
UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

Departamento de Electrónica e Computación

PHD THESIS

TEMPORAL DATA MINING ALGORITHMS FOR METRIC
TEMPORAL CONSTRAINT NETWORKS DISCOVERY

Author:
Miguel Rodríguez Álvarez

Advisors:
Dr. Paulo Félix Lamas
Dr. Purificación Cariñena Amigo

Santiago de Compostela, June 2013





Paulo Félix Lamas, Profesor Titular de Universidad del Área de Ciencias de la Computación e

Inteligencia Artificial de la Universidade de Santiago de Compostela

María Purificación Cariñena Amigo, Profesora Contratada Doctora del Área de Ciencias de la

Computación e Inteligencia Artificial de la Universidade de Santiago de Compostela

HACEN CONSTAR:

Que la memoria titulada TEMPORAL DATA MINING ALGORITHMS FOR METRIC TEMPO-
RAL CONSTRAINT NETWORKS DISCOVERY ha sido realizada por D. Miguel Rodríguez Ál-
varez bajo nuestra dirección en el Centro de Investigación en Tecnologías de la Información de la Uni-

versidade de Santiago de Compostela (CITIUS), y constituye la Tesis que presenta para optar al grado

de Doctor.

Santiago de Compostela, 13 de junio de 2013

Paulo Félix Lamas
Codirector de la tesis

María Purificación Cariñena Amigo
Codirectora de la tesis

Miguel Rodríguez Álvarez
Autor de la tesis





ACKNOWLEDGEMENTS

First I would like to thank my Ph.D. advisors, Paulo Félix and Purificación Cariñena,
whose support and patience throughout this thesis have made the work presented in this doc-
ument possible.

On a more personal level, this work would not have been the same without the support
provided by my parents and siblings, as well as my friends and their patience during my
absences. It is also necessary to thank my colleagues, specially Cristina, Óscar, José Manuel,
José Carlos, María, Pablo, Juan, Fabián and Julián among many, many others. Also, although
the time spent I spent there might have been short, I thank Antonio Gomariz, Christian Braune
and Pascal Held for making me feel at home during my research stays.

I also want to acknowledge the following institutions: the Artificial Intelligence Knowl-
edge Engineerging (AIKE) group of the University of Murcia, specially to Prof. Roque
Marín for hosting me during my research visit in 2010; and the Institute for Knowledge and
Language Engineering of the Otto-von-Guericke Univerity at Magdeburg, specially to Prof.
Rudolf Kruse for his kind invitation that allowed my research stay there in 2012.

I also thank all the institutions that funded this work: the reasearch visit in 2012 to the
Institute for Knowledge and Language Engineering of the Otto-von-Guericke-University was
supported in part by the European Regional Development Fund (ERDF/FEDER) under the
projects CN2012/151 and CN2011/058 of the Galician Ministry of Education; the Ministry
of Education, Culture and Sport (FPU grant AP2008-02593), the Spanish Ministry of Science
and Innovation (MICINN under the project TIN2009-14372-C03-03), the European Regional
Development Fund of the European Commision and Spanish Ministry of Education and Sci-
ence (FEDER and MEC under the project TIN2006-15460-C04-02), and the Xunta de Galicia
(under the project 08SIN002206PR).

Santiago de Compostela, June 13, 2013

v





Resumen de la tesis

La representación y razonamiento temporales juegan un importante papel en múltiples
áreas de la Inteligencia Artificial, tales como el procesado de lenguaje natural, la planificación
y programación de tareas, o la realización de diagnósticos. Durante muchos años, el objetivo
principal en la investigación en este campo ha sido la formalización de la representación
de los distintos matices en el significado de los diversos conceptos temporales, así como el
proporcionar los mecanismos de inferencia correspondientes. Estos esfuerzos han resultado
en un conjunto de herramientas formales que permiten elicitar conocimiento para una eficaz
resolución de problemas.

La creciente disponibilidad de datos temporales en las organizaciones como resultado de
su actividad ha dado lugar a la aparición del campo de la Minería de Datos Temporales, que
tiene por objetivo inducir conocimiento temporal útil a partir del análisis de estos datos. En un
principio la comunidad científica se centró en el diseño de algoritmos eficientes para la mine-
ría de secuencias frecuentes. Los sucesivos algoritmos que se han propuesto desde entonces
han tenido por objetivo inducir información más expresiva a partir de los datos, poniendo
especial énfasis en el tratamiento de la incertidumbre, normalmente de forma cualitativa.

El trabajo aquí presentado plantea como hipótesis de partida que para que una técnica
de minería de datos sea eficaz debe estar basada en algún formalismo de representación y
razonamiento temporal; dicho formalismo debe permitir la integración de mecanismos de
inducción y deducción, así como permitir al usuario interactuar con el proceso de minería
mediante la incorporación de conocimiento previo acerca del tipo de patrones de interés, y la
combinación de información tanto cuantitativa como cualitativa.

Bajo esta premisa, se elige el formalismo Simple Temporal Problem (STP) con el ob-
jetivo de representar los resultados del proceso de minería como un conjunto de patrones
temporales frecuentes. El formalismo STP ha sido amplia y satisfactoriamente utilizado en

vii



problemas de razonamiento temporal, así como en programación y planificación de tareas. El
STP es un tipo de Problema de Satisfacción de Restricciones (PSR) o Constraint Satisfaction

Problem (CSP) en inglés. Un CSP es un formalismo de representación y razonamiento so-
bre conocimiento que formula un problema como un conjunto de restricciones que se deben
satisfacer para obtener una solución. Una de las ventajas de este tipo de formalismos reside
en la posibilidad de modelar gráficamente un problema como una red de restricciones que
puede ser representada mediante un grafo, lo que permite el tratamiento de tareas tales como
la inferencia, análisis de consistencia, o búsqueda de escenarios, mediante la aplicación de
técnicas de procesado de grafos. El formalismo STP representa un patrón temporal como
un conjunto de variables temporales y un conjunto de restricciones temporales entre ellas.
Cada variable temporal representa un instante, y cada restricción se representa mediante un
intervalo que limita los valores admisibles para la distancia temporal entre cada par de ins-
tantes temporales. Adoptar un formalismo CSP permite al usuario representar conocimiento
previo, hacer inferencia mediante un mecanismo de propagación de restricciones, verificar la
consistencia de los patrones resultantes, y dar soporte a una fácil interpretación de los resul-
tados del proceso de minería, como se pone de manifiesto en este trabajo. La elección del
formalismo STP como marco de trabajo y de representación de conocimiento conlleva un im-
portante paso adelante con respecto a trabajos previos en la bibliografía de minería de datos
temporales a partir de secuencias de eventos, puesto que un STP puede representar restric-
ciones tanto cualitativas como cuantitativas, subsumiendo por tanto a otros formalismos de
representación cualitativos, como pueden ser el Álgebra de Puntos Convexa, o el Álgebra de
Intervalos Simples Convexa. Por tanto, los algoritmos propuestos en esta tesis proporcionan
unos resultados más expresivos que aquellos basados en órdenes frecuentes entre conjuntos
de eventos en una colección. Por otra parte, el formalismo STP parece ser una buena elección
para una propuesta de minería de datos temporal, puesto que representa un buen balance entre
expresividad y complejidad, ya que permite la ejecución de tareas de procesado habituales en
tiempo polinómico, en contraste con otros formalismos temporales en los que estas tareas de
procesado son NP-completas.

El trabajo presentado desarrolla la hipótesis anteriormente citada y proporciona un con-
junto de técnicas de minería de datos temporales agrupadas en dos algoritmos principales:
Apriori Simple Temporal Problem miner (ASTPminer) y Hierarchical Simple Temporal Prob-

lem miner (HSTPminer). El trabajo recogido en este documento se resume de la siguiente
forma:



– El capítulo 2 proporciona una revisión bibliográfica de formalismos de representación y
razonamiento temporal, así como de métodos y técnicas de minería de datos temporales.
La primera parte del capítulo se centra en la caracterización de la noción de tiempo y
en las cuestiones que dicha caracterización plantea. La primera de estas cuestiones se
refiere a la forma a adoptar para la representación del tiempo, puesto que éste puede
representarse bien implícitamente mediante cambios en las entidades representativas
a estudiar, o puede representarse explícitamente mediante una entidad independien-
te. Una segunda cuestión se refiere a la elección de las entidades temporales básicas,
que en la bibliografía toman la forma de instantes, intervalos o duraciones. Una vez
elegidas las entidades de representación temporal deben de discutirse las primitivas de
representación de las relaciones temporales entre las entidades temporales, así como
la estructura que adopta el tiempo en sí mismo. En esta parte del capítulo se revisan
diversas propuestas de formalismos basados en restricciones para la representación y
razonamiento temporal, divididos en formalismos cualitativos, cuantitativos y combi-
nados.
La segunda parte del capítulo se centra en los paradigmas de minería de datos tempo-
rales. El desarrollo tecnológico en las últimas décadas ha propiciado que el volumen y
variedad de datos contenidos en las bases de datos haya incrementado dramáticamente.
Aunque gran parte de estos datos se almacenan únicamente para servir de memoria
histórica de las organizaciones, la información que contienen puede mostrarse útil para
explicar el pasado y entender el presente, con el fin de predecir ocurrencias futuras. El
método tradicional para la obtención de conocimiento a partir de los datos almacenados
consiste en el análisis manual de los mismos por parte de un experto, a partir del cual
el especialista plantea unas hipótesis o informes sobre las tendencias reflejadas por los
datos. Sin embargo, a medida que el número de datos a analizar aumenta, este pro-
ceso se vuelve más y más inviable. La minería de datos agrupa técnicas provenientes
de campos diversos que permiten automatizar el proceso de análisis, con el objetivo
de encontrar relaciones entre los datos o resumirlos de forma comprensible y útil para
el usuario. La minería de datos temporales es una extensión de la minería de datos
en la que se incorpora una representación del tiempo en el proceso de minería con el
objetivo de buscar patrones interesantes en grandes conjuntos de datos temporales. En
este apartado nos centramos en aquella bibliografía donde se encuentran técnicas para
obtener patrones temporales frecuentes a partir de secuencias de eventos o episodios.



– El capítulo 3 formaliza los principales elementos del problema a resolver. En resumen:
dada una colección de secuencias de eventos y episodios temporalmente anotados, se
quire encontrar un conjunto de patrones temporales frecuentes representados como un
conjunto de STP. Se definen formalmente los conceptos principales que se van a utilizar
en el diseño de un proceso de minería de datos temporal: en concreto, las conceptos de
tipo de evento y tipo de episodio como entidades temporales fundamentales involu-
cradas en el proceso de minería. Un concepto importante en esta tesis es el de distribu-
ción de distancias temporales, una distribución de frecuencias que cuenta el número de
ocurrencias de cada distancia temporal diferente entre cada par de tipos de eventos en la
secuencia. Este concepto nos permitirá agrupar aquellos patrones frecuentes que mues-
tran disposiciones temporales similares de un conjunto de tipos eventos. Por otra parte,
también permitirá propocionar un mecanismo para discriminar entre disposiciones tem-
porales diferentes entre el mismo conjunto de tipos de eventos.

– El capítulo 4 describe en detalle el algoritmo ASTPminer: un procedimiento de minería
de datos temporal basado en la estrategia Apriori que tiene por objetivo descubrir pa-
trones temporales frecuentes representados mediante el formalismo STP. En su diseño
existen tres elementos fundamentales que deben ser señalados: 1) ASTPminer aplica un
criterio de similitud con el fin de distinguir disposiciones temporales diferentes entre el
mismo conjunto de tipos de eventos. ASTPminer simplifica esta operación mediante
una proyección del criterio de similitud entre cada par de tipos de eventos en el patrón.
La aplicación de un procedimiento de agrupamiento sobre distribuciones de distancias
temporales de ocurrencias de pares de tipos de eventos produce un conjunto de inter-
valos, de modo que cada uno de dichos intervalos representa una disposición temporal
diferenciada del resto entre el par de tipos de eventos. El cálculo de consistencia de los
patrones resultantes refuerza la consistencia de patrones de tamaño superior; 2) ASTP-
miner saca partido de aquellas secuencias de eventos en las cuales algunos eventos
delimitan el comienzo y final de episodios, puesto que gestionándolos de modo que for-
men parte de una misma entidad, el episodio, es posible acelerar el proceso de minería;
3) ASTPminer permite a los usuarios participar en el proceso de minería mediante la
introducción de conocimiento previo del dominio en forma de patrón semilla, represen-
tado también mediante el formalismo STP. El usuario proporciona este conocimiento
en forma de un patrón semilla que involucra una serie de eventos o episodios de interés
y algunas restricciones temporales entre ellos. Este conocimiento inicial se utiliza para



centrar el proceso de búsqueda en aquellos patrones que extienden a la semilla, bien
mediante la incorporación de nuevos tipos de eventos, o bien mediante el refinado de
las restricciones presentes en el patrón semilla. Como resultado de la introducción de
patrones semilla se mejoran la eficacia y la eficiencia del algoritmo.
ASTPminer se valida contra un base de datos temporales de secuencias de eventos
extraídas a partir de polisomnogramas de pacientes afectados del Síndrome de Apnea-
Hipopnea del Sueño (SAHS). Esta validación tiene dos objetivos. Por una parte, inten-
tamos poner de manifiesto la habilidad de ASTPminer de descubrir patrones frecuentes
mediante la utilización de una base de datos temporal que contiene un patrón frecuente
previamente descrito en la literatura médica. Por otra parte, evaluamos la eficiencia
del proceso de minería con respecto a diferentes parámetros iniciales. Esta validación
muestra la calidad de los resultados de la aplicación de ASTPminer en un escenario
real y representativo. Sin embargo, también representa una aplicación particular en un
tipo muy específico de problemas. Por este motivo, en el capítulo 4 se propone y di-
seña un generador de bases de datos temporales sintéticas, con el objetivo de evaluar
ASTPminer contra un amplio abanico de bases de datos temporales diferentes, lo que
nos permite valorar sus fortalezas y debilidades.

– El capítulo 5 describe en detalle el algoritmo HSTPminer: una evolución de ASTP-
miner que mejora su rendimiento mediante el diseño de dos mecanismos: 1) Una jerar-
quía de patrones que permite al proceso de búsqueda anotar las ocurrencias de patrones
encontradas en cada iteración del procedimiento de búsqueda, con el objetivo de res-
tringir el ámbito de búsqueda en la siguiente iteración del procedimiento de minería a
aquellos patrones que extienden a los patrones anotados. Este proceso permite que el
algoritmo evite buscar ocurrencias de patrones en aquellas subsecuencias en las que no
se encontraron ocurrencias de los patrones que extiende, puesto que no puede haber
una ocurrencia de una extensión si no existe ocurrencia del patrón original. Debido a la
reducción del número de patrones que deben tenerse en consideración en cada paso del
proceso de búsqueda, la eficiencia del proceso de minería se ve mejorada. 2) Los pa-
trones temporales se reorganizan de acuerdo a una estructura de árbol de enumeración
de subconjuntos. Esta estructura mejora el proceso de generación de candidatos permi-
tiendo el acceso de forma eficiente a los patrones encontrados en iteraciones anteriores
y que son necesarios para la generación de nuevos patrones.
El conjunto de patrones obtenido por el algoritmo HSTPminer sobre una base de datos



determinada es el mismo que el conjunto de patrones obtenido por el algoritmo ASTP-
miner. Se ha utilizado el mismo conjunto de bases de datos presentado en el capítulo 4,
tanto la base de datos de SAHS como las bases de datos sintéticas generadas, con el fin
de comparar el rendimiento de ambos algoritmos y analizar hasta qué punto las mejo-
ras introducidas en el nuevo algoritmo afectan a la eficiencia del proceso de minería
bajo diferentes condiciones de interés. Como resultado de esta comparación, llegamos
a la conclusión de que HSTPminer presenta una mejora computacional con respecto a
ASTPminer en ciertas situaciones. En concreto, en aquellas bases de datos en las que
el porcentaje de entidades temporales en forma de intervalo es pequeño con respecto al
número de entidades en forma de instante, HSTPminer muestra un mejor rendimiento,
aunque este rendimiento se degrada a medida que el número de eventos por instante de
tiempo aumenta. Por otra parte, en aquellas colecciones en las que se pueden encontrar
patrones con gran número de eventos, HSTPminer presenta una mejor eficiencia debido
a que permite reducir el número de patrones a tener en cuenta en cada paso, ya que el
número total de patrones presentes en el proceso aumenta con el tamaño del patrón,
y ASTPminer no tiene forma de discriminar entre aquéllos que pueden estar presentes
en una determinada subsección. Sin embargo, en aquellas bases de datos en las que
los patrones tienen un tamaño reducido, o que presentan un número de intervalos y de
instantes similar, ASTPminer presenta un rendimiento comparable o incluso mejor, ya
que el sobrecoste computacional introducido en HSTPminer para reducir el espacio de
búsqueda en estas situaciones no se compensa con la reducción temporal obtenida.

– El capítulo 6 proporciona un resumen de los resultados y conclusiones clave que se
pueden extraer de la investigación presentada, haciendo referencia a la hipótesis inicial
al mismo tiempo que se proporcionan nuevas direcciones para la investigación posterior.
El objetivo principal de esta tesis es el de proponer un método formal con el que extraer
patrones temporales a partir de bases de datos temporales. Los formalismos de proble-
mas de satisfacción de restricciones, entre los cuales se encuentra el formalismo STP,
permiten representar de forma declarativa un conjunto de restricciones que cualquier
solución del problema debe de satisfacer. El formalismo STP nos permite representar
información temporal mediante una red de restricciones temporales métricas entre un
conjunto de variables temporales, cada una de las cuales representa un instante tem-
poral. Normalmente un STP se construye a partir de la descripción de conocimiento
experto, y la obtención de un STP a partir de un proceso de minería aplicado sobre con-



junto de datos temporal representa un desafío innovador y relevante para el paradigma
de descubrimiento de conocimiento.
La minería de datos temporales tanto en ASTPminer como en HSTPminer se basa en
la aplicación de criterios de similitud a las diferentes disposiciones temporales entre
los mismos eventos, lo que permite superar limitaciones de trabajos previos, en los
que a lo sumo se puede extraer un orden u orden parcial para un conjunto de tipos
de eventos dado. El agrupamiento de disposiciones temporales entre eventos es una
tarea extremadamente compleja. Sin embargo, en ambos algoritmos esta operación se
ve simplificada mediante la proyección de un criterio de similitud para cada par de
tipos de eventos del patrón. La construcción de patrones de tamaño superior es posible
mediante el análisis y la propagación de restricciones. Puesto que el proceso de agru-
pamiento únicamente tiene lugar en la búsqueda de patrones frecuentes de tamaño dos,
la eficiencia computacioneal del procedimiento global no se ve comprometida.
Una de las principales contribuciones de ambos algoritmos consiste en permitir al
usuario participar en el proceso de minería mediante la introducción de conocimiento
previo del dominio en forma de patrones, utilizando para ello también el formalismo
STP. Este conocimiento se proporciona en forma de patrón semilla consistente en un
conjunto de eventos de interés y algunas restricciones entre ellos. Un patrón semilla
supone un instrumento para podar el espacio de búsqueda de dos formas. En primer
lugar, permite acotar e ignorar aquellas subsecuencias de la colección en las cuales no
se puede encontrar una ocurrencia del patrón semilla, lo que permite reducir el número
de eventos a considerar en etapas posteriores del proceso. En segundo lugar, las res-
tricciones especificadas por el usuario limitan el número de patrones encontrados por
los algoritmos a aquellos que son consistentes con la información incorporada, lo que
reduce el número total de patrones presentes en el proceso a la vez que se incrementa
su posible interés para el usuario. Ambos aspectos contribuyen a mejorar tanto la efi-
ciencia como la eficacia del proceso.
Hay dos aspectos fundamentales en los que centrar las mejoras sobre ASTPminer y
HSTPminer. En primer lugar, al tratarse ambos algoritmos de estrategias basadas en
el paradigma Apriori, el número de patrones a tratar en cada una de las iteraciones
del proceso de búsqueda sufre de problemas de explosión combinatoria, puesto que
deben crearse y tratarse todos los posibles patrones candidatos a partir de los patrones
frecuentes obtenidos en la anterior iteración. Este proceso no tiene solamente un alto
coste en la generación de candidatos, sino también en el cálculo de frecuencia, por lo



que debe estudiarse el uso de otras estrategias. En segundo lugar, sería interesante in-
crementar la expresividad de los patrones obtenidos como resultado. Una primera vía
de mejora de la expresividad radica en la posibilidad de incorporar el concepto de ne-
gación en el proceso de minería, entendido como la ausencia sistemática de algún tipo
de evento en el contexto temporal de la ocurrencia de un patrón. Otra vía de mejora
de expresividad se encuentra en explotar en mayor medida la información contenida
en las distribuciones de distancias temporales. Esta información puede utilizarse para
extender el formalismo STP incorporando al concepto de restricción los conceptos de
preferencia, probabilidad o posibilidad, entre otros. Una tercera vía de mejora yace en
el diseño e implementación de herramientas visuales que permitan una mejor usabili-
dad de ASTPminer y HSTPminer, lo que además permitiría a la comunidad científica
compartir conjuntos de datos y resultados de referencia.



Contents

List of Figures xix

List of Tables xxiii

1 Introduction 1

2 Literature review 5
2.1 Constraint-based formalisms . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Qualitative constraint formalisms . . . . . . . . . . . . . . . . . . . 7
2.1.2 Quantitative constraint formalisms . . . . . . . . . . . . . . . . . . . 11
2.1.3 Combined formalisms . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Temporal data mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Sequence data mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Partial orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Interval-based data mining . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6 Time series data mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7 Our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Definitions 31

4 ASTPminer 39
4.1 Basic algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 Candidate generation . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.2 Frequency calculation . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1.3 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xv



xvi Contents

4.1.4 Validation of the ASTP_BASIC algorithm . . . . . . . . . . . . . . . 49
4.2 Time optimization: Event removal . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Event removal using window markings . . . . . . . . . . . . . . . . 54
4.2.2 Event removal using interval markings . . . . . . . . . . . . . . . . . 55
4.2.3 Experimental results using the event removal approaches . . . . . . . 57

4.3 Providing seed knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.1 Initialisation procedure . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.2 Frequency calculation with a seed pattern . . . . . . . . . . . . . . . 63
4.3.3 Validation of ASTP_SEED . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 ASTPminer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.1 Initialisation step in ASTPminer . . . . . . . . . . . . . . . . . . . 76
4.4.2 Frequent pattern calculation in ASTPminer . . . . . . . . . . . . . . 77
4.4.3 Candidate generation in ASTPminer . . . . . . . . . . . . . . . . . . 82
4.4.4 Correctness and completeness of ASTPminer . . . . . . . . . . . . . 83
4.4.5 Complexity analysis of ASTPminer . . . . . . . . . . . . . . . . . . 85
4.4.6 ASTPminer validation with the SAHS database . . . . . . . . . . . . 87

4.5 ASTPminer validation: synthetic databases . . . . . . . . . . . . . . . . . . 91
4.5.1 Synthetic databases generation . . . . . . . . . . . . . . . . . . . . . 93
4.5.2 Experimental results with synthetic databases . . . . . . . . . . . . . 94

5 HSTPminer 103
5.1 Set enumeration tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2 Pattern hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3 HSTPminer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3.1 Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3.2 Frequent pattern calculation . . . . . . . . . . . . . . . . . . . . . . 112
5.3.3 Candidate generation . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.3.4 Correctness and completeness of HSTPminer . . . . . . . . . . . . . 124
5.3.5 Complexity analysis of HSTPminer . . . . . . . . . . . . . . . . . . 126

5.4 HSTPminer validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.4.1 SAHS database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.4.2 Synthetic databases . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6 Main contributions and conclusions 137



Contents xvii

Bibliography 143





List of Figures

Fig. 2.1 IA-relations and corresponding PA-relations. . . . . . . . . . . . . . . . . . 10
Fig. 2.2 Floyd-Warshall’s ALL-PAIRS-SHORTEST-PATHS algorithm. . . . . . . 12
Fig. 2.3 Sequence database example. . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Fig. 2.4 Example of a partial order and the sequences it summarises. . . . . . . . . . 25

Fig. 3.1 Temporal association with event types A, B and C. . . . . . . . . . . . . . . 34
Fig. 3.2 An example of two frequent temporal patterns represented as STP,

discovered in a collection of sequences, with fmin = 2. . . . . . . . . . . . . 38

Fig. 4.1 ASTP_BASIC: main algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 41
Fig. 4.2 CANDIDATE_GENERATION algorithm. . . . . . . . . . . . . . . . . . . . 42
Fig. 4.3 Pattern combination example. . . . . . . . . . . . . . . . . . . . . . . . . . 43
Fig. 4.4 FREQUENCY_CALCULATION algortihm. . . . . . . . . . . . . . . . . . . 45
Fig. 4.5 Temporal distance distribution between two event types A and B with ω = 80. 46
Fig. 4.6 Frequency calculation example. . . . . . . . . . . . . . . . . . . . . . . . . 47
Fig. 4.7 Example of clustering on a temporal distance distribution. . . . . . . . . . . 50
Fig. 4.8 Time required by ASTP_BASIC depending on the window size. . . . . . . . 53
Fig. 4.9 Example of event removal using window marking. . . . . . . . . . . . . . . 55
Fig. 4.10 Frequency calculation for event removal using window marking:

FREQUENCY_CALCULATION_WM. . . . . . . . . . . . . . . . . . . . . . 56
Fig. 4.11 Example of event removal using interval marking. . . . . . . . . . . . . . . 56
Fig. 4.12 Frequency calculation for event removal using interval marking:

FREQUENCY_CALCULATION_IM. . . . . . . . . . . . . . . . . . . . . . 58

xix



xx List of Figures

Fig. 4.13 Comparison of time required by the ASTP_BASIC algorithm without event
removal, and with each one of the event removal strategies (WM and IM)
during the frequency calculation stage. . . . . . . . . . . . . . . . . . . . . 59

Fig. 4.14 Example of a frequent pattern of size 8 obtained from the SAHS database
with the ASTP_BASIC algorithm. . . . . . . . . . . . . . . . . . . . . . . 60

Fig. 4.15 Mining algorithm using a seed pattern: ASTP_SEED. . . . . . . . . . . . . 62
Fig. 4.16 Initialisation algorithm used in ASTP_SEED: INITIALISATION. . . . . . 63
Fig. 4.17 Frequency calculation algorithm when using a seed pattern:

FREQUENCY_CALCULATION_SEED. . . . . . . . . . . . . . . . . . . . . 65
Fig. 4.18 Example of frequency calculation when a seed pattern is provided. . . . . . 66
Fig. 4.19 Seed pattern used in the validation experiments. . . . . . . . . . . . . . . . 67
Fig. 4.20 Impact of using a seed pattern on a temporal distance distribution and its

clustering. These temporal distance distributions correspond to event types
“begin airflow limitation” and “end airflow limitation”. . . . . . . . . . . . 68

Fig. 4.21 Second example on the impact of using a seed pattern on a temporal distance
distribution and its clustering: number of patterns found may be higher when
using a seed pattern. The temporal distance distributions correspond to event
types “begin oxygen desaturation” and “end oxygen desaturation”. . . . . . 70

Fig. 4.22 Third example on the impact of using a seed pattern on a temporal distance
distribution and its clustering: patterns found are more specific, and more
relevant to the final user. The temporal distance distributions correspond to
event types “begin thoracic limitation” and “end thoracic limitation”. . . . 71

Fig. 4.23 Another example of the influence of the seed pattern in the clustering process. 72
Fig. 4.24 Comparison of time required by the ASTP_BASIC algorithm and two

different implementations of the ASTP_SEED algorithm in the SAHS
database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Fig. 4.25 Comparison of two frequent patterns of size 8: (a) obtained by
ASTP_BASIC without seed pattern, (b) obtained by ASTP_SEED when a
seed pattern was provided. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Fig. 4.26 Main algorithm: ASTPminer. . . . . . . . . . . . . . . . . . . . . . . . . 75
Fig. 4.27 ASTPminer: Initialisation algorithm. . . . . . . . . . . . . . . . . . . . . 77
Fig. 4.28 Frequency calculation in ASTPminer: FREQUENCY_CALCULATION. . . 78
Fig. 4.29 Frequency calculation example in ASTPminer. . . . . . . . . . . . . . . . 81



List of Figures xxi

Fig. 4.30 Candidate generation algorithm in ASTPminer:
CANDIDATE_GENERATION. . . . . . . . . . . . . . . . . . . . . . . . . . 82

Fig. 4.31 Seed pattern used in the validation experiments. . . . . . . . . . . . . . . . 88
Fig. 4.32 Time required by the ASTPminer algorithm with and without seed pattern. 89
Fig. 4.33 Patterns of size 8 found with and without introducing a seed pattern, with a

window width of 80 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . 92
Fig. 4.34 Time required by the ASTPminer algorithm with and without seed pattern,

in the SAHS database. maxP=8, N=120212, ∆=0.15, |E|=0, |G|=4. . . . . . . 95
Fig. 4.35 ASTPminer execution time in synthetic database SDB1: maxP=9,

N=136000, ∆=0.07, |E|=6, |G|=4 . . . . . . . . . . . . . . . . . . . . . . . 96
Fig. 4.36 ASTPminer execution time in synthetic database SDB2: maxP=11 ,

N=275000, ∆=0.15, |E|=6, |G|=4 . . . . . . . . . . . . . . . . . . . . . . . 97
Fig. 4.37 ASTPminer execution time in synthetic database SDB3: maxP=9 ,

N=470000, ∆=0.25, |E|=6, |G|=4 . . . . . . . . . . . . . . . . . . . . . . . 97
Fig. 4.38 ASTPminer execution time in synthetic database SDB4: maxP=8,

N=705000, ∆=0.39, |E|=6, |G|=4 . . . . . . . . . . . . . . . . . . . . . . . 98
Fig. 4.39 ASTPminer execution time in synthetic database SDB5: maxP=14,

N=70000, ∆=0.22 , |E|=12, |G|=1 . . . . . . . . . . . . . . . . . . . . . . . 98
Fig. 4.40 ASTPminer execution time in synthetic database SDB6: maxP=19,

N=76000, ∆=0.25, |E|=13, |G|=3 . . . . . . . . . . . . . . . . . . . . . . . 99
Fig. 4.41 ASTPminer execution time in synthetic database SDB7: maxP=13,

N=65000, ∆=0.2, |E|=13, |G|=0 . . . . . . . . . . . . . . . . . . . . . . . . 99
Fig. 4.42 ASTPminer execution time in synthetic database SDB8: maxP=10,

N=50000, ∆=0.4, |E|=10, |G|=0 . . . . . . . . . . . . . . . . . . . . . . . . 100
Fig. 4.43 ASTPminer execution time in synthetic database SDB9: maxP=13,

N=95212, ∆=0.8, |E|=13, |G|=0 . . . . . . . . . . . . . . . . . . . . . . . . 100
Fig. 4.44 ASTPminer execution time in synthetic database SDB10: maxP=12,

N=123402, ∆=2.25, |E|=12, |G|=0 . . . . . . . . . . . . . . . . . . . . . . . 101

Fig. 5.1 Set enumeration tree example. . . . . . . . . . . . . . . . . . . . . . . . . . 106
Fig. 5.2 Pattern hierarchy example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Fig. 5.3 ENDING_EVENTS procedure. . . . . . . . . . . . . . . . . . . . . . . . . . 108
Fig. 5.4 HSTPminer: Main algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 110
Fig. 5.5 HSTPminer: Initialisation algorithm. . . . . . . . . . . . . . . . . . . . . 111



xxii List of Figures

Fig. 5.6 HSTPminer: Frequency calculation. . . . . . . . . . . . . . . . . . . . . . 113
Fig. 5.7 HSTPminer: Pattern verification. . . . . . . . . . . . . . . . . . . . . . . 115
Fig. 5.8 Pattern hierarchy frequency calculation example. . . . . . . . . . . . . . . . 119
Fig. 5.9 Pattern hierarchy frequency calculation with episodes example. . . . . . . . 121
Fig. 5.10 HSTPminer: Candidate generation. . . . . . . . . . . . . . . . . . . . . . 122
Fig. 5.11 Example of candidate generation with set enumeration tree. . . . . . . . . . 124
Fig. 5.12 Seed pattern used in the experiments. . . . . . . . . . . . . . . . . . . . . . 129
Fig. 5.13 Time required by the ASTPminer algorithm with and without seed pattern,

and the HSTPminer algorithm with and without seed pattern. . . . . . . . . 130
Fig. 5.14 SDB1: maxP=9, N=136000, ∆=0.07, |E|=6, |G|=4 . . . . . . . . . . . . . . 131
Fig. 5.15 SDB2: maxP=11 , N=275000, ∆=0.15, |E|=6, |G|=4 . . . . . . . . . . . . . 131
Fig. 5.16 SDB3: maxP=9 , N=470000, ∆=0.25, |E|=6, |G|=4 . . . . . . . . . . . . . . 132
Fig. 5.17 SDB4: maxP=8, N=705000, ∆=0.39, |E|=6, |G|=4 . . . . . . . . . . . . . . 132
Fig. 5.18 SDB5: maxP=14, N=70000, ∆=0.22 , |E|=12, |G|=1 . . . . . . . . . . . . . 133
Fig. 5.19 SDB6: maxP=19, N=76000, ∆=0.25, |E|=13, |G|=3 . . . . . . . . . . . . . . 133
Fig. 5.20 SDB7: maxP=13, N=65000, ∆=0.2, |E|=13, |G|=0 . . . . . . . . . . . . . . 134
Fig. 5.21 SDB8: maxP=10, N=50000, ∆=0.4, |E|=10, |G|=0 . . . . . . . . . . . . . . 134
Fig. 5.22 SDB9: maxP=13, N=95212, ∆=0.8, |E|=13, |G|=0 . . . . . . . . . . . . . . 135
Fig. 5.23 SDB10: maxP=12, N=123402, ∆=2.25, |E|=12, |G|=0 . . . . . . . . . . . . 135



List of Tables

Tabla 4.1 Number of possible candidates, candidates generated, combinations
discarded and frequent patterns found in the SAHS database by
ASTP_BASIC, with a window size ω=80 s. and a frequency threshold
fmin=30 occurrences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Tabla 4.2 Number of events removed from the collection in each iteration by both
event removal strategies; window size 80 s. . . . . . . . . . . . . . . . . . 59

Tabla 4.3 Number of possible candidates, candidates generated, combinations
discarded and frequent patterns found in the database, with and without
seed pattern (window size ω =80 s., frequency threshold fmin =30
occurrences). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Tabla 4.4 Number of possible candidates, candidates generated, combinations
discarded and frequent patterns in the database, using the ASTPminer

algorithm with and without seed pattern (using a window size ω=80 s.,
and a frequency threshold fmin=30 occurrences). . . . . . . . . . . . . . . 90

Tabla 4.5 Synthetic database generator parameters. . . . . . . . . . . . . . . . . . . 93
Tabla 4.6 Synthetic databases parameters. . . . . . . . . . . . . . . . . . . . . . . . 95

xxiii





CHAPTER 1

INTRODUCTION

Temporal representation and reasoning play an important role in multiple areas of Arti-
ficial Intelligence, such as natural language processing, planning, scheduling or diagnostics.
For long years, the main point in the research activity has been to put on formal grounds
the representation of the multiple nuances of meaning for the different temporal notions, and
to provide the corresponding inference mechanisms. These efforts have resulted in a set of
formal tools that enable to elicit effective problem solving knowledge.

The increasing availability of temporal data as a result of the activity of organizations
has caused the emergence of the field of Temporal Data Mining, which aims to induce new
and useful temporal knowledge from the computer data processing. Initially, the scientific
community focused on designing efficient algorithms for mining frequent temporal patterns,
where each temporal pattern emphasises a particular temporal order among a set of events.
Since then, new algorithms have been proposed in order to induce more expressive informa-
tion from data, specially focusing on coping with uncertainty, usually in a qualitative form.

The present work takes as a starting point the thesis that any effective temporal data mining
technique should be based on some formalism for temporal reasoning and representation. This
formalism should enable the integration of induction and deduction mechanisms, it should
also allow the user to interact with the mining process by providing previous knowledge about
the kind of patterns of interest, and it should combine qualitative and quantitative information.

Under this premise, the Simple Temporal Problem (STP) formalism has been selected
to represent the results of the mining process as a set of frequent temporal patterns. The
STP formalism has been widely and successfully applied on temporal reasoning, scheduling
or planning tasks. The STP is a type of Constraint Satisfaction Problem (CSP). A CSP is



2 Chapter 1. Introduction

a formalism for knowledge representation and reasoning that formulates a problem as a set
of constraints which must be satisfied in order to obtain a solution. The STP represents a
temporal pattern as a set of temporal variables and a set of temporal constraints among them.
Each temporal variable represents a time instant, and each constraint is represented by an
interval limiting the permissible values for the distance between each pair of time instants.
Adopting a CSP formalism allows the user to represent previous knowledge, to make inference
by a simple mechanism of constraint propagation, to ensure the consistency of the resultant
patterns, and to support an easy interpretability of the results of the mining process, as this
work will highlight. On the other hand, the STP formalism seems to be a good choice for
a temporal data mining proposal, since it represents a good balance between expressiveness
and complexity, supporting the usual processing tasks in polynomial time, in contrast to other
temporal formalisms where the usual processing tasks are NP-hard.

The present work develops the aforementioned thesis by providing a set of temporal data
mining techniques grouped into two main algorithms: Apriori Simple Temporal Problem
miner (ASTPminer) and Hierarchical Simple Temporal Problem miner (HSTPminer). The
work presented in this document is summarised as follows:

– Chapter 2 offers a literature review on the formalisms used for temporal representation
and reasoning, as well as on temporal data mining methods and techniques. This review
is followed by a discussion on the suitability of the STP formalism for the representation
of the temporal patterns resulting from a temporal data mining process.

– Chapter 3 formalises the main elements of the problem to be solved; in particular, the
notions of event and episode types as the basic temporal entities involved in the min-
ing procedures. In short: given a collection of sequences of time-stamped events and
episodes, the aim is to find a set of frequent temporal patterns represented as a set
of STP. An important notion for this thesis is that of temporal distance distribution, a
frequency distribution counting the number of occurrences of every different temporal
distance between every two event types in a sequence. This concept will allow us to
group together those frequent patterns that show a similar temporal arrangement of a
set of event types.

– Chapter 4 describes the ASTPminer algorithm in detail: an Apriori-based temporal
data mining procedure for discovering frequent temporal patterns represented in the
STP formalism. Three key elements must be highlighted in its design: 1) ASTPminer



3

applies similarity criteria in order to distinguish different temporal arrangements be-
tween the same event types; ASTPminer simplifies this operation by projecting the
similarity criteria between each pair of event types in the pattern; a clustering procedure
over temporal distance distributions of occurrences of pairs of event types produces a
set of intervals, each one of them representing a distinguishable temporal arrangement
between the pair of event types; then, consistency checking of the resulting patterns
enforces the assembling of consistent patterns of bigger sizes; 2) ASTPminer takes
advantage of those event sequences where some events delimit the beginning and the
end of episodes, since managing them as taking part of the same entity, an episode,
allows us to speed up the mining process; 3) ASTPminer allows users to participate in
the mining process by providing previous domain knowledge, also represented by the
STP formalism; user knowledge is provided as a seed pattern involving a number of
events or episodes of interest and some temporal constraints between them; this initial
knowledge then focuses the search process on those patterns that extend the seed, either
by incorporating new event types or by refining the constraints in the seed pattern; as a
result, seed patterns contribute to improve algorithm efficacy and efficiency.
ASTPminer is validated against a temporal database of sequences extracted from
the polysomnograms of patients diagnosed with Sleep Apnea-Hypopnea Syndrome
(SAHS). The objective is twofold. On the one hand, we try to bring out the ability
of ASTPminer to discover frequent patterns by means of a temporal database con-
taining a well-known frequent pattern previously described in the medical literature.
On the other hand, we evaluate the efficiency of the mining process with respect to
different initial parameters. This validation shows the quality of the results of apply-
ing ASTPminer in a highly representative real scenario. However, it just represents a
particular application in a rather specific type of problems. For this reason, chapter 4
shows the proposal and design of a synthetic temporal database generator, with the aim
of evaluating ASTPminer against a wide range of different temporal databases, and
precisely assessing its strengths and weaknesses.

– Chapter 5 describes the HSTPminer algorithm in detail: an evolution of ASTPminer
that improves its behaviour by designing two mechanisms: 1) A pattern hierarchy al-
lows the search process to annotate occurrences of patterns found in each iteration of
the mining procedure, with the aim of constraining the search scope in the next iteration
to those patterns that extend the annotated ones. By reducing the number of patterns



4 Chapter 1. Introduction

that need to be taken into account in each step of the search process, the efficiency of
the mining process is improved. 2) Temporal patterns are reorganised following a set
enumeration tree structure. This structure improves the candidate generation process
by allowing it to easily access patterns found in previous iterations that are needed for
the generation of new patterns.
Patterns obtained using the HSTPminer algorithm are the same as the patterns ob-
tained by the ASTPminer algorithm. The same set of databases used in chapter 4,
both the SAHS database and the synthetic databases generated, are used to compare
the performance of both algorithms and analyse to which extent the improvements in-
troduced into the algorithm affect the efficiency of the mining process under several
different conditions.

– The conclusion chapter provides a synthesis of the key results and findings drawn from
the present research, making a stand regarding the thesis statement, and also provides
new directions for future research.



CHAPTER 2

LITERATURE REVIEW

Time representation and reasoning plays a central role in Artificial Intelligence from its
beginning, encouraging scientists to provide a formal inclusion of temporal information in
problem solving. There is a number of questions to tackle in characterizing the notion of time
itself. A first question regards the form adopted by the representation of time, since time can
be implicitly represented in those changes in representative entities, or can be explicitly rep-
resented as an independent entity [Mccarthy and Hayes, 1969, Kowalski and Sergot, 1986].
A second one is about choosing the basic temporal entities. Here we can find three dif-
ferent possibilities in the bibliography: instants, intervals or durations [van Benthem, 1983,
Allen, 1983, Navarrete et al., 2002]. There is a subsequent discussion regarding the primitive
temporal relations among the basic temporal entities. A third question is about the time struc-
ture, as it can be bounded or unbounded, dense or discrete; and about the sort of order among
temporal entities: total, partial, ramified,. . . [Vila, 1994].

Traditionally, there exist two distinctive approaches to representing and reasoning about
time: temporal logics and constraint-based formalisms. Temporal logics is an approach to
the semantics of expressions qualified in terms of time, emphasizing the expressiveness, but
most often at the expense of efficiency, and sometimes, showing incompleteness in those
expressible problems. Constraint-based formalisms can be seen as a sort of reified tempo-
ral logic, providing sound and easy methods for processing information, sometimes with re-
duced computational cost. A more in-depth review on representing and reasoning about time
can be found in [Combi and Shahar, 1997, Chittaro and Montanari, 2000, Augusto, 2001,
Pani and Bhattacharjee, 2001, Visser and Hübner, 2003, Adlassnig et al., 2006].



6 Chapter 2. Literature review

The present work deals with the problem of mining frequent temporal patterns in temporal
datasets, a large scale intensive search-based problem. This sort of problem will require a
rigorous but non-computationally expensive management of time, which leads us to review
the literature on constraint-based formalisms for representing and reasoning about time.

2.1 Constraint-based formalisms

Formally, a Constraint Satisfaction Problem (CSP) is defined as a finite set of variables

X = {x1,x2, ...,xn}, with respective domains D = {D1, ...,Dn} which list the possible values
for each variable Di = {vi1 , ...,vik}, and a set of constraints C = {C1, ...,Ct} among the vari-
ables. Thus, a CSP can be viewed as a triple R =< X ,D,C > [Tsang, 1993, Dechter, 2003]. A
constraint Ci is a relation Ri defined on a subset of variables Si ⊆ X . If Si = {xi1 , ...,xir}, then
Ri is a subset of the Cartesian product Di1 ×·· ·×Dir . Thus, a constraint can also be viewed
as a pair Ci =< Si,Ri >. A constraint Ci is said to be satisfied by a tuple of assignments
(xi1 = vi1 , ...,xir = vir) if (vi1 , ...,vir) ∈ Ri. A solution of a CSP is an assignment to all of its
variables (x1 = v1, ...,xn = vn) that satisfies all the constraints. A CSP is consistent if it has at
least one solution, and it is inconsistent otherwise. The following tasks can be identified for
any CSP:

1. To determine whether the CSP is consistent.

2. To find all of its solutions.

3. To find an optimal solution according to an objective function.

4. To find a partial solution, that is, an assignment to a subset of the variables.

5. To obtain the minimal CSP equivalent to the original one, that is, the CSP with the
smallest domain size.

The graphical representation of a CSP was first studied for binary constraints
[Freuder, 1982]. In a binary constraint network every constraint affects at most two vari-
ables. In this case, a constraint network can be assigned to a constraint graph, where each
node represents a variable and each arc connects a pair of nodes related by a binary con-
straint. Representing a constraint network as a graph makes it possible to successfully apply
graph-based techniques to task resolution in CSP.



2.1. Constraint-based formalisms 7

Those techniques usually applied to CSP solving can be classified in three categories
[Dechter et al., 1991]:

– Search-based techniques for systematic exploration of the solution space, usually by
backtracking.

– Consistency checking techniques for obtaining a more explicit representation of the
CSP, improving the ensuing systematic exploration. In general, a k-consistency al-
gorithm removes all inconsistencies involving all subsets of size k of the n variables.
For example, the node, arc and path consistency algorithms detect and eliminate in-
consistencies involving k=1, 2 and 3 variables, respectively. A network of n vari-
ables is said to be globally consistent if it is k-consistent for 1≤ k ≤ n [Freuder, 1982,
Koubarakis, 1997].

– Structure-based techniques for guiding systematic exploration by exploiting topological
characteristics of the network.

A number of authors have approached the problem of representing and reasoning about
time as a CSP, giving rise to different proposals where certain temporal relations (qualita-
tive or quantitative) among different temporal variables (instants, intervals or durations) are a
matter of choice. In the next section, we briefly review the most outstanding temporal CSP
formalisms resulting from different combinations of choices.

2.1.1 Qualitative constraint formalisms

Multiple areas of Artificial Intelligence such as scheduling, planning, diagnostics or natu-
ral language processing pose the need for managing temporal information by means of qual-
itative relations among temporal entities. What really matters is the relative order among the
temporal entities, more than their exact location in time.

The Point Algebra (PA) is an approach to representing temporal information in terms
of qualitative relations between instants or temporal points [Vilain and Kautz, 1986]. Two
instants pi and p j can be related by three qualitative basic relations: before (<), equals (=) and
after (>). Sometimes, the information about two instants is incomplete, and can be expressed
by a disjunction of the basic relations Qpp ≡ {<,=,>}. Note that, for example, pi ≤ p j is an
abbreviation of the disjunction (pi < p j ∧ pi = p j). The set of possible relations in the Point
Algebra is 2Qpp = {∅,<,>,=,≤,≥,?}. Every PA-relation is a subset of basic relations. The



8 Chapter 2. Literature review

? relation is defined as the universal constraint ? ≡ {<,=,>} and represents the absence
of information. The ∅ relation represents the unsatisfiability of any relation between two
instants, and it appears in inconsistent networks.

The PA is formally defined as an structure (2Qpp ,−1 ,∩,◦), where 2Qpp represents the 8
subsets of PA-relations, (−1) represents the inverse operator, such that pi R p j ≡ p j R−1 pi, (∩)
represents the intersection, such that pi(R∩S)p j ≡ pi R p j∧ pi S p j, and (◦) the composition
of relations: composition of relation Ri j between points pi and p j and relation R jk between
points p j and pk is a new relation Rik = Ri j ◦ R jk such that piRik pk ≡ piRi j p j ∧ p jR jk pk.
If the 6= relation is excluded from the subset of PA-relations we obtain the Convex Point
Algebra (CPA) [Van Beek and Cohen, 1990]. Excluding a non convex relation as 6= improves
the computational cost of temporal reasoning.

PA-relations can be represented by a PA-network, where the nodes represent instants and
the arcs represent PA-relations between them. A polynomial solution can be found to a num-
ber of temporal reasoning problems represented by means of a PA-network:

– Consistency checking of a PA-network. Consistency checking can be enforced in O(n3)

for CPA-networks and in O(n4) for PA-networks, by using a path-consistency algorithm
where n is the number of nodes in the network [Ladkin and Maddux, 1988].

– To find a solution for a PA-network. Van Beek proposes a more efficient algorithm,
named cspan, for consistency checking and for finding a solution in O(n2). This algo-
rithm is based on searching strongly connected components in the network for obtaining
a reduced graph where arcs are labelled as <, >, and ? [van Beek, 1992].

– To find the minimal PA-network. Van Beek proves that the path consistency algorithm
is not complete for PA-networks, only for CPA-networks. Thus, the minimal CPA-
network can be obtained in O(n3). Obtaining the minimal PA-network can be accom-
plished in O(n4) by applying a 4-consistency algorithm [Van Beek and Cohen, 1990].
Later, the same author improves this result and presents an algorithm for obtaining the
minimal PA-network in O(max(n3,mn2)), where m is the number of arcs labelled as 6=.

– To decide global consistency. Koubarakis has proved that 5-consistency is necessary
and sufficient for achieving global consistency, and it can be enforced in O(mn4), where
m is the number of arcs labelled as 6= [Koubarakis, 1997].

The Interval Algebra (IA) is an approach to representing temporal information in terms
of qualitative relations between intervals [Allen, 1983]. Allen identifies 13 basic relations,



2.1. Constraint-based formalisms 9

named IA-relations, in order to describe the relative position between a couple of intervals:
before, meets, overlaps, starts, during, finishes, equals and their corresponding inverse rela-
tions. We shortly represent this set by Qii = {b,b−1,m,m−1,o,o−1,s,s−1,d,d−1, f , f−1,e}.
These basic relations are mutually excluding, in the sense that two given intervals can satisfy
only one of them.

However, as in the case of PA-relations, incomplete or indeterminate knowledge can also
be expressed by disjunctive relations, and we get 213 = 8192 possible relations between in-
tervals in the full algebra. For example, the disjunction ii b i j ∧ ii m i j, denoted by ii{b,m}i j,
shows that ii interval is before or meets i j interval. Relations of special interest are the null
relation ∅, representing the negation of all the basic relations, and the universal relation, rep-
resenting the disjunction of all the basic relations.

The IA is formally defined as an structure (2Qii ,−1 ,∩,◦), where 2Qii represents all the
possible subsets of IA-relations, (−1) represents the inverse operator, (∩) represents the in-
tersection and (◦) the composition of relations. Let R = {R1, ...,Rm} be a disjunction of
IA-relations. Allen’s method for inverse is to use the equivalence R−1 ≡ {R−1

1 , ...,R−1
m }. In-

tersection of two disjunctive relations is the intersection of every constitutive basic relation. A
13×13 transitivity table for relation composition can be found in [Allen, 1983]; composition
of two disjunctive IA-relations can be obtained as the composition of every two pairs of basic
relations.

A basic IA-relation can be expressed as a conjunction of basic PA-relations between the
start and end points of the intervals involved. Figure 2.1 shows the set of IA-relations and the
corresponding PA-relations.

Freksa presents a generalization of Allen’s interval-based approach [Freksa, 1992]. Re-
lations between semi-intervals rather than intervals are used as the basic relations. Semi-
intervals correspond to temporal beginnings or endings of intervals, that is, intervals where the
beginning or ending, or both of them, are not defined. The author argues that semi-intervals
are rather natural entities both from a cognitive and from a computational point of view. Re-
cently, a fuzzy extension IA f uz of IA has been proposed [Badaloni and Giacomin, 2006].

Every interesting reasoning problem for IA is NP-hard [Vilain et al., 1990]. In particular,
consistency checking is NP-complete [Vilain and Kautz, 1986]. It is interesting to search for
IA subclasses with good computational properties. Among them we mention:



10 Chapter 2. Literature review

IA-relation Inverse Relative position PA-relation
X− < Y−, X− <Y+

X before (b) Y b−1 ←− X −→ ←− Y −→
X+ < Y−, X+ <Y−

X− < Y−, X− <Y+

X meets (m) Y m−1 ←− X −→←− Y −→
X+ = Y−, X+ <Y+

←− X −→ X− < Y−, X− <Y+

X overlaps (o) Y o−1
←− Y −→ X+ > Y−, X+ <Y+

← X→ X− > Y−, X− <Y+

X during (d) Y d−1
←− Y −→ X+ > Y−, X+ <Y+

← X→ X− = Y−, X− <Y+

X starts (s) Y s−1
←− Y −→ X+ > Y−, X+ <Y+

← X→ X− > Y−, X− <Y+

X finishes (f) Y f−1
←− Y −→ X+ > Y−, X+ =Y+

←− X −→ X− = Y−, X− =Y+

X equals (e) Y e
←− Y −→ X+ = Y−, X+ =Y+

Figure 2.1: IA-relations and corresponding PA-relations.

– Pointisable subclass, P-IA: a set of relations of IA that can be expressed as a con-
junction of PA-relations involving the end points of each interval [Vilain et al., 1990,
Van Beek and Cohen, 1990, van Beek, 1992].

– Continuous endpoint subclass, C-IA: a set of relations of IA that can be ex-
pressed as a conjunction of CPA-relations involving the end points of each interval
[Vilain et al., 1990].

– ORD-Horn subclass, H-IA: a set of relations of IA that can be expressed as a
conjunction of ORD-Horn constraints involving the end points of each interval
[Nebel and Bürckert, 1995]. An ORD-Horn constraint is a disjunction of inequalities
a = b or a≤ b and disequations a 6= b where the number of inequalities does not exceed
one. This is the unique maximal subclass containing all the basic interval relations, for
which satisfiability can be solved using a polynomial-time algorithm [Ligozat, 1998].

Usual CSP tasks in P-IA and C-IA (consistency checking, finding a solution, obtaining
a minimal network and deciding global consistency) can be solved by translating interval
relations to a conjunction of point relations, and then applying PA and CPA algorithms.



2.1. Constraint-based formalisms 11

2.1.2 Quantitative constraint formalisms

Quantitative temporal networks provide a convenient formalism to deal with metric in-
formation about temporal points and durations. Here we describe the Temporal Constraint

Satisfaction Problem (TCSP), and a particular case, the Simple Temporal Problem (STP)
[Dechter et al., 1991]. A TCSP involves a set of variables {x1, ...,xn} representing time points
and a set of unary and binary constraints. Each constraint is represented by a set of intervals
{I1, ..., Ik}= {[a1,b1], ..., [ak,bk]}. A unary constraint Li restricts the domain of variable xi to
the given set of intervals, that is, it represents the disjunction (a1 ≤ xi ≤ b1)∨·· ·∨ (ak ≤ x1 ≤
bk). A binary constraint Li j restricts the permissible values for the difference x j− xi, that is,
it represents the disjunction (a1 ≤ x j− xi ≤ b1)∨ ·· ·∨ (ak ≤ x j− xi ≤ bk). It is assumed that
constraints are given in a canonical form in which all intervals are pair-wise disjoint.

A TCSP can be represented by a directed constraint graph, where nodes represent time
points and each arc is labelled by a metric constraint, that is, the set of arcs is a set of intervals.
A special time point, x0, is introduced to represent “the beginning of the world”. All times are
relative to x0; thus, we may treat each unary constraint Li as an equivalent binary constraint Li j

where x j is x0. A tuple x = (a1, ...,an) is called a solution if the assignment (x1 = a1, ...,xn =

an) does not violate any constraint.
With the aim of combining quantitative constraints, a metric algebra with set intersection

(∩), composition (⊗) and inverse (−1) operators is used. Given two constraints Ci j and C′i j

between the same time points, the composition Ci j⊗C′i j is defined as:

Ci j⊗C′i j =
⋃

Is∈Ci j ,It∈C′i j

Is + It = [as,bs]+ [at ,bt ] = [as +at ,bs +bt ]

The inverse constraint can be obtained as C−1
i j = {I−1

s | Is ∈Ci j}where [a,b]−1 = [−b,−a].
Unfortunately the main tasks of TCSP, deciding consistency and obtaining the minimal

network, are NP-complete. A Simple Temporal Problem (STP) is a simplification of the
TCSP where all constraints specify a single interval. In an STP, each arc is labelled by a
single interval [ai j,bi j], that represents the constraint ai j ≤ x j − xi ≤ bi j. An STP can be
associated with a directed edge-weighted graph Gd , called a distance graph. It has the same
node set as the constraint graph, and each constraint [ai j,bi j] between nodes x j and xi is
represented by two arcs: an arc labelled bi j from xi to x j and an arc labelled−ai j from x j to xi,
representing the pair of inequalities x j− xi ≤ bi j and xi− x j ≤−ai j. The well-known Floyd-
Warshall’s ALL-PAIRS-SHORTEST-PATHS() algorithm can be applied to the distance
graph, in order to obtain the shortest path between each pair of nodes. This algorithm runs



12 Chapter 2. Literature review

procedure ALL-PAIRS-SHORTEST-PATHS(V,E = {ai j | i, j ∈ {1, . . . ,n}})
1 begin
2 for i:= 1 to n do dii← 0
3 for i:= 1 to n do
4 for j:= 1 to n do
5 di j← ai j
6 for k:= 1 to n do
7 for i:= 1 to n do
8 for j:= 1 to n do
9 di j← min(di j,dik +dk j)
10 return (V,{di j | i, j ∈ [1..n]})
11 end;

Figure 2.2: Floyd-Warshall’s ALL-PAIRS-SHORTEST-PATHS algorithm.

in time O(n3), and constitutes a polynomial time algorithm for deciding the consistency of
an STP and for computing the minimal network. Figure 2.2 shows the pseudocode for this
procedure, where given an STP consisting of a set of nodes V and a set of arcs E, the algorithm
returns the minimal network for the same set of nodes, each arc di j representing the shortest
distance between nodes i and j according to the values in E.

2.1.3 Combined formalisms

Some efforts have been made to integrate qualitative and quantitative temporal informa-
tion on points and intervals. In this section we review some of these proposals.

In the Qualitative Algebra (QA) [Meiri, 1996], a qualitative constraint between two tem-
poral entities Oi and O j (each may be a point or an interval) is a disjunction of the form
(Oi r1 O j)∧ ·· ·∧ (Oi rk O j), where {r1, ...,rk} is a set of basic qualitative relations that may
exist between two entities. There are three types of basic qualitative relations: 1) point-point
(PP) relations that can hold between a pair of points; 2) point-interval (PI) and interval-point
(IP) relations that can hold between a point and an interval and vice versa; 3) interval-interval
(II) relations that can hold between a pair of intervals. The set of PP relations is (<,=,>)

and II relations are Allen’s relations shown in figure 2.1. The set of basic PI relations is
Qpi = {be f ore,starts,during, f inishes,a f ter}. The set of basic IP relations is defined by the
inverse operation Qip = {be f ore,starts−1,during−1, f inishes−1,a f ter}.



2.2. Temporal data mining 13

The set of QA-relations gathers together the subsets of basic relations of the same type:
213 II-relations, 23 PP-relations, 25 PI-relations and 25 IP-relations. Meiri defines intersection
and composition operations on disjunctions of relations. However, composition of IP-relations
with PI-relations and vice versa is not defined. Thus, QA is not an algebra in a strict sense,
since composition is not a closed operation.

Under this formalism, qualitative and quantitative constraints are integrated in an aug-
mented CPA- or PA-network, with the addition of unary metric constraints to establish the
position of a time point in the temporal axis, or binary metric constraints to establish the
temporal distance between two time points.

In a subsequent work, computational complexity of relating time points with intervals is
studied [Jonsson et al., 1999]. A complete classification of all subclasses of the point-interval
algebra with respect to tractability is provided. The classification reveals that there exist five
maximal tractable subclasses of the point-interval algebra, one of them being the only tractable
subclass that contains all the basic relations.

Badaloni and Berati define the Interval Distance Sub Algebra (IDSA), where nodes are in-
tervals [Badaloni and Berati, 1996]. These intervals are related by disjunctive 4-tuple-metric
constraints between their ending time points {(I−i , I−j ),(I

+
i , I−j ),(I

−
i , I+j ),(I

+
i , I+j )}. Staab

and Hahn propose a model for reasoning on qualitative and metric boundaries of intervals
[Staab and Hahn, 1998]. However, these models cannot handle constraints on interval du-
rations, which were identified earlier by Allen, and which require a high-order expression
[Dechter et al., 1991], or a duration primitive which should be integrated with interval and
point constraints [Allen, 1983, Barber, 1993]. Particularly, Barber proposes two orthogonal
networks to relate constraints on durations and time points. Later, Navarrete et al. extend
the point algebra model to include additional variables that represent durations between time
points, in the so-called Point-Duration Network [Navarrete et al., 2002]. Deciding consis-
tency is NP-complete, but tractable special cases are identified, and efficient algorithms for
checking consistency, finding a solution and obtaining the minimal network are provided.

2.2 Temporal data mining

The volume and variety of information contained in digital databases and other sources has
dramatically increased in the last decades. While a great deal of this information is historical
in nature, serving as a memory of the organisation that collects it, the information also may



14 Chapter 2. Literature review

be useful to explain the past and understand the present with the aim of predicting future
occurrences [Hand et al., 2001].

The traditional method of extracting knowledge from data is performed by a domain ex-
pert, who manually analyses and interprets the data. From this analysis, the specialist may
raise some hypothesis or reports reflecting the tendencies in the data. This kind of work is
slow, expensive, subjective and virtually impracticable in domains where the volume of data
grows rapidly. In addition, as the source of the data becomes more and more heterogeneus,
the necessity of tools and techniques to analyse the data and obtain useful information grows
more important [Fayyad et al., 1996].

Until recently, the analysis of data located in databases was performed by using general
query languages as well as on-line transaction processing. However, this procedure only
provided summarised information following previously established representations, which did
not scale well under large volumes of data. Data warehouse technologies aim to ease the
analysis of heterogeneous data sources by providing a unified schema and decision support
tools [Han et al., 2005]. On-line analytical processing tools are also provided, allowing to
aggregate information and view the information under different points of view. Yet these
techniques only extract information that still needs to be analysed by a domain expert to be
useful, and do not allow to generate rules, patterns or knowledge representations that may be
applied to other datasets.

Data mining can be seen as the application of techniques arising from diverse disciplines,
such as artificial intelligence, machine learning, data visualisation or statistics to the large
amounts of data held in heterogeneus data sets. Data mining is defined as the analysis of large
data sets to find unsuspected relations and to summarise the data in novel ways that are useful
and understandable to the data owner [Hand et al., 2001].

The relations obtained from the data mining process are often referred to as models or
patterns. However, it is important to point out that both terms refer to different types of enti-
ties. On the one hand, a model is a global summary of a data set. A model makes statements
about any point in the whole space of measurements, even when the data point is missing
some information. For instance, the function produced by a least squares regression method
may predict values in sections of the data set where no data point was available.

On the other hand, patterns describe structures that refer to some sections of the space
where the data may occur, that is, only part of the data set behaves as the patterns describes,
as opposed to the rest of the data which behaves differently. Therefore, models and patterns



2.3. Sequence data mining 15

may be considered as opposing entities, where models describe the usual behaviour while
patterns refer to those situations where an unusual behaviour is found [Hand et al., 2001].

Temporal data mining is an extension of data mining that can be defined as the search for
interesting correlations of patterns in large sets of temporal data. Temporal data mining has
the capability to discover patterns or rules which might be overlooked when the temporal com-
ponent is ignored or treated as a simple numeric attribute [Roddick and Spiliopoulou, 2002].
A large volume of research has therefore been focused on temporal data mining to discover
temporal rules such as sequential patterns, episodes, temporal association rules and inter-
transaction association rules. The analysis of event sequences is a relevant issue within tem-
poral data mining, since a sequence of events is a common representation of the temporal
activity of multiple organisations. Thus, sequence data mining appears as a first effort to de-
velop algorithms that seek frequent subsequences in event sequences, and where the order on
the temporal axis of these events is taken into account. This type of analysis has originated
an extense field of application known as sequence data mining. In the following section we
present what we consider to be the main proposals in this field.

2.3 Sequence data mining

Sequence databases consist of sequences of ordered elements or events, where a con-
crete notion of time may or may not have been considered while the database was recorded.
Sequence data can be found in multiple application domains, such as customer shopping se-
quences, alarm logs in telecommunication networks, biological sequences, manifestations in
the course of a disease, and other natural and social domains. Sequential data mining dis-
covers useful and interesting knowledge in the form of frequently occurring sets of ordered
events, or subsequences, denominated patterns.

Sequence data mining techniques share a common vocabulary that allows us to simplify
the discussion of the different proposals [Han et al., 2005]. An item is a basic entity of the
domain of interest present in the data set. The set of all items is I = {I1, . . . , In}. An itemset

or transaction is a non-empty set of items. The size of an itemset corresponds to the number of
items it contains, and an itemset of size i is known as an i− itemset. A sequence is an ordered
list of events, represented as S = {e1e2 . . .en}. An event can also be called an element and
usually corresponds to an itemset. The number of elements in a sequence is called the length

of the sequence, and a sequence of length n is an n-sequence. A sequence β = {b1 . . .bm} is



16 Chapter 2. Literature review

the supersequence of another sequence α = {a1 . . .an} denoted as subsequence if there exists
a set of integers 1≤ j1 < .. . < jn ≤ m that satisfy that a1 ⊆ b j1 , a2 ⊆ b j2 , . . . , an ⊆ b jn .

A sequence database S is a set of tuples (id,S), where id is an identifier and S is a se-
quence. A sequence α is contained in a tuple (id,S) if α is a subsequence of S. The support

of a sequence in a sequence database is the number of tuples that contain the sequence. The
minimum support threshold is a positive integer min_sup which represents the lowest support
value that a sequence needs to hold to be considered frequent. Therefore, a sequence needs to
be contained by at least min_sup tuples to be considered frequent. In this case, the sequence
is called a sequential pattern. Given two frequent sequences α and β such that α ⊆ β , then
α is a subpattern of β and, conversely, β is a superpattern of α .

Figure 2.3 shows an example of a sequence database where the itemsets to be mined have
a temporal value associated. Two equivalent representations can be seen. Each row in a table
corresponds to a different itemset or transaction. The first representation is more similar to a
traditional relational database, while the second emphasises the temporal dimension.

Figure 2.3: Sequence database example.

The aim of sequence data mining techniques is to induce a set of frequent sequential
patterns, where each pattern is a partially ordered list of itemsets that may be commonly found
in the dataset, and each itemset occurs before the next. Sequence data mining techniques
face the problem of dealing with large amounts of sequential patterns, specially as the length
of the patterns grows. The different proposals can be divided in two categories. The first
category includes those proposals where the aim is to obtain the complete set of sequential
patterns, whereas the second category refers to techniques that only contemplate the set of



2.3. Sequence data mining 17

closed sequential patterns. A pattern α is closed if there is no superpattern β with the same
support value.

Techniques aimed to discover the complete set of sequential patterns rely, either directly
or indirectly, in the Apriori property. This property states that every subpattern of a frequent
pattern is also frequent. This property is antimononotic in nature, because if a sequence is not
frequent, then necessarily all of its supersequences cannot be frequent. For this reason, the
property is also known as antimonotonicity property, or downward-closure property.

The Apriori property receives its name from the Apriori algorithm originally proposed
in [Agrawal and Srikant, 1994]. This algorithm uses prior knowledge about the properties of
frequent sequences to prune the search space, while aiming to obtain frequent itemsets which
are then used to generate sets of temporal association rules between the elements contained
in the itemsets. These rules specify relations between items of the data sets, where each
relation expresses some behaviour among the data based on the frequency of the simultaneous
appearance of two or more items. Apriori defines an iterative search procedure where frequent
i− itemsets are used to explore i+1− itemsets, which results in a breadth-first or level-wise
search, where each level must be fully explored before proceeding to the next, and level i

represents all frequent patterns of size i.
Apriori divides the mining process in two steps. First, it obtains all frequent patterns,

represented as frequent itemsets, in the data set. Then, it expresses the knowledge of the
patterns in a set of association rules. A pattern is considered frequent if its support, that is,
the number of itemsets in the sequence database where the pattern can be found, surpasses a
user-established threshold designated as minimum support. Association rules are considered
interesting if their confidence, that is, the ratio between the support of the antecedent of the
rule and the support of the itemset containing every item in the rule surpasses another user-
established parameter called minimum confidence.

Each iteration is divided into three steps: candidate generation, frequent sequence calcula-
tion, and removal of non-frequent candidates. In each iteration i, the algorithm uses the set of
frequent sequences of size i−1, labelled as Li−1, to generate the set of all possible candidates
of size i, labelled as Ci, that satisfy the antimonotonicity property. Then, the frequency of all
the candidates on the dataset is verified. Finally, those candidates that cannot be considered
frequent are removed from the process. Therefore, the set of candidates Ci is a superset of the
set of frequent patterns Li.

The candidate generation procedure is further subdivided into two steps. In the first step,
known as join step, the set Li−1 is joined with itself. Every two associations p,q ∈ Li−1



18 Chapter 2. Literature review

such that both share all of their items except the last one produce a new association p∪ q

which is added to Ci. In the second step, labelled as prune step, all elements r ∈Ci such that
there exists at least one subset t ⊂ r of size i−1 where t /∈ Li−1 are removed from Ci, as the
antimonotonicity property is not satisfied and therefore they cannot be frequent.

In the frequency calculation procedure, all transactions in the data sequences are analysed.
If the presence of any candidate in Ci is detected in a transaction, then the support of the
candidate is increased by one. The procedure finishes by removing from Ci all associations
that do no satisfy the support threshold.

Due to its simplicity, and how the candidate generation procedure reduces the search scope
of the mining process, the Apriori algorithm spawned a family of algorithms using the anti-
monotonicity property, often referred to as Apriori-like algorithms. These algorithms share
the level-wise iterative approach, where the complete set of candidates of size i is generated,
and then the sequence database is used to verify the support of each candidate and remove
from the process those candidates below the support threshold.

In [Agrawal and Srikant, 1995] the authors propose an algorithm that tries to minimise
the number of candidate sequences searched throughout the mining process. The process
is divided into two phases, labelled as forward phase and backward phase. In the forward
phase the algorithm performs the candidate generation step as the basic Apriori algorithm, but
skips the frequency calculation in some iterations, depending on the ratio of frequent patterns
found in the last frequency calculation performed. Then, in the backward phase, the algorithm
calculates the frequency of those candidates generated whose frequency was not previously
calculated, which are not subsequences of frequent patterns found in the forward phase. The
same authors in [Srikant and Agrawal, 1996] introduce two types of temporal constraints dur-
ing the frequency calculation procedure. The first type consists of two constraints, named
MinGap and MaxGap, that respectively force a minimum and a maximum temporal sepa-
ration between any two consecutive elements of a pattern, whereas the second type, called
sliding temporal window, forces all elements of a pattern to fall within the same temporal
proximity.

In [Lu et al., 2000] the authors propose the E-Apriori and EH-Apriori algorithms. Both
algorithms extend the original Apriori algorithm to deal with several dimensions, instead of
dealing only with time. Transactions are considered to be points in an n-dimensional space,
and patterns consist of a sequence of normalised n-dimensional points. The concept of sliding
temporal window is also extended to deal with n-dimensions and renamed as maxspan, forcing
all points of the pattern to be under the n-dimensional area covered by the window.



2.3. Sequence data mining 19

[Ale and Rossi, 2000] modify the Apriori algorithm to take into account the lifespan of
the items, that is, the time periods when the items really exist. The authors then consider that
the support of a pattern can only be calculated by taking into account the subset of sequences
where the item was active, instead of the complete set of sequences. For instance, if a product
has been sold only for five months, the algorithm will only consider itemsets within that
period, and ignore any other transaction that belongs to other time periods. This allows the
algorithm to find patterns where items with a limited lifespan, such as new products, would
be ignored due to the presence of items with a much greater lifespan. Therefore, the proposal
needs that the explicit lifespan of the items being studied is provided.

The SPADE algorithm is proposed in [Zaki, 2001]. This algorithm subdivides the search
space into smaller pieces, called sub-lattices, that can be analysed independently. By dividing
the search space, and by binding each item to the list of sequences where it is found, it is
possible to minimise the number of database passes to count the frequency of the patterns. In
addition to the Apriori breadth-first search procedure, the author proposes a depth-first search
algorithm, which recursively extends one pattern until no new items can be added, instead of
searching for all patterns of size i before searching for patterns of size i+1.

Apriori-like pattern mining algorithms effectively reduce the search space by pruning by
means of the antimonotonicity property. Still they bear nontrivial problems inherent to their
breadth-first nature. The first problem lies in the number of passes over the database needed to
find all frequent patterns. As pattern size grows by one at each iteration, and it is necessary to
count the occurrences of all candidates throughout the database in each iteration of the mining
process, the procedure will perform i passes over the full data set in order to find a pattern of
size i. The second problem is the potentially large number of candidates generated through
the process. In order to identify a frequent pattern of size i, an Apriori-like algorithm needs
to generate and count the frequency of 2i−1 patterns.

The authors in [Agarwal et al., 2000] propose a depth-first search by means of a lexico-
graphic tree. Each node in the tree represents a frequent itemset, and its parent in the tree
represents the same itemset but missing the last item. This representation allows the mining
process to focus the counting of the itemset to those parts of the database where the parent
itemset was found, reducing the search scope for each itemset. The same authors also add
a breadth-first and a mixed approach in [Agarwal et al., 2001]. However, none of the three
approaches is able to perform intratransactional mining, so the temporal aspect is left unex-
plored.



20 Chapter 2. Literature review

Another depth-first approach is proposed in [Han et al., 2000b]. The algorithm, called FP-

growth, transforms the database into a tree structure labelled as FP-tree, which summarises
the database by finding common prefixes in the sequences and reorganising them to reduce the
space required. Each branch of the tree represents a sequence of items following a descending
frequency order, and some part of the branches may be shared or connected to represent com-
mon sequences in the original database. Frequent patterns can then be obtained by traversing
the different branches of the tree following a depth-first search, making it unnecessary to iter-
atively generate and test the whole set of candidates of a fixed size before searching for bigger
patterns. Even though the approach outperforms Apriori-like approaches in mining frequent
sequential patterns, items and sequences with different orderings imply that the tree will be
huge, along with an increase of the memory requirements of the algorithm.

The same authors in [Han et al., 2000a] propose the FreeSpan algorithm, which uses fre-
quent items to project transactional databases into smaller databases, where each projection
may only contain ocurrences of a distinct subset of patterns. In this regard, a projection of a
database with respecto to a pattern is the set of sequences where an occurrence of the pattern
can be found. Therefore, the frequency calculation of each pattern can be confined to a subset
of the whole database.

The PrefixSpan algorithm [Pei et al., 2001] is presented as an improvement over FreeSpan.
The main difference lies in how the projection of the database for each pattern is calculated.
Since the pattern being searched for in each iteration is obtained by adding one item at the
end, it is enough to only search for the presence of the new item among the items left after the
occurrence of the pattern being extended. Therefore, the projection of the database for one
pattern consists of a set of subsequences of the original database, where each subsequence in-
cludes only those items of the original sequence that still need to be analysed. Due to how the
projections are built, the search scope of the mining process is reduced as pattern size grows,
since the frequency calculation process can be focused on those subsequences where the can-
didate pattern might be present. The MEMISP algorithm proposed in [Lin and Lee, 2005] has
a similar behaviour to PrefixSpan. However, instead of building a new projection for each
pattern analysed, the MEMISP algorithm builds a unique index for each frequent pattern of
size one. Although both PrefixSpan and MEMISP perform similarly when the data sequences
fit into memory, MEMISP performs better when this is not the case.

Similarly to Apriori-like algorithms, PrefixSpan has been used as a starting point for sev-
eral data mining algorithms, all of them following a similar structure [Li and Wang, 2008,
Chen et al., 2003, Hu et al., 2009, Wu and Chen, 2007]. The typical PrefixSpan algorithm can



2.3. Sequence data mining 21

be considered as a recursive method divided in three steps. The first step finds all frequent
items in the current projection of the database. Then, each frequent item found is appended at
the end of the current pattern, producing one new frequent pattern for each different item. Fi-
nally, the procedure makes a recursive call for each frequent pattern found in the previous step,
where each call will search for extensions of only one pattern and also sees the database re-
duced to those subsets of the previous projection occurring after the item appended was found.
Although PrefixSpan algorithms perform better than Apriori-like algorithms when searching
for sequential patterns, it is not trivial to adapt them to find patterns not representing total
orders.

The MinGap and MaxGap constraints proposed in Apriori are introduced into PrefixSpan
in [Li and Wang, 2008]. In addition, a method is proposed to find only closed patterns, that is,
patterns having a frequency value such that all of its extensions have a lower frequency value.
Searching only for this kind of patterns allows the mining process to obtain a more compact
set of patterns and improves the overall efficiency.

The concepts of MinGap and MaxGap are extended in [Chen et al., 2003]. Two algorithms
are proposed, one based on Apriori and another based on PrefixSpan. Both algorithms assume
a disjoint partition of the time axis, where each element of the partition represents an interval
of possible distances between one element of the pattern and the next element. The algorithms
obtain a set of frequent patterns, where the possible distance between one event and the next
is limited by at least one of the intervals of the partition. It is possible to have different
intervals in the same pattern, instead of forcing the same set of possible distances between two
successive events as MinGap and MaxGap do. This approach is improved in [Hu et al., 2009]
by introducing a constraint limiting the possible temporal distance between any two elements
in the pattern, regardless of their occurrence order in the pattern. However, the partition of the
time axis remains constant through the procedure, which means that even if some of the values
in one interval associated to a pair of events are not possible due to other intervals in the same
pattern, these values are not removed from the interval, forcing every interval to be the same
as in the partition. This results in a loss of information in the process. In addition, due to the
static nature of the intervals and the partition of the time axis, some temporal arrangements
between events may arbitrarily fall under the same pattern when they should not, and the
opposite may also be true, some temporal arrangements may fall into two different patterns
when in fact they represent the same situation.

Instead of relying on a fixed partition to represent the possible distances between suc-
cessive elements in a pattern, in [Giannotti et al., 2006] the authors propose to make use of



22 Chapter 2. Literature review

a clustering procedure to coalesce similar temporal distances between the same events in a
single pattern. Patterns are described as a sequence of elements, where the temporal dis-
tance between one element and the next is calculated by taking into account the density of
the distances observed throughout the database between the two events under consideration.
Similarly, in [Nanni and Rigotti, 2007] the authors group similar occurrences of a sequential
pattern and build a tree for each set of items. The arcs connecting two successive elements
of a branch have an interval associated, which represents the minimum and maximum tem-
poral distances between the events. Therefore, each branch of the tree represents a different
sequential pattern.

Regardless of how complex is the model used to represent the patterns obtained, the com-
putational workload remains similar: large databases, which are linked to a huge search space,
which in turn results in a large solution set. Not only does the mining process become inef-
ficient, but interesting knowledge becomes obfuscated among useless or spurious patterns.
Therefore, a data mining process should be both interactive and iterative [Mitra et al., 2002].
Interaction may be present at various stages, and domain knowledge may be present either
as a high-level specification of the model, or at a more detailed level. Usually, once all fre-
quent patterns are obtained, the domain expert analyses, interprets and evaluates them, aim-
ing to extract useful knowledge from them. However, the manual analysis of such a large
amount of results is not a viable solution, and obtaining a new set of patterns that represent
the temporal information contained in the database as a summarised representation should
be the aim instead. This problem is known as higher order knowledge discovery, the min-
ing of previously mined rules. In addition, the constraint-based pattern mining paradigm
aims to allow the user to specify a set of constraints that are pushed into the mining process,
where the constraints represent what situations are of interest to the user, focus the mining
process on these situations, and remove early on uninteresting situations. The development
of new, efficient algorithms that enable human experts to collaborate in the mining process
more intuitively is recognised as an important challenge for future data mining proposals
[Garofalakis et al., 1999, Bettini et al., 1998a, Pei et al., 2002, Sacchi et al., 2007b].

Conventional sequence and temporal data mining techniques only provided the minimum
frequency threshold mechanism to specify the interestingness of the patterns, which is recog-
nised as a limited mechanism.

[Hirate and Yamana, 2006] propose a mining technique that allows the user to specify sev-
eral constraints over the mining procedure simultaneously. The first constraint consists of a
temporal window, which specifies the maximum separation allowed between any two items



2.3. Sequence data mining 23

to be considered part of the same occurrence. The user may also specify the MinGap and
MaxGap constraints, as well as the number of items that may be present between two suc-
cessive items of a pattern so that a sequence can be considered an occurrence of the pattern.
The SPIRIT algorithms, proposed in [Garofalakis et al., 1999], are designed to allow the user
to provide a set of constraints, expressed as regular expressions, to the mining process with
the aim of obtaining a set of frequent patterns that satisfy these constraints. The algorithms
are based on Apriori, which allows patterns obtained to be extended with new events. Regu-
lar expressions are also used in [Trasarti et al., 2008] to prune the search space, but instead of
forcing the patterns generated to adhere to the regular expression, they use an automata that ac-
cepts the regular expression introduced to obtain the patterns directly from the data sequences.
A hierarchy of relaxations to regular expressions is proposed in [Antunes and Oliveira, 2005],
allowing the user to provide guidelines on how to use the constraints introduced, and therefore
allowing the user to obtain knowledge that could not be inferred from the knowledge intro-
duced itself if it were applied in a more strict manner. In addition, the authors propose to use
regular expressions as constraints to obtain patterns that do not satisfy them, which is a useful
tool for fraud detection processes.

A technique that allows a domain expert to interact with the mining process to progres-
sively refine the results is proposed in [Bettini et al., 1998a]. The user provides a skeletal
definition of a pattern, represented as a finite automaton with only one root. Each node in the
automaton represents an event type, the arcs connecting the nodes have some sort of temporal
granularities associated, and each granularity limits the possible temporal distances between
the instantiation of the event types connected. The user also provides the root event type,
and may optionally specify some event types for the rest of the nodes of the automaton. The
algorithm proposed aims to discover all possible frequent patterns consistent with the struc-
ture provided, where each pattern obtained represents a different instantiation of event types
to the nodes left unspecified by the user, and the frequency is measured as the fraction of
occurrences of the pattern with respect to the number of occurrences of the root event type.
However, the algorithm cannot add new event types by itself, and requires the user to manu-
ally introduce them. Granularities are also used in [Li et al., 2003] to propose an Apriori-like
technique that obtains a set of temporal association rules, where each rule specifies the values
of each granularity provided in which each rule holds.

A formalisation of the constraint-based sequential pattern mining problem is presented in
[Pei et al., 2002]. Constraints considered in previous approaches are formalised and separated
into seven different categories, while their monotonicity and anti-monotonicity properties are



24 Chapter 2. Literature review

analysed, as well as their possible use in prefix-growth algorithms. The first category spec-
ifies whether a set of items should or should not be present in the patterns obtained. The
second refers to the minimum or maximum length of the pattern. The third category of con-
straints forces the resulting patterns to be superpatterns of a set of patterns specified by the
user. Aggregate functions, such as the sum or the average of the values of the items in the
pattern constitute the fourth category, and regular expressions represent the fifth category. The
sixth category forces patterns to have a minimum or maximum temporal duration, and the last
category contains the MinGap and MaxGap constraints. The PrefixSpan algorithm is then
adapted to allow the domain expert to specify constraints from these categories, forcing the
algorithm to only search for frequent patterns that satisfy the constraints introduced. How-
ever, the authors identify some specific constraints within the category of aggregate functions
called tough aggregates, for instance “the average cost of the items in the pattern”, where the
approach is suboptimal. In [Bonchi and Lucchese, 2007] an Apriori-like solution that solves
this problem is proposed.

2.4 Partial orders

Frequent sequential patterns, whether closed or not, represent interesting total orders in
terms of the support of the elements in the sequence database analysed. When the result set
consists of closed patterns, the number of frequent patterns the user needs to review is re-
duced, which also reduces the importance of a careful choice of the minimum support thresh-
old. However, total orders cannot represent all the particularities in sequential data. To solve
this problem partial orders are proposed, which aim to summarise the information contained
in different sequential patterns to improve their representation and comprehension. An ex-
ample of a partial order and the sequences it summarises is shown in figure 2.4, where the
three sequences on the left are grouped under a single partial order, each branch in the graph
corresponding to a different sequence.

In [Mannila et al., 1997] an Apriori algorithm is proposed that makes use of the concept of
sliding temporal window to force events of a pattern, called episodes, to occur within the same
temporal context. Therefore, episodes are defined as a partial order of events occuring within
the same temporal proximity. Two types of patterns can be found, depending on whether the
order of the events in the window is important or not. In the first type, called parallel episodes,
the order of the events is not important, as long as all the events fit in the same window. The
second type, named sequential episodes, takes into account the order of the events in the



2.4. Partial orders 25

Figure 2.4: Example of a partial order and the sequences it summarises.

window, so that the same set of events represent an occurrence of different patterns depending
on their order in the temporal window. However, even in the case of sequential episodes, the
specific temporal arrangements between any two events of the pattern remain unknown. In
[Harms et al., 2001] the authors propose an extension that searches for closed patterns, which
reduces the number of patterns involved in each iteration of the process, and improves the
efficiency of the mining process.

A method that allows the mining process to summarise the qualitative knowledge con-
tained in the set of frequent sequential patterns obtained by other techniques, such as Apriori
or PrefixSpan, and produces a reduced set of partial orders that represent that knowledge in
a more compact manner is proposed in [Casas-Garriga, 2005]. The PrefixSpan presented in
[Pei et al., 2004] is adapted in [Pei et al., 2006] to improve the process of finding the set of
partial orders. Then, [Tatti and Cule, 2011] extend the problem to mining frequent closed
episodes as defined by [Mannila et al., 1997] so that the patterns obtained may represent
events occurring in no particular order, one event necessarily after the other, or both events
simultaneously. The authors propose a depth-first approach but, instead of doing a database
projection as in PrefixSpan, the method relies on annotating the windows where the pattern
being analysed was found.



26 Chapter 2. Literature review

2.5 Interval-based data mining

Although most sequence data mining techniques assume items of interest to be point-
based, there are domains where the observed phenomena is interval-based in nature, and pre-
viously mentioned proposals do not allow to perform an appropriate study.

In [Kam and Fu, 2000] the authors propose an Apriori-like algorithm that uses Allen’s
interval relations and a sliding temporal window to search for frequent patterns of interval-
based events. In [Papapetrou et al., 2005] the authors distribute the patterns in a tree structure
based on a set enumeration tree [Rymon, 1992], and then define both a breadth-first Apriori-
like algorithm and a depth-first algorithm to construct the tree, improving the efficiency of the
mining process. Once the set of frequent patterns has been found, temporal association rules
may be extracted. In [Hoppner, 2001] another Apriori method that produces a set of temporal
association rules extracted from the patterns obtained is proposed. A more efficient approach
is proposed in [Winarko and Roddick, 2007], where the MEMISP algorithm is adapted, and
the MaxGap constraint is added to the mining process, allowing the algorithm to reduce the
search scope by removing uninteresting patterns. Although these approaches are able to deal
with interval-based events, Allen’s relations present problems, as they are both ambiguous
and qualitative in nature, and therefore their expressiveness is limited.

[Wu and Chen, 2007] argue that using Allen’s temporal relations results in a set of am-
biguous patterns, as some temporal relations may be mapped to different patterns, and some
relations between events may be lost. To solve this problem, the authors propose a PrefixSpan
technique that represents patterns as a partial ordering of the ending points of the interval-
based events. In [Patel et al., 2008] an additional Apriori-like method that provides some
pruning strategies to reduce the search space is proposed. A proposal to deal with both point-
based events and interval-based events simultaneously is presented in [Wu and Chen, 2009].
Patterns obtained are labelled as hybrid patterns. The authors argue that traditional sequence
data mining techniques cannot deal with this problem satisfactorily, as they either transform
intervals into its corresponding beginning and ending events and forego the pair-wise rela-
tion between both, or they simulate that point-based events are interval-based events with
zero duration, which degrades performance. In their proposal the authors define a method
that represents hybrid patterns as partial orders between point-based events while guarantee-
ing the integrity of the interval-based events. Another take on hybrid patterns is proposed
in [Chen et al., 2011], where point-based events are elements present within interval-based
events, and each interval-based event is represented by a sequence of point-based events.



2.5. Interval-based data mining 27

Each interval-based event has its own domain of possible point-based events, and there may
or may not be an occurrence of each point-based event within an occurrence of an interval-
based event. Patterns obtained are represented by means of a partial order of the point-based
events. The algorithm is divided into two steps. The first step obtains every different frequent
partial order of each individual interval-based event. The second step combines the patterns
obtained in the first step to obtain frequent patterns, represented as partial orders, that consider
more than one interval-based event. These approaches handle the problem of the ambiguity
of Allen’s relations, yet the patterns extracted are still qualitative in nature, limited to giving
partial orders between the events analysed, and do not provide more precise information about
their temporal arrangements.

In [Moerchen and Ultsch, 2007] another improvement over Allen’s interval relations is
proposed. The authors identify that Allen’s relations are ambiguous, and small changes in the
boundaries of the intervals, for example under the effects of noise, may produce patterns with
very different relations. For instance, a small change in the boundaries of the intervals shown
in the starts in figure 2.1 relation may change the relation between the intervals to the overlaps

relation or the during relation. Instead, the authors define a hierarchical language to represent
interval-based events, and then propose a depth-first method that mines closed partial orders
of intervals [Moerchen, 2006], while considering that small variations in the arrangements of
the intervals represent the same situations.

Other proposals go beyond qualitatitive temporal relations between intervals, such as
Allen’s relations, and aim to obtain quantitative temporal relations as a result of the mining
process. Similarly to [Giannotti et al., 2006] in point-based events domains, an Apriori-like
technique is presented in [Guyet and Quiniou, 2008] to extract patterns where several differ-
ent occurrences of sequences of interval-based events, all of them similar in terms of their
temporal arrangement and duration of the events, are grouped with the representative of the
pattern. The algorithm projects a hyper-cube around each possible representative and then
estimates the density function of sequences within the hyper-cube. The authors then propose
to use a density-based clustering algorithm, such as the Expectation-Maximization algorithm,
to obtain the set of representatives. The same authors propose in [Guyet and Quiniou, 2011]
a PrefixSpan approach to this problem. However, instead of projecting hyper-cubes, the clus-
tering procedure is used to group sequences according to the similarity of their time intervals,
both in terms of their instant of occurrence and their duration.



28 Chapter 2. Literature review

2.6 Time series data mining

In some application domains data cannot be found in the form of sequences, but they may
come in the form of time series. For instance, electrocardiograms in the clinical domain. In
order to use the techniques discussed in this chapter, these time series need to be preprocessed
in some way to transform them into sequences of point-based events or interval-based events.
In [Bellazzi et al., 2011] a review on techniques on the clinical field that need this sort of
preprocessing can be found.

[Agrawal et al., 1995] use similarity measures in time series data with the aim of discov-
ering all similar subsequences in a set of time series sequences, where the temporal axes of
the time series do not need to be aligned. The similarity measure is able to deal with different
scales in the vertical axis, as well as differences in the offset. Unsupervised neural networks
to generate a description of the underlying time series are used in [Guimarães et al., 2001].
These descriptions are then used to represent the original database as a sequence, from which
temporal rules are extracted. Similarly, the work in [Bellazzi et al., 2005] proposes a tech-
nique to detect trends in time series from the measurements of patients undergoing haemodial-
ysis, and then produce a description of the precedence of the trend in the form of temporal
association rules by using an Apriori strategy and the precede temporal relation, which in-
cludes the overlaps, finished-by, meets, before, equals and starts from Allen’s temporal alge-
bra. This work is improved in [Sacchi et al., 2007a] by allowing the domain expert to specify
a set of trends of interest, which forces every element of the antecedents and consequents of
the temporal rules to be part of the set of interest. The same authors in [Sacchi et al., 2007b]
build upon the previous research with a new representation formalism by transforming the
rules obtained into precedence temporal networks in the domain of gene expression data. The
temporal association rule extraction is improved in [Concaro et al., 2009] by allowing the user
to specify which event classes can appear in the antecedent or in the consequent of the rules,
and then use a post-processing step that further prunes the number of rules produced by intro-
ducing a criterion based on the ratio of the confidence of a rule and the maximum confidence
of all of its subrules.

2.7 Our approach

As we have previously stated, adopting a temporal formalism provides a set of formal
tools to elicit and manage effective problem solving knowledge. The formalism of choice



2.7. Our approach 29

needs to allow us to integrate mining models with inference models, as well as allow the user
of the mining algorithms to interact with the process by providing patterns of interest to focus
the induction process and constrain the search space.

Our choice of the STP formalism is not only based on the inference mechanisms seen in
section 2.1.2, but also on the expressiveness it offers based on representing both precise and
imprecise temporal information. Another important property of the STP formalism is that it
can be easily understood by domain experts, allowing them to easily introduce knowledge
into the mining process. The STP formalism and its extensions have been proposed to
represent temporal knowledge in different problems, such as temporal diagnostic reasoning
[Wainer and de Melo, 1997, Gamper and Nejdl, 1997, Palma et al., 2006], computerised
representation of clinical guidelines [Duftschmid et al., 2002, Anselma et al., 2006],
temporal abstraction [Campos et al., 2010], or query answering [Barro et al., 1994,
Deshpande et al., 2003, Combi et al., 2009], among others.

There is a precedent of the use of the STP formalism in the temporal data mining field
from sequence databases [Dousson and Duong, 1999]. The authors search for temporal pat-
terns over sequences of events that are represented by the STP formalism. An Apriori-like
procedure is proposed, where frequent patterns of size i are found before searching for pat-
terns of size i+ 1. The candidate generation in this proposal constructs one, and only one,
temporal constraint network for each different set of items. Each constraint in each one of
these networks is obtained by means of the union of the constraints connecting the same
nodes in every frequent pattern found in the previous iteration. Then, a Floyd-Warshall
ALL-PAIRS-SHORTEST-PATHS() algorithm verifies that the network is consistent and
produces the minimal network. The set of patterns of size two is extracted from the data
collection by using a heuristic. The heuristic associates one interval [a,b] to each pair of
items. First, all possible constraints that satisfy the occurrences found in the data sequences
are built. Then, to choose the appropriate constraint, the algorithm discards a certain per-
centage of the occurrences of the pair of items, which reduces the amount of noise. Finally,
from the remaining constraints, the one that satisfies that both b−a and max(|a|, |b|) are the
smallest possible values is chosen. If more than one constraint satisfy the restrictions, then
the constraint resulting from the union of all of them is chosen.

This proposal also allows a domain expert to directly introduce some already known pat-
terns into the mining process. The patterns provided by the user are assumed to be frequent.
Therefore, any of its subpatterns is frequent, which allows the algorithm to avoid generating



30 Chapter 2. Literature review

them and verifying their frequency. In turn, the overall number of patterns involved in the
process is reduced.

We can identify the following limitations in this proposal. First, given a set of events of
interest, the algorithm may extract at most one pattern, that is, at most one temporal con-
straint network, to represent temporal arrangements of the events in the sequence database.
Therefore, there may be temporal arrangements between the same set of events, different than
the ones represented by the pattern chosen yet frequent on their own, that are not taken into
account by this algorithm, so some information would be lost. Moreover, each constraint in a
pattern is obtained by the union of the constraint in every pattern found in the previous itera-
tion, even if the intervals of the contraints are disjoint, which would allow the new pattern to
accept temporal arrangements that were not allowed by the original constraints. In addition,
the method proposed to obtain the first constraints is domain-specific. Finally, although the
method allows the domain expert to provide patterns to the mining process, any pattern ob-
tained will be subjected to the same previously stated restrictions of the algorithms. Therefore,
even though the search space is reduced, and the patterns obtained will be consistent with the
knowledge provided, the results could be incomplete if several distinct temporal arrangements
are present in the data.

The work by Dousson and Duong can be considered a first and tentative approach to
representing the result of a temporal data mining process by means of the STP formalism, but
as it has been shown, they provide a naive answer to some problems. This analysis leads us to
propose new algorithms to discover frequent temporal patterns represented as STP, providing a
more satisfactory answer to those still pending challenges related to computational efficiency,
expressiveness, domain knowledge inclusion, and interaction with the user.



CHAPTER 3

DEFINITIONS

In this chapter we introduce the main notions that will be used in the temporal data mining
algorithms we have developed for the discovery of frequent temporal patterns expressed as a
set of STP. Formal definitions are provided for the temporal primitives (events and episodes)
and for the temporal patterns, as well as other concepts and operations that are needed in the
implementation of the mining procedures.

We denote as O = {o1,o2, ...,on} the finite set of observables in a given domain, that is,
those entities in the domain for which an observation procedure is available. Every observa-
tion procedure identifies the presence of an observable in a temporal instant, and provides a
measure for a set of its attributes. We will focus on a set of observables that are significant
for analysis purposes; for instance, in the medical domain those with a pathophysiological
meaning: an apnea, a tachycardia, or an arousal, and we will name event the result of an
observation in a time instant. Formally:

Definition 1 An event e is a tuple (o,a = v, t), where o ∈O is an observable, a is an attribute

of the observable with value v ∈ V (a), V (a) represents the set of possible values for the

attribute a, and t ∈ N is a time instant.

We assume that events are observed in an absolute dating system, possibly expressed with
multiple granularities (year, month, day, etc.), and then every time instant is mapped in a fixed
granularity representation. We assume that granularity to be second [Bettini et al., 1998b].
On the other hand, with this definition, an event has no duration. Those entities with duration
could be represented by the notion of episode. Formally:



32 Chapter 3. Definitions

Definition 2 An episode g is a tuple (o,a = v, tb, te), where o ∈ O is an observable, a is an

attribute belonging to the observable with value v ∈V (a), V (a) represents the set of possible

values for an attribute a, and tb, te ∈ N are time instants representing the beginning and end

of the episode, respectively.

In practice, and for temporal data mining purposes, episodes (o,a = v, tb, te) will be repre-
sented by two events (ob,a = v, tb) and (oe,a = v, te), marking the beginning and the end of
the episode. We will assume in the following, in order to simplify notation, that all events and
episodes are characterized by a single attribute, and thus only its value v will be represented.

From the set of different (o,v) pairs in the data, we can define an event type as follows:

Definition 3 An event type E is a tuple (o,v,T ), where T is a temporal variable represent-

ing an instant. We call E = {E1, . . . ,Ep} to the set of different event types provided by the

observation procedures in a particular domain.

Intuitively, an event (o,v, t) corresponds to an instantiation or occurrence of an event type
(o,v,T ) in a particular instant T = t.

Definition 4 An episode type G is a tuple (o,v,Tb,Te), where Tb and Te are temporal variables

representing the beginning and the end of the episode. Two event types (ob,v,Tb) and (oe,v,Te)

describe the beginning and the end of every episode type G = (o,v,Tb,Te). We call G =

{G1, . . . ,Gq} to the set of different episode types provided by the observation procedures in a

particular domain.

We gather the set of event types E and the set of episode types G in a set of types of facts

F = E ∪G. The set of types of facts represents all entities of interest for the pattern discovery.
As a result of the application of the observation procedures we can obtain a set E of events
and a set G of episodes, gathered together in a set of facts F = E∪G, that will undergo the
mining process. These facts will be represented as an event sequence by defining an order
relation among events:

Definition 5 Let < be an order relation between two events ei = (oi,vi, ti) and e j = (o j,v j, t j)

such that (ei < e j)⇔ (ti < t j)∨ ((ti = t j)∧ (oi < o j)), assuming a lexicographical order

between observable names.

This relation allows us to define the concept of event sequence.



33

Definition 6 An event sequence is an ordered set of events S = {e1, . . . ,em} where for all

i < j, ei < e j. The size of the sequence is |S|= m. Its beginning instant is bS = t1, its ending

instant eS = tm and its duration dS = tm− t1. Every subset of a sequence is a subsequence.

Since an event-based representation of an episode does not permit to distinguish two dif-
ferent episodes in a sequence, we will provide the mining process with both a sequence S and
the set G of the episodes it contains. The set G connects the beginning and the end of each
episode in the sequence.

A recording (S,G) is defined as an enriched event sequence, involving both events and
episodes, observed during a given time period. In practice, the set G is simply implemented as
a set of links between the beginning and ending events of each episode in the sequence, so for
the sake of simplicity we will denote a recording as a sequence S. An example of a recording
is the set of events identified from a patient’s polysomnography during the night, or the set of
events identified from a patient’s long term ECG monitoring, with the only constraint that it
is impossible for two different events of the same observable to occur at the same instant, that
is, no attribute may take different values simultaneously: ∀ei,e j ∈ S,(oi = o j)∧ (vi 6= v j)⇒
ti 6= t j; although it is possible to identify events corresponding to different observables at the
same instant.

A collection is a set of recordings S = {S1, . . . ,Sn}, that will undergo a data mining pro-
cess. As we are interested in mining relative temporal information, we subtract in every
recording its onset time from the time-stamp of each event. As an example, a patient un-
derwent a polysomnographic test beginning on 2010/04/12-23:42:16, and a central apnea
episode was identified from 2010/04/13-00:02:26 until 2010/04/13-00:02:53. We can rep-
resent the notion of central apnea episode by an episode type (apnea,central,Tb,Te), and by
the corresponding event types (apneab,central,Tb) and (apneae,central,Te). We can represent
the observed central apnea episode by an episode (apnea,central,1210,1237) and by events
(apneab,central,1210) and (apneae,central,1237).

The user of the mining algorithms may be interested in searching for short- mid- or long-
term relations between events or episodes in a collection. His/her knowledge of the domain
determines the scope of the search, by defining a temporal window of duration ω that scrolls
through every recording S ∈ S in the search for frequent patterns. This way, the occurrence of
a pattern can spread over at most ω time units, so that whichever two events of the occurrence
are, at most, ω time units apart.



34 Chapter 3. Definitions

Definition 7 A temporal window of width ω in a recording S is every subsequence W =

{ei, . . . ,ek} of S such that tk− ti ≤ ω , ei, . . . ,ek ∈ S and for all t j ∈ [ti, tk], e j ∈ S⇒ e j ∈W.

This window constrains the search by only considering those subsequences W ⊂ S where
dW ≤ ω , thus limiting the search space [Lu et al., 2000] and increasing the efficiency.

Another important element to be used in the mining algorithms is the concept of temporal
association between event types. Temporal associations are used in the identification of sets
of event types frequently found together. The different temporal arrangements within these
associations will lead to different temporal patterns during the mining process. Formally:

Definition 8 A temporal association of size n in a recording S is an ordered set of event types

A = {E1, . . . ,En} with Ei < Ei+1 for all i = 1, . . . ,n− 1, such that there exists a temporal

window W = {e1, . . . ,em} ⊆ S, with m ≥ n, where every Ei ∈ A has an event occurrence

e j ∈W.

By introducing the order relation Ei < E j ⇔ (oi < o j)∨ ((oi = o j)∧ (vi < v j)), we may rep-
resent event types Ei, E j, Ek with capital letters: (A,TA), (B,TB), (C,TC), maintaining their
lexicographical order. When we refer to event types occurring in the same temporal window,
we may also omit the temporal component in the notation, so we can identify event types sim-
ply by capital letters: A, B, C,... Fig. 3.1 shows an example of two occurrences of a temporal
association with event types A, B, C.

Figure 3.1: Temporal association with event types A, B and C.

The objective of the mining algorithms introduced in the next section is to obtain a set of
temporal patterns that are frequently found in a collection S, optionally starting from some
previous knowledge provided by the user, that will constrain the search. Every pattern in-
volved in the mining process is represented as a temporal constraint network between a set



35

of event types, according to the STP formalism [Dechter et al., 1991]. An STP defines a tem-
poral constraint Li j between two event types Ei = (oi,vi,Ti) and E j = (o j,v j,Tj) as a closed
interval Li j = [ai j,bi j], where ai j and bi j are integer numbers, restricting the possible values
of the interval duration between both event types, so that ai j ≤ Tj−Ti ≤ bi j. Formally:

Definition 9 A temporal pattern P =< D,L > of size n consists of a set of event types D =

{E1, . . . , En} ⊆ E , and a set of temporal constraints L= {Li j; 1≤ i, j ≤ n} between the event

types in D.

A temporal pattern can be represented as a directed graph, where each node is associated with
an event type in D, and each arc from node Ei to node E j is associated with the constraint Li j.
Given a constraint Li j = [ai j,bi j] its symmetrical constraint L ji =−Li j = [−bi j,−ai j] contains
the same information, so they are redundant. The absence of any explicit constraint between
a pair of event types Ei and E j is equivalent to considering a constraint Li j = LU = (−∞,∞)

defined as the universal constraint, that is, the constraint that does not restrict the possible
values of the interval duration between both event types. Universal constraints are not usually
represented in the graph. Given a temporal pattern P as an STP, there always exists a minimal
pattern M equivalent to P, corresponding to the most explicit representation of P. Floyd-
Warshall’s ALL-PAIRS-SHORTEST-PATHS() algorithm is used to check the consistency
of P and to obtain its minimal representation [Dechter et al., 1991].

Throughout the mining process the same set of events D can produce different temporal
patterns. These patterns will correspond to the same temporal association, but with different
temporal constraints between their event types.

Definition 10 A pattern occurrence of a temporal pattern P =< D,L > is a subsequence

X = {e1, . . . ,en} of some S ∈ S such that, for all i = 1, . . . ,n, every ei is an occurrence of a

different event type in D, satisfying all the temporal constraints in L.

Definition 11 Given two temporal patterns P =< D,L> and P′ =< D′,L′ >, we say that P′

is an extension of P, and we denote it by P � P′, if D ⊆ D′ and, for all Ei,E j ∈ D, L′i j ⊆ Li j

where Li j ∈ L and L′i j ∈ L′.

The temporal pattern P′ usually contains an extended set of the events in P, but its temporal
constraints are more restrictive [Dousson and Duong, 1999]. We can extract an occurrence of
P from any occurrence of P′. Given an episode type G = (o,v,Tb,Te), the relation G� P holds
if both event types Eb = (ob,v,Tb) and Ee = (oe,v,Te) belong to D, assuming that an episode



36 Chapter 3. Definitions

type is formally equivalent to a temporal pattern G =< DG,LG > involving both ending event
types DG = {Eb,Ee}, and a temporal constraint LG = {Lbe = [1,∞)} between them, forcing
an episode to begin before it ends.

Definition 12 Given a temporal pattern P =< D,L >, its extension over the set D′, being

D ⊂ D′, is a new temporal pattern P↑D
′
=< D′,L↑D′ >, where L↑D′ = {L↑D

′

i j ; 1 ≤ i, j ≤ n}
such that L↑D

′

i j = Li j if Ei,E j ∈ D, and L↑D
′

i j = LU otherwise.

The searching procedures involve the combination of i frequent temporal patterns of size i−1
in order to build a candidate temporal pattern of size i. This is carried out by means of the
following associative combination operation:

Definition 13 Given two temporal patterns P =< Dp,Lp > and Q =< Dq,Lq >, their com-
bination, P on Q, is a new temporal pattern R =< Dr,Lr >, where Dr = Dp ∪Dq and Lr =

{Lr
i j = Lp↑Dr

i j ∩Lq↑Dr
i j |Lp↑Dr

i j ∈ L↑Dr
p ,Lq↑Dr

i j ∈ L↑Dr
q }.

The user of the mining algorithms is allowed to introduce some previous knowledge of the
domain, describing the kind of patterns the mining process should be focused in, that is, what
event types are considered interesting or relevant and which basic constraints must be satisfied
between them.

Definition 14 A seed-pattern K � P is a temporal pattern that is provided as starting knowl-

edge for the search procedure for pattern P.

The use of a seed pattern is not necessary to carry out the mining process, but we will show
how an adequate seed can substantially improve the computational efficiency. Some of these
initial constraints may be trivial; for instance, those defining a pair of event types Eb and
Ee as the beginning and ending of an episode type G, so we can consider the set of episode
types as a set of seed patterns. Seed patterns provided by the user undergo a consistency
checking process in order to obtain the minimal equivalent representation. In case of any
of the minimal constraints exceeding the window width, the user will be given the option to
extend the window width or modify the seed pattern. It is important to note that any universal
constraint in a seed-pattern is reduced to the interval [−ω,ω] by the search procedures, being
ω the window width. However, every constraint Li j = [−ω,ω] resulting from the mining
process cannot be understood as a universal constraint.



37

The criterion used to consider whether a temporal pattern in a collection could possibly be
interesting or not is its frequency. Different frequency measures for pattern occurrences can
be found in the bibliography. [Mannila et al., 1997] define the frequency of a pattern as the ra-
tio of windows among the total where the pattern can be found, so more compact patterns will
have higher frequency values than those patterns whose events are spread over the window.
[Bettini et al., 1998a] define the frequency of a pattern as the ratio of the number of occurences
of the pattern with respect to the number of occurences of a reference event type, the root
event of the pattern. [Dousson and Duong, 1999] consider the frequency of a pattern as the
total number of ocurrences found in the data. In many references [Agrawal and Srikant, 1995,
Chen et al., 2003, Giannotti et al., 2006, Pei et al., 2004, Chen et al., 2011] a pattern is con-
sidered frequent if it appears at least in a certain percentage of the sequences or transac-
tions that constitute the data collection. [Moerchen and Ultsch, 2007] define the support of an
interval-based pattern as the sum of the durations of the non-overlapping intervals that consti-
tute the occurrences of the pattern. [Ale and Rossi, 2000] consider the frequency of a pattern
as the fraction of transactions where it can be found with respect to its lifespan. Without loss
of generality, we use as a definition of frequency the notion of support:

Definition 15 The frequency of a temporal pattern P in S is defined as the number of occur-

rences of P in S and is denoted by f (P).

We could further specify the frequency calculation by taking into account the time fraction in
which the pattern occurs, as in [Mannila et al., 1997]. Other definitions of frequency are also
admissible. The domain usually establishes the most suitable design for frequency calculation,
and also the minimum frequency that makes a pattern possibly interesting. Given a frequency
threshold fmin, we say that a temporal pattern P is frequent if f (P)≥ fmin. Figure 3.2 shows an
example of two different temporal patterns, both with the same set of events D = {A,B,C} but
with different constraints among them, obtained from a collection of event sequences when
the frequency threshold is set to fmin = 2.

For every pair of event types involved in the mining process a frequency distribution of
their temporal distances in the collection is calculated, in order to discriminate those similar
temporal arrangements which are frequent.

Definition 16 Given a window width ω and two different event types Ei = (oi,vi,Ti) and E j =

(o j,v j,Tj) in a recording, we define a temporal distance distribution {ni j} as a frequency

distribution counting the number of occurrences of every different temporal distance Tj−Ti



38 Chapter 3. Definitions

Figure 3.2: An example of two frequent temporal patterns represented as STP, discovered in a collection of
sequences, with fmin = 2.

found in the collection, with a maximum separation of ω units; that is, the temporal distance

distributions are defined on the [−ω,ω] axis.

A clustering algorithm will be used to determine from each temporal distance distribution the
frequent temporal arrangements according to a provided similarity criterion.

The next two chapters describe the temporal data mining algorithms that will allow us to
discover a set of frequent temporal patterns expressed in the STP formalism from a collection
of sequences of events and episodes.



CHAPTER 4

ASTPMINER

In this chapter we will introduce ASTPminer, Apriori Simple Temporal Problem miner,
a temporal data mining algorithm that searches for frequent temporal patterns on databases
consisting of a collection of sequences of both events and episodes. Temporal patterns will
be represented as metric temporal constraint networks for a set of events using the STP for-
malism, where precise or imprecise information could be induced between each pair of events
represented in the network.

Apriori-like algorithms are characterized by searching for frequent patterns of increasing
size following an iterative procedure. Each iteration is divided in three different steps: can-
didate generation, frequency calculation and removal of those candidates whose frequency
is below a minimum frequency threshold. Following this procedure, Apriori-like algorithms
perform a breadth-first search, where all frequent patterns of size i need to be identified be-
fore searching for patterns of size i+1. Pattern size is determined by the number of events it
represents.

The Apriori strategy is based on the premise that if a pattern is frequent, then all of its
subpatterns are also frequent. Furthermore, if a certain pattern is infrequent, then it is not
necessary to generate any of its extensions, because they cannot be frequent. This property
is known as antimonotonicity property. For a pattern to be considered frequent, its frequency
must be above a minimum threshold that users must establish according to their knowledge
of the domain and the nature of the data.

In order to focus the mining process ASTPminer allows the user to introduce previous
domain knowledge in the form of seed patterns that are also expressed as STP. As we will
see, the use of seed patterns prunes the search space in two ways. On the one hand, seed



40 Chapter 4. ASTPminer

patterns are used to constrain the total number of distinct temporal arrangements of pairs of
event types, because only those arrangements consistent with the seed patterns are considered.
On the other hand, the procedure only generates candidates that are extensions of the seed
patterns, so the total number of candidates is reduced, but the interest for the end user is
increased.

4.1 Basic algorithm

Before introducing the full version of ASTPminer, we will describe in this section a
basic version of the algorithm, that we labelled ASTP_BASIC [Álvarez et al., 2010], in order
to introduce the main stages in the Apriori-like mining procedure: candidate generation and
frequency calculation. In this ASTP_BASIC algorithm, previous knowledge of the domain is
only used for setting two of the parameters of the algorithm before it is executed. First, the
user must provide the maximum temporal extension allowed for a pattern to be counted: the
width ω of the temporal window that defines how far apart two events can be to be considered
part of the same pattern. The other parameter provided by the user is the frequency threshold
fmin, i.e., how many times a pattern must occur in the collection to be considered frequent
and, therefore, most likely interesting.

Given a collection of event sequences S, a collection of event types E , and the window
width ω and frequency threshold fmin provided by the user, ASTP_BASIC iteratively searches
in S for frequent temporal patterns of increasing size where events are, at most, ω time units
apart. The result is a set of frequent temporal patterns P that represent common temporal
arrangements between events found in the collection. No episodes are considered in this
version of the algorithm, that is shown in figure 4.1.

ASTP_BASIC uses three lists to store the temporal patterns through their different states:
list Ai holds frequent temporal associations comprised of i events, list Ci stores candidate
patterns of i events, and list Pi represents frequent patterns of i events. The mining procedure
is divided into several steps. The first step searches for event types in E that are frequent in
S (line 1 in figure 4.1), which are stored in the list A1, representing temporal associations
of size 1, and in the list P1 since they also represent frequent temporal patterns of size 1.
Once frequent event types are found, an iterative process searches for frequent patterns of
increasing size i until no new frequent patterns are found (line 5). Each iteration i follows
two steps: candidate pattern generation (line 6) and frequent pattern calculation (lines 7-8). In
each iteration i, a set of frequent temporal patterns of size i is found. The process ends when



4.1. Basic algorithm 41

procedure ASTP_BASIC(S,E,ω,fmin)
1 begin
2 A1← {E j |E j ∈ E∧f(E j)≥fmin}
3 P1← A1

4 i ← 2
5 while (Pi−1 6=∅) do begin
6 Ci← CANDIDATE_GENERATION(Ai−1,Pi−1)
7 Pi← FREQUENCY_CALCULATION(Ci,S)
8 Ai← {D j |Pi

j=<D j,L j>∈Pi}
9 i ← i+1
10 end;
11 end;

Figure 4.1: ASTP_BASIC: main algorithm.

no new frequent patterns are found in a given iteration. The output of the mining process after
this final iteration consists of a set of frequent temporal patterns of size i, stored in list Pi.

4.1.1 Candidate generation

Figure 4.2 presents the CANDIDATE_GENERATION() procedure for iteration i. This
procedure receives the list of frequent temporal associations Ai−1 and frequent patterns Pi−1

found in the previous iteration, and produces the list of candidate patterns Ci for the iteration
in course.

The first step in the generation of a candidate pattern of size i (line 4 in figure 4.2) con-
sists of building a temporal association Ai between the event types in the pattern. Following
an Apriori strategy, a temporal association of size i is built from the union of two frequent
temporal associations of size i− 1 that have all event types in common except the last one.
Then, the procedure checks if all subsets of size i− 1 of event types of the new temporal
association, that were already calculated in the previous iteration of the main algorithm, are
frequent. If Ai contains any non frequent temporal association, then no pattern with those
event types can be frequent. For example, given the set of frequent temporal associations of
size 3: A3 = {ABC, ABD, ACD, BCD, BCE}, the temporal association of size 4 {ABCD}
could be frequent, whereas {BCDE} must be infrequent because some of the associations of
size 3 it contains (e.g. {CDE}) are not frequent.



42 Chapter 4. ASTPminer

procedure CANDIDATE_GENERATION(Ai−1,Pi−1)
1 begin
2 Ci←∅
3 h ← 1
4 for Ai−1

j ,Ai−1
k ∈Ai−1∧E j1 = Ek1 , ...,E ji−2 = Eki−2 , E ji−1 < Eki−1 do begin

5 Ai
h← Ai−1

j ∪{Eki−1}
6 h ← h+1
7 if all Ai−1

j ⊂Ai
h satisfies Ai−1

j ∈Ai−1 then

8 for all combination of Pi−1
hk

, Pi−1
hk
∈Pi−1 ∧ Di−1

hk
⊂Ai

h do

9 if Qi
l =ALL-PAIRS-SHORTEST-PATHS(onhP

i−1
hk

)

is consistent then
10 Ci← Ci ∪ {Qi

l}
11 end;
12 return(Ci)
13 end;

Figure 4.2: CANDIDATE_GENERATION algorithm.

The second step in the procedure consists of the combination (line 7) of i frequent patterns
Pi−1

hk
of size i−1, representing subpatterns of a new candidate of size i, one for each frequent

temporal association Ai−1
k verified in the previous step. According to definition 13, the result

of combining two patterns is a new pattern whose constraints are obtained by the intersec-
tion of the constraints between common event types in both patterns, assuming the universal
constraint when no constraint is specified. If any of the resulting constraints is given by the
empty set, the pattern is inconsistent and any further combination involving it is bound to be
inconsistent. If the resulting pattern contains no empty constraints then it is combined with
the next pattern, until no further patterns Pi−1

hk
with different event types Di−1

h ⊂ Ai
j can be

combined.
Figure 4.3 shows an example of pattern combination, where a pattern of size 4 containing

the event types A, B, C and D is obtained after the combination of four patterns of size 3, with
event types {A,B,C}, {A,B,D}, {A,C,D} and {B,C,D}, respectively. The combination of the
first two patterns (first row in figure 4.3) provides a pattern of size 4, whose constraints are the
result of the intersection of the constraints in the combined patterns. Then, this size-4 pattern
is combined with the next pattern of size 3 available (event types {A,C,D}). This combination
does not add new event types to the pattern, but the resulting constraints are more specific:



4.1. Basic algorithm 43

constraint between event types C and D changes from the universal constraint in the original
pattern (not depicted in the figure) to the interval [8,79] in the resulting pattern. Finally, the
remaining pattern of size 3 (event types {B,C,D}) is combined with this pattern of size 4,
producing the final pattern shown in the last row of the figure, where the constraint between
B and D becomes more specific, since it changes from interval [-79,-12] to interval [-79,-33].

Figure 4.3: Pattern combination example.

After the combination step is finished, the consistency of the candidate pattern is checked
by a Floyd-Warshall ALL-PAIRS-SHORTEST-PATHS() algorithm [Dechter et al., 1991].
This algorithm applies constraint propagation through the graph of the candidate pattern, ob-
taining minimal temporal constraints representing consistent temporal arrangements between
the event types of the new pattern. If the pattern is consistent, then it is added to the list Ci

of candidates that will be searched for in the collection during the frequency calculation step.
If the network is not consistent, no occurrence of the pattern can be found and therefore the
pattern is discarded.



44 Chapter 4. ASTPminer

Candidate generation during iteration i = 2 does not follow this schema. The combination
step is not performed, as candidates consist of temporal associations of pairs of event types,
and there are no known distinct temporal arrangements between event types at this point:
constraints in patterns of size 2 are obtained during the frequency calculation step described
in section 4.1.2. At this stage, the order of occurrence of the event types during the search is
not relevant, since it is only required that the temporal distance between them is at most ω

time units.
The number of frequent patterns for a given set of event types can be arbitrarily large,

leading to a potentially large number of possible combinations during the candidate generation
procedure. Nevertheless, if the result of the combination by the intersection set operation is
the empty set, then the resulting pattern, and any other possible candidate pattern including
those subpatterns, are inconsistent, and will be discarded in the mining process. Once all
candidate patterns for the present iteration have been generated their frequency in the data
collection is calculated by the FREQUENCY_CALCULATION() procedure.

4.1.2 Frequency calculation

The FREQUENCY_CALCULATION() procedure shown in figure 4.4 searches for occur-
rences of the candidates Ci in the data collection S. Events are sequentially read from each
sequence S ∈ S using a window W of width ω that moves along each sequence, completely
processing one sequence before processing the next one.

With each new event e j read from a sequence S, the temporal window W is updated. All
events ek in W that now satisfy t j − tk > ω lie outside the bounds of the current temporal
window, so they must be removed from it (line 5 in figure 4.4). Then the new event e j is
added to the window (line 6): W = {ew1 , ...,ewn = e j} ⊆ S. Once the temporal window W is
updated with event e j, those candidate patterns that contain its corresponding event type E j are
checked for occurrences in W (line 7). For each candidate Ci

l , all different subsequences X of
the temporal window W ending with e j and containing an event occurrence of the rest of event
types in Di

l need to be checked against the constraints specified by the candidate (lines 8-9).
Every subsequence that satisfies all the constraints represents a candidate pattern occurrence,
and the temporal arrangement between each pair of events ekp and ekq in that occurrence is
included in the temporal distance distribution between their event types {nkpkq} (line 10). The
UPDATE_DISTRIBUTIONS() procedure increases by one the number of occurrences of the
temporal distance between each pair of events ekp and ekq in the occurrence in the temporal



4.1. Basic algorithm 45

procedure FREQUENCY_CALCULATION(Ci,S)
1 begin
2 for S ∈ S do begin
3 W ←∅
4 for e j ∈ S do begin
5 W ←W − ({ek | t j− tk > ω})
6 W ←W ∪ {e j}
7 for Qi

l =< Di
l ,Li

l >∈ Ci do
8 for X = {ek1 , ...,eki = e j} ⊆W ∧{Ek1 , . . . ,Eki = E j}= Di

l do
9 if (∀ekp ,ekq ∈ X , tkp − tkq ∈ Lkpkq ∈ Li

l) then begin
10 UPDATE_DISTRIBUTION(N = {nkpkq}p,q,X)
11 f(Qi

l) ← f(Qi
l)+1

12 end;
13 end;
14 end;
15 if i= 2 then Pi← CLUSTERING(N = {nkpkq}p,q,fmin)
16 else Pi← {Qi

l |Qi
l ∈Qi ∧ f(Qi

l)≥fmin}
17 return(Pi)
18 end;

Figure 4.4: FREQUENCY_CALCULATION algortihm.

distance distribution nkpkq . These temporal distance distributions, one for each pair of events,
are represented as a histogram, where the horizontal axis corresponds to the possible temporal
distances between the pair of events occurrences, and is restricted to the interval [−ω,ω],
since events in a pattern can be at most ω time units apart. The sign represents the order in
the occurrences: positive values mean that ekp occurs before ekq , and negative values indicate
that ekp occurs after ekq .

Figure 4.5 shows an example of temporal distance distribution for a pair of event types A
and B, where the horizontal axis represents the temporal distances between the event occur-
rences of A and B in the collection, and the vertical axis represents the number of times each
temporal arrangement happens. The window size is 80 seconds.

After updating the temporal distance distributions, the frequency of the candidate is in-
creased by one (line 11 in figure 4.4). Once all events of the collection are read, the algorithm
filters out those candidates that do not satisfy the frequency threshold fmin and removes them



46 Chapter 4. ASTPminer

 80 20  40  60-80 -60 -40 -20   0

1200

1000

800

600

400

200

    0

Figure 4.5: Temporal distance distribution between two event types A and B with ω = 80.

from the mining procedure (line 16), returning only those candidates that are considered fre-
quent.

FREQUENCY_CALCULATION() presents one difference when the candidates consist of
a pair of event types (i = 2). In this case, the frequent patterns returned by the procedure
are obtained by clustering all previously built temporal distance distributions N = {nkpkq}p,q

(line 15 in figure 4.4). The clustering of a temporal distance distribution {nkpkq} produces a
set of non-overlapping intervals I1, . . . , Im. These intervals concentrate the most frequent tem-
poral arrangements between events ekp and ekq , and therefore represent m different constraints
between each pair of event types Ekp and Ekq , which results in m different frequent patterns of
size two, with D = {Ekp ,Ekq}. The clustering procedure itself is explained in section 4.1.3.

Figure 4.6 shows an example of the FREQUENCY_CALCULATION() procedure. Let the
window width be ω = 8, and the set of event types be E = {E1 = A, E2 = B, E3 =C, E4 = D,
E5 = E}. Let C =< D,L > be a candidate pattern, where D = {A,B, C,D} and L = {L12 =

[1,2], L13 = [2,3], L14 = [3,4], L23 = [1,1], L24 = [2,3], L34 = [1,2]}. The sequence where the
candidate will be searched for is S = {(A,1), (B,2), (A,5), (B,6), (C,7), (D,9), (E,10)}. The
procedure sequentially introduces the events into the temporal window, finding no occurrence
of the candidate pattern being searched for until the event (D,9) is read. This situation is
labelled as “Temporal window 1” in the figure. After this event is read, the window contains
at least one event of each event type in the candidate pattern, and it is necessary to check



4.1. Basic algorithm 47

all possible subsequences of the temporal window searching for occurrences of the pattern.
According to line 8 of the procedure, only those subsequences where event (D,9) is present
need to be checked. The only subsequences satisfying this condition are X1 = {(A,1), (B,2),
(C,7), (D,9)}, X2 = {(A,1), (B,6), (C,7), (D,9)}, X3 = {(B,2), (A,5), (C,7), (D,9)} and
X4 = {(A,5), (B,6), (C,7), (D,9)}. Sequence X1 does not satisfy the constraints L13, L14,
L23 and L24 of the pattern and therefore it does not represent an occurrence of this pattern.
Sequence X2 does not satisfy the constraints L12, L13 and L14. Sequence X3 does not satisfy
L12, L23 and L24. However, the events in sequence X4 satisfy all the constraints, so this
sequence represents a pattern occurrence, and therefore both the frequency of the candidate
and the temporal distance distributions between the event types in the candidate need to be
updated (lines 10-11 in figure 4.4). The procedure then reads the next event from the event
sequence, (E,10). Reading this event forces the temporal window to move to the position
labelled as “Temporal window 2”. In this position, the event (A,1) is no longer present in the
temporal window. Then, the event (E,10) is introduced into the temporal window and, as the
candidate pattern does not include the event type E it is not necessary to verify if there are
any occurrences in this temporal window. As there are no events left to read in the sequence,
the procedure ends.

Figure 4.6: Frequency calculation example.

4.1.3 Clustering

A clustering procedure is used in the FREQUENCY_CALCULATION() algorithm to ob-
tain a set of time intervals constraining the occurrences of pairs of event types. The clusters
provided by the procedure represent similar temporal arrangements between pairs of event



48 Chapter 4. ASTPminer

types in the sequences. Each cluster corresponds to a temporal constraint between a pair of
event types, thus producing a pattern of size 2.

Any clustering algorithm that can be applied to unidimensional domains could be used in
this step. In our proposal, we have used an adaptation of the clustering method described in
[Yager and Filev, 1994], due to its simplicity. In this clustering method, the object space is
discretized by transforming the space into a grid and placing the objects in the intersection
points of the grid. These intersection points are the possible prototypes of the clusters. The
gridding establishes a compromise between the number of computations and the precision:
the finer the grid the more precise the results at a higher computational cost. The clustering
process is guided by a density function, defined on the nodes of the grid, that measures the
density of objects near each intersection point. The greater the number of objects that can
be found near an intersection, the higher the function value. Once the density function is
calculated for all points in the grid, the first prototype is chosen at the point where the function
takes its maximum value. Then, the density function is updated to subtract the influence of
this prototype in the rest of the points in the grid. The clustering procedure continues to
select prototypes and update the density function until the ratio between the function value in
the first prototype and the function value in the last prototype falls below a certain threshold
established by the user.

In our mining algorithms the clustering procedure is applied to the temporal distance dis-
tributions representing the number of occurrences of the different temporal arrangements be-
tween pairs of event types. Thus the object space corresponds to the set of possible temporal
arrangements (represented by the horizontal axis in figure 4.5), that is limited by the size ω of
the temporal window provided by the user. This space is already discrete due to the definition
of the temporal domain. Since this is a unidimensional domain, a cluster consists of an in-
terval of temporal arrangements. The starting value of the density function for each temporal
arrangement is simplified to be the frequency of occurrence of that arrangement in the set of
sequences. The reduction of the density function values after establishing a prototype in the
original method is also simplified in our approach, since any temporal arrangement already
associated with a cluster will have its density function value set to zero for the rest of the
procedure.

The algorithm produces clusters iteratively, completely describing one cluster before pro-
ceeding to the next one. As usual in clustering procedures, the first step in the definition of a
cluster consists of choosing its prototype. In our case, the prototype of the new cluster is the
temporal arrangement with the maximum value of the density function. Once the prototype



4.1. Basic algorithm 49

has been chosen, the bounds of the cluster (interval) are placed. Each bound of the interval
starts in the same temporal arrangement as the prototype, and is moved to the next temporal
arrangement until the density function value is less than a certain percentage of the value at
the prototype. This percentage is a parameter of the clustering algorithm. The last step of the
iteration consists of updating the density function values of the temporal arrangements that are
included in the new cluster, which are set to zero. It is required that the sum of the frequencies
of the temporal arrangements included in each cluster is greater than the frequency threshold
fmin. If this condition does not hold for the current cluster, then the cluster is ignored. The
procedure ends when the density function value of the prototype is lower than a percentage
of the absolute maximum of the temporal distance distribution, which is provided as another
parameter of the clustering algorithm. If the user so wishes, the results of the clustering pro-
cedure may be manually modified, either by removing some intervals, by adding new ones, or
by changing the values of the extremes of an existing interval, in order to guide the process.

Figure 4.7a shows an example of temporal distance distribution between event types A
and B. Figure 4.5b shows the result of the clustering algorithm over this temporal distance
distribution. The clustering algorithm detects that there are two distinct intervals, [-80,7]
and [12,80], present in the temporal distance distribution according to the similarity criteria
defined in the procedure. Each interval represents the temporal constraint of a different pattern
of size 2 with event types A and B. The first of the intervals produces a pattern between events
A and B where B can either occur before A, at the same time, or up to 7 seconds after A;
whereas the second interval produces a pattern where B can occur between 12 seconds and 80
seconds after A.

4.1.4 Validation of the ASTP_BASIC algorithm

A set of experiments was conducted to test the results of the mining process and the
influence of the different parameters involved in our algorithms. We have selected a clinical
domain, SAHS, where the medical community has described a well-known phenomenon from
the repetitive observation of a temporal pattern in a data set. The experiments aimed to test
the ability of our proposal to induce similar results from the same data. All experiments were
conducted on a 2.83GHz Intel Core 2 Quad CPU with 8 GB of main memory running a 64-bit
Ubuntu distribution.

SAHS is a very frequent sleep-breathing disorder characterised by the presence of apneas,
which are interruptions of the respiratory airflow while the patient is sleeping. SAHS is espe-



50 Chapter 4. ASTPminer

 80 20  40  60-80 -60 -40 -20   0

1200

1000

800

600

400

200

    0

(a) Temporal distance distribution.

 80 20  40  60-80 -60 -40 -20   0

1200

1000

800

600

400

200

    0

(b) Resulting clustering.

Figure 4.7: Example of clustering on a temporal distance distribution.

cially prevalent in adult males with obesity problems and is recognised as an important public
health issue [Flemons, 2002].

The origin of an apnea can be central, which is caused by abnormal operation of the
central motoneural system, or obstructive, which is caused by local obstruction or structural
deformation of the upper airways. Each episode of apnea causes a decrease in the blood
oxyhaemoglobin saturation. Episodes of central apnea and obstructive apnea can be distin-
guished by analysing the respiration movements at the thorax and at the abdomen. In the case
of a central apnea, the movements cease or have only very low amplitudes relative to normal
breathing. During obstructive apnea, the obstruction of airways leads to faster respiratory
movements that try to overwhelm the obstruction. Additionally, an episode of apnea may
cause arousals. The result is a disruption of the normal sleep architecture, which reduces its
refreshing effects. Consequently, patients usually suffer from day-time drowsiness and cogni-
tive deficits, which increase the risk of accidents in the workplace and when driving vehicles
[American Academy of Sleep Medicine Task Force, 1999].

The gold standard test for the diagnosis of SAHS is polysomnography, which is performed
in a hospital sleep unit and consists of recording a wide range of physiological parameters
while the patient is asleep. The recording is then visually inspected by a physician. In accor-
dance with the criteria of the American Academy of Sleep Medicine, an apnea is understood
as being a respiratory pause lasting at least 10 s. A patient suffering from severe apnea may



4.1. Basic algorithm 51

have up to 500 apneas during the night, where each apnea has an average duration of a little
over half a minute [American Academy of Sleep Medicine Task Force, 1999].

The database used for our experiments consists of a collection of sequences, where each
sequence gathers the events found in a polysomnography test of a patient diagnosed with
SAHS1. The collection consists of 50 recordings obtained from 50 patients who underwent
a sleep study in the sleep unit of the Complexo Hospitalario Universitario da Universidade
de Santiago de Compostela. No distinction between obstructive and central apnea patients
was made. The average age of the patients was 53.2 ± 12.7 (mean ± standard deviation)
years, with a minimum age of 23 and a maximum of 88. The average weight was 89.9 ±
16.4 kg., with an average body mass index (BMI) of 32.4 ± 6.1 kg/m2. The recordings
were automatically annotated and then the annotations were reviewed by a pulmonologist
[Otero et al., 2011]. The whole collection totals over 120,000 events and 280 hours of sleep.
Annotations reviewed by the physician on apnea patterns allow us to validate the results of
the mining procedures.

The set of annotated event types in the SAHS collection is E ={E1, E2, E3, E4, E5, E6,

E7, E8}:

E1 : “start airflow limitation”,

E2 : “end airflow limitation”,

E3 : “start abdominal movement limitation”,

E4 : “end abdominal movement limitation”,

E5 : “start thoracic movement limitation”,

E6 : “end thoracic movement limitation”,

E7 : “start oxygen desaturation”,

E8 : “end oxygen desaturation”.

On the one hand, the objective of the validation experiments is to induce a pattern includ-
ing these event types that represents the accepted knowledge of the apnea pattern. On the
other hand, the time required to carry out each step of the algorithms must be minimized.
Both the time required by each step of the algorithms, and the time required by the algorithms

1http://www.gsi.dec.usc.es/datacollections - Section: Apnea (Accessed: 31 May 2013)



52 Chapter 4. ASTPminer

as a whole are measured. The individual step measurements are: frequency calculation, re-
moval of non-frequent candidates, and candidate generation. Candidate generation is further
divided into three additional measurements: subpattern selection for the combination step, the
combination step itself, and consistency checking using the Floyd-Warshall algorithm. These
measurements will be used to decide where to focus later optimization strategies.

Due to the definition of the combination operation, a combinatory explosion is expected
during the candidate generation step, making it specially costly. In order to quantify this
problem, the following measurements are taken in every iteration:

1. Combinations: the number of possible combinations of patterns according to the num-
ber of frequent patterns found in the previous iteration.

2. Candidates: the number of consistent combinations, representing the candidate pat-
terns.

3. Discarded: the number of combinations discarded by the Floyd-Warshall calculation.

4. Frequent: the number of frequent combinations in the data collection, which corre-
spond to the frequent patterns.

Table 4.1 shows the result of these measurements for the ASTP_BASIC algorithm, using
a window size of 80 seconds and a frequency threshold of 30 occurrences. For patterns of
size 2, there is no combination process in the candidate generation procedure, since these
patterns are obtained by the clustering algorithm, so both measurements (combinations and
candidates) are not available at iteration 2.

Figure 4.8 shows the time required by ASTP_BASIC for different window sizes. As the
window size grows, the amount of events included in the window also grows, therefore in-
creasing the amount of possible combinations of events in the window that must be tested in
order to find every occurrence of every pattern. For every window size shown in the figure,
most of the time required by the algorithm belongs to the frequency calculation step, being the
time required by candidate generation and non-frequent pattern removal negligible in compar-
ison. For example, in the case ω =80 s., the candidate generation step takes 40 ms., whereas
the frequency calculation step requires 83518 ms.

The ASTP_BASIC algorithm would improve its efficiency if those events that do not
belong to occurrences of any pattern could be removed from the analysis, thus reducing the
number of combinations and candidate patterns generated, that need then to be checked in



4.2. Time optimization: Event removal 53

Size Combinations Candidates Discarded Frequent
1 8 8 0 8
2 NA NA NA 46
3 239 174 65 165
4 5237 306 1885 303
5 94184 298 5136 297
6 7.9×105 162 4218 160
7 1.7×106 47 1439 46
8 1.1×106 6 198 6

Table 4.1: Number of possible candidates, candidates generated, combinations discarded and frequent patterns
found in the SAHS database by ASTP_BASIC, with a window size ω=80 s. and a frequency threshold
fmin=30 occurrences.

0 20 40 60 80 100 120

0

200

400

600

800

Window size (s)

Ti
m

e
(s

)

Figure 4.8: Time required by ASTP_BASIC depending on the window size.

the frequency calculation step. A modification of this basic algorithm that contemplates this
event removal is described in the next section.

4.2 Time optimization: Event removal

As we have mentioned, the ASTP_BASIC algorithm would improve its efficiency if we
introduce the possibility of detecting those events of the data collection that do not belong to
any occurrence of any pattern in a given iteration. These events may be removed from the
mining process, as they cannot belong to any pattern occurrence in a later iteration, without
changing the results of the mining procedure but increasing its performance. By removing



54 Chapter 4. ASTPminer

events from the collection, the number of combinations of events that need to be checked
during the frequency calculation step is decreased. Two different approaches are developed to
deal with event removal: window-marking and interval-marking.

4.2.1 Event removal using window markings

The first approach for event removal shifts the temporal window through an event se-
quence in the same manner as ASTP_BASIC. The difference appears when reading an event
from the collection results in finding an occurrence of a pattern. In this case, every event in the
window is marked as useful, independently of whether they belong to the pattern occurrence
or not. All events leaving the window without this mark are removed from the collection.

This method is simple and adds few checks to the algorithm, so the overload added to the
process is small. However, this approach does not remove from the collection some events
that could have been removed: for example, events located at the beginning of the window
that do not take part in occurrences of any pattern.

Figure 4.9 shows an example of this event removal procedure, using a window of size 4.
We assume, for the sake of simplicity, that the only candidate pattern being searched for is
a pattern with event types B and C, that we will call BC pattern. Given the event sequence
in the example, the first occurrence of the BC pattern is found when the event (B,4) is read.
At this point, all three events C, A, B, in the window are marked as useful. Assuming that
no pattern occurrence is found when reading events (E,7) and (D,8) then both events are not
marked, and they are both removed from the collection when they leave the temporal window.
The second occurrence of the BC pattern is found when reading event (C,14), again marking
all three events A, B, C in the window labelled as “Occurrence BC 2” in the figure. Note that
in this example, both events (A,3) and (A,11) do not belong to any occurrence of the pattern
being searched for, yet they belong to the same temporal window where a pattern occurence
is found, and therefore they are both marked and will not be removed from the procedure even
when they are of no interest.

Figure 4.10 shows the FREQUENCY_CALCULATION_WM() procedure performing the
event removal using window marks. This procedure makes use of a list R of the intervals
where an occurrence of any pattern has been found. Every time an occurrence of a pattern is
identified, the interval [t j−ω, t j] (line 15) is introduced into the list R. This interval covers
all the temporal window ending with the event e j just read, and marks all its events as useful.
With every shift of the temporal window to introduce a new event, all events exiting the



4.2. Time optimization: Event removal 55

Figure 4.9: Example of event removal using window marking.

window that do not belong to any interval in R are also removed from S (line 6 in figure 4.10),
because they do not belong to any pattern. In addition, those intervals that no longer overlap
with the current temporal window are removed from R (line 7).

4.2.2 Event removal using interval markings

The second approach for event removal restricts the event marking to a subinterval within
the temporal window. For each pattern occurrence found, every event in the window located
between the initial event of the occurence and the event read, which will be the ending event
of the occurrence, are marked as useful. Those events that leave the temporal window without
being marked are removed from the process.

This method adds more comparisons to the process than the first approach, but allows
the algorithm to remove more events from the collection. In particular, events located at the
beginning of the temporal window not belonging to any pattern occurrence may be removed,
whereas the previous approach would mark them as useful. On the other hand, it is possible
that some of the events in the marked interval do not belong to any pattern occurence, yet they
are still marked and kept in the data collection.

Figure 4.11 shows an example of this event removal procedure, where the pattern being
searched for includes again the event types B and C anywhere in the window, using a window
of width 4. We assume, for the sake of simplicity, that this is the only candidate pattern. In
this example, the first occurrence of the BC pattern is found when the event (B,4) is read. This
occurrence includes events (C,2) and (B,4), and all three events in the window are marked as
useful, as event (A,3) lies in the time interval between the beginning and ending events of
the pattern occurence. The second occurrence of the BC pattern is found when reading event



56 Chapter 4. ASTPminer

procedure FREQUENCY_CALCULATION_WM(Ci,S)
1 begin
2 for S ∈ S do begin
3 W ←∅
4 R←∅
5 for e j ∈ S do begin
6 S← S−{ek | t j− tk > ω ∧ ∀[ta, tb] ∈ R, tk /∈ [ta, tb]}
7 R← R−{[ta, tb] ∈ R | t j− tb > ω}
8 W ←W −{ek | t j− tk > ω}
9 W ←W ∪ {e j}
10 for Qi

l =< Di
l ,Li

l >∈ Ci do
11 for X = {ek1 , ...,eki = e j} ⊆W ∧{Ek1 , . . . ,Eki = E j}= Di

l do
12 if (∀ekp ,ekq ∈ X , tkp − tkq ∈ Lkpkq ∈ Li

l) then begin
13 UPDATE_DISTRIBUTION(N = {nkpkq}p,q,X)
14 f(Qi

l) ← f(Qi
l)+1

15 R← R∪{[t j−ω, t j]}
16 end;
17 end;
18 end;
19 if i= 2 then Pi← CLUSTERING(N = {nkpkq}p,q,fmin)
20 else Pi← {Qi

l |Qi
l ∈Ci ∧ f(Qi

l)≥fmin}
21 return(Pi)
22 end;

Figure 4.10: Frequency calculation for event removal using window marking: FREQUENCY_CALCULATION_WM.

Figure 4.11: Example of event removal using interval marking.



4.2. Time optimization: Event removal 57

(C,14), including the event (B,13). In this case, the event (A,11) lies outside the interval and
therefore it is not marked, and will be removed when it leaves the temporal window. As in the
example in figure 4.9, events (E,7) and (D,8) will not be marked, and they are both removed
from the collection. For this example, this approach removes one event more than the previous
one, yet still cannot remove event (A,3) from the collection. In the case there were more than
one candidate pattern to be searched for, events cannot be removed from the collection until
all candidate patterns have been checked.

Figure 4.12 shows the frequency calculation procedure modified to perform the event re-
moval using interval marks: FREQUENCY_CALCULATION_IM(). It also makes use of a list
R of intervals where an occurrence of any pattern has been found. Every time an occurrence
of a pattern is identified when reading an event e j, the interval [tk1 , t j] (line 15) is introduced
into the list R. This interval covers all the events in the temporal window between the earliest
event in the candidate pattern to the last event e j read, and all its events are marked as use-
ful. With every shift of the temporal window to introduce a new event, all events exiting the
window that do not belong to any interval in R are also removed from S (line 6). In addition,
those intervals that no longer overlap with the current temporal window are removed from R

(line 7).

4.2.3 Experimental results using the event removal approaches

The results of applying both event removal strategies were checked against the SAHS
database described in section 4.1.4. The ASTP_BASIC algorithm (see figure 4.1) was ex-
ecuted for a window size of 80 seconds, but the FREQUENCY_CALCULATION() proce-
dure was replaced with the modified procedures FREQUENCY_CALCULATION_WM() and
FREQUENCY_CALCULATION_IM(), respectively. Table 4.2 shows the number of events
removed in each iteration by both of the approaches. As expected, the algorithm using
FREQUENCY_CALCULATION_IM() is more exhaustive regarding the events marked, and
removes more events throughout the mining process. In spite of the small difference between
the total number of removed events between both approaches for this particular database,
FREQUENCY_CALCULATION_IM() removes more events in earlier iterations, resulting in
a lesser number of combinations of events to check in later iterations. This might reduce the
time required by a noticeable amount.

Figure 4.13 displays the time required for the mining procedure on the SAHS database
when applying the original ASTP_BASIC algorithm, and when we introduce each one of



58 Chapter 4. ASTPminer

procedure FREQUENCY_CALCULATION_IM(Ci,S)
1 begin
2 for S ∈ S do begin
3 W ←∅
4 R←∅
5 for e j ∈ S do begin
6 S← S−{ek | t j− tk > ω ∧∀[ta, tb] ∈ R, tk /∈ [ta, tb]}
7 R← R−{[ta, tb] ∈ R | t j− tb > ω}
8 W ←W −{ek | t j− tk > ω}
9 W ←W ∪ {e j}
10 for Qi

l =< Di
l ,Li

l >∈ Ci do
11 for X = {ek1 , ...,eki = e j} ⊆W ∧{Ek1 , . . . ,Eki = E j}= Di

l do
12 if (∀ekp ,ekq ∈ X , tkp − tkq ∈ Lkpkq ∈ Li

l) then begin
13 UPDATE_DISTRIBUTION(N = {nkpkq}p,q,X)
14 f(Qi

l) ← f(Qi
l)+1

15 R← R∪{[tk1 , t j]}
16 end;
17 end;
18 end;
19 if i = 2 then Pi← CLUSTERING(N = {nkpkq}p,q,fmin)
20 else Pi← {Qi

l |Qi
l ∈Qi ∧ f(Qi

l)≥fmin}
21 return(Pi)
22 end;

Figure 4.12: Frequency calculation for event removal using interval marking: FREQUENCY_CALCULATION_IM.

the two event removal approaches in the frequency calculation stage. The use of the interval
marking strategy produces the best results in this database, as expected.

4.3 Providing seed knowledge

The number of patterns found in every step of the procedure and their frequency when
using an event removal algorithm remains unchanged with respect to the initial approach
ASTP_BASIC. Both optimization strategies focus on removing from the collection those
subsequences no longer relevant for the analysis, as no pattern occurrence can be found in
them, thus reducing execution time while not affecting the resulting patterns. But the user
of the mining algorithm may not only be interested in its time efficiency. The output of



4.3. Providing seed knowledge 59

Pattern size Window marking Interval marking
2 28 29
3 4265 4426
4 5173 5227
5 9178 9201
6 12042 12119
7 22842 22853
8 30203 29922

Total 83731 83777

Table 4.2: Number of events removed from the collection in each iteration by both event removal strategies;
window size 80 s.

0 20 40 60 80 100 120

0

200

400

600

800

Window size (s)

Ti
m

e
(s

) ASTP_BASIC

ASTP_BASIC+WM

ASTP_BASIC+IM

Figure 4.13: Comparison of time required by the ASTP_BASIC algorithm without event removal, and with each
one of the event removal strategies (WM and IM) during the frequency calculation stage.

the mining process is a set of temporal patterns that were found to be frequent, and therefore
possibly interesting for the user. Nevertheless, the degree of interest of a pattern relies not only
in its frequency: the pattern should be compatible with the domain knowledge and represent
useful and correct information.

Figure 4.14 shows one of the frequent patterns of size 8 found in the SAHS database
when we used ASTP_BASIC (without any event removal strategy and a window size of 80
seconds). The patterns obtained from this database represent temporal information about pa-
tients suffering from SAHS, that is, patients that may suffer several apnea occurrences during
their sleep. A central apnea occurrence starts with a limitation in abdominal and thoracic
movements that produce an airflow limitation, leading in a few seconds to a subsequent de-



60 Chapter 4. ASTPminer

crease in oxygen saturation in blood. When the patient resumes breathing, airflow is restored
and oxygen saturation recovers its original level. We can observe in the figure that the pattern
found consists of a general description of an apnea pattern, where airflow limitation events,
and thoracic and abdominal limitation events occur roughly at the same time, and at least 10
seconds before the oxygen saturation events. However, this pattern presents three flaws that
need to be addressed. The first one refers to the temporal imprecision of the airflow, abdom-
inal and thoracic limitations: the ending event of each limitation is simply located after the
starting event in the same window. The second flaw is found in the constraint between the
“start oxygen desaturation” and “end oxygen desaturation” events, where the interval associ-
ated to the constraint accepts that oxygen saturation in blood may recover its normal levels
before it falls. The third flaw lies in constraints associating the end of the oxygen desaturation
with the rest of the ending events of the limitations, representing situations where the oxygen
saturation recovers before the patient resumes breathing.

Figure 4.14: Example of a frequent pattern of size 8 obtained from the SAHS database with the ASTP_BASIC
algorithm.

All these flaws can be explained considering the nature of the apnea pattern. It is common
that different apnea pattern occurrences overlap during the night, resulting in the detection of
events related to oxygen saturation of a previous episode of airflow limitation while a new



4.3. Providing seed knowledge 61

limitation is on course. The algorithm associates these events with both previous and ongo-
ing apneas, resulting in a pattern where the ending of the oxygen desaturation is allowed to
happen before normal breathing is resumed (third flaw). This overlapping of occurrences in
the temporal window also induces the second flaw, as the algorithm consistently detects that
the ending of oxygen desaturation event occurs before the starting event, producing patterns
that allow these kind of relations. This situation is also responsible for the first flaw. As pre-
viously described, the frequency calculation procedure tries to associate all events present in
the same temporal window. Following this procedure, it is possible to associate, for exam-
ple, the beginning of an airflow limitation located at the beginning of the temporal window,
with the ending of a later airflow limitation located at the end of the temporal window, an
uninteresting association in this domain. The presence of this kind of association in a tem-
poral window extends the duration of the intervals produced in the clustering procedure, and
therefore produces abnormally long constraints.

These problems can be dealt with by introducing the available domain knowledge into
the mining process. Using this knowledge it would be possible to reduce the search scope
by removing uninteresting temporal arrangements from the process, and focusing on those
situations of interest to the domain expert. The user would provide a set of event types and
a set of constraints between those event types, and the mining process would only extract
frequent patterns consistent with the knowledge provided. This approach is described in detail
in this section and deals with the second and third flaws. The first flaw is due to the inability
of the frequency calculation procedure to deal with the interval based events that compose an
apnea pattern. An approach to deal with this issue is described in section 4.4.

All previous algorithms (ASTP_BASIC and both event removal strategies) search for all
possible temporal arrangements between events in order to produce frequent patterns between
them. However, a domain expert may know that some temporal arrangements are of no inter-
est, or represent noise in the mining procedure. From iteration 2 in the algorithm, candidate
patterns of size 2 are generated and then used to produce new candidate patterns that need
to be searched for in the data collection. If these candidate patterns are uninteresting or even
wrong according to domain knowledge, since this process is repeated in every iteration of the
mining process, unnecessary workload is added to the process. Moreover, some uninteresting
frequent patterns will be included in the resulting set of patterns.

The algorithm described in this section, ASTP_SEED, discovers frequent patterns consis-
tent with some initial knowledge expressed as STP seed patterns, which are extended and/or
refined during the course of the algorithm [Álvarez et al., 2011]. The domain expert describes



62 Chapter 4. ASTPminer

a set of event types of interest and some constraints between them, forcing the temporal ar-
rangements between the events to satisfy the available domain knowledge. The mining proce-
dure may add new event types and constraints to the seed pattern, or just make the constraints
more specific. In the description of this algorithm we will assume, for the sake of simplicity
and without losing generality, that the user specifies only one seed pattern.

The structure of ASTP_SEED is shown in figure 4.15, where K represents the seed pattern
provided. An INITIALISATION() algorithm is introduced in the procedure: lines 4-5
now obtain the set of frequent patterns of size 2 consistent with the knowledge represented
by the seed pattern. The iterative procedure begins after this initialisation step, searching for
frequent patterns of size i> 2 that are generated by combination of the frequent patterns of size
2 obtained from the initialisation. Both the candidate generation and frequency calculation
procedures are modified to take into account the knowledge provided by the seed pattern.

procedure ASTP_SEED(S,E,K,ω,fmin)
1 begin
2 A1← {E j |E j ∈ E∧f(E j)≥fmin}
3 P1← A1

4 P2← INITIALISATION(S,E,K,ω,fmin)
5 A2← {D j |P2

j=<D j,L j>∈P2}
6 i ← 3
7 while (Pi−1 6=∅) do begin
8 Ci← CANDIDATE_GENERATION_SEED(Ai−1,Pi−1)
9 Pi← FREQUENCY_CALCULATION_SEED(S,Ci,ω,fmin)
10 Ai← {D j |Pi

j=<D j,L j>∈Pi}
11 i ← i+1
12 end;
13 end;

Figure 4.15: Mining algorithm using a seed pattern: ASTP_SEED.

4.3.1 Initialisation procedure

Figure 4.16 shows the initialisation procedure that produces frequent patterns of size 2
consistent with the knowledge provided by the user. The first step in the procedure consists of
searching for patterns where both event types belong to the seed pattern. The frequency of the



4.3. Providing seed knowledge 63

seed pattern in the data collection is checked, and frequent patterns found where both event
types are present in the seed pattern are included in set K2 (line 2). In addition, subsequences
of the data collection where no occurrence of the seed pattern can be found are removed
from the collection, because those events cannot be used to extend any occurrence of the seed
pattern. This event removal can be done with any of the techniques described in section 4.2.
The second step obtains frequent patterns of size 2 where at least one of the event types is not
present in the seed pattern (lines 3-4).

procedure INITIALISATION(S,E,K,ω,fmin)
1 begin
2 K2← FREQUENCY_CALCULATION_SEED({K},S,ω,fmin)
3 C2← CANDIDATE_GENERATION_SEED(A1,C1)
4 P2← K2∪FREQUENCY_CALCULATION_SEED(C2,S,ω,fmin)
5 return P2

6 end;

Figure 4.16: Initialisation algorithm used in ASTP_SEED: INITIALISATION.

4.3.2 Frequency calculation with a seed pattern

Figure 4.17 describes the procedure FREQUENCY_CALCULATION_SEED for searching
for occurrences of either seed or candidate patterns. The first time the algorithm is called, Qi

represents the set containing the seed pattern K =< DK , LK >, where i = |DK |. In succesive
steps, it represents the set of candidate patterns Ci. The algorithm sequentially introduces
the events of every event sequence S into the temporal window W (line 11). For every event
introduced it is necessary to search for occurrences of every pattern Qi

l in Qi (line 12) in
all possible subsequences X of the temporal window (line 13). Each subsequence satisfying
every constraint of the pattern Qi

l represents an occurrence of the pattern, so its frequency is
increased (line 16) and the temporal distance distributions of every pair of event types present
in the pattern are updated.

Using a window marking event removal approach, if the occurrence found belongs to the
seed pattern, the interval [t j−ω, t j] corresponding to the current window is introduced into
the list R (line 17). This interval indicates that an occurrence of the seed pattern was found in



64 Chapter 4. ASTPminer

this window, and no event should be removed from it, because any event in the window could
be part of an occurrence of an extension of the seed pattern.

Whenever an event leaves the temporal window, it is necessary to check if it can be used
in later iterations, removing it from S in case it does not belong to any interval in R (line 7).
It is also necessary to remove from R any interval that no longer overlaps with the temporal
window, as no further event can belong to them (line 8). After every subsequence in every
sequence of the collection has been checked, the procedure uses a clustering procedure over
the temporal distance distributions, producing a set of frequent patterns of size 2, when i = 2
or Qi = {K} (line 21). In the general case, it removes those candidate patterns not satisfying
the minimum frequency fmin criteria (line 22) and returns the remaining patterns.

Event removal in the FREQUENCY_CALCULATION_SEED() algorithm requires some
additional considerations. In this algorithm, whenever an occurrence of the seed pattern is
found the whole temporal window is considered to be useful (line 17), as it could be possible
to find an occurrence of an extension of the seed pattern in it, using the window marking
event removal procedure described in section 4.2.1. However, the domain expert may be only
interested in those extensions of the seed pattern where any new event can be found within the
interval delimited by the events of the previous occurrences. In that case it would be possible
to use the interval marking event removal approach described in section 4.2.2, marking only
the actual time interval where the events of the seed pattern occurrences are found. In addition,
the event removal function can be used in all iterations of the algorithm if the user so desires.

Figure 4.18 shows an example of the frequency calculation procedure when a seed pattern
is defined, using the interval marking event removal strategy. Let K=< D,L > be the seed
pattern specified by the user, where D = {A, B, C, D} and L = {L12 = [1,2], L13 = [2,3],
L14 = [3,4], L23 = [1,1], L24 = [2,3], L34 = [1,2]}. Let the set of event types be E = {E1 = A,
E2 = B, E3 = C, E4 = D, E5 = E}, and the temporal window width ω = 8. The sequence
where the seed pattern will be searched for is shown in figure 4.18 a): S = {(A,1), (B,2),
(A,5), (B,6), (C,7), (D,9), (E,10)}. Events are sequentially introduced into the temporal
window until event (D,9) is read, labelled as “Temporal window 1” in figure 4.18 b). With this
event in the window, it is possible to find an occurrence of the seed pattern in the subsequence
X = {(A,5), (B,6), (C,7), (D,9)}, as these events satisfy every constraint in the pattern. The
frequency of the pattern is then increased and the temporal distance distributions for each
pair of event types in the pattern are updated. In addition, the interval [5,9] is inserted in
R. Now the temporal window moves, and event (E,10) is introduced, forcing event (A,1) to
leave the window, as the temporal distance between them is higher than ω (figure 4.18 c)). In



4.3. Providing seed knowledge 65

procedure FREQUENCY_CALCULATION_SEED(Qi,S,ω,fmin)
1 begin
2 for S ∈ S do begin
3 R←∅
4 W ←∅
5 for e j ∈ S do begin
6 if Qi = {K} then begin
7 S← S−{ek | t j− tk > ω ∧∀[ta, tb] ∈ R, tk /∈ [ta, tb]}
8 R← R−{[ta, tb] ∈ R | t j− tb > ω}
9 end
10 W ←W −{ek | t j− tk > ω}
11 W ←W ∪ {e j}
12 for Qi

l =< Di
l ,Li

l >∈ Qi do
13 for X = {ek1 , ...,eki = e j} ⊆W ∧{Ek1 , . . . ,Eki = E j}= Di

l do
14 if (∀ekp ,ekq ∈ X , tkq − tkp ∈ Lkpkq ∈ Li

l) then begin
15 UPDATE_DISTRIBUTION(N = {nkpkq}p,q,X)
16 f(Qi

l) ← f(Qi
l)

17 if Qi = {K} then R← R∪{[t j−ω, t j]}
18 end;
19 end;
20 end;
21 if i= 2 ∨ Qi = {K} then Pi← CLUSTERING(N = {nkpkq}p,q,fmin)
22 else Pi← {Qi

l |Qi
l ∈Qi ∧ f(Qi

l)≥fmin}
23 return(Pi)
24 end;

Figure 4.17: Frequency calculation algorithm when using a seed pattern: FREQUENCY_CALCULATION_SEED.

addition, since (A,1) does not belong to the time interval [5,9] in R, it is also removed from
the sequence S. In the next movement of the temporal window through the sequence, event
(B,2) leaves the window without belonging to any interval in R, so it is also removed from
the sequence S. The final sequence after this removal is shown in figure 4.18 d). It is worth
mentioning that both events would be kept in S if the window marking event removal scheme
were used instead of the interval marking scheme.



66 Chapter 4. ASTPminer

Figure 4.18: Example of frequency calculation when a seed pattern is provided.

4.3.3 Validation of ASTP_SEED

The definition of a seed pattern is expected to impact the results of the algorithm in several
ways. Providing a seed pattern forces the mining process to focus on those temporal arrange-
ments between the events present in the data collection that satisfy each and every one of the
constraints, ignoring all others. This would modify the shape of the temporal distance distri-
butions, possibly changing the results of the clustering procedure, both in terms of the number
of frequent patterns found and in terms of the constraints they represent. These changes would
result in a better performance of the mining process, as the time required by the frequency cal-
culation procedure would be decreased due to the reduced number of patterns that need to be
verified in each iteration.

Figure 4.19 represents the starting knowledge provided as a seed pattern to the mining
process during validation with the SAHS database. This pattern represents simple knowl-
edge available in the sleep apnea domain. In particular, it is well-known that some events
occur before others, for example, the patient must stop breathing before it can resume normal
breathing, and therefore the only interesting ocurrences of the “end airflow limitation” event
are found after a “begin airflow limitation” event. This situation can be represented using the
L12 = [1,ω] constraint, where E1 = “begin airflow limitation” and E2 = “end airflow limi-

tation”. The same criteria can be applied to the events related to the thoracic and abdominal
movement limitations, as well as the oxygen desaturation events. Moreover, it is expected that
an airflow limitation beginning and end occur roughly at the same time as both abdominal and
thoracic movement limitations. In addition, oxygen saturation in blood falls after the patient



4.3. Providing seed knowledge 67

has stopped breathing. The resulting pattern including this knowledge can be formally rep-
resented as K =< DK ,LK >, where D = {E1,E2,E3,E4,E5,E6,E7,E8} and the user-defined
constraints are L= {L12 = [1,ω],L34 = [1,ω],L56 = [1,ω],L78 = [1,ω],L13 = [−5,5],L15 =

[−5,5],L17 = [0,ω],L24 = [−5,5],L26 = [−5,5],Li j = [−ω,ω] in other case}.
Given that the seed pattern in this case includes all event types in the data collection, it

is possible to remove events from the sequences using the interval marking scheme, because
no new events can be added to the seed pattern and therefore it is not possible to eliminate
events from any sequence that might be used by an occurrence of any pattern throughout the
mining process. Even if the seed pattern did not include every event type in the collection,
the user might be interested in using this removal scheme if he or she were sure that any
event extending the seed pattern would be located after the events belonging to any of its
occurrences.

Figure 4.19: Seed pattern used in the validation experiments.

An example of the impact a seed pattern has in temporal distance distributions and clus-
tering can be seen in figure 4.20. Both subfigures represent the temporal distance distribution
between event types “begin airflow limitation” and “end airflow limitation”: positive tem-
poral arrangements represent situations where the ending event is found after the beginning



68 Chapter 4. ASTPminer

event, and negative arrangements correspond to those situations where the beginning event
is found after the ending event. In both cases the clustering procedure finds that there are
two distinct intervals of temporal arrangements shaping up two different frequent patterns
of size 2. However, while in ASTP_BASIC the patterns cover the whole temporal axis, in
ASTP_SEED both patterns are located in the positive axis, representing a partition of the
original pattern found when no seed knowledge is provided. In this case, the use of a seed
pattern does not have any effect in the number of patterns found, but their meaning is changed,
as it is now possible to differentiate situations that were otherwise considered the same. The
patterns found are more specific, and also more relevant to the final user, since those patterns
that are not compatible with the seed are discarded by the procedure.

 80 20  40  60-80 -60 -40 -20   0

1200

1000

800

600

400

200

    0

(a) Without seed pattern (ASTP_BASIC).

-80 -60 -40 -20   0  20  40  60  80

250

200

150

100

    0

  50

(b) With seed pattern (ASTP_SEED).

Figure 4.20: Impact of using a seed pattern on a temporal distance distribution and its clustering. These temporal
distance distributions correspond to event types “begin airflow limitation” and “end airflow
limitation”.

Table 4.3 shows, for each pattern size, the number of possible combinations, candidates
generated and frequent patterns found with the algorithms ASTP_BASIC and ASTP_SEED.
The ’Combinations’ columns contain the total number of combinations of frequent patterns
found in the previous iteration. The number of consistent networks from all possible com-
binations is shown in the columns labelled as ’Candidates’. The number of candidates with
a frequency value higher than the threshold fmin is shown under ’Frequent’. In the case of
patterns of size 2, the frequent patterns are obtained through the use of a clustering proce-
dure, instead of the combination procedure used in later iterations, so the information for



4.3. Providing seed knowledge 69

the ’Combinations’, ’Candidates’ and ’Discarded’ columns in the second row is not available
(NA).

Size Combinations Candidates Discarded Frequent
seed w/o seed seed w/o seed seed w/o seed seed w/o seed

1 8 8 8 8 0 0 8 8
2 NA NA NA NA NA NA 38 46
3 142 239 111 174 31 65 102 165
4 1019 5237 175 306 541 1885 174 303
5 11179 94184 196 298 1633 5136 192 297
6 1.2×105 7.9×105 131 162 2226 4218 128 160
7 5.5×105 1.7×106 49 47 1242 1439 48 46
8 1.1×106 1.1×106 7 6 276 198 7 6

Total 1.8×106 3.6×106 669 1001 5949 12491 689 1031

Table 4.3: Number of possible candidates, candidates generated, combinations discarded and frequent patterns
found in the database, with and without seed pattern (window size ω =80 s., frequency threshold
fmin =30 occurrences).

It is worth mentioning that the number of candidate and frequent patterns involved in the
mining process is slightly reduced when a seed pattern is provided, although this reduction
is not as significant as initially expected. By removing some temporal arrangements between
events, the mining process can focus on the allowed arrangements, making it possible for the
clustering procedure to discriminate between situations that were previously considered to be
the same, thus creating more (and more specific) patterns. In this case, the number of patterns
found will be similar, but their meaning will be different. Figure 4.21 shows a comparison
of temporal distance distributions where the clustering procedure provides a different number
of frequent patterns depending on whether a seed pattern is provided or not. Both temporal
distance distributions represent the number of occurrences of the different temporal arrange-
ments between the “begin oxygen desaturation” and “end oxygen desaturation” event types,
where the positive axis represents those situations where the ending event is found after the
beginning event. When no seed pattern is provided only one frequent pattern is found, while
introducing knowledge into the procedure results in two different frequent patterns, one of
them a subpattern of the one previously found and the other one representing an interval of
temporal arrangements previously overshadowed by the former. In this case, removing unin-
teresting temporal arrangements from the procedure results in an increment in the number of



70 Chapter 4. ASTPminer

frequent patterns found, contradicting the intuitive idea that restricting the search scope would
result in a reduced number of patterns involved in the mining process.

 80 20  40  60-80 -60 -40 -20   0

1200

1000

800

600

400

200

    0

(a) Without seed pattern.

450

400

350

300

250

200

150

100

  50

    0

  50

-80 -60 -40 -20   0  20  40  60  80

(b) With seed pattern.

Figure 4.21: Second example on the impact of using a seed pattern on a temporal distance distribution and its
clustering: number of patterns found may be higher when using a seed pattern. The temporal distance
distributions correspond to event types “begin oxygen desaturation” and “end oxygen desaturation”.

Figure 4.22 shows another comparison between temporal distance distributions obtained
with and without seed patterns where this situation can be observed. The temporal distance
distributions represent the number of different temporal arrangements between the event types
“begin thoracic limitation” and “end thoracic limitation”, where the positive axis represents
those situations where the ending event is found after the beginning event. In this example,
the use of a seed pattern in the mining process removes the negative axis from the temporal
distance distribution: one of the size two frequent patterns produced by the clustering proce-
dure when using ASTP_BASIC did not satisfy the constraints specified in the seed pattern.
If this situation is repeated in each temporal distance distribution, the number of candidates
resulting from the candidate generation procedure would be reduced, but previous examples
have already shown that this situation is not necessarily true for every temporal distance dis-
tribution.

Figure 4.23 shows another example of application of the clustering procedure to the tem-
poral distance distribution of a temporal association between two event types, the start of an
abdominal movement limitation and the start of oxygen desaturation events, in two different
situations. Case (a) represents the temporal distance distribution of the temporal arrangements
within a temporal window of 80 seconds, together with the clustering results for the proce-



4.3. Providing seed knowledge 71

 80 20  40  60-80 -60 -40 -20   0

1200

1000

800

600

400

200

    0

(a) Without seed pattern.

-80 -60 -40 -20   0  20  40  60  80

250

200

150

100

    0

  50

(b) With seed pattern.

Figure 4.22: Third example on the impact of using a seed pattern on a temporal distance distribution and its
clustering: patterns found are more specific, and more relevant to the final user. The temporal distance
distributions correspond to event types “begin thoracic limitation” and “end thoracic limitation”.

dure when no seed pattern is used. In this case, the clustering provides two intervals as a
result, [−80,7] and [12,80], each one representing a temporal pattern of size 2. In particular,
the interval [−80,7] allows the oxygen saturation in blood to decrease before the abdominal
movement limitation, associating the abdominal movement limitation to the oxygen desatu-
ration decrease of a previous apnea pattern, resulting in a non interesting pattern. Case (b)
represents the result when a seed pattern specifies that the abdominal movement limitation
event must occur before the starting oxygen desaturation event. One of the patterns in case (a)
is discarded by the definition of the seed pattern, whereas the remaining pattern is shortened
into a more specific pattern in case (b) producing a frequent pattern of size 2 covering the
interval [14,32]. As can be seen, the definition of seed patterns alters the shape of temporal
distance distributions, and thus modifies the result of the clustering.

Figure 4.24 presents the time required by ASTP_BASIC and several implementations of
ASTP_SEED in the SAHS database. ’SEED+IM’ and ’SEED+WM’ represent versions of the
ASTP_SEED algorithm where the seed pattern shown in figure 4.19 was provided, along with
the interval and window marking event removal schemes, respectively. In both cases, event
removal was performed only once, during the frequency calculation of the seed pattern in the
initialisation step. Both implementations improve on the performance of the basic algorithm,
achieving the best performance when the interval marking system is used. These results show



72 Chapter 4. ASTPminer

 80 20  40  60-80 -60 -40 -20   0

600

500

400

200

    0

300

100

(a) Without seed pattern.

   -80 -60 -40 -20   0  20  40  60  80

180

160

140

120

    0

  60

100

  80

  40

  20

(b) Using a seed pattern.

Figure 4.23: Another example of the influence of the seed pattern in the clustering process.

how providing knowledge to the procedure effectively reduces the search scope of the mining
process and improves its performance.

0 20 40 60 80 100 120

0

200

400

600

800

Window size (s)

Ti
m

e
(s

) BASIC

SEED + IM

SEED + WM

Figure 4.24: Comparison of time required by the ASTP_BASIC algorithm and two different implementations of
the ASTP_SEED algorithm in the SAHS database.

Two of the frequent patterns of size 8 found by the algorithms in the validation experi-
ments are shown in figure 4.25. Some of the constraints have been removed for better vi-
sualisation. Figure 4.25(a) shows one of the six frequent patterns found by ASTP_BASIC,
when no seed pattern is provided. This pattern coarsely corresponds to the representation of
a central apnea episode. Figure 4.25(b) shows the closest frequent pattern to the previous one



4.4. ASTPminer 73

among the seven frequent patterns found by ASTP_SEED, when seed knowledge is provided.
Even though the resulting pattern in this case does not add any new event type to the seed
pattern, the constraints obtained when the seed pattern is provided are more precise, provid-
ing a more accurate representation of the knowledge. In addition, the constraint between the
event types “begin oxygen desaturation” and “end oxygen desaturation” no longer includes
negative values, as the definition of the seed pattern precluded them from being accepted, so
the constraint now reflects only situations where the ending event occurs after the beginning
event.

4.4 ASTPminer

In this section we will present the full version of the ASTPminer algorithm introduced in
[Álvarez et al., 2013] for discovering frequent temporal patterns from a set of time-stamped
event sequences. ASTPminer contemplates the inclusion of both events and episodes as tem-
poral entities to be mined as part of a time-stamped event sequence. An episode is represented
in an event sequence as a pair of events but is considered to be a single entity in the mining
process, which precludes the generation of spurious associations and saves computational
time.

Figure 4.26 presents the structure of ASTPminer. The initial parameters for this algo-
rithm are given by the tuple (S,F ,K,ω,fmin):

– a collection of recordings S,

– a set of types of facts (events and episodes) F = E ∪G in S,

– an initial seed pattern K,

– a window size ω ,

– a frequency threshold fmin.

For simplicity in the description of the algorithms, we will assume that only one seed pattern
is specified by the user.

The objective of ASTPminer is to iteratively search in S for those frequent temporal pat-
terns P extending K, that is K� P, where events are, at most, ω time units apart. These tempo-
ral patterns P will represent common temporal arrangements between events and/or episodes



74 Chapter 4. ASTPminer

(a) Without seed pattern.

(b) With seed pattern.

Figure 4.25: Comparison of two frequent patterns of size 8: (a) obtained by ASTP_BASIC without seed pattern,
(b) obtained by ASTP_SEED when a seed pattern was provided.



4.4. ASTPminer 75

found in the collection. The seed pattern K is the minimal network consistent with the knowl-
edge provided by the user, obtained using the ALL-PAIRS-SHORTEST-PATHS() algo-
rithm before the seed pattern is provided to ASTPminer. The collection of recordings S
can be pruned during execution by removing those subsequences where no frequent patterns
can be found in further iterations. The other four parameters remain constant throughout the
procedure.

procedure ASTPminer(S,F,K,ω,fmin)
1 begin
2 A1← {E j |E j ∈ E ∧ f(E j)≥fmin}
3 P1← A1

4 P2← INITIALISATION(S,A1,P1,F,K,ω,fmin)
5 A2← {D j |P2

j=<D j,L j>∈P2}
6 i ← 3
7 while (Pi−1 6=∅ ∨ Ci−1

p 6=∅) do begin
8 Ci← CANDIDATE_GENERATION(Ai−1,Pi−1∪Ci−1

p )
9 if Ci

c 6=∅ then
Pi← FREQUENCY_CALCULATION(Ci

c,S,F,ω,fmin)
10 Ai← {D j |Pi

j=<D j,L j>∈Pi}
11 i ← i+1
12 end;
13 end;

Figure 4.26: Main algorithm: ASTPminer.

In each iteration i, a set of frequent temporal patterns of size i is found. The process ends
when no new frequent patterns are found in a given iteration. The output of the mining process
after this final iteration consists of a set of frequent temporal patterns that are consistent with
the knowledge provided by the user as seed pattern. As both algorithms previously described,
ASTPminer uses three lists that are updated in every iteration i: the list Ai holds frequent
temporal associations comprised of i events; the list Ci stores candidate patterns with i events,
and the list Pi ⊆ Ci contains those candidate patterns with i events that are confirmed to be
frequent.

In the case of ASTPminer, each list Ci is subdivided into two additional lists, Ci =Ci
c∪Ci

p.
List Ci

c contains those complete candidate patterns whose frequency will be checked during
the frequency calculation step, whereas list Ci

p contains partial patterns that are necessary for



76 Chapter 4. ASTPminer

candidate generation in subsequent iterations, but not to be searched for in the present itera-
tion: those patterns that contain either the beginning or the ending event type of an episode,
but not both, belong to Ci

p. Section 4.4.3 shows how both lists are obtained, and further
explains the criteria for introducing a particular pattern in one of these lists.

ASTPminer begins with a search for frequent event types in the collection S, which are
stored in list A1, representing temporal associations of size 1. These frequent event types are
also stored in list P1 since they also represent frequent temporal patterns of size 1. Then, the
algorithm uses the INITIALISATION() procedure (Figure 4.26, line 4) to obtain frequent
temporal patterns of size 2. This procedure finds the set of frequent patterns of size 2 that are
consistent with the information supplied by the user in the seed pattern, discarding infrequent
event types and also filtering those fragments of the initial collection S where no occurrence
of the seed pattern can be found. At the end of the INITIALISATION() procedure all the
temporal associations of size 2 are stored in the list A2; these temporal associations correspond
to the different pairs of event types that appear frequently together, and are extracted from the
set of frequent temporal patterns of size 2.

After the initialisation step, the search continues for more complex patterns in two iterative
steps (Figure 4.26, line 7), involving candidate generation and frequency calculation. The
algorithm finishes when one iteration results in both no new frequent patterns found and an
empty Ci

p list, meaning that no additional patterns may be built. Notice that it is possible that
the result of the candidate generation step is an empty Ci

c list in some iteration while producing
a non-empty Ci

p list. In this case, it is not necessary to perform the frequency calculation step,
as there are no complete patterns to search for, so execution proceeds to the next iteration.

4.4.1 Initialisation step in ASTPminer

Figure 4.27 shows the INITIALISATION() procedure for obtaining all frequent pat-
terns of size 2, which are stored in list P2. This list contains those pairs of events whose
temporal arrangements are consistent with the event types and constraints in the seed pattern
K, and whose frequency is higher than the threshold.

The procedure begins by obtaining the frequency of the seed pattern K=<DK ,LK > (Fig-
ure 4.27, line 2), using the FREQUENCY_CALCULATION() algorithm described in section
4.4.2, that checks all temporal windows of width ω throughout the collection S for occur-
rences of the seed pattern. If the seed pattern turns out to be not frequent after this counting,



4.4. ASTPminer 77

procedure INITIALISATION(S,A1,P1,F,K,ω,fmin)
1 begin
2 K2← FREQUENCY_CALCULATION({K},S,F,ω,fmin)
3 if (K2 =∅) then stop
4 C2← CANDIDATE_GENERATION(A1,P1)
5 P2← K2∪FREQUENCY_CALCULATION(C2,S,F,ω,fmin)
6 return P2

7 end;

Figure 4.27: ASTPminer: Initialisation algorithm.

the algorithm stops (line 3). The result of this step is the set K2 of frequent patterns of size 2
that involve pairs of event types from the seed pattern, and are consistent with it.

The next step during initialisation consists of building the set C2 of those candidate pat-
terns of size 2 including other frequent event types in P1 that have not been extracted from
K. This is carried out by the procedure CANDIDATE_GENERATION() described in section
4.4.3. FREQUENCY_CALCULATION() obtains from these candidate patterns an additional
set of frequent patterns of size 2, also consistent with the seed pattern. The list P2 is finally
updated by gathering together both kinds of frequent patterns of size 2: those including only
event types from the seed pattern, and those with some additional event types (line 4), to be
added as possible extensions of the seed pattern.

4.4.2 Frequent pattern calculation in ASTPminer

Figure 4.28 shows the procedure FREQUENCY_CALCULATION() used to determine the
frequency of the candidate patterns in the data collection.

This algorithm searches for and counts the occurrences in S of the candidate patterns Qi.
Events are sequentially read from each recording S ∈ S by means of a window W of width
ω that moves along each recording of the collection, completely processing every recording
before processing the next one.

With each new event e j = (ok,v j, t j) from S, the temporal window is updated, so W =

{ew1 , ...,ewn = e j} ⊆ S. All events ek in W now satisfying t j− tk > ω lie outside the bounds of
the current temporal window, and they are therefore removed from it (Figure 4.28, line 10). In
addition, those events eh = (oe,v, th) ∈W that represent the end of an episode g = (o,v, tk, th)



78 Chapter 4. ASTPminer

procedure FREQUENCY_CALCULATION(Qi,S,F,ω,fmin)
1 begin
2 for S ∈ S do begin
3 R←∅
4 W ←∅
5 for e j ∈ S do begin
6 if Qi = {K} then begin
7 S← S−{ek | t j− tk > ω ∧∀[ta, tb] ∈ R, tk /∈ [ta, tb]}
8 R← R−{[ta, tb] ∈ R | t j− tb > ω}
9 end
10 W ←W − ({ek | t j− tk > ω}∪

{eh = (oe,v, th) ∈W |g = (o,v, tk, th)∧ t j− tk > ω})
11 W ←W ∪ {e j}
12 for Qi

l =< Di
l ,Li

l >∈ Qi do
13 for X = {ek1 , ...,eki = e j} ⊆W ∧{Ek1 , . . . ,Eki = E j}= Di

l do
14 if (∀ekp ,ekq ∈ X , tkq − tkp ∈ Lkpkq ∈ Li

l)∧
(∀G = (o,v,Tkp ,Tkq)� Qi

l ⇒
∃g = (o,v, tkp , tkq)|(ob,v, tkp),(oe,v, tkq) ∈ X) then begin

15 UPDATE_DISTRIBUTION(N = {nkpkq}p,q,X)
16 f(Qi

l) ← f(Qi
l)

17 if Qi = {K} then R← R∪{[tk1 , tki = t j]}
18 end;
19 end;
20 end;
21 if i = 2 ∨ Qi = {K} then

Pi← CLUSTERING(N = {nkpkq}p,q,fmin)
22 else Pi← {Qi

l |Qi
l ∈Qi∧ f(Qi

l)≥fmin}
23 return(Pi)
24 end;

Figure 4.28: Frequency calculation in ASTPminer: FREQUENCY_CALCULATION.



4.4. ASTPminer 79

with its beginning ek = (ob,v, tk) lying outside the window are also removed, since both ends
of an episode must occur within the temporal window for an occurrence of the episode to be
counted.

Once the temporal window W is updated with the new event e j, those candidate patterns
that contain its corresponding event type E j are checked for occurrences in W . For each of
these candidates Qi

l , every different subsequence X of the temporal window W ending with e j

and containing the event occurrences ek1 , . . . ,eki−1 of the rest of event types Ek1 , . . . ,Eki−1 in
the candidate is checked for consistency with the temporal constraints of this candidate (Fig-
ure 4.28, lines 13-14). An additional restriction for X to be counted as a possible occurrence
of a candidate pattern is that if this candidate involves the event types Ekp = (ob,v,Tkp) and
Ekq = (oe,v,Tkq) representing the beginning and the end of an episode G = (o,v,Tkp ,Tkq), then
X must include a pair of events ekp = (ob,v, tkp) and ekq = (oe,v, tkq) corresponding to the same
episode g = (o,v, tkp , tkq). If a subsequence X satisfies all constraints in a candidate then it is a
possible occurrence of this candidate in W , so the temporal distance distributions are updated
(Figure 4.28, line 15). This updating typically further restricts the temporal constraints of
each candidate pattern, as some temporal arrangements that appear in patterns of a given size
disappear in extensions with more event types. Clustering is no longer necessary if tempo-
ral distance distributions remain convex. Then, the frequency of the candidate is increased
(Figure 4.28, line 16).

FREQUENCY_CALCULATION() presents one difference when the candidates consist of
a pair of event types (i = 2), or the candidates correspond to the seed patterns. In the case
where i = 2, when an occurrence is found, in addition to increasing the frequency of the can-
didate, the temporal arrangement between each pair of events ekp and ekq in the occurrence is
included in the temporal distance distribution between their event types {nkpkq}, one distribu-
tion for each pair, represented as a histogram. The frequent patterns returned by the procedure
are obtained by clustering all temporal distance distributions N = {nkpkq}p,q that were previ-
ously built (line 21). From the clustering of every temporal distance distribution {nkpkq} a set
of non-overlapping intervals I1, . . . , Im is obtained where the occurrences of the candidates are
concentrated. These intervals represent different constraints between each pair of event types
Ekp and Ekq and results in m different frequent patterns of size 2.

When the set of candidates Qi is the set containing the seed pattern K, if an occurrence
is found the procedure updates every temporal distance distribution between each pair of
event types present in the seed pattern. Each temporal distance distribution is subjected to the
clustering procedure, which produces a set of frequent patterns of size 2 for each temporal



80 Chapter 4. ASTPminer

distance distribution (line 21). Therefore, the result of the procedure in this case is also a
set of frequent patterns of size 2, but each pattern represents temporal arrangements between
events of the seed pattern. Additionally, the procedure also removes any subsequence of the
data collection where no occurrence of the seed pattern can be found. If no occurrence of the
seed pattern can be found in a subsequence, then no occurrence of any extension can be found
in later iterations, so the subsequence is not interesting for the mining process. To this end,
whenever the procedure detects an occurrence of a seed pattern, it inserts into the list R the
instants [tk1 , tki = t j] limiting the temporal intervals where an occurrence of K can be found
(line 17). Those events that leave the temporal window and do not belong to any interval in
R can be removed from the collection (line 7), as they cannot belong to an occurrence of a
seed pattern extension, which reduces the search scope in later iterations. Those intervals of
R that lie outside the temporal window can be removed from R, as they are no longer useful
for removing events (line 8).

In all the iterations, once all events of the collection are read, the algorithm filters out
those candidates that do not satisfy the frequency threshold fmin and removes them from the
mining procedure (line 22), returning only those candidates that are considered frequent.

Figure 4.29 shows an example of the FREQUENCY_CALCULATION() procedure. Let
the window width be ω = 8, the set of event types be E = {E1 = A, E2 = B, E3 = C, E4 =

D, E5 = E}, and the set of episode types be G = {G1 = (o1,v1,Tb = TA,Te = TB), G2 =

(o2,v2,Tb = TC,Te = TD)}. Let K =< D,L > be a seed pattern, where D = {A,B, C,D}
and L = {L12 = [1,2], L13 = [2,3], L14 = [3,4], L23 = [1,1], L24 = [2,3], L34 = [1,2]}. The
sequence where the seed pattern will be searched for is S = {(A,1), (B,2), (A,5), (B,6),
(C,7), (D,9), (E,10)}, where there are two episodes g1 = (o1,v1,1,2) and g2 = (o1,v1,5,6)
of the episode type G1, represented in the sequence by the events (A,1) and (B,2) and events
(A,5) and (B,6) respectively, while the episode g3 = (o2,v2,7,9) corresponds to the episode
type G2 and is represented by the events (C,7) and (D,9) in the sequence.

The procedure sequentially introduces the events from the sequence into the temporal win-
dow, finding no occurrence of the seed pattern until the event (D,9) is read. This situation
is labelled as “Temporal window 1”. After this event is read, the window contains at least
one event of each event type represented by the seed pattern, and it is necessary to check
all possible subsequences of the temporal window searching for occurrences of the seed pat-
tern. According to line 13 of the FREQUENCY_CALCULATION() procedure, only those
subsequences where event (D,9) is present need to be checked. In addition, as shown in the
second part of line 14, both events of an episode must be present in the sequence at the same



4.4. ASTPminer 81

time. According to this condition, the sequence {(A,1), (B,6), (C,7), (D,9)} is not valid, as
the events (A,1) and (B,6) do not belong to the same episode: the first one corresponds to
episode g1, whereas the second one corresponds to episode g2. The only subsequences satis-
fying both conditions are X1 = {(A,1), (B,2), (C,7), (D,9)} and X2 = {(A,5), (B,6), (C,7),
(D,9)}. Sequence X1 does not satisfy the constraints L13, L14, L23 and L24 of the seed pattern
and therefore it is not an occurrence. On the other hand, the events in sequence X2 satisfy
all the constraints, and therefore the frequency of the seed pattern and the temporal distance
distributions between the event types of the seed pattern need to be updated (lines 15-16). The
interval [5,9] indicating where the events of the occurrence can be found is introduced into the
list R (line 17). The procedure then reads the event (E,10) from the event sequence. Reading
this event forces the temporal window to move to the position labelled as “Temporal window
2”. In this position, the event (A,1) is no longer present in the temporal window. At the same
time, it is necessary to check if the event (A,1) belongs to any interval present in R (line 7).
In this case, only the interval [5,9] is present in R, and the event (A,1) does not belong to it,
resulting in the removal of the event from the event sequence. In addition, event (B,2) is also
removed from the window, because it belongs to the same episode as the event (A,1) (line
10). Then, the event (E,10) is introduced into the temporal window and, as the seed pattern
does not include the event type E it is not necessary to verify if there are any occurrences of
the seed pattern in the temporal window. As there are no events left to read in the sequence,
the procedure ends. Finally, events (B,2) and (E,10) can be removed from the sequence, as
they do not belong to any interval in R.

Figure 4.29: Frequency calculation example in ASTPminer.



82 Chapter 4. ASTPminer

procedure CANDIDATE_GENERATION(Ai−1,Pi−1)
1 begin
2 Ci←∅
3 h← 1
4 for Ai−1

j ,Ai−1
k ∈Ai−1∧E j1 = Ek1 , ...,E ji−2 = Eki−2 , E ji−1 < Eki−1 do begin

5 Ai
h← Ai−1

j ∪{Eki−1}
6 h← h+1
7 if all Ai−1

j ⊂Ai
h satisfies Ai−1

j ∈Ai−1 then

8 for all combination of Pi−1
hk

, Pi−1
hk
∈Pi−1 ∧ Di−1

hk
⊂Ai

h do

9 if Qi
l =ALL-PAIRS-SHORTEST-PATHS(onhP

i−1
hk

)

is consistent then
10 if ∀E j in Qi

l , E j in Gk ∈ G ⇒Gk � Qi
l then

11 Ci
c← Ci

c ∪ {Qi
l}

12 else
13 Ci

p← Ci
p ∪ {Qi

l}
14 end;
15 return(Ci =Ci

c∪Ci
p)

16 end;

Figure 4.30: Candidate generation algorithm in ASTPminer: CANDIDATE_GENERATION.

4.4.3 Candidate generation in ASTPminer

The CANDIDATE_GENERATION() procedure, shown in figure 4.30, receives as argu-
ments the frequent temporal associations and frequent patterns found in the previous itera-
tion, and produces the candidate patterns for the iteration in course, whose frequency must be
checked by the FREQUENCY_CALCULATION() procedure.

The first step in the generation of a candidate pattern of size i (line 4 in figure 4.30) con-
sists of building a temporal association Ai between the event types in the pattern. Following
an Apriori strategy, a temporal association of size i is built from the union of two frequent
temporal associations of size i− 1 that have all event types in common except the last one.
Then, the procedure checks if all subsets of size i−1 of event types of the new temporal as-
sociation, which were already calculated in the previous iteration of the main algorithm, are
frequent.

The second step in the procedure consists of the combination (line 7) of i frequent patterns
Pi−1

hk
of size i−1, representing subpatterns of a new candidate of size i, one for each frequent



4.4. ASTPminer 83

temporal association Ai−1
k verified in the previous step. After the combination step is per-

formed, the consistency of the candidate is checked by ALL-PAIRS-SHORTEST-PATHS()
[Dechter et al., 1991] (line 9). This algorithm applies constraint propagation through the
graph of the candidate pattern, obtaining minimal temporal constraints representing consistent
temporal arrangements between the event types of the new pattern. If the pattern is consistent,
then it is added to one of two different lists (line 11): the first one, Ci

c, contains those complete
candidates that will be searched for during the frequency calculation step; the second one, de-
noted as Ci

p, contains those partial candidate patterns that should be extended before being
searched for in further iterations. In order to select the appropriate list we check if every event
type involved in the new pattern, and also corresponding to the beginning or the end of an
episode type Gk ∈ G, entails the presence of the other ending event type of the same episode
type in the new pattern. In the affirmative case, the new pattern is a complete candidate, and
is added to Ci

c; otherwise, some episode type involved in the new pattern is not yet completed:
one of its ending event types is not included, so the pattern is added to Ci

p. By taking apart the
partial candidate patterns we avoid performing the frequency calculation step, the most time
consuming, for example in odd iterations for those patterns which only involve episode types.

As previously mentioned, candidate generation during the initialisation stage is carried out
in a different manner. On one hand, the combination step is not performed, as candidates con-
sist of temporal associations of pairs of event types, and there are no known distinct temporal
arrangements between event types at this point: constraints in patterns of size 2 are obtained
using the clustering procedure in the frequency calculation step. On the other hand, the only
candidates generated are those pairs of event types not already extracted from the seed pattern
K, but nevertheless consistent with it.

The CANDIDATE_GENERATION() procedure generates candidate patterns that are ex-
tensions of previously found frequent patterns. Considering that frequent patterns of size 2
extracted in the initialisation step are necessarily consistent with the seed pattern K, the pro-
cedure ensures that candidate patterns generated in later iterations will also be consistent with
the information provided in K.

4.4.4 Correctness and completeness of ASTPminer

In this section we examine both the correctness and completeness of the ASTPminer
algorithm.



84 Chapter 4. ASTPminer

Lemma 1: (Correctness) Temporal patterns obtained by the ASTPminer algorithm are
frequent.

Rationale: The FREQUENCY_CALCULATION() procedure searches for occurrences of
all candidate patterns in all possible temporal windows of every recording in the data collec-
tion. During the calculation of Pi, i.e., the set of frequent patterns of size i, for every event
e j introduced into the temporal window, all subsequences X of size i of the temporal window
that include the event e j are checked against all patterns containing the event type E j of the
event e j (lines 12-13). For each candidate pattern Qi

l and each subsequence X in the window,
the frequency of Qi

l is updated if, and only if, the temporal arrangements between the events
satisfy every constraint in Qi

l (line 14). This procedure ensures that every occurrence of every
pattern present in the data collection is accounted for, whereas no combination of events in the
collection is considered to be an occurrence of any pattern unless all constraints are satisfied.
The algorithm discards any candidate pattern Qi

l having a frequency value f(Qi
l) less than the

user-defined threshold fmin (line 22), which ensures that resulting patterns are frequent.
Lemma 2 (Completeness) Candidate generation in ASTPminer is exhaustive.
Rationale: The Apriori strategy summarised in lines 4-7 ensures that all different temporal

associations of size i are obtained from the set Ai−1 of frequent temporal associations of size
i−1. Additionally, the procedure builds the set Ci of all the candidate patterns of size i from
the set Pi−1 of frequent patterns of size i− 1, which are different temporal arrangements of
the aforementioned temporal associations (line 8).

P1 is constructed by removing non-frequent event types from E . Given Pi−1, i.e., the set
of frequent patterns of size i− 1, the CANDIDATE_GENERATION() procedure produces
all possible combinations onhPi−1

hk
of i patterns in Pi−1, where the set of event types of every

pattern Pi−1
hk

represents a different temporal association in Ai−1. Only inconsistent patterns
are discarded during the CANDIDATE_GENERATION() procedure (line 9). The set of tem-
poral patterns is closed under the combination operation, so CANDIDATE_GENERATION()
produces temporal patterns from temporal patterns. The consistency of the pattern is checked
using the ALL-PAIR-SHORTEST-PATHS() algorithm, which results in a minimal net-
work.

The reasoning above does not take into account the use of clustering to obtain P2. Cluster-
ing procedures are summarisation procedures that aim to extract from the dataset a reduced,
but significant, number of groups. The criterion used to select these groups is the similarity of
a set of temporal arrangements that, when gathered together, exceed the frequency threshold
fmin established by the user. Therefore, ASTPminer satisfies only a partial completeness.



4.4. ASTPminer 85

The CANDIDATE_GENERATION() procedure is exhaustive but ASTPminer is not exhaus-
tive because of the clustering procedure.

4.4.5 Complexity analysis of ASTPminer

We assume that |E| contains both limiting event types of each episode type in G. The
computational complexity of the ASTPminer algorithm in every iteration i can be evaluated
as follows:

– In the temporal association generation step, for a temporal association Ai
j to be fre-

quent, all of the i temporal associations Ai−1
k ⊂ Ai

j must be frequent. The maximum
number of frequent temporal associations of size i− 1 is |Ai−1| =

( |E|
i−1

)
, therefore a

binary search among these frequent associations has a complexity of O(log|Ai−1|). In
addition, each temporal association of size i− 1 can be added |E| − i different event
types to create a temporal association of size i. Taking into account the combination
step, which compares the event types of two temporal associations of size i−1 to ensure
that they share the first i−2 event types, the complexity of generating all the candidate
temporal associations is O(|Ai−1||E|i2log|Ai−1|).

– In the candidate generation step, each of the i(i− 1)/2 constraints of a temporal pat-
tern Pi

jk
is obtained by combining those patterns Pi−1

hk
where Di−1

h ⊂Ai
j. The com-

bination has a complexity of O(i2), with a maximum number of ∏h |Pi−1
h | possible

combinations for each temporal association of size i. In terms of the initial param-
eters, the maximum number of temporal patterns of size two between any two event
types corresponds to the situation where every temporal arrangement presents a fre-
quency value greater than the frequency threshold fmin, but their frequency values are
so different that the clustering procedure produces one pattern for each temporal ar-
rangement. In this situation, the clustering procedure produces 2ω patterns for every
temporal association of size two. Under this assumption, to build a pattern of size i

it is sufficient to establish the i− 1 constraints between one event type and the rest of
the event types, as the remaining constraints can be completely specified during the
ALL-PAIRS-SHORTEST-PATHS() step. Additionally, the number of all possible
combinations of frequent patterns to explore to build all candidate patterns for any tem-
poral association of size i is ω i(i−1). Every combination is subject to a consistency



86 Chapter 4. ASTPminer

checking process by the ALL-PAIRS-SHORTEST-PATHS() algorithm, which has a
complexity of O(i3), which results in a complexity of O(|Ai|i3ω i(i−1)).

In the worst case, this result is worse than the result in [Dousson and Duong, 1999], as
our approach is able to find more than just one temporal arrangement among a given
set of event types. However, when we restrict our search to provide only one temporal
pattern for each set of event types, our approach is more efficient.

– In the frequency calculation step, the worst case scenario corresponds to a situation
where every time unit may present an occurrence of all |E| event types with a total of
n = |E|dS events in S (where n represents the length of S and dS represents the sum
of the durations of the sequences in the collection). Every time the window is updated,
|E| events enter the window and |E| leave. Under this assumption, for every pattern of
size i, up to iω i−1 new occurrences may be found in every window update for every
pattern. Checking whether an occurrence fulfils all of the constraints in a pattern has
a complexity of O(i2). Considering that the maximum number of candidate patterns is
|Ai|ω i−1, the overall complexity for this step is O(nω2i−2i3|Ai|).

Given the iterative nature of the mining process, and considering that the maximum pattern
size is the number of different event types |E|, the overall complexity of the algorithm is dom-
inated by the candidate generation step, which results in a complexity of O(|E||Ai|i3ω i(i−1)).
However, in practical terms, candidate generation is no the most time consuming step in our
experiments. It is worth mentioning that this complexity corresponds to a very improbable
situation and, as the experimental results show, in practical situations this complexity is dra-
matically decreased.

The use of seed patterns is expected to have an impact in reducing the number of pat-
terns |Pi| generated in each iteration, and in the overall number of events n of the collection
S. Those segments of the collection where no occurrences are found are discarded for fur-
ther iterations, which reduces the value of n. These changes contribute to improve the total
efficiency of the algorithm. As seen in section 4.3, it is possible that |P2| is greater when
seed patterns are used, as the shape of the temporal distance distributions may vary and their
clustering may result in more numerous yet more specific patterns. However, if that were the
case, the number of possible combinations in later iterations would be expected to be lower,
as more specific patterns would have fewer possible consistent combinations.



4.4. ASTPminer 87

4.4.6 ASTPminer validation with the SAHS database

Recalling the set of annotated event types in the SAHS database: E ={E1, E2, E3, E4, E5,

E6, E7, E8}, where E1 : “start airflow limitation”, E2 : “end airflow limitation”, E3 : “start ab-

dominal movement limitation”, E4 : “end abdominal movement limitation”, E5 : “start thoracic

movement limitation”, E6 : “end thoracic movement limitation”, E7 : “start oxygen desatura-

tion” and E8 : “end oxygen desaturation”, in this domain, the most basic knowledge that we
can introduce in the mining algorithms lies in the notion of episode: airflow limitations as well
as thoracic and abdominal movement limitations must start before they can end, and oxygen
saturation must fall before it can rise. The introduction of episodes in the mining process
allows us to remove from the search procedure those occurrences that are not reasonable in
the domain yet can be found in the records, for example, due to successive occurrences of
some patterns in the same temporal window. For instance, a temporal association could be
created by combining the beginning event of an airflow limitation with the beginning event
of a previous decrease in oxygen saturation. The pulmonologist knows that those types of
associations are not interesting and should be avoided.

Therefore, in the SAHS database, common knowledge allows us to define some episode
types between event types that necessarily appear together, and in a particular order, in the
database. The episode types involved are:

G1 : “airflow limitation”

G2 : “abdominal movement limitation”

G3 : “thoracic movement limitation”

G4 : “oxygen desaturation”

We have conducted our validation experiments using the seed pattern shown in figure
4.31. This pattern coarsely approximates a representation of a central apnea, and consists
of the eight event types present in the records, with four of the constraints corresponding
to the four episodes (G1−G4) previously described; another two constraints force the events
representing the beginning of the apnea, abdominal limitation and thoracic limitation episodes
to occur roughly at the same time; two additional constraints force the ending events of these
same episodes to occur at the same time; one constraint limits the oxygen desaturation to
begin after the beginning of an apnea; and an implicit constraint is required since all eight
event types must occur within the same temporal window. The rest of the constraints between



88 Chapter 4. ASTPminer

the event types, which are not represented in the figure for better visualisation, correspond to
the universal constraint (−∞,∞) fitted to the temporal window [−ω,ω], which indicates that
any temporal arrangement within the same temporal window is allowed. The formal definition
of the seed pattern is K=< D,L>, where

D = {E1,E2,E3,E4,E5,E6,E7,E8}

and the user-defined constraints are

L= {L12 = [1,ω],L34 = [1,ω],L56 = [1,ω],L78 = [1,ω],L13 = [−5,5],L15 = [−5,5],

L17 = [0,ω],L24 = [−5,5],L26 = [−5,5],Li j = [−ω,ω] otherwise}

Figure 4.31: Seed pattern used in the validation experiments.

Figure 4.32 shows the execution time for two versions of the algorithm ASTPminer, with
and without using a seed pattern, and several window sizes (up to 120 seconds). The version
using the seed pattern requires consistently less time to finish the search than the version per-
forming a full search, regardless of window size. This supports the hypothesis that the use of
a seed pattern effectively helps to reduce the search space: the number of patterns generated is
reduced because they need to be consistent with the provided information about the particular



4.4. ASTPminer 89

domain. It is worth mentioning that, in both versions of the algorithms, candidates in those it-
erations where i is an odd number contain at least one event type belonging to an episode type
where the other event type of the same episode type is not present. Therefore, the frequency
calculation step is omitted in odd numbered iterations.

0 20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1

1.2

Window size (s)

Ti
m

e
(s

) ASTPminer w/o seed

ASTPminer with seed

Figure 4.32: Time required by the ASTPminer algorithm with and without seed pattern.

As the window size increases, so do the number of events in the window and the number
of overlapping pattern occurrences in the collection, resulting in a rapid increase in the time
required for the search procedures. Some apnea episodes can have a duration of 60 seconds,
specially in late hours of the night or in long-time SAHS patients, when oxygen saturation
takes longer to recover, so it is possible that the same temporal window holds two or more
occurrences of the apnea episode, increasing the cost of pattern search. By introducing con-
straints in the temporal arrangements between events, seed patterns reduce the number of pos-
sible occurrences to those satisfying the constraints, allowing the algorithm to discard some
overlapping occurrences and therefore reducing the cost of pattern recognition and execution
time, while providing more relevant and interesting knowledge.

Table 4.4 represents the number of candidate and frequent patterns found by ASTPminer
using a window size of 80 seconds and a frequency threshold of 30 occurrences when the four
episodes are defined, with and without introducing the seed pattern displayed in figure 4.31.
The ’Combinations’ columns represent the number of all possible combinations of frequent
patterns found in the previous iteration. ’Candidates’ displays the number of consistent can-
didates generated from all ’Combinations’ in both cases. ’Frequent’ shows the number of
frequent patterns found among ’Candidates’ in both situations. These results show that the



90 Chapter 4. ASTPminer

number of patterns involved in any stage of the process is reduced when the seed pattern is
provided. It is worth noting the reduction of possible combinations for every pattern size when
the seed pattern is provided. In addition, the number of frequent patterns found throughout
the process is also reduced, reaching the point where only one frequent pattern of size 8 is ob-
tained. Again, as pointed out in the discussion of the validation of the ASTP_SEED algorithm
(section 4.3), the number of combinations and candidate patterns of size 2 is not available
(NA), since frequent patterns of size 2 are obtained through the use of a clustering procedure,
instead of the combination procedure. These frequent patterns contribute to the final number
of patterns displayed in the last row of table 4.4, making that the total number of frequent
patterns found is greater than the total number of generated candidates.

Size Combinations Candidates Discarded Frequent
seed w/o seed seed w/o seed seed w/o seed seed w/o seed

1 8 8 8 8 0 0 8 8
2 NA NA NA NA NA NA 32 44
3 86 215 71 157 15 58 71 157
4 215 6754 101 330 108 2084 99 328
5 422 4.9×105 82 363 187 8256 82 363
6 385 5.0×106 38 227 120 8813 38 209
7 101 1.4×107 9 54 26 3454 9 54
8 2 2.1×106 1 7 1 286 1 4

Total 1219 2.1×107 310 1146 457 22951 340 1167

Table 4.4: Number of possible candidates, candidates generated, combinations discarded and frequent patterns in
the database, using the ASTPminer algorithm with and without seed pattern (using a window size
ω=80 s., and a frequency threshold fmin=30 occurrences).

Figure 4.33(a) shows the pattern of size 8 found by the algorithm when using the seed
pattern from figure 4.31 and a window width of 80 seconds. Some of the constraints have
been removed for better visualization. The pattern represented corresponds to a central apnea
episode. It is worth noting that extending the seed pattern in this case does not add new event
types to the seed pattern, since it already included all event types in the collection, but just
refines the initial constraints provided by the user, discovering more specific and probably
interesting knowledge.

Figure 4.33(b) shows one of the patterns of size 8 found by the algorithm using a window
width of 80 seconds when no seed pattern is provided by the user. Some of the constraints



4.5. ASTPminer validation: synthetic databases 91

have been removed for better visualization. This pattern corresponds to a less specific central
apnea episode than the one represented in figure 4.33(a). As can be seen, both versions of the
algorithms obtain very similar patterns, although they have been obtained through different
processes.

Introducing a seed pattern involves two fundamental differences. The first difference lies
in the improvement of the performance of the mining process, as can be seen in figure 4.32
and table 4.4. By removing those patterns not consistent with the knowledge introduced, the
search scope is reduced and therefore the time required by the mining process is improved.
Table 4.4 shows how the number of possible patterns is reduced from 2.1×107 to 1219 when
the seed pattern is provided, therefore reducing the cost of the candidate generation procedure.
The number of frequent patterns falls from 1167 to 340, thus reducing the time required by the
frequency calculation procedure. The second difference lies in the constraints of the resulting
pattern shown in figure 4.33. Introducing a seed pattern allows the mining process to focus on
those temporal arrangements between events that are consistent with the knowledge provided,
and remove those that do not satisfy any of the constraints specified by the seed knowledge.
The removal of temporal arrangements from the process modifies the temporal distance dis-
tributions, thus possibly modifying the clustering results, leading to different patterns in later
iterations. All frequent patterns obtained when a seed pattern is provided are consistent with
the knowledge introduced, and therefore the user should obtain more interesting results.

4.5 ASTPminer validation: synthetic databases

The characteristics of the SAHS database are very specific of this particular domain, so
the database does not permit to fully evaluate the performance of the developed algorithms.
In order to test the validity of our algorithms with a more thorough set of databases covering a
wider range of characteristics, a synthetic database generator was developed, in collaboration
with the AIKE (Artificial Intelligence Knowledge Engineering) research group of the Univer-
sity of Murcia. This section details the rationale behind the data collections generated, the
parameters used by the database generator and how databases are generated from a given set
of parameters.

The database generator we have developed is based on the IBM Quest synthetic data gen-
erator described in [Agrawal and Srikant, 1994, Agrawal and Srikant, 1995, Srikant, 1996],
and may generate two different types of databases. The first type is that of a transactional
database, where each transaction has a number of items associated, called itemset, and each



92 Chapter 4. ASTPminer

(a) Using a seed pattern. (b) Without seed pattern.

Figure 4.33: Patterns of size 8 found with and without introducing a seed pattern, with a window width of 80
seconds.

item represents the occurrence of an event. This type of database is used to evaluate algorithms
intended to find sequential patterns which represent sequences of itemsets where itemsets fol-
low a total order. In this type of problem, the temporal distance between itemsets is either
fixed or not important. Therefore, we will not describe how these databases are generated,
nor will they be used for the validation of the algorithms developed.

The second type of database is that of a collection of recordings, that is, event sequences
involving episodes, where each sequence consists of an ordered set of time-stamped events.
These databases are intended to be used to induce a set of frequent temporal patterns that
represent common temporal arrangements between the events and/or episodes. The database
generator creates a number of temporal patterns according to definition 9 and then proceeds
to introduce instances of them in the collection. The parameters shown in table 4.5 allow the
database generator to produce a wide array of situations to validate the algorithms.

The user selects the number of different event types |E| and episode types |G|, and the
average duration for the episodes, |µG|. These event and episode types will be used to generate
a number of different patterns |P| involving them, that will then be introduced in a collection
of |S| sequences. The user also selects the maximum pattern size maxP and the average size
µP. The parameter Ω determines the maximum temporal distance between any two events in
a pattern. This value is related to the size of the temporal window ω to be used in the mining



4.5. ASTPminer validation: synthetic databases 93

process: if the user of the mining algorithm provides a value ω < Ω, patterns generated with
this Ω value will not be found. The maximum time duration of the sequences tS, the maximum
number of events in a sequence |S| and the maximum number of events in a temporal instant
|T | are used for defining the density of events in the collection of sequences ∆. Higher density
values are expected to have a greater impact in the algorithm performance, since there will be
more events in every temporal window.

|E| Number of event types.
|G| Number of episode types.
|µG| Average episode duration.
|P| Number of patterns to generate.
|S| Number of sequences.
fP Number of occurrences of each pattern.
µP Average pattern size.

maxP Maximum pattern size
Ω Maximum temporal distance between any two events in a pattern.
tS Maximum time duration of a sequence.
|S| Maximum number of events in a sequence.
|T | Maximum number of events in a temporal instant.
∆ Density of events in the collection.
N Total number of events in the collection.

Table 4.5: Synthetic database generator parameters.

4.5.1 Synthetic databases generation

For our validation experiments we have generated a set of different synthetic databases
trying to model a broad range of real situations that may be found in different domains. The
parameters defining these synthetic databases are shown in table 4.6. The |P| column repre-
sents the number of different patterns that we aim to introduce in the database. Each pattern
P is generated in two steps. First, the number of event types in the pattern (the pattern size)
is randomly determined by a Poisson distribution of average µP, generating a new number
if the result is higher than the maximum size allowed for a pattern, maxP. Event types are
randomly chosen among all |E| event types, where each event type can be chosen at most
once. In terms of pattern size, an episode type is considered as an event type. Then, the pos-
sible temporal constraints between events are generated. For each pair of event types Ei and



94 Chapter 4. ASTPminer

Ei+1 in D an interval [min,max] ⊆ [−ω,ω], where max−min ≤ Ω, is randomly calculated
following an uniform distribution in the interval [−Ω,Ω]. Therefore, given a pattern of size i,
the procedure randomly generates i−1 constraints, initialises the rest of the constraints to the
interval [−Ω,Ω], and then uses a Floyd-Warshall ALL_SHORTEST_PATHS() algorithm to
propagate the constraints. In the case that episode types are present in the pattern, constraints
where an episode type is involved are assumed to represent temporal distances with respect to
the beginning of the episode.

Once all patterns have been generated, fP instances of every pattern are created and in-
serted into the sequences. Each occurrence of a pattern P is generated by choosing a random
value for each constraint Li,i+1 = [a,b], using a uniform distribution in the interval [a,b] to
obtain the temporal distance between the events ei and ei+1. A random sequence in the col-
lection is chosen to insert the pattern occurrence, and then a random initial instant in the
interval [0, tS] is calculated to insert the first event of the occurrence. The rest of events and
episodes in the pattern are then inserted according to the temporal distances previously calcu-
lated. If inserting the pattern occurrence takes the number of events above the |S| value a new
sequence is chosen. If inserting the occurrence at the alloted time would result in a temporal
instant having more than |T | events, or would make two occurrences of the same episode type
overlap, a different time instant within the same sequence is chosen. If there are no available
time instants in the sequence, a new sequence is chosen. If there are no available sequences
to introduce the occurrence, an error is produced.

The user can choose whether to allow the database generator to make use of already placed
events in a sequence to insert new occurrences, or force it to calculate a new beginning instant
when it detects it needs to insert an event in a temporal instant where the same event is already
present. It is not possible for two occurrences of the same episode type to overlap. In addition,
when an episode is inserted, it is necessary to verify that no temporal instant between its
beginning and its ending will contain more than |T | events.

Once the database is generated, we can compute the total number of events N involved.

4.5.2 Experimental results with synthetic databases

For comparison purposes, we summarize now the corresponding parameter values in the
case of the SAHS database. The number of event types |E| is 0, and the number of episode
types |G| is 4 (implicitly defining a set of 8 event types). The number of sequences is 50,
and the total number of events in the collection is N=120212. Each sequence has an average



4.5. ASTPminer validation: synthetic databases 95

DB |P| µP maxP Ω fP ∆ tS |T | |E| |G| |µG|
SDB1 10 5 8 60 2000 0.07 8000 10 6 4 10
SDB2 10 5 11 60 5000 0.15 20000 10 6 4 10
SDB3 10 5 9 60 10000 0.25 20000 10 6 4 10
SDB4 10 5 8 60 15000 0.39 8000 10 6 4 10
SDB5 1 14 14 80 5000 0.22 8000 4 12 1 10
SDB6 1 19 19 80 4000 0.25 8000 4 13 3 10
SDB7 1 13 13 80 5000 0.2 8000 4 13 0 -
SDB8 1 10 10 40 5000 0.4 4000 4 10 0 -
SDB9 1 13 13 20 10000 0.8 2000 4 13 0 -

SDB10 1 10 10 10 7000 2.25 2000 4 12 0 -

Table 4.6: Synthetic databases parameters.

duration of 8 hours, meaning that tS=28800 s. The density of events in the collection ∆ is
approximately 0.15. As we can see, the main features of this database are the existence of
episodes, and no independent event types, and a low density, that means a reduced number of
events in a temporal window.

In order to compare the results of ASTPminer in the SAHS database to the results of
the validation experiments using the set of synthetic databases, figure 4.34 shows the time
required by the ASTPminer algorithm with and without seed pattern, in the SAHS database
for different window sizes ω , and a frequency threshold of 30 occurrences.

0 20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1

1.2

Window size (s)

Ti
m

e
(s

)

ASTPminer

ASTPminer + Seed

Figure 4.34: Time required by the ASTPminer algorithm with and without seed pattern, in the SAHS database.
maxP=8, N=120212, ∆=0.15, |E |=0, |G|=4.



96 Chapter 4. ASTPminer

The first synthetic databases in table 4.6 (SDB1 to SDB6) correspond to databases with
both event and episode types, whereas the last ones (SDB7 to SDB10) are databases that do
not contain any episode type, only event types are included in the collections.

The first set of experiments were carried out using databases SDB1 to SDB6, and the
aim was to analyse the impact of pattern size (values between 5 and 19), density of events
(between 0.15 and 0.39) and ratio between the number of event and episode types. It was
expected that the algorithm behaved better for databases with a higher number of episode
types, as is the case of the SAHS database. Figures 4.35, 4.36, 4.37 and 4.38 show the
execution time required by ASTPminer in databases SDB1 to SDB4, whose main difference
is an increasing density value (more events to analyse in each temporal window). As we can
observe in the figures, execution time increases notably with the density.

0 20 40 60 80 100 120

0

5

10

15

Window size (s)

Ti
m

e
(s

)

Figure 4.35: ASTPminer execution time in synthetic database SDB1: maxP=9, N=136000, ∆=0.07, |E |=6, |G|=4

Figures 4.39 and 4.40 show the execution time for ASTPminer in databases SDB5 and
SDB6, corresponding to databases with a low ratio of episode types and patterns of greater
sizes (14 and 19 respectively).

The last set of experiments correspond to databases without episode types in the collection.
We can observe in figure 4.41 that, for a database with a similar density to the SAHS database,
which is the case of SDB7, the execution time greatly increases (from 450 to 4000 seconds).
This higher value is also due to the higher number of event types and higher pattern size, but
confirms that ASTPminer has better performance in databases incorporating episodes in the
collection.



4.5. ASTPminer validation: synthetic databases 97

0 20 40 60 80

0

10

20

30

40

50

Window size (s)

Ti
m

e
(s

)

Figure 4.36: ASTPminer execution time in synthetic database SDB2: maxP=11 , N=275000, ∆=0.15, |E |=6, |G|=4

0 20 40 60 80

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950

Window size (s)

Ti
m

e
(s

)

Figure 4.37: ASTPminer execution time in synthetic database SDB3: maxP=9 , N=470000, ∆=0.25, |E |=6, |G|=4

Figures 4.42, 4.43 and 4.44 provide execution times for databases without episode types
and an increasing density value. As expected, execution time increases since more events
have to be checked in each temporal window.

These sets of experiments corroborate the efficiency of ASTPminer in the discovery of
frequent temporal patterns in databases with a low density of events in the collection, and a
high ratio of episode types versus event types. For different types of databases, new strategies
must be designed to improve execution time of the mining procedure.



98 Chapter 4. ASTPminer

0 20 40 60 80

0
500

1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500
5,000
5,500
6,000
6,500
7,000
7,500

Window size (s)

Ti
m

e
(s

)

Figure 4.38: ASTPminer execution time in synthetic database SDB4: maxP=8, N=705000, ∆=0.39, |E |=6, |G|=4

0 20 40 60 80

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

Window size (s)

Ti
m

e
(s

)

Figure 4.39: ASTPminer execution time in synthetic database SDB5: maxP=14, N=70000, ∆=0.22 , |E |=12, |G|=1



4.5. ASTPminer validation: synthetic databases 99

0 20 40 60 80

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

Window size (s)

Ti
m

e
(s

)

Figure 4.40: ASTPminer execution time in synthetic database SDB6: maxP=19, N=76000, ∆=0.25, |E |=13, |G|=3

0 20 40 60 80

0

800

1,600

2,400

3,200

4,000

Window size (s)

Ti
m

e
(s

)

Figure 4.41: ASTPminer execution time in synthetic database SDB7: maxP=13, N=65000, ∆=0.2, |E |=13, |G|=0



100 Chapter 4. ASTPminer

0 10 20 30 40

0

200

400

600

800

1,000

Window size (s)

Ti
m

e
(s

)

Figure 4.42: ASTPminer execution time in synthetic database SDB8: maxP=10, N=50000, ∆=0.4, |E |=10, |G|=0

0 5 10 15 20

0

100

200

300

400

500

Window size (s)

Ti
m

e
(s

)

Figure 4.43: ASTPminer execution time in synthetic database SDB9: maxP=13, N=95212, ∆=0.8, |E |=13, |G|=0



4.5. ASTPminer validation: synthetic databases 101

0 2 4 6 8 10

0

400

800

1,200

1,600

2,000

2,400

2,800

3,200

Window size (s)

Ti
m

e
(s

)

Figure 4.44: ASTPminer execution time in synthetic database SDB10: maxP=12, N=123402, ∆=2.25, |E |=12,
|G|=0





CHAPTER 5

HSTPMINER

Chapter 4 presented the ASPTminer algorithm that searches for frequent patterns repre-
sented as a STP in a collection of sequences, where events are associated with instantaneous
occurrences of observables while episodes are associated with interval-based observables. Ex-
periments with real-life data, in the form of annotated sequences obtained from polysomno-
graphies of SAHS patients, showed that ASTPminer is able to infer useful knowledge. In
addition, ASTPminer allows a domain expert to introduce knowledge into the mining pro-
cess. Experimental results with the SAHS database showed how introducing knowledge ef-
fectively improves the performance of the algorithms, as it allows the mining process to focus
on temporal arrangements of interest to the user, therefore reducing both the search scope and
the time required by the algorithms to perform the search procedure. It was also shown that
ASTPminer dramatically improves its performance when the database mostly consists of
episodes.

The SAHS database, however, represents a very specific problem. Experimental results
with synthetic databases showed that there is room for improvement in databases with differ-
ent characteristics. This chapter presents some improvements to the ASTPminer algorithm
that aim to increase the performance in these databases. The resulting algorithm is named
Hierarchical Simple Temporal Problem miner, HSTPminer, because it builds and maintains
a pattern hierarchy throughout the mining process, with the aim of improving the performance
of the FREQUENCY_CALCULATION procedure. The intent of this hierarchy is to allow the
algorithm to use information regarding which patterns where found in each window in pre-
vious iterations of the procedure, with the aim of reducing the number of candidate patterns
that need to be checked in each temporal window as much as possible, regardless of whether



104 Chapter 5. HSTPminer

the user introduces knowledge into the process or not. While the ASTPminer needed to
verify every candidate pattern that contained the last event introduced into the window, the
HSTPminer algorithm will only verify those candidates that also extend frequent patterns
found in the same window in the previous iteration. This will improve the performance of the
algorithm in databases where the number of potential candidates is large, yet the number of
actual occurrences remains low, such as databases with long patterns but a somewhat reduced
number of events per time unit. Before going into the details of the HSTPminer algorithm,
we will introduce the data structure that will be used to maintain the pattern hierarchy, a set
enumeration tree.

5.1 Set enumeration tree

The data structure chosen to maintain the pattern hierarchy is a set enumeration tree
[Rymon, 1992]. This structure consists of a set of supernodes, where each supernode may
be either the empty set or the root of several disjoint trees. A supernode in the level i of the
tree contains all patterns that share the first i−1 event types, and groups together patterns into
nodes according to event type i. Formally:

Definition 17 A node in the level i of the tree is a pair Ni
k = (Ai

k,{Pi
l =< Di

l = Ai
k,Li

l >}),
where the first element of the pair is a temporal association of size i and the second element is

the set of temporal patterns whose set of event types is the same as the temporal association

of the first element. We can represent the node that contains the temporal association Ai
k as

Ni
k.

We can also define an order relation among nodes:

Definition 18 Let < be an order relation between two nodes Ni
j and Ni

k such that Ni
j < Ni

k if,

and only if, Ai
j < Ai

k.

By extending the lexicographical order among event types defined in chapter 3, nodes are also
lexicographically ordered. Therefore, nodes within a supernode are organised following the
lexicographical order of the i−th event type of their corresponding temporal associations, as
the rest of the i− 1 event types are shared between all nodes of the supernode. Therefore, a
supernode can be formally defined as:



5.1. Set enumeration tree 105

Definition 19 A supernode is an ordered set SN = {N1, . . . ,Nn} of n nodes, where Ni <

Ni+1,∀i,1, . . . ,n− 1. The temporal associations of all nodes included in a supernode share

all of their event types except the last.

By extending the lexicographical order between nodes to a lexicographical order between
supernodes, we denote the j−th supernode in the level i of the tree as SNi

j, and we denote the
set of all supernodes in level i as SNi.

Each node in a supernode can be the parent of a different supernode. This supernode will
contain every pattern that can be obtained by adding one event type at the end of the temporal
association of the parent node, while maintaining the lexicographical order. For simplicity in
the notation, we can omit the set of temporal patterns in a node, unless otherwise required in
the definition or procedure, and therefore we represent a node by its corresponding temporal
association.

Definition 20 Let Ni
j be a node in the set enumeration tree. Ni

j can serve as the parent for

the root supernode SN of a subtree, denoted as Ni
j = PARENT(SN). Conversely, the subtree

spawned by the node can be denoted as SN = SUBTREE(N).

Figure 5.1 shows an example of a set enumeration tree for the set of event types E =

{A,B,C,D}. For ease of visualisation, only the temporal association of each node is repre-
sented. The root of the tree is the supernode labelled as ’1’, which contains the nodes for
the temporal associations of size one that correspond to the event types A, B, C, and D. The
node A is the parent for the tree that begins with the supernode labelled as ’2’, which contains
temporal associations AB, AC and AD, where the first event type is always A, the temporal
association of the parent node. The node AB then serves as the parent for the subtree with su-
pernode ’5’ at its root. This supernode contains nodes ABC and ABD, which are all temporal
associations that begin with the event types A and B, the ones in the parent node. The leaf
supernode in this branch of the tree is supernode ’8’, which only contains the node ABCD and
has node ABC as its parent. The rest of the branches in the tree are constructed similarly.

The set enumeration tree has been used in the bibliography to efficiently mine associations
[Bayardo, 1998, Coenen et al., 2004], closed partial orders [Pei et al., 2006] and temporal pat-
terns [Guil et al., 2004]. In HSTPminer we will use the set enumeration tree to store the
patterns involved in the mining process, with the aim of making them more readily accesible
and improving the efficiency of the process.



106 Chapter 5. HSTPminer

Figure 5.1: Set enumeration tree example.

5.2 Pattern hierarchy

If a pattern of size i can be found in a temporal window, then there is necessarily at least
one occurrence of all of its subpatterns within the same window. Following the reverse rea-
soning, if there is no occurrence of a candidate pattern in a temporal window in one iteration,
then no occurrence of any extension of that candidate can be found in later iterations. There-
fore, given a temporal window in the collection, the mining process should focus on those
candidate patterns that extend frequent patterns found in the same temporal window in the
previous iteration.

Previous structures need to be adapted to make use of this concept. Event sequences are
modified to allow every event ek in a sequence to be associated with a set of patterns. The
patterns in the annotation set are then used to reduce the number of candidate patterns that
need to be tested in the window W = {ei, . . . ,ek}. Formally:

Definition 21 An annotated event sequence is an ordered set of pairs S = {(e1, p1), . . . ,

(em, pm)} where for all i < j, ei < e j, and pi = {P1, . . . ,Pn} is a set of temporal patterns.



5.2. Pattern hierarchy 107

As it will be thoroughly explained in the next section, the sets associated to the events
in the collection are first built during the search for frequent patterns of size three. In the
following iterations, the sets are updated by replacing the patterns each set contains with
annotations of those candidates where at least one occurrence was found within the same
temporal window.

In order to efficiently find the extensions of the patterns present in the annotation set it is
necessary introduce a new structure. The structure used is a hierarchy, which associates every
pattern with each one of its extensions by means of the event type present in the extension but
not present in the pattern. This hierarchy was implicit in ASTPminer, as candidate patterns
were built from frequent patterns found in the previous iteration. However, HSTPminer is
based on making an efficient use of it.

There are two kinds of relations between patterns that need to be made explicit to make
use of the pattern hierarchy. The first one links a pattern Ci

k with the set containing all of
its subpatterns Pi−1

l , which represents those patterns that were combined to produce Ci
k. For-

mally:

Definition 22 Let Ci
k be a candidate temporal pattern of size i. We define the set of all of its

subpatterns as SUBPATTERNS(Ci
k) = {Pi−1

l =< Di−1
l ,Li−1

l > |Pi−1
l ∈ Pi−1 ∧ Pi−1

l � Ci
k}).

The second relation of interest links a pattern Pi−1
l and an event type E to all of its exten-

sions Ci
k that add the event type E.

Definition 23 Let Pi−1
l =< Di−1

l ,Li−1
l > be a frequent temporal pattern of size i− 1 and

E ∈ E an event type. We define the set of all of its superpatterns Ci
k extended with the event

type E as SUPERPATTERNS(Pi−1
l ,E) = {Ci

k |Di
k = Di−1

l ∪{E} ∧ Pi−1
l � Ci

k}.

Figure 5.2 shows an example of a pattern hierarchy, where pattern ABC1 is the result of the
combination of AB1, AC1 and BC1, whereas pattern ABC2 is the result of combining AB2, AC2

and BC1. Therefore, SUBPATTERNS(ABC1) = {AB1,AC1,BC1} and SUBPATTERNS(ABC2)
= {AB2, AC2, BC1}. In addition, SUPERPATTERNS(AB1, C) = SUPERPATTERNS(AC1,B)
= {ABC1},SUPERPATTERNS(AB2,C) = SUPERPATTERNS(AC2,B) = {ABC2} and {ABC1,
ABC2}= SUPERPATTERNS(BC1, A). If, for example, the event e j = (A, t j) introduced into
the temporal window has the set p j = {AB2, AC2} associated, it is only necessary to check if
there are occurrences of the candidate pattern ABC2. There can be no occurrence of the pattern
ABC1, because no occurence of any of its subpatterns was found in the previous iteration.



108 Chapter 5. HSTPminer

Figure 5.2: Pattern hierarchy example.

With the aim of managing the pattern hierarchy structure we use an auxiliary procedure
labelled as ENDING_EVENTS(), which analyses the constraints of a pattern and calculates
the set of possible event types that may finalise an occurrence of the pattern. Figure 5.3 shows
the ENDING_EVENTS() procedure. Given a pattern Ci

l , the procedure calculates which
event types in Di

l can be found at the end of an occurrence of the pattern, according to the
constraints found in Li

k. The procedure starts by assuming that all event types can be found
at the end of an occurrence (line 2), an then analyses each constraint between the event types
E j and Ek to deduce whether one of the event types involved necessarily occurs before the
other. If the minimum temporal distance between the events is strictly positive (a > 0), then
E j will always occur before Ek, so E j is discarded (line 4). If, on the other hand, the maximum
temporal distance between the events is strictly negative (b < 0), then the occurrence of Ek

will always be present before the occurrence of E j, so Ek is discarded (line 5). Once all
constraints have been processed, the procedure returns the resulting set (line 6).

procedure ENDING_EVENTS(Ci
l =< Di

l ,Li
l >)

1 begin
2 EV ← Di

l
3 for L jk = [a,b] ∈ Li

l do
4 if (a > 0) then EV i

l ← EV i
l −{E j}

5 else if (b < 0) then EV i
l ← EV i

l −{Ek}
6 return(EV)
7 end;

Figure 5.3: ENDING_EVENTS procedure.



5.3. HSTPminer 109

5.3 HSTPminer

The HSTPminer algorithm infers knowledge from temporal databases made up of se-
quences of time-stamped events and episodes. The result of the algorithm is a set of frequent
temporal patterns represented by means of the STP formalism. These patterns are stored in
the set enumeration tree structure described in section 5.1, as well as in the pattern hierar-
chy shown in section 5.2. These structures are exploited to improve the performance of the
mining process. As its predecessor, HSTPminer allows the introduction of previous domain
knowledge in the form of seed patterns also expressed using the STP formalism to focus the
mining process and prune the search space. For the sake of simplicity in the description of the
algorithms, we will assume that only one seed pattern is specified by the user.

HSTPminer uses a tuple of parameters (S,F ,K,ω,fmin), where S represents the collec-
tion of event sequences, F = E ∪G is the set of types of facts in S , K represents an initial seed
pattern, ω the window width, and fmin the minimum frequency threshold. The HSTPminer
algorithm (Figure 5.4) iteratively searches in S for frequent temporal patterns P, extension of
K, whose occurrences are spread over ω time units, at most. Each frequent pattern P repre-
sents a set of similar temporal arrangements between the events and episodes present in the
collection S. Those subsequences of the collection where no occurrence of the seed pattern is
present can be discarded from the rest of the procedure, as no occurrence of any extension of
the seed pattern can be found in them. The rest of the parameters remain constant throughout
the procedure.

The algorithm begins by searching for frequent event types (line 2), which represent fre-
quent patterns of size one (line 3). Then, the INITIALISATION() procedure searches for
all frequent patterns of size two consistent with the seed pattern K (line 4). Subsequent pat-
terns are obtained through an iterative procedure, where each iteration i results in the set of
frequent temporal patterns of size i. This process ends when no new frequent patterns are
found in a given iteration. The output of the HSTPminer procedure is a set of frequent tem-
poral patterns, all of them consistent with the knowledge represented by the seed pattern. As
in ASTPminer, the HSTPminer algorithm uses three lists in every iteration i: the list Ai

holds frequent temporal associations of i event types; the list Ci stores candidate patterns of
size i , and the list Pi ⊆Ci contains those candidate patterns with i events whose frequencies
were found to be higher than the frequency threshold fmin. These lists are divided among the
different levels and nodes present in the set enumeration tree.



110 Chapter 5. HSTPminer

procedure HSTPminer(S,F,K,ω,fmin)
1 begin
2 A1← {E j |E j ∈ E ∧ f(E j)≥fmin}
3 P1← A1

4 P2← INITIALISATION(S,A1,P1,F,K,ω,fmin)
5 A2← {D j |P2

j=<D j,L j>∈P2}
6 i ← 3
7 while (Pi−1 6=∅ ∨ Ci−1

p 6=∅) do begin
8 Ci← CANDIDATE_GENERATION(Ai−1,Pi−1∪Ci−1

p )
9 if Ci

c 6=∅ then
Pi← FREQUENCY_CALCULATION(Ci

c,S,F,ω,fmin)
10 Ai← {D j |Pi

j=<D j,L j>∈Pi}
11 i ← i+1
12 end;
13 end;

Figure 5.4: HSTPminer: Main algorithm.

List Ci is subdivided into two additional lists Ci =Ci
c∪Ci

p. List Ci
c contains only those

candidate patterns where, for every episode type, either both of its event types or none of
them are part of the pattern. The candidates in this list will be the ones whose frequency will
be verified by the FREQUENCY_CALCULATION() procedure. List Ci

p contains the rest of
the patterns, where only one event type of at least one episode type is present. These patterns
are necessary for the CANDIDATE_GENERATION() procedure in later iterations, but they
are not to be searched for in the iteration in course. Section 5.3.3 details how both lists are
constructed, and the criterion used to introduce one candidate pattern to each list. Frequent
and candidate patterns are stored in the set enumeration tree structure described in section 5.1,
which improves the efficiency of the CANDIDATE_GENERATION() procedure.

The algorithm finishes when one iteration results in both no new frequent patterns found
and an empty Ci

p list, meaning that no additional patterns may be built. Notice that it is
possible that the result of the candidate generation step in some iterations is an empty Ci

c list
and a non-empty Ci

p list. In this case, the FREQUENCY_CALCULATION() procedure is not
necessary, and the algorithm may proceed to the next iteration.



5.3. HSTPminer 111

5.3.1 Initialisation

The INITIALISATION procedure shown in figure 5.5 obtains all frequent patterns of
size 2 and stores them in the list P2. Every pattern obtained in this procedure represents a
set of temporal arrangements between two event types, where every temporal arrangement is
consistent with the constraints present in the seed pattern K, and its frequency satisfies the
minimum frequency threshold.

procedure INITIALISATION(S,A1,P1,F,K,ω,fmin)
1 begin
2 K2← FREQUENCY_CALCULATION({K},S,F,ω,fmin)
3 if (K2 =∅) then stop
4 C2← CANDIDATE_GENERATION(A1,P1)
5 P2← K2∪FREQUENCY_CALCULATION(C2,S,F,ω,fmin)
6 return P2

7 end;

Figure 5.5: HSTPminer: Initialisation algorithm.

The procedure begins by obtaining the frequency of the seed pattern K=<DK ,LK > (line
2), using the FREQUENCY_CALCULATION() algorithm described in section 5.3.2. The
algorithm verifies all temporal windows of width ω throughout the collection S, searching
for occurrences of the seed pattern. If the result is that the seed pattern is not frequent, the
algorithm stops (line 3). The result of this step is the set K2 of frequent patterns of size 2
consistent with the seed pattern that involve only pairs of event types from the seed pattern,
and there is at least one pattern for each different pair of event types.

Afterwards, the procedure builds the set C2 of candidate patterns of size 2 where at least
one event type was not included in the seed pattern, using the set of frequent event types in
P1 (line 4). These candidates are obtained by the CANDIDATE_GENERATION() procedure
described in section 5.3.3.

Once the set C2 has been generated, the FREQUENCY_CALCULATION() procedure ver-
ifies the frequency of the candidates. The list P2 then includes patterns extracted from the
seed pattern K2, and frequent patterns extracted from C2 (line 5).



112 Chapter 5. HSTPminer

As will be detailed in section 5.3.2, the pattern hierarchy will not be used in this step, and
the set of patterns attached to every event in the collection will remain empty throughout the
procedure.

5.3.2 Frequent pattern calculation

Figure 4.28 shows the FREQUENCY_CALCULATION() procedure used to verify the fre-
quency of the candidate patterns in the data collection. The procedure incorporates the use
of the pattern hierarchy to the search procedure. Occurrences of frequent patterns found in
previous iterations are used to narrow down the number of candidates Qi

l that need to be ver-
ified in each temporal window W . When an occurrence of a candidate pattern is found, the
candidate is annotated in the set attached to the last event introduced into the window, as this
event constitutes the ending event of the occurrence.

Every sequence S in the collection is analysed in search for occurrences of the candidate
patterns, sequentially introducing events in the temporal window following an increasing tem-
poral order. When an event e j of the sequence is inserted in the window (line 10), all events ek

such that their temporal distance t j−tk with e j is greater than ω are removed from the window
(line 11). In addition, any event eh = (oe,v, th) representing the ending event of an episode
g = (o,v, tk, th) where the beginning event ek is no longer present in W is also removed from
the window, even if t j− th < ω . Once the temporal window has been updated, the procedure
needs to verify if there exist any occurrences of candidate patterns in the temporal window.
Depending on the type of candidate patterns to be searched for, three different situations may
arise.

The first case is found when the set of candidate patterns consists of the seed pattern
(line 6). In this case, the procedure first tests if any of the events removed from the window
belonged to any interval in R, a set of intervals where each intervals represents the beginning
and ending instants of an occurrence of the seed pattern. Any event that does not belong to any
of these intervals is not part in an occurrence of, nor is it found in the temporal proximity of an
occurrence of the seed pattern. Therefore, it cannot belong to any extension of the seed pattern
and can be safely removed from the mining process (line 7). Then, any interval that does no
longer overlap with the temporal window W is removed from R, as no further event in the
sequence may be present in them (line 8). The procedure then searches for occurrences of the
seed pattern in the temporal window (line 14), considering that there are still no annotations



5.3. HSTPminer 113

procedure FREQUENCY_CALCULATION(Qi,S,F,ω,fmin)
1 begin
2 for S ∈ S do begin
3 R←∅
4 W ←∅
5 for (e j, p j) ∈ S do begin
6 if Qi = {K} then begin
7 S← S−{ek | t j− tk > ω ∧∀[ta, tb] ∈ R, tk /∈ [ta, tb]}
8 R← R−{[ta, tb] ∈ R | t j− tb > ω}
9 end;
10 W ←W ∪ {e j}
11 W ←W − ({ek | t j− tk > ω} ∪

{eh = (oe,v, th) ∈W |g = (o,v, tk, th)∧ t j− tk > ω})
12 np←∅
13 if Qi = {K} or i = 3 or i = 4 then
14 VERIFY_PATTERNS(Qi,W,F,R,np,E j)
15 else begin
16 for P∈ p j do
17 if P = Pi−1

l =< Di−1
l ,Li−1

l > then
18 for Ek ∈ E do
19 Vi ← SUPERPATTERNS(Pi−1

l ,Ek)
20 VERIFY_PATTERNS(Vi,W,F,R,np,e j,p j)
21 end;
22 if ∃Qi

m ∈Ci
p, Pi−1

l �Qi
m then np← np ∪ {Pi−1

l }
23 end;
24 if P = Pi−2

l =< Di−2
l ,Li−2

l >
25 for G = (o,v,Tk,Tm) ∈ G do
26 for Pi−1

h =< Di−1,Li−1
h >∈SUPERPATTERNS(Pi−2

l ,Ek)do
27 Vi ← SUPERPATTERNS(Pi−1

h ,Em)
28 VERIFY_PATTERNS(Vi,W,F,R,np,e j,p j)
29 end;
30 p j← np
31 end;
32 if i = 2 ∨ Qi = {K} then Pi← CLUSTERING(N = {nkpkq}p,q,fmin)
33 else Pi← {Qi

l |Qi
l ∈Qi ∧ f(Qi

l)≥fmin}
34 return(Pi)
35 end;

Figure 5.6: HSTPminer: Frequency calculation.



114 Chapter 5. HSTPminer

in p j, and the VERIFY_PATTERNS() procedure will not put any annotations of the seed
pattern in the annotation set.

Similarly, the second case appears when the set of candidate patterns consist of temporal
patterns of size three (line 13). In this case, the procedure does not remove any event from the
collection, but there are still no annotations present in p j. Therefore, the procedure needs to
verify if there are occurrences of any of the candidates generated (line 14). The difference with
respect to the seed pattern case is that as a result of the VERIFY_PATTERNS() procedure,
the set np will contain references to the patterns that presented at least one occurrence in the
window. The case i = 4 also falls in this case. Candidate patterns in C3

p could not be searched
for in the previous iteration, and therefore there are no annotations of their extensions in C4

c .
These extensions need to be verified as in the case i = 3.

In the third and general case i > 4 (line 15), the annotation sets have already been ini-
tialised and can be used to constrain the number of patterns from Qi that need to be verified
in the temporal window W . If p j contains no annotations, then no pattern needs to be verified
and the procedure may skip to the next event in the collection (line 5). Otherwise, the pro-
cedure sequentially reads patterns from the annotated set (line 16), where two different types
of annotations can be found. The first type corresponds to annotations made in the previous
iteration, corresponding to patterns of the form Pi−1

l (line 17), whereas the second type cor-
responds to annotations made two iterations before the current one, where patterns annotated
are of the form Pi−2

l (line 24). For each pattern Pi−1
l , the procedure iteratively uses all event

types (line 18) to extend the pattern in the annotation set (line 19) and then verifies each set of
extensions separately (line 20). In addition, if there is an extension of Pi−1

l that belongs to the
set Ci

p, then that extension cannot be searched for in the iteration in course, so the pattern will
not be attached to any annotation set, so none of its extensions in the set Ci+1

c will be verified
in the next iteration. Therefore, in order to avoid this situation, either the extensions in Ci

p

need to be added to the set np or the pattern Pi−1
l itself is added. With the aim of minimising

the number of annotations in each set, Pi−1
l is added (line 22).

In the next iteration of the mining process, these annotations will take the form Pi−2
l (line

24). In this case, instead of iterating over the set of event types, the procedure needs to test
extensions where complete episodes G = (o,v,Tk,Tm) have been added (line 25). This is done
in two steps. In the first step, the beginning event type Ek = (ob,v,Tk) of the episode is used
to extract the extensions of Pi−2

l (line 26), and in the second step the ending event type of the
episode Em = (oe,v,Tm) is added to each of these extensions (line 27). The resulting patterns



5.3. HSTPminer 115

are then verified in the temporal window (line 27) and their occurrences annotated in the set
np.

Once all annotations in p j have been processed, the set p j is replaced with the set np

of all annotations made for the current event (line 30). This process is repeated with every
event of the collection. Then, the procedure discards any pattern not satisfying the minimum
frequency threshold and puts all patterns that can be considered frequent in the list Pi (line 33).
This last step is not performed when the set of candidate patterns corresponds either with the
seed pattern or with the set of patterns of size two. In both cases, the result of the procedure is
obtained through the use of a CLUSTERING() procedure (line 32) over the temporal distance
distributions built within VERIFY_PATTERNS().

procedure VERIFY_PATTERNS(Vi,W,F,R,np,e j,p j)
1 begin
2 for Vi

r =< Di
r,Li

r >∈Ci
c, E j ∈ ENDING_EVENTS(Vi

r) ∧
(SUBPATTERNS(Vi

r)−
({Pi−1

m =< Di−1
m ,Li−1

m > |E j /∈ Di−1
m } ∪ {Pi−1

m |Pi−1
m ∈Ci−1

p }))⊆ p j do
3 for X = {ek1 , ...,eki = e j} ⊆W ∧ {Ek1 , . . . ,Eki = E j}= Di

r do
4 if (∀ekp ,ekq ∈ X , tkq − tkp ∈ Lkpkq ∈ Li

r) ∧
(∀G = (o,v,Tkp ,Tkq)� Vi

r ⇒ ∃g = (o,v, tkp , tkq)|(ob,v, tkp),(oe,v, tkq) ∈ X)
then begin

5 UPDATE_DISTRIBUTION(N = {nkpkq}p,q,X)
6 f(Vi

r) ← f(Vi
r)+1

7 if Vi = {K} then R← R ∪ {[tk1 , tki = t j]}
8 if i≥ 3 then np← np ∪ {Vi

r}
9 end;
10 end;
11 end;

Figure 5.7: HSTPminer: Pattern verification.

The VERIFY_PATTERNS() procedure is shown in figure 5.7. The parameter Vi contains
the set of candidate patterns that need to be searched for in the temporal window W . However,
there are three conditions that any candidate Vi

r needs to satisfy in order to be tested in the
current window (line 2). First, the pattern must belong to the set Ci

c. Second, the event type
E j corresponding to the event e j currently under analysis must belong to the set of possible
ENDING_EVENTS(Vi

r). And third, the set of annotations p j must contain all subpatterns of



116 Chapter 5. HSTPminer

the candidate with the exception of those that do not contain E j, and those that could not
be annotated in the previous iteration of the mining process because they belonged to Ci−1

p .
If the three conditions are met, then the procedure uses all subsequences X of the temporal
window that satisfy some conditions to test if there are occurrences of the candidate. The
conditions are that the subsequence must end with e j, it must contain one event for each event
type present in the candidate, and it must also contain the beginning and ending events of
the same episode occurrence (line 3). For each one of these subsequences that satisfies the
constraints of the candidate pattern Vi

r (line 4) the frequency of the candidate is increased
(line 6) and the appropriate temporal distance distributions N = {nkpkq} are updated (line 5).
In addition, if the candidate is the seed pattern K, it is necessary to introduce the interval
[tk1 , t j] in R, where the beginning instant of the interval is the time of the first event in the
subsequence ek1 and the ending of the interval is marked by e j (line 7). Otherwise, if i ≥ 3
(line 8) then the candidate is added to the set of patterns found in the current window np,
which will replace the set p j once all annotations currently in p j have been examined. It is
worth mentioning that there may be non-frequent patterns present in some of the annotation
sets of the collection. These annotations are not removed until the next iteration of the process,
where the FREQUENCY_CALCULATION() procedure will ignore them.

No annotations of neither the seed pattern nor any pattern of size two are made. In both
cases, frequent patterns are obtained by clustering the temporal distance distributions, and
they are not available until the end of the FREQUENCY_CALCULATION() procedure. Since
it is not possible to know which frequent pattern will be consistent with the occurrence, or if
the occurrence will be consistent with any pattern at all, it would be necessary to annotate the
temporal association, forcing the procedure to test all candidates in the next iteration of the
mining process. This would be the same situation as if no annotation were made. In the case
of the seed pattern, in addition to the previous comment, it is also necessary to point out that
it would not be enough to make the annotations in the event e j, and the pattern would need
to be added to the annotation sets of every event in the occurrence. In this case the procedure
will end by obtaining all frequent patterns of size two consistent with the seed pattern and
having both event types within the seed pattern. Since not all of these patterns will contain the
event type E j, there would not be any annotation to indicate where to search for candidates
that would not contain E j.

An example of the FREQUENCY_CALCULATION() procedure can be found in figure
5.8. Let the window width be ω = 8, the set of event types be E = {E1 = A, E2 = B,
E3 = C, E4 = D, E5 = E} and the set of epysode types be the empty set G = ∅. Let



5.3. HSTPminer 117

ABCD1 = < D1,L1 > and ABCD2 =< D2,L2 > be candidate patterns, where the first can-
didate consists of D1 = {A,B, C,D}, L1 = {L12 = [1,2], L13 = [2,3], L14 = [3,4], L23 =

[1,1], L24 = [2,3], L34 = [1,2]}, whereas the components of the second candidate are D2 =

{A,B, C,D}, L2 = {L12 = [−1,−1], L13 = [1,1], L14 = [0,1], L23 = [−2,−2], L24 = [−1,0],
L34 = [1,2]}. Given both sets of constraints, the possible ending events for the patterns
are ENDING_EVENTS(ABCD1)= {D} and ENDING_EVENTS(ABCD2)= {B,D}. The se-
quence where the candidates will be searched for is S = {((A,1),∅), ((B,2),∅), ((A,5),∅),
((B,6),∅), ((C,7),{ABC1}), ((D,9),{ABD1,ACD1,BCD1}), ((E,10),∅)}. Consider the
following pattern hierarchy:

– SUPERPATTERNS(ABC1,D)= {ABCD1}

– SUPERPATTERNS(ABD1,C)= {ABCD1}

– SUPERPATTERNS(ACD1,B)= {ABCD1}

– SUPERPATTERNS(BCD1,A)= {ABCD1}

– SUPERPATTERNS(ABC2,D)= {ABCD2}

– SUPERPATTERNS(ABD2,C)= {ABCD2}

– SUPERPATTERNS(ACD2,B)= {ABCD2}

– SUPERPATTERNS(BCD2,A)= {ABCD2}

– SUBPATTERNS(ABCD1)= {ABC1, ABD1, ACD1, BCD1}

– SUBPATTERNS(ABCD2)= {ABC2, ABD2, ACD2, BCD2}

The procedure sequentially introduces the events into the temporal window, while finding
no occurrence of any candidate as there are not enough different event types and no annota-
tions of occurrences found in the previous iteration. When the event (C,7) enters the window,
its annotation set contains the pattern ABC1, meaning that it could be possible to find occur-
rences of any of its extensions. However, there are only occurrences of three different event
types (A, B and C) while four would be needed, since candidate patterns are of size four.
Therefore no occurrence can be found and the new annotation set associated with the event
will be empty. When event (D,9) is introduced, the process reaches the situation depicted
in “Temporal window 1”. In this case, the annotation set contains three patterns suggesting



118 Chapter 5. HSTPminer

which candidates of size four might be present in the window, those extending any of the
three. The first annotation that needs to be analysed corresponds to the pattern ABD1. The
procedure tries to extend de pattern in the annotation set with all event types in E , one at a
time. The only possible extension, which corresponds with the candidate ABCD1, is found
when the event type C is added. As D belongs to the set ENDING_EVENTS(ABCD1), the
procedure verifies that all patterns in SUBPATTERNS(ABCD1) are in the annotation set, with
the only exception of ABC1, for it does not contain the event type D. Since the three subpat-
terns are present in the annotation set, the procedure searches for occurrences of ABCD1 in
all the subsequences of the temporal window that satisfy that there is one event for each event
type in ABCD1. The only subsequences satisfying this condition are X1 = {(A,1), (B,2),
(C,7), (D,9)}, X2 = {(A,1), (B,6), (C,7), (D,9)}, X3 = {(B,2), (A,5), (C,7), (D,9)} and
X4 = {(A,5), (B,6), (C,7), (D,9)}. Sequence X1 does not satisfy the constraints L13, L14,
L23 and L24 of the pattern and therefore it is not an occurrence. Sequence X2 does not satisfy
L12, L13 and L14. Sequence X3 does not satisfy L12, L23 and L24. However, the events in
sequence X4 satisfy all the constraints, and therefore both the frequency of the candidate and
the temporal distance distributions between the event types need to be updated (lines 13-14
in figure 5.6). In addition, the candidate ABCD1 is added to the set np of patterns found
(line 15). Extensions to patterns ACD1 and BCD1 are then explored, but the only candidate
pointed by them is ABCD1 which was already used to search for occurrences and cannot
be used again. As candidate ABCD2 cannot be accessed from any of the annotations made
during the previous iteration of the algorithm, it is not necessary to search for occurrences in
the window, for none could be found. Therefore the procedure has fully explored the current
temporal window, substitutes the set of annotations for the new one (line 17), and then reads
the event (E,10) from the event sequence. Reading this event moves the temporal window
to the situation labelled as “Temporal window 2”, where event (A,1) is removed from the
window. Again, there are no annotations associated with the event, so it is not necessary to
search for occurrences of the candidates. The procedure ends by removing those candidates
with a frequency value below the frequency threshold from the process (line 21), returning the
remaining ones, which are considered frequent. In this step, the procedure does not remove
non-frequent patterns from the annotation sets, so it does not need to access the data collection
again.

The previous example assumed that there were no episodes in the collection. An exam-
ple of the FREQUENCY_CALCULATION() procedure with episodes can be found in fig-
ure 5.9. Let the window width be ω = 8, the set of event types be E = {E1 = A, E2 = B,



5.3. HSTPminer 119

Figure 5.8: Pattern hierarchy frequency calculation example.

E3 = C, E4 = D, E5 = E} and the set of epysode types be G = {G1 = (o1,v1,TA,TB), G2 =

(o2,v2,TC,TD)}. Let ABCD1 =< D1,L1 > be a candidate pattern, where D1 = {A,B, C,D},
and L1 = {L12 = [1,2], L13 = [2,3], L14 = [3,4], L23 = [1,1], L24 = [2,3], L34 = [1,2]}. Given
the set of constraints, ENDING_EVENTS(ABCD1)= {D}. The sequence where the candi-
dates will be searched for is S = {((A,1),∅), ((B,2),{AB1}), ((A,5),∅), ((B,6),{AB1}),
((C,7),∅), ((D,9),{CD1}), ((E,10),∅)}. There are two episodes g1 = (o1,v1,1,2) and
g2 = (o1,v1,5,6) of the episode type G1 represented by the events (A,1) and (B,2) as well as
(A,5) and (B,6) in the sequence. There is also one episode g3 = (o2,v2,7,9) of the episode
type G2 represented by the events (C,7) and (D,9). Consider the following pattern hierarchy:

– SUPERPATTERNS(AB1,C)= {ABC1}

– SUPERPATTERNS(AB1,D)= {ABD1}

– SUPERPATTERNS(CD1,A)= {ACD1}

– SUPERPATTERNS(CD1,B)= {BCD1}

– SUPERPATTERNS(ABC1,D)= {ABCD1}

– SUPERPATTERNS(ABD1,C)= {ABCD1}



120 Chapter 5. HSTPminer

– SUPERPATTERNS(ACD1,B)= {ABCD1}

– SUPERPATTERNS(BCD1,A)= {ABCD1}

– SUBPATTERNS(ABCD1)= {ABC1, ABD1, ACD1, BCD1}

The procedure sequentially introduces the events into the temporal window. When the event
(B,2) enters the window, its annotation set contains the pattern AB1, meaning that it could be
possible to find occurrences of any of its extensions. However, there are only occurrences of
two different event types (A and B) while four would be needed, since candidate patterns are
of size four. Therefore no occurrence can be found and the new annotation set associated with
the event will be empty. The same reasoning applies to the event (B,4). When event (D,9)
is introduced, the process reaches the situation in “Temporal window 1”. In this situation, the
annotation set contains one pattern CD1 of size two. Since the size of the candidates in the cur-
rent iteration is four, this annotation represents an occurrence of a pattern that was extended
with an episode type, meaning that an episode type must be used to calculate the extensions
instead of a single event type as in the previous example. In this case, the episode type G1

is used. The procedure first obtains the set of all superpatterns of CD1 with the beginning
event type A of the episode type G1, which results in the set {ACD1}. Then, the procedure
would use the ending event type D of G1 to obtain the extensions of size four of each pat-
tern in the set. In this example, this process results in the set {ABCD1}. Since D belongs to
the set ENDING_EVENTS(ABCD1), the procedure would need to verify that all patterns in
SUBPATTERNS(ABCD1) are in the annotation set, with the only exception of ABC1. How-
ever, every subpattern of ABCD1 belongs to the set C3

p, meaning that these patterns cannot be
present in the annotation set, so the procedure needs to verify if there are occurrences of the
ABCD1 in any subsequence X of the window that satisfies that it contains the event (D,9),
one event for each event type in ABCD1, and both the beginning and ending events of the
same episode. The only sequences that satify the three constraints are X1 = {(A,1), (B,2),
(C,7), (D,9)} and X2 = {(A,5), (B,6), (C,7), (D,9)}. Since X2 corresponds to an occurrence
of ABCD1, the procedure adds the pattern to the annotation set. The procedure then would
need to use the episode type G2 to explore the extensions of the candidate pattern, but there
are none. Therefore, the procedure has already fully explored the current temporal window,
so it substitutes the annotation set and introduces the next event of the sequence (E,10) into
the temporal window, reaching the situation seen in “Temporal window 2”. As there are no



5.3. HSTPminer 121

patterns in the annotation set, the procedure ends by removing non-frequent candidates. In
this step the procedure does not remove non-frequent patterns from the annotation sets.

Figure 5.9: Pattern hierarchy frequency calculation with episodes example.

5.3.3 Candidate generation

Figure 5.10 shows the CANDIDATE_GENERATION() procedure that builds the candi-
date patterns whose frequency will be verified in the current iteration of the mining process.

This procedure iterates over the set of supernodes in the i−1 level of the set enumeration
tree (line 4). All nodes within the same supernode represent temporal associations that share
all event types except the last one. Each node Ni−1

k (line 5) will be the root of a new supernode
in the level i of the tree (line 6). All nodes in the new supernode will share all event types
with node Ni−1

k and each new node Ni
h will add a new event type provided by a node Ni−1

l >

Ni−1
k within the same supernode (lines 7-8). The procedure then needs to verify whether the

temporal association Ai
h that represents the node Ni

h may be frequent by checking if all of
the temporal associations Ai−1

j it contains are frequent (line 11). In the negative case, then
no pattern with those event types can be frequent, and it is not necessary to generate any
candidate pattern with this set of event types. This checking operation needs to access other
supernodes on the same level of the set enumeration tree. However, the set enumeration tree
allows the procedure to quickly find the node where the temporal association and the patterns
can be, instead of having to search in the complete set Ai−1.

Then, the CANDIDATE_GENERATION() procedure generates the temporal constraint
networks of the candidate patterns. Every candidate of size i is built from i networks of



122 Chapter 5. HSTPminer

procedure CANDIDATE_GENERATION(Ai−1,Pi−1)
1 begin
2 Ci←∅
3 h← 1
4 for SNi−1

j ∈ SNi−1 do begin

5 for Ni−1
k ∈ SNi−1

j do begin
6 SNi

m←∅
7 for Ni−1

l ∈ SNi−1
j , Ni−1

k < Ni−1
l do begin

8 Ai
h← Ai−1

k ∪ Ai−1
l

9 h← h+1
10 V ←∅
11 if all Ai−1

j ⊂Ai
h satisfies Ai−1

j ∈Ai−1 then

12 for all combination of Pi−1
hk
∈Pi−1 ∧ Di−1

hk
⊂Ai

h do

13 if Qi
l =ALL-PAIRS-SHORTEST-PATHS(onhP

i−1
hk

)

is consistent then begin
14 if ∀E j in Qi

l , E j in Gk ∈ G ⇒Gk � Qi
l then

15 Ci
c← Ci

c ∪ {Qi
l}

16 else
17 Ci

p← Ci
p ∪ {Qi

l}
18 V ← V ∪ {Qi

l}
19 end;
20 if V 6=∅ then SNi

m← SNi
m ∪ {Ni

h =(A
i
h,V)}

21 end;
22 SUBTREE(Ni−1

k ) ← SNi
m

23 SNi← SNi
m

24 end;
25 return(Ci)
26 end;

Figure 5.10: HSTPminer: Candidate generation.

size i− 1, one frequent pattern for each different temporal association of size i− 1 found
in the previous step. The result of the combination of these patterns is a new pattern of
size i, which is then subjected to the ALL-PAIRS-SHORTEST-PATHS() Floyd-Warshall
algorithm to propagate the constraints and ensure that it is consistent (lines 12-13). If the
pattern is consistent, the candidate is added to one of the two lists of candidate patterns. If for
every event type E j limiting an episode type Gk the pattern also contains the other event type of



5.3. HSTPminer 123

Gk, then the candidate belongs to the list Ci
c (line 15), else it is inserted in the list Ci

p (line 17).
Candidates in Ci

p are not used during the FREQUENCY_CALCULATION() procedure, but
they will be necessary in further iterations of the CANDIDATE_GENERATION() procedure.
When no additional patterns for the same set of event types can be generated, the procedure
introduces the node Ni

h that contains both the temporal association and the temporal patterns
in the supernode SNi

m (line 20). Once all possible nodes for SNi
m have been generated, the

procedure links SNi
m with the root node Ni−1

k (line 22).
The CANDIDATE_GENERATION() procedure behaves differently when called during

the INITIALISATION() step. In this case, the candidates generated consist of temporal
associations of size two, where no frequent temporal arrangements between the event types
are yet known. Therefore, it is not possible to perform the combination step. In addition, every
candidate is inserted into the list Ci

c regardless of whether both event types in the association
are part of the same episode type or not. This exception allows the process to obtain common
temporal arrangements between event types that belong to different episode types, or where
one of them does not belong to an episode type. It is also worth mentioning that any candidate
pattern of size two where both event types belong to K were already obtained from the seed
pattern, and are not generated at this point.

Figure 5.11 shows an example of how the set enumeration tree can aid in the candidate
generation step. The objective of this example is to build the third level of the set enumeration
tree, consisting of the supernodes labelled as ’5’, ’6’ and ’7’ given the second level of the tree
made up from the supernodes labelled as ’2’, ’3’ and ’4’. The procedure begins by selecting
the supernode ’2’. Then the procedure chooses the node N2

1 = AB (line 5). The first node
that may be combined with the node AB to generate new candidates is the node AC (line 7).
From the temporal associations of both nodes, the new temporal association generated is ABC

(line 8). Before generating the candidate patterns, the procedure needs to verify that BC is
a frequent temporal association (line 11). To evaluate this, the procedure starts in supernode
’1’, where it accesses the node B. There, SUBTREE(B) takes the procedure to supernode
’3’, where it finds node BC, meaning that the temporal association is frequent. Therefore,
the procedure combines the frequent patterns found in nodes AB, AC, and BC, which results
in candidate patterns ABC1 and ABC2. The node N3

1 = (ABC,{ABC1,ABC2}) is added to
supernode ’5’ (line 20). The procedure then chooses the node AD to be combined with AB,
which results in the temporal association ABD. Then a similar procedure is followed to verify
that the temporal association BD is frequent, and generate the candidate pattern ABD1. As
there are no more nodes in supernode ’2’, supernode ’5’ is finished and linked to its PARENT,



124 Chapter 5. HSTPminer

the node AB (line 22). However, there are still nodes within supernode ’2’ that may act as root
of another subtree. In particular, node AC may be combined with node AD to generate the
supernode ’6’ by following the same process. When supernode ’2’ has been fully explored,
the procedure jumps to supernode ’3’, where the process is repeated to generate supernode
’7’. Finally, since there is only one node in supernode ’4’, no subtree may be generated from
node CD.

Figure 5.11: Example of candidate generation with set enumeration tree.

5.3.4 Correctness and completeness of HSTPminer

In this section we examine both the correctness and completeness of the HSTPminer
algorithm.

Lemma 1: (Correctness) Temporal patterns obtained by the HSTPminer algorithm are
frequent.

Rationale: The FREQUENCY_CALCULATION() procedure, along with the auxiliary
procedure VERIFY_PATTERNS(), search for occurrences of all candidate patterns in all
possible temporal windows of every recording in the data collection. During the calcula-
tion of Pi, i.e., the set of frequent patterns of size i, for every event e j introduced into the
temporal window, all subsequences X of size i of the temporal window that include the



5.3. HSTPminer 125

event e j are checked against those patterns that contain the event type E j of the event e j

(VERIFY_PATTERNS(), figure 5.7 line 3). Only those patterns that are extensions of pat-
terns found in the same temporal window need to be verified, and only those extensions such
that there are annotations of all of its subpatterns except those without the event type E j

(VERIFY_PATTERNS(), figure 5.7 line 3). These conditions reduce the number of patterns
that need to be checked in each window, but do not leave any patterns unchecked if there can
be an occurrence of them. If there is an occurrence of a pattern of size i, then necessarily there
would be annotations of its subpatterns of size i−1 or i−2. For each candidate pattern Vi

r and
each subsequence X in the window, the frequency of Vi

r is updated if, and only if, the tempo-
ral arrangements between the events satisfy every constraint in Qi

r (VERIFY_PATTERNS(),
figure 5.7 line 4). This procedure ensures that every occurrence of every pattern present in the
data collection is accounted for, whereas no combination of events in the collection is con-
sidered to be an occurrence of any pattern unless all constraints are satisfied. The algorithm
discards any candidate pattern Qi

l having a frequency value f(Qi
l) less than the user-defined

threshold fmin (FREQUENCY_CALCULATION(), figure 5.6 line 32), which ensures that re-
sulting patterns are frequent.

Lemma 2 (Completeness) Candidate generation in HSTPminer is exhaustive.
Rationale: The set enumeration tree does not change the candidates generated, it only

assigns temporal associations and patterns a fixed position and allows the procedure to easily
find them in subsequent calls to the procedure. The Apriori strategy summarised in lines 5-11
(figure 5.10) ensures that all different temporal associations of size i are obtained from the
set Ai−1 of frequent temporal associations of size i− 1. Additionally, the procedure builds
the set Ci of all the candidate patterns of size i from the set Pi−1 of frequent patterns of size
i−1, which are different temporal arrangements of the aforementioned temporal associations
(figure 5.10 line 12).

P1 is constructed by removing non-frequent event types from E . Given Pi−1, i.e., the set
of frequent patterns of size i− 1, the CANDIDATE_GENERATION() procedure produces
all possible combinations onhPi−1

hk
of i patterns in Pi−1, where the set of event types of ev-

ery pattern Pi−1
hk

represents a different temporal association in Ai−1. Only inconsistent pat-
terns are discarded during the CANDIDATE_GENERATION() procedure (figure 5.10 line
13). The set of temporal patterns is closed under the combination operation, therefore the
CANDIDATE_GENERATION() procedure produces temporal patterns from temporal pat-
terns. The consistency of the pattern is checked using the ALL-PAIR-SHORTEST-PATHS()
algorithm, which results in a minimal network.



126 Chapter 5. HSTPminer

The reasoning above does not take into account the use of a clustering procedure to obtain
P2. Clustering procedures are summarisation procedures that aim to extract from the dataset
a reduced, but significant, number of groups. The criterion used to select these groups is
the similarity of a set of temporal arrangements that, when gathered together, exceed the fre-
quency threshold fmin established by the user. Therefore, HSTPminer satisfies only a partial
completeness: the CANDIDATE_GENERATION() procedure is exhaustive but HSTPminer
is not exhaustive because of the clustering procedure.

5.3.5 Complexity analysis of HSTPminer

In the following analysis of the computational complexity of these algorithms we assume
that |E| contains both limiting event types of each episode type in G. Then, the complexity of
each procedure in an iteration i can be evaluated as follows:

– In the temporal association generation step, for a temporal association Ai
j to be fre-

quent, all of the i temporal associations Ai−1
k ⊂ Ai

j must be frequent. The maximum
number of frequent temporal associations of size i−1 is |Ai−1|=

( |E|
i−1

)
, and each tem-

poral association of size i− 1 can be added |E| − i different event types to create a
temporal association of size i. Finding a temporal association of size i− 1 in the set
enumeration tree requires accessing i−1 supernodes, starting from the root supernode
of the tree and goind down one level in each step. Therefore, verifying that all temporal
associations |Ai−1

k | are frequent has a complexity of O(i2). The combination step is no
longer necessary, because all temporal associations within the same supernode share all
event types except the last one. The complexity of generating all the candidate temporal
associations is O(|Ai−1||E|i2).

– The candidate generation step has not changed with respect to ASTPminer. Each of
the i(i−1)/2 constraints of a temporal pattern Pi

jk
is obtained through the combination

of those patterns Pi−1
hk

where Di−1
h ⊂Ai

j. The combination has a complexity of O(i2),
and the maximum number of possible combinations of patterns of size i is ∏h |Pi−1

h |.
In terms of the initial parameters, the maximum number of temporal patterns of size
two between any two event types corresponds to the situation where every temporal
arrangement presents a frequency value greater than the frequency threshold fmin, but
their frequency values are so different that the clustering procedure produces one pattern
for each temporal arrangement. In this situation, the clustering procedure produces 2ω



5.3. HSTPminer 127

patterns for every temporal association of size two. Under this assumption, to build a
pattern of size i it is sufficient to establish the i−1 constraints between one event type
and the rest of the event types, as the remaining constraints can be completely specified
during the ALL-PAIRS-SHORTEST-PATHS() step. Additionally, the number of all
possible combinations of frequent patterns to explore to build all candidate patterns
for any temporal association of size i is ω i(i−1). Every combination is subjected to a
consistency checking process by the ALL-PAIRS-SHORTEST-PATHS() algorithm,
which has a complexity of O(i3). Therefore, the overall complexity of this step is
O(|Ai|i3ω i(i−1)).

– In the frequency calculation step, the worst case scenario corresponds to a situation
where every time unit may present an occurrence of all |E| event types with a total of
n = |E|dS events in S (where n is the length of S and dS is its duration, the sum of the
durations of each sequence in the collection). Every time the window is updated, |E|
events enter the window and |E| leave. Under this assumption, for every pattern of size
i, up to iω i−1 new occurrences may be found in every window update for every pattern.
Checking whether an occurrence fulfils all of the constraints in a pattern has a complex-
ity of O(i2). Assuming that in the previous iteration an occurrence of each candidate
was found in the window, the procedure extends every pattern found in the annotation
set attached to each event with all |E| event types, and then for each extension the pro-
cedure needs to verify that there are i−1 of its subpatterns annotated. Considering that
the maximum number of candidate patterns in the i iteration is |Ai|ω i−1, the number
of patterns found in the annotation set is |Ai−1|ω i−2. Therefore, for each annotation
there are ω i−1 extensions of each frequent pattern with one event type, and the overall
complexity for this step is O(n|E|ω3i−4i4|Ai−1|). This complexity is higher than the
complexity of the ASTPminer algorithm. Since in the worst case scenario there are
occurrences of all candidate patterns in every temporal window, the processing of the
annotation set by HSTPminer turns out that all candidates need to be verified in each
temporal window, introducing an overhead into the FREQUENCY_CALCULATION()
procedure without any benefit. However, as will be seen in the validation process in
section 5.4, in the average case the cost of processing the annotation sets would be less
than the cost of verifying all subsequences of the temporal window for all candidate
patterns.



128 Chapter 5. HSTPminer

Given the iterative nature of the mining process, and considering that the maximum pattern
size is the number of different event types |E|, the overall complexity of the algorithm is dom-
inated by the candidate generation step, which results in a complexity of O(|E||Ai|i3ω i(i−1)).

The use of seed patterns is expected to have an impact in reducing the number of pat-
terns |Pi| generated in each iteration, and in the overall number of events n of the collection
S. Those segments of the collection where no occurrences are found are discarded for fur-
ther iterations, which reduces the value of n. These changes contribute to improve the total
efficiency of the algorithm. As seen in section 4.3, it is possible that |P2| is greater when
seed patterns are used, as the shape of the temporal distance distributions may vary and their
clustering may result in more numerous yet more specific patterns. However, if that were the
case, the number of possible combinations in later iterations would be expected to be lower,
as more specific patterns would have fewer possible consistent combinations.

5.4 HSTPminer validation

In this section we compare the performance of the HSTPminer and the ASTPminer
algorithms in both the SAHS database and the synthetic databases introduced in section 4.5.

5.4.1 SAHS database

As in the ASTPminer algorithm, a seed pattern is provided to the HSTPminer algo-
rithm. This pattern is shown in figure 5.12, and it describes an approximate representation of
a central apnea pattern, where the beginning of an airflow limitation episode occurs roughly at
the same time as the beginning of the abdominal and thoracic movement limitation episodes,
the ending of an airflow limitation episode also occurs roughly at the same time as the end-
ing of the thoracic and abdominal movement episodes, and the blood oxygen saturation falls
after the beginning of the airflow limitation. The formal definition of this seed pattern is
K =< D,L>, where D = {E1,E2,E3,E4,E5,E6,E7,E8} and the user-defined constraints are
L = {L12 = [1,ω],L34 = [1,ω],L56 = [1,ω],L78 = [1,ω],L13 = [−5,5],L15 = [−5,5],L17 =

[0,ω],L24 = [−5,5],L26 = [−5,5],Li j = [−ω,ω] otherwise}.
Figure 5.13 shows the time required by the ASTPminer and HSTPminer algorithms,

with and without using the seed pattern shown in figure 5.12, using different values for the
window size and a frequency threshold of 30 occurrences. These results show that, for both
algorithms, providing a seed pattern helps to reduce the search scope and improve the perfor-



5.4. HSTPminer validation 129

Figure 5.12: Seed pattern used in the experiments.

mance. However, the inclusion of the pattern hierarchy seems to have a detrimental effect on
the performance. This would imply that the cost of analysing the SAHS database is too small
when compared to the overhead introduced by the pattern hierarchy. It is worth mentioning
that both algorithms skip the FREQUENCY_CALCULATION() procedure for odd values of
i. In these cases, since the database consists only of episode types, for every candidate there
will be at least one episode type where one of the limiting event types will be in the candidate
but the other will not. Therefore, in odd numbered iterations Ci

c = ∅, so the algorithm skips
the FREQUENCY_CALCULATION() procedure.

The seed pattern allows the mining process to ignore some temporal arrangements be-
tween events that may be detected due to the overlapping nature of the apnea pattern. That
is, it is common for SAHS patients that several apnea patterns occur in rapid sucession. As
the window width grows, those occurrences may be found in the same window, increasing
the number of subsequences that need to be verified for each candidate pattern. Introducing a
seed pattern allows to ignore those subsequences where the temporal arrangements between
the events included are of no interest, reducing the cost of the analysis. Moreover, the ade-
quate use of episodes allows to further reduce the number of subsequences of each temporal



130 Chapter 5. HSTPminer

window that need to be analysed, as a beginning event of an episode forces its correspond-
ing ending event to be present in the same subsequence, making it possible to ignore those
subsequences where this is not satisfied. The pattern hierarchy allows to reduce the number
of candidate patterns that the FREQUENCY_CALCULATION() procedure needs to verify in
each remaining subsequence of the temporal window to only those candidates that extend a
frequent pattern found either in the previous iteration, or the iteration before the previous one,
as explained in section 5.3.2. Nevertheless, navigating through this hierarchy seems to intro-
duce a cost that the reduction of the number of patterns verified cannot compensate in this
database.

The HSTPminer algorithm focuses on detecting which candidate patterns need not be
tested in a temporal window. When compared to the ASTPminer algorithm, there is no dif-
ference in neither the number nor their frequency, nor in the contraints of the patterns them-
selves. Therefore, the number of possible, candidate and frequent patterns in each iteration
remains the same as in table 4.4.

0 20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1

1.2

Window size (s)

Ti
m

e
(s

)

ASTPminer

ASTPminer + Seed

HSTPminer

HSTPminer + Seed

Figure 5.13: Time required by the ASTPminer algorithm with and without seed pattern, and the HSTPminer
algorithm with and without seed pattern.

5.4.2 Synthetic databases

The first set of experiments involves databases where both event types and episode types
are present in the collection. With these datasets, we analyse the impact of pattern size, event
density, as well as the ratio between the number of episode types and event types (SDB1 to



5.4. HSTPminer validation 131

SDB6 in table 4.6). The second set of experiments compares both algorithms in databases
where no episode type is present (SDB7 to SDB10).

Figures 5.14, 5.15, 5.16 and 5.17 show similar databases, where the number of events and
their density in the collection are gradually increased. In the smaller databases ASTPminer
obtains better results, but in the bigger databases both algorithms seem to behave similarly. In
these four cases, candidate generation times are negligible.

0 20 40 60 80 100 120

0

5

10

15

Window size (s)

Ti
m

e
(s

)

ASTPminer

HSTPminer

Figure 5.14: SDB1: maxP=9, N=136000, ∆=0.07, |E |=6, |G|=4

0 20 40 60 80

0

10

20

30

40

50

Window size (s)

Ti
m

e
(s

)

ASTPminer

HSTPminer

Figure 5.15: SDB2: maxP=11 , N=275000, ∆=0.15, |E |=6, |G|=4

In the databases corresponding to figures 5.18 and 5.19 larger patterns are included and the
number of episodes is reduced. In both cases, HSTPminer proves to be more efficient, reduc-
ing the time required by the mining process considerably when compared to the ASTPminer



132 Chapter 5. HSTPminer

0 20 40 60 80

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950

Window size (s)

Ti
m

e
(s

)

ASTPminer

HSTPminer

Figure 5.16: SDB3: maxP=9 , N=470000, ∆=0.25, |E |=6, |G|=4

0 20 40 60 80

0
500

1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500
5,000
5,500
6,000
6,500
7,000
7,500

Window size (s)

Ti
m

e
(s

)

ASTPminer

HSTPminer

Figure 5.17: SDB4: maxP=8, N=705000, ∆=0.39, |E |=6, |G|=4

algorithm. As pattern size grows, the number of temporal patterns involved in every iteration
of the mining process also grows. While ASTPminer needs to test whether each of the can-
didate patterns can be found in every temporal window, the HSTPminer algorithm is able to
reduce the number of patterns verified in each window, which results in an improvement of
the performance.

The databases SDB7 to SDB10 (Table 4.6) used in the next set of experiments do not con-
tain any episode type and therefore consist only of event types. The results of the experiments
are shown in figures 5.20, 5.21, 5.22 and 5.23. In all of them, the HSTPminer algorithm
requires consistently less time to produce the results. The experiments with these databases



5.4. HSTPminer validation 133

0 20 40 60 80

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

Window size (s)

Ti
m

e
(s

)

ASTPminer

HSTPminer

Figure 5.18: SDB5: maxP=14, N=70000, ∆=0.22 , |E |=12, |G|=1

0 20 40 60 80

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

Window size (s)

Ti
m

e
(s

)

ASTPminer

HSTPminer

Figure 5.19: SDB6: maxP=19, N=76000, ∆=0.25, |E |=13, |G|=3

allow us compare the efficiency of the algorithms for varying degrees of density of events in
the collection, while maintaining a similar number of events in the same temporal window.
The HSTPminer algorithm outperforms the ASTPminer algorithm in all the databases, yet
the improvement provided by the algorithm decays as the number of events per time unit
grows. As the event density increases, if the number of event types remains constant, the fre-
quency of all possible temporal arrangements between any pair of event types becomes more
and more similar. The CLUSTERING() procedure will tend to produce less patterns, but
will also include more temporal arrangements in each pattern. Therefore the overall number
of patterns is reduced, and the impact of discarding patterns becomes less important, perhaps



134 Chapter 5. HSTPminer

being even counter-productive due to the cost associated to analysing and maintaining the
annotations.

0 20 40 60 80

0

800

1,600

2,400

3,200

4,000

Window size (s)

Ti
m

e
(s

)

ASTPminer

HSTPminer

Figure 5.20: SDB7: maxP=13, N=65000, ∆=0.2, |E |=13, |G|=0

0 10 20 30 40

0

200

400

600

800

1,000

Window size (s)

Ti
m

e
(s

)

ASTPminer

HSTPminer

Figure 5.21: SDB8: maxP=10, N=50000, ∆=0.4, |E |=10, |G|=0

The experiments described in this section show that the HSTPminer algorithm outper-
forms the ASTPminer algorithm in databases with a low ratio of episode types versus event
types, as well as in databases where long patterns are present. This is usually the case of
activity logs data sets, such as the ones result of the monitoring of Information Systems. The
results also show that as the event density of the database grows the improvement of the



5.4. HSTPminer validation 135

0 5 10 15 20

0

100

200

300

400

500

Window size (s)

Ti
m

e
(s

)

ASTPminer

HSTPminer

Figure 5.22: SDB9: maxP=13, N=95212, ∆=0.8, |E |=13, |G|=0

0 2 4 6 8 10

0

400

800

1,200

1,600

2,000

2,400

2,800

3,200

Window size (s)

Ti
m

e
(s

)

ASTPminer

HSTPminer

Figure 5.23: SDB10: maxP=12, N=123402, ∆=2.25, |E |=12, |G|=0

HSTPminer over the ASTPminer algorithm is reduced. Finally, in databases where the
ratio of episode types vs event types is high both algorithms behave similarly.





CHAPTER 6

MAIN CONTRIBUTIONS AND

CONCLUSIONS

The main purpose of this thesis work has been to propose a formal solution for mining
temporal patterns from temporal databases. The Simple Temporal Problem (STP) has been
chosen as the formal framework for representing the results of the mining process, as it has
been widely and successfully applied on temporal reasoning, scheduling or planning tasks
[Dechter, 2003]. The STP belongs to the set of Constraint Satisfaction Problems (CSP), a for-
malism that represents in a declarative manner a number of constraints that must be satisfied
in order to obtain a solution to a given problem. One of the advantages of CSP is the possi-
bility of modeling a problem graphically, as a constraint network that can be represented as a
constraint graph, enabling the treatment of tasks like inference, consistency checking, or sce-
nario finding by using graph processing techniques. The STP allows us to represent temporal
information as a network of metric temporal constraints between a set of temporal variables,
each one representing a time instant. A particular STP is usually set up from a description of
expert knowledge, and obtaining an STP from a temporal dataset, after a data mining process,
represents an innovative and relevant challenge for the knowledge discovery paradigm.

The present thesis proposes a number of techniques, grouped under the ASTPminer and
HSTPminer names, for discovering frequent temporal patterns, each one represented as an
STP, from a collection of event sequences. From the very beginning, choosing the STP as a
representation framework entails an important step forward from previous works in the liter-
ature of temporal data mining from event sequences, since the STP can represent both quanti-
tative and qualitative constraints, subsuming other qualitative constraint formalisms, like the



138 Chapter 6. Main contributions and conclusions

Convex Point Algebra [Van Beek and Cohen, 1990] or the Convex Simple Interval Algebra
[Gerevini et al., 1996]. Thus, the ASTPminer and HSTPminer algorithms provide a more
expressive result than those based on frequent orders between a set of events in a collection.
Furthermore, the STP provides a good balance between expressiveness and complexity, since
the usual information processing tasks supported by the STP are computed in polynomial
time, whereas most of the temporal formalisms entail NP-hard tasks.

Temporal data mining in both ASTPminer and HSTPminer is based on the application
of similarity criteria to different temporal arrangements between the same event types. In this
sense, an important limitation in a previous work [Dousson and Duong, 1999] is overcome,
where at most one temporal pattern is mined for a fixed set of event types. A temporal cluster-
ing involving temporal arrangements between events appears as an extremely complex task.
However, both of the techniques mentioned above simplify this operation by projecting the
similarity criteria in each pair of event types in the pattern. A clustering procedure over tem-
poral distance distributions of occurrences of pairs of event types produces a set of intervals.
Each one of these intervals represents a distinguishable temporal arrangement between the
pair of event types, and thus originates a pattern of size two with this pair of event types. A
consistency checking of the resulting candidate patterns enforces the assembling of consistent
patterns of any size. Because clustering is only conducted when searching for patterns of size
two, this process does not compromise the efficiency of the global procedure.

A relevant contribution of both techniques is that they allow users to participate in the min-
ing process by introducing previous domain knowledge. The patterns provided by the user are
also represented by means of the STP formalism. User knowledge is provided as a seed pattern
involving a number of events and episodes of interest and some temporal constraints between
them. This initial knowledge then focuses the search process on those patterns that extend the
seed, either by incorporating new event types or by refining the constraints in the seed pattern.
A seed pattern provides a strong instrument to prune the search space in two ways. First, it
allows subsequences where no occurrence of the seed pattern is found to be ignored, which
therefore reduces the number of events to be considered. Second, the constraints specified
by the user limit the patterns found to those consistent with the information provided, which
reduces the number of patterns while increasing their interest for the end user. Both aspects
contribute to the improvement of algorithm efficacy and efficiency.

ASTPminer provides the user with a temporal data mining tool to discover frequent
temporal patterns by exploiting the Apriori strategy. ASTPminer has been designed to take
advantage of the possible occurrence of frequent episodes in a sequence. In fact, a suitable



139

treatment of episodes in the mining process allows us to skip some of the iterations in the
frequency calculation stage showing an important reduction in the overall computational cost.
Correctness of ASTPminer has been proved in its exhaustive search on a given temporal
dataset, and partial completeness has been pointed out after the summarizing operation of
temporal clustering.

To validate ASTPminer, several experiments were conducted over a medical database of
time-stamped sequences, obtained from polysomnography tests in patients with Sleep Apnea-
Hypopnea Syndrome. We have selected this clinical domain since the medical community
has described a well-known phenomenon from the repetitive observation of a temporal pat-
tern in a data set. The experiments aimed to test the ability of ASTPminer to induce similar
results from the same data, producing successful results both from the point of view of re-
producing the pattern discovery results of medical experts, and from the point of view of
computational efficiency. Nevertheless, the SAHS database has very particular properties, so
further tests have been necessary on a different set of databases of time-stamped sequences.
Thus, a temporal dataset generator was designed and implemented, with the aim of completely
characterizing the behaviour of temporal data mining algorithms in a wide variety of simu-
lated situations, where the quantitative information about the temporal arrangement of events
is relevant.

HSTPminer is an evolution of the ASTPminer algorithm, focused on improving the
performance of both the frequency calculation and the candidate generation stages. In the
HSTPminer algorithm every sequence in any iteration is annotated with those patterns that
were found in every temporal window, with the aim of reducing the number of candidate pat-
terns that need to be checked in the next iteration of the frequency calculation procedure. Thus
the mining process focus on those patterns that extend previous frequent patterns found in the
same temporal window. HSTPminer builds and maintains a pattern hierarchy throughout the
mining process, by means of a set enumeration tree. This pattern hierarchy associates every
pattern with each one of its extensions by means of the event type that the extended pattern
adds to the former. This structure improves the candidate generation process by allowing it to
easily access patterns found in previous iterations that are needed for generating new patterns.

Tests show that HSTPminer outperforms ASTPminer under certain conditions. In
databases where the number of episode types is small when compared to the number of event
types HSTPminer shows a better performance, yet this improvement decays as the number
of events per time unit in the data collection increases. On the other hand, in those databases
where large patterns can be found, HSTPminer is able to improve the efficiency of the pro-



140 Chapter 6. Main contributions and conclusions

cess by reducing the number of patterns that need to be verified in each temporal window.
However, in the presence of smaller patterns and a similar number of episode types and event
types, the overhead introduced by the pattern hierarchy seems to bring the performance of
both algorithms to a similar level. In summary, ASTPminer is shown to be suitable for min-
ing temporal databases with a sparse occurrence of events and episodes, and relatively small
frequent temporal patterns. This is usually the case of annotated physiological recordings, as
it has been proven with a typical SAHS database. HSTPminer seems appropriate for mining
temporal databases with a more dense occurrence of time-stamped events, and larger frequent
temporal patterns. This is usually the case of activity log data sets, commonly resulting from
the monitoring of Information Systems.

There is a number of future research directions for the present work that can be summa-
rized as follows:

1. Other search strategies should be explored, beyond the Apriori paradigm. The main aim
should be to reduce the cost of the frequency calculation procedure. In the short term,
this could be done by omitting the generation of candidates in a combinatorial fashion,
by computing just those plausible candidates attached to each temporal window. The
main difficulty lies in designing a procedure not too memory consuming for reducing
the number of possible occurrences to check in each temporal window.

2. Including the negation in the mining procedures appears as a challenging task. A first
form of negation can be expressed as the systematic absence of some event type dur-
ing the occurrence of a frequent temporal pattern. This absence can be modelled by
including negated event types in the assembly of temporal associations. These negated
event types cannot appear in the resulting STP, so the final frequent temporal pattern
should be read as a frequent temporal association enhanced by a temporal arrangement
between the positive event types.

3. Both ASTPminer and HSTPminer provide the user with a temporal distance distri-
bution for each pair of event types of a frequent temporal pattern. Applying clustering
proves to be a simple and effective tool for identifying those similar patterns in a dataset,
with good results. However, a temporal distance distribution also provides a valuable
support for the application of a wide range of tools from statistics, in order to achieve
a more in-depth analysis of those frequent temporal patterns. This sort of analysis de-



141

pends largely on the nature of the domain and the processes where the datasets come
from.

4. Building a temporal distance distribution for each pair of event types makes it pos-
sible to obtain, from a mining process, a family of constraint solving schemes based
on a semiring structure [Bistarelli et al., 1997], extending the STP framework in the
direction of providing more flexible semantics to the very notion of constraint: those
of preference, probability or possibility, amongst others. These new constraint solv-
ing schemes specify, in addition to each temporal constraint Li j = [ai j,bi j], a function
fi j : [ai j,bi j]→ A, where A is a set of admissible values, and the tuple 〈A,+,×,0,1〉 is a
semiring such that: A is a set and 0,1∈ A; + is commutative, associative and 0 is its unit
element; × is associative, distributes over +, 1 is its unit element, and 0 is its absorbing
element. In general, solving these new constraint solving schemes is NP-complete, but
three practical assumptions make them solvable in polynomial time: (1) the functions
fi j are semiconvex; (2) the × operator is idempotent; (3) the values of the semiring
are totally ordered. ASTPminer and HSTPminer can be applied to obtain frequent
temporal patterns corresponding to three such new constraint solving schemes:

– Simple Temporal Problem with Preferences [Khatib et al., 2001]. Planning and
scheduling tasks involve not only quantitative temporal constraints, but also soft
temporal preferences among different possible choices, as solutions of the cor-
responding STP. In a Simple Temporal Problem with Preferences, a temporal
constraint is represented as Li j =< [ai j,bi j],φi j >, where φi j : [ai j,bi j]→ [0,1]
represents a preference function. The construction of a temporal distance distri-
bution from a temporal dataset for each pair of event types allows us to model a
corresponding preference function, assuming that a higher frequency in a specific
duration between a pair of event types agrees with a higher preference exhibited
by the decision maker in the temporal dataset.

– Simple Temporal Problem with Probabilities [Morris et al., 2001]. The interval-
based representation for the temporal uncertainty provided by the STP framework
can be enhanced by a probabilistic representation, assuming that a temporal con-
straint depicts a duration between events as a continuous random variable. In a
Simple Temporal Problem with Probabilities, a temporal constraint is represented
as Li j =< [ai j,bi j], pi j >, where pi j : [ai j,bi j]→ [0,1] represents a probability
density function. If the dataset is very large, the temporal distance distribution



142 Chapter 6. Main contributions and conclusions

for each pair of event types of a frequent temporal pattern can be considered as a
good approximation to the underlying probability density function.

– Fuzzy Temporal Constraint Networks [Barro et al., 1994, Marín et al., 1994]. A
possibilistic representation of uncertainty is based on an ordering structure rather
than the additive one of probability, explicitly handling incomplete knowledge,
and naturally supporting the combination of subjective, linguistic-like informa-
tion. In a Fuzzy Temporal Constraint Network, a temporal constraint is repre-
sented as Li j =< [ai j,bi j],πi j >, where πi j : [ai j,bi j]→ [0,1] represents a possi-
bility distribution. If the dataset is very large, a probability-possibility transfor-
mation can be applied in order to obtain a possibility distribution from a temporal
distance distribution [Dubois et al., 2004]. Fuzzy Temporal Constraint Networks
suitably support the processing of vague or uncertain temporal information, bring-
ing the temporal data mining closer to the natural language.

5. The design and implementation of a web-based visual tool will make it easier to access
and use ASTPminer and HSTPminer. This tool will also allow the scientific com-
munity to share benchmark datasets, and it will facilitate the dissemination of temporal
data mining beyond the academic context.



Bibliography

[Adlassnig et al., 2006] Adlassnig, K.-P., Combi, C., Das, A. K., Keravnou, E. T., and Pozzi,
G. (2006). Temporal representation and reasoning in medicine: Research directions and
challenges. Artificial Intelligence in Medicine, 38(2):101 – 113.

[Agarwal et al., 2000] Agarwal, R. C., Aggarwal, C. C., and Prasad, V. V. V. (2000). Depth
first generation of long patterns. In Proceedings of the sixth ACM SIGKDD international

conference on Knowledge discovery and data mining, KDD ’00, pages 108–118, New
York, NY, USA. ACM.

[Agarwal et al., 2001] Agarwal, R. C., Aggarwal, C. C., and Prasad, V. V. V. (2001). A tree
projection algorithm for generation of frequent item sets. Journal of Parallel and

Distributed Computing, 61(3):350 – 371.

[Agrawal et al., 1995] Agrawal, R., Lin, K.-I., Sawhney, H. S., and Shim, K. (1995). Fast
similarity search in the presence of noise, scaling, and translation in time-series databases.
In Proceedings of the 21th International Conference on Very Large Data Bases,
VLDB’95, pages 490–501, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

[Agrawal and Srikant, 1994] Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining
association rules in large databases. In Bocca, J. B., Jarke, M., and Zaniolo, C., editors,
Proceedings of the 20th International Conference on Very Large Data Bases, VLDB’94,
pages 487–499. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[Agrawal and Srikant, 1995] Agrawal, R. and Srikant, R. (1995). Mining sequential
patterns. In Yu, P. S. and Chen, A. L. P., editors, Proceedings of the Eleventh

International Conference on Data Engineering, ICDE ’95, pages 3–14. IEEE Computer
Society, Washington, DC, USA.



144 Bibliography

[Ale and Rossi, 2000] Ale, J. and Rossi, G. (2000). An approach to discovering temporal
association rules. In Proceedings of the ACM Symposium on Applied Computing, pages
294–300.

[Allen, 1983] Allen, J. (1983). Maintaining knowledge about temporal intervals.
Communications of the ACM Transaction on Information Systems, 26(11):832–843.

[Álvarez et al., 2011] Álvarez, M. R., Félix, P., and Cariñena, P. (2011). Mining temporal
constraint networks by seed knowledge extension. In Peleg, M., Lavrac, N., and Combi,
C., editors, Artificial Intelligence in Medicine, volume 6747 of Lecture Notes in Computer

Science, pages 250–254. Springer-Verlag, Berlin/Heidelberg.

[Álvarez et al., 2013] Álvarez, M. R., Félix, P., and Cariñena, P. (2013). Discovering metric
temporal constraint networks on temporal databases. Artificial Intelligence in Medicine.
In press.

[Álvarez et al., 2010] Álvarez, M. R., Félix, P., Cariñena, P., and Otero, A. (2010). A data
mining algorithm for inducing temporal constraint networks. In Hüllermeier, E., Kruse,
R., and Hoffmann, F., editors, Computational Intelligence for Knowledge-Based Systems

Design, volume 6178 of Lecture Notes in Computer Science, pages 300–309.
Springer-Verlag, Berlin/Heidelberg.

[American Academy of Sleep Medicine Task Force, 1999] American Academy of Sleep
Medicine Task Force (1999). Sleep-related breathing disorders in adults:
recommendations for syndrome definition and measurement techniques in clinical
research. Sleep, 22:667–689.

[Anselma et al., 2006] Anselma, L., Terenziani, P., Montani, S., and Bottrighi, A. (2006).
Towards a comprehensive treatment of repetitions, periodicity and temporal constraints in
clinical guidelines. Artificial Intelligence in Medicine, 38(2):171–195.

[Antunes and Oliveira, 2005] Antunes, C. and Oliveira, A. (2005). Constraint Relaxations

for Discovering Unknown Sequential Patterns, pages 11–32. Springer.

[Augusto, 2001] Augusto, J. C. (2001). The logical approach to temporal reasoning.
Artificial Intelligence Review, 16(4):301–333.



Bibliography 145

[Badaloni and Berati, 1996] Badaloni, S. and Berati, M. (1996). Hybrid temporal reasoning
for planning and scheduling. In Proceedings of the Third International Workshop on

Temporal Representation and Reasoning, TIME ’96, pages 39–44.

[Badaloni and Giacomin, 2006] Badaloni, S. and Giacomin, M. (2006). The algebra IA f uz:
a framework for qualitative fuzzy temporal reasoning. Artificial Intelligence,
170(10):872–908.

[Barber, 1993] Barber, F. A. (1993). A metric time-point and duration-based temporal
model. SIGART Bulletin, 4(3):30–49.

[Barro et al., 1994] Barro, S., Marín, R., Mira, J., and Patón, A. (1994). A model and a
language for the fuzzy representation and handling of time. Fuzzy Sets and Systems,
61:153–175.

[Bayardo, 1998] Bayardo, Jr., R. J. (1998). Efficiently mining long patterns from databases.
In Proceedings of the 1998 ACM SIGMOD international conference on Management of

data, SIGMOD ’98, pages 85–93, New York, NY, USA. ACM.

[Bellazzi et al., 2011] Bellazzi, R., Ferrazzi, F., and Sacchi, L. (2011). Predictive data
mining in clinical medicine: a focus on selected methods and applications. Wiley

Interdisc. Rew.: Data Mining and Knowledge Discovery, 1(5):416–430.

[Bellazzi et al., 2005] Bellazzi, R., Larizza, C., Magni, P., and Bellazzi, R. (2005). Temporal
data mining for the quality assessment of hemodialysis services. Artificial Intelligence in

Medicine, 34(1):25–39.

[Bettini et al., 1998a] Bettini, C., Sean Wang, X., Jajodia, S., and Lin, J.-L. (1998a).
Discovering frequent event patterns with multiple granularities in time sequences. IEEE

Transactions on Knowledge and Data Engineering, 10(2):222–237.

[Bettini et al., 1998b] Bettini, C., Wang, X., and Jajodia, S. (1998b). A general framework
for time granularity and its application to temporal reasoning. Annals of Mathematics and

Artificial Intelligence, 10(1-2):29–58.

[Bistarelli et al., 1997] Bistarelli, S., Montanari, U., and Rossi, F. (1997). Semiring-based
constraint satisfaction and optimization. Journal of the ACM, 44(2):201–236.



146 Bibliography

[Bonchi and Lucchese, 2007] Bonchi, F. and Lucchese, C. (2007). Extending the
state-of-the-art of constraint-based pattern discovery. Data & Knowledge Engineering,
60(2):377 – 399.

[Campos et al., 2010] Campos, M., Juárez, J., Palma, J., and Marín, R. (2010). Using
temporal constraints for temporal abstraction. Journal of Intelligent Information Systems,
34(1):57–92.

[Casas-Garriga, 2005] Casas-Garriga, G. (2005). Summarizing sequential data with closed
partial orders. In SIAM International Conference on Data Mining (SDM-05), pages
380–391.

[Chen et al., 2011] Chen, Y., Wu, S., and Wang, Y. (2011). Discovering multi-label temporal
patterns in sequences databases. Information Sciences, 181:398–418.

[Chen et al., 2003] Chen, Y.-L., Chiang, M.-C., and Ko, M.-T. (2003). Discovering
time-interval sequential patterns in sequence databases. Expert Systems with Applications,
25(3):343–354.

[Chittaro and Montanari, 2000] Chittaro, L. and Montanari, A. (2000). Temporal
representation and reasoning in artificial intelligence: Issues and approaches. Annals of

Mathematics and Artificial Intelligence, 28(1-4):47–106.

[Coenen et al., 2004] Coenen, F., Goulbourne, G., and Leng, P. (2004). Tree structures for
mining association rules. Data Mining and Knowledge Discovery, 8(1):25–51.

[Combi et al., 2009] Combi, C., Gozzi, M., Oliboni, B., Juárez, J., and Marín, R. (2009).
Temporal similarity measures for querying clinical workflows. Artificial Intelligence in

Medicine, 46:37–54.

[Combi and Shahar, 1997] Combi, C. and Shahar, Y. (1997). Temporal reasoning and
temporal data maintenance in medicine: Issues and challenges. Computers in Biology and

Medicine, 27(5):353 – 368.

[Concaro et al., 2009] Concaro, S., Sacchi, L., Cerra, C., Fratino, P., and Bellazzi, R. (2009).
Mining healthcare data with temporal association rules: improvements and assessment for
a practical use. In Combi, C., Shahar, Y., and Abu-Hanna, A., editors, 10th Conference on

Artificial Intelligence in Medicine, AIME 2009, volume 5651 of Lecture Notes in Artificial

Intelligence, pages 16–25. Springer-Verlag, Berlin/Heidelberg.



Bibliography 147

[Dechter, 2003] Dechter, R. (2003). Constraint Processing. Morgan-Kaufmann, San
Francisco, CA, USA.

[Dechter et al., 1991] Dechter, R., Meiri, I., and Pearl, J. (1991). Temporal constraint
networks. Artificial Intelligence, 49:61–95.

[Deshpande et al., 2003] Deshpande, A., Brandt, C., and Nadkarni, P. (2003). Temporal
query of attribute-value patient data: utilizing the constraints of clinical studies.
International Journal of Medical Informatics, 70(1):49–67.

[Dousson and Duong, 1999] Dousson, C. and Duong, T. V. (1999). Discovering chronicles
with numerical time constraints from alarm logs for monitoring dynamic systems. In
Dean, T., editor, Proceedings of the 16th international joint conference on Artifical

intelligence - Volume 1, IJCAI’99, pages 620–626. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA.

[Dubois et al., 2004] Dubois, D., Foulloy, L., Mauris, G., and Prade, H. (2004).
Probability-possibility transformations, triangular fuzzy sets, and probabilistic
inequalities. Reliable Computing, 10(4):273–297.

[Duftschmid et al., 2002] Duftschmid, G., Miksch, S., and Gall, W. (2002). Verification of
temporal scheduling constraints in clinical practice guidelines. Artificial Intelligence in

Medicine, 25(2):93–121.

[Fayyad et al., 1996] Fayyad, U., Piatetsky-shapiro, G., and Smyth, P. (1996). From data
mining to knowledge discovery in databases. AI Magazine, 17:37–54.

[Flemons, 2002] Flemons, W. (2002). Obstructive sleep apnea. New England Journal of

Medicine, 347(7):498–504.

[Freksa, 1992] Freksa, C. (1992). Temporal reasoning based on semi-intervals. Artificial

Intelligence, 54(1-2):199–227.

[Freuder, 1982] Freuder, E. C. (1982). A sufficient condition for backtrack-free search.
Journal of the ACM, 29(1):24–32.

[Gamper and Nejdl, 1997] Gamper, J. and Nejdl, W. (1997). Abstract temporal diagnosis in
medical domains. Artificial Intelligence in Medicine, 10(3):209–234.



148 Bibliography

[Garofalakis et al., 1999] Garofalakis, M. N., Rastogi, R., and Shim, K. (1999). Spirit:
Sequential pattern mining with regular expression constraints. In Atkinson, M. P.,
Orlowska, M. E., Valduriey, P., Zdonik, S. B., and Brodie, M. L., editors, Proceedings of

the 25th International Conference on Very Large Data Bases, VLDB’99, pages 223–234.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[Gerevini et al., 1996] Gerevini, A., Perini, A., and Ricci, F. (1996). Incremental algorithms
for managing temporal constraints. In Proceedings of the Eight IEEE International

Conference on Tools with Artificial Intelligence, pages 360–363.

[Giannotti et al., 2006] Giannotti, F., Nanni, M., and Pedreschi, D. (2006). Efficient mining
of temporally annotated sequences. pages 346–357, Philadelphia, PA, USA. Society for
Industrial and Applied Mathematics.

[Guil et al., 2004] Guil, F., Bosch, A., and Marín, R. (2004). TSETMAX : An algorithm for
mining frequent maximal temporal patterns. In Proceedings of the Fourth IEEE

International Conference on Data Mining (ICDM’04). Workshop on Data Mining, 7

pages.

[Guimarães et al., 2001] Guimarães, G., Peter, J.-H., Penzel, T., and Ultsch, A. (2001). A
method for automated temporal knowledge acquisition applied to sleep-related breathing
disorders. Artificial Intelligence in Medicine, 23(3):211 – 237.

[Guyet and Quiniou, 2008] Guyet, T. and Quiniou, R. (2008). Mining temporal patterns
with quantitative intervals. In Data Mining Workshops, 2008. ICDMW’08. IEEE

International Conference on, pages 218–227.

[Guyet and Quiniou, 2011] Guyet, T. and Quiniou, R. (2011). Extracting temporal patterns
from interval-based sequences. In Proceedings of the Twenty-Second international joint

conference on Artificial Intelligence - Volume Two, IJCAI’11, pages 1306–1311. AAAI
Press.

[Han et al., 2005] Han, J., Kamber, M., and Pei, J. (2005). Data Mining: Concepts and

Techniques. Morgan-Kaufmann, San Francisco, CA, USA.

[Han et al., 2000a] Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., and Hsu, M.-C.
(2000a). Freespan: frequent pattern-projected sequential pattern mining. In Proceedings



Bibliography 149

of the sixth ACM SIGKDD international conference on Knowledge discovery and data

mining, KDD’00, pages 355–359, New York, NY, USA. ACM.

[Han et al., 2000b] Han, J., Pei, J., and Yin, Y. (2000b). Mining frequent patterns without
candidate generation. SIGMOD Rec., 29(2):1–12.

[Hand et al., 2001] Hand, D., Mannila, H., and Smyth, P. (2001). Principles of Data Mining.
MIT.

[Harms et al., 2001] Harms, S., Deogun, J., Saquer, J., and Tadesse, T. (2001). Discovering
representative episodal association rules from event sequences using frequent closed
episode sets and event constraints. In Data Mining, 2001. ICDM 2001, Proceedings IEEE

International Conference on, pages 603–606.

[Hirate and Yamana, 2006] Hirate, Y. and Yamana, H. (2006). Generalized sequential
pattern mining with item intervals. Journal of Computers, 1(3):51–60.

[Hoppner, 2001] Hoppner, F. (2001). Learning temporal rules from state sequences. In
IJCAI’01 Workshop on Learning from Temporal and Spatial Data, pages 25–31, San
Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

[Hu et al., 2009] Hu, Y.-H., Huang, T. C.-K., Yang, H.-R., and Chen, Y.-L. (2009). On
mining multi-time-interval sequential patterns. Data & Knowledge Engineering,
68(10):1112–1127.

[Jonsson et al., 1999] Jonsson, P., Drakengren, T., and Bäckström, C. (1999).
Computational complexity of relating time points with intervals. Artificial Intelligence,
109(1–2):273 – 295.

[Kam and Fu, 2000] Kam, P.-s. and Fu, A. W.-C. (2000). Discovering temporal patterns for
interval-based events. In Kambayashi, Y., Mohania, M., and Tjoa, A., editors, Data

Warehousing and Knowledge Discovery, volume 1874 of Lecture Notes in Computer

Science, pages 317–326. Springer Berlin Heidelberg.

[Khatib et al., 2001] Khatib, L., Morris, P., Morris, R., and Rossi, F. (2001). Temporal
constraint reasoning with preferences. In Proceedings of the 17th international joint

conference on Artificial intelligence - Volume 1, IJCAI’01, pages 322–327, San Francisco,
CA, USA. Morgan Kaufmann Publishers Inc.



150 Bibliography

[Koubarakis, 1997] Koubarakis, M. (1997). From local to global consistency in temporal
constraint networks. Theoretical Computer Science, 173(1):89 – 112.

[Kowalski and Sergot, 1986] Kowalski, R. and Sergot, M. (1986). A logic-based calculus of
events. New Generation Computing, 4(1):67–95.

[Ladkin and Maddux, 1988] Ladkin, P. and Maddux, R. (1988). The algebra of constraint
satisfaction problems and temporal reasoning. In Technical report, Krestel Institute.

[Li and Wang, 2008] Li, C. and Wang, J. (2008). Efficiently mining closed subsequences
with gap constraints. In Proceedings of the SIAM International Conference on Data

Mining, SDM 2008, April 24-26, 2008, Atlanta, Georgia, USA, pages 313–322. SIAM.

[Li et al., 2003] Li, Y., Ning, P., Wang, X. S., and Jajodia, S. (2003). Discovering
calendar-based temporal association rules. Data & Knowledge Engineering,
44(2):193–218.

[Ligozat, 1998] Ligozat, G. (1998). Corner relations in Allen’s algebra. Constraints,
3(2/3):165–177.

[Lin and Lee, 2005] Lin, M.-Y. and Lee, S.-Y. (2005). Fast discovery of sequential patterns
through memory indexing and database partitioning. Journal of Information Science and

Engineering, 21:109–128.

[Lu et al., 2000] Lu, H., Feng, L., and Han, J. (2000). Beyond intratransaction association
analysis: mining multidimensional intertransaction association rules. ACM Transaction

on Information Systems, 18(4):423–454.

[Mannila et al., 1997] Mannila, H., Toivonen, H., and Verkamo, A. (1997). Discovery of
frequent episodes in event sequences. Data Mining and Knowledge Discovery,
1(3):259–289.

[Marín et al., 1994] Marín, R., Barro, S., Bosch, A., and Mira, J. (1994). Modeling time
representation from a fuzzy perspective. Cybernetics and Systems, 25(2):201–215.

[Mccarthy and Hayes, 1969] Mccarthy, J. and Hayes, P. J. (1969). Some philosophical
problems from the standpoint of artificial intelligence. In Machine Intelligence, pages
463–502. Edinburgh University Press.



Bibliography 151

[Meiri, 1996] Meiri, I. (1996). Combining qualitative and quantitative constraints in
temporal reasoning. Artificial Intelligence, 87(1–2):343 – 385.

[Mitra et al., 2002] Mitra, S., Pal, S., and Mitra, P. (2002). Data mining in soft computing
framework: a survey. IEEE Transactions on Neural Networks, 13(1):3–14.

[Moerchen, 2006] Moerchen, F. (2006). Algorithms for time series knowledge mining. In
KDD’06: Proceedings of the 12th ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 668–673, New York, NY, USA. ACM.

[Moerchen and Ultsch, 2007] Moerchen, F. and Ultsch, A. (2007). Efficient mining of
understandable patterns from multivariate interval time series. Data Mining Knowledge

Discovery, 15:181–215.

[Morris et al., 2001] Morris, P., Muscettola, N., and Vidal, T. (2001). Dynamic control of
plans with temporal uncertainty. In Proceedings of the 17th international joint conference

on Artificial intelligence - Volume 1, IJCAI’01, pages 494–499, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc.

[Nanni and Rigotti, 2007] Nanni, M. and Rigotti, C. (2007). Extracting trees of quantitative
serial episodes. In Džeroski, S. and Struyf, J., editors, Knowledge Discovery in Inductive

Databases, volume 4747 of Lecture Notes in Computer Science, pages 170–188. Springer
Berlin / Heidelberg. 10.1007/978-3-540-75549-4_11.

[Navarrete et al., 2002] Navarrete, I., Sattar, A., Wetprasit, R., and Marin, R. (2002). On
point-duration networks for temporal reasoning. Artificial Intelligence, 140(1–2):39 – 70.

[Nebel and Bürckert, 1995] Nebel, B. and Bürckert, H.-J. (1995). Reasoning about temporal
relations: a maximal tractable subclass of Allen’s interval algebra. Journal of the ACM,
42(1):43–66.

[Otero et al., 2011] Otero, A., Félix, P., and Álvarez, M. (2011). Algorithms for the analysis
of polysomnographic recordings with customizable criteria. Expert Systems with

Applications, 38:10133–10146.

[Palma et al., 2006] Palma, J., Juárez, J., Campos, M., and Marín, R. (2006). Fuzzy theory
approach for temporal model-based diagnosis: an application to medical domains.
Artificial Intelligence in Medicine, 38:197–218.



152 Bibliography

[Pani and Bhattacharjee, 2001] Pani, A. and Bhattacharjee, G. (2001). Temporal
representation and reasoning in artificial intelligence: A review. Mathematical and

Computer Modelling, 34(1–2):55–80.

[Papapetrou et al., 2005] Papapetrou, P., Kollios, G., Sclaroff, S., and Gunopulos, D. (2005).
Discovering frequent arrangements of temporal intervals. In Proceedings of the Fifth

IEEE International Conference on Data Mining, ICDM’05, pages 354–361, Washington,
DC, USA. IEEE Computer Society.

[Patel et al., 2008] Patel, D., Hsu, W., and Lee, M. L. (2008). Mining relationships among
interval-based events for classification. In Proceedings of the 2008 ACM SIGMOD

international conference on Management of data, SIGMOD’08, pages 393–404, New
York, NY, USA. ACM.

[Pei et al., 2001] Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., and Hsu,
M.-C. (2001). PrefixSpan: Mining sequential patterns efficiently by prefix-projected
pattern growth. In Proceedings of the 17th International Conference on Data

Engineering, ICDE’01, pages 215–224, Washington, DC, USA. IEEE Computer Society.

[Pei et al., 2004] Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal,
U., and Hsu, M. (2004). Mining sequential patterns by pattern-growth: the PrefixSpan
approach. IEEE Transactions on Knowledge and Data Engineering, 16(11):1424–1440.

[Pei et al., 2002] Pei, J., Han, J., and Wang, W. (2002). Mining sequential patterns with
constraints in large databases. In Proceedings of the eleventh international conference on

Information and knowledge management, CIKM’02, pages 18–25, New York, NY, USA.
ACM.

[Pei et al., 2006] Pei, J., Wang, H., Liu, J., Wang, K., Wang, J., and Yu, P. S. (2006).
Discovering frequent closed partial orders from strings. IEEE Transactions on Knowledge

and Data Engineering, 18(11):1467–1481.

[Roddick and Spiliopoulou, 2002] Roddick, J. and Spiliopoulou, M. (2002). A survey of
temporal knowledge discovery paradigms and methods. IEEE Transactions on

Knowledge and Data Engineering, 14(4):750–767.



Bibliography 153

[Rymon, 1992] Rymon, R. (1992). Search through systematic set enumeration. In Third

Internation Conference on Principles of Knowledge Representation and Reasoning

(KR’92), pages 539–550.

[Sacchi et al., 2007a] Sacchi, L., Larizza, C., Combi, C., and Bellazzi, R. (2007). Data
mining with temporal abstractions: learning rules from time series. Data Mining and

Knowledge Discovery, 15(2):217–247.

[Sacchi et al., 2007b] Sacchi, L., Larizza, C., Magni, P., and Bellazzi, R. (2007). Precedence
temporal networks to represent temporal relationships in gene expression data. Journal of

Biomedical Informatics, 40(6):761–774.

[Srikant, 1996] Srikant, R. (1996). Fast algorithms for mining association rules and

sequential patterns. PhD thesis. University of Wisconsin - Madison.

[Srikant and Agrawal, 1996] Srikant, R. and Agrawal, R. (1996). Mining sequential
patterns: Generalizations and performance improvements. In Apers, P. M. G.,
Bouzeghoub, M., and Gardarin, G., editors, Proceedings of the 5th International

Conference on Extending Database Technology: Advances in Database Technology,
EDBT’96, pages 3–17. Springer-Verlag, London, UK.

[Staab and Hahn, 1998] Staab, S. and Hahn, U. (1998). Distance constraint arrays: A model
for reasoning on intervals with qualitative and quantitative distances. In Mercer, R. E. and
Neufeld, E., editors, Advances in Artificial Intelligence, volume 1418 of Lecture Notes in

Computer Science, pages 334–348. Springer Berlin Heidelberg.

[Tatti and Cule, 2011] Tatti, N. and Cule, B. (2011). Mining closed episodes with
simultaneous events. In Proceedings of the 17th ACM SIGKDD international conference

on Knowledge discovery and data mining, KDD’11, pages 1172–1180, New York, NY,
USA. ACM.

[Trasarti et al., 2008] Trasarti, R., Bonchi, F., and Goethals, B. (2008). Sequence mining
automata: A new technique for mining frequent sequences under regular expressions.
pages 1061–1066.

[Tsang, 1993] Tsang, E. (1993). Foundations of constraint satisfaction. Academic Press,
London, UK.



154 Bibliography

[van Beek, 1992] van Beek, P. (1992). Reasoning about qualitative temporal information.
Artificial Intelligence, 58(1-3):297–326.

[Van Beek and Cohen, 1990] Van Beek, P. and Cohen, R. (1990). Exact and approximate
reasoning about temporal relations1. Computational Intelligence, 6(3):132–144.

[van Benthem, 1983] van Benthem, J. (1983). The Logic of Time. D. Reidel.

[Vila, 1994] Vila, L. (1994). A survey on temporal reasoning in Artificial Intelligence. AI

Communications, 7:4–28.

[Vilain et al., 1990] Vilain, M., Kautz, H., and van Beek, P. (1990). Constraint propagation
algorithms for temporal reasoning: a revised report. In Weld, D. S. and Kleer, J. d.,
editors, Readings in qualitative reasoning about physical systems, pages 373–381.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[Vilain and Kautz, 1986] Vilain, M. B. and Kautz, H. A. (1986). Constraint Propagation
Algorithms for Temporal Reasoning. In 5th National Conference on Artificial

Intelligence, AIII, pages 377–382. Morgan Kaufmann.

[Visser and Hübner, 2003] Visser, U. and Hübner, S. (2003). Temporal representation and
reasoning for the semantic web. In Technical report, Center for Computing Technologies.

Technical TZI-Bericht Br. 28.

[Wainer and de Melo, 1997] Wainer, J. and de Melo, A. (1997). A temporal extension to the
parsimonious covering theory. Artificial Intelligence in Medicine, 10(3):235–255.

[Winarko and Roddick, 2007] Winarko, E. and Roddick, J. F. (2007). Armada - an
algorithm for discovering richer relative temporal association rules from interval-based
data. Data & Knowledge Engineering, 63(1):76–90.

[Wu and Chen, 2007] Wu, S.-Y. and Chen, Y.-L. (2007). Mining nonambiguous temporal
patterns for interval-based events. IEEE Transactions on Knowledge and Data

Engineering, 19(6):742–758.

[Wu and Chen, 2009] Wu, S.-Y. and Chen, Y.-L. (2009). Discovering hybrid temporal
patterns from sequences consisting of point- and interval-based events. Data &

Knowledge Engineering, 68(11):1309–1330.



Bibliography 155

[Yager and Filev, 1994] Yager, R. and Filev, D. (1994). Approximate clustering via the
mountain method. IEEE Transactions on Systems, Man and Cybernetics,
24(4):1279–1284.

[Zaki, 2001] Zaki, M. J. (2001). SPADE: An efficient algorithm for mining frequent
sequences. Machine Learning, 42:31–60.


	Portada
	Index
	List of Figures
	List of Tables
	Introduction
	Literature review
	Constraint-based formalisms
	Qualitative constraint formalisms
	Quantitative constraint formalisms
	Combined formalisms

	Temporal data mining
	Sequence data mining
	Partial orders
	Interval-based data mining
	Time series data mining
	Our approach

	Definitions
	ASTPminer
	Basic algorithm
	Candidate generation
	Frequency calculation
	Clustering
	Validation of the ASTP_BASIC algorithm

	Time optimization: Event removal
	Event removal using window markings
	Event removal using interval markings
	Experimental results using the event removal approaches

	Providing seed knowledge
	Initialisation procedure
	Frequency calculation with a seed pattern
	Validation of ASTP_SEED

	ASTPminer
	Initialisation step in ASTPminer
	Frequent pattern calculation in ASTPminer
	Candidate generation in ASTPminer
	Correctness and completeness of ASTPminer
	Complexity analysis of ASTPminer
	ASTPminer validation with the SAHS database

	ASTPminer validation: synthetic databases
	Synthetic databases generation
	Experimental results with synthetic databases


	HSTPminer
	Set enumeration tree
	Pattern hierarchy
	HSTPminer
	Initialisation
	Frequent pattern calculation
	Candidate generation
	Correctness and completeness of HSTPminer
	Complexity analysis of HSTPminer

	HSTPminer validation
	SAHS database
	Synthetic databases


	Main contributions and conclusions
	Bibliography

