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Introduction

This essay is focused on the analysis of circular data. Circular data are a particular case of

directional data where observations are directions in two dimensions. As its name suggests, circular

data can be represented as points on the circumference of a unit circle centered at the origin and

are usually expressed as angles. Hence, in order to define a circular observation, an initial direction

and a sense of rotation must be chosen. The data analysis cannot depend on these ad hoc choices.

Moreover, circular data have a periodic structure. All these features make them different from

the usual linear data and so, it seems obvious that such data cannot be treated in the same

way. Some general references on circular statistics, or more general directional data analysis, are

Mardia (1972), Batschelet (1981), Fisher (1993), Mardia and Jupp (2000) and Jammalamadaka

and SenGupta (2001).

In recent years, there has been an increasing interest in directional statistics since this kind

of data appears in a large variety of disciplines such as biology (in the study of orientation of

animals), meteorology (when analyzing wind direction) or environmental sciences (in the study of

directions of ocean currents), among others. Two of the most fundamental problems in statistics

are knowing how a circular random variable is distributed (density estimation) and how it is

related with other variable (regression estimation). In our case, how can be it used to model the

behaviour of a scalar response.

Density and regression estimation can be approached from a parametric or from a nonparamet-

ric perspective. The parametric approach assumes that data are drawn from a known parametric

model and the problem is reduced to estimate its parameters. The nonpametric approach does

not rely on such somewhat restrictive assumptions and “let the data speak for themselves”. In

most of the applied papers dealing with circular data, it is only considered the use of circular

descriptive techniques providing graphical displays of the data and classical parametric inferential

tools (see, e.g., Aradóttir et al., 1997; Mooney et al., 2003; Corcoran et al., 2009). Thus, our

interest is focused on the analysis of circular data from a nonparametric perspective. Concretely,

the main aim of this dissertation is to propose and analyze nonparametric circular methods for

density and regression estimation.

In this context, nonparametric density estimation was approached by Beran (1979), Hall et al.

(1987) and Bai et al. (1988) who studied the circular kernel density estimator for the general

1



2 Introduction

case of directional data. In the regression setting, nonparametric methods involving circular data

have been studied by Di Marzio et al. (2009), Qin et al. (2011a,b) and Di Marzio et al. (2012)

who proposed kernel smoothers. Periodic smoothing splines introduced by Cogburn and Davis

(1974) provide an alternative to kernel estimators when the predictor is a circular variable and

the response is linear.

A critical issue in any nonparametric procedure is the smoothing parameter selection. Al-

though, some procedures have been proposed by Hall et al. (1987), Taylor (2008) and Di Marzio

et al. (2011) for circular kernel density estimation, the main contribution in this setting will be

the introduction of a new smoothing parameter selector that performs well in very different and

complex distributional scenarios. For regression estimation with a linear response and a circular

covariate, cross–validation rules are suggested in order to select the smoothing parameter, both

for kernel and smoothing spline estimators.

Another important problem in the use of smoothing methods is whether or not observed fea-

tures in the smoothed curve, such as peaks and valleys are really there, as opposed to being

artifacts of the natural sampling variability. For linear data, the SiZer method developed by

Chaudhuri and Marron (1999) both for density and regression estimation allows for the assess-

ment of statistically significant features in a smoothed curve and moreover, it avoids the problem

of selecting a smoothing parameter. However, nothing similar exists for circular data. With this

goal, a new method namely CircSiZer, conveniently adapted to the circular nature of the variables

will be introduced in this dissertation.

The manuscript is organized in the following way:

Chapter 1 is devoted to the introduction of circular data, revising some circular distributions

and studying the parameter estimation for the von Mises distribution and for mixtures of these

distributions. In this chapter, the datasets that motivate and illustrate the methods proposed

along the manustript are described.

Chapter 2 is focused on nonparametric curve estimation. The estimation of the density function

is addressed in the first part where the kernel density estimator for circular data is introduced,

revising and proposing different methods for selecting the smoothing parameter and checking their

behaviour in a simulation study. The second part of this chapter is focused on nonparametric

regression estimation for a circular explanatory variable and a linear response. This problem is

approached by using kernel smoothers and periodic smoothing splines, which are compared in a

simulation study. In both settings, density and regression, the techniques proposed are illustrated

with classical data examples and applied to analyze some real datasets.

In Chapter 3, in order to assess the significance of the features observed in the smoothed curves,

both for density and regression, a SiZer (Significative Zero crossing of the derivative) technique is

developed for circular data, namely CircSiZer. The performance of CircSiZer is illustrated with

simulated data and finally, the method is used for analyzing some real datasets.

In Chapter 4, a new library in R, namely NPCirc, which implements the nonparametric kernel
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methods for density and regression estimation for circular data studied in the previous chapters is

described. The library includes most of the self–programmed code which has been implemented

for applying the proposed methods in practice.

Finally, the manuscript includes four appendices. In Appendix A, the circular density models

used in the simulation study in Chapter 2 and for illustration throughout the manuscript are

defined. Appendices B and C give technical details on kernel regression smoothers and periodic

smoothing splines, which complement Chapter 2 and 3. Appendix D describes the functions in the

NPCirc library, giving instructions about their usage and arguments and illustrating them with

examples.

I would like to thank my advisors, Prof. Rosa M. Crujeiras and Prof. Alberto Rodŕıguez Casal

for their work and support during these years. I also wish to thank Prof. Augusto Pérez–Alberti

from the Department of Physical Geography of the University of Santiago de Compostela and Dr.

Kenneth A. Mann from the Upstate Medical University (New York) for kindly providing some

real datasets that motivate part of the work done in this thesis.

This work has been supported by Project MTM2008–03010 from the Spanish Ministry of Sci-

ence and Innovation, and by the IAP network StUDyS (Developing crucial Statistical methods

for Understanding major complex Dynamic Systems in natural, biomedical and social sciences),

from Belgian Science Policy.
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Chapter 1

Circular models and data

1.1 Introduction

The analysis of circular data appears in many applied fields, such as biology (Batschelet, 1981),

ecology (Jammalamadaka and Lund, 2006), meteorology (Bowers et al., 2000), sociology (Bruns-

don and Corcoran, 2005), medicine (Mooney et al., 2003) or biomechanics (Mann et al., 2003),

among others.

A circular observation can be defined as a point on a circle of unit radius, or a unit vector in

two dimensions (i.e., a direction in the plane). Hence, once an initial direction and orientation

of the circle have been chosen, each circular observation can be specified by the angle from the

initial direction to the point on the circle corresponding to the observation. More generally, a unit

vector in a d–dimensional space (d ≥ 2) is called a directional data or a spherical data.

Directional data in general, and circular data in particular, have special features both in terms

of models and in terms of their statistical treatment. For instance, the numeric representation of

a circular obsevation, as an angle or a unit vector, is not necessarily unique since it depends of

the initial direction and the sense of rotation. Because of this, another feature of circular data is

that there is not a natural ordering of the observations. Moreover, circular data are periodic, i.e.,

if θ is an angle in the interval [0, 2π) then θ can be also represented by (θ + 2πk) for any integer

k. Thus, the methods for dealing with circular data must take into account these features and so,

standard real–line methods are not appropriate for analyzing this kind of data.

Circular data analysis has been approached from parametric and nonparametric perspectives,

existing a broad literature on parametric methods, both for density and regression. Comprehensive

reviews such as Mardia (1972), Fisher (1993), Mardia and Jupp (2000), Jammalamadaka and

SenGupta (2001) and Lee (2010) present parametric density models such as the von Mises, the

cardiod, or the wrapped distributions, among others, testing procedures for assessing uniformity,

such as Rayleigh’s, Kuiper’s, Rao’s Spacing or Watson’s tests, jointly with different correlation

coefficients and parametric regression models for two circular variables or a circular and a linear

5



6 Chapter 1. Circular models and data

variable.

Some background on circular parametric models and some real data examples are presented

in this chapter. Section 1.2 is devoted to the introduction the concept of circular distribution

and give a brief overview on the most important circular parametric distribution families, such

as the classical von Mises distribution, the cardioid distribution, some wrapped distributions

and mixtures of circular distributions. Parameter estimation will be studied for the von Mises

distribution and mixture of them. For mixtures, the associated Expectation Maximization (EM)

algorithm for carrying out maximum likelihood estimation will be detailed. Finally, in Section 1.3,

some real datasets that motivate this dissertation will be described. Moreover, these datasets will

be considered along the manuscript for illustration purposes.

1.2 Circular parametric distributions

A circular distribution is a probability measure supported on the unit circle. Each point in the

circumference represents a direction and so, a circular distribution assigns probabilities to different

directions. As for linear data, the distribution of a circular variable can be absolutely continuous.

In this case, one way of specifying a distribution on the unit circle is by means of its density

function. From now on, any circular random variable Θ will be measured in radians and its

support will be the interval [0, 2π). Hence, the probability density function is a function f defined

for each angle θ ∈ [0, 2π) satisfying the conditions:

(i) f(θ) ≥ 0, θ ∈ [0, 2π);

(ii)
∫ 2π
0 f(θ)dθ = 1;

(iii) f(θ) = f(θ + 2πk), ∀θ ∈ [0, 2π) and any integer k, i.e., f is periodic with period 2π;

(see Jammalamadaka and SenGupta, 2001, Section 2.1).

Any such function describes a probability distribution on the circle. Let θ1 and θ2 be fixed

angles with 0 ≤ θ1 ≤ θ ≤ θ2 ≤ 2π, then

P [θ1 ≤ Θ ≤ θ2] =

∫ θ2

θ1

f(θ)dθ.

As for linear variables, the characteristic function determines the distribution. The value of the

characteristic function ϕ(t) = E(eitΘ) at an integer r is also called the r–th trigonometric moment

of Θ which is given by:

E(eirΘ) =

∫ 2π

0
eirθf(θ)dθ =

∫ 2π

0
cos(rθ)f(θ)dθ + i

∫ 2π

0
sin(rθ)f(θ)dθ, r = 0,±1,±2, . . .

where i denotes the imaginary unit. Concretely, the first trigonometric moment, expressed in

polar coordinates, is:

E(eiθ) = ρeiµ,
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where ρ is the mean resultant length and µ is the mean direction.

The most simple absolutely continuous distribution on the circle is the circular uniform dis-

tribution which assigns the same probability to all the directions. When a distribution is not

uniform, this may be concentrated around one or more directions. In that case, the distribution

is said unimodal or multimodal, respectively.

An appropriate measure of the mean direction for a set of directions which are unimodal is

obtained by treating the data as unit vectors and computing the direction of their average resultant

vector. Let θ1, . . . , θn be a set of circular observations given in terms of angles. The sample mean

direction θ̄ is then given by

θ̄ = arg





1

n

n∑

j=1

cos θj + i
1

n

n∑

j=1

sin θj



 .

where arg denotes the function which returns the argument of a complex number. More explicitly,

using the notation C =
∑n

j=1 cos θj and S =
∑n

j=1 sin θj , the sample mean direction is given by

θ̄ = arctan∗
(
S

C

)
=





arctan(S/C) if C > 0, S ≥ 0

π/2 if C = 0, S > 0

arctan(S/C) + π if C < 0

arctan(S/C) + 2π if C ≥ 0, S < 0

undefined if C = 0, S = 0

(1.1)

where the inverse tangent function arctan takes values in [−π/2, π/2] and so, arctan∗ takes values

in [0, 2π).

Moreover, the length of the average resultant vector, denoted by R̄, provides a measure of

concentration of the data. If all angles are identical, then R̄ = 1 and if data are widely dispersed

then R̄ will be almost 0.

Circular uniform distribution

This distribution has a constant density

f(θ) =
1

2π
, 0 ≤ θ < 2π,

i.e., all directions are equally likely.

Some unimodal distributions are the cardioid, von Mises and some wrapped distributions such

as the wrapped normal, the wrapped Cauchy and the wrapped skew–normal distribution. These

models are characterized by at least two parameters, one defining the location or reference direc-

tion and other defining the dispersion about that location.
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Cardioid distribution

This distribution was introduced by (Jeffreys, 1961, p. 328). The cardioid distribution, C(µ, ρ) is

a perturbation of the uniform density by a cosine funtion whose density function is:

f(θ;µ, ρ) =
1

2π
(1 + 2ρ cos(θ − µ)) , 0 ≤ θ < 2π, |ρ| ≤ 1

2
.

The mean resultant length of C(µ, ρ) is ρ and (if ρ > 0) the mean direction is µ. When ρ = 0,

the cardioid distribution reduces to the circular uniform distribution. This is a symmetric and

unimodal distribution around µ.

von Mises distribution

The von Mises distribution is also known as circular normal distribution since it was derived in

a way analogous to the derivation of the normal distribution in the real line. von Mises (1918)

asked about the existence of a circular model verifying that: for any sample of circular data, the

maximum likelihood estimator of the location parameter is equal to the sample mean. Hence, the

von Mises distribution was obtained.

The von Mises distribution with parameters µ and κ, vM(µ, κ), is a symmetric and unimodal

distribution with density

f(θ;µ, κ) =
1

2πI0(κ)
eκ cos(θ−µ), 0 ≤ θ < 2π, (1.2)

where I0 denotes the modified Bessel function of the first kind and order zero which is defined as

follows

I0(κ) =
1

2π

∫ 2π

0
eκ cos θdθ.

Here, I0(κ) is a normalizing constant. The parameter µ (0 ≤ µ < 2π) is the mean direction and

where the mode is located. The parameter κ (κ ≥ 0) is known as the concentration parameter

since the ratio of the density at the mode µ to the density at the antimode (µ + π), where the

minimum density is reached, is given by e2κ and so, as κ increases the distribution becomes more

concentrated around µ. When κ = 0, the distribution reduces to the circular uniform distribution.

Wrapped distributions

Circular distributions can be obtained by wrapping linear distributions onto the circle of unit

radius. If X is a random variable on the real line, this variable may be transformed to a circular

random variable Θ by reducing its modulo 2π, i.e.,

Θ = X(mod 2π).

Hence, if X has density function g, the density function of Θ is given by

f(θ) =
∞∑

k=−∞
g(θ + 2πk), 0 ≤ θ < 2π,
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(see Jammalamadaka and SenGupta, 2001, p. 31).

The wrapped normal and wrapped Cauchy distributions, described below, are some examples

of the distributions that can be obtained in this way.

Wrapped normal distribution

The wrapped normal distribution, WN(µ, ρ), is obtained by wrapping the N(µ, σ2) distribution

onto the circle, where ρ = e−σ2/2. Its probability density function is given by

f(θ;µ, ρ) =
1

2π

(
1 + 2

∞∑

k=1

ρk
2
cos p(θ − µ)

)
, 0 ≤ θ < 2π,

where µ (0 ≤ µ < 2π) is the mean direction and ρ is the mean resultant length. Note that,

when ρ goes to zero the distribution becomes less concentrated aroud the mean direction. This

distribution is unimodal and symmetric about its mode µ.

Wrapped Cauchy distribution

The wrapped Cauchy distribution, WC(µ, ρ), is obtained by wrapping the Cauchy distribution

on the real line with density

g(x;µ, σ2) =
1

π

σ

σ2 + (x− µ)2
, −∞ < x < ∞

onto the circle. Its density function has the following expression

f(θ;µ, ρ) =
1

2π

1− ρ2

1 + ρ2 − 2ρ cos(θ − µ)
, 0 ≤ θ < 2π,

where 0 ≤ µ < 2π is the mean direction and ρ = e−σ is the mean resultant length. It is also a

unimodal and symmetric distribution around its mode µ.

Figure 1.1 shows the von Mises, cardioid, wrapped normal and wrapped Cauchy densities with

the same values for the parameters µ and ρ. Among them, the wrapped Cauchy distribution is

noted by its peaked mode.

However, not all circular distributions are unimodal and symmetric. Pewsey (2000) defined a

unimodal and asymmetric distribution, namely the wrapped skew–normal distribution.

Wrapped skew–normal distribution

The wrapped skew–normal distribution is a skewed distribution characterized by a location pa-

rameter µ (0 ≤ µ < 2π), a scale parameter κ (κ > 0) and a skewness parameter λ (λ ≥ 0). Its

density function is given by

f(θ;µ, κ, λ) =
2

κ

∞∑

r=−∞
φ

(
θ − 2πr − µ

κ

)
Φ

(
λ

(
θ + 2πr − µ

κ

))
,
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where φ and Φ denote the standard normal density and distribution functions, respectively. This

distribution will be denoted by WSN(µ, κ, λ). The asymmetric shape of this distribution can be

seen in Figure 1.2, for different values of λ.

0 π 2 π 3π 2 2π

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0

π

2

π

3π

2

+

Figure 1.1: Left panel: linear representation of the density functions of vM(µ,A−1(ρ)) where A−1

denotes the inverse of function A(·) = I1(·)/I0(·) (solid line), C(µ, ρ) (dashed line), WN(µ, ρ)

(dotted line) and WC(µ, ρ) (dotted–dashed line) with µ = π and ρ = 0.45. Right panel: circular

representation of vM(µ,A−1(ρ)) (solid line) and WC(µ, ρ) (dotted–dashed line).
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Figure 1.2: Linear (left panel) and circular (right panel) representations of a wrapped skew–normal

distribution WSN(π, 1, λ) with λ = 2 (solid line), λ = 5 (dashed line) and λ = 20 (dotted line).

Further details on these and other distribution models can be found in Fisher (1993), Jam-

malamadaka and SenGupta (2001), Mardia and Jupp (2000) and Pewsey (2000).

Although being widely used, the von Mises model and the other models presented may not

be flexible enough to capture the underlying structure of multimodal, highly peaked or skewed

distributions. Some new parametric models for handling these features have been presented by

Abe and Pewsey (2011), who introduced circular models with two diametrically opposed modes,

or Jones and Pewsey (2012), who proposed the inverse Batschelet distribution, accounting for

skewness and high kurtosis (far from the nicely bell–shaped von Mises distributions). A more

flexible model involving mixtures of von Mises distributions was used by Mooney et al. (2003).



1.2. Circular parametric distributions 11

The consideration of mixtures of parametric models may offer a route to capture complex struc-

tures, allowing multimodality and/or asymmetry.

Mixtures

A finite mixture of M circular distributions fm, m = 1, . . . ,M , has density:

f(θ) =
M∑

m=1

pmfm(θ), 0 ≤ θ < 2π,

where pm are positive quantities that sum one (pm > 0 and
∑M

m=1 pm = 1) and the fm(θ) are

circular densities. The quantities p1, . . . , pm are known as weights or mixing proportions and the

fm(θ) are called the component densities of the mixture.

A particular case is the mixture of M von Mises distributions whose density is:

f(θ;µµµ,κκκ,ppp) =
M∑

m=1

pmfm(θ;µm, κm), 0 ≤ θ < 2π, (1.3)

where ppp = (p1, . . . , pM ) with pm > 0 and
∑M

m=1 pm = 1 are the weights of the component densities,

µµµ = (µ1, . . . , µM ) ∈ [0, 2π)M is the vector of circular means and κκκ = (κ1, . . . , κM ) ∈ (R+)
M

is the

vector of concentrations; fm denotes the density function of a von Mises distribution vM(µm, κm),

for m = 1, . . . ,M .

0

π

2

π

3π

2

+ 0

π

2

π

3π

2

+ 0

π

2

π

3π

2

+ 0

π

2

π

3π

2

+

Figure 1.3: Mixtures of von Mises distributions with different number of components. These

models correspond to models M7, M9, M11 and M19 defined in Appendix A.

Figure 1.3 shows four mixtures of von Mises distributions with different number of components,

which present multimodality and asymmetry. For example, bimodality arises in the first model

setting the mixture proportion to one–half and combining two confronted distributions whereas

asymmetry is induced in the second model by considering different weights. The third plot shows

a mixture of three von Mises distributions with equally spaced modes and the same concentration

parameter. Finally, the last plot is an asymmetric model which is a mixture of five von Mises

distributions and only shows four modes. These models will be used in the next chapter and the

specific formulae is given in the Appendix A (models M7, M9, M11 and M19).
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1.2.1 Parameter estimation for a von Mises distribution

In this section, the parameters of a von Mises distribution will be estimated by the method of

moments and maximum likelihood. Although they are two classical techniques, the estimation

procedure in the setting of circular data will be detailed since apart from its usefulness as paramet-

ric estimation methods, they will be needed in Chapter 2 for constructing smoothing parameter

selectors in a nonparametric setting.

Let Θ1,Θ2, . . . ,Θn ∈ [0, 2π) be a random sample from vM(µ, κ).

Estimation by the method of moments

The modified Bessel function of the first kind and order r is defined as

Ir(κ) =
1

2π

∫ 2π

0
cos(rθ)eκ cos θdθ, r = 0, 1, 2, . . .

Since
1

2π

∫ 2π

0
sin(rθ)eκ cos θdθ = 0,

the moment of order r of the von Mises probability density is given by

1

2πI0(κ)

∫ 2π

0
eirθeκ cos(θ−µ)dθ =

1

2πI0(κ)

∫ 2π

0
eir(ω+µ)eκ cosωdω

=
eirµ

2πI0(κ)

∫ 2π

0
[cos(rω) + i sin(rω)] eκ cosωdω

=
Ir(κ)

I0(κ)
eirµ =

Ir(κ)

I0(κ)
[cos(rµ) + i sin(rµ)] .

The r-th order sample moment is given by

1

n

n∑

j=1

eirΘj =
1

n

n∑

j=1

cos(rΘj) + i
1

n

n∑

j=1

sin(rΘj).

By equating population moments with sample moments for r = 1, the equations that define

the estimators µ̃ and κ̃ of µ and κ by the method of moments are obtained:

A(κ̃) cos µ̃ =
1

n

n∑

j=1

cosΘj , (1.4)

A(κ̃) sin µ̃ =
1

n

n∑

j=1

sinΘj , (1.5)

where A(·) = I1(·)/I0(·).
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If
∑n

j=1 cosΘj 6= 0, by dividing (1.4) by (1.5) results

µ̃ = arctan∗
(∑n

j=1 sinΘj∑n
j=1 cosΘj

)
, (1.6)

where arctan∗ is defined in equation (1.1). The method of moments estimator for µ is the direction

of the sample mean direction.

By multipliying (1.4) by cos µ̃ and (1.5) by sin µ̃ and adding, the equation that defines the

method of moments estimator for κ is given by:

A(κ̃) =
1

n

n∑

j=1

cos(Θj − µ̃). (1.7)

So, as long as
∑n

j=1 cosΘj 6= 0, the estimator of κ, namely κ̃, is obtained by solving (1.7).

Estimation by maximum likelihood

The maximum likelihood estimators for µ and κ will be those values that maximize the likeli-

hood function based on the observations Θ1, . . . ,Θn, i.e.,

L(µ, κ|Θ1, . . . ,Θn) =
n∏

j=1

f(Θj ;µ, κ) =
1

[2πI0(κ)]n
e
∑n

j=1 κ cos(Θj−µ),

or the log–likelihood function

logL(µ, κ|Θ1, . . . ,Θn) = −n log(2πI0(κ)) + κ
n∑

j=1

cos(Θj − µ). (1.8)

From the above expression (1.8), by computing the partial derivatives with respect to µ and κ,

respectively and equating to zero, the equations that define the maximum likelihood estimators

for µ and κ, µ̂ and κ̂, are:

κ̂
n∑

j=1

sin(Θj − µ̂) = 0, (1.9)

A(κ̂) =
1

n

n∑

j=1

cos(Θj − µ̂). (1.10)

If
∑n

j=1 cosΘj 6= 0, the maximum likelihood estimator for µ is obtained from (1.9):

µ̂ = arctan∗
(∑n

j=1 sinΘj∑n
j=1 cosΘj

)

and κ̂ is obtained from the solution of equation (1.10). Note that, if κ̂ = 0, equation (1.9) is

verified and a value for µ̂ can be obtained from the solution of (1.10). However, it can be shown

that this solution (µ̂, κ̂ = 0) is not a maximum of (1.8).



14 Chapter 1. Circular models and data

Thus, the maximum likelihood estimators for the parameters of a von Mises distribution are

equal to the ones obtained by the method of moments (see equations (1.6) and (1.7)), i.e., µ̃ = µ̂

y κ̃ = κ̂, with probability one.

Figure 1.4 shows the boxplots of the differences in absolute value between the estimated and

true values of the parameters of a vM(π, 1). Parameters are estimated by maximum likelihood by

using 1000 random samples of size n = 100 and n = 500 from that distribution. As it was expected,

differences are smaller for the largest sample size. In order to obtain a better visualization, outliers

are not plotted in the figure.
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Figure 1.4: Boxplots of the differences in absolute value between the estimated and true values of

the parameters of a von Mises distribution vM(π, 1). Results were obtained from 1000 random

samples of size n = 100 (left panel) and n = 500 (right panel).
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Figure 1.5: Density function1 of the estimates of the concentration parameter of a von Mises

distribution based on 1000 random samples of size n = 100 (dashed line) and n = 500 (solid

line) from a mixture of two von Mises distribution (see model M7 in Appendix A for the specific

formulae).

1The density functions were obtained by using the kernel density estimator for linear data defined at the beginning

of Section 2.2 and taking as smoothing parameter the value selected by the rule of thumb of Silverman (1986, p.

47).
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In this case, the model is correctly specified and the errors in the parameter estimation are small,

so the parametric estimation of the density function should be right. But, what happens when

the model is not well specified? For example, consider that the observations come from a mixture

of two equally weighted von Mises distribution with diametrically opposed means and the same

concentration parameter (such as model M7 defined in Appendix A) but, it is wrongly assumed

that the underlying model is a von Mises distribution. When the concentration parameter of a von

Mises distribution is estimated based on observations coming from model M7, it is observed that

it takes values close to zero as shown in Figure 1.5 for 1000 samples of size n = 100 (dashed line)

and n = 500 (solid line). Therefore, if the underlying model is parametrically estimated, assuming

a von Mises model, the estimate is close to a circular uniform (concentration parameter close to

0), which is far from the real distribution. Before going into a purely nonparametric approach for

density estimation, a parametric method for estimating mixtures of von Mises will be introduced

in the next section.

1.2.2 Parameter estimation for a mixture of von Mises distributions

Let Θ1, . . . ,Θn ∈ [0, 2π) be a random sample of angles from a mixture of M von Mises distri-

butions, as the one presented in (1.3). In order to estimate the parameters of the mixture, the

log–likelihood function of the sample is computed

log(L(µµµ,κκκ,ppp|Θ1, . . . ,Θn)) = log

(
n∏

i=1

f(Θi;µµµ,κκκ,ppp)

)
=

n∑

i=1

log

(
M∑

m=1

pmfm(Θi;µm, κm)

)
. (1.11)

However, the log–likelihood function has a complex expression (it involves the logarithm of a sum)

which is difficult to optimize. The main problem lies in the fact that it is not known which density

component generates each observation. Assuming that this information is available, i.e., given a

vector ZZZ = (Z1, . . . , Zn) such that Zi takes the value m if Θi was generated by the m–th mixture

component, then the log–likelihood would be

log(L(µµµ,κκκ,ppp|Θ1, . . . ,Θn,ZZZ)) =
n∑

i=1

log (pZifZi (Θi;µZi , κZi)) , (1.12)

which has an expression less complicated than (1.11).

For the sake of simplicity, consider the particular case of a mixture of two von Mises, M = 2.

In this case, (1.12) becomes

log(L(µµµ,κκκ,ppp|Θ1, . . . ,Θn,ZZZ)) =
∑

i; Zi=1

log (p1f1 (Θi;µ1, κ1))+
∑

i; Zi=2

log (p2f2 (Θi;µ2, κ2)) . (1.13)

From (1.13), by computing the partial derivatives with respect to µ1 and κ1 and equating them

to zero, the equations that define the maximum likelihood estimators µ̂1 and κ̂1 of µ1 and κ1

respectively, are obtained:

κ̂1
∑

i; Zi=1

sin (Θi − µ̂1) = 0, (1.14)
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A(κ̂1) =
1

n1

∑

i; Zi=1

cos(Θi − µ̂1) = 0, (1.15)

where n1 is the cardinality of the set {i : Zi = 1, i = 1, . . . , n}. Note that, if only the data of the

first component of the mixture are considered then, these equations are the same to those defined

in (1.9) and (1.10).

If
∑

i; Zi=1 cosΘi 6= 0, from (1.14),

µ̂1 = arctan∗
(∑

i; Zi=1 sinΘi∑
i; Zi=1 cosΘi

)
(1.16)

and κ̂1 is obtained from the solution of equation (1.15). Maximum likelihood estimators for µ2

and κ2 are obtained in the same way.

Since p1 + p2 = 1, equation (1.13) can be written in terms of p, where p1 = p and p2 = 1− p.

Taking the derivative with respect to p and setting it equals to zero, the maximum likelihood

estimator of p is

p̂ = p̂1 = n1/n.

Therefore, the maximum likelihood estimate of the parameters of a mixture of two von Mises

distributions is easy to obtain if it is known which density component generates each sample data

Θi, i.e., if the values of the variable ZZZ are known. However this information is often unknown.

In this latter case, when the sample data is incomplete, the EM algorithm provides a method for

estimating the parameters of the mixture by maximum likelihood. The EM algorithm (Dempster

et al., 1977) is an iterative proccess which applies two steps alternatively until the convergence:

• E–step: Compute the expected value of the complete data log–likelihood with respect to

the conditional distribution of the non observed variable. In our context, the variable that

indicates which density component generates each observation is the non observed variable.

• M–step: Estimate the parameters by maximizing the expectation computed in the E–step.

Given values for µµµ, κκκ and ppp and following this procedure, if p(m|Θi,µµµ,κκκ,ppp) denotes the condi-

tional distribution of the variable Zi, i.e.,

p(m|Θi,µµµ,κκκ,ppp) =
pmfm(Θi;µm, κm)
∑M

l=1 plfl(Θi;µl, κl)

then, the expectation of (1.12) can be written as:

n∑

i=1

Ep [log(pZifZi(Θi;µZi , κZi))] =
n∑

i=1

M∑

m=1

log (pmfm(Θi;µm, κm)) p(m|Θi,µµµ,κκκ,ppp) =

M∑

m=1

n∑

i=1

(log pm) p(m|Θi,µµµ,κκκ,ppp) +
M∑

m=1

n∑

i=1

log fm(Θi;µm, κm)p(m|Θi,µµµ,κκκ,ppp). (1.17)
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The next step, the M–step, consists on the maximization of the expectaction (1.17) with respect

to the parameters (µµµ,κκκ,ppp). Banerjee et al. (2005) proved that the mean direction estimator is

µ̂m = arctan∗
(∑n

i=1 sinΘip(m|Θi,µµµ,κκκ,ppp)∑n
i=1 cosΘip(m|Θi,µµµ,κκκ,ppp)

)
, m = 1, . . . ,M,

which is a weighted version of the estimator in (1.16). The estimator of the concentration param-

eter is obtained from the solution of equation

A(κ̂m) =

∑n
i=1 p(m|Θi,µµµ,κκκ,ppp) cos(Θi − µ̂m)∑n

i=1 p(m|Θi,µµµ,κκκ,ppp)
, m = 1, . . . ,M,

and the estimator of pm has the following expression

p̂m =
1

n

n∑

i=1

p (m|Θi,µµµ,κκκ,ppp) , m = 1, . . . ,M.

E–step and M–step are repeated iteratively until the likelihood converges. Each iteration is

guaranteed to increase the log–likelihood and the algorithm is guaranteed to converge to a local

maximum of the likelihood (Bilmes, 1998).

Initialization of the EM algorithm

The EM algorithm needs to be initialized, i.e., it is required initial values of the parameters

µµµ, κκκ and ppp. In order to obtain such starting values, there exist several approaches such as soft–

assignment schemes and hard–assignment schemes. Hard–assignments consist in assigning each

observation to one component of the mixture in such way that the probability of each observation

of belonging to a certain component is 0 or 1. However, in this work, soft–assignments are

considered. Let Sim(ω1, ω2) = cos(ω1−ω2), be a measure of similartiy between two angles ω1 and

ω2. The soft–assignments consists in:

1. Take the mean direction of the sample as the global centroid of the data.

2. Starting with this first centroid, if the number of components in the mixture is M then (M−
1) more centroids are computed. In order to compute the m-th centroid (m = 2, . . . ,M), the

similarity between each point in the sample and each one of the (m− 1) centroids computed

before is calculated. For each point in the sample, the maximum value of similarity between

that point and each centroid is taken. The m-th centroid will be the sample point with a

smaller similarity.

3. Once the M centroids are computed, the dissimilarity (dissimilarty=1-similarity) between

each sample point and each centroid is computed.

4. Two cases are distinguished in this step. For each sample point:
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• If the sample point is equal to some centroid, i.e., the dissimilarity between the sample

point and the centroid is equal to zero then, it is assigned probability one to the

corresponding centroid and probability zero to the remaining centroids.

• If the sample point is not equal to any centroid, then the probability of belonging to

the group represented by each centroid is representative is computed. That probability

is proportional to the inverse of the dissimilarity. Hence, as smaller is the dissimilarity

between one sample point and one centroid, larger is the probability of belonging to

that group.

This procedure is equivalent to initialize the conditional distribution p(m|Θi,µµµ,κκκ,ppp),m = 1, . . . ,M .

In order to illustrate the performance of the EM algorithm for estimating the parameters of

a mixture of von Mises distributions, 1000 random samples of size n = 100 from the first model

in Figure 1.3 were generated. Figure 1.6 shows the boxplots of the differences in absolute value

between the estimated and true values of the parameters. Figure 1.6 shows that the differences

for the mean directions (left panel) and for the proportions (right panel) are small, and they are

sligthly larger for the concentration parameters (center panel).
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Figure 1.6: Boxplots of the differences in absolute value between the estimated parameters using

the EM algorithm and the true values for a mixture of two von Mises distributions, 1/2·vM(0, 4)+

1/2 · vM(π, 4). Results were obtained from 1000 random samples of size n = 100. Left panel:

boxplots for the mean directions. Center panel: boxplots for the concentration parameters. Rigth

panel: boxplot for the proportion.

Note that in the mixture considered both density components have the same proportion and

so, the differences for the mean direction and for the concentration parameters are almost equal

for both densities. However, if a mixture of two von Mises distribution in different proportion

is considered then, the errors for the component in larger proportion are smaller, as shown in

Figure 1.7, where 1000 random samples of size n = 100 from the second mixture in Figure 1.3

have been considered.
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Figure 1.7: Boxplots of the differences (in absolute value) between the estimated parameters

using the EM algorithm and the true values for a mixture of two von Mises distributions, 1/4 ·
vM(0, 2) + 3/4 · vM(π/

√
3, 2). Results obtained from 1000 random samples of size n = 100. Left

panel: boxplots for the mean directions. Center panel: boxplots for the concentration parameters.

Right panel: boxplot for the proportion.

Number of components selection

In order to apply the EM algorithm, the number of components in the mixture must be chosen.

If a large number of components (i.e., a larger number of parameters) is considered then overfitting

may occur, whereas the opposite effect may occur if that number is small. Determining the number

of componentsM can be seen as a model selection problem which can be approached by considering

some kind of information criteria, such as the Akaike Information Criterion (AIC). AIC (Akaike,

1974) is a criterion for choosing the best model among a set of admissible models. AIC takes into

account the model complexity by means of the number of parameters in the model and the model

fit by means of the likelihood function. It has the following expression

AIC = −2 log(L) + 2d,

where d is the number of parameters in the model and L is the maximized value of the likelihood

function for the estimated model. According to this criterion, one model is better than another if

it has a smaller AIC value. So, given a set of models, the best model using the AIC criterion, is

one with the lowest AIC.

In the scenarios considered above, it has been assumed that the number of distributions in the

mixture is known. However, in most cases, this information is unknown. AIC can be used for

selecting the mixture of von Mises distribution that fits the data best. In order to illustrate how

this method performs in practice, five models have been considered: the von Mises distribution

vM(π, 1) and the four mixtures represented in Figure 1.3. The specific formulae of these models

can be seen in the Appendix A (models M2, M7, M9, M11 and M19, respectively). For each
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distribution, 1000 samples of size n = 100 and n = 500 were generated and the number of times

that the AIC selects M = 1, 2, 3, 4 and 5 has been computed. Results are shown in Tables 1.1 and

1.2. For both sample sizes and for the models with three or less components (M2, M7, M9 and

M11), it can be seen that AIC selects the right number of components in most cases. However, for

the model with more than three components (M19) and sample size n = 100, AIC tends to select

M = 2 since the number of parameters of the model is too large (14 parameters) in comparison

with the sample size. For sample size n = 500, in most cases AIC selects M = 4 which corresponds

to the number of modes of the model. Note that, in this latter model the AIC criterion does not

tend to select the exact number of components (M = 5) because the proportion of one of the

components in the model is small and moreover, its concentration parameter is also small and so,

this component hardly affects to the model. Therefore, in this particular case, a mixture of four

von Mises distribution provides a good approximation.

n = 100 M = 1 M = 2 M = 3 M = 4 M = 5

Model with 1 component (M2) 814 99 53 26 8

Model with 2 components (M7) 0 807 111 60 22

Model with 2 components (M9) 318 540 75 40 27

Model with 3 components (M11) 0 0 834 118 48

Model with 5 components (M19) 0 439 293 184 84

Table 1.1: Number of times that AIC has selected M = 1, 2, 3, 4 and 5 in a von Mises distribution

(M2), mixture of two von Mises (M7 and M9), mixture of three von Mises (M11) and mixture of

four von Mises (M19). For each model, results were obtained from 1000 samples of sample size

n = 100.

n = 500 M = 1 M = 2 M = 3 M = 4 M = 5

Model with 1 component (M2) 943 42 11 4 0

Model with 2 components (M7) 0 913 67 13 7

Model with 2 components (M9) 2 939 39 11 9

Model with 3 components (M11) 0 0 920 66 14

Model with 5 components (M19) 0 51 299 414 236

Table 1.2: Number of times that AIC has selected M = 1, 2, 3, 4 and 5 in a von Mises distribution

(M2), mixture of two von Mises (M7 and M9), mixture of three von Mises (M11) and mixture of

five von Mises (M19). For each model, results were obtained from 1000 samples of sample size

n = 500.
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1.3 Real datasets

In this section, several real datasets will be introduced. Three of them are original datasets

which motivated the development of some techniques shown in this dissertation and so, they will

be analized as part of this work. The others, corresponding to cross–beds angles and animal

orientation data, are classical datasets and they will be used purely for illustrative purposes. A

description of all of them is given below:

• Temperature cycle changes.

The International Polar Year addresses as one of the main subjects the quantification and

understanding of the environmental change in the polar regions. In particular, monitoring

the retreat of glaciers is in the scope of this project. Within this project, measurement sta-

tions were placed in periglacial Monte Alvear (Tierra del Fuego, Argentina) (see Figure 1.8),

recording temperatures hourly at different depths. The ocurrence of changes in cycles of

temperature (from frosting to defrosting and viceversa) are important for the analysis of

the mobility in the glacier’s surface. The hours when a cycle change has occurred consti-

tute a sample of circular data, coming from an unknown circular distribution, that must be

estimated in order to determine the cycle change behaviour.

Figure 1.8: Ushuaia region (Tierra del Fuego, Argentina). Monte Alvear and Vinciguerra Glacier.

The available data for studying the cycle change behaviour consist of 350 observations which

correspond to the hours when the temperature (measured in ◦C) at ground level changed

from positive to negative and viceversa (see Figure 1.9) from February 2008 to December

2009 in periglacial Monte Alvear. This dataset will be analized in Sections 2.2.3 and 3.6.

These data has been kindly provided by Prof. Augusto Pérez Alberti from the Department

of Physical Geography of the University of Santiago de Compostela.
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Figure 1.9: Circular plots and rose diagrams of data of hours when the temperature changes from

positive to negative (left panel) and viceversa (right panel).

• Wind speed and wind direction.

The Atlantic coast of Galicia (NW Spain) has suffered two major ship accidents which

caused serious environmental and ecological damages: the burning of a cargo ship named

Casón in 1987, and the oil spill of the Prestige tanker in 2002. The strong winds played

a decisive role in both accidents. In the first one, the strong winds caused a displacement

of the cargo and the corrosive and toxic chemical flamable products trasported by Casón

exploded and burned while in the Prestige accident, the highly variable and strong winds

caused the sinking of the tanker.
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Figure 1.10: Left panel: Atlantic coast of Galicia (NW Spain). The plot shows the marine traffic

control area (arrows indicate the directions that ships must follow), whithin the influence area of

two major lighthouses (white lines). The buoy registering the data is located NE from the traffic

control area at longitude -0.210E and latitude 43.500N. Right panel: wind direction is represented

over the circumference in clockwise sense, starting form N and wind speed is represented along

the radius in m/s.

Motivated by these facts, one question of interest is whether the wind speed may be in-

fluenced by the wind direction. A buoy (with a diameter of 1.8 m and a height of 6.5 m)
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anchored in the area at longitude -0.210E and latitude 43.500N (see Figure 1.10, left panel)

provides hourly collected wind speed and wind direction. Wind measurements regarding

direction and speed are recorded every ten minutes, and hourly averaged, at a height of 3 m

above sea level. The buoy is far away from the coastline so that the measurements are not

influenced by local effects.

Data for studying the relation between wind speed and wind direction consists of hourly

observations of wind direction (measured in degrees from North direction) and wind speed

(in m/s) in winter season (from November to February) from 2003 until 2012. Data were

freely downloaded from the Spanish Portuary Authority (http://www.puertos.es) in July

of 2012. Figure 1.10 (right panel) shows the measurements of wind direction and wind speed.

This plot correspond to about 200 observations out of the total data, where observations

were taken with a lag period of 95 h for avoiding the dependence present between consecutive

measurements in the time series. Since wind direction is a circular variable and wind speed is

a scalar variable, the methods for studying the relation between these variables must be take

into account the nature of both variables. This data set will be considered in Sections 2.3.4

and 3.6.

• Cracks in cemented femoral components.

This real dataset, kindly provided by Dr. Kenneth A. Mann from the Upstate Medical

University (New York), concerns angular positions of cracks in the cement mantle in a hip

implant. These data, described in more detail in Mann et al. (2003), are obtained from an

in vitro fatigue study for investigating the distribution of fatigue cracks around cemented

femoral components in total hip replacements.

lateral

anterior

medial

posterior

+ lateral

anterior

medial

posterior

+

Figure 1.11: Rigth panel: a counterclockwise definition of angular position of crack was used with

a zero angle representing the lateral direction. Center and right panels: circular plots and rose

diagrams of the data of angular positions of cracks for one cemented implant for proximal and

distal region, respectively.

Each femur is loaded using a stair climbing apparatus and after loading, it is sectioned

in 10 mm intervals from the level of the implant collar to the distal tip of the stem. For

http://www.puertos.es
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each section, angular position of the cracks relative to the center of the stem section were

documented. A counterclockwise definition of angular position of crack was used with a zero

angle representing the lateral direction as shown in Figure 1.11 (left panel). In Figure 1.11

(center and right panels) the angular positions of cracks for proximal (sections at 10–50 mm)

and distal (sections at 80–110 mm) regions are represented. The number of data in each

region is 322 and 99, respectively.

Studies to improve understanding of the mechanical aspects of cemented implant loosening

were carried out showing that the distribution of the angular positions of the cracks around

cemented femoral components is not uniform (see Mann et al., 2003). It is of interest to

know if there exists some predominant direction of crack. This will be studied in Section 3.6.

Apart from the previous datasets, some of which had not been previously studied, and certainly

none of them had been analyzed with nonparametric methods, for illustration purposes, some

classical datasets will be also considered. Specifically, the following examples will be used in

Section 2.2.3.

• Cross–beds (I).

This classical dataset corresponds to azimuths of cross–beds in the Kamthi river (India).

Originally analized by SenGupta and Rao (1966) and included in Table 1.5 in Mardia (1972),

the dataset collects 580 azimuths (measured in degrees) of layers lying oblique to principal

accumulation surface along the river, being these layers known as cross–beds. A photo of

cross–beds is shown in Figure 1.12 (left panel) and data are shown in Figure 1.12 (right

panel).
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Figure 1.12: Left panel: photo showing cross–beds2. Right panel: circular plot and rose diagram

of data of azimuhts of cross–beds in the Kamthi river.

2Rygel, M.C. (2006) Through cross–bedding in the Waddens Cove Formation (Pennsylvanian), Sidney Basin,

Nova Scotia. File from the Wikimedia Commons.

http://commons.wikimedia.org/wiki/File:Trough_xbed_mcr1.JPG.

http://commons.wikimedia.org/wiki/File:Trough_xbed_mcr1.JPG
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• Cross–beds (II).

This dataset, presented in Fisher (1993), includes 104 measurements of Chaudwan Zam large

bedforms from Himalayan molasse in Pakistan which are represented in Figure 1.13.
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Figure 1.13: Circular plot and rose diagram of cross–bed measurements from Himalayan molasse

in Pakistan.

• Dragonfly orientation.

Animal orientation is another classical example of circular data. This dataset, presented

in Batschelet (1981), contains the orientation of 213 dragonflies with respect to the Sun’s

azimuth. As it can be seen in Figure 1.14 (right panel), this is a clear example of bimodal

circular distribution. This dataset was also studied by Pewsey (2004), who applied a test

for circular reflective symmetry.
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Figure 1.14: Left panel: image of a dragongly3. Right panel: circular plot and rose diagram of

dragonflies orientations data.

3Image of a dragonfly taken with a PackshotCreator photo studio by Creative Tools AB. Date: 27 January

2010. Source: CreativeTools.se - PackshotCreator - Dragonfly top view. Author: Creative Tools from Halmstad,

Sweden. Watermark removed by Ainali.

http://commons.wikimedia.org/wiki/File:CreativeTools.se_-_PackshotCreator_-_Dragonfly_top_view.jpg.

http://commons.wikimedia.org/wiki/File:CreativeTools.se_-_PackshotCreator_-_Dragonfly_top_view.jpg
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Chapter 2

Nonparametric curve estimation for

circular data

2.1 Introduction

Nonparametric estimation methods have turned up as an alternative approach to the parametric

techniques, both inferentially and as a descriptive tool. In the circular setting, nonparametric

density estimation was approached by Fisher (1989), who proposed an adaptation to circular data

of linear data methods in Silverman (1986) using a quartic kernel function and Beran (1979) and

Hall et al. (1987), who proposed a kernel density estimation procedure for the general case of

spherical data, following the ideas of the classical kernel density estimator for linear data (Parzen,

1962; Rosenblatt, 1956). Although asymptotic properties of this latter estimator were further

studied by Bai et al. (1988) and Klemelä (2000), these works do not provide a solution for the

most critical issue from a practical point of view: smoothing parameter selection. The use of cross–

validation smoothing parameters is suggested by Hall et al. (1987) in the spherical context, for the

particular case of circular data, Taylor (2008) derived a rule of thumb for smoothing parameter

selection in circular kernel density estimation and Di Marzio et al. (2011) introduced a bootstrap

method for data lying on a d–dimensional torus.

Regression estimation involving circular variables, as response or as covariate, is indeed an

interesting problem. In the available literature, most efforts have been focused on the development

of parametric models. For instance, Presnell et al. (1998) and the references therein dealt with a

circular response and linear covariates; SenGupta and Ugwuowo (2006) proposed some asymmetric

models for environmental applications accounting for the circular nature of the covariate, and

Downs and Mardia (2002) and Kato et al. (2008), among others, addressed the regression with

circular response and covariates. Regression estimation avoiding the assumption of a specific

parametric shape for the regression curve was addressed by Di Marzio et al. (2009) who extended

least squares local polynomial to the case of d–dimensional circular predictors and real–valued

27
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responses; Qin et al. (2011a,b) who extended nonparametric models to the case when there is one

circular predictor and one or more linear predictors and the response is real–valued, and more

recently Di Marzio et al. (2012) proposed a nonparametric estimator for the regression function

when the response is circular and the covariate is circular or linear. Periodic smoothing splines, as

considered in Wahba (1990) and Wood (2006) among others, are an alternative form of smoothing

when the covariate is periodic and the response is linear.

The goal of this chapter is to introduce a new procedure for selecting the smoothing parameter

in circular kernel density estimation that allows estimating circular densities, accounting for asym-

metry and/or multimodality. In the regression setting, a review of the nonparametric methods for

a scalar response and a circular covariate will be provided.

This chapter is organized as follows. Section 2.2 is devoted to the introduction of the kernel

density estimator for circular data, revising different techniques for selecting the smoothing pa-

rameter and introducing a new method. The performance of the described procedures is checked

in a simulation study, considering a wide class of circular density families, involving multimodality,

peakdness and skewness. The methods are also illustrated with the three classical datasets and

the real dataset corresponding to temperature cycle changes. Section 2.3 is devoted to nonpara-

metric regression estimation for a circular explanatory variable and a linear response, focusing

on the adaptation of the Nadaraya–Watson and Local Linear estimators to the circular nature of

the covariate and on periodic smoothing splines. The performance of circular kernel regression

estimators and periodic smoothing splines estimator is explored in some simulated examples and

they are applied to study the relation between the wind speed and wind direction in the Atlantic

coast of Galicia. The contents of this chapter can be seen in Oliveira et al. (2012a,b, 2013c).

2.2 Nonparametric circular kernel density estimation

Before introducing the circular kernel density estimator, the classical kernel estimator for a density

function will be reviewed. Denote by X1, . . . , Xn a random sample from a scalar random variable

X with density g. At each fixed point x ∈ R, the kernel estimator of g(x) is defined as:

ĝ(x;h) =
1

nh

n∑

i=1

L

(
x−Xi

h

)
, (2.1)

where h > 0 is the bandwidth or smoothing parameter and L is a kernel function, usually the

standard normal density, or any other unimodal and symmetric around zero density function. The

estimator in (2.1) can be written as follows:

ĝ(x;h) =
1

n

n∑

i=1

Lh(x−Xi), (2.2)

where Lh is the h–rescaled kernel function L, Lh(·) = 1
hL
( ·
h

)
. In the particular case of L being

the standard normal, the kernel estimator in (2.2) can be interpreted as a mixture of n normally

distributed random variables, centered in the sample points and with standard deviation h.
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Since this estimator does not provide a periodic estimate of the density function, its usage is

not appropriate for estimating the density function of a sample of circular data. However, bearing

the idea of its construction in mind, the kernel estimator in (2.2) can be generalized to circular

data.

Given a random sample of angles Θ1, . . . ,Θn ∈ [0, 2π) from some unknown circular density f ,

the circular kernel density estimator of f is defined as:

f̂(θ; ν) =
1

n

n∑

i=1

Kν(θ −Θi), 0 ≤ θ < 2π, (2.3)

where Kν is a circular kernel function with concentration parameter ν > 0 (see, e.g., Di Marzio

et al., 2009). As a circular kernel, the von Mises distribution can be considered. With this specific

kernel, the density estimator is given by:

f̂(θ; ν) =
1

n(2π)I0(ν)

n∑

i=1

eν cos(θ−Θi), 0 ≤ θ < 2π, (2.4)

which can be seen as a mixture of n von Mises distributions, centered in the data sample Θi and

with common concentration parameter ν. Throughout this dissertation, the circular kernel density

estimator with von Mises kernel defined in (2.4) will be considered, unless otherwise indicated.
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Figure 2.1: Circular kernel density estimates (gray lines) with ν = 2 (left panel) and ν = 100

(right panel) for 10 random samples of size 200 from a vM(π, 5) (black line).

A critical issue when applying this estimator in practice is the choice of the smoothing parameter

ν which determines the degree of smoothing. The effect of the smoothing parameter can be seen

in Figure 2.1, large values of ν lead to highly variable (undersmoothed) estimators, i.e., estimators

with small bias and large variance, whereas small values of ν imply low concentration of the kernel,

providing oversmoothed estimators for the circular density, i.e., estimators with large bias and

small variance. For that reason the study of automatic smoothing parameter selection procedures

constitutes one of the most relevant problems in nonparametric density estimation.
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2.2.1 Smoothing parameter selectors

There are various approaches to the smoothing parameter selection problem. In this section, the

methods proposed in the literature will be reviewed and a new method will be introduced.

As for linear data, most commonly used techniques for selecting the smoothing parameter are

based on the minimization of some error criteria that quantify the accuracy of the kernel density

estimator, i.e., how well the estimator approximates the true density. The mean integrated squared

error (MISE),

MISE (ν) = E

[∫ 2π

0

(
f̂(θ; ν)− f(θ)

)2
dθ

]
=

∫ 2π

0
E

[(
f̂(θ; ν)− f(θ)

)2]
dθ

=

∫ 2π

0

[
E

(
f̂(θ; ν)

)
− f(θ)

]2
dθ +

∫ 2π

0
E

[
f̂(θ; ν)− E

(
f̂(θ; ν)

)]2
dθ

=

∫ 2π

0

[
bias

(
f̂(θ; ν)

)]2
dθ +

∫ 2π

0
var
(
f̂(θ; ν)

)
dθ,

is one of these criteria but, in practice, often its asymptotic expression (AMISE) is used for

selecting the smoothing parameter, which may also be written in terms of the aymptotic bias

and the variance of the estimator. Precisely, as noted before, a main challenge in nonparametric

density estimation is the bias–variance trade–off. Therefore, selecting ν by minimizing either

MISE or AMISE amounts to balancing bias and variance at the same time.

In the circular setting, the asymptotic expression for the MISE (AMISE) was derived by

Di Marzio et al. (2009). For the circular kernel estimator (2.4), if f ′′ is continuous and square–

integrable, the AMISE(ν) when ν → ∞ and
√
νn−1 → 0 is given by:

AMISE(ν) =

{
1

16

[
1− I2(ν)

I0(ν)

]2 ∫ 2π

0

[
f ′′(θ)

]2
dθ +

I0(2ν)

2nπ (I0(ν))
2

}
, (2.5)

where f ′′ denotes the second–order derivative of the target density to be estimated, which measures

the curvature of f . Densities with marked modes will give a larger value of its integral, whereas

the lowest value is achieved by a circular uniform model.

A rule of thumb, adapting the idea of Silverman (1986) for bandwidth selection in kernel linear

density estimation, was proposed by Taylor (2008). Assuming that the data follow a von Mises

distribution with concentration parameter κ, the AMISE is given by

AMISE(ν) =
3κ2I2(2κ)

32πν2I0(κ)2
+

ν1/2

2nπ1/2
. (2.6)

Hence, the value of the smoothing parameter minimizing the AMISE (2.6) can be estimated by

ν̂RT =

[
3nκ̂2I2(2κ̂)

4π1/2I0(κ̂)2

]2/5
, (2.7)

where κ̂ is the concentration parameter estimator obtained by maximum likelihood. This selector

performs satisfactorily in fitting unimodal symmetric distributions, without highly peaked modes
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but its behaviour can be dramatically misleading in the presence of antipodal modes and/or

skewed distributions (see Section 2.2.2). A very simple example of this situation arises when

mixing two population with opposite centers but in the same proportion and with the same

concentration parameters. The maximum likelihood estimate κ̂ will return a value close to zero,

which corresponds with a circular uniform distribution. Consequently, a small value for ν̂RT will

be obtained resulting in an oversmoothed kernel estimator for the circular density.

The poor performance of the rule of thumb is sometimes due to the non robust estimation by

maximum likelihood of the concentration parameter κ, so a possible modification of (2.7) consists

in the following procedure:

Step 1. Select α ∈ (0, 1) and find the shortest arc containing α · 100% of the sample data.

Step 2. Obtain the estimated κ̂ in such way that
∫
f(θ, µarc, κ̂)dθ = α where µarc is the midpoint of

the arc computed in Step 1. The intregral is computed over the arc selected in Step 1.

Step 3. Replace in (2.7) the value of κ̂ computed in the previous step to obtain ν̂RRT .

The performance of this procedure in relation with the rule proposed by Taylor (2008) can be seen

in Oliveira et al. (2013c), where it is shown that, in some scenarios, the selector ν̂RRT can improve

the results of ν̂RT , if α is properly chosen.

An alternative route, also based in the AMISE minimization, would be to plug–in a more

flexible distribution family as a reference density in the AMISE formula (2.5). That is the idea of

the new rule proposed in this dissertation which is introduced below.

The new proposal: the plug–in rule

The new method, based on the ideas of Ćwik and Koronacki (1997) for the multivariate setting,

consists on considering a mixture of von Mises distribution as reference. The proposed plug–in

smoothing parameter selector, ν̂PI , is obtained as follows:

Step 1. Select the number of mixture components M for the reference distribution.

Step 2. Estimate the AMISE in (2.5) as follows:

Step 2.1. Estimate the parameters in the von Mises mixture (1.3), (µm, κm, pm), form = 1, . . . ,M .

Step 2.2. Compute the integral
∫
(f̂ ′′(θ))2dθ where f̂ ′′ is the second derivative of the density

function of a mixture of M von Mises distribution with the parameters estimated in

the previous step.

Step 2.3. Plug–in the quantity above in (2.5) to get ÂMISE(ν).

Step 3. Minimize ÂMISE(ν) and obtain ν̂PI .
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For Step 1, the selection of the number of mixture components in the reference distribution can

be done by AIC (see Section 1.2.2), considering mixtures with different number of components. In

that case the selector will be denoted by ν̂AIC
PI , otherwise, if M is selected a priori, the selector will

be denoted by ν̂MPI where M will indicate the number of components in the mixture. Maximum

likelihood estimation via EM algorithm, as described in Section 1.2.2, is used for Step 2.1. The

integral in Step 2.2 can be efficiently computed numerically, by quadrature methods such as the

Simpson’s rule. In Step 3, an optimization method can be used in order to minimize the ÂMISE.

These types of plug–in rules are not the only alternative to smoothing parameter selection,

and some other data–driven procedures were already proposed by Hall et al. (1987) using cross–

validation ideas. Least squares cross–validation (LSCV) is based on minimizing the integrated

squared error (ISE):

ISE(ν; Θ1, . . . ,Θn) =

∫ 2π

0

(
f̂(θ; ν)− f(θ)

)2
dθ

=

∫ 2π

0
f̂2(θ; ν)dθ − 2

∫ 2π

0
f̂(θ; ν)f(θ)dθ +

∫ 2π

0
f2(θ)dθ, (2.8)

Since the third term does not depend on ν, the minimization of (2.8) involves only the first two

addends, being the first one known as a function of ν. The integral in the second term in (2.8),

which depends on the unknown density f , can be approximated by n−1
∑n

i=1 f̂
−i(Θi; ν), where

f̂−i is the circular kernel density estimator obtained by leaving out the i-th observation. Hence,

the LSCV smoothing parameter is obtained as the value of ν that minimizes:

LSCV(ν) =

∫ 2π

0
f̂2(θ; ν)dθ − 2

n

n∑

i=1

f̂−i(Θi; ν). (2.9)

The likelihood cross–validation smoothing parameter ν̂LCV is obtained by maximizing:

LCV(ν) =
n∏

i=1

f̂−i(Θi; ν). (2.10)

The performance of the cross–validation selectors, including an adaptation of the biased cross–

validation rule (Scott and Terrell, 1987), was studied by Di Marzio et al. (2011) for selecting

the smoothing parameter in kernel density estimation for data lying on a d–dimensional torus,

concluding that the likelihood cross–validation method appears asymptotically the most stable.

Di Marzio et al. (2011) introduced a bootstrap procedure for selecting the smoothing parameter

by adapting the proposal of Taylor (1989) for linear data. This method consists on selecting ν to

minimize the bootstrap MISE

∫ 2π

0
EB

[
f̂∗(θ; ν)− f̂(θ; ν)

]2
dθ, (2.11)

where EB denotes the bootstrap expectation with respect to random samples Θ∗
1, . . . ,Θ

∗
n generated

from f̂(θ; ν). If a von Mises kernel is used, as it is the case, then the integrand of (2.11) has a
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closed expression:

EB

[
f̂∗(θ; ν)− f̂(θ; ν)

]2
= (2πnI0(ν))

−2I0(ν)
−1
∑n

l=1 I0
(
ν(5 + 4 cos(θ −Θl))

1/2
)

+
(
EB

[
f̂∗(θ; ν)

]
− f̂(θ; ν)

)2
− n−1

(
EB

[
f̂∗(θ; ν)

])2
(2.12)

where the bootstrap expected value for the kernel estimator is given by

EB

[
f̂∗(θ, ν)

]
=

1

n(2π)I0(ν)

n∑

i=1

I0(2ν cos((θ −Θi)/2))

I0(ν)
.

Note that (2.12) is zero for ν = 0 and so, the target function (2.11) has a global minimum at

ν = 0, leading to a uniform estimate, no matter the true underlying model. In practice, this will

lead to search for a local minimum, which may pose a problem specially for small samples. The

value of the smoothing parameter selected by using this method will be denoted by ν̂boot.

2.2.2 Simulation study

The effectiveness of the new selector, the plug–in rule, for selecting the smoothing parameter

described in the previous section has been compared with the rule of thumb defined in (2.7), leasts

squares cross–validation rule (2.9), likelihood cross–validation rule (2.10) and bootstrap method

(2.12) through Monte Carlo experiments. A variety of circular distributions (von Mises, cardioid,

various wrapped distributions and mixtures of them) displaying multimodality, skewness and/or

peakedness have been tried (see Figure 2.2 for plots and Appendix A for specific formulae). For

illustration purposes, the models have been classified in four groups, according to their complexity:

Simple models: circular uniform (M1); von Mises (M2); wrapped normal (M3); cardioid (M4);

wrapped Cauchy (M5) and wrapped skew–normal (M6).

Two components models: von Mises mixtures (M7, M8 and M9); mixture of von Mises and

wrapped Cauchy (M10).

Models with more than two components: von Mises mixtures with three components (M11, M12

and M13); von Mises mixture with four components (M14); mixture of wrapped Cauchy, wrapped

normal, von Mises and wrapped skew–normal (M15); von Mises mixture with five components

(M16).

Other complex models: mixture of cardioid and wrapped Cauchy (M17); mixture of von Mises

(M18 and M19); mixture of two wrapped skew–normal and two wrapped Cauchy (M20).

Note that Simple models include unimodal models from von Mises distributions, with the

circular uniform as a particular case. The wrapped Cauchy shows a highly peaked mode, whereas

an asymmetric model is obtained with the wrapped skew–normal, as shown in Pewsey (2006). The

Two components models collect different mixtures of two von Mises distributions (with antipodal

modes and combining different weights and centers) and a mixture of a von Mises and a wrapped
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Cauchy, which results in a distribution with two modes with different concentrations. In Models

with more than two components, there are mixtures of three, four and five equally spaced and

equally weighted von Mises distributions. Other situations with mild modes such as model M15

are also considered. Finally, Other complex models are also included in the study. Although the

distributions in this group are generated by mixtures of two or more models, the appearance may

show a single mode, as in M17.

For each distribution model, 1000 random samples of sizes n = 100, 250, 500 and 1000 were

generated. In Tables 2.3, 2.4, 2.5 and 2.6, the average integrated squared errors of the circular

kernel density estimator (2.4), considering different smoothing parameter selectors are shown. For

each selector, the average ISE over the 1000 replicates will be denoted, for the sake of simplicity,

by MISE(ν̂•). Specifically, the performance of the new plug–in rule ν̂PI will be compared with

the rule of thumb ν̂RT , the likelihood and least squares cross–validation smoothing parameters

ν̂LCV and ν̂LSCV respectively, and the bootstrap smoothing parameter ν̂boot. As a benchmark,

the minimum average ISE has been computed for a broad grid of smoothing parameters, denoted

in the tables by MISE(ν0). The simulations have been carried out in R (see R Development

Core Team, 2012) using the self programmed functions implemented in the NPCirc package (see

Chapter 4 and Appendix D).

Step 1 in the algorithm for computing the plug–in smoothing parameter requires the selection

of the number of components of the mixture for the reference distribution. Note that the rule

of thumb proposed in Taylor (2008) corresponds to M = 1. The procedure with fixed M has

been applied in all the scenarios, obtaining ν̂MPI , for M = 2, 3, 4 and 5 and observing that even

with a fixed value M = 2, the plug–in rule gives better results than M = 1. Just for illustrating

our conclusions, the average ISE values for ν̂RT and ν̂MPI with M = 2, 3, 4 and 5 can be seen in

Tables 2.1 and 2.2, for n = 100 and n = 1000, respectively. In general, small values of M are

suitable for simple models and models with two components for any sample size, and large values

of M are a good choice for complex models and moderate and large sample sizes. Hence, fixing

the number of mixtures M does not produce satisfactory results in all the simulation scenarios.

The AIC criterion (described in Section 1.2.2) provides a data driven procedure for selecting M ,

so Step 1 in the algorithm is done as follows: AIC is computed for mixtures of M = 2, 3, 4, 5 von

Mises distributions and the selected number of mixtures M for the reference distribution is the

one minimizing the AIC.

For sample size n = 100 (see Table 2.3), the plug–in rule ν̂AIC
PI is competitive with the other

selectors, although the likelihood cross–validation rule provides better results except for models

M5 and M17 which present highly peaked modes. Results using the least squares cross–validation

rule are not so good as using likelihood cross–validation rule. It should be noted that the AIC

criterion tends to select a large value for M , which may be damaging in some simple models

compared with the results for ν̂M=2
PI shown in Table 2.1. Therefore, for this sample size one should

not try AIC with a large number of mixtures in the reference distribution. Besides, for small

sample sizes, it may not be realistic to attempt to estimate too complicated models (see MISE(ν0)
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in Table 2.3 for M17 to M20). Results were also obtained considering the bootstrap selector for

n = 100. The poor results for some models provided by this method are due to the fact that,

as already noticed in the previous section, only the global minimum at ν = 0 for (2.12) is found,

not being able to attain a local minimum for most of the generated samples. This problem was

already noticed by Di Marzio et al. (2011).

As it was noted above, whereas chosingM = 2 seems fair for small samples, including a complex

reference distribution, i.e., large M , is reasonable for large enough datasets. The AIC criterion

succeeds in selecting a suitable M for all the considered scenarios. For moderate and large sample

sizes (n = 250, 500, 1000), results with the AIC selection equal or even outperform the best ν̂MPI .

The strength of the new proposal can be seen in Tables 2.4, 2.5 and 2.6.

In more detail, for Simple models and n = 250, 500 and 1000, the rule of thumb and bootstrap

method show the best results for models M1 to M4, but in any case the other methods also provide

good results. However, the behaviour shown by the rule of thumb in models M5 and M6 is quite

poor, compared with the plug–in selector which is the best in these cases. The least squares cross-

validation rule provides similar results to those obtained with the plug–in rule and the likelihood

cross–validation rule does not provide good results for model M5 (highly peaked mode), although

it behaves better than the rule of thumb. For n = 250, the bootstrap method does not provide

good results in models M5 and M6. Despite for n = 500 and n = 1000 its behaviour improves,

it does not outperform the plug–in rule. Note that M5 is the wrapped Cauchy distribution and

M6 is the wrapped skew–normal, confirming the adecquate performance of the plug–in rule for

estimating highly peaked and asymmetric distributions.

In the Two components models, for n = 250, 500 and 1000 , the performance of ν̂RT is extremely

poor for model M7 (antipodal modes), and is also far from satisfactorily for models M8 and M10.

The plug–in rule ν̂AIC
PI provides good results for all the models in this group (compared with the

optimal MISE, MISE(ν0)), whereas ν̂LCV and ν̂boot seem to be fair competitors except for model

M10 for which ν̂LSCV provides better results.

For models with More than two components, the rule of thumb seems not consistent (except

perhaps for model M15, which is almost flat). The bootstrap selector ν̂boot behaves poorly for

n = 250 and although it is better for n = 500 and 1000, it does not reach ν̂AIC
PI and ν̂LCV . The

plug–in rule and the likelihood cross–validation rule behave similarly. Results for ν̂LSCV are very

similar to, but not quite as good as using ν̂LCV .

For Other complex models and n = 250, 500 and 1000, the plug–in rule and cross–validation

rules performs similarly, except for model M17 for which ν̂LCV provide worse results. The boot-

strap method does not provide good results for these models for any sample size.
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Figure 2.2: Circular density models. M1-M6: simple models. M7-M10: two components models.

M11-M16: models with three or more components. M17-M20: complex models.
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n = 100 MISE(ν0) MISE(ν̂RT ) MISE(ν̂M=2
PI ) MISE(ν̂M=3

PI ) MISE(ν̂M=4
PI ) MISE(ν̂M=5

PI )

M1 0.0000 0.0197 (0.0561) 0.2558 (0.4639) 0.7362 (0.7665) 1.2175 (0.9589) 1.5597 (1.0746)

M2 0.5143 0.6677 (0.5171) 0.7488 (0.7795) 0.8948 (0.7626) 1.2632 (0.9980) 1.5962 (1.1849)

M3 1.1861 1.2481 (0.9033) 1.4939 (1.1914) 1.8727 (1.5225) 2.1598 (1.6892) 2.5710 (1.8995)

M4 0.4673 0.5195 (0.3706) 0.6795 (0.5743) 0.9965 (0.8639) 1.3401 (1.0761) 1.7590 (1.2991)

M5 2.7539 8.5089 (2.5804) 3.2430 (1.7832) 3.3060 (1.8041) 3.4369 (1.9805) 3.9859 (2.4719)

M6 2.3628 3.1577 (0.9371) 2.6280 (1.2056) 2.8852 (1.3383) 3.2703 (1.4240) 3.4551 (1.4615)

M7 1.1182 10.5622 (0.3741) 1.1795 (0.6582) 1.4993 (1.2908) 1.8082 (1.6620) 2.3984 (2.3100)

M8 1.2326 3.7176 (0.6908) 1.3031 (0.7086) 1.6127 (1.0454) 1.9020 (1.2553) 2.4057 (1.3751)

M9 0.6766 0.8320 (0.5467) 0.8451 (0.6139) 1.0514 (0.7896) 1.3511 (0.9737) 1.6821 (1.1484)

M10 2.3203 2.8659 (0.7894) 2.7317 (1.0735) 2.9159 (1.2413) 3.0347 (1.2872) 3.1319 (1.3129)

M11 1.3573 6.4858 (0.0188) 2.1984 (1.7288) 1.4751 (0.6856) 1.8364 (1.1071) 2.1494 (1.2780)

M12 1.0051 4.2671 (0.5160) 1.1053 (0.5799) 1.2990 (0.7522) 1.5974 (1.0729) 1.8819 (1.2169)

M13 1.7569 10.8771 (0.1257) 1.9361 (0.8015) 1.9901 (0.8490) 2.3760 (1.5334) 2.9217 (2.2857)

M14 1.8510 8.1840 (0.0510) 7.0262 (2.0491) 2.2744 (1.3453) 2.0392 (0.8299) 2.6959 (1.6725)

M15 0.7091 0.8400 (0.1507) 0.9652 (0.4238) 1.1375 (0.6909) 1.4059 (0.8796) 1.6926 (1.0328)

M16 2.1505 7.8356 (0.0502) 7.4690 (1.1866) 4.3266 (2.4983) 2.5389 (1.1013) 2.4512 (0.9729)

M17 3.4817 7.9040 (1.2024) 5.9841 (1.9124) 4.3443 (1.5192) 4.2346 (1.5348) 4.2770 (1.6335)

M18 2.2067 3.5795 (0.4979) 3.2344 (0.8189) 2.7847 (1.1375) 2.8780 (1.2712) 2.9221 (1.3419)

M19 2.3756 3.8709 (0.6246) 2.4580 (0.6342) 2.6701 (0.9434) 2.8739 (1.0713) 3.2066 (1.1322)

M20 3.2890 10.9610 (0.0545) 6.4831 (1.3001) 3.9311 (1.4886) 3.8228 (1.4249) 4.1138 (1.8071)

Table 2.1: Average integrated squared error for different smoothing parameter selectors, MISE (×100), and standard deviations

(×100, in parentheses). Smoothing parameter selectors: ν̂RT (rule of thumb) and ν̂MPI (plug–in rule) with M = 2, 3, 4 and 5.

MISE(ν0): benchmark average integrated squared error. Sample size: n = 100. Models M1–M20 distributed by complexity: M1–

M6 (simple models); M7–M10 (two components models); M11–M16 (models with more than two components); M17–M20 (other

complex models).
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n = 1000 MISE(ν0) MISE(ν̂RT ) MISE(ν̂M=2
PI ) MISE(ν̂M=3

PI ) MISE(ν̂M=4
PI ) MISE(ν̂M=5

PI )

M1 0.0000 0.0003 (0.0011) 0.0136 (0.0266) 0.0437 (0.0407) 0.0691 (0.0470) 0.0816 (0.0517)

M2 0.0955 0.1088 (0.0673) 0.0991 (0.0585) 0.1001 (0.0582) 0.1040 (0.0597) 0.1104 (0.0642)

M3 0.2257 0.2291 (0.1294) 0.2317 (0.1328) 0.2346 (0.1337) 0.2378 (0.1360) 0.2467 (0.1426)

M4 0.0836 0.0854 (0.0474) 0.0918 (0.0507) 0.0961 (0.0542) 0.0999 (0.0584) 0.1087 (0.0623)

M5 0.5001 2.9980 (0.5902) 0.5349 (0.2859) 0.5255 (0.2718) 0.5267 (0.2739) 0.5234 (0.2698)

M6 0.5317 1.2071 (0.1992) 0.5888 (0.2011) 0.5466 (0.2003) 0.5431 (0.1973) 0.5442 (0.1983)

M7 0.1964 10.7433 (0.0836) 0.1985 (0.0890) 0.2000 (0.0894) 0.2009 (0.0903) 0.2020 (0.0912)

M8 0.2245 1.0836 (0.1748) 0.2268 (0.1037) 0.2282 (0.1040) 0.2284 (0.1046) 0.2299 (0.1048)

M9 0.1272 0.1546 (0.0896) 0.1308 (0.0739) 0.1335 (0.0751) 0.1354 (0.0754) 0.1390 (0.0769)

M10 0.5276 1.2004 (0.1777) 0.5815 (0.2365) 0.5500 (0.1963) 0.5439 (0.1862) 0.5447 (0.1870)

M11 0.2312 6.4800 (0.0016) 2.3859 (2.7829) 0.2334 (0.0867) 0.2350 (0.0867) 0.2358 (0.0867)

M12 0.1789 2.9699 (0.3453) 0.1876 (0.0837) 0.1836 (0.0785) 0.1847 (0.0785) 0.1855 (0.0788)

M13 0.3117 10.9019 (0.0604) 0.3754 (0.1146) 0.3185 (0.1050) 0.3196 (0.1052) 0.3204 (0.1054)

M14 0.3144 8.1666 (0.0009) 7.8797 (0.5790) 0.5111 (1.1235) 0.3559 (0.5104) 0.3198 (0.1012)

M15 0.1609 0.7009 (0.0942) 0.4727 (0.1722) 0.2051 (0.1038) 0.1720 (0.0666) 0.1711 (0.0644)

M16 0.3723 7.8192 (0.0011) 7.7280 (0.2077) 6.6255 (1.3787) 0.3768 (0.1110) 0.3761 (0.1100)

M17 0.7022 4.8753 (0.3789) 3.4968 (1.3066) 0.7757 (0.3226) 0.7512 (0.2867) 0.7391 (0.2697)

M18 0.4019 2.0780 (0.1616) 1.5967 (0.5630) 0.5234 (0.3101) 0.4207 (0.1510) 0.4141 (0.1476)

M19 0.4763 2.1306 (0.1383) 0.9899 (0.1271) 0.7714 (0.2731) 0.6087 (0.1950) 0.5470 (0.1877)

M20 0.6786 10.9911 (0.0167) 3.7033 (0.2338) 0.8481 (0.4578) 0.7498 (0.1751) 0.7189 (0.1623)

Table 2.2: Average integrated squared error for different smoothing parameter selectors, MISE (×100), and standard deviations

(×100, in parentheses). Smoothing parameter selectors: ν̂RT (rule of thumb) and ν̂MPI (plug–in rule) with M = 2, 3, 4 and 5.

MISE(ν0): benchmark average integrated squared error. Sample size: n = 1000. Models M1–M20 distributed by complexity: M1–

M6 (simple models); M7–M10 (two components models); M11–M16 (models with more than two components); M17–M20 (other

complex models).
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n = 100 MISE(ν0) MISE(ν̂RT ) MISE(ν̂AIC
PI ) MISE(ν̂LCV ) MISE(ν̂LSCV ) MISE(ν̂boot)

M1 0.0000 0.0197 (0.0561) 0.7369 (1.1351) 0.3394 (0.6413) 0.3832 (0.7658) 0.0002 (0.0002)

M2 0.5143 0.6677 (0.5171) 1.0893 (1.1894) 0.7429 (0.6460) 0.9935 (1.0801) 1.7484 (2.4292)

M3 1.1861 1.2481 (0.9033) 1.9162 (1.6936) 1.4902 (1.1241) 1.8803 (1.5438) 1.4199 (1.0033)

M4 0.4673 0.5195 (0.3706) 1.1967 (1.2703) 0.7639 (0.6916) 0.9029 (1.0062) 0.712 (1.2764)

M5 2.7539 8.5089 (2.5804) 3.2726 (1.7542) 6.7155 (2.9400) 3.4708 (1.9075) 22.0763 (21.3347)

M6 2.3628 3.1577 (0.9371) 3.1992 (1.5703) 2.8330 (1.1939) 2.9799 (1.4405) 4.5217 (1.3819)

M7 1.1182 10.5622 (0.3741) 1.4558 (1.0851) 1.2516 (0.7082) 1.4852 (1.0313) 3.1809 (3.8574)

M8 1.2326 3.7176 (0.6908) 1.6459 (1.2467) 1.4515 (0.8559) 1.7113 (1.2717) 11.6473 (4.1182)

M9 0.6766 0.8320 (0.5467) 1.1381 (1.0364) 0.8404 (0.5753) 1.1122 (1.0398) 1.4682 (2.1964)

M10 2.3203 2.8659 (0.7894) 3.0615 (1.4278) 3.0427 (1.0538) 2.8872 (1.3191) 3.8685 (0.8533)

M11 1.3573 6.4858 (0.0188) 1.7697 (1.1089) 1.5068 (0.6908) 1.675 (0.9997) 6.4807 (0.0002)

M12 1.0051 4.2671 (0.5160) 1.5295 (1.1269) 1.1671 (0.6155) 1.3687 (0.9119) 5.2076 (0.1748)

M13 1.7569 10.8771 (0.1257) 2.2131 (1.1394) 1.8851 (0.7855) 2.1091 (1.0592) 10.9275 (0.4629)

M14 1.8510 8.1840 (0.0510) 2.2464 (1.1066) 1.9885 (0.8044) 2.1127 (0.9735) 8.1666 (0.0002)

M15 0.7091 0.8400 (0.1507) 1.3980 (0.9839) 0.9765 (0.5455) 1.0440 (0.6943) 1.0256 (0.0132)

M16 2.1505 7.8356 (0.0502) 2.4498 (0.9670) 2.2858 (0.8196) 2.4396 (0.9824) 7.8191 (0.0002)

M17 3.4817 7.9040 (1.2024) 4.2581 (1.6030) 5.6499 (1.8984) 4.0658 (1.5774) 9.9210 (1.9547)

M18 2.2067 3.5795 (0.4979) 3.0838 (1.3216) 2.9230 (0.8912) 2.7037 (1.2062) 3.8837 (0.5016)

M19 2.3756 3.8709 (0.6246) 2.9164 (1.1040) 2.5375 (0.6532) 2.7516 (0.9851) 9.5571 (4.0343)

M20 3.2890 10.9610 (0.0545) 3.8827 (1.2087) 3.4914 (0.8968) 3.6366 (1.0675) 10.9997 (0.0005)

Table 2.3: Average integrated squared error for different smoothing parameter selectors, MISE (×100), and standard deviations

(×100, in parentheses). Smoothing parameter selectors: ν̂RT (rule of thumb), ν̂AIC
PI (plug–in rule), ν̂LCV (likelihood cross–validation),

ν̂LSCV (least squares cross–validation), ν̂boot (bootstrap). MISE(ν0): benchmark average integrated squared error. Sample size:

n = 100. Models M1–M20 distributed by complexity: M1–M6 (simple models); M7–M10 (two components models); M11–M16

(models with more than two components); M17–M20 (other complex models).
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n = 250 MISE(ν0) MISE(ν̂RT ) MISE(ν̂AIC
PI ) MISE(ν̂LCV ) MISE(ν̂LSCV ) MISE(ν̂boot)

M1 0.0000 0.0034 (0.0096) 0.1440 (0.2684) 0.1534 (0.3053) 0.1587 (0.3194) 0.0001 (0.0001)

M2 0.2768 0.3323 (0.2314) 0.3582 (0.2873) 0.3649 (0.2728) 0.4330 (0.3835) 0.3141 (0.2112)

M3 0.5876 0.6073 (0.4053) 0.7257 (0.5684) 0.7125 (0.5141) 0.8496 (0.6459) 0.6476 (0.4458)

M4 0.2321 0.2438 (0.1565) 0.3951 (0.3391) 0.3491 (0.2559) 0.3781 (0.3580) 0.2420 (0.1539)

M5 1.4468 5.7994 (1.5296) 1.6164 (0.8346) 2.9328 (1.3887) 1.6958 (0.8684) 2.2145 (1.2529)

M6 1.3609 2.1685 (0.4964) 1.5752 (0.6529) 1.5816 (0.6085) 1.5482 (0.6305) 2.5303 (0.7047)

M7 0.5536 10.6636 (0.2268) 0.6165 (0.3616) 0.6095 (0.3033) 0.7019 (0.4228) 0.6041 (0.2849)

M8 0.6398 2.4037 (0.4340) 0.7001 (0.3946) 0.7338 (0.3838) 0.7930 (0.4610) 1.0706 (1.3377)

M9 0.3541 0.4289 (0.2566) 0.4146 (0.2870) 0.4331 (0.2807) 0.5177 (0.4197) 0.4394 (0.2550)

M10 1.3336 2.0175 (0.4318) 1.5544 (0.6039) 2.0287 (0.6732) 1.5464 (0.5979) 2.7877 (0.5087)

M11 0.6765 6.4797 (0.0016) 0.7382 (0.3499) 0.7397 (0.3218) 0.7862 (0.3833) 1.7834 (2.2475)

M12 0.5142 3.9052 (0.4825) 0.5947 (0.3329) 0.5752 (0.2898) 0.6174 (0.3476) 3.2204 (2.2725)

M13 0.8661 10.8967 (0.0924) 0.9432 (0.3843) 0.9178 (0.3611) 0.9840 (0.4258) 1.4211 (1.6912)

M14 0.9124 8.1694 (0.0089) 0.9698 (0.3660) 0.9608 (0.3501) 1.0110 (0.4005) 2.7165 (3.0938)

M15 0.4300 0.8007 (0.1312) 0.6259 (0.2864) 0.5488 (0.2620) 0.5577 (0.2845) 1.0246 (0.026)

M16 1.1045 7.8228 (0.0130) 1.1513 (0.3596) 1.1570 (0.3646) 1.2033 (0.4188) 6.7337 (2.4918)

M17 1.8911 6.6158 (0.7782) 2.1440 (0.8353) 3.2693 (1.2456) 2.0687 (0.7471) 8.5558 (0.7698)

M18 1.1218 2.9481 (0.2920) 1.3367 (0.5989) 1.4394 (0.5904) 1.2852 (0.5241) 3.2811 (0.2608)

M19 1.3044 2.9910 (0.3509) 1.5192 (0.4665) 1.5805 (0.4206) 1.4597 (0.4813) 3.0670 (1.3432)

M20 1.8094 10.9769 (0.0348) 1.9165 (0.4900) 1.9039 (0.4657) 1.9192 (0.4914) 10.9995 (0.0005)

Table 2.4: Average integrated squared error for different smoothing parameter selectors, MISE (×100), and standard deviations

(×100, in parentheses). Smoothing parameter selectors: ν̂RT (rule of thumb), ν̂AIC
PI (plug–in rule), ν̂LCV (likelihood cross–validation),

ν̂LSCV (least squares cross–validation), ν̂boot (bootstrap). MISE(ν0): benchmark average integrated squared error. Sample size:

n = 250. Models M1–M20 distributed by complexity: M1–M6 (simple models); M7–M10 (two components models); M11–M16

(models with more than two components); M17–M20 (other complex models).
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n = 500 MISE(ν0) MISE(ν̂RT ) MISE(ν̂AIC
PI ) MISE(ν̂LCV ) MISE(ν̂LSCV ) MISE(ν̂boot)

M1 0.0000 0.0012 (0.0038) 0.0537 (0.1085) 0.0751 (0.1471) 0.0726 (0.1439) 0.0000 (0.0000)

M2 0.1604 0.1823 (0.1252) 0.1829 (0.1290) 0.2052 (0.1540) 0.2404 (0.2097) 0.1724 (0.1165)

M3 0.3764 0.3842 (0.2462) 0.4130 (0.2870) 0.4245 (0.2775) 0.5006 (0.3461) 0.4004 (0.2665)

M4 0.1435 0.1480 (0.0851) 0.2032 (0.1329) 0.2119 (0.1446) 0.2125 (0.1744) 0.1471 (0.0843)

M5 0.8673 4.2662 (0.9643) 0.9372 (0.4761) 1.5791 (0.7807) 0.9695 (0.4870) 1.0834 (0.5883)

M6 0.8385 1.5981 (0.3096) 0.9169 (0.3413) 0.9722 (0.3721) 0.9171 (0.3355) 1.5791 (0.4490)

M7 0.3318 10.7199 (0.1344) 0.3411 (0.1639) 0.3537 (0.1671) 0.3872 (0.2043) 0.3513 (0.1684)

M8 0.3733 1.6375 (0.2731) 0.3872 (0.1971) 0.4121 (0.2004) 0.4370 (0.2326) 0.4024 (0.1985)

M9 0.2112 0.2551 (0.1442) 0.2285 (0.1339) 0.2492 (0.1553) 0.2860 (0.2085) 0.2419 (0.1398)

M10 0.8309 1.5683 (0.2643) 0.8955 (0.2987) 1.3761 (0.4601) 0.9228 (0.3131) 2.1135 (0.4220)

M11 0.3924 6.4797 (0.0021) 0.4044 (0.1689) 0.4210 (0.1758) 0.4395 (0.1956) 0.4189 (0.1729)

M12 0.3008 3.4879 (0.4202) 0.3174 (0.1451) 0.3317 (0.1635) 0.3546 (0.1875) 0.4480 (0.5568)

M13 0.5299 10.8991 (0.0795) 0.5511 (0.1990) 0.5542 (0.2044) 0.5876 (0.2278) 0.6253 (0.2075)

M14 0.5346 8.1672 (0.0021) 0.5471 (0.1882) 0.5599 (0.1949) 0.5808 (0.2121) 0.5725 (0.1959)

M15 0.2650 0.7602 (0.1150) 0.3349 (0.1826) 0.3229 (0.1545) 0.3277 (0.1650) 1.0076 (0.0968)

M16 0.6461 7.8198 (0.0026) 0.6588 (0.1987) 0.6703 (0.2021) 0.6904 (0.2163) 0.7052 (0.2123)

M17 1.1389 5.6896 (0.5330) 1.2276 (0.4999) 1.9657 (0.7296) 1.1992 (0.4414) 7.6512 (1.1003)

M18 0.6744 2.5206 (0.2028) 0.7232 (0.2923) 0.7969 (0.3014) 0.7370 (0.2780) 2.9546 (0.1814)

M19 0.7965 2.5166 (0.2266) 0.9011 (0.2924) 0.9979 (0.2871) 0.8660 (0.2712) 1.8160 (0.2813)

M20 1.1327 10.9853 (0.0253) 1.1746 (0.2936) 1.1842 (0.2885) 1.1738 (0.2943) 9.9138 (2.9293)

Table 2.5: Average integrated squared error for different smoothing parameter selectors, MISE (×100), and standard deviations

(×100, in parentheses). Smoothing parameter selectors: ν̂RT (rule of thumb), ν̂AIC
PI (plug–in rule), ν̂LCV (likelihood cross–validation),

ν̂LSCV (least squares cross–validation), ν̂boot (bootstrap). MISE(ν0): benchmark average integrated squared error. Sample size:

n = 500. Models M1–M20 distributed by complexity: M1–M6 (simple models); M7–M10 (two components models); M11–M16

(models with more than two components); M17–M20 (other complex models).
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n = 1000 MISE(ν0) MISE(ν̂RT ) MISE(ν̂AIC
PI ) MISE(ν̂LCV ) MISE(ν̂LSCV ) MISE(ν̂boot)

M1 0.0000 0.0003 (0.0011) 0.0216 (0.0418) 0.0378 (0.0826) 0.0387 (0.0828) 0.0000 (0.0000)

M2 0.0955 0.1088 (0.0673) 0.1014 (0.0622) 0.1151 (0.0778) 0.1244 (0.0918) 0.1015 (0.0619)

M3 0.2257 0.2291 (0.1294) 0.2353 (0.1373) 0.2515 (0.1473) 0.2783 (0.1656) 0.2343 (0.1367)

M4 0.0836 0.0854 (0.0474) 0.1047 (0.0610) 0.1225 (0.0792) 0.1145 (0.0906) 0.0850 (0.0472)

M5 0.5001 2.9980 (0.5902) 0.5269 (0.2731) 0.8427 (0.4314) 0.5325 (0.2762) 0.5677 (0.3136)

M6 0.5317 1.2071 (0.1992) 0.5435 (0.1977) 0.6122 (0.2388) 0.5592 (0.1980) 0.9493 (0.2725)

M7 0.1964 10.7433 (0.0836) 0.1992 (0.0902) 0.2101 (0.0965) 0.2252 (0.1105) 0.2036 (0.0931)

M8 0.2245 1.0836 (0.1748) 0.2279 (0.1048) 0.2438 (0.1106) 0.2561 (0.1260) 0.2343 (0.1094)

M9 0.1272 0.1546 (0.0896) 0.1320 (0.0753) 0.1443 (0.0858) 0.1621 (0.1046) 0.1396 (0.0843)

M10 0.5276 1.2004 (0.1777) 0.5425 (0.1865) 0.8809 (0.2732) 0.5612 (0.1932) 1.3528 (0.3940)

M11 0.2312 6.4800 (0.0016) 0.2342 (0.0870) 0.2435 (0.0921) 0.2520 (0.0998) 0.2391 (0.0909)

M12 0.1789 2.9699 (0.3453) 0.1844 (0.0788) 0.1951 (0.0895) 0.2048 (0.0986) 0.1990 (0.0922)

M13 0.3117 10.9019 (0.0604) 0.3190 (0.1053) 0.3237 (0.1095) 0.3372 (0.1160) 0.3448 (0.1127)

M14 0.3144 8.1666 (0.0009) 0.3184 (0.1012) 0.3273 (0.1058) 0.3362 (0.1115) 0.3256 (0.1052)

M15 0.1609 0.7009 (0.0942) 0.1736 (0.0713) 0.1847 (0.0808) 0.1864 (0.0833) 0.8469 (0.2525)

M16 0.3723 7.8192 (0.0011) 0.3761 (0.1100) 0.3843 (0.1137) 0.3903 (0.1156) 0.3894 (0.1147)

M17 0.7022 4.8753 (0.3789) 0.7440 (0.2764) 1.2008 (0.4393) 0.7354 (0.2616) 4.5347 (2.7871)

M18 0.4019 2.0780 (0.1616) 0.4142 (0.1468) 0.4589 (0.1732) 0.4309 (0.1567) 2.1778 (1.0097)

M19 0.4763 2.1306 (0.1383) 0.5302 (0.1841) 0.5805 (0.1865) 0.5024 (0.1595) 1.4249 (0.1528)

M20 0.6786 10.9911 (0.0167) 0.7190 (0.1621) 0.7003 (0.1553) 0.6912 (0.1554) 1.4263 (0.9852)

Table 2.6: Average integrated squared error for different smoothing parameter selectors, MISE (×100), and standard deviations

(×100, in parentheses). Smoothing parameter selectors: ν̂RT (rule of thumb), ν̂AIC
PI (plug–in rule), ν̂LCV (likelihood cross–validation),

ν̂LSCV (least squares cross–validation), ν̂boot (bootstrap). MISE(ν0): benchmark average integrated squared error. Sample size:

n = 1000. Models M1–M20 distributed by complexity: M1–M6 (simple models); M7–M10 (two components models); M11–M16

(models with more than two components); M17–M20 (other complex models).
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As commented in Section 2.2.1, and from what is seen in the results for model M7, one of

the problems of the rule of thumb in the presence of antipodal modes is that it tends to provide

uniform estimates for the circular density, which corresponds to a null concentration parameter

in the von Mises family. A natural question arises: what would happen if a different parametric

family, not including the uniform distribution, is used as a reference? It has been also checked by

simulations, considering the same models as the ones presented here (see Table 2.7), that setting

a wrapped Cauchy as reference density in the minimization of the AMISE error in (2.5) provides

better results in some models such as M5 and M17 which have a highly peaked mode, but far from

the new plug–in proposal. The parameters of the wrapped Cauchy distribution were estimated by

maximum likelihood (see Jammalamadaka and SenGupta, 2001, Section 4.2.1).

n = 100 n = 250 n = 500 n = 1000

M1 0.0024 (0.0616) 0.0001 (0.0001) 0.0000 (0.0000) 0.0000 (0.0000)

M2 0.6562 (0.5120) 0.3243 (0.1854) 0.1864 (0.1066) 0.1069 (0.0551)

M3 1.8990 (1.1691) 0.9149 (0.5097) 0.5567 (0.2869) 0.3339 (0.1533)

M4 0.5942 (0.4208) 0.2854 (0.1725) 0.1753 (0.0952) 0.1012 (0.0527)

M5 3.1003 (1.5813) 1.5552 (0.7661) 0.9045 (0.4327) 0.5081 (0.2508)

M6 2.4522 (1.0591) 1.4330 (0.5265) 0.9219 (0.2932) 0.6249 (0.1839)

M7 9.7027 (2.5315) 10.0167 (2.1393) 10.3725 (1.5812) 10.4199 (1.4425)

M8 3.3625 (1.1122) 2.0125 (0.4197) 1.3394 (0.2475) 0.8594 (0.1479)

M9 0.7981 (0.4916) 0.3910 (0.2280) 0.2308 (0.1236) 0.1359 (0.0726)

M10 2.4127 (0.9716) 1.4253 (0.4726) 0.9691 (0.2650) 0.6679 (0.1716)

M11 6.4794 (0.0326) 6.4805 (0.0033) 6.4806 (0.0000) 6.4805 (0.0000)

M12 5.0614 (0.5999) 5.0203 (0.6724) 4.6847 (0.9792) 2.7246 (1.0780)

M13 10.8255 (0.6926) 10.9218 (0.3012) 10.9275 (0.2990) 10.9331 (0.1997)

M14 8.1678 (0.0307) 8.1664 (0.0001) 8.1664 (0.0000) 8.1664 (0.0000)

M15 1.0220 (0.0595) 1.0011 (0.1044) 0.9477 (0.1763) 0.7012 (0.2409)

M16 7.8199 (0.0203) 7.8191 (0.0037) 7.8189 (0.0000) 7.8189 (0.0000)

M17 4.7801 (1.5212) 3.3422 (0.9723) 2.4902 (0.6261) 1.8998 (0.4132)

M18 2.9987 (0.6180) 2.0874 (0.3707) 1.5399 (0.2531) 1.0971 (0.1864)

M19 3.2194 (0.9824) 2.3438 (0.4143) 1.9523 (0.2441) 1.6371 (0.1522)

M20 10.9687 (0.2115) 10.9953 (0.0662) 10.9995 (0.0004) 10.9988 (0.0215)

Table 2.7: Average integrated squared error for the smoothing parameter selector obtained from

the minimization of the AMISE error in (2.5) setting a wrapped Cauchy as reference density,

and standard deviations (×100, in parentheses). Sample size: n = 100, 250, 500 and 1000. Models

M1–M20 distributed by complexity: M1–M6 (simple models); M7–M10 (two components models);

M11–M16 (models with more than two components); M17–M20 (other complex models).

2.2.3 Real data analysis

In this section, the performance of the circular kernel density estimator with different smoothing

parameter selectors is illustrated. For that purpose, the classical datasets introduced in Section 1.3

will be used, since they present asymmetric, symmetric unimodal and bimodal distributions, re-



44 Chapter 2. Nonparametric curve estimation for circular data

spectively. In addition, an application on the dataset concerning changes in temperature cycles

will be also provided.

Example 1. Cross–beds azimuths (I). A circular kernel density estimation has been com-

puted for the dataset of azimuths of cross–beds in the Kamthi river, introduced in Section 1.3,

which contains 580 azimuths of layers lying oblique to the principal accumulation surface along the

river. Four different smothing parameter selectors: rule of thumb, ν̂RT , likelihood cross–validation,

ν̂LCV , plug–in rule, ν̂PI and bootstrap, ν̂boot, have been considered. The estimator with the least

squares cross–validation selector is not shown because, in this case, it behaves as the likelihood

cross–validation selector. In Figure 2.3, it can be seen that the estimators with the rule of thumb,

the plug–in and bootstrap smoothing parameters perform similarly, fitting a unimodal distribu-

tion with negative (anticlockwise) asymmetry. However, the likelihood cross–validation criterion

provides a too large smoothing parameter, resulting in an undersmoothed fitted density. In this

case, the number of selected mixtures by AIC was M = 2.
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Figure 2.3: Linear (left panel) and circular (right panel) representation of the circular kernel

density estimators for the azimuths. Solid line: plug–in selector, ν̂AIC
PI . Dashed line: likelihood

cross–validation rule, ν̂LCV . Dotted line: rule of thumb, ν̂RT . Dotted–dashed line: bootstrap

selector, ν̂boot.

Example 2. Cross–beds (II). Now the circular kernel density estimator is applied to the

dataset of cross–beds measurements from Himalayan molasse in Pakistan described in Section 1.3.

Although in the same practical situation as in Example 1, this dataset collects just 104 measure-

ments. The circular kernel density estimator has been computed using the different smoothing

parameter selectors. In Figure 2.4, it can be seen that the rule of thumb, likelihood cross–validation

and plug–in selectors provide similar fitted curves. In this case, ν̂LSCV provides also a similar re-

sult (not shown). However, the bootstrap method behaves poorly, providing a uniform estimate.

As noted in the previous section, this flat estimate for the underlying distribution is due to the

fact that a local minimum for (2.12) does not exist for this particular sample.
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Figure 2.4: Linear (left panel) and circular (right panel) representation of the circular kernel den-

sity estimators for the cross–beds data. Solid line: plug–in selector, ν̂AIC
PI . Dashed line: likelihood

cross–validation rule, ν̂LCV . Dotted line: rule of thumb, ν̂RT . Dot-dashed line: bootstrap selector,

ν̂boot.

Example 3. Dragonflies orientation. The circular kernel density estimator and the smooth-

ing parameter selection methods are illustrated with the classical data of orientation of 214 drag-

onflies with respect to the sun’s azimuth introduced in Section 1.3. As it can be seen already

from the circular plot in Figure 1.14, this is a clear example of bimodal circular distribution. In a

situation like this one (opposite modes), the rule of thumb behaves quite poorly, as shown in Fig-

ure 2.5. Likelihood cross–validation, plug–in and bootstrap selectors provide similar fitted curves,

showing two modes. The AIC criterion selects M = 4 mixtures for the reference distribution.
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Figure 2.5: Linear (left panel) and circular (right panel) representation of the circular kernel

density estimators for the dragonflies orientations data. Solid line: plug–in selector, ν̂AIC
PI . Dashed

line: likelihood cross–validation rule, ν̂LCV . Dotted line: rule of thumb, ν̂RT . Dotted–dashed line:

bootstrap selector, ν̂boot.

Example 4. Temperature cycle changes. Finally, the circular kernel density estimator is

applied to explore the distribution of changes in cycles of temperatures at ground level in Monte

Alvear. The results, using different smoothing parameter selectors, are shown in Figure 2.6. The

rule of thumb (ν̂RT ) and the bootstrap method (ν̂boot) provide an oversmoothed estimate, close
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to the circular uniform distribution. However, both the plug–in rule and the likelihood cross–

validation rule provide similar estimates, identifying a mode around 11 a.m. which indicates that

the cycle changes occurs mainly at midday hours. This mode corresponds to the temperature

changes from negative to positive since they are more concentrated around the midday whereas

the changes from positive to negative occur mainly during the other hours of the day, as it can

be observed in Figure 1.9. The mode can be seen in the linear representation (left panel) but, in

the circular representation it is almost imperceptible. So, a question arises: is this mode really

significant? In Chapter 3, this question will be answered.
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Figure 2.6: Linear (left panel) and circular (right panel) representation of the circular kernel

density estimators for the dragonflies orientations data. Solid line: plug–in selector, ν̂AIC
PI . Dashed

line: likelihood cross–validation rule, ν̂LCV . Dotted line: rule of thumb, ν̂RT . Dotted–dashed line:

bootstrap selector, ν̂boot.

2.3 Nonparametric circular–linear regression estimation

In this section nonparametric regression estimators for a circular explanatory variable and a lin-

ear response will be studied. Two types of nonparametric smoothers will be considered: kernel

estimators introduced by Di Marzio et al. (2009) and periodic smoothing splines introduced by

Cogburn and Davis (1974).

2.3.1 Kernel smoothers

Let {(Θi, Yi), i = 1, . . . , n} denote a random sample from a circular random variable Θ and a

linear random variable Y , respectively. The relation between these variables may be modelled by

Yi = f(Θi) + σ(Θi)εi, i = 1, . . . , n (2.13)

where f denotes the regression function, σ2(·) is the conditional variance of Y given Θ and εi are

real–valued random variables with zero mean and unit variance. From now on, it is asumed that

the error is uncorrelated with the covariate. In order to obtain a smooth nonparametric estimator
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for the regression function f , a local polynomial fit could be applied, similarly to Fan and Gijbels

(1996) for linear random variables. Based on this idea, Di Marzio et al. (2009) considers

β0 + β1 sin(· − θ),

providing a local trigonometric polynomial fit. The parameters β0 and β1 can be estimated by a

local least squares procedure:

(β̂0, β̂1) = argmin
(a,b)

n∑

i=1

Kν(θ −Θi) [Yi − (a+ b sin(θ −Θi))]
2 , (2.14)

where Kν denotes the density of a vM(0, ν). The circular Local Linear estimator for f(θ) is given

by f̂CLL(θ; ν) = β̂0 and the estimator of its derivative f ′(θ) is given by f̂ ′
CLL(θ; ν) = β̂1.

To obtain the estimators β̂0 and β̂1, one may proceed as follows. Consider the matrix

ΘΘΘ =




1 sin(Θ1 − θ)
...

...

1 sin(Θn − θ)


 ,

YYY = (Y1, . . . , Yn)
t the response vector, W = diag {Kν(θ −Θ1), . . . ,Kν(θ −Θn)} a diagonal weight

matrix and βββ = (β0, β1)
t the parameter vector (where t denotes the transpose vector). Then, the

minimization problem (2.14) can be written as follows:

β̂̂β̂β = argmin
β

(YYY −ΘΘΘβββ)tW (YYY −ΘΘΘβββ).

Assuming the non–singularity of ΘΘΘtWΘΘΘ, standard weighted least squares theory yields β̂̂β̂β =

(ΘΘΘtWΘΘΘ)−1ΘΘΘtWYYY . In particular, f̂CLL(θ; ν) = e1e1e1
t(ΘΘΘtWΘΘΘ)−1ΘΘΘtWYYY where e1e1e1 = (1, 0)t.

Since the Local Linear estimator is a linear estimator, the value of the estimator at the design

points, f̂̂f̂fCLL, or at any grid of locations θθθ = (θ1, . . . , θN ) denoted by f̂̂f̂fCLL,θθθ, can be obtained in

the following way, respectively:

f̂̂f̂fCLL = LνYYY

f̂̂f̂fCLL,θθθ = Lν,θθθYYY

where Lν is an (n× n) matrix (the hat matrix) and Lν,θθθ is an (N × n) matrix. Both matrices are

defined in Appendix B.

If the regression function at θ is locally approximated by a constant instead of using a trigono-

metric polynomial, the Nadaraya–Watson estimator for circular–linear data is obtained:

f̂CNW (θ; ν) =

∑n
i=1 YiKν(θ −Θi)∑n
i=1Kν(θ −Θi)

. (2.15)

Nadaraya–Watson estimator is also a linear smoother and so, it may be written using matrix

notation.
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Smoothing parameter selection

The concentration parameter ν in the kernel function Kν(·) controls the degree of smoothing

of Nadaraya–Watson and Local Linear estimators. Large values of ν lead to undersmoothed

estimations of the regression curve, tending to an interpolation of the data. On the other hand,

small values of ν result in a global averaging, oversmoothing the local features in the data.

As for density estimation, choosing the smoothing parameter is of crucial importance in regres-

sion estimation. A simple and widely used procedure for smoothing parameter selection in the

linear regression setting is least squares cross–validation, which may be extended to the case of

circular kernel regression. This method chooses ν as the value minimizing

CV (ν) =
1

n

n∑

i=1

[
Yi − f̂−i(Θi; ν)

]2
, (2.16)

where f̂−i is the leave-one-out estimator for the regression function. If the Local Linear estimator

is considered then f̂−i ≡ f̂−i
CLL whereas f̂−i ≡ f̂−i

CNW for the Nadaraya–Watson estimator.

2.3.2 Periodic smoothing splines

Periodic smoothing splines, introduced by Cogburn and Davis (1974), are a variant of the usual

smoothing spline estimators. Such estimators are useful when the mean response function is

assumed to be smooth and periodic on an interval. When the covariate is periodic with period

T = 2π, periodic smoothing splines offer an alternative to circular kernel smoothers described in

the previous section. Since results that will be shown along this section are valid for any periodic

covariate, the independent variable will be denoted by X (instead of Θ).

Let {(Xi, Yi), i = 1, . . . , n} ∈ [0, T )×R be a random sample from (X,Y ) where X is a periodic

random variable with period T (the distribution of (X + T ) coincides with the distribution of X)

and Y is a linear random variable. Assume that data are sorted across the covariate and there is

no repeated data. Consider again the regression model

Yi = f(Xi) + σ(Xi)εi, i = 1, . . . , n, (2.17)

where f is an unknown regression function that must be estimated (it is only known that f is a

smooth periodic function with period T ), σ2(·) is the conditional variance of Y given X and εi

are real–valued random variables with zero mean and unit variance.

The goal of smoothing spline estimators for the regression function is to fit a dataset using a

function that reflects the key features of the data but at the same time, retains some degree of

smoothness. A natural measure of smoothness associated with a function g is
∫
g′′(x)2dx while a

standard measure of goodness of fit to the data is the residual sum of squares. Thus, an overall

assessment of the quality of a candidate estimator g is provided by the penalized least squares
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criterion:

S(g) =
n∑

i=1

[Yi − g(Xi)]
2 + λ

∫ T

0

[
g′′(x)

]2
dx, (2.18)

for some λ > 0. The result of minimizing (2.18) over the class of twice continuously differentiable

periodic functions with period T is the periodic smoothing splines estimator, f̂λ, of the regression

function f .
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Figure 2.7: Fitted periodic smoothing splines (gray curves) with λ = 0.001 (left panel) and

λ = 100 (right panel) from 50 simulated random samples of size n = 250 from model (2.17)

where the design points are equally spaced in the interval [0, 2π), f(x) = sin(x) and the errors are

normally distributed errors with variance σ2 = 0.25.

The periodic smoothing spline estimator, f̂λ, also depends on a smoothing parameter λ which

controls the degree of smoothing of the estimator. When λ is large, a premium is being placed on

smoothness and potential estimators with large second derivatives are penalized. Conversely, a

small value of λ corresponds to more emphasis on goodness of fit, with λ = 0 giving an estimator

that interpolates the data, i.e., small values of λ tend to provide undersmoothed estimators. The

effect of λ can be seen in Figure 2.7.

It will be shown that, for λ > 0, the function f̂λ that minimizes S(g) in (2.18) is neccesarily

a periodic cubic spline on [X1, Xn+1] with knots at sampling points Xi, i = 1, . . . , (n+ 1), where

Xn+1 = X1+T . This considerably simplifies the problem of finding f̂λ since the space of periodic

cubic splines can be parametrized. So, first of all, the definition of a periodic cubic spline will be

given.

Let t1, . . . , tm+1 be (m + 1) (m ≥ 2) real numbers with t1 < t2 < ... < tm+1. A cubic

spline on [t1, tm+1] with knots at t1, . . . , tm+1, is a function s that coincides with a third–order

polynomial si on each subinterval [ti, ti+1], i = 1, . . . ,m, and such that s ∈ C2 [t1, tm+1], where

C2 [t1, tm+1] denotes the space of all functions on [t1, tm+1] that have continuous first and second

order derivatives. In other words, s is a cubic spline on [t1, tm+1] if, for each i = 1, . . . ,m, there
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exist real numbers ai, bi, ci, di (the “spline coefficients” of s) such that, for every t in [ti, ti+1],

s(t) = si(t) = ai + bi(t− ti) + ci(t− ti)
2 + di(t− ti)

3, i = 1, . . . ,m.

Furthermore, the continuity of s, s′ and s′′ on [t1, tm+1] implies that at each interior knot ti, with

i = 2, . . . ,m,

si−1(ti) = si(ti); s′i−1(ti) = s′i(ti); s′′i−1(ti) = s′′i (ti).

The cubic spline s is said to be periodic, with period T = tm+1 − t1, if it satisfies the following

additional conditions:

s(tm+1) = s(t1); s′(tm+1) = s′(t1); s′′(tm+1) = s′′(t1).

For the particular case of a spline on the circle, t1 and tm+1 can be taken as 0 and 2π respectively.

In order to prove that the solution of (2.18) is a periodic cubic spline, let g ∈ C2[X1, Xn+1]

be any periodic curve in [X1, Xn+1] that is not a periodic cubic spline with knots at the Xi,

i = 1, . . . , (n + 1). Hence, by Theorem 3.24 in Nürnberger (1989), there exists a unique periodic

spline, sg, that interpolates the values {Xi, g(Xi)} for i = 1, . . . , (n + 1). Since by definition

sg(Xi) = g(Xi) for all i, it follows that
∑n

i=1(Yi − sg(Xi))
2 =

∑n
i=1(Yi − g(Xi))

2. Because of

the optimality properties of the periodic cubic spline interpolant (see Nürnberger, 1989, Theorem

3.25),
∫ Xn+1

X1
(s′′g)

2 <
∫ Xn+1

X1
(g′′)2, and hence, for λ > 0, S(sg) < S(g). This means that, unless

g itself is a periodic cubic spline (in which case the equality holds in the previous inequalites), a

periodic cubic spline which attains a smaller values of the penalized sum of squares can be found.

Therefore, it follows that the minimizer of (2.18), f̂λ, must be a periodic cubic spline.

Since f̂λ is a periodic cubic spline, the problem of minimizing the penalized sum of squares

(2.18) over the class of twice continuosly differentiable periodic functions with period T reduces to

minimize (2.18) over a finite dimensional class of functions, the periodic cubic splines with knots

at Xi.

Now, an explicit expression for the periodic smoothing spline estimator f̂λ will be obtained.

Let g be a periodic cubic spline on [X1, Xn+1] with knots at Xi, i = 1, . . . , n + 1. Denoting

gi = g(Xi) and γi = g′′(Xi) i = 1, . . . , n, the conditions that the spline must be continuous to

second derivative at each knot, and that g(X1) must match g(Xn+1), up to second derivative, are

equivalent to

Rγγγ = Qggg, (2.19)

where γγγ = (γ1, . . . , γn)
t and ggg = (g1, . . . , gn)

t and the matrices R and Q, which are given in terms

of the distances betweeen succesive knots. The specific expressions of matrices R and Q are derived

in Appendix C. These matrices coincide with matrices B̃ and D̃ in Wood (2006, pp. 150–151).

The roughness penalty term can be expressed as

∫ T

0
g′′(x)2dx =

∫ Xn+1

X1

g′′(x)2dx = gggQR−1Qggg,
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as it can be seen in Appendix C or Wood (2006, p. 151).

Hence, the penalized sum squares (2.18) can be rewritten as

S(g) = (YYY − ggg)t(YYY − ggg) + λgggtKggg

where K = QR−1Q.

The necessary condition dS
dgi

= 0, i = 1, . . . , n for a minimum of the above expression leads to

a linear system

(In + λK)ggg = YYY , (2.20)

where In denotes the identity matrix of dimension n. Since λK is non–negative definite, the

matrix (In + λK) is strictly positive definite. Thus, it follows that (2.18) has a unique minimum

given by the solution of (2.20). Therefore, the periodic cubic spline estimator f̂λ evaluated in the

sample points, f̂̂f̂fλ = (f̂λ(X1), . . . , f̂λ(Xn))
t, is given by

f̂̂f̂fλ = (In + λK)−1YYY = AλYYY , (2.21)

where Aλ = (In + λK)−1 is the hat matrix. Note that the smoothing spline estimator is also a

linear smoother.

Following Green and Silverman (1994, pp. 22–23), the value of the estimator and its derivative

can be obtained for any point x ∈ [X1, Xn+1). Let xxx = (x1, . . . , xN )t be a grid of locations with

xi ∈ [X1, Xn+1). Then, by the computations done in Appendix C and bearing in mind equations

(2.19) and (2.21), it holds that

f̂̂f̂fλ,xxx =
[
C −DR−1Q

]
f̂̂f̂fλ = MAλYYY , (2.22)

f̂̂f̂f ′
λ,xxx =

[
C̃ − D̃R−1Q

]
f̂̂f̂fλ = M̃AλYYY , (2.23)

where f̂̂f̂fλ,xxx = (f̂λ(x1), . . . , f̂λ(xN ))t and f̂ ′̂f ′̂f ′
λ,xxx = (f̂ ′

λ(x1), . . . , f̂
′
λ(xN ))t. Matrices C, D, C̃ and D̃

are defined as in Appendix C.

Weighted smoothing

When there are ties among the original design points, i.e., at the point Xi, independent observa-

tions Yij , j = 1, . . . ,mi are taken all with mean g(Xi) then, the penalized sum of squares (2.18)

is given by
n∑

i=1

mi∑

j=1

(Yij − g(Xi))
2 + λ

∫ T

0

[
g′′(x)

]2
dx. (2.24)

The problem of minimizing (2.24) is shown to be equivalent to minimizing the penalized

weighted sum of squares

n∑

i=1

mi(Y i − g(Xi))
2 + λ

∫ T

0

[
g′′(x)

]2
dx
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where Y i is the average of the observations at Xi. This is a particular case of weighted smoothing

where the square residuals (Yij − g(Xi))
2 are weighted by the number of observations at Xi, mi.

Suppose that w1, . . . , wn are strictly positive weights such that
∑n

i=1wi = n, each wi associated

with (Xi, Yi), i = 1, . . . , n, respectively. In this case, the estimator of f , namely f̂W
λ , is obtained

from the minimization of the penalized weighted sum of squares

SW (g) =
n∑

i=1

wi [Yi − g(Xi)]
2 + λ

∫ T

0

[
g′′(x)

]2
dx.

It can be shown that the penalized weighted sum of squares SW (g) is uniquely minimized over

the class of twice continuously differentiable periodic functions with period T by the periodic cubic

spline with knots at the desing points Xi given by

f̂̂f̂fW
λ = (W + λK)−1WYYY = AW

λ YYY ,

with AW
λ = (W +λK)−1W where W is a diagonal matrix with diagonal elements wi, i = 1, . . . , n.

The proof is exactly parallel to the argument set out before, replacing the residual sum of squares

by the weighted residual sum of squares. In order to compute the value of the estimator and its

derivative in xxx, the matrix Aλ in equations (2.22) and (2.23) will be replaced by the matrix AW
λ .

Binning

For handling large datasets, unequally spaced designs and/or datasets with repeated measures,

the binned implementation may be used. The key idea of binned implementation is to reduce

the number of evaluations of the estimator, based on the fact that many of these evaluations are

nearly the same.

Binning consists in dividing the entire range of data points into some equally spaced bins and

distributing data into bins. Simple binning and linear binning are described in Fan and Marron

(1994) for linear data. These procedures can be easily adapted to circular data, taking into

account that the distance between observations θ1 and θ2 from a circular variable with period T

is computed as min {|θ1 − θ2|, T − |θ1 − θ2|}.
Let t1 < . . . < tm be m points equally spaced on [0, T ) such that tj = (j−1)∆ for j = 1, . . . ,m

where ∆ = T/m. These points are known as bin centers.

Simple binning consists in replacing each Xi by the nearest bin center tj . Hence, the weight

that observation Xi (i = 1, . . . , n) gives to the grid point tj (j = 1, . . . ,m) is

nsimple
i,j = I{min{|Xi−tj |,T−|Xi−tj |}<∆/2},

where I denotes the indicator function.

The idea behind linear binning is to split the unit mass of each data observation between

the two closest bin centers. The fraction assigned to each side is taken to be proportional to the
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distance from Xi to the nearest bin center on the opposite side. Hence, the weight that observation

Xi (i = 1, . . . , n) gives to the grid point tj (j = 1, . . . ,m) is

nlinear
i,j =

(
1− min {|Xi − tj |, T − |Xi − tj |}

∆

)

+

,

where the subscript + denotes the positive part.

Thus, the original data {(Xi, Yi), i = 1, . . . , n} are summarized by the binned data

{
(tj , Yj , nj), j = 1, . . . ,m

}
,

where Yj =
∑n

i=1 ni,jYi/nj being nj =
∑n

i=1 ni,j and ni,j corresponds to nsimple
i,j for simple binning

and to nlinear
i,j for linear binning.

Once the binned data are computed, the periodic smoothing spline will be calculated as be-

fore, but applied to the data
{
(tj , Yj), j = 1, . . . ,m

}
with weights nj . In this case, the weighted

formulation is required.

Smoothing parameter selection

As noted before, the periodic smoothing spline estimator depends on the smoothing parameter λ.

There are several methods for selecting a value for λ such as the cross–validation method. This

method selects the value of λ ≥ 0 that minimizes the cross–validation function

CV (λ) =
1

n

n∑

i=1

(
Yi − f̂−i

λ (Xi))
)2

or

CV (λ) =
n∑

i=1

wi

(
Yi − (f̂W

λ )−i(Xi)
)2

for the weighted case (see, e.g., Green and Silverman, 1994) or when a binned implementation

is used. Here, f̂−i
λ and (f̂W

λ )−i denote the periodic smoothing spline estimator computed after

removing the observation (Xi, Yi) from the data.

2.3.3 Simulation study

In this section, the performance of kernel and periodic smoothing spline estimators for circular–

linear regression will be studied through a simulation study. For that purpose, a variety of scenarios

have been simulated, combining two sampling designs and four regression models, with different

degrees of complexity. Specifically, for the circular covariate, two sampling schemes have been

considered:

• Design 1. Θ1, . . . ,Θn are equally spaced in the interval [0, 2π).
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• Design 2. Θ1, . . . ,Θn are the quantiles of a vM(π, 1).

Design 1 corresponds to a fixed design setting, whereas Design 2 provides a covariate distribution

with a mode at π.

The errors εi in (2.13) and (2.17) are generated independently from a normal distribution with

zero mean and variance 0.5. Samples of size n = 50, 250 and 500 have been generated according

to model (2.13) with four different regression functions:

• Model 1. f1(θ) = sin(θ).

• Model 2. f2(θ) = cos(θ).

• Model 3. f3(θ) = sin
(
3
2

(
θ − π

2

))
+ 2

√
2

3 cos
(
θ
3

)
.

• Model 4. f4(θ) = sin(θ − 1.2π) + 3e
−10

(

15
(θ−π)
2π

)2

.

Models 1 and 2 represent simple sinusoidal trends in the circle and Models 3 and 4 represent

more complex trend structures, as shown in Figure 2.8.
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Figure 2.8: Linear representation of trends for regression model (2.13). Left panel: Model 1 (solid

line) and Model 2 (dashed line). Right panel: Model 3 (solid line) and Model 4 (dashed line).

For checking the global performance of each estimator for f , the integrated squared error ISE

(defined as in (2.8)) is computed. For all the estimators, smoothing parameters are selected by

cross–validation. Table 2.8 shows the average ISE out of 1000 replicates. From these results,

it is observed that Nadaraya–Watson and Local Linear estimators perform similarly for all the

regression models considered and for both designs whereas, in general, the periodic smoothing

spline estimator provide better results in all the scenarios. It can be seen that results for Models

1 and 2 are very similar and the errors for Model 4, which is the most complicated model, are

larger. Moreover, all the estimators provide better results for Design 1. As it was expected, the

performance of the estimators improves when the sample size is increased.
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Model n f̂CNW f̂CLL f̂λ f̂CNW f̂CLL f̂λ

1 50 0.3796 (0.2614) 0.3761 (0.2631) 0.2763 (0.2361) 0.5472 (0.4454) 0.5413 (0.4858) 0.3432 (0.3243)

250 0.0901 (0.0573) 0.0898 (0.0574) 0.0605 (0.0467) 0.1620 (0.1128) 0.1517 (0.1331) 0.0870 (0.0783)

500 0.0504 (0.0293) 0.0503 (0.0292) 0.0328 (0.0243) 0.0874 (0.0544) 0.0791 (0.0587) 0.0452 (0.0357)

2 50 0.4219 (0.3667) 0.4244 (0.3654) 0.2704 (0.2056) 0.5977 (0.4370) 0.6177 (0.4950) 0.3955 (0.3507)

250 0.0910 (0.0593) 0.0913 (0.0592) 0.0617 (0.0462) 0.1778 (0.1150) 0.1487 (0.1271) 0.0948 (0.0827)

500 0.0521 (0.0303) 0.0522 (0.0303) 0.0345 (0.0249) 0.0941 (0.0519) 0.0769 (0.0518) 0.0492 (0.0375)

3 50 0.4992 (0.3553) 0.5014 (0.3551) 0.4246 (0.2644) 0.7352 (0.4496) 0.6819 (0.4704) 0.6120 (0.3899)

250 0.1198 (0.0588) 0.1200 (0.0590) 0.1017 (0.0530) 0.2163 (0.1252) 0.2027 (0.1385) 0.1674 (0.1028)

500 0.0696 (0.0318) 0.0696 (0.0318) 0.0584 (0.0292) 0.1196 (0.0569) 0.1105 (0.0554) 0.1062 (0.0582)

4 50 1.2275 (0.3123) 1.2279 (0.3122) 1.3265 (0.2792) 1.5460 (0.4955) 1.5028 (0.5114) 1.3874 (0.4564)

250 0.3581 (0.0821) 0.3582 (0.0822) 0.3815 (0.0888) 0.5837 (0.1747) 0.6441 (0.2059) 0.5032 (0.1922)

500 0.2143 (0.0437) 0.2144 (0.0437) 0.2168 (0.0483) 0.3139 (0.0792) 0.3249 (0.0837) 0.2796 (0.0882)

Table 2.8: Average ISE for different regression estimators and sampling designs. Design 1 (left

part) and Design 2 (right part). f̂CNW : Nadaraya–Watson estimator; f̂CLL: Local Linear estima-

tor; f̂λ: Periodic smoothing spline estimator.

2.3.4 Real data analysis

Example. Exploring wind paterns. In order to explore the relation between the wind speed

and the wind direction during winter season in the Atlantic coast of Galicia, the Nadaraya–Watson

and Local Linear estimators and the periodic smoothing spline estimator are applied to the data

of wind speed and wind direction introduced in Section 1.3. In Figure 2.9, the circular and linear

representation of Nadaraya–Watson, Local Linear and periodic smoothing spline estimators for the

real data are shown. Smoothing parameter selection is done using the cross–validation criterion.
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Figure 2.9: Circular (left panel) and linear (right panel) representations of the Nadaraya–Watson

estimator (dashed curve), Local linear estimator (solid curve) and periodic smoothing spline es-

timator (dotted curve) with cross–validation smoothing parameter for wind speed (m/s) with

respect to wind direction.
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From these plots, it is observed that wind speed is slightly higher for winds coming from NE

ans SW whereas the valley around SE indicates that winds coming from S are calm. Since the

modes around NE and SW are not very marked, one may think that there is no effect of the wind

direction over the wind speed. In Chapter 3, a new method for the exploratory analysis of circular

data will allow to assess if the effect of wind direction over wind speed is significant.



Chapter 3

Assessment of significant features in

nonparametric curve estimates

3.1 Introduction

Both for density and regression estimation, the smoothing parameter controls the global appear-

ance of the estimator and its dependence on the sample, in such a way that an unsuitable choice

of this value may provide a misleading estimate of the density or the regression curve. Hence,

the assessment of the statistical significance of the observed features through the smoothed curve

should be required for not compromising the extracted conclusions. An approach to circumvent

the choice of the smoothing parameter, and still be able to assess global structure features in

the curve, is given by the SiZer (SIgnificant ZERo crossings of derivatives) method developed by

Chaudhuri and Marron (1999) for the analysis of linear data.

The original SiZer is a visualization method based on nonparametric curve estimates which

addresses the question of which features observed in a smoothed curve are really present, or rep-

resent an important underlying structure, and not simply artifacts of the sampling noise from a

scale–space perspective. In the nonparametric curve estimation context, the scale–space frame-

work is given by a family of smoothers indexed by the smoothing parameter. SiZer considers

a wide range of smoothing values, which avoids the problem of smoothing parameter selection,

whilst peaks and troughs are identified by finding the regions of significant gradient (zero crossings

of the derivative), presenting this information in a simple visual way by the SiZer map.

SiZer was originally designed for kernel smoothers and adapted later to smoothing splines

estimators for the regression setting by Marron and Zhang (2005). Several extensions of SiZer

have been proposed in the statistical literature, making it possible to transfer this graphical tool to

a variety of contexts such as local likelihood (Li and Marron, 2005), dependent data (Rondonotti

et al., 2007) and survival data (Marron and de Uña Álvarez, 2004), among others. Moreover, SiZer

for linear variables has been successfully applied in many different scientific fields. For example,

57
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Rudge (2008) used this method to find peaks in geochemical distributions; Sonderegger et al.

(2009) considered SiZer to detect threshold in ecological data and Rydén (2010) applied SiZer to

determine a possible increasing trend in hurricane activity in the North Atlantic.

In the special setting of circular data, both for density and regression estimation, the adaptation

of SiZer ideas must take into account the circular nature of the variable. This particular scenario

involves, specifically: (1) the assessment of the variability in the derivatives of the estimators,

both for density and regression, through the computation of standard deviations and appropriate

quantiles; (2) the development of a suitable visualization device to facilitate the practitioner the

output interpretation. Bearing these premises in mind, the SiZer ideas can be fitted to the circular

data setting yielding the CircSiZer plot presented in this dissertation.

This chapter is organized as follows. Section 3.2 gives a short introduction to the CircSiZer.

Section 3.3 is devoted to the development of the CircSiZer method, both for density and regression.

The construction of the CircSiZer map and its interpretation is given in Section 3.4. In Section 3.5,

the performance of the CircSiZer is investigated with simulated examples. In Section 3.6, CircSiZer

is used for exploring the crack distribution in cemented femoral components and describing the

wind direction and the relation between wind speed and wind direction in the Galician coast

during winter season. The contents of this chapter can be found in Oliveira et al. (2013a,b,f).

3.2 CircSiZer: SiZer for circular data

Before going into detail, the idea of CircSiZer will be illustrated with a simulated dataset in the

density setting. Consider a random sample of size 250 from model M10 (see Appendix A and

Figure 2.2). Figure 3.1 (left panel) shows the family of smoothers (gray curves) for a wide range

of values of the smoothing parameter. Some estimates are very different from the theoretical

curve (black line) whereas other estimates show the same structure but, none of them is very good

at attaining the goal of recovering the original density. However, instead of trying to recover the

original density, the goal of CircSiZer is to determine which observed features in the gray curves are

important underlying structure and which are sampling artifacts. For that purpose, since features

like peaks and valleys of a curve can be characterized in terms of zero crossings of its derivative,

CircSiZer focuses on finding regions where the gray curves are significantly increasing/decreasing

and displaying this information in a color map as the one shown in Figure 3.1 (right panel).

Blue color indicates that the slope of the curve is significantly increasing, red color indicates that

it is significantly decreasing, purple color indicates that the slope is not significantly different from

zero and gray color is used to indicate that data are too sparse for determining the behaviour

of the curve. Thus, taking the sense marked by the arrow as the positive sense of rotation, a

significant peak can be identified when a blue region is followed by a red region, and a significant

trough by the reverse, i.e., when a red region is followed by a blue region. Since each ring in the

CircSiZer map corresponds to each value of the smoothing parameter in the family of gray curves,
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in the CircSiZer displayed in Figure 3.1 it can be seen that the two modes of the model M10 are

correctly identified for large values of the smoothing parameter (small rings in the CircSiZer map).
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Figure 3.1: Left panel: family of kernel density estimates (gray curves) indexed by the smoothing

parameter for a sample of 250 data (points over the circle) from model M10 (solid line). Right

panel: CircSiZer map for kernel density estimator. For reading CircSiZer, take counterclock-

wise sense of rotation (marked by the arrow in the upper–right corner). Values of ν, which are

transformed to − log10 scale, are indicated along the radius.

In the next sections, the development and construction of the CircSiZer map is given in detail.

Along these sections, f will denote both the density and the regression function. The estimator

of f will be denoted by f̂(θ; τ) where τ is the smoothing parameter. Note that τ will correspond

with ν if kernel smoothers are considered and with λ for spline smoothers. Thus, the effect of

the smooting parameter τ will depend on the kind of smoother since the effect of ν and λ is not

the same. While small (large) values of ν will provide oversmoothed (undersmoothed) estimators,

small (large) values of λ will provide undersmoothed (oversmoothed) estimators.

3.3 Development of CircSiZer

As noted before, features like peaks and valleys of a smooth curve can be characterized in terms of

zero crossings of the derivative. Hence, the significance of such features can be judged from statisti-

cal significance of zero crossings or equivalenty by the sign changes of derivatives. With CircSiZer,

significance is based on confidence intervals for the derivative of the smoothed underlying curve

(density or regression).

The usual inferential approach in nonparametric statistics places the spotlight on the true

underlying curve f by doing inference on it, in particular, based on confidence bands. A crucial

problem in nonparametric estimation is that f(θ; τ) ≡ E(f̂(θ; τ)) is not necessarily equal to f(θ),

due to the inherent bias of smooth estimates. In the particular case of kernel estimators, the bias

is large specially for small values of τ (see Figure 3.2, left panel). Moreover, the smoothed curve

or the expected curve for a certain τ , namely f(·; τ), can be very different from f . The bias can
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be reduced by taking large values of τ , but in this case the estimator is highly variable, depending

strongly on the data sample (see Figure 3.2 right panel). However if τ is within a reasonable

range, f(·; τ) shows the same valley–peaks structure as f and the variability of the estimators is

not large (see Figure 3.2, center panel).

Thus, Chaudhuri and Marron (1999) avoided the bias–variance trade–off problem by adopting

the scale–space ideas which naturally lead to make inference on the smoothed curve f(·; τ) rather
than on the curve f .
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Figure 3.2: Each panel shows the density function of model M8 (solid line) defined in Appendix A,

the expected curve for a certain value ν (dashed line) and kernel density estimates for 50 random

samples from model M8 (gray lines) for a given value of ν. Left panel: ν = 1. Center panel:

ν = 5. Right panel: ν = 50.

Therefore, in order to assess the significance of features such as peaks and valleys, instead of

constructing confidence intervals for f ′(θ), CircSiZer seeks confidence intervals for the scale–space

version f ′(θ; τ) ≡ E(f̂ ′(θ; τ)) for which f̂ ′(θ; τ) is an unbiased estimator at each location θ and

scale τ .

In the density setting, f̂ ′(θ; τ) is obtained by deriving the expression of the circular kernel

density estimator given in (2.4). In the regression setting, the estimator of the derivative of

the regression function is given by β̂1 for the Local Linear estimator (see Section 2.3.1 and Ap-

pendix B), it is obtained by deriving (2.15) for the Nadaraya–Watson estimator and, for the

periodic smoothing spline estimator, its computation is detailed in Section 2.3.2.

In general, confidence intervals are of the form

(
f̂ ′(θ; τ)− q(1−α/2) · ŝd(f̂ ′(θ; τ)), f̂ ′(θ; τ)− q(α/2) · ŝd(f̂ ′(θ; τ))

)
, (3.1)

where q(1−α/2) and q(α/2) are appropriate quantiles (see Section 3.3.1) and ŝd(f̂ ′(θ; τ)) is an esti-

mator of the standard deviation of f̂ ′(θ; τ) (see Section 3.3.2 for its calculation).
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3.3.1 Computation of the quantiles

Quantiles in (3.1) may be computed in order to provide pointwise or simultaneous confidence inter-

vals for the derivative of the smooth curve. Moreover, in each case, two approaches for computing

the quantiles may be considered: a first approach based on a normal approximation and another

approach using bootstrap techniques. In the subsequent sections, the different possibilities are

detailed.

Pointwise normal confidence intervals

The simplest approach to confidence interval construction uses a normal approximation, i.e., it

is assumed that
f̂ ′(θ; τ)− f ′(θ; τ)

ŝd(f̂ ′(θ; τ))
∼ N(0, 1).

Hence, given a significance level α, an approximate (1−α) confidence inteval is obtained by taking

q(1−α/2) and q(α/2) equal to the (1− α/2) and α/2 quantiles of the standard normal distribution,

respectively. Note that an estimation of the estandard deviation is required. Its computation will

be detailed in the Section 3.3.2.

Pointwise bootstrap confidence intervals

Through the use of bootstrap, accurate intervals without imposing normal assumptions can be

obtained. A possible way to get such intervals, namely the “bootstrap–t” approach (see Efron and

Tibshirani, 1993, Chapter 12), is detailed below. Given a significance level α and for a fixed value

of τ > 0 and with θ varying in the interval [0, 2π), the following algorithm is considered:

Step 1. Generate B bootstrap samples, i.e., random samples drawn with replacement from the data.

Step 2. For b = 1, . . . , B compute

Z∗
b (θ; τ) =

f̂ ′(θ; τ)∗b − f̂ ′(θ; τ)

ŝd(f̂ ′(θ; τ)∗b)
, b = 1, . . . , B, (3.2)

where f̂ ′(θ; τ)∗b is the value of f̂ ′(θ; τ) for the b bootstrap sample and ŝd(f̂ ′(θ; τ)∗b) is an

estimator of the standard deviation of f̂ ′(θ; τ)∗b (see Section 3.3.2 for its calculation).

Step 3. Quantiles q(1−α/2) and q(α/2) in (3.1) are given by the (1 − α/2) and α/2 sample quantiles

of Z∗
1 (θ; τ), . . . , Z

∗
B(θ; τ), respectively.

Both approaches discussed above provide pointwise confidence intervals with the drawback

that many features may be flagged as “significant”. An alternative is to approximate simultaneous

(across [0, 2π), the entire range of Θ) confidence intervals as already proposed in Chaudhuri and

Marron (1999) which is the goal of the following approaches.
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Simultaneous normal confidence intervals

Chaudhuri and Marron (1999) proposed taking as quantiles for (3.1):

q(1−α/2) = −q(α/2) = Φ−1

{
1 + (1− α)1/m(τ)

2

}
,

where Φ−1 is the inverse of the standard normal distribution function, α is the given significance

level and m(τ) is the number of independents blocks of average size available from a dataset of

size n. Specifically, m(τ) is defined as

m(τ) =
n

avgθ∈Dτ
ESS(θ; τ)

,

where avgθ∈Dτ
ESS(θ; τ) denotes the average value of the Effective Sample Size ESS(θ; τ) on the

set Dτ = {θ : ESS(θ; τ) ≥ 5}.
For density estimation or regression estimation with kernel smoothers, the Effective Sample

Size is given by

ESS(θ; τ) = ESS(θ; ν) =

∑n
i=1Kν(θ −Θi)

Kν(0)
,

and for regression estimation with periodic smoothing splines, following Marron and Zhang (2005),

ESS(θ; τ) = ESS(θ;λ) =
n nθ

tr(Aλ)
,

where Aλ is the hat matrix (see Section 2.3.2) and tr is the trace. For a grid of points θθθ =

(θ1, . . . , θN ), nθnθnθ = (nθ1 , . . . , nθN )
t is obtained as nθnθnθ = MAλnnn, with nnn = (n1, . . . , nn)

t where ni is

the number of observations at the design point Θi.

Simultaneous bootstrap confidence intervals

As before, simultaneous confidence intervals without imposing Gaussian assumptions can be

obtained by a bootstrap strategy. The algorithm is as follows:

Step 1. Generate B bootstrap samples, i.e., random samples drawn with replacement from the data.

Step 2. For b = 1, . . . , B compute

Z∗b
inf = inf

θ∈Dτ

Z∗
b (θ; τ)

Z∗b
sup = sup

θ∈Dτ

Z∗
b (θ; τ)

where Z∗
b (θ, τ) is given by (3.2) and Dτ is defined as before.

Step 3. Quantile q(1−α/2) is given the (1−α/2) sample quantile of Z∗1
sup, . . . , Z

∗B
sup and q(α/2) is given

by the α/2 sample quantile of Z∗1
inf , . . . , Z

∗B
inf .



3.3. Development of CircSiZer 63

Note that, in order to compute the (pointwise or simultaneous) quantiles based on bootstrap

techniques, random samples drawn with replacement from the data are generated in Step 1 and

so, in the regression setting, bootstrap confidence intervals are computed for random design, i.e.,

when the covariate values are random.

3.3.2 Estimation of the standard deviation

For the computation of confidence intervals (3.1), it is necessary to derive an expression for

ŝd(f̂ ′(θ; τ)), and also for its bootstrap version ŝd(f̂ ′(θ; τ)∗b) involved in (3.2) when bootstrap con-

fidence intervals are obtained. The computation procedure, for density and regression, is detailed

below.

Density estimation

The main idea behind the calculation of ŝd(f̂ ′(θ; τ)), in the context of density estimation, is that

the derivative of the circular kernel density estimator defined in (2.3) is a weighted average of

the derivative of the kernel function at different locations. So, following Chaudhuri and Marron

(1999) for the linear case, its variance may be estimated by

v̂ar
(
f̂ ′(θ; τ)

)
= v̂ar

(
f̂ ′(θ; ν)

)
= v̂ar

(
n−1

∑n
i=1K

′
ν(θ −Θi)

)

= n−1s2 (K ′
ν(θ −Θ1), . . . ,K

′
ν(θ −Θn)) , 0 ≤ θ < 2π,

where s2 is the usual sample variance of n data, which in this context is formed by the derivative

of the kernel centered at each sample value Θi, with i = 1, . . . , n.

Regression estimation

For the regression setting, consider the model (2.13). For any linear smoother, as the ones studied

in Chapter 2, the estimator of the derivative of the regression function evaluated in a grid θθθ =

(θ1, . . . , θN )t can be written as

f̂ ′
θf̂
′
θ̂f
′
θ = HYYY

where H is an (N × n) matrix and YYY is the response vector. For the Local Linear smoother

H = L̃ν,θθθ (see Appendix B) and H = M̃Aλ for periodic smoothing splines (see equation (2.23)

and Appendix C), where Aλ is the hat matrix and M̃ is an (N×n) coefficient matrix which allows

to obtain the value of the derivative of the estimator in the grid θθθ.

Suppose that the covariate values Θi are fixed (fixed design), so the matrix H is not random

since it only depends on the data points Θ1, . . . ,Θn and on the grid points θθθ. Therefore, the

variance–covariance matrix of f̂ ′
θf̂
′
θf̂
′
θ can be computed as follows

var(f̂ ′
θf̂
′
θ̂f
′
θ) = HΣHt,
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where Σ = diag
{
σ2(Θ1), σ

2(Θ2), . . . , σ
2(Θn)

}
(see Sheather, 2009, Chapter 6). If homoscedastic-

ity is assumed, meaning that σ2 = var(εi) does not vary with θ, then following the ideas of Rice

(1984) σ2(Θi) = σ2 (i = 1, . . . , n) can be estimated by

σ̂2 =
1

2(n− 1)

n−1∑

i=1

(Yi+1 − Yi)
2.

For random design, the standard deviation will be approximated by bootstrap. For a given

τ > 0 and with θ varying in [0, 2π), the standard deviation of f̂ ′(θ; τ) is estimated following the

next steps:

Step 1. Generate B bootstrap samples, i.e., random samples drawn with replacement from the data.

Step 2. For each bootstrap sample, calculate f̂ ′∗b(θ; τ), with b = 1, . . . , B.

Step 3. Estimate the standard deviation by the sample standard deviation of the B replicates:

ŝd
(
f̂ ′(θ; τ)

)
=
[
s2
(
f̂ ′∗1(θ; τ), . . . , f̂ ′∗B(θ; τ)

)]1/2
.

Note that the computation of bootstrap confidence intervals requires, in this case, the estima-

tion of the standard deviation of f̂ ′(θ; τ)∗b for b = 1, . . . , B. Then, a nested bootstrap is needed,

increasing notably the computational cost.

3.4 CircSiZer map

Although the procedure for obtaining the confidence intervals must be carefully adapted to the

circular setting, as shown along the previous section, the construction and interpretation of the

CircSiZer map is fairly simple, as detailed below.

For constructing the CircSiZer map a grid of angles equally spaced in the interval [0, 2π) and

a grid of smoothing parameters are considered. According to both grids, the “skeleton” of the

CircSiZer map is constructed as shown in Figure 3.3, where each ring corresponds to a value of

the smoothing parameter and where each ring is divided according to the grid of angles. In this

way, each pixel in the CircSiZer map is identified by a pair (θ, τ) with θ in the grid of angles and

τ > 0 in the grid of smoothing parameters. For assigning the colour of each pixel, a confidence

interval for f ′(θ; ν), at each pair (θ, τ), is computed. Then:

• If the confidence interval is above zero, indicating that the smoothed curve is significantly

increasing then, the corresponding pixel in the CircSiZer map is coloured blue.

• If the confidence interval is below zero, indicating that the smoothed curve is significantly

decreasing then, the corresponding pixel in the CircSiZer map is coloured red.
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• If the confidence interval contains zero, meaning that the derivative of the curve is not sig-

nificantly different from zero then, the corresponding pixel in the CircSiZer map is coloured

purple.
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Figure 3.3: “Skeleton”of the CircSiZer map. Each ring makes reference to a value of the smoothing

parameter τ and each cell in the ring makes reference to angle θ ∈ [0, 2π). The arrow in the upper–

right corner indicates the sense of rotation for reading the CircSiZer map.

To determine the gray areas (not enough data), the same rule as in Chaudhuri and Marron

(1999) is considered: for each (θ, τ) the estimated effective sample size (ESS) is calculated and

those regions where ESS(θ; τ) < 5 are shaded gray.

In the CircSiZer map, the values of the smoothing parameter τ , in − log10 scale when τ ≡ ν

and in log10 scale when τ ≡ λ, will be indicated along the radius. In this way, small rings will refer

to mild smoothing, whereas large grids corresponds to strong smoothing. Moreover, an arrow in

the upper–right corner will indicate the sense of rotation for reading the CircSiZer map.

3.5 Performance of CircSiZer

In this section, the performance of CircSiZer map constructed with the different confidence in-

tervals discussed in Section 3.3 will be investigated in the density setting (Section 3.5.1) and in

the regression setting (Section 3.5.2). Throughout these sections, statistical significance will be

assessed with a significance level α = 0.05.

3.5.1 Density setting

Firstly, in the density setting, the performance of pointwise confidence intervals will be analyzed.

As introduced in previous sections, the CircSiZer map may be obtained by considered pointwise or

simultaneous confidence intervals. However, when using the first alternative, it should be beared

in mind that the bands obtained are usually narrower. Hence, the problem of constructing the
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CircSiZer map with pointwise confidence intervals is that some features may be identified as sig-

nificant when they are not. The pointwise coverages of normal and bootstrap confidence intervals

have been studied for the circular uniform model (model M1, see Appendix A), considering differ-

ent values of the smoothing parameter. Results obtained from 1000 samples of size n = 250 from

this model are summarized in Figure 3.4. These plots show, by using a palette of colors from green

to white (from negative to positive), the differences between the empirical coverage of pointwise

confidence intervals and the nominal confidence level (0.95) for a grid of smoothing parameters

(represented along the ordinate axis in − log scale). In these plots, it is observed that normal

and bootstrap confidence intervals behave similarly for small values of the smoothing parameter

(− log ν between −1 and 0). This fact is also reflected in Table 3.1 which shows, for each value

of the smoothing parameter, the number of modes detected by the CircSiZer maps using normal

and boostrap pointwise confidence intervals.
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Figure 3.4: Left panel: differences between the coverage of pointwise normal confidence intervals

and the nominal confidence level. Right panel: differences between the coverage of pointwise

bootstrap confidence intervals and the nominal confidence level. Results were obtained from 1000

replicates of sample size n = 250 from M1, the uniform model.

The pointwise coverages of normal and bootstrap confidence intervals have been also studied

for model M2, which corresponds to a von Mises centered at π and contentration parameter 1

(see Appendix A). As before, 1000 samples of size n = 250 from this model have been considered

and results were summarized using the same representation (see Figure 3.5). For large smoothing

parameters, the right panel (corresponding to bootstrap confidence intervals) shows two green

regions around 0 and 2π indicating that the coverage of the pointwise bootstrap confidence intervals

are smaller than the nominal confidence level (0.95). Specifically, these green patches appear

in zones with sparse data, affecting the coverage of pointwise bootstrap confidence intervals.

However, this behaviour is not observed in the left panel which corresponds to normal confidence

intervals. In view of Table 3.2, it seems that the lack of data for some combinations of location

and scale (angle and smoothing parameter), spurious modes will be flagged more frequently by

the bootstrap method than by the normal approximation. This is also observed in Table 3.1. So,
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from now on, when a pointwise CircSiZer map is plotted the normal approximation is considered

for constructing the confidence intervals. In addition, given that no resampling is required, there

are also some benefits in terms of computational burden.
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Figure 3.5: Left panel: differences between the coverage of pointwise normal confidence intervals

and the nominal confidence level. Right panel: differences between the coverage of pointwise

bootstrap confidence intervals and the nominal confidence level. Results were obtained from 1000

replicates of sample size n = 250 from model M2.

Model M1

P
P

P
P

P
P

P
P

P
P

PP

No.
modes

− log10(ν)
-2.00 -1.78 -1.56 -1.33 -1.11 -0.89 -0.67 -0.44 -0.22 0.00

Bootstrap 0 86 206 342 463 598 712 775 842 882 897

1 358 247 480 445 353 268 215 152 118 103

2 362 243 153 86 47 20 10 6 0 0

3 149 74 24 6 2 0 0 0 0 0

4 37 10 1 0 0 0 0 0 0 0

5 7 0 0 0 0 0 0 0 0 0

6 1 0 0 0 0 0 0 0 0 0

Normal 0 212 330 444 554 643 740 794 851 888 899

approximation 1 480 482 449 384 324 246 197 145 112 101

2 240 154 98 61 31 14 9 4 0 0

3 56 32 8 1 2 0 0 0 0 0

4 11 2 1 0 0 0 0 0 0 0

5 1 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0

Table 3.1: Number of modes flagged by CircSiZer map with pointwise bootstrap and normal

confidence intervals and number of times that these modes are identified. Results were obtained

from 1000 replicates of sample size n = 250 from the uniform model. Shady cells show the number

of times that the right number of modes of f(·, ν) is detected.

Although augmented when using bootstrap confidence intervals, for large values of the smooth-

ing parameters, more artificial modes are identified as significant by both methods (see Tables 3.1
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and 3.2). Therefore, not very large values of this parameter should be used in the construction of

the pointwise CircSiZer map.

Model M2

P
P
P

P
P

P
P

P
P

P
PP

No.
modes

− log10(ν)
-2.00 -1.78 -1.56 -1.33 -1.11 -0.89 -0.67 -0.44 -0.22 0.00

Bootstrap 0 99 83 49 12 2 0 0 0 0 0

1 533 662 793 928 990 1000 1000 1000 1000 1000

2 295 218 149 59 8 0 0 0 0 0

3 62 35 8 1 0 0 0 0 0 0

4 9 2 1 0 0 0 0 0 0 0

5 2 0 0 0 0 0 0 0 0 0

Normal 0 220 159 104 22 4 0 0 0 0 0

approximation 1 601 706 815 945 994 1000 1000 1000 1000 1000

2 153 124 79 33 2 0 0 0 0 0

3 25 11 2 0 0 0 0 0 0 0

4 1 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0

Table 3.2: Number of modes flagged by CircSiZer map with pointwise bootstrap and normal

confidence intervals and number of times that these modes are identified. Results were obtained

from 1000 replicates of sample size n = 250 from model M2. Shady cells show the number of times

that the right number of modes of f(·, ν) is detected.

Now, the coverage of normal and bootstrap simultaneous confidence intervals will be compared.

To this end, 1000 random samples of size n = 250 from models M1, M2, M10, M18 and M20 from

Chapter 2 (see also Appendix A) are considered. These models include simple models such as the

uniform and the von Mises models, a bimodal model which shows a highly peaked mode and two

complex models which have three and four modes, respectively. For constructing the CircSiZer

maps, a grid of 250 angles equally spaced in the interval [0, 2π) and a grid of 10 equally spaced

values of the smoothing parameter (in − log10 scale) between −2 and 0 are considered. For each

simulation of bootstrap confidence intervals, 1000 bootstrap samples will be generated.

For each scenario, a way of summarizing the information provided by the 1000 CircSiZer maps

is to report the percentage of times that, over the 1000 replicates, the simultaneous bootstrap

confidence interval and simultaneous normal confidence interval contain the curve f ′(·; ν) for

the grid of the smoothing parameters considered. Results are summarized in Figure 3.6. In

these plots, the curves are piecewise linear, with nodes at each value of the smoothing parameter

considered which are represented along the abscissa axis in − log10 scale. Ideally, all of these

values should be close to (1− α)100% = 95%. In Figure 3.6, it can ben seen that the coverage of

simultaneous bootstrap confidence intervals (represented by a dashed line) is closer to the nominal

value (represented by a dotted line) for the five models and for all the smoothing parameters,

whereas the coverage of simultaneous normal confidence interval (represented by a solid line) is

about 80%. Moreover, Figure 3.7 shows (for model M18) that the coverage of simultaneous normal
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confidence intervals does not improve for larger sample sizes. Hence, from now on, the bootstrap

procedure will be considered for constructing the simultaneous CircSiZer map, unless otherwise

specified.
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Figure 3.6: Percentage of times over 1000 replicates of sample size n = 250 that the simultaneous

bootstrap confidence interval (dashed line) and simultaneous normal confidence interval (solid

line) contain the expected curve for certain values of ν (represented along the coordinates axis in

− log(ν) scale). Dotted horizontal line represents the nominal confidence level. From left to right

and from top to bottom: models M1, M2, M10, M18 and M20, respectively.
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Figure 3.7: Percentage of times over 1000 replicates of sample size n = 1000 that the simultaneous

bootstrap confidence interval (dashed line) and simultaneous normal confidence interval (solid

line) contain the expected curve for certain values of ν (represented along the coordinates axis in

− log(ν) scale). Results for model M18. Dotted horizontal line represents the nominal confidence

level.

As an exploratory tool for data analysis, CircSiZer may be also used for detecting modes.

Table 3.3 shows the number of modes (blue–red patterns) detected by the simultaneous CircSiZer
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map for each value of the smoothing parameter and for each model considered. Note that, even

using simultaneous confidence intervals, some artificial structure may be flagged. For example,

for the uniform model (M1) no trend should be observed, regardless the smoothing parameter.

However, Table 3.3 shows that some modes may be identified as significant in this case. This is

due to the fact that these intervals are simultaneous over θ ∈ [0, 2π) but not over ν and so, for each

fixed value of the smoothing parameter, significant structures may be identified 5% of the times.

From this table, it is also observed that, for complex models such as models M10, M18 and M20,

simultaneous CircSiZer map does not behaves well at attaining the goal of detecting the modes

present in the model. For example, for model M18, the trimodal structure of the model only is

identified by one or two out of 1000 CircSiZer maps. As the sample size increases, simultaneous

CircSiZer map behaves better as shown in Table 3.4 for model M18. However, for the exploratory

analysis of a dataset, it may be interesting to explore the simultaneous CircSiZer map and the

pointwise CircSiZer map, specially when the sample size is not very large.

Model

P
P

P
P

P
P

P
P

P
P

PP

No.
modes

− log10(ν)
-2.00 -1.78 -1.56 -1.33 -1.11 -0.89 -0.67 -0.44 -0.22 0.00

M1 0 1000 999 997 999 997 996 997 998 996 992

1 0 1 3 1 3 4 3 2 4 8

M2 0 1000 1000 994 941 640 115 2 0 0 0

1 0 0 6 59 360 885 998 1000 1000 10000

M10 0 544 172 5 0 0 0 0 0 0 0

1 445 785 954 998 1000 1000 1000 1000 1000 1000

2 11 43 41 2 0 0 0 0 0 0

M18 0 793 481 184 35 2 0 0 0 0 0

1 198 481 754 953 998 1000 1000 1000 1000 1000

2 8 37 62 12 0 0 0 0 0 0

3 1 1 0 0 0 0 0 0 0 0

M20 0 397 80 4 1 0 0 0 7 34 246

1 453 369 94 12 5 7 31 239 507 708

2 147 513 605 161 129 933 969 754 459 46

3 3 38 273 462 463 59 0 0 0 0

4 0 0 24 364 403 1 0 0 0 0

Table 3.3: Number of modes flagged by CircSiZer map with simultaneous bootstrap confidence

intervals and number of times that these modes are identified. Results were obtained from 1000

replicates of sample size n = 250 from models M1, M2, M10, M18 and M20. Shady cells show the

number of times that the right number of modes of f(·, ν) is detected.

For example, consider a sample of size n = 250 from model M20. Simultaneous CircSiZer map

shown in Figure 3.8 (center panel) does not allow to identify the cuatrimodal structure of the

model and it can be seen that only two modes are identified for small values of the smoothing

parameter whereas for larger values of this parameter only the mode around 3π/4 is detected.

However, the pointwise CircSiZer map shown in Figure 3.8 (right panel) allows to identify the
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four modes.

Model

P
P

P
P

P
P

P
P

P
P

PP

No.
modes

− log10(ν)
-2.00 -1.78 -1.56 -1.33 -1.11 -0.89 -0.67 -0.44 -0.22 0.00

M18 0 6 0 0 0 0 0 0 0 0 0

1 396 96 76 530 999 1000 1000 1000 1000 1000

2 439 393 398 399 1 0 0 0 0 0

3 159 511 526 71 0 0 0 0 0 0

Table 3.4: Number of modes flagged by CircSiZer map with simultaneous bootstrap confidence

intervals and number of times that these modes are identified. Results were obtained from 1000

replicates of sample size n = 1000 from model M18. Shady cells show the number of times that

the right number of modes of f(·, ν) is detected.
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Figure 3.8: Left panels: family of kernel density estimates (gray lines) indexed by the smoothing

parameter for a sample of size n = 250 (points over the circle) from model M20 (black line).

Center and right panels: simultaneous and pointwise CircSiZer map for kernel density estimates.

As noted before, the problem of using pointwise confidence intervals is that some features may

be identified as significant when they are not, specially for large values of the smoothing parameter.

For illustration purposes, a random sample of size n = 250 from model M2 has been considered. In

this case, the simultaneous CircSiZer map identifies the unimodal structure of the model perfectly

(see Figure 3.9, center panel). However, the pointwise CircSiZer map (see Figure 3.9, right panel)

identifies, for large values of the smoothing parameter, some features which are not really present

in the underlying density indicating that two modes are significant. Therefore, it is recommend

not consider very large values of the smoothing parameter.

3.5.2 Regression setting

For the regression setting, the coverage of simultaneous normal confidence intervals has been

studied for simulated data from model (2.13) with f(θ) = 0 in the case of equally spaced design
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Figure 3.9: Left panel: family of kernel density estimates (gray lines) indexed by the smoothing

parameter for a sample of size n = 250 (points over the circle) from model M2 (black line). Center

and right panel: simultaneous and pointwise CircSiZer map for kernel density estimates.

regression and normally distributed errors with zero mean and unit variance. For doing the

simulation study, 1000 random samples of size n = 250 have been generated. Using the same

representation than in Figure 3.6 for summarizing the results, Figure 3.10 shows that the coverage

of simultaneous normal confidence intervals is smaller than the nominal value, both for the Local

Linear estimator (left panel) and the periodic smoothing spline estimator (right panel). As for

the density setting, the coverage of simultaneous normal confidence intervals is about 80%.
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Figure 3.10: Percentage of times over 1000 replicates of sample size n = 250 that the simultane-

ous normal confidence interval (solid line) contains the expected curve for certain values of the

smoothing parameter. Left panel: Local Linear estimator. Right panel: periodic smoothing spline

estimator. Design points are equally spaced in the interval [0, 2π) and responses are generated

according to model (2.13) with f(θ) = 0 and normally distributed errors with zero mean and unit

variance. Dotted horizontal line represents the nominal confidence level.

For random design, the coverage of simultaneous bootstrap intervals has not been computed

since it involves the variance estimation for each bootstrap sample which would entail a very

high computational cost. However, it is expected that its performance is similar as in the density

setting.

For illustrating the performance of simultaneous bootstrap CircSiZer map in the regression
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setting, a sample of 250 observations has been considered, where the design points are uniformly

distributed in the interval [0, 2π) and the responses are generated according to the model (2.13),

with f(θ) = sin(θ) and normally distributed errors with variance σ2 = 0.5. Figure 3.11 shows the

corresponding CircSiZer maps obtained by using the Local Linear estimator (center panel) and

the smoothing spline estimator (righ panel). In both figures, the unimodal structure of the sine

function in [0, 2π) is clearly brought out by the CircSiZer maps.
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Figure 3.11: Left panel: sample of size n = 250 (gray points) from model (2.13), where the design

points are uniformly distributed in the interval [0, 2π), f(θ) = sin(θ) (black line) and errors are

normally distributed with zero mean and variance σ2 = 0.5. Center panel: simultaneous CircSiZer

map for kernel regression estimates using the Local Linear estimator. Right panel: simultaneous

CircSiZer map for periodic smoothing splines estimates.
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Figure 3.12: Left panel: sample of size n = 250 (gray points) from model (2.13), where the design

points are uniformly distributed in the interval [0, 2π), f(θ) = 2+sin(θ−1.2π)+3e−10(15(θ−π)/(2π))2

(black line) and errors are normally distributed with zero mean and variance σ2 = 0.5. Center

panel: simultaneous CircSiZer map for kernel regression estimates using the Local Linear estima-

tor. Right panel: simultaneous CircSiZer map for periodic smoothing splines estimates.

Now, consider a sample of 250 observations where the design points are uniformly distributed

in the interval [0, 2π) and the responses are generated according to the model (2.13), with
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f(θ) = sin(θ− 1.2π) + 3e−10(15(θ−π)/(2π))2 and normally distributed errors with variance σ2 = 0.5.

From Figure 3.12 (left panel), it is clear that the regression model to estimate may present some

challenges given the highly peaked mode centered in π and another less concentrated mode about

7π/4. For the sample size considered, simultaneous CircSiZer map using the Local Linear estima-

tor (see Figure 3.12, center panel) does not allow to identify the two modes, only the mode around

7π/4 is detected. The same behaviour is observed using the periodic smoothing spline estimator

(see Figure 3.12, right panel). However, if the sample size is increased (n = 500) the simultaneous

CircSiZer map flags the two modes as significant, as shown in Figure 3.13 (center panel).
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Figure 3.13: Left panel: sample of size n = 500 (gray points) from model (2.13), where the design

points are uniformly distributed in the interval [0, 2π), f(θ) = 2+sin(θ−1.2π)+3e−10(15(θ−π)/(2π))2

(black line) and errors are normally distributed with zero mean and variance σ2 = 0.5. Right panel:

simultaneous CircSiZer map for kernel regression estimates using the Local Linear estimator.

As in the density setting, the exploration of pointwise CircSiZer maps may help to identify the

structure of the model.

3.6 Real data analysis

In this section, CircSiZer is applied to the analysis of three datasets introduced in Section 1.3:

temperature cycle data, cracks in cemented femoral components data and wind speed and wind

direction data.

Example 1. Temperature cycle changes. In Section 2.2.3, data from hourly temperature

cycle changes, that is, temperatures changing from positive to negative or viceversa, were analyzed.

In this case, a final question was posed: is the mode shown in Figure 2.6 significant? The

corresponding simultaneous CircSiZer map shown in Figure 3.14 indicates that the mode around

11 a.m. is significant. This means that changes from positive to negative temperatures may

happen at any hour along the day but the changes from negative to positive are concentrated

around midday.
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Figure 3.14: Left panel: family of kernel density estimates indexed by the smoothing parameter

for data of changes in cycles of temperature. Right panel: simultaneous CircSiZer map for kernel

density estimates.

Example 2. Exploring crack distribution in cemented femoral components. The

performance of CircSiZer is illustrated by the analysis of the real dataset concerning angular po-

sitions of cracks in the cement mantle in a hip implant. The goal of the study is to determine if

there exists a preferred direction for cracks in the cement mantle. As in Mann et al. (2003) the

crack distribution for the proximal (sections at 10–50 mm) and distal regions (sections at 80–110

mm) of the cement mantle are analyzed separately. The corresponding simultaneous and pointwise

CircSiZer maps for the angular position of the cracks for one femur are shown in Figure 3.15 for

proximal (top panels) and distal (bottom panels) regions. Simultaneous CircSiZer maps (center

panels) shows that the crack distribution around the cement mantle is not uniform in both cases,

and a preferred direction exists in each case being cracks concentrated around the posterior di-

rection (270◦) for proximal regions and around the anterior–medial direction (110◦) of the mantle

for distal regions. The same preferred directions are flagged by the pointwise CircSiZer maps (left

panels). In this latter case, other modes are also identified as significant but it is probably due to

the pointwise nature of the intervals.

Example 3. Exploring wind patterns. The practical usefulness of the proposed CircSiZer

map is now illustrated by the analysis of the real dataset concerning wind direction and speed in

the Atlantic coast of Galicia (NW Spain). As it was described in Section 1.3, the dataset consists

of hourly observations of wind direction (in degrees) and wind speed (in m/s) in winter season

(from November to February), from 2003 until 2012. The main aim of these data is to describe

the wind pattern in the Galician coast during winter season, focusing on the most significative

wind directions and their relation with wind speed.

In order to avoid the dependence present between consecutive measurements in the time series,

the autocorrelation functions were studied. Observations taken with a lag period of 95 hours can

be considered as uncorrelated, providing a final dataset with about 200 values. With this lag
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period, all the day hours are represented in the sample.
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Figure 3.15: Left panels: family of kernel density estimates indexed by the smoothing parameter

for data of angular positions of craks in proximal (top panel) and distal (bottom panel) regions.

Center panels: simultaneous CircSiZer maps for kernel density estimates in proximal (top panel)

and distal (bottom panel) regions. Right panels: pointwise CircSiZer maps for kernel density

estimates in proximal (top panel) and distal (bottom panel) regions.

Figure 3.16 shows the CircSiZer maps for wind directions. In this case, both the simultaneous

and pointwise CircSiZer maps distinguish two significant modes which indicate that winds in

winter period come mostly from NE and SW. Moreover, they show that winds coming from SE

are not frequent at all, being this fact reflected by the absence of data in the SE sector (gray

shaded area).

CircSiZer maps for exploring the relation between wind speed as a response and wind direction

as a covariate, are shown in Figure 3.17. In this case, the simultaneous bootstrap CircSiZer map

(center panel) only shows a small blue region in the SE–S sector. However, CircSizer map with

pointwise normal confidence intervals (right panel) identifies (even for very small values of the

smoothing parameter) a blue region in the N–NE sector followed by a red region in the E–SE

sector which means that the wind speed increases with northeasterly winds and begins to decrease
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with easterly winds. Then a gray region around SE indicates that winds from this direction are not

frequent and then, a blue region is flagged indicating that the wind speed increases with southerly

winds.
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Figure 3.16: Left panel: family of kernel density estimates indexed by the smoothing parameter

for data of wind direction. Center and right panel: simultaneous and pointwise CircSiZer map for

kernel density estimates.
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Figure 3.17: Left panel: family of kernel regression estimates indexed by the smoothing parameter

for wind speed (m/s) with respect wind direction. Center and right panel: simultaneous and

pointwise CircSiZer map for kernel regression estimates.

It should be also noticed that the results shown in the CircSiZer maps reflect to some extent the

buoy location at the north–western corner of the Iberian Peninsula and the coastline orientation,

roughly SW–NE. For that reason, in the CircSizer map for the density (Figure 3.16), a red area

around E followed by a gray area around SE appears in the CircSiZer maps, indicating that winds

from that directions are limited. The blue area at S indicates an increment in southerly winds. In

addition, a recent study by Sousa et al. (2013) points out that S–SW winds dominate in autumn–

winter and N–NE winds are more frequent in spring–summer but, it is also frequent that typically

summer patterns appear in winter season, and viceversa. Hence, the two modes at SW and NE

detected by the CircSizer maps in Figure 3.16 are justified.
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Chapter 4

Software: NPCirc package

4.1 Introduction

As mentionted before, circular data appear in a large variety of disciplines and so, software is

required so that practitioners can analyze their own datasets. For R (R Development Core Team,

2012) users, there are some packages for working with circular data, such as: CircStats package

(Lund and Agostinelli, 2012), based on the book“Topics in circular Statistics”by Jammalamadaka

and SenGupta (2001), which provides methods for the descriptive and inferential statistical anal-

ysis of directional data; circular package (Lund and Agostinelli, 2011) which is an extension of

the CircStats package and provides functions for the statistical analysis (descriptive statistics,

circular models, tests), graphical representation and some circular datasets; CircNNTSR package

(Fernández-Durán and Gregorio-Domı́nguez, 2012) which implements functions for constructing

circular distributions based on nonnegative trigonometric sums, estimating parameters and plot-

ting the constructed densities; package isocir (Barragán and Fernández, 2012) which provides

a set of routines for analyzing angular data subjected to order constraints on a unit circle; pack-

age movMF (Hornik and Grün, 2012) allows to draw random samples from mixtures of von Mises

distributions and to proceed with parameter estimation, by using an EM algorithm.

From the parametric perspective, packages circular, CircStats and movMF allow to compute

the density function and do random generation of mixtures of von Mises distributions but, it is not

possible to do the same with mixtures of different circular distributions. From the nonparametric

perspective, a specific function for kernel density estimation for circular data, and three functions

for selecting the smoothing parameter (cross–validation rules proposed by Hall et al. (1987) and

rule of thumb introduced by Taylor (2008)), have been already included in package circular.

Apart from this, there is no other function for nonparametric regression estimation and smoothing

parameter selection.

With the goal of complementing the available packages for circular data analysis and providing

to the R users a comprehensive set of functions for nonparametric density and regression analysis

79
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with circular data, the package NPCirc has been built. The simulation studies and real data

analysis done along the previous chapters have been carried out in the R computing environment

using this package. Note that, R routines related with periodic smoothing splines are not still in-

cluded in the package but they will be included in future updates. The NPCirc package is available

from the Comprehensive R Archive Network at http://CRAN.R-project.org/package=NPCirc

(Oliveira et al., 2013e).

This chapter provides an overview of the contents of the package. All functions included in the

package are described, detailing its usage, and illustrated with some examples in Section 4.2. The

contents of this chapter can be found in Oliveira et al. (2013d).

4.2 Description and illustration of the NPCirc package

In this package, the circular kernel density estimator with an up–to–date collection of smoothing

parameter selection procedures described in Section 2.2 are included. For the regression set-

ting, Nadaraya–Watson and Local Linear estimators for a linear response and a circular covariate

jointly with the least squares cross–validations rule for smoothing parameter choice, introduced

in Section 2.3, have been implemented. CircSiZer maps for density and regression using point-

wise bootstrap confidence intervals presented in Chapter 3, can be obtained. NPCirc package

also contains functions for generating data and obtaining densities of a variety of circular models,

and mixtures of them. Specifically, the collection of circular models presented in Chapter 2, can

be directly generated. Morever the package NPCirc includes most of the datasets introduced in

Chapter 1 and analyzed along this thesis.

The list of functions and datasets available in NPCirc with a brief explanation of each of them

can be seen in Table 4.1, and the complete documentation of the package, including the description

of the functions, its arguments and its usage, is available in Appendix D.

Throughout this section, random samples will be generated by fixing set.seed(1), so the

results can be reproduced by the user.

4.2.1 Functions dcircmix and rcircmix

Function dcircmix allows to compute the density function of a circular distribution (circular

uniform, von Mises, cardioid, wrapped Cauchy, wrapped normal, wrapped skew-normal) or the

density of a mixture of these distributions. Function rcircmix allows for random generation

from a circular distribution or from a mixture of circular distributions. Both functions have an

argument called model which allows to specify a model among the ones considered in Chapter 2

and Appendix A. For example, the density function of model M20 in a grid of 250 points between

0 and 2π can be obtained by:

http://CRAN.R-project.org/package=NPCirc
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Dataset Description

cross.beds1 Cross–beds azimuths (I)

cross.beds2 Cross–beds (II)

cycle.changes Cycle changes

dragonfly Orientation of dragonflies

speed.wind, speed.wind2 Wind speed and wind direction data

temp.wind Temperature and wind direction data

Function Description

circsizer.density CircSiZer map for density

circsizer.regression CircSiZer map for regression

dcircmix Density function of mixtures of circular distributions

rcircmix Random generation from mixtures of circular distributions

kern.den.circ Nonparametric circular kernel density estimation

kern.reg.circ Nonparametric circular kernel regression estimation

nu.CV Cross–validation for density estimation

nu.LSCV.reg Least squares cross–validation for circular–linear regression

estimation

nu.boot Bootstrap method for density estimation

nu.pi Plug–in rule for density estimation

nu.rt Rule of thumb for density estimation

Table 4.1: Summary of NPCirc package contents. Top part: data sets included in the package.

Bottom part: available functions.
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R> t <- seq(0, 2*pi, length=500)

R> f20 <- dcircmix(x=t, model=20)

and 100 random deviates from the same model can be obtained by:

R> data20 <- rcircmix(n=100, model=20)

Both the model density curve and the random sample are plotted in Figure 4.1 (left panel).

Funtions from circular package allow to plot the sample over a circle and the circular density as

shown in the following lines

R> plot(circular(data20), shrink=1.2, stack=TRUE)

R> lines(circular(t), f20)

which provide Figure 4.1 (left panel).
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Figure 4.1: Left panel: density function (solid line) of model M20 and random sample of size

n = 100 (dots on the circle) from the same model. Right panel: density function (solid line) of

the mixture model 0.5 · vM(0, 5)+ 0.5 ·WSN(π, 1, 10) and random sample of size n=100 (dots on

the circle) from the same model.

Apart from the predefined models from Chapter 2, the density function or random sample

from a circular mixture model can be obtained by using the same functions by specifying the

distributions that participate in the mixture through argument dist and the parameters of each

distribution by means of argument param. For example, a mixture in the same proportion of a

von Mises WN(π/2, 0.7) and a wrapped skew-normal WSN(π, 1, 10) can be obtained with the

code:

R> fmix <- dcircmix(x=t, model=NULL, dist=c("wn","wsn"),

+ param=list(p=c(0.5,0.5), mu=c(pi/2,pi), con=c(0.7,1), sk=c(0,10)))

and random deviates from the same model can be obtained by:
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R> datamix <- rcircmix(100, model=NULL, dist=c("wn","wsn"),

+ param=list(p=c(0.5,0.5), mu=c(pi/2,pi), con=c(0.7,1), sk=c(0,10)))

The corresponding density function and random sample are shown in Figure 4.1 (right panel).

For generating samples of a wrapped skew–normal distribution, the function rsn from package

sn is used. This function allows to generate random numbers from the skew–normal distribution.

4.2.2 Functions for density estimation

Function kern.den.circ computes the circular kernel density estimator defined in (2.4), with von

Mises kernel. This function computes the circular kernel density function estimator for a sample of

angles in radians between 0 and 2π specified by argument x, over the points specified by argument

t, with a smoothing parameter selected by the user, included in argument nu. The output of this

function is a vector with the kernel density estimated values at t.

From a sample of 500 data from model M11, the circular kernel density estimator can be

obtained as follows:

R> data11 <- rcircmix(500, model=11)

R> est11 <- kern.den.circ(x=data11, t=t, nu=40)

The graphical display of the estimator is shown in Figure 4.2. Circular and linear represen-

tations are displayed in left and right panels, respectively. The solid line is the true underlying

density and the dashed line is the kernel density estimator.
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Figure 4.2: Circular (left panel) and linear (right panel) representation of the circular kernel

density estimator with ν = 40 (dashed line) from a sample of size 500 from model M11 and true

density (solid line).

The value of the parameter nu in function kern.den.circ can be fixed by the user, as in

the example above, or selected by some of the rules defined in Section 2.2.1. The available

procedures for choosing the smoothing parameter will be described below. The main argument in
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all the functions is the sample of angles in radians (between 0 and 2π) from which the smoothing

parameter is to be computed, denoted by x.

Function nu.boot implements the bootstrap procedure proposed by Di Marzio et al. (2011).

The minimum of bootstrap MISE is obtained by using the optimize function, which searches

the minimum in the interval specified by arguments lower and upper (default values are 0 and

100, respectively) and with accuracy specified by tol (default tol=0.1). The integral in (2.11) is

approximated by the Simpson’s rule by a sum of np=500 terms.

R> nu.boot(x=data11)

[1] 29.70744

Cross–validation smoothing parameters for density estimation are computed by function nu.CV.

The cross–validation rule to be used, LSCV or LCV, will be specified by argument method, taking

LCV as default. When the LSCV smoothing parameter is computed, the integral term in equation

(2.9) is calculated using the Simpson’s rule (through an internal function) and so, the argument

np will be used. As before, the minimum/maximum is searched with optimize according to

arguments lower, upper and tol.

R> nu.CV(x=data11, method="LCV")

[1] 32.61996

R> nu.CV(x=data11, method="LSCV")

[1] 32.55328

Function nu.pi implements the new plug–in rule proposed in Section 2.2.1. Two options are

available: fix the number of components in the mixture (denoted by M in equation (1.3)) by

specifying argument M:

R> nu.pi(x=data11, M=3)

[1] 41.50809

or select the number of components by AIC (default option):

R> nu.pi(x=data11, outM=TRUE)

[1] 41.50809 3.00000
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Argument outM=TRUE indicates that the function also returns the number of components in the

mixture. Again, the integral term is approximated by the Simpson’s rule and the minimum is

searched by using the function optimize from package stats.

In practice, computational problems may disable the AIC output in the implementation of the

plug–in rule. These difficulties may appear in the implementation of the EM algorithm (which is

available in the R package movMF) in Step 2.1 and/or from the numerical approximation of the

integral in Step 2.2, which may not be finite. In this situation, the number of mixtures for the

reference distribution is chosen as the one that provides the minimum valid AIC. Just when no

results can be obtained for the different values of M , the rule of thumb proposed by Taylor (2008)

is chosen. It should be noticed that in our simulation study in Chapter 2, this situation only

occurred for model M1 (for n = 100, 1 out of 1000 samples), M3 (for n = 100, 7 out of 1000

samples needed M = 1), M6 (for n = 100, 1 out of 1000 samples) and M10 (for n = 100, 40 out

of 1000 samples; for n = 250, 1 out of 1000 samples). It does not seem to be an issue for large

sample size.

Finally, the selector proposed by Taylor (2008) for density estimation is computed by function

nu.rt. The concentration parameter can be estimated by maximum likelihood (robust=FALSE):

R> nu.rt(x=data11, robust=FALSE)

[1] 0.2054091

or by the robustified procedure described in Section 2.2.1, by setting robust=TRUE. In this case,

the argument alpha must be also specified:

R> nu.rt(x=data11, robust=TRUE, alpha=0.5)

[1] 1.124611

The CircSiZer map for density estimation using pointwise bootstrap confidence intervals is

provided by circsizer.density. The main arguments in this function are x, the angle data

sample and NU, a grid of positive smoothing parameters. Other arguments can be fixed: ngrid,

integer indicating the number of equally spaced angles between 0 and 2π where the estimator is

evaluated (default to ngrid=250); alpha, the significance level for assessing increasing/deacreasing

patterns (default to alpha=0.05); and B, the number of bootstrap samples to estimate the standard

deviation of f̂ ′(θ; ν) (default to B=500). In order to edit the graph, additional arguments can be

passed to this function. The CircSiZer map in Figure 4.3 is obtained with the next code lines:

R> data14 <- rcircmix(250, model=14)

R> circsizer.density(data14, NU=seq(0,100,by=5), type=3, raw.data=TRUE,

+ log.scale=TRUE,zero=0,clockwise=FALSE)
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Figure 4.3: Density for model M14 (left panel) and CircSiZer map for kernel density estimator

(right panel) based on 250 simulated data (dots over the circle). Peaks and valleys are identified

by clockwise blue–red and red–blue patterns, respectively.

In the CircSiZer map, values of the smoothing parameter are indicated along the radius, trans-

formed to − log10 scale for log.scale=TRUE (default option). Moreover, the arrow indicating the

sense of rotation for reading the CircSiZer map is plotted according to the argument clockwise.

This function makes use of packages plotrix and shape for plotting the CircSiZer map.

4.2.3 Functions for regression estimation

For regression estimation, with circular covariate and linear response, NPCirc includes function

kern.reg.circ which allows to compute the Local Linear and Nadaraya–Watson estimators, a

function nu.LSCV to compute the least squares cross–validation smoothing parameters and an-

other function circsizer.regression which allows to obtain the CircSiZer map using pointwise

bootstrap confidence intervals for the regression setting.

The function kern.reg.circ implements the local linear estimator and the Nadaraya–Watson

estimator for circular–linear data (circular covariate and linear response), as described in Sec-

tion 2.3.1. The arguments in this function are: x, the sample of angles in radians (between 0 and

2π) for the circular covariate; y, the sample values for the dependent linear variable; t, the vector

of angles (in radians) where to evaluate the estimator; nu, the value of the smoothing parameter

to be used; method, the character string giving the estimator to be used. This must be one of

"LL" for local linear estimator or "NW" for Nadaraya–Watson estimator.

The value of nu can be set manually or can be obtained by calling the function nu.LSCV.reg

which provides the least squares cross-validation smoothing parameter for the Nadaraya–Watson

and Local Linear estimators from equation (2.16). The arguments x, y and method of this function

have the same meaning as those for function kern.reg.circ.

Functions kern.reg.circ and nu.LSCV.reg are illustrated with wind.speed dataset corre-

sponding to the measurements of wind speed and wind direction in the Atlantic coast of Galicia.
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The Nadaraya–Watson and Local Linear estimators for a regression model of wind speed over wind

direction are shown in Figure 4.4 (left panel), in solid and dashed lines respectively. Estimators

are obtained with the code:

R> data("speed.wind2")

R> dir <- rad(speed.wind2$Direction)

R> speed <- speed.wind2$Speed

R> t <- seq(0, 2*pi, length=200)

R> nuNW <- nu.LSCV.reg(x=dir, y=speed, method="NW")

R> nuLL <- nu.LSCV.reg(x=dir, y=speed, method="LL")

R> estLL <- kern.reg.circ(x=dir, y=speed, t=t, nu=nuLL, method="NW")

R> estNW <- kern.reg.circ(x=dir, y=speed, t=t, nu=nuNW, method="NW")
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Figure 4.4: Left: Nadaraya–Watson estimator (dashed curve) and Local Linear estimator (solid

curve). Right: CircSiZer map for circular–linear regression for wind speed (m/s) with respect to

wind direction.

The function circsizer.regression provides the CircSiZer map for regression considering a

circular covariate and a linear response and based on Local Linear estimator. The first arguments

for this function are x, the sample of angles in radians (between 0 and 2π) for the circular covariate

and y, the sample of angles for the dependent linear variable y. The remaining arguments are the

same as for function circsizer.density.

Figure 4.4 (right panel) shows the CircSiZer map for exploring the relation between wind speed

as a response and wind direction as a covariate, obtained with the code:

R> circsizer.regression(dir, vel, NU=seq(10,60,by=5), type=1)

In the CircSiZer map, it can be seen that wind speed increases when wind direction comes from

NE and S–SW and winds from SE are not frequent at all, being this fact reflected by the gray

coloured area.
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Conclusions

This dissertation has been focused on nonparametric methods for the analysis of circular data,

both for density and regression. Within this framework, the specific goals that have been achieved

are the following:

• The study of nonparametric techniques for the estimation of density and regression curves

for circular data. Concretely, the smoothing parameter selection problem in circular den-

sity estimation and the comparison of three linear smoothers for regression estimation, for

circular covariate and linear response. This goal corresponds to the contents in Chapter 2.

• The construction of an exploratory tool, namely CircSiZer, for the assessment of significant

features in curve estimates, for density and regression. The development, performance and

practical usage of CircSiZer is collected in Chapter 3.

• The implementation of the proposed methods in the R computing environment, gathered in

NPCirc package. A detailed description of the library contents and utilities is included in

Chapter 4.

As mentioned before, nonparametric curve estimation for circular data has been studied in

Chapter 2, focusing on the estimation of the density function of a sample of circular data and on

the estimation of the regression function when the covariate is circular and the response is scalar.

In the density setting, the circular kernel density estimator and several methods for selecting

the smoothing parameter have been reviewed. The main contribution in this context has been

the proposal of a new method for choosing the smoothing parameter, namely the plug–in rule

(Oliveira et al., 2012b). Through a simulation study, the new selector has been compared with

other methods already proposed in the literature, such as the cross–validation rules proposed by

Hall et al. (1987), the rule of thumb proposed by Taylor (2008) and the bootstrap procedure

proposed by Di Marzio et al. (2011). Simulation results showed that the new plug–in rule equals

or even outperforms the other existing selectors. In addition, the different selectors have been also

applied for analyzing some real datasets.

Nonparametric regression estimators for a circular explanatory variable and a linear response

have also been studied. Two types of nonparametric smoothers have been considered: kernel and
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spline smoothers. Specifically, adaptations of the classical Nadaraya–Watson and Local Linear es-

timators to the circular nature of the covariate and the periodic smoothing spline estimator have

been reviewed. The three smoothers considered have been compared in a simulation study and

applied to a real dataset. Results from the simulation study have shown that Nadaraya–Watson

and Local Linear estimators performs similarly and periodic smoothing spline estimator provide

better results in terms of average integrated squared error.

In Chapter 3, a new exploratory method, namely CircSiZer, which avoids the problem of select-

ing the smoothing parameter and, allows to know which observed features in the smoothed curve

(density or regression) are statistically significant and which features are simply artifacts of the

sampling noise has been presented. CircSiZer assesses the significance of features by constructing

confidence intervals for the derivative of the smoothed curve, f ′(θ; τ), being f the density or re-

gression curve and τ the smoothing parameter. Different proposals for obtaining the quantiles and

the estimation of the standard deviation of f̂ ′(θ; τ) have been studied. Quantiles were computed

in order to provide pointwise and simultaneous confidence intervals for f ′(θ; τ), and in both cases,

two approaches were considered: a first approach based on a normal approximation and another

approach using bootstrap techniques.

It has been also detailed how the information provided by the confidence intervals is displayed

in a circular color map, the CircSiZer map, in such a way that, different colors allow to indentify

increasing and decreasing patterns in the smoothed curve for different values of the smoothing

parameter.

For the density setting, the coverage of simultaneous confidence intervals based on the normal

approximation and the ones based on bootstrap has been compared through a simulation study.

The study reflects that the coverage of bootstrap simultaneous confidence intervals is close to the

nominal level (1 − α) whereas the coverage of normal simultaneous confidence intervals is below

this value. Also from a simulation study, it was observed that the use of bootstrap simultaneous

confidence intervals may present difficulties for attaining the goal of detecting the modes of the

underlying model. In this sense, the CircSiZer map with pointwise confidence intervals may be

helpful for identifying the modes presented by the model. However, the interpretation of pointwise

CircSiZer map must be done carefully because it may flags spurious modes as significant.

In the regression setting, the coverage of simultaneous confidence intevals based on the normal

approximation has been studied for the case of fixed design. Results showed that the coverage of

these intervals is below the nominal value and so, unfortunately, in the context of fixed desing,

none of the proposals for constructing the confidence intervals is appropriate, so further research

is required in order to solve this issue.

For random design, the performance of CircSiZer with simultaneous bootstrap confidence in-

tervals has been checked in some simulated and real data examples. The main drawback of this

proposal is the high computational cost for obtaining the CircSiZer map. For linear data, Hannig
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and Marron (2006) improve the coverage of simultaneous confidence intervals based on normal

assumptions. An approach similar to the one described in the previous reference could be adapted

in the circular setting.

Finally, most of the techniques introduced througthout this manuscript have been implemented

using the statistical software R in the NPCirc package. Chapter 4 has been devoted to the

description and illustration of the functions included in the package. Among them, a function for

kernel density estimation for circular data with an up–to–date collection of smoothing parameter

selection procedures: the cross–validation rules introduced by Hall et al. (1987), the rule of thumb

proposed by Taylor (2008), the bootstrap method described in Di Marzio et al. (2009) and the

new plug–in rule proposed in this dissertation. For nonparametric regression estimation, the

Nadaraya–Watson and Local Linear estimators for a linear response and a circular covariate jointly

with the least squares cross–validations rule for the selection of the smoothing parameter, have

been included. As commented in Chapter 4, R routines related with periodic smoothing splines

are not still included in the package but they will be included in future updates. Both for density

and regression, the CircSiZer method with pointwise bootstrap confidence intervals have been also

implemented. In the current version, the NPCirc package only allows to plot the CircSiZer map

constructed with bootstrap pointwise confidence intervals. The other possibilities described in

Section 3.3 will be also implemented in future versions of the library.
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Appendix A

Simulated models

The specific formulae of those models considered in the simulation study carried out in Chapter 2

(see Figure 2.2) are given here.

Simple models:

M1: Circular uniform.

M2: von Mises: vM(π, 1).

M3: Wrapped normal: WN(π, 0.9).

M4: cardioid: C(π, 0.5).

M5: Wrapped Cauchy: WC(π, 0.8).

M6: Wrapped skew–normal: WSN(π, 1, 20).

Two components models:

M7: Mixture of two von Mises 1/2 · vM(0, 4) + 1/2 · vM(π, 4).

M8: Mixture of two von Mises 1/2 · vM(2, 5) + 1/2 · vM(4, 5).

M9: Mixture of two von Mises 1/4 · vM(0, 2) + 3/4 · vM(π/
√
3, 2).

M10: Mixture of von Mises and wrapped Cauchy 4/5 · vM(π, 5) + 1/5 ·WC(4π/3, 0.9).

Models with more than two components:

M11: Mixture of three von Mises 1/3 · vM(π/3, 6) + 1/3 · vM(π, 6) + 1/3 · vM(5π/3, 6).

M12: Mixture of three von Mises 2/5 · vM(π/2, 4) + 1/5 · vM(π, 5) + 2/5 · vM(3π/2, 4).
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M13: Mixture of three von Mises 2/5 · vM(0.5, 6) + 2/5 · vM(3, 6) + 1/5 · vM(5, 24).

M14: Mixture of four von Mises 1/4 · vM(0, 12) + 1/4 · vM(π/2, 12) + 1/4 · vM(π, 12) + 1/4 ·
vM(3π/2, 12).

M15: Mixture of wrapped Cauchy, wrapped normal, von Mises and wrapped skew-normal 3/10 ·
WC(π − 1, 0.6) + 1/4 ·WN(π + 0.5, 0.9) + 1/4 · vM(π + 2, 3) + 1/5 ·WSN(6, 1, 3).

M16: Mixture of five von Mises 1/5 · vM(π/5, 18) + 1/5 · vM(3π/5, 18) + 1/5 · vM(π, 18) + 1/5 ·
vM(7π/5, 18) + 1/5 · vM(9π/5, 18).

Other complex models:

M17: Mixture of cardioid and wrapped Cauchy 2/3 · C(π, 0.5) + 1/3 ·WC(π, 0.9).

M18: Mixture of four von Mises 1/2 · vM(π, 1) + 1/6 · vM(π − 0.8, 30) + 1/6 · vM(π, 30) + 1/6 ·
vM(π + 0.8, 30).

M19: Mixture of five von Mises 4/9 · vM(2, 3) + 5/36 · vM(4, 3) + 5/36 · vM(3.5, 50) + 5/36 ·
vM(4, 50) + 5/36 · vM(4.5, 50).

M20: Mixture of two wrapped skew-normal and two wrapped Cauchy 1/3 ·WSN(0, 0.7, 20)+1/3 ·
WSN(π, 0.7, 20) + 1/6 ·WC(3π/4, 0.9) + 1/6 ·WC(7π/4, 0.9).
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Kernel smoothers

In the regression setting (consider model (2.13)), the Local Linear estimator is a linear smoother,

i.e, there exists a vector lll(θ) = (l1(θ), . . . , ln(θ))
t such that it can be written in the following way

f̂CLL(θ; ν) =
n∑

j=1

lj(θ)Yj ,

where

lj(θ) =
bj(θ)∑n
k=1 bk(θ)

with

bj(θ) = Kν(Θj − θ) (Sn,2(θ)− sin(Θj − θ)Sn,1(θ))

Sn,r(θ) =
n∑

j=1

Kν(Θj − θ) (sin(Θj − θ))r , r = 0, 1, 2.

Hence, if f̂̂f̂fCLL = (f̂CLL(Θ1; ν), . . . , f̂CLL(Θn; ν))
t denotes the vector of fitted values at the

design points and YYY = (Y1, . . . , Yn)
t, it follows that

f̂̂f̂fCLL = LνYYY

where Lν is an (n×n) matrix whose i–th row is l(Θi)
t. Thus, the (i, j) element of Lν is Lij = lj(Θi),

i, j ∈ {1, . . . , n}. The matrix Lν is known as the hat matrix.

Similarly, if f̂̂f̂f ′′′CLL = (f̂ ′
CLL(Θ1; ν), . . . , f̂

′
CLL(Θn; ν))

t denotes the vector of values of the esti-

mator of the derivative at the design points, it then follows that

f̂ ′̂f ′̂f ′
CLL = L̃νYYY

where L̃ν is an (n×n) matrix whose (i, j) element is given by L̃ij = l̃j(Θi), i, j ∈ {1, . . . , n} where

l̃j(θ) =
b̃j(θ)∑n
k=1 b̃k(θ)
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with

b̃j(θ) = Kν(Θj − θ) (Sn,1(θ)− sin(Θj − θ)Sn,0(θ)) .

The value of the estimator and its derivative can be obtained for a grid of locations θθθ =

(θ1, . . . , θN )t in the interval [0, 2π) just by matrix–vector operations:

f̂̂f̂fCLL,θθθ = Lν,θθθYYY

f̂ ′̂f ′̂f ′
CLL,θθθ = L̃ν,θθθYYY

where Lν,θθθ and L̃ν,θθθ are (N × n) matrix whose (i, j) element is given by lj(θi) and l̃j(θi), i ∈
{1, . . . , N}, j ∈ {1, . . . , n}, respectively.



Appendix C

Periodic cubic splines

Details behind our technical calculations in Section 2.3.2 are given here. This appendix is divided

in two parts: the first one is devoted to specify a periodic cubic spline by giving its value and

second derivative at each of the knots, and the second one is devoted to give a matrix notation

for its integrated squared second derivative.

The value–second derivative representation

Let s be an arbitrary periodic cubic spline on [t1, tm+1] with splines coefficients ai, bi, ci, di,

i = 1, . . . ,m. Then, for t in [ti, ti+1],

s(t) = si(t) = ai + bi(t− ti) + ci(t− ti)
2 + di(t− ti)

3,

s′(t) = s′i(t) = bi + 2ci(t− ti) + 3di(t− ti)
2,

s′′(t) = s′′i (t) = ci + 6di(t− ti).

From the continuity of s′ at the interior knots

s′i−1(ti) = s′i(ti), i = 2, . . . ,m,

and from the periodicity of s′ on [t1, tm+1]

s′(tm+1) = s′(t1) ⇒ s′m(tm+1) = s′1(t1),

it follows that,

bm + 2cm(tm+1 − tm) + 3dm(tm+1 − tm)2 = b1

bi−1 + 2ci−1(ti − ti−1) + 3di−1(ti − ti−1)
2 = bi, i = 2, . . . ,m.

By denoting hi = ti+1 − ti, i = 1, . . . ,m

bm + 2cmhm + 3dmh2m = b1

bi + 2cihi + 3dih
2
i = bi+1, i = 1, . . . ,m− 1,
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or equivalently,

2cihi + 3dih
2
i = bi+1 − bi, i = 1, . . . ,m (C.1)

where bm+1 = b1. By Remark 3.22 in Nürnberger (1989), if s is a periodic cubic spline with knots

t1, . . . , tm+1, there exists an extension s̃ : R → R of s such that s̃ has two continuous derivatives

and s̃ is a periodic function with period T = tm+1 − t1. So, from now, any subscript i will be

indicating i mod m where mod denotes the modulo operator.

From the continuity of s at the interior knots

si−1(ti) = si(ti), i = 2, . . . ,m,

and the periodicity of s on [t1, tm+1]

s(tm+1) = s(t1) ⇒ sm(tm+1) = s1(t1),

it follows that,

am + bm(tm+1 − tm) + cm(tm+1 − tm)2 + dm(tm+1 − tm)3 = a1

ai−1 + bi−1(ti − ti−1) + ci−1(ti − ti−1)
2 + di−1(ti − ti−1)

3 = ai, i = 2, . . . ,m

and then,

am + bmhm + cmh2m + dmh3m = a1

ai + bihi + cih
2
i + dih

3
i = ai+1, i = 1, . . . ,m− 1

or equivalently,

bi = (ai+1 − ai)/hi − cihi − dih
2
i , i = 1, . . . ,m. (C.2)

From the continuity of s′′ at the interior knots

s′′i−1(ti) = s′′i (ti), i = 2, . . . ,m,

and the periodicity of s′′ on [t1, tm+1], it follows that

s′′(tm+1) = s′′(t1) ⇒ s′′m(tm+1) = s′′1(t1),

it follows that

2cm + 6dm(tm+1 − tm) = 2c1

2ci−1 + 6di−1(ti − ti−1) = 2ci, i = 2, . . . ,m,
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and then,

2cm + 6dmhm = 2c1,

2ci + 6dihi = 2ci+1, i = 1, . . . ,m− 1,

or equivalently,

di = (ci+1 − ci)/(3hi), i = 1, . . . ,m. (C.3)

From (C.2) and (C.3),

bi =
ai+1 − ai

hi
− 1

3
(ci+1 + 2ci)hi, i = 1, . . . ,m. (C.4)

Replacing (C.3) and (C.4) in (C.1), for i = 1, . . . ,m, it holds that:

1

3
cihi +

2

3
ci+1(hi + hi+1) +

1

3
ci+2hi+1 =

ai+2

hi+1
+ ai+1

(
− 1

hi+1
− 1

hi

)
+

ai
hi
. (C.5)

Let be si = s(ti) and γi = s′′(ti) for i = 1, . . . ,m. From the explicit representation of s and s′′,

s(ti) = ai and s′′(ti) = 2ci for i = 1, . . . ,m. Then, for i = 1, . . . ,m, equation (C.5) can be written

as

γi
hi
6

+ γi+1
hi + hi+1

3
+ γi+2

hi+1

6
=

si+2

hi+1
+ si+1

(
− 1

hi+1
− 1

hi

)
+

si
hi
. (C.6)

Equations (C.6) constitute a system of m linear equations which can be written in matrix

notation as follows:

Rγγγ = Qsss, (C.7)

where R and Q are symmetric, cyclic–tridiagonal matrices of order m, and sss = (s1, . . . , sm)t and

γγγ = (γ1, . . . , γm)t. Thus, a periodic cubic spline is completely specified by giving its value and

second derivative at each of the knots ti, i = 1, . . . ,m.

The non zero entries of R and Q are expressed in terms of the distances between succesive

knots:

r1,1 = (hm + h1)/3 q1,1 = −1/h1 − 1/hm

r1,m = rm,1 = hm/6 q1,m = qm,1 = 1/hm

rii = (hi−1 + hi)/3, i = 2, . . . ,m qi,i = −1/hi−1 − 1/hi, i = 2, . . . ,m

ri−1,i = ri,i−1 = hi−1/6, i = 2, . . . ,m qi−1,i = qi,i−1 = 1/hi−1, i = 2, . . . ,m

The vectors sss and γγγ specify the curve s completely, and it is possible to give explicit formulae in

terms of sss and γγγ for the value and derivatives of s at any point t. Following Green and Silverman

(1994, pp. 22–23), the next expressions allow to compute the value of s and its derivative at any

point t ∈ [t1, tm+1). Let be hi(t) = t− ti, if ti ≤ t ≤ ti+1, i = 1, . . . ,m,
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s(t) =
hi(t)si+1 − hi+1(t)si

hi
+

hi(t)hi+1(t)

6

{(
1 +

hi(t)

hi

)
γi+1 +

(
1− hi+1(t)

hi

)
γi

}
. (C.8)

Taking derivatives in (C.8) with respect to t,

s′(t) =
si+1 − si

hi
+

hi(t)hi+1(t)(γi+1 − γi)

6hi

+
(hi(t) + hi+1(t))

6

{(
1 +

hi(t)

hi

)
γi+1 +

(
1− hi+1(t)

hi

)
γi

}
. (C.9)

From (C.8) and (C.9), it follows that s(t) and s′(t) can be written as linear combinations of sss

and γγγ. Given a grid of locations xxx = (x1, . . . , xN )t with xi ∈ [t1, tm+1) for all i then,

sxsxsx = Csss−Dγγγ,

s′xs
′
xs
′
x = C̃sss− D̃γγγ,

or equivalently, taking into account (C.7),

sxsxsx =
[
C −DR−1Q

]
sss = Msss,

s′xs
′
xs
′
x =

[
C̃ − D̃R−1Q

]
sss = M̃sss,

where sxsxsx = (s(x1), . . . , s(xN ))t, s′xs
′
xs
′
x = (s′(x1), . . . , s′(xN ))t and C, D, C̃ and D̃ are N×m coefficient

matrices defined as is given below:

For each xi, with i = 1, . . . , N :

• If tj ≤ xi ≤ tj+1 for some j = 1, . . . ,m− 1, then

Ci,j = 1− δij Di,j = δij(1− δij)(2− δij)h
2
j/6

Ci,j+1 = δij Di,j+1 = δij(1− δ2ij)h
2
j/6

C̃i,j = −1/hj D̃i,j =
(
2− 6δij + 3δ2ij

)
hj/6

C̃i,j+1 = 1/hj D̃i,j+1 =
(
1− 3δ2ij

)
hj/6,

where δij = hj(xi)/hj being hj(xi) = xi − tj .

• If tm ≤ xi ≤ tm+1 then,

Ci,m = 1− δim Di,m = δim(1− δim)(2− δim)h2m/6

Ci,1 = δim Di,1 = δim(1− δ2im)h2m−1/6

C̃i,m = −1/hm D̃i,m =
(
2− 6δim + 3δ2im

)
hm/6

C̃i,1 = 1/hm D̃i,m =
(
1− 3δ2im

)
hm/6,

where δim = hm(xi)/hm being hm(xi) = xi − tm.
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Now, it will be shown that the matrices are well defined. For any xi ∈ [tj , tj+1], i = 1, . . . , N

and j = 1, . . . ,m,

Ci,j+1 = δij =
hj(xi)

hj
,

Ci,j = 1− δij =

(
1− hj(xi)

hj

)
=

hj − hj(xi)

hj
= −hj+1(xi)

hj
,

Di,j =
δij(1− δij)(2− δij)h

2
j

6
=

1

6

hj(xi)

hj

(
−hj+1(xi)

hj

)(
1− hj+1(xi)

hj

)
h2j

= −hj(xi)hj+1(xi)

6

(
1− hj+1(xi)

hj

)
,

Di,j+1 =
δij(1− δ2ij)h

2
j

6
=

1

6

hj(xi)

hj

(
1−

(
hj(xi)

hj

)2
)
h2j

=
1

6

hj(xi)

hj

(
1− hj(xi)

hj

)(
1 +

hj(xi)

hj

)
h2j =

1

6

hj(xi)

hj

hj+1(xi)

hj

(
1 +

hj(xi)

hj

)
h2j

=
hj(xi)hj+1(xi)

6

(
1 +

hj(xi)

hj

)
,

where if xi ∈ [tm, tm+1], Ci,m+1 and Di,m+1 denote Ci,1 and Di,1, respectively. Then

. . Ci,jsj + Ci,j+1sj+1 −Di,jγj −Di,j+1γj+1

. . = −hj+1(xi)

hj
sj +

hj(xi)

hj
sj+1 +

hj(xi)hj+1(xi)

6

(
1− hj+1(xi)

hj

)
γj

. . −hj(xi)hj+1(xi)

6

(
1 +

hj(xi)

hj

)
γj+1

. . =
hj(xi)sj+1 − hj+1(xi)sj

hj
+

hj(xi)hj+1(xi)

6

[(
1− hj+1(xi)

hj

)
γj +

(
1 +

hj(xi)

hj

)
γj+1

]
,

that is equal to (C.8) for t = xi.

The entries of C̃ and D̃ are obtained by deriving with respect to xi the entries of the matrices

C and D. Computing C̃i,jsj + C̃i,j+1sj+1 − D̃i,jγj − D̃i,j+1γj+1 results expression (C.9).

Expression for the roughness penalty

A natural way of measuring the roughness of a twice–differentiable curve is to compute its
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integrated squared second derivative. Thus, from the explicit representation of s′′,

∫ tm+1

t1

(s′′(t))2dt =
m∑

i=1

∫ ti+1

ti

(s′′(t))2dt

=
m∑

i=1

∫ ti+1

ti

(2ci + 6di(t− ti))
2dt

=
m∑

i=1

∫ ti+1

ti

(4c2i + 24cidi(t− ti) + 36d2i (t− ti)
2)dt

=
m∑

i=1

4

[
c2i (ti+1 − ti) + 6cidi

∫ ti+1

ti

(t− ti)dt+ 9d2i

∫ ti+1

ti

(t− ti)
2dt

]

=
m∑

i=1

4

[
c2i (ti+1 − ti) + 6cidi

(ti+1 − ti)
2

2
+ 9d2i

(ti+1 − ti)
3

3

]
.

Using (C.3) and hi = ti+1 − ti for i = 1 . . . ,m,

∫ tm

t1

(s′′(t))2dt =
m−1∑

i=1

4/3hi(c
2
i + cici+1 + c2i+1) + 4/3hm(c2m + cmc1 + c21).

Since ci = γi/2,

∫ tm

t1

(s′′(t))2dt =
m−1∑

i=1

hi/3(γ
2
i + γiγi+1 + γ2i+1) + hm−1/3(γ

2
m−1 + γm−1γ1 + γ21) = γγγtRγγγ,

and using (C.7), ∫ T

0
(s′′(t))2dt = γγγtRγγγ = sssQR−1Qsss = sssKsss,

where K = QR−1Q.
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The NPCirc package

Title

Title Nonparametric Circular Methods

Version 1.0.0

Date 2012-12-24

Author Maŕıa Oliveira, Rosa M. Crujeiras and Alberto Rodŕıguez-Casal

Maintainer Maŕıa Oliveira <maria.oliveira@usc.es>

Depends R(≥ 2.11.0), circular, movMF, plotrix, shape, sn

Description This package implements nonparametric smoothing methods for circular data

License GPL–2

R topics documented:

circsizer.density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

circsizer.regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

cross.beds1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

cross.beds2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

cycle.changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

dcircmix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

dragonfly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

kern.den.circ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

kern.reg.circ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

nu.boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

nu.CV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
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circsizer.density CircSiZer map for density

Description

This function plots the CircSiZer map for circular density estimation based on circular kernel

methods, as described in Oliveira et al. (2013). The CircSiZer is an extension of SiZer proposed

by Chaudhuri and Marron (1999) to circular data.

Usage

circsizer.density(x, NU, ngrid=250, alpha=0.05, B=500, type=3,

raw.data=FALSE, log.scale=TRUE, zero=pi/2, clockwise=TRUE, title=NULL,

labels=NULL, label.pos=NULL, rad.pos=NULL)

Arguments

x Sample of angles in radians (between 0 and 2π) from which the estimate is to

be computed.

NU Vector of smoothing parameters. Values of NU must be positive. NU will be

coerced to be equally spaced. Length of vector NU must be at least 2.

ngrid Integer indicating the number of equally spaced angles between 0 and 2π

where the estimator is evaluated. Default ngrid=250.

alpha Significance level for the CircSiZer map. Default alpha=0.05.

B Integer indicating the number of bootstrap samples to estimate the standard

deviation of the derivative estimator. Default B=500.

type Number indicating the labels to display in the plot: 1 (directions), 2 (hours),

3 (angles in radians), 4 (angles in degrees) or 5 (months). Default type=3.

raw.data Logical, if TRUE, points indicated by x are stacked on the perimeter of the

circle. Default is FALSE.

log.scale Logical, if TRUE, the CircSiZer map is plotted in the scale − log10(NU). De-

fault is TRUE. See Details.

zero Where to place the starting (zero) point. Defaults to the North position.
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clockwise Whether to interpret positive positions as clockwise from the starting point.

The default is clockwise (clockwise=TRUE).

title Title for the plot.

labels Character or expression vector of labels to be placed at the label.pos. label.pos

must also be supplied.

label.pos Vector indicating the position (between 0 and 2π) at which the labels are to

be drawn.

rad.pos Vector (between 0 and 2π) with the drawing position for the radius.

Details

With CircSiZer, significance features (peaks and valleys) in the data are seeked via the con-

struction of confidence intervals for the scale-space version of the smoothed derivative curve,

as it is described in Oliveira et al. (2013). Thus, for a given point and a given value of the

smoothing parameter, the curve is significantly increasing (decreasing) if the confidence inter-

val is above (below) 0 and if the confidence interval contains 0, the curve for that value of the

smoothing parameter and at that point does not have a statistically significant slope. This

information is displayed in a circular color map, the CircSiZer map, in such a way that, at a

given point, the performance of the estimated curve is represented by a color ring with radius

proportional to the value of the smoothing parameter.

Differents colors allow to indentify peaks and valleys. Blue color indicates locations where

the curve is significantly increasing; red color shows where it is significantly decreasing and

purple indicates where it is not significantly different from zero. Gray color correspons to

those regions where there is not enough data to make statements about significance. Thus, at

a given bandwidth, a significant peak can be identified when a region of significant positive

gradient is followed by a region of significant negative gradient (i.e. blue-red pattern), and a

significant trough by the reverse (red-blue pattern), taking clockwise as the positive sense of

rotation.

If log.scale=TRUE then, the values of the considered smoothing parameters NU are trans-

formed to − log10 scale, i.e, a sequence of equally spaced smoothing parameters according to

the parameters -log10(max(NU)), -log10(min(NU)) and length(NU) is used. Hence, small

values of this parameter corresponds with larger rings and large values corresponds with smaller

rings. Whereas if log.scale=FALSE, small values of this parameter corresponds with smaller

rings and large values corresponds with larger rings.

The NAs will be automatically removed.

Value

CircSiZer map for density.
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Author(s)

Maŕıa Oliveira, Rosa M. Crujeiras and Alberto Rodŕıguez–Casal

References

Chaudhuri, P. and Marron, J.S. (1999). SiZer for exploration of structures in curves, Journal

of the American Statistical Association, 94, 807–823.

Oliveira, M., Crujeiras, R.M. and Rodŕıguez–Casal (2013) CircSiZer: an exploratory tool for

circular data. Environmental and Ecological Statistics, DOI: 10.1007/s10651-013-0249-0.

Examples

# set.seed(2012)

# x <- rcircmix(100,model=7)

# circsizer.density(x,NU=seq(0,50,length=12),type=4,zero=0,clockwise=FALSE)

circsizer.regression

CircSiZer map for regression

Description

This function plots the CircSiZer map for circular regression estimation based on circular

kernel methods, as described in Oliveira et al. (2013). The CircSiZer is an extension of SiZer

proposed by Chaudhuri and Marron (1999) to circular data.

Usage

circsizer.regression(x, y, NU, ngrid=150, alpha=0.05, B=500, B2=250,

type=3, log.scale=TRUE, zero=pi/2, clockwise=TRUE, title=NULL,

labels=NULL, label.pos=NULL, rad.pos=NULL)

Arguments

x Sample of angles in radians (between 0 and 2π) for the circular covariate.

y Sample of angles for the dependent linear variable. This must be same length

as x.

NU Vector of smoothing parameters. Values of NU must be positive. NU will be

coerced to be equally spaced. Length of vector NU must be at least 2.

ngrid Integer indicating the number of equally spaced angles between 0 and 2π

where the estimator is evaluated. Default ngrid=150.
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alpha Significance level for the CircSiZer map. Default alpha=0.05.

B Integer indicating the number of bootstrap samples to estimate the standard

deviation of the derivative estimator. Default B=500.

B2 Integer indicating the number of bootstrap samples to compute the denom-

inator in Step 2 of algorithm described in Oliveira et al. (2013). Default

B=250.

type Number indicating the labels to display in the plot: 1 (directions), 2 (hours),

3 (angles in radians), 4 (angles in degrees) or 5 (months). Default type=3.

log.scale Logical, if TRUE, the CircSiZer map is plotted in the scale − log10(NU). De-

fault is TRUE.

zero Where to place the starting (zero) point. Defaults to the North position.

clockwise Whether to interpret positive positions as clockwise from the starting point.

The default is clockwise (clockwise=TRUE).

title Title for the plot.

labels Character or expression vector of labels to be placed at the label.pos. label.pos

must also be supplied.

label.pos Vector indicating the position (between 0 and 2π) at which the labels are to

be drawn.

rad.pos Vector (between 0 and 2π) with the drawing position for the radius.

Details

See Details Section of circsizer.density. The NAs will be automatically removed.

Value

CircSiZer map for regression.

Author(s)

Maŕıa Oliveira, Rosa M. Crujeiras and Alberto Rodŕıguez–Casal

References

Chaudhuri, P. and Marron, J.S. (1999). SiZer for exploration of structures in curves, Journal

of the American Statistical Association, 94, 807–823.

Oliveira, M., Crujeiras, R.M. and Rodŕıguez–Casal (2013) CircSiZer: an exploratory tool for

circular data. Environmental and Ecological Statistics, DOI: 10.1007/s10651-013-0249-0.
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Examples

# Not run: the code works but it is slow

# set.seed(2012)

# n <- 100

# x <- seq(0,2*pi,length=n)

# y <- sin(x)+sqrt(0.5)*rnorm(n)

# circsizer.regression(x,y,NU=seq(10,60,by=5),title="CircSiZer for regression")

cross.beds1 Cross-beds azimuths (I)

Description

This dataset corresponds to azimuths of cross-beds in the Kamthi river (India). Originally

analized by SenGupta and Rao (1966) and included in Table 1.5 in Mardia (1972), the dataset

collects 580 azimuths of layers lying oblique to principal accumulation surface along the river,

being these layers known as cross-beds.

Usage

data(cross.beds1)

Format

A single-column data frame with 580 observations in radians.

Details

Data were originally recorded in degrees.

Source

Mardia, K.V. (1972) Statistics of Directional Data. Academic Press, New York.

SenGupta, S. and Rao, J.S. (1966) Statistical analysis of cross–bedding azimuths from the

Kamthi formation around Bheemaram, Pranhita: Godavari Valley. Sankhya: The Indian

Journal of Statistics, Series B, 28, 165–174.

Examples

data(cross.beds1)
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cross.beds2 Cross-beds (II)

Description

A dataset of cross-beds measurements from Himalayan molasse in Pakistan presented in Fisher

(1993). This dataset collects 104 measurements of Chaudan Zam large bedforms.

Usage

data(cross.beds2)

Format

A single-column data frame with 104 observations in radians.

Details

Data were originally recorded in degrees.

Source

Fisher, N.I. (1993) Statistical Analysis of Circular Data. Cambridge University Press, Cam-

bridge, U.K.

Examples

data(cross.beds2)

cycle.changes Cycle changes

Description

The data consists on the changes in cycles of temperatures at ground level in periglacial

Monte Alvear (Argentina). The dataset includes 350 observations which correspond to the

hours where the temperature changes from positive to negative and viceversa from February

2008 to December 2009.

Usage

data(cycle.changes)
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Format

A data frame with 350 observations on two variables: change, which indicates if the temper-

ature changed from positive to negative (-1) or viceversa (1) and hour, which indicates the

hour (in radians) when the cycle change occured.

Details

Analysis of cycle changes in temperatures for another locations can be seen in Oliveira et al.

(2013).

Source

The authors want to acknowledge Prof. Augusto Pérez–Alberti for providing the data, col-

lected within the Project POL2006–09071 from the Spanish Ministry of Education and Science.

References

Oliveira, M., Crujeiras R.M. and Rodŕıguez–Casal, A. (2013) Nonparametric circular methods

for exploring environmental data. Environmental and Ecological Statistics, 20, 1–17.

Examples

data(cycle.changes)

thaw <- (cycle.changes[,1]==1)

frosting <- (cycle.changes[,1]==-1)

plot(circular(cycle.changes[frosting,2]), shrink=1.08, col=4, stack=TRUE,

zero=pi/2, rotation="clock", axes=FALSE, main="Frosting")

axis.circular(at=circular(seq(0, 7/4*pi, pi/4)),

labels=c("0h","3h","6h","9h","12h","15h","18h","21h"),

zero=pi/2, rotation="clock")

plot(circular(cycle.changes[thaw,2]), shrink=1.08, col=2, stack=TRUE,

zero=pi/2, rotation="clock", axes=FALSE, main="Thaw")

axis.circular(at=circular(seq(0, 7/4*pi, pi/4)),

labels=c("0h","3h","6h","9h","12h","15h","18h","21h"),

zero=pi/2, rotation="clock")

dcircmix Mixtures of circular distributions
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Description

Density and random generation functions for a circular distribution or a mixture of circu-

lar distributions allowing the following components: circular uniform, von Mises, cardioid,

wrapped Cauchy, wrapped normal, wrapped skew-normal.

Usage

dcircmix(x, model=NULL, dist=NULL, param=NULL)

rcircmix(n, model=NULL, dist=NULL, param=NULL)

Arguments

x Vector of angles in radians to compute the density.

n Number of observations to generate.

model Number between 1 and 20, corresponding with a model defined in Oliveira et

al. (2012). See Details.

dist Vector of strings with the distributions that participate in the mixture: "unif",

"vm", "car", "wc", "wn", "wsn".

param List with three or four objects. The first object will be a vector containing

the proportion of each distribution in the mixture, the second object will

be a vector containg the location parameters and the third object will be a

vector containing the concentration parameters. If the wrapped skew-normal

distribution participates in the mixture, a fourth object will be introduced in

the list, a vector containing the skewness parameter. In this case, the values

of the skewness parameter for the rest of distributions in the mixture will be

zero. The length of each object in the list must be equal to the length of

argument dist. See Details and Examples.

Details

Models from Oliveira et al. (2012) are described below:

M1: Circular uniform.

M2: von Mises: vM(π, 1).

M3: Wrapped normal: WN(π, 0.9).

M4: cardioid: C(π, 0.5).

M5: Wrapped Cauchy: WC(π, 0.8).

M6: Wrapped skew–normal: WSN(π, 1, 20).

M7: Mixture of two von Mises 1/2vM(0, 4) + 1/2vM(π, 4).
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M8: Mixture of two von Mises 1/2vM(2, 5) + 1/2vM(4, 5).

M9: Mixture of two von Mises 1/4vM(0, 2) + 3/4vM(π/
√
3, 2).

M10: Mixture of von Mises and wrapped Cauchy 4/5vM(π, 5) + 1/5WC(4π/3, 0.9).

M11: Mixture of three von Mises 1/3vM(π/3, 6) + 1/3vM(π, 6) + 1/3vM(5π/3, 6).

M12: Mixture of three von Mises 2/5vM(π/2, 4) + 1/5vM(π, 5) + 2/5vM(3π/2, 4).

M13: Mixture of three von Mises 2/5vM(0.5, 6) + 2/5vM(3, 6) + 1/5vM(5, 24).

M14: Mixture of four von Mises 1/4vM(0, 12)+1/4vM(π/2, 12)+1/4vM(π, 12)+1/4vM(3π/2, 12).

M15: Mixture of wrapped Cauchy, wrapped normal, von Mises and wrapped skew-normal

3/10WC(π − 1, 0.6) + 1/4WN(π + 0.5, 0.9) + 1/4vM(π + 2, 3) + 1/5WSN(6, 1, 3).

M16: Mixture of five von Mises 1/5vM(π/5, 18)+1/5vM(3π/5, 18)+1/5vM(π, 18)+1/5vM(7π/5, 18)+

1/5vM(9π/5, 18).

M17: Mixture of cardioid and wrapped Cauchy 2/3C(π, 0.5) + 1/3WC(π, 0.9).

M18: Mixture of four von Mises 1/2vM(π, 1)+1/6vM(π−0.8, 30)+1/6vM(π, 30)+1/vM(π+

0.8, 30).

M19: Mixture of five von Mises 4/9vM(2, 3)+5/36vM(4, 3)+5/36vM(3.5, 50)+5/36vM(4, 50)+

5/36vM(4.5, 50).

M20: Mixture of two wrapped skew-normal and two wrapped Cauchy 1/3WSN(0, 0.7, 20) +

1/3WSN(π, 0.7, 20) + 1/6WC(3π/4, 0.9) + 1/6WC(7π/4, 0.9).

When the wrapped skew-normal distribution participates in the mixture, the argument param

for function dcircmix can be a list with fifth objects. The fifth object would be the num-

ber of terms to be used in approximating the density function of the wrapped skew normal

distribution. By default the number of terms used is 20.

Value

dcircmix gives the density and rcircmix generates random deviates.

Author(s)

Maŕıa Oliveira, Rosa M. Crujeiras and Alberto Rodŕıguez–Casal

References

Oliveira, M., Crujeiras, R.M. and Rodŕıguez–Casal, A. (2012) A plug–in rule for bandwidth

selection in circular density. Computational Statistics and Data Analysis, 56, 3898–3908.



dragonfly 113

Examples

set.seed(2012)

# Linear representation of models M1-M20, each one in a separate window

for (i in 1:20){

dev.new()

f <- function(x) dcircmix(x, model=i)

curve(f, from=0, to=2*pi, main=i)

}

# Circular representation of model vM(0,1)

vM <- function(x) dcircmix(x, model=NULL, dist="vm", param=list(p=1, mu=0, con=1))

curve.circular(vM, n=1000, xlim=c(-1.65,1.65), main="vM(0,1)")

# Random generation from a vM(0,1)

datavM <- rcircmix(50, model=NULL, dist="vm", param=list(p=1, mu=0, con=1))

points(circular(datavM))

# Circular representation of model M18

f18 <- function(x) dcircmix(x, model=18)

curve.circular(f18, n=1000, xlim=c(-1.65,1.65), main="Model 18")

# Random generation from model M8

data18 <- rcircmix(50, model=18)

points(circular(data18))

# Density function and random generation from a mixture of a von Mises and

# a wrapped skew-normal

f <- function(x) dcircmix(x, model=NULL, dist=c("vm","wsn"),

param=list(p=c(0.5,0.5), mu=c(0,pi), con=c(1,1), sk=c(0,10), l=10))

curve.circular(f, n=500, xlim=c(-1.65,1.65))

data <- rcircmix(100, model=NULL, dist=c("vm","wsn"),

param=list(p=c(0.5,0.5), mu=c(0,pi), con=c(1,1), sk=c(0,10)))

points(circular(data))

# Density function and random generation from a mixture of two von Mises and

# two wrapped Cauchy

f <- function(x) dcircmix(x, model=NULL, dist=c("vm","vm","wc","wc"),

param=list(p=c(0.3,0.3,0.2,0.2), mu=c(0,pi,pi/2,3*pi/2), con=c(5,5,0.9,0.9)))

curve.circular(f, n=1000, xlim=c(-1.65,1.65))

data <- rcircmix(100, model=NULL, dist=c("vm","vm","wc","wc"),

param=list(p=c(0.3,0.3,0.2,0.2), mu=c(0,pi,pi/2,3*pi/2), con=c(5,5,0.9,0.9)))

points(circular(data))

dragonfly Orientations of dragonflies
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Description

The data, presented in Batschelet (1981), consists on the orientation of 214 dragonflies with

respect to the sun’s azimuth.

Usage

data(dragonfly)

Format

A single-column data frame with 214 observations in radians.

Details

Data were originally recorded in degrees.

Source

Batschelet, E. (1981) Circular Statistics in Biology. Academic Press, New York.

Examples

data(dragonfly)

plot(circular(dragonfly), shrink=1.3)

t <- seq(0,2*pi,length=500)

dens <- kern.den.circ(dragonfly$orientation, t, nu=10)

lines(circular(t), dens)

kern.den.circ Nonparametric circular kernel density estimation

Description

This function computes circular kernel estimates with the given bandwidth, taking the von

Mises distribution as circular kernel.

Usage

kern.den.circ(x, t=NULL, nu, from=0, to=2*pi, len=250)
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Arguments

x Sample of angles in radians (between 0 and 2π) from which the estimate is to

be computed.

t Vector of angles in radians where to evaluate the estimator. If NULL equally

spaced points are used according to the parameters from, to and len.

nu Smoothing parameter to be used. The value of nu can be chosen by using the

functions nu.rt, nu.CV, nu.pi and nu.boot.

from, to Left and right-most points of the grid at which the density is to be estimated.

len Number of equally spaced points at which the density is to be estimated.

Details

The NAs will be automatically removed.

Value

Numeric vector of the same length of t with the kernel density estimated values at t.

Author(s)

Maŕıa Oliveira, Rosa M. Crujeiras and Alberto Rodŕıguez–Casal

References

Oliveira, M., Crujeiras, R.M. and Rodŕıguez–Casal, A. (2012) A plug–in rule for bandwidth

selection in circular density. Computational Statistics and Data Analysis, 56, 3898–3908.

Taylor, C.C. (2008) Automatic bandwidth selection for circular density estimation. Compu-

tational Statistics and Data Analysis, 52, 3493–3500.

See Also

nu.rt, nu.CV, nu.pi, nu.boot

Examples

## Estimating the density function of a sample of circular data

set.seed(2012)

n <- 100

x <- rcircmix(n, model=14)

t <- seq(0,2*pi,length=500)

est <- kern.den.circ(x, t, nu=50)

plot(t, dcircmix(t,model=14), ylim=c(0,0.4), type="l", lwd=2,

main="Linear representation")
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lines(t, est, col=2)

plot(circular(x), shrink=1.3, main="Circular representation")

lines(circular(t), dcircmix(t,model=14), lwd=2)

lines(circular(t), est, col=2)

kern.reg.circ Nonparametric circular kernel regression estimation

Description

This function implements the Nadaraya-Watson estimator and the Local-Linear estimator for

circular-linear data (circular covariate and linear response), as described in Di Marzio et al.

(2009) and Oliveira et al. (2013), taking the von Mises distribution as kernel.

Usage

kern.reg.circ(x, y, t=NULL, nu, method="LL", tol=300, from=0, to=2*pi,

len=250)

Arguments

x Sample of angles in radians (between 0 and 2π) for the circular covariate.

y Sample of angles for the dependent linear variable. This must be same length

as x.

t Vector of angles (in radians) where to evaluate the estimator. If NULL equally

spaced points are used according to the parameters from, to and len.

nu Smoothing parameter to be used. The value of nu can be chosen by using the

function nu.LSCV.reg

method Character string giving the estimator to be used. This must be one of "LL"

for Local-Linear estimator or "NW" for Nadaraya-Watson estimator. Default

method="LL".

tol Tolerance parameter to avoid overflow when nu is larger than tol. Default is

tol=300.

from, to Left and right-most points of the grid at which the density is to be estimated.

len Number of equally spaced points at which the density is to be estimated.

Details

See Section 3 in Oliveira et al. (2013). See Di Marzio et al. (2009). The NAs will be

automatically removed.
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Value

Numeric vector of the same length of t with the values of the estimate at the evaluation points.

Author(s)

Maŕıa Oliveira, Rosa M. Crujeiras and Alberto Rodŕıguez–Casal

References

Di Marzio, M., Panzera A. and Taylor, C. C. (2009) Local polynomial regression for circular

predictors. Statistics and Probability Letters, 79, 2066–2075.

Oliveira, M., Crujeiras R.M. and Rodŕıguez–Casal, A. (2013) Nonparametric circular methods

for exploring environmental data. Environmental and Ecological Statistics, 20, 1–17.

See Also

nu.LSCV.reg

Examples

data(speed.wind2)

dir <- rad(speed.wind2$Direction)

vel <- speed.wind2$Speed

nas <- which(is.na(vel))

dir <- dir[-nas]

vel <- vel[-nas]

t <- seq(0,2*pi,length=200)

estLL <- kern.reg.circ(dir, vel, t=t, nu=30)

estNW <- kern.reg.circ(dir, vel, t=t, nu=30, method="NW")

plot(dir, vel, xlab="direction", ylab="speed (m/s)", axes=FALSE)

lines(t, estLL, col=2)

lines(t, estNW, col=3)

axis(1, at=circular(seq(0,2*pi,by=pi/4)),

labels=c("N","NE","E","SE","S","SW","W","NW","N"))

legend("topleft", c("LL","NW"), lty=1, col=2:3)

axis(2)

nu.boot Bootstrap method
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Description

This function implements the bootstrap procedure proposed by Di Marzio et al. (2011) for

selecting the smoothing parameter for density estimation taking the von Mises density as

kernel.

Usage

nu.boot(x, lower=0, upper=100, np=500, tol=0.1)

Arguments

x Sample of angles in radians (between 0 and 2π) from which the smoothing

parameter is to be computed.

lower, upper lower and upper boundary of the interval to be used in the search for the

value of the smoothing parameter. Default lower=0 and upper=100.

np Number of points where to evaluate the estimator for numerical integration.

Default np=500.

tol Convergence tolerance for optimize.

Details

This method is based on the proposal of Taylor (1989) for linear data. See also Oliveira et al.

(2012). The NAs will be automatically removed.

Value

Value of the smoothing parameter.

Author(s)

Maŕıa Oliveira, Rosa M. Crujeiras and Alberto Rodŕıguez–Casal

References

Di Marzio, M., Panzera A. and Taylor, C.C. (2011) Kernel density estimation on the torus.

Journal of Statistical Planning and Inference, 141, 2156–2173.

Oliveira, M., Crujeiras, R.M. and Rodŕıguez–Casal, A. (2012) A plug–in rule for bandwidth

selection in circular density. Computational Statistics and Data Analysis, 56, 3898–3908.

Taylor, C.C. (1989) Bootstrap choice of the smoothing parameter in kernel density estimation.

Biometrika, 76, 705–712.
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See Also

kern.den.circ, nu.rt, nu.CV, nu.pi

Examples

set.seed(2012)

n <- 100

x <- rcircmix(n, model=17)

nu.boot(x, lower=0, upper=20)

nu.CV Cross-validation for density estimation

Description

This function gives the least squares cross-validation smoothing parameter or the likelihood

cross-validation smoothing parameter for density estimation.

Usage

nu.CV(x, method="LCV", lower=0, upper=100, tol=0.1, np=500)

Arguments

x Sample of angles in radians (between 0 and 2π) from which the smoothing

parameter is to be computed.

method Character string giving the cross-validation rule to be used. This must be one

of "LCV" or "LSCV". Default method="LCV".

lower, upper lower and upper boundary of the interval to be used in the search for the

value of the smoothing parameter. Default lower=0 and upper=100.

tol Convergence tolerance for optimize. Default tol=0.1.

np Number of points where to evaluate the estimator for numerical integration

when method="LSCV". Default np=500.

Details

The LCV smoothing parameter is obtained as the value of ν that maximizes the logarithm

of the likelihood cross-validation function (8) in Oliveira et al. (2013). The LSCV smoothing

parameter is obtained as the value of ν that minimizes expression (7) in Oliveira et al. (2013).

See also Hall et al. (1987) and Oliveira et al. (2012). The NAs will be automatically removed.
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Value

Value of the smoothing parameter.

Author(s)

Maŕıa Oliveira, Rosa M. Crujeiras and Alberto Rodŕıguez–Casal

References

Hall, P., Watson, G.S. and Cabrera, J. (1987) Kernel density estimation with spherical data,

Biometrika, 74, 751–762.

Oliveira, M., Crujeiras, R.M. and Rodŕıguez–Casal, A. (2012) A plug–in rule for bandwidth

selection in circular density. Computational Statistics and Data Analysis, 56, 3898–3908.

Oliveira, M., Crujeiras R.M. and Rodŕıguez–Casal, A. (2013) Nonparametric circular methods

for exploring environmental data. Environmental and Ecological Statistics, 20, 1–17.

See Also

kern.den.circ, nu.rt, nu.CV, nu.boot

Examples

set.seed(2012)

n <- 100

x <- rcircmix(n, model=11)

nu.CV(x, method="LCV", lower=0, upper=20)

nu.CV(x, method="LSCV", lower=0, upper=20)

NPCirc-package Nonparametric circular methods.

Description

This package implements nonparametric kernel methods for density and regression estimation

for circular data.

Details

Package: NPCirc

Type: Package

Version: 1.0.0
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Date: 2012-12-24

License: GPL-2

LazyLoad: yes

This package incorporates the function kern.den.circ which computes the kernel circular

density estimator. For choosing the smoothing parameter different functions are available:

nu.rt, nu.CV, nu.pi, and nu.boot. For circular-linear regression (circular covariate and

linear response), Nadaraya-Watson and Local-Linear smoothers, are also available in func-

tion kern.reg.circ. The function nu.LSCV.reg computes the least squares cross-validation

bandwidth for those estimators. Functions circsizer.density and circsizer.regression

provides CircSiZer maps for kernel density estimation and regression estimation, respectively.

Functions dcircmix and rcircmix compute the density function and generate random samples

of a circular distribution or a mixture of circular distributions, allowing for different compo-

nents such as the circular uniform, von Mises, cardioid, wrapped Cauchy, wrapped normal

and wrapped skew-normal. Finally, some data sets are provided. Missing data are allowed.

Registries with missing data are simply removed.

For a complete list of functions, use library(help="NPCirc").
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Oliveira, M., Crujeiras, R.M. and Rodŕıguez–Casal (2013) CircSiZer: an exploratory tool for

circular data. Environmental and Ecological Statistics, DOI: 10.1007/s10651-013-0249-0.



122 nu.LSCV.reg

nu.LSCV.reg Least squares cross-validation for circular-linear regression estima-

tion

Description

This function provides the least squares cross-validation (LSCV) smoothing parameter for the

Nadaraya-Watson and Local-Linear estimators when the covariate is circular and the response

variable is linear.

Usage

nu.LSCV.reg(x, y, method="LL", lower=0, upper=100, tol=0.1)

Arguments

x Vector of data in radians (between 0 and 2π) for the circular covariate.

y Vector of data for the dependent linear variable. This must be same length

as x.

method Character string giving the estimator to be used. This must be one of "LL"

or "NW". Default method="LL".

lower, upper lower and upper boundary of the interval to be used in the search for the

value of the smoothing parameter. Default lower=0 and upper=100.

tol Convergence tolerance for optimize. Default tol=0.1.

Details

The LSCV smoothing parameter is obtained as the value of ν that minimizes expression (13)

in Oliveira et al. (2013). The NAs will be automatically removed.

Value

Value of the smoothing parameter.

Author(s)

Maŕıa Oliveira, Rosa M. Crujeiras and Alberto Rodŕıguez–Casal

References

Oliveira, M., Crujeiras R.M. and Rodŕıguez–Casal, A. (2013) Nonparametric circular methods

for exploring environmental data. Environmental and Ecological Statistics, 20, 1–17.
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See Also

kern.reg.circ

Examples

set.seed(2012)

n <- 100

x <- seq(0,2*pi,length=n)

y <- sin(x)+0.2*rnorm(n)

nu.LSCV.reg(x, y, method="LL", lower=1, upper=20)

nu.LSCV.reg(x, y, method="NW", lower=1, upper=20)

nu.pi Plug–in rule

Description

This function implements the von Mises scale plug-in rule for the smoothing parameter for

density estimation when the number of components in the mixture is selected by Akaike

Information Criterion (AIC) which selects the best model between a mixture of 2-5 von Mises

distributions.

Usage

nu.pi(x, M=NULL, lower=0, upper=100, np=500, tol=0.1, outM=FALSE)

Arguments

x Sample of angles in radians (between 0 and 2π) from which the smoothing

parameter is to be computed.

M Integer indicating the number of components in the mixture. If M=1, the rule

of thumb is carried out with κ estimated by maximum likelihood. If M=NULL,

AIC will be used.

lower, upper lower and upper boundary of the interval to be used in the search for the

value of the smoothing parameter. Default lower=0 and upper=100.

np Number of points where to evaluate the estimator for numerical integration.

Default np=500.

tol Convergence tolerance for optimize. Default tol=0.1.

outM Logical; if TRUE the function also returns the number of components in the

mixture. Default, outM=FALSE.
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Details

The value of the smoothing parameter is chosen by minimizing the asymptotic mean integrated

squared error (AMISE) derived by Di Marzio et al. (2009) assuming that the data follow a

mixture of von Mises distributions. The number of componentes in the mixture can be fixed by

the user, by specifying the argument M or selected by using AIC (default option) as described

in Oliveira et al. (2012). The NAs will be automatically removed.

Value

Vector with the value of the smoothing parameter and the number of components in the

mixture (if specified).

Author(s)

Maŕıa Oliveira, Rosa M. Crujeiras and Alberto Rodŕıguez–Casal

References

Oliveira, M., Crujeiras, R.M. and Rodŕıguez–Casal, A. (2012) A plug–in rule for bandwidth

selection in circular density. Computational Statistics and Data Analysis, 56, 3898–3908.

See Also

kern.den.circ, nu.rt, nu.CV, nu.boot

Examples

set.seed(2012)

n <- 100

x <- rcircmix(n,model=18)

nu.pi(x, M=3)

nu.pi(x, outM=TRUE) # Using AIC

nu.rt Rule of thumb

Description

This function implements the selector proposed by Taylor (2008) for density estimation, based

on an estimation of the concentration parameter of a von Mises distribution. The concentration

parameter can be estimated by maximum likelihood or by a robustified procedure as described

in Oliveira et al. (2013).



nu.rt 125

Usage

nu.rt(x, robust=FALSE, alpha=0.5)

Arguments

x Sample of angles in radians (between 0 and 2π) from which the smoothing

parameter is to be computed.

robust Logical, if robust=FALSE the parameter κ is estimated by maximum likeli-

hood, if TRUE it is estimated as described in Oliveira et al. (2012b). Default

robust=FALSE.

alpha Arc probability when robust=TRUE. Default is alpha=0.5. See Details.

Details

When robust=TRUE, the parameter κ is estimated as follows:

1. Select α ∈ (0, 1) and find the shortest arc containing α · 100% of the sample data.

2. Obtain the estimated κ̂ in such way that the probability of a von Mises centered in the

midpoint of the arc is alpha.

The NAs will be automatically removed.

See also Oliveira et al. (2012).

Value

Value of the smoothing parameter.

Author(s)

Maŕıa Oliveira, Rosa M. Crujeiras and Alberto Rodŕıguez–Casal

References

Oliveira, M., Crujeiras, R.M. and Rodŕıguez–Casal, A. (2012) A plug–in rule for bandwidth

selection in circular density. Computational Statistics and Data Analysis, 56, 3898–3908.

Oliveira, M., Crujeiras R.M. and Rodŕıguez–Casal, A. (2013) Nonparametric circular methods

for exploring environmental data. Environmental and Ecological Statistics, 20, 1–17.

Taylor, C.C. (2008) Automatic bandwidth selection for circular density estimation. Compu-

tational Statistics and Data Analysis, 52, 3493–3500.

See Also

kern.den.circ, nu.CV, nu.pi, nu.boot
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Examples

set.seed(2012)

n <- 100

x <- rcircmix(n,model=7)

nu.rt(x)

nu.rt(x, robust=TRUE)

speed.wind Wind speed and wind direction data

Description

This dataset consists of hourly observations of wind direction and wind speed in winter season

(from November to February) from 2003 until 2012 in the Atlantic coast of Galicia (NW–

Spain). Data are registered by a buoy located at longitude -0.210E and latitude 43.500N in

the Atlantic Ocean. The dataset speed.wind2, analized in Oliveira et al. (2013), is a subset

of speed.wind which is obtained by taking the observations with a lag period of 95 hours.

Usage

data(speed.wind)

data(speed.wind2)

Format

speed.wind is a data frame with 19488 observations on six variables: day, month, year, hour,

wind speed (in m/s) and wind direction (in degrees). speed.wind2 is a subset with 200

observations.

Details

Data contains NAs. There is no data in November 2005, December 2005, January 2006,

February 2006, February 2007, February 2009 and November 2009. Months of November

2004, December 2004, January 2007, December 2009 are not fully observed.

Source

Data can be freely downloaded from the Spanish Portuary Authority (http://www.puertos.es).

References

Oliveira, M., Crujeiras, R.M. and Rodŕıguez–Casal (2013) CircSiZer: an exploratory tool for

circular data. Environmental and Ecological Statistics, DOI: 10.1007/s10651-013-0249-0.
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Examples

data(speed.wind2)

t <- seq(0,2*pi,length=500)

dir <- rad(speed.wind2$Direction)

# Density

plot(circular(dir), stack=TRUE, zero=pi/2, rotation="clock", axes=FALSE)

axis.circular(at=circular(seq(0,2*pi,by=pi/4)),

labels=c("N","NE","E","SE","S","SW","W","NW","N"), zero=pi/2,

rotation="clock")

rose.diag(circular(dir), bins=16, add=TRUE, axes=FALSE, zero=pi/2,

rotation="clock")

rose.diag(circular(dir), bins=16, shrink=1.1, axes=FALSE, zero=pi/2,

rotation="clock")

axis.circular(at=circular(seq(0,7*pi/4,by=pi/4)),

labels=c("N","NE","E","SE","S","SW","W","NW"), zero=pi/2, rotation="clock")

lines(circular(t), kern.den.circ(dir,t,nu=1), lwd=2, lty=2, zero=pi/2,

rotation="clock")

lines(circular(t), kern.den.circ(dir,t,nu=10), lwd=2, lty=1, zero=pi/2,

rotation="clock")

lines(circular(t), kern.den.circ(dir,t,nu=60), lwd=2, lty=3, zero=pi/2,

rotation="clock")

# Regression

vel <- speed.wind2$Speed

nas <- which(is.na(vel))

dir <- dir[-nas]

vel <- vel[-nas]

radial.plot(vel, dir, rp.type="s", start=pi/2, clockwise=TRUE,

point.col="gray", radial.lim=c(0,15), label.pos=seq(0,7*pi/4,by=pi/4),

labels=c("N","NE","E","SE","S","SW","W","NW"))

radial.plot(as.numeric(kern.reg.circ(dir,vel,t,nu=1,method="LL")), t,

rp.type="p", add=TRUE, start=pi/2, clockwise=TRUE, radial.lim=c(0,15),

lwd=2, lty=2)

radial.plot(as.numeric(kern.reg.circ(dir,vel,t,nu=10,method="LL")),t,

rp.type="p", add=TRUE, start=pi/2, clockwise=TRUE, radial.lim=c(0,15),

lwd=2, lty=1)

radial.plot(as.numeric(kern.reg.circ(dir,vel,t,nu=60,method="LL")),t,

rp.type="p", add=TRUE, start=pi/2, clockwise=TRUE, radial.lim=c(0,15),

lwd=2, lty=3)
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temp.wind Temperature and wind direction data

Description

The data, analized in Oliveira et al. (2013), consists of observations of temperature and wind

direction during the austral summer season 2008-2009 (from November 2008 to March 2009)

in Vinciguerra (Tierra del Fuego, Argentina).

Usage

data(temp.wind)

Format

A data frame with 3648 observations on four variables: Date, Time, Temperature (in degrees

Celsius) and Direction (in degrees).

Details

Data contains NAs.

Source

The authors want to acknowledge Prof. Augusto Pérez–Alberti for providing the data, col-

lected within the Project POL2006–09071 from the Spanish Ministry of Education and Science.

References

Oliveira, M., Crujeiras R.M. and Rodŕıguez–Casal, A. (2013) Nonparametric circular methods

for exploring environmental data. Environmental and Ecological Statistics, 20, 1–17.

Examples

data(temp.wind)

winddir <- rad(temp.wind[,4]) # wind direction in radians

temp <- temp.wind[,3]

nas <- which(is.na(winddir))

winddir <- winddir[-nas]

temp <- temp[-nas]

# value of the smoothing parameter selected using the function nu.LSCV.reg
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# with method="LL"

nu <- 3.41

t <- seq(0,2*pi,length=100)

est <- kern.reg.circ(winddir, temp, t, nu=nu, method="LL")

# Circular representation

radial.plot(temp, winddir, rp.type="s", labels=c("N","NE","E","SE","S","SW",

"W","NW"), start=pi/2, clockwise=TRUE, label.pos=seq(0,7*pi/4,by=pi/4),

lwd=2, point.col="grey50", radial.lim=c(-10,15))

radial.plot(as.vector(est), rp.type="p", start=pi/2, clockwise=TRUE, lwd=2,

radial.lim=c(-10,15), add=TRUE)

# Linear representation

plot(t, est, type="l", xlab="", ylab="Temperatute (žC)", axes=FALSE)

axis(1, labels=c("N","NE","E","SE","S","SW","W","NW","N"),

at=seq(0,2*pi,by=pi/4))

axis(2)
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Summary

In many applied fields such as biology, metoerology, ecology or medicine, measurements from the

process under study are directions. Circular data are a particular case of directional data where

the observations are directions in two dimensions which can be expressed as angles. Due to the

circular nature of this kind of data, which implies fixing a reference point and a sense of rotation

in order to define a circular observation, the statistical methods for the analysis of linear data are

not appropriate for the analysis of circular data. Some general references on circular statistics are

Mardia (1972), Batschelet (1981), Fisher (1993), Mardia and Jupp (2000) and Jammalamadaka

and SenGupta (2001).

Density estimation with circular data and regression estimation with a scalar response and a

circular covariate are two usual problems in a large variety of disciplines. Both problems can be

approached from a parametric or a nonparametric perspective. In most of the applied papers

dealing with circular data, parametric methods are used. Thus, the main goal of this work is

focused on nonparametric techniques for circular data, putting special emphasis in the smoothing

parameter selection problem and in the assessment of which features observed in a smoothed curve

are significant.

This thesis has been structured in four chapters. For each of them, a brief summary is given

below, with specific references to the main achievements.

Chapter 1: Circular models and data. In this chapter the concept of circular distribu-

tion and the most important circular parametric distribution families are introduced. Specifically,

von Mises, cardioid and some wrapped distributions are reviewed. The method of moments and

the maximum likelihood method for estimating the parameters of a von Mises distribution are

detailed. The EM algorithm for estimating the parameters of a finite mixture of von Mises dis-

tributions is also specified. Although this dissertation is focused in nonparametric methods, the

introduction of some parametric techniques is required since they will be needed in the following

chapters. In the last section of this chapter, several datasets which will be analized by using the

techniques presented along this thesis are described.

The von Mises distribution, vM(µ, κ), is a unimodal and symmetric distribution characterized

131



132 Summary

by two parameters a mean direction µ ∈ [0, 2π) and a concentration parameter κ ≥ 0. Its density

function is

f(θ;µ, κ) =
1

2πI0(κ)
eκ cos(θ−µ), 0 ≤ θ < 2π,

where Ir denotes the modified Bessel function of the first kind and order r.

More flexible models, allowing for multimodality and/or asymmetry, can be obtained by mix-

ing a finite number of circular distributions. A particular case is the mixture of M von Mises

distributions vM(µm, κm), m = 1, . . . ,M , whose density is

f(θ;µµµ,κκκ,ppp) =
M∑

m=1

pmfm(θ;µm, κm), 0 ≤ θ < 2π,

where ppp = (p1, . . . , pM ) with pm > 0 and
∑M

m=1 pm = 1 are the weights of the component den-

sities, µµµ = (µ1, . . . , µM ) ∈ [0, 2π)M is the vector of circular means, κκκ = (κ1, . . . , κM ) ∈ (R+)
M

is the vector of concentrations and fm denotes the density function of a von Mises distribution

vM(µm, κm) for m = 1, . . . ,M . The main problem for estimating the parameters of a mixture of

von Mises distributions lies in the fact that it is not known which density component generates

each observation. In this case, when the information provided by the sample is imcomplete, the

EM algorithm (see Banerjee et al., 2005) allows to estimate its parameters.

Chapter 2: Nonparametric curve estimation for circular data. This chapter is devoted

to the nonparametric density estimation and nonparametric regression estimation for a circular

explanatory variable and a linear response. In the density setting, the kernel density estimator

for circular data is introduced. This estimator depends on a smoothing parameter which controls

the global aspect of the curve. In this chapter, different techniques for selecting the smoothing

parameter are reviewed. The main contribution is the introduction of a new smoothing parameter

selector that allows to estimate complex circular densities, accounting for asymmetry and/or

multimodality. In the regression setting, a review of the methods for a circular covariate and

a scalar response is provided, both for kernel methods and spline smoothers. Specifically, the

adaptation of the Nadaraya–Watson and Local Linear estimators to the circular nature of the

covariate and the periodic smoothing spline estimator are presented. The performance of the

three estimators is compared in a simulation study.

Given a random sample of angles Θ1, . . . ,Θn ∈ [0, 2π) from a circular random variable Θ with

unknown density f , the circular kernel density estimator of f is defined as:

f̂(θ; ν) =

n∑

i=1

1

n
Kν(θ −Θi), 0 ≤ θ < 2π,

where Kν is a circular kernel function with concentration parameter ν > 0. As a circular kernel,

the von Mises distribution with concentration parameter ν is considered. With this specific kernel,
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the circular kernel density estimator has the following expression:

f̂(θ; ν) =
1

n2πI0(ν)

n∑

i=1

eν cos(θ−Θi), 0 ≤ θ < 2π.

A critical issue when applying this estimator in practice is the choice of the smoothing parameter

ν, since large values of this parameter will lead to undersmoothed estimators and small values of

ν will provide oversmoothed estimators. Usually, the value of the smoothing parameter is selected

in order to minimize some error criterion, such as the mean integrated squared error (MISE,

MISE(ν) = E(
∫
(f̂ − f)2), where f̂ is the nonparametric estimator that depends on ν). For the

circular kernel density estimator defined above, the asymptotic expression for the MISE (AMISE),

when ν → ∞ and
√
νn−1 → 0, is given by

AMISE(ν) =

{
1

16

[
1− I2(ν)

I0(ν)

]2 ∫ 2π

0

(
f ′′(θ)

)2
dθ +

I0(2ν)

2nπ (I0(ν))
2

}
,

where f ′′ denotes the second–order derivative of the target density to be estimated (see Di Marzio

et al., 2009).

The new proposal for selecting the smoothing parameter consists in estimating the integral∫ 2π
0 (f ′′(θ))2 dθ, which appears in the AMISE expression, taking a finite mixture of von Mises dis-

tributions as reference density. Hence, the plug–in selector (see Oliveira et al., 2013b) is obtained

as follows:

Step 1. Select the number of mixture components M for the reference distribution, for example, by

using the Akaike Information Criterion.

Step 2. Estimate the AMISE as follows:

Step 2.1. Estimate the parameters in the von Mises mixture, (µm, κm, αm), para m = 1, . . . ,M ,

by using the EM algorithm.

Step 2.2. Compute the integral
∫
(f̂ ′′(θ))2dθ, where f̂ ′′ is the second derivative of the density

function of a mixture of M von Mises distributions with the parameters estimated in

the previous step.

Step 2.3. Plug–in the quantity above in the AMISE expression to get ÂMISE(ν).

Step 3. Minimize ÂMISE(ν) and obtain ν̂PI .

The performance of the new plug–in selector is compared through a simulation study with the

cross–validation rules introduced by Hall et al. (1987), the rule of thumb proposed by Taylor

(2008) and the bootstrap method proposed by Di Marzio et al. (2011). Results obtained from the

simulation study showed that the new plug-in rule procedure for smoothing parameter selection in

circular density estimation behaves satisfactorily for all the simulation scenarios, equalizing or even
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outperforming the other methods. The good performance of the plug–in selector is also observed

in the real data examples, corresponding to cross–beds azimuths and orientation of dragonflies.

The second part of this chapter is focused on nonparametric regression estimation for a circular

explanatory variable and a linear response. In this setting, two types of smoothers are studied:

kernel smoothers and spline smoothers.

Let {(Θi, Yi), i = 1, . . . , n} be a random sample from a circular random variable Θ and a linear

random variable Y , respectively. The relation between these variables may be modelled by

Yi = f(Θi) + σ(Θi)εi, i = 1, . . . , n

where f denotes the unknown regression function, σ2(·) is the conditional variance of Y given Θ

and εi are real–valued random variables with zero mean and unit variance.

Following Di Marzio et al. (2009), the Local Lineal estimator for f(θ) is given by f̂CLL(θ; ν) =

β̂0 where

(β̂0, β̂1) = argmin
(a,b)

n∑

i=1

Kν(θ −Θi) [Yi − (a+ b sin(θ −Θi))]
2 ,

where Kν denotes a vM(0, ν).

If the regression function at θ is locally approximated by a constant instead of using a trigono-

metric polynomial, the Nadaraya–Watson estimator for circular–linear data is obtained:

f̂CNW (θ; ν) =

∑n
i=1 YiKν(θ −Θi)∑n
i=1Kν(θ −Θi)

.

As for density estimation, choosing the smoothing parameter is of crucial importance in re-

gression analysis. A simple and widely used procedure for smoothing selection in the regression

setting is the least squares cross–validation rule, which chooses ν as the value minimizing

CV (ν) =
1

n

n∑

i=1

[
Yi − f̂−i(Θi; ν)

]2
,

where f̂−i denotes the estimator of f computed leaving out the pair (Θi, Yi).

Periodic smoothing splines, introduced by Cogburn and Davis (1974), offer an alternative to

the Nadaraya–Watson and Local Linear estimators and moreover, this kind of smoother is valid

when the covariate is any periodic random variable with period T (the distribution of (X + T )

coincides with the distribution of X), in particular, when T = 2π.

Let {(Xi, Yi), i = 1, . . . , n} ∈ [0, T )×R be a random sample from a periodic random variable X

with period T and a linear random variable Y . Assume that data are sorted across the covariate

and there is no repeated data. Consider again the noparametric regression model

Yi = f(Xi) + σ(Xi)εi, i = 1, . . . , n,
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where f is an unknown regression function that must be estimated, εi are random variables with

zero mean and unit variance and σ2(·) is the conditional variance of Y given X.

The smoothing spline estimator of the regression function f , f̂λ, is obtained by finding the

smooth function that minimizes the penalized least squares criterion:

S(g) =

n∑

i=1

[Yi − g(Xi)]
2 + λ

∫ T

0

[
g′′(x)

]2
dx,

over the class of twice continuously differentiable periodic functions, g, with period T , for some

λ > 0. The parameter λ is known as the smoothing parameter. In this case, small values

of λ will provide undersmoothed estimators whereas large values of this parameter will lead to

oversmoothed estimators.

It is shown that, for λ > 0, f̂λ is neccesarily a periodic cubic spline un spline on [X1, Xn+1]

with knots at sampling points Xi, i = 1, . . . , (n+ 1), where Xn+1 = X1 + T . Fixed a value of the

smoothing parameter λ, the estimator evaluated in the sample points, f̂̂f̂fλ = (f̂λ(X1), . . . , f̂λ(Xn))
t,

is given by:

f̂̂f̂fλ = AλYYY

where YYY = (Y1, . . . , Yn)
t and Aλ = (In +λK)−1 with K = QR−1Q (matrices Q and R are defined

in Appendix C). The value of the estimator can be obtained for any point x ∈ [X1, Xn+1). Hence,

for a grid of locations xxx = (x1, . . . , xN )T with xi ∈ [X1, Xn+1), the value of the estimator on those

points, f̂̂f̂fλ,xxx = (f̂λ(x1), . . . , f̂λ(xN ))t, is given by

f̂̂f̂fλ,xxx = MAλYYY ,

where M is an (N × n) coefficient matrix defined as in Appendix C. As for kernel estimators, the

smoothing parameter λ can be selected by cross-validation.

The performance of kernel and periodic smoothing splines estimators is compared through a

simulation study, where the smoothing parameter has been selected by cross–validation. In the

simulation study, it is observed that Nadaraya–Watson and Local Linear estimators perform sim-

ilarly for all the regression models considered whereas, the periodic smoothing spline estimator

provides better results in all the scenarios in terms of integrated squared error. Moreover, the

estimators are applied to analyze the relation between the wind direction and wind speed in the

Atlantic coast of Galicia.

Chapter 3. Assessment of significant features in nonparametric curve estimates.

This chapter introduces a new nonparametric technique for the exploratory analysis of circular

data, namely CircSiZer, which allows to know which observed features in the smoothed curve (den-

sity or regression) are statistically significant and which ones are simply artifacts of the sampling

noise.

CircSiZer (Oliveira et al. 2013) is an adaptation to circular data of the SiZer method proposed

originally by Chaudhuri and Marron (1999) to circular data. The idea of SiZer methods is to
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provide a graphical tool that shows the increasing/decreasings patterns of a smooth curve. SiZer

methods considers a wide range of smoothing parameters and so, the smoothing parameter selec-

tion is avoided. Thus, for each value of the smoothing parameter, CircSiZer address the question

of which features, like peaks and valleys, are really present, i.e., which ones are really significant.

CircSiZer assess the significance of features by constructing confidence intervals for the derivative

of the smoothed curve f ′(θ; τ) ≡ E(f̂ ′(θ; τ)), where f denotes the density or regression function

and τ is the smoothing parameter (τ ≡ ν for kernel estimators and τ ≡ λ for the smoothing spline

estimator).

So, at each pair (θ; τ) with θ ∈ [0, 2π) and τ > 0, the curve at a smoothing level τ is significantly

increasing (decreasing) if the confidence interval is above (below) 0 and if the confidence interval

contains 0, the curve at smoothing level τ and at point θ does not have a statistically significant

slope. This information is displayed in a circular color map, the CircSiZer map, in such a way

that, at a given τ , the performance of the estimated curve in the interval [0, 2π) is represented by

a color ring where differents colors will allow to indentify the increasing and decreasing regions.

Confidence intervals are of the form
(
f̂ ′(θ; τ)− q(1−α/2) · ŝd(f̂ ′(θ; τ)), f̂ ′(θ; τ)− q(α/2) · ŝd(f̂ ′(θ; τ))

)
,

where f̂ ′(θ; ν) is the estimator of the derivative of the density or regression function, q(1−α/2)

and q(α/2) are appropriate quantiles and ŝd(f̂ ′(θ; τ)) is an estimator of the standard deviation of

f̂ ′(θ; τ).

Four alternatives of computing the quantiles q(1−α/2) and q(α/2) are studied, two approaches

are based on a normal approximation (see Chaudhuri e Marron, 1999):

(i) q(1−α/2) and q(α/2) are the quantiles of order (1 − α/2) and α/2 of the standard normal

distribution.

(ii) q(1−α/2) = −q(α/2) = Φ−1
{

1+(1−α)1/m(τ)

2

}
where Φ−1 is the inverse of the standard normal

distribution function and m(τ) = n/avgθ∈Dτ
ESS(θ; τ) with ESS(θ; τ) the Effective Sample

Size for each (θ; τ) and Dτ = {θ : ESS(θ; τ) ≥ 5}.

And two approaches are based on bootstrap techniques:

(iii) q(1−α/2) e q(α/2) are the sample quantiles of order (1−α/2) and α/2 of Z∗
1 (θ; τ), . . . , Z

∗
B(θ; τ)

where

Z∗
b (θ; τ) =

f̂ ′(θ; τ)∗b − f̂ ′(θ; τ)

ŝd(f̂ ′(θ; τ)∗b)
, b = 1, . . . , B

is the standardized version of the derivative of the estimator computed for the b–th bootstrap

sample drawn with replacement from the data.

(iv) q(1−α/2) is the quantile of order (1−α/2) of Z∗1
sup, . . . , Z

∗B
sup and q(α/2) is the quantile of order

α/2 of Z∗1
inf , . . . , Z

∗B
inf where
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Z∗b
inf = inf

θ∈Dτ

Z∗
b (θ, τ) e Z∗b

sup = sup
θ∈Dτ

Z∗
b (θ, τ), b = 1, . . . , B

Whereas (i) and (iii) provide pointwise confidence intervals, (ii) and (iv) provide simultaneous

confidence intervals.

In order to obtain the confidence intervals, an estimator of the standard deviation of f̂ ′(θ; τ)

is required. For density estimation, an estimation of the variance is provided by

v̂ar
(
f̂ ′(θ; τ)

)
= n−1s2

(
K ′

ν(θ −Θ1), . . . ,K
′
ν(θ −Θn)

)
, 0 ≤ θ < 2π,

where s2 is the usual sample variance of n data. For regression estimation, since the proposed

estimators are linear, the value of f̂ ′(θ; τ) in a grid θθθ = (θ1, . . . , θ2), may be written as f̂ ′
θf̂
′
θf̂
′
θ = HYYY

where H is an (N × n) coefficient matrix and YYY = (Y1, . . . , Yn)
t is the response vector. Thus, for

fixed design,

var(f̂ ′
θf̂
′
θ̂f
′
θ) = HΣHt,

where Σ = diag
{
σ2(Θ1), σ

2(Θ2), . . . , σ
2(Θn)

}
. If homoscedasticity is assumed then, σ2(Θi) = σ2

(i = 1, . . . , n) may be estimated by using the estimator due to Rice (1984). For random design,

ŝd
(
f̂ ′(θ; τ)

)
is estimated by bootstrap:

ŝd
(
f̂ ′(θ; τ)

)
=
[
s2
(
f̂ ′∗1(θ; τ), . . . , f̂ ′∗B(θ; τ)

)]1/2
,

where f̂ ′∗b(θ; τ) is the derivative of the estimator computed for the b–th bootstrap sample drawn

with replacement from the data.

For the density setting, through a simulation study, the coverage of pointwise confidence inter-

vals based on the normal approximation and the ones based on bootstrap have been compared.

From the results, it is observed that, for large values of the smoothing parameter, both intervals

tend to identify some artificial features as significant, this fact is enhanced for bootstrap intervals.

For small values of this parameter, both approaches behave similarly, in terms of coverage and

number of modes flagged as significant.

Another simulation study compares the coverage of simultaneous confidence intervals based on

the normal approximation and the ones based on bootstrap. The study allowed to observe that

the coverage of bootstrap simultaneous confidence intervals is close to the nominal level (1 − α)

whereas the coverage of normal simultaneous confidence intervals is below the target value. It also

was observed that the use of bootstrap simultaneous confidence intervals may present difficulties

for attaining the goal of detecting the modes of the model. In this sense, it was seen that CircSiZer

map with pointwise confidence intervals may help to identify the modes presented by the model

however, the interpretation of pointwise CircSiZer map must be done carefully since it may flags

spurious modes as significant.

In the regression setting, the coverage of simultaneous bootstrap confidence intevals based on

the normal approximation has been studied for the case of fixed design. Results showed that the
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coverage of these intervals is below the nominal value. The same behaviour has been observed for

the Local Linear estimator and for the periodic smoothing spline estimator. For random design,

the performance of CircSiZer with simultaneous bootstrap confidence intervals has been checked

in some simulated data. In this case, both estimators perform similarly.

Finally, the practical usefulness of the proposed CircSiZer map is illustrated by the analysis

of some real datasets where the goal is to study when certain changes in temperature occur, in

what directions craks in cemented femoral components appear or which is the relation between

the wind direction and the wind speed.

Chapter 4: Software: NPCirc package. The last chapter is devoted to the presentation

of the NPCirc package for R, which implements the estimators and methods described in the

previous chapters and which is intended to provide R users with a comprehensive set of functions

for nonparametric density and regression analysis with circular data.

Specifically, it implements the circular kernel density estimator and the differents methods for

selecting the smoothing parameter described in Chapter 2. In the regression setting, for linear

response and scalar covariate, NPCirc contains a function for nonparametric estimation of the

regression curve by Nadaraya–Watson and Local Linear, as described in Chapter 2. Both for

density and regression, the CircSiZer method with pointwise bootstrap confidence intervals is also

available. The library also includes one function which allows to compute the density function

of a circular distribution (von Mises, cardioid, wrapped Cauchy, wrapped normal and wrapped

skew–normal) or the density of a mixture of these distributions and, another function which allows

for random generation from a circular distribution or from a mixture of circular distributions. The

NPCirc package also includes the datasets analyzed along the manuscript.

Appendix A. This appendix includes the specific formulae of those circular models considered

in the simulation study carried out in Chapter 2 and used for illustration purposes throughout

the manuscript.

Appendices B and C. These appendices give technical details on kernel regression smoothers

and periodic smoothing splines, which complement Chapters 2 and 3.

Appendix D. This appendix describes the functions in the NPCirc library, giving instructions

about their usage and arguments and illustrating them with examples.
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Resumo en galego

En numerosos campos aplicados, como a biolox́ıa, a meteorolox́ıa, a ecolox́ıa ou a medicina, as

medidas obtidas dos procesos de interese son direccións. Os datos circulares, dos que nos ocupamos

nesta tese, son un caso particular de datos direccionais onde as observacións son direccións en dúas

dimensións que adoitan expresarse mediante ángulos. Debido á natureza circular deste tipo de

datos, que conleva a necesidade de fixar un punto de referencia e un sentido de rotación para definir

unha observación circular, as técnicas estat́ısticas utilizadas para a análise de datos lineais non

resultan adecuadas para a análise de datos circulares. Neste eido, algunhas referencias xerais son os

libros de Mardia (1972), Batschelet (1981), Fisher (1993), Mardia e Jupp (2000) e Jammalamadaka

e SenGupta (2001).

A estimación da función de densidade da que provén unha mostra de datos circulares, aśı como

a estimación da función de regresión cando a variable explicativa é circular e a variable resposta é

escalar, son dous problemas recurrentes en diferentes contextos. Ambos os dous poden enfocarse

dende unha perspectiva paramétrica ou nonparamétrica. Na maioŕıa dos traballos de carácter

aplicado que se atopan na literatura sobre datos circulares utiĺızanse técnicas paramétricas. Aśı,

o obxectivo principal deste traballo é afondar nas técnicas nonparamétricas para datos circulares,

facendo especial fincapé no problema que atangue á selección do parámetro de suavizado e á

determinación das caracteŕısticas significativas observadas na curva suavizada.

A continuación inclúese un breve resumo de cada un dos caṕıtulos que constitúen esta tese

doutoral, facendo mención aos principais avances obtidos en cada un deles.

Caṕıtulo 1: Modelos e datos circulares. Neste caṕıtulo introdúcese o concepto de distribu-

ción circular e rev́ısanse as principais familias paramétricas de distribucións circulares: von Mises,

cardioide e varias distribucións enroladas. Detállase a estimación de parámetros polo método dos

momentos e por máxima verosimilitude para a distribución von Mises e a estimación por máxima

verosimilitude dos parámetros dunha mixtura de tales distribucións, utilizando neste último caso

o algoritmo EM. Se ben esta tese se centra en métodos nonparamétricos, a introdución de técnicas

paramétricas será necesaria como ferramenta para o desenvolvemento de caṕıtulos posteriores. Na

última sección deste caṕıtulo descŕıbense varios conxuntos de datos reais que serán analizados

utilizando as diferentes técnicas presentadas ao longo da tese.

141
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A distribución von Mises, vM(µ, κ), é unha distribución unimodal e simétrica caracterizada

por dous parámetros, unha dirección media µ ∈ [0, 2π) e un parámetro de concentración κ ≥ 0.

A súa función de densidade é

f(θ;µ, κ) =
1

2πI0(κ)
eκ cos(θ−µ), 0 ≤ θ < 2π,

onde Ir denota a función de Bessel modificada de primeiro tipo e orde r.

Poden obterse modelos circulares máis complexos presentando multimodalidade e/ou asimetŕıa

mediante mixturas finitas de distribucións circulares. Un caso particular son as mixturas de M

distribucións von Mises vM(µm, κm), m = 1, . . . ,M , cuxa densidade é

f(θ;µµµ,κκκ,ppp) =
M∑

m=1

pmfm(θ;µm, κm), 0 ≤ θ < 2π,

onde ppp = (p1, . . . , pM ) con pm > 0 e
∑M

m=1 pm = 1 é o vector de pesos de cada distribución,

µµµ = (µ1, . . . , µM ) ∈ [0, 2π)M é o vector de dirección medias, κκκ = (κ1, . . . , κM ) ∈ (R+)
M

é o

vector de parámetros de concentración e fm denota a función de densidade dunha distribución

vM(µm, κm), para m = 1, . . . ,M . O principal problema á hora de estimar os parámetros dunha

mixtura de tales distribucións reside en que non se adoita coñecer a que compoñente da mix-

tura pertence cada dato. Neste caso, cando a información da mostra está incompleta, o algoritmo

EM (véxase Banerjee et al., 2005) permite a estimación por máxima verosimilitud dos parámetros.

Caṕıtulo 2: Estimación nonparamétrica de curvas para datos circulares. Este caṕı-

tulo ad́ıcase á estimación nonparamétrica da función de densidade con datos circulares e da regre-

sión con covariable circular e resposta escalar. No contexto da densidade, introdúcese o estimador

tipo núcleo circular como estimador nonparamétrico da densidade circular. Este estimador de-

pende dun parámetro de suavizado que controla o seu aspecto global. Neste caṕıtulo rev́ısanse os

procedementos existentes para a selección do parámetro de suavizado do que depende dito esti-

mador. A principal achega neste ámbito é a proposta dun novo selector do parámetro de suavizado

que permite estimar nonparametricamente densidades circulares cunha estrutura complexa, como

pode ser a asimetŕıa e/ou multimodalidade. No contexto da regresión, faise unha revisión dos

métodos existentes para o caso dunha covariable circular e unha variable resposta escalar, tanto

das técnicas tipo núcleo como das técnicas baseadas en suavizadores tipo spline. Concretamente,

preséntanse os estimadores tipo núcleo de Nadaraya–Watson e Local Lineal convenientemente

adaptados á natureza circular da covariable e os splines de suavizado periódicos. O comporta-

mento dos tres estimadores compárase nun estudo de simulación. A continuación, descŕıbense

brevemente as achegas neste caṕıtulo.

Dada unha mostra aleatoria simple Θ1,Θ2, . . . ,Θn ∈ [0, 2π) dunha variable circular Θ con

función de densidade descoñecida f , def́ınese o estimador tipo núcleo da densidade circular f

como:

f̂(θ; ν) =
n∑

i=1

1

n
Kν(θ −Θi), 0 ≤ θ < 2π,
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onde Kν é unha función núcleo circular con parámetro de concentración ν > 0. Como núcleo

circular, considérase a función de densidade dunha distribución von Mises con parámetro de

concentración ν. Con este núcleo espećıfico, o estimador da densidade circular ten a seguinte

expresión:

f̂(θ; ν) =
1

n2πI0(ν)

n∑

i=1

eν cos(θ−Θi), 0 ≤ θ < 2π.

O problema principal do estimador tipo núcleo circular reside na elección do parámetro de

suavizado ν, xa que valores grandes deste parámetro proporcionarán estimadores infrasuavizados

e valores pequenos proporcionarán estimadores sobresuavizados. O valor de dito parámetro adoita

calcularse de maneira que se minimice algún criterio de erro, como o erro cadrático medio integrado

(MISE, MISE(ν) = E(
∫
(f̂ − f)2), onde f̂ é o estimador nonparamétrico que depende de ν). Na

práctica, utiĺızase a versión as asintótica do MISE (AMISE), que para o estimador tipo núcleo

circular, cando ν → ∞ e
√
νn−1 → 0, vén dada por

AMISE(ν) =

{
1

16

[
1− I2(ν)

I0(ν)

]2 ∫ 2π

0

(
f ′′(θ)

)2
dθ +

I0(2ν)

2nπ (I0(ν))
2

}
,

onde f ′′ denota a derivada segunda da densidade descoñecida (véxase Di Marzio et al., 2009).

O novo selector proposto consiste en estimar a integral
∫ 2π
0 (f ′′(θ))2 dθ, que aparece na expresión

do AMISE, tomando como densidade de referencia unha mixtura finita de distribucións von Mises.

Deste xeito, o selector plug–in que se propón (véxase Oliveira et al., 2013b) obtense como segue:

Paso 1. Seleccionar o número de compoñentes M da mixtura para a distribución de referencia, por

exemplo, utilizando o criterio de información de Akaike.

Paso 2. Estimar o AMISE como segue:

Paso 2.1. Estimar os parámetros da mixtura de distribucións von Mises, (µm, κm, αm), para m =

1, . . . ,M , mediante o algoritmo EM.

Paso 2.2. Calcular a integral
∫
(f̂ ′′(θ))2dθ, onde f̂ ′′ denota a derivada segunda da función de

densidade dunha mixtura de M distribucións von Mises cos parámetros estimados no

paso anterior.

Paso 2.3. Substitúır esta cantidade na expresión do AMISE para obter ÂMISE(ν).

Paso 3. Minimizar ÂMISE(ν) con respecto a ν e obter ν̂PI .

O comportamento do selector plug–in compárase coas regras de validación cruzada introducidas

por Hall et al. (1987), a regra proposta por Taylor (2008) e o método bootstrap proposto en Di

Marzio et al. (2011) nun estudo de simulación. Os resultados de dito estudo amosan que a nova

regra plug–in se comporta satisfactoriamente en todos os escenarios considerados igualando ou

incluso superando aos outros métodos. O bo comportamento do selector tamén se observa na
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aplicación a tres conxuntos de datos clásicos, relativos á orientación de estratos cruzados e a

orientación de libélulas.

A segunda parte deste caṕıtulo ad́ıcase a estimación nonparamétrica da función de regresión

cando a variable resposta é lineal e a covariable é circular. Neste contexto, estúdanse dous tipos

de suavizadores: estimadores tipo núcleo e estimadores tipo spline.

Sexa {(Θi, Yi), i = 1, . . . , n} unha mostra aleatoria da variable aleatoria bidimensional (Θ, Y ),

onde Θ é unha variable circular e Y é unha variable lineal. Dende agora, asúmese que o erro e a

covariable son incorrelados. A relación entre estas dúas variables pode escribirse da forma

Yi = f(Θi) + σ(Θi)εi, i = 1, . . . , n

onde f é a función de regresión que supoñemos descoñecida, σ2(·) é a varianza condicional de Y

dada Θ e εi son variables aleatorias con media cero e varianza un. Seguindo a Di Marzio et al.

(2009), o estimador Local Lineal para f(θ) vén dado por f̂CLL(θ; ν) = β̂0 onde

(β̂0, β̂1) = argmin
(a,b)

n∑

i=1

Kν(θ −Θi) [Yi − (a+ b sin(θ −Θi))]
2 ,

sendo Kν a función de densidade da distribución vM(0, ν).

Se a función de regresión se aproxima localmente por unha constante en lugar de usar un

polinomio trigonométrico, obtense o estimador de Nadaraya–Watson para covariable circular que

vén dado por

f̂CNW (θ; ν) =

∑n
i=1 YiKν(θ −Θi)∑n
i=1Kν(θ −Θi)

.

Ao igual que na estimación da función de densidade, a selección do parámetro de suavizado en

regresión é de crucial importancia. A regra de validación cruzada por mı́nimos cadrados selecciona

ν de maneira que se minimice

CV (ν) =
1

n

n∑

i=1

[
Yi − f̂−i(Θi; ν)

]2
,

onde f̂−i denota o estimador da función de regresión construido a partir da mostra orixinal despois

de eliminar o par (Θi, Yi).

Unha alternativa aos estimadores tipo núcleo de Nadaraya–Watson e Local–Lineal son os splines

de suavizado periódicos, introducidos por Cogburn e Davis (1974), que ademais, son válidos para

a estimación da función de regresión cando a covariable é calquera variable periódica de peŕıodo

T (a distribución de (X + T ) coincide coa distribución de X), en particular, cando T = 2π.

Sexa {(Xi, Yi), i = 1, . . . , n} ∈ [0, T )× R unha mostra aleatoria da variable aleatoria bidimen-

sional (X,Y ) onde X é unha variable periódica con peŕıodo T e Y é unha variable linear. Asúmese

que os datos están ordeados segundo a covariable e non hai datos repetidos. Considerando nova-

mente o modelo de regresión nonparamétrico

Yi = f(Xi) + σ(Xi)εi, i = 1, . . . , n,
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onde f é a función de regresión descoñecida que debe estimarse, εi son variables aleatorias con

media cero e σ2(·) é a varianza condicional de Y dada X.

O estimador tipo spline da función de regresión, f̂λ, obtense como a función que minimiza a

seguinte suma de cadrados penalizada:

S(g) =
n∑

i=1

[Yi − g(Xi)]
2 + λ

∫ T

0

[
g′′(x)

]2
dx,

sobre a clase de funcións periódicas, g, con peŕıodo T e dúas veces diferenciables, para algún

λ > 0. O parámetro λ coñécese como parámetro de suavizado. Neste caso, valores pequenos de λ

proporcionarán estimadores infrasuavizados, mentres que valores grandes deste parámetro darán

lugar a estimadores sobresuavizados.

Demóstrase que, para λ > 0, f̂λ é necesariamente un spline cúbico periódico en [X1, Xn+1] con

nodos nos puntos da mostra Xi, i = 1, . . . , (n + 1), onde Xn+1 = X1 + T . Fixado un valor do

parámetro de suavizado λ, o estimador avaliado nos puntos mostrais f̂̂f̂fλ = (f̂λ(X1), . . . , f̂λ(Xn))
t

vén dado por:

f̂̂f̂fλ = AλYYY

onde YYY = (Y1, . . . , Yn)
t e Aλ = (In + λK)−1 con K = QR−1Q (as matrices Q e R están definidas

no Apéndice C). O valor do estimador pode obterse para calquera punto x ∈ [X1, Xn+1). Aśı

para unha grella xxx = (x1, . . . , xN )T con xi ∈ [X1, Xn+1), o estimador en ditos puntos, f̂̂f̂fλ,xxx =

(f̂λ(x1), . . . , f̂λ(xN ))t, vén dado por

f̂̂f̂fλ,xxx = MAλYYY ,

onde M é unha matriz (N × n) definida como no Apéndice C. Ao igual que para os estimadores

tipo núcleo, o parámetro de suavizado λ pode seleccionarse por validación cruzada.

O comportamento dos estimadores tipo núcleo e do estimador baseado en splines de suavizado

periódicos compárase nun breve estudo de simulación, onde os respectivos parámetros de suavizado

son seleccionados mediante validación cruzada por mı́nimos cadrados. No estudo de simulación

obsérvase que os estimadores de Nadaraya–Watson e Local–Lineal se comportan de maneira moi

semellante mentres que o estimador tipo spline produce mellores resultados en termos do erro

cadrático integrado. Ademais, os estimadores apĺıcanse a un conxunto de datos reais sobre a

dirección e velocidade do vento na costa atlántica de Galicia.

Caṕıtulo 3. Determinación de caracteŕısticas significativas na estimación non-

paramétrica de curvas. Este caṕıtulo presenta unha nova técnica nonparamétrica para a análise

exploratoria de datos circulares, denominada CircSiZer, que permite coñecer que caracteŕısticas

observadas na curva suavizada (densidade ou regresión), son estat́ısticamente significativas e cales

se poden atribúır á variabilidade dos datos.

O CircSiZer (Oliveira et al., 2013a) é unha adaptación a datos circulares do método SiZer

proposto orixinalmente por Chaudhuri e Marron (1999). A idea dos métodos SiZer é proporcionar
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unha ferramenta gráfica que amose os patróns de crecemento e decrecemento significativo da curva

suavizada. Ademais, as técnicas SiZer consideran un amplo rango de parámetros de suavizado

evitando aśı o problema da súa selección. Deste xeito, para cada valor do parámetro de suavizado,

abordan a cuestión de que caracteŕısticas, tales como picos e vales, están realmente presente nos

datos, é dicir, cales son estatisticamente significativas e cales son debidas á variabilidade mostral.

A metodolox́ıa CircSiZer aborda esta cuestión construindo intervalos de confianza para a derivada

da curva suavizada f ′(θ; τ) ≡ E(f̂ ′(θ; τ)), onde f representa aqúı a función de densidade ou de

regresión segundo o contexto e τ representa o parámetro de suavizado (τ ≡ ν para os estimadores

tipo núcleo e τ ≡ λ para os estimadores tipo spline).

Aśı, dado un par (θ, τ) con θ ∈ [0, 2π) e τ > 0, a curva suavizada f(θ; τ) é significativamente

crecente (decrecente) se o intervalo de confianza está por enriba (debaixo) de cero e, se o intervalo

de confianza contén ao cero, non se pode determinar crecemento nin decrecemento da curva. A

información porporcionada polos intervalos de confianza amósase nun mapa circular de tal forma

que, para cada nivel de suavizado τ , o comportamento da curva suavizada no intervalo [0, 2π)

se representa por un anel de cores, onde as diferentes cores permiten identificar as zonas de

crecemento e decrecemento da mesma.

Os intervalos de confianza para f ′(θ; τ) def́ınense da forma
(
f̂ ′(θ; τ)− q(1−α/2) · ŝd(f̂ ′(θ; τ)), f̂ ′(θ; τ)− q(α/2) · ŝd(f̂ ′(θ; τ))

)
,

onde f̂ ′(θ; ν) é a derivada do estimador da función de densidade ou da regresión, q(1−α/2) e q(α/2)

son cuantiles e ŝd(f̂ ′(θ; τ)) é un estimador da desviación t́ıpica de f̂ ′(θ; τ).

Estúdanse catro alternativas para o cálculo dos cuantiles q(1−α/2) e q(α/2), dúas delas baseadas

na aproximación normal (véxase Chaudhuri e Marron, 1999):

(i) q(1−α/2) e q(α/2) son os cuantiles de orde (1− α/2) e α/2 da distribución normal estándar.

(ii) q(1−α/2) = −q(α/2) = Φ−1
{

1+(1−α)1/m(τ)

2

}
onde Φ−1 é a inversa da función de distribución da

normal estándar e m(τ) = n/avgθ∈Dτ
ESS(θ; τ) sendo ESS(θ; τ) o tamaño mostral efectivo

definido para cada (θ; τ) e Dτ = {θ : ESS(θ; τ) ≥ 5}.

E outras dúas baseadas en técnicas bootstrap:

(iii) q(1−α/2) e q(α/2) son os cuantiles mostrais de orde (1− α/2) e α/2 de Z∗
1 (θ; τ), . . . , Z

∗
B(θ; τ)

onde

Z∗
b (θ; τ) =

f̂ ′(θ; τ)∗b − f̂ ′(θ; τ)

ŝd(f̂ ′(θ; τ)∗b)
, b = 1, . . . , B

é a versión estandarizada do estimador da derivada calculado para a b–ésima mostra boot-

strap extráıda dos datos con reemprazamento.

(iv) q(1−α/2) é o cuantil mostral de orde (1− α/2) de Z∗1
sup, . . . , Z

∗B
sup e q(α/2) é o cuantil mostral

de orde α/2 de Z∗1
inf , . . . , Z

∗B
inf onde
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Z∗b
inf = inf

θ∈Dτ

Z∗
b (θ, τ) e Z∗b

sup = sup
θ∈Dτ

Z∗
b (θ, τ), b = 1, . . . , B

Mentres que (i) e (iii) proporcionan intervalos de confianza puntuais, (ii) e (iv) proporcionan

intervalos de confianza simultáneos.

Para o cálculo dos intervalos de confianza tamén é preciso estimar a desviación t́ıpica de f̂ ′(θ; τ).

No contexto da densidade, a varianza pode estimarse mediante

v̂ar
(
f̂ ′(θ; τ)

)
= n−1s2

(
K ′

ν(θ −Θ1), . . . ,K
′
ν(θ −Θn)

)
, 0 ≤ θ < 2π,

onde s2 denota a varianza mostral de n datos. No contexto da regresión, para a estimación da

desviación t́ıpica faise uso de que os estimadores propostos son estimadores lineales e polo tanto

o valor de f̂ ′(θ; τ) nunha grella θθθ = (θ1, . . . , θ2), se pode escribir como f̂ ′
θf̂
′
θf̂
′
θ = HYYY onde H é unha

matriz de coeficientes de dimensión (N ×n) e YYY = (Y1, . . . , Yn)
t é o vector de respostas. Aśı, para

deseño fixo,

var(f̂ ′
θf̂
′
θ̂f
′
θ) = HΣHt,

onde Σ = diag
{
σ2(Θ1), σ

2(Θ2), . . . , σ
2(Θn)

}
. No caso de que se asuma homocedasticidade, entón

σ2(Θi) = σ2 (i = 1, . . . , n) pódese estimar co estimador proposto por Rice (1984). Para deseño

aleatorio, ŝd
(
f̂ ′(θ; τ)

)
é estimada por bootstrap mediante

ŝd
(
f̂ ′(θ; τ)

)
=
[
s2
(
f̂ ′∗1(θ; τ), . . . , f̂ ′∗B(θ; τ)

)]1/2
.

onde f̂ ′∗b(θ; τ) denota o valor do estimador para a b–ésima mostra bootsrap, extráıda dos datos

con reemprazamento.

No contexto da densidade, reaĺızase un estudo de simulación para comparar os intervalos de

cofianza puntuais baseados na aproximación normal e en técnicas bootstrap. De dito estudo

conclúese que, para valores elevados do parámetro de suavizado, ámbolos dous intervalos tenden a

identificar como significativas algunhas caracteŕısticas que non o son, sendo este feito máis acusado

para os intervalos bootstrap. Para valores pequenos deste parámetro, as dúas aproximacións se

comportan de maneira similar, tanto en termos de cobertura como do número de modas detectadas

como significativas.

Outro estudo de simulación compara a cobertura dos intervalos de confianza simultáneos basea-

dos na aproximación normal cos intervalos baseados na aproximación bootstrap. Este estudo

permite observar que as coberturas emṕıricas dos intervalos de confianza bootstrap están máis

proximas ao nivel nominal (1 − α) que as coberturas dos intervalos de confianza baseados na

aproximación normal. Tamén se observa que os intervalos de confianza simultáneos poden ter di-

ficultades para atopar as modas que presenta o modelo se o tamaño mostral non é suficientemente

grande. Neste sentido, mediante a aplicación a varios conxuntos de datos simulados, obsérvase

que os intervalos de confianza puntuais poden axudar a detectar as modas.
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No contexto da regresión, estúdase a cobertura dos intervalos de confianza bootstrap simultá-

neos no caso de deseño fixo. Os resultados amosan que a cobertura emṕırica destes intervalos

está por debaixo do valor nominal. O mesmo comportamento obsérvase tanto para o estimador

Local Lineal como para o estimador spline de suavizado periódico. Para deseño aleatorio, o com-

portamento do CircSiZer con intervalos de confianza simultáneos baseados en técnicas bootstrap

compróbase coa aplicación a conxuntos de datos simulados. Neste caso, os resultados con ambos

estimadores tamén son semellantes.

Finalmente, a utilidade práctica da metodolox́ıa proposta ilústrase coa análise de varios conxun-

tos de datos reais, cos que se pretende estudar cando se producen certos cambios nas temperaturas,

en que direccións se producen fracturas en implantes de cadeira cementados ou cal é a relación

entre a dirección e a velocidade do vento.

Caṕıtulo 4: Software: o paquete NPCirc. O derradeiro caṕıtulo ad́ıcase á presentación da

libraŕıa NPCirc para o paquete estat́ıstico R, que implementa os distintos estimadores e métodos

descritos nos caṕıtulos anteriores e cuxo obxectivo é proporcionar aos usuarios un amplo conxunto

de métodos nonparamétricos para a densidade e a regresión con datos circulares e que ademais,

complemente os paquetes xa existentes para a análise deste tipo de datos. En concreto, NPCirc

contén o estimador tipo núcleo da densidade circular con núcleo von Mises, xunto cos diferentes

métodos para elixir o parámetro de suavizado descritos no Caṕıtulo 2. No contexto de regresión,

para resposta escalar e covariable circular, a libraŕıa dispón dunha función para a estimación non-

paramétrica da función de regresión mediante os estimadores de Nadaraya–Watson e Local Lineal

adaptados á natureza circular da covariable, tamén descritos no Caṕıtulo 2. A metodolox́ıa Circ-

SiZer baseada nos estimadores tipo núcleo introducida no Caṕıtulo 3, tanto en densidade como

en regresión, tamén está dispoñible. A libraŕıa tamén inclúe funcións que permiten xerar obser-

vacións e calcular a función de densidade de varias distribucións circulares (von Mises, cardioid,

wrapped Cauchy, wrapped normal e wrapped skew–normal) ou de mixturas destas distribucións.

Ademais, o paquete NPCirc tamén recolle os conxuntos de datos que son analizados ao longo do

manuscrito.

Apéndice A. Neste apéndice están definidos os vinte modelos de densidades circulares usados

no estudo de simulación do Caṕıtulo 2 e ao longo de todo o manuscrito para a ilustración das

técnicas.

Apéndices B e C. Neste apéndices inclúense detalles técnicos sobre o estimador Local Lineal

e os splines de suavizado periódicos estudados no Caṕıtulo 2.

Apéndice D. Este apéndice describe as funcións da libraŕıa NPCirc, detallando o seu uso e

argumentos e ilustrando o seu funcionamento con exemplos.
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traballo realizado nesta tese.

Este traballo foi financiado polo Ministerio de Ciencia e Innovación, a través do proxecto

MTM2008–03010 e pola rede IAP StUDyS (Developing crucial Statistical methods for Under-

standing major complex Dynamic Systems in natural, biomedical and social sciences), do goberno

belga.



150



Bibliography

Abe, T. and Pewsey, A. (2011). Symmetric circular models through duplication and cosine per-

turbation. Computational Statistics & Data Analysis, 55:3271–3282.

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on

Automatic Control, 19:716–723.
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