal (N) beats are included with N or V clusters
and viceversa. The same occurs with N, paced (/) and fusion
of N and / beats (f). Finally, beats with supraventricular or
nodal activation points (A, N, J, j, and e) with similar QRS
are wrongly clustered when the rhythm information does not
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TABLE III
CONFUSION MATRIX RESULTING FROM CLUSTERING MIT-BIH ARRHYTHMIA DATABASE. THE FIRST ROW CORRESPONDS TO THE ANNOTATION LABELS
OF THE DATABASE, AND THE FIRST COLUMN, TO THE DOMINANT ANNOTATION LABEL IN THE CLUSTERS. Se, P̀ AND FPR DENOTE THE SENSITIVITY,

POSITIVE PREDICTIVITY AND FALSE POSITIVE RATE FOR EACH BEAT CLASS RESPECTIVELY.

N L R a V F J A S E j / e f Q !

N 74618 0 3 15 167 108 11 196 2 1 60 1 15 38 9 0

L 0 8059 0 0 1 2 0 0 0 0 0 0 0 0 2 0

R 32 0 7245 0 1 3 29 8 0 6 6 0 0 0 0 4

a 7 0 0 120 1 0 1 2 0 0 5 0 0 0 0 0

V 131 1 0 11 6848 83 0 20 0 0 0 0 0 1 4 6

F 26 0 0 2 56 606 0 2 0 0 0 0 0 0 0 0

J 1 0 0 0 0 0 42 0 0 0 0 0 0 0 0 0

A 44 4 3 2 25 0 0 2317 0 0 0 0 1 0 0 59

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E 0 0 2 0 10 0 0 0 0 93 0 0 0 0 0 0

j 145 0 0 0 0 0 0 0 0 0 158 0 0 0 0 0

/ 9 0 0 0 1 0 0 0 0 0 0 7010 0 127 0 0

e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

f 9 0 0 0 5 0 0 0 0 0 0 13 0 816 15 0

Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0

! 0 8 0 0 12 0 0 0 0 6 0 0 0 0 0 403

Se 99.46 99.84 99.89 80.00 96.09 75.56 50.60 91.04 0.00 87.74 69.00 99.80 0.00 83.10 9.09 85.38
+P 99.17 99.94 98.79 88.24 96.38 87.57 97.67 94.38 - 88.57 52.15 98.08 - 95.10 100.00 93.94

FPR 1.79 0.00 0.09 0.01 0.25 0.08 0.00 0.13 0.00 0.01 0.13 0.13 0.00 0.04 0.00 0.02

TABLE IV
CONFUSION MATRIX FOR MIT-BIH DB USING AAMI CLASS LABELS.

N S V F Q

N 89957 342 176 113 50

S 204 2648 26 0 0

V 134 31 6951 83 5

F 26 4 56 606 0

Q 18 0 6 0 7984

Se 99.58 87.54 96.34 75.56 99.32
+P 99.25 92.01 96.49 87.57 99.70
FPR 3.57 0.22 0.25 0.08 0.02

TABLE V
CONFUSION MATRIX FOR AHA ECG DATABASE. CLASSES FROM THE

MIT-BIH LABEL SET WITHOUT ASSIGNED BEATS ARE OMITTED.

N V F E / Q

N 318739 472 138 7 16 150

V 229 32090 217 0 9 66

F 33 115 885 0 16 1

E 0 0 0 5 0 0

/ 5 23 26 0 3128 1

Q 11 32 0 0 0 354

Se 99.91 98.04 69.91 41.67 98.71 61.89
+P 99.75 98.40 84.29 100.00 98.27 89.17
FPR 2.07 0.16 0.04 0.00 0.02 0.01

result determinant for their discrimination. This kind of errors
represent 66% of the total.

Besides the clustering performance, the analysis of the
number of clusters (N) generated for each record shows that it

remains reduced: 34 records (71%) have 15 or less clusters; 12
records (25%) have between 16 and 30 clusters, both included
and only two records (4%) has more than 30 clusters. The high
number of clusters for record 207 is caused by the presence of
an episode of ventricular flutter with QRS complexes replaced
by irregular waves. The clustering results would be improved
if an specific detection method were used for these kind of
arrhythmias with absent QRS complex.

The NRR column of Table II shows a general increase in
the number of groups in all records with a mean of 24 groups
per record. This increment reflects the presence of different
rhythm labels in the beats assigned to the clusters although
they do not always belong to different beat classes. Records
with irregular rhythm like those with auricular fibrillation, or
sudden rhythm change will render the RR information useless
to discriminate premature or delayed beats. In such cases, the
RR does not provide information about the beat activation
point and the discrimination cannot be performed without an
analysis of the P wave.

Since no other method for online clustering has been
reported, we compare our clustering performance with existing
offline proposals. Only the work of Lagerholm et al. [5]
provides comparable results since others [6], [7] are designed
to deal with a concrete subset of beat types and perform the
evaluation over a single channel (usually the one with lower
noise). Compared to [5] our method provides a slightly better
purity (98.56% vs 98.49%). The sensitivity is improved in our
work for 11 out of the 16 beat classes and slightly worsened
for 3. Special mention should be made for classes a, A, R, j and
E where the improvement is remarkable. Let us remember that
[5] rely on a SOM with 25 clusters to represent the different
beat classes. This approach has two main drawbacks, first the
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clusters get saturated with dominant morphologies present in
the learning stage, while rare morphologies are ignored as
well as new morphologies that appear afterwards. Second, the
generated clusters are redundant in those records with a low
number of morphologies. In contrast, our method dynamically
adapts the number of clusters to the number of morphologies
detected.

The results of our proposal confirms the relevance of the
temporal context for beat clustering. It allows us to switch
from an offline to an online analysis achieving the same or
even better results, and to address the temporal evolution of
a beat morphology that otherwise would be projected into
multiple clusters. The results of the experiments on ECG
standard databases also show the adequacy of the present
method for real-time ECG monitoring.

Our proposal provides the cardiologists with the information
about the morphological diversity within a desired time frame
and its temporal evolution. This information allows them to
promptly detect the different conduction patterns and evaluate
its relevance. It also can be useful for arrhythmia detection and
classification which can be later addressed either automatically
by classification algorithms or manually by the cardiologists.

In conclusion, we have presented an adaptive, multichannel
context-based method for clustering beat morphologies in
real-time that has been validated over the whole MIT-BIH
Arrhythmia and AHA ECG databases with performance results
that outperform its offline counterparts in the field.
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