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Amsterdam, Buenos Aires, Santiago de Chile ou Princeton. De todos estes lugares gardo
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Foreword

“La science cherche le mouvement perpétuel.
Elle l’a trouvé; c’est elle meme.”

Victor Hugo

In recent years, there has been a revival of interest in higher curvature theories of gravity.
Higher order corrections to the Einstein-Hilbert action appear in any sensible theory of
quantum gravity, either in the context of Wilsonian approaches, as next-to-leading orders
in the effective action of string theory or motivated by the possibility of higher dimensional
spacetimes. In particular, Lovelock theories represent the most natural generalization of
the Einstein-Hilbert action to dimensions larger than four. Moreover, its first non-trivial
action, Lanczos-Gauss-Bonnet, also appears in bona fide realizations of string theory, with
the advantage that it can be considered as a finite correction. Gravity theories of the Lovelock
type, yielding two derivative equations of motion, avoid some of the problems of other higher
curvature gravities while capturing some of their characteristic features, namely the existence
of several branches of solutions, more general solutions and complex dynamics. This class of
theories provides a particularly suitable playground to test our ideas about gravity in a much
broader context. We will investigate the consequences that follow from the assumption that
the model is the classical limit of a fundamental theory, not an effective one. This attitude
is also the most efficient one to eventually uncover reasons to reject the assumption.

In the holographic context, the addition of higher curvature corrections allows for the
description of more general field theories, e.g. CFTs with different central charges in four
dimensions. Doing this in a controlled way, we will uncover previously unsuspected con-
nections between some central concepts in physics, such as causality or positivity of the
energy. These correlations extend smoothly and meaningfully to any dimension and any
Lovelock theory, thus supporting the possibility that AdS/CFT may be applicable beyond
the framework of string theory, as long as there is a consistent theory of quantum gravity in
AdS.

xix
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Figure 1: Calvin’s thoughts in modified gravity

Outline of the thesis

This thesis is divided in two separate parts, the first concerned with gravitational aspects
of Lovelock theories, the second with their holographic applications. Both are based on a
series of papers [1–7] and encompass some original work based on those developments and
part of ongoing projects in collaboration with my supervisor José Edelstein and professors
Gastón Giribet, Andy Gomberoff and Juan Maldacena [8–10].

The first part is devoted to the analysis of static and more general solutions in the context
of general Lovelock gravities. In chapter 1 a formal introduction to Lovelock theories of
gravity is given; field equations, structure of vacua and boundary terms, among other aspects,
are discussed there. We also introduce the generalization of the junction conditions of Israel
for the case of Lovelock. We focus mostly on the simplest cases of Lanczos-Gauss-Bonnet and
third order Lovelock theory for concreteness, even though all results are completely general.

Chapter 2 is concerned with black holes solutions in these theories, the different branches
of solutions and horizon structure. We present a novel approach to deal with this class
of static solutions in arbitrary Lovelock theories. This was introduced in [4] for the case
of uncharged black holes although some preliminary ideas were already present in previous
works [1–3]. This method allows for the description and classification of these solutions
regardless the dimensionality, the order and the type of branches of the Lovelock theory, for
completely arbitrary values of its coupling constants. In the last sections of the chapter,
we generalize this proposal to the case of charged and cosmological solution. Following
this very same approach, chapter 3 deals with thermodynamic properties of Lovelock black
holes [4]. We start by deriving all the relevant thermodynamic variables for then analyzing
the structure of the solutions, their stability and phase transitions.

Chapter 4 is also dedicated to the stability of black hole solutions, a different kind of sta-
bility though. Studying the equations of motion for perturbations about these backgrounds
we find several situations in which static black holes become unstable. These have to do
with the occurrence of naked singularities and other special solutions present in this family of
gravity theories. In particular, stability seems to protect the Cosmic Censorship Hypothesis
and the third law of thermodynamics in the Lovelock context, at least in some cases [9]. Fi-
nally, closing the first part of the thesis, chapter 5 presents a more general class of solutions
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in Lovelock gravity. These correspond to bubbles separating two regions of the spacetime
corresponding to different branches of the Lovelock theory. These exist even though they
do not carry any matter and have dynamics inherited from the junction conditions. These
bubble configurations allow us to describe several interesting effects, namely phase transi-
tions between branches. This new type of transitions was the subject of a series of recent
papers [5, 6, 8].

After a lengthy study of our gravitational theories of interest, we move on to the analysis
of their rôle in the context of holography. The second part of the thesis starts with a
conceptual and computational introduction to the AdS/CFT correspondence in chapter 6.
Folowing [3], we calculate holographically the parameters that enter 2- and 3- point functions
of the stress-energy tensor for Lovelock theories and discuss briefly the kinds of higher order
terms that may enter in that computation [10].

Higher curvature corrections arise in the context of string theory as next to leading or-
ders in the low energy effective action. As such, the corresponding corrections are necessarily
small, this also holding for any string construction of the AdS/CFT duality. Nonetheless,
Lovelock gravities are characterized by having second order field equations, thus being con-
sistent for finite values of the couplings. This will allow to explore the AdS/CFT correspon-
dence in a broader setup, describing much more general CFTs than the Einstein-Hilbert
(super)gravity approximation. In particular, this will allow for field theory duals with un-
equal central charges a 6= c in four dimensions.

As it will be discussed, some of the gravitational effects analyzed in the first part of the
thesis turn out to have a nice field theory counterpart. For instance, the Lovelock analog
of the instability found by Boulware and Deser in Laczos-Gauss-Bonnet gravity may be
interpreted as non-unitarity of the dual CFT [3]. In that context, the Hawking-Page phase
transitions of chapter 3 correspond to confinement/deconfinement phase transitions of the
field theory. This can be affected by hydrodynamic effects, such as cavitation, that may
effectively shift the temperature at which the phase transition occurs [7] (see Annex D). The
next two chapters are devoted to dug further into this CFT/Lovelock duality. In particular
we show the exact equivalence between positivity of energy correlators and causality in the
corresponding gravity dual. Chapter 7 is an account of the work done in [1,2] where we also
scrutinize the restrictions on the space of parameters imposed by these causality/positivity
constraints. This also imposes restrictions in other variables of the theory such as the shear
viscosity to entropy density of the dual plasma. The analysis of the possible values of this
quantity and the existence of bounds will be extensively treated in chapter 8 following closely
the discussion of [3]. The aim of the work is to deeper scrutinize in the amazing relations
between gravity and gauge theories, relations that seem to go beyond the framework of string
theory.

We end up by a small summary of the work done in chapter 9 where we also draw some
final conclusions.

Preliminaries & notation

Before getting our hands dirty, let me summarize the notations and conventions that wil be
assumed to hold throughout this thesis. Some of these are quite standard but I prefer to
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gather them here instead of being scattered along the text. In particular we will assume
~ = c = kB = 1 units and avoid these constants in all the expressions except when relevant
for the discussion.

Rather than working with tensors, in most of this thesis we will make extensive use of
differential forms and the exterior algebra (see for instance [11,12]. Instead of the metric and
affine connection we will be referring to orthonormal frames (or vielbein) and spin connection
(or connection 1-form). This formalism will make our expressions much more compact and
also the manipulations much easier as it will become clear in the next chapters.

We will be working in general in a d-dimensional spacetime with (−1, 1, . . . , 1) signature.
The vielbein is a non-coordinate basis which provides an orthonormal basis for the tangent
space at each point on the manifold,

gµν dx
µ ⊗ dxν = ηab e

a ⊗ eb (0.0.1)

where ηab is the d-dimensional Minkowski metric. The latin indices {a, b, . . .} are called
flat or tangent space indices, while the Greek ones {µ, ν, . . .} are called curved or spacetime
indices. In some cases we will also distinguish spacelike {i, j, . . .} from timelike ones and, in
the presence of hypersurfaces, we will use capital letters {A,B, . . .} for the vielbeins adapted
to the hypersurface. The vielbein are d 1-forms,

ea = eaµ dxµ (0.0.2)

that we may use in order to rewrite the metric as

gµν = ηab e
a
µ e

b
ν (0.0.3)

We also introduce the metric compatible (antisymmetric) connection 1-form that is necessary
in order to deal with tensor valued differential forms. In addition to the usual exterior
derivative, d, we define the covariant exterior derivative, D, that reduces to the former when
applied to a scalar valued form. For a general (p, q)-tensor valued form

DV
a1···ap
b1···bq ≡ dV

a1···ap
b1···bq +

p∑
i=1

ωaic ∧ V
a1···c···ap
b1···bq −

q∑
j=1

ωdbj ∧ V
a1···ap
b1···d···bq (0.0.4)

We can in this way define the torsion and curvature 2-forms as derivatives of the vielbein

Dea = dea + ωab ∧ eb ≡ T a (0.0.5)

DDea = (dωab + ωac ∧ ωcb) ∧ eb ≡ Ra
b ∧ eb (0.0.6)

or equivalently

T a = Dea (0.0.7)

Rab = dωab + ωac ∧ ωcb =
1

2
Ra

bµν dx
µ ∧ dxν (0.0.8)

that are known as the Cartan structure equations. The covariant derivative of Cartan’s
equations give the Bianchi identities

DT a = Ra
b ∧ eb (0.0.9)

DRab = 0 (0.0.10)
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In the absence of torsion the spin connection is not independent from the metric and coincides
with the Levi-Civita connection,

ωµν = Γµνρ dxρ (0.0.11)

In GR the torsion tensor is constrained to vanish. When this constraint is not imposed, we
have the Einstein-Cartan theories. These are very important when considering spinor fields
as these generally source the spin connection.

Other notations that will be used extensively in this thesis are,

Ra1a2...a2n ≡ Ra1a2 ∧ . . . ∧Ra2n−1a2n (0.0.12)

ea1...an ≡ ea1 ∧ . . . ∧ ean (0.0.13)

We will also use the antisymmetric tensor εa1a2···ad when writing down and manipulating the
Lovelock lagrangian and the derived equations of motion. It is antisymmetric on any pair of
indices with ε123...d = +1. Some times, in order to write more compact expressions we will
even write scalars constructed with the antisymmetric tensor as

ε[ψ] = εa1...adψ
a1...ad , (0.0.14)

e.g. when writing down the order k Lovelock term, we may write

Lk = ε
[
Rked−2k

]
= εa1a2...adR

a1...a2k ∧ ea2k+1...ad , (0.0.15)

where wedge product inside the brackets is understood.
Generically, working in flat indices is much easier than doing it in curved ones. An excel-

lent implementation of Cartan’s formalism for Mathematica, developed by Prof. Bonanos,
can be found at http://www.inp.demokritos.gr/~sbonano/EDC/.

http://www.inp.demokritos.gr/~sbonano/EDC/
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LOVELOCK THEORIES & BLACK
HOLES
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Chapter 1

Lovelock theories of gravity

“Imagination will often carry us to worlds that never were.
But without it we go nowhere”

Carl Sagan

The General Theory of Relativity [13] is one of the greatest scientific accomplishments of the
XXth century. It was born from the need to reconcile the Newtonian laws of the gravitational
interaction with the new paradigm of the Special Theory of Relativity [14]. It was pursued
independently at the same time by two of the greatest minds of that time, Albert Einstein
and David Hilbert, reason of the name of the action giving rise to the equations of the theory.

Two basic ideas stand behind this extrordinary mathematical construction, the Special
Theory of Relativity mentioned before and the Principle of Equivalence. On its weakest
version the latter is just the observation of the exact equivalence between inertial and gravi-
tational mass, two very different concepts with exactly the same value. This equality allows,
at any point of spacetime, to choose a locally inertial reference frame such that the effect of
the gravitational force is completely screened at that point by an equal and opposite acceler-
ation. This in turn motivated the Strong Equivalence Principle that moreover asserts that in
a small enough neighbourhood of that point the laws of nature, not just those of dynamics,
take the well known form of Special Relativity without gravity. In other words it is impossi-
ble to tell the difference locally between an experiment in the presence of gravitational forces
and the same experiment in an accelerated laboratory. Gravity cannot be avoided globally
in this way as we would need to give different accelerations to different points.

The view of spacetime from this logic is that of a curved manifold whose metric pa-
rameterizes the gravitational interaction. The spacetime is no longer the inert scene for all
physical phenomena to become the dynamical fabric of the universe. The set of transfor-
mations under which the laws of Physics must be invariant are enlarged to general changes

3
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of coordinates that include, of course, Lorentz transformations as a particular example. In
a sense the Strong Equivalence Principle states that the laws of physics are independent of
the coordinates chosen to describe them, whether they correspond to inertial or non-inertial
observers. The source of the gravitational field is the matter content of the spacetime or,
more specifically, the induced stress energy tensor. The mass that entered the Newtonian
theory, equivalent to energy through the celebrated E = mc2, is just one of its components.

Once the field carrying the gravitational force and its sources have been identified, the
final piece of information needed for a complete description of the classical theory is the
choice of action that encodes the dynamics of the interaction. There is à priori a plethora
of lagrangians that realize the requirement of general covariance and are viable candidates.
Nonetheless if we restrict the possibilities to those yielding second order equations of motion
the choice becomes almost unique in four dimensions. In particular we require the field
equations to be of the form

Gµν(gαβ, gαβ,γ, gαβ,γλ) = Tµν (1.0.1)

where the left hand side is a tensor valued local functional of its local arguments, symmetric
and conserved

Gµν;ν = 0 . (1.0.2)

in agreement with the analogous property for the stress energy tensor. Then Lovelock’s
theorem [15] states that the possible equations reduce to

Rµν −
1

2
gµνR + Λgµν = 8πGNTµν (1.0.3)

where the constant of proportionality is chosen in order to reproduce the correct Newtonian
limit. These equations of motion arise from the Einstein-Hilbert (EH) action with cosmo-
logical constant coupled to matter, that can be nicely written in terms of differential forms
as

Id=4 =
1

16πGN

∫ √
−g
(
R− 2Λ̂

)
+ Imat . (1.0.4)

The cosmological constant, Λ̂, was first introduced by Einstein [16] in order to describe a
stationary universe, what he later referred to as his greatest blunder, once the observation
of the Hubble redshift made clear the Universe is actually expanding. The actual value of
Λ̂ in the observed Universe is not zero though, and a number of observations, including the
discovery of cosmic acceleration, have revived the cosmological constant. The ΛCDM model
of the Universe, the most accepted modern cosmological model to date, asserts that Λ̂ is
positive, although negligible even by the scale of our galaxy the Milky Way. In a much more
general context, this constant will also play a very important rôle in our discussion although
the most interesting case for us will be that of negative Λ̂.

Another possible characterization of the EH lagrangian, valid as well in higher dimen-
sions, is that of the corresponding field equations being linear in second order derivatives
of the metric [17–19]. This restriction together with the above requirements singles out,
in any dimension, the action of General Relativity. In dimensions greater than four, there
are however other tensors admissible if this linearity condition is relaxed, the Lovelock la-
grangians. The modified equations of motion will then just be quasi-linear (see [20] for a
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detailed definition), quasi-linearity implying the absence of squared or higher order terms
in second derivatives of the metric with respect to a given direction. This is important in
order to have a well defined initial value problem for gravity. The coefficient of this second
derivatives can depend however on first derivatives of the metric and may vanish for this
reason, leaving the second derivative in question indetermined. In [20] some of the problems
which may arise because of the quasi-linearity of the Lovelock equations are discussed.

Lanczos [21, 22] in 1932 found a generalization of the EH lagrangian quadratic in the
Riemann tensor and whose equations of motion are symmetric, conserved and second order
in the metric. Yet another property of the EH lagrangian is that it is a pure divergence
in two dimensions and the Einstein tensor vanishes identically in one and two dimesnions.
Similarly, the Lanczos, or Lanczos-Gauss-Bonnet (LGB), lagrangian is a pure divergence and
that the corresponding equations are identically zero in four or less dimensions. The LGB
term is the Euler density appearing in the Gauss-Bonnet theorem [11] in four dimensions.

Lovelock [15] generalized these results in 1971 and obtained, for any dimension, a formal
expression for the most general, symmetric and conserved tensor which is quasi-linear in the
second derivatives of the metric without any higher derivatives. He also found the lagrangian
from which that tensor derives: in d-dimensions it corresponds to a linear combination of
the

[
d−1

2

]
1 dimensionally continued Euler densities. In dimensions 5 and 6, the explicit form

of the Lovelock Lagrangian reduces to a linear combination of the EH and LGB lagrangians
(with the possible addition of the cosmological constant). The Lovelock lagrangians are,
due to their properties, the most natural generalization of that of Einstein and Hilbert to
describe pure gravity in dimensions larger than four.

In physics, actions are built based on general principles, such as symmetry, causality and
other consistency requirements. All terms satisfying these and built from the appropriate
fields should then be included in the Lagrangian. In this sense, there is no à priori reason2,
why higher order Lovelock terms should be excluded from the action. The dimensionful
couplings of the theory increase their length dimension with the order in curvatures in such
a way that higher order contributions become important at short distances (or high energies)
while solutions of Lovelock gravity reduce to those of General Relativity asymptotically.

In this thesis we will be mainly concerned with gravity theories of the Lovelock family.
As mentioned before these only contribute to the gravitational dynamics in dimensions five
or higher3 so that we need to first answer a pressing question. Why should we be interested
in spacetimes with dimensions different from the four known to our experience? The idea of
higher dimensional spacetimes goes back to the groundbreaking papers of Kaluza [24] and
Klein [25] but most of the present renewed interest comes from the advent of string theory.
Inspired by the physics of strings and other motivations, much effort has been devoted in
the last quarter of a century in high energy physics dealing with scenarios involving higher
dimensional gravity, and it is fair to say that at present it is unclear if gravity is a truly

1Square brackets denote the integer part of a number.
2Even for general covariant actions, the issue of causality in gravity is a non-trivial one, as we will analyze

in the second part of this thesis. The same happens for non-gravitational theories [23] where covariance does
not imply causality in relativistic quantum field theories with higher dimensional terms.

3In some cases they may contribute to the equations of motion when coupled to other fields in lower
dimensions.
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four-dimensional interaction.

On the other hand, the inclussion of terms non-linear in the curvature modifying the EH
lagrangian is an idea first proposed by Weyl [18] and Eddington [26]. Of course, these extra
terms introduce contributions with derivatives of the metric up to the fourth. In the seventies
and early eighties such quadratic Lagrangians were exploited in view of renormalizing the
quantized theory of linearized general relativity (see e.g. [27] for a review of that period) as
well as to renormalize the stress-energy tensor of quantized matter fields in classical, curved,
backgrounds, see [28] for a review. They however made their most forceful entrance again
when it was shown that they should arise as next-to-leading corrections to the low energy
limit of string theory. In particular, the simplest Lovelock lagrangian, the LGB term, has
been explored to a large extent, mainly as a consequence of its appearance in this context [29].

Since their inception, a steady attention has been devoted to scrutinize the main prop-
erties of Lovelock theories of gravity, their vacuum structure, induced cosmologies, hamil-
tonian formalism, dimensional reduction, wormhole configurations and, most importantly,
their black hole solutions, including their formation, stability and thermodynamics. In spite
of the abundant literature on the subject, most articles deal with particular cases of the gen-
eral Lovelock formalism due to the intricacy endowed by the increasing number of coupling
constants: there are [d−3

2
] dimensionful quantities (alongside the Newton and cosmological

constants) in a d-dimensional theory. For this reason, many investigations on black hole
solutions of Lovelock gravities are restricted to one-parameter (zero measure) subspaces in
the space of couplings. It is the aim of the first three chapters of this thesis to tackle the
existence and main features of Lovelock black holes for arbitrary values of the full set of
gravitational couplings. We will be dealing with arbitrary orders in the Lovelock action and
arbitrary dimensions, most of our results being completely general. We will just concentrate
in specific examples for illustrative purposes or when the intricacy of the equations requires.

Despite its debatable phenomenological interest, Lovelock gravities provide an interesting
framework from a theoretical point of view for several reasons. As higher dimensional mem-
bers of Einstein’s general relativity family, they allow to explore several conceptual issues of
gravity in depth in a broader setup. Among these, we can include features of black holes
such as their existence and uniqueness theorems, their thermodynamics, the definition of
their mass and entropy, etc. Lovelock theories are perfect toy models to contrast our ideas
about gravity.

A final piece of motivation comes from the theoretical framework proposed by Juan
Maldacena [30]. This will be the object of the second part of the thesis. The AdS/CFT
correspondence establishes a holographic identification between conformal field theories and
quantum gravities in higher dimensional AdS spaces. Besides its original maximally super-
symmetric formulation, the correspondence seems robust enough to survive its generalization
to less supersymmetric scenarios [31], and even non-supersymmetric [32], as well as non-
stringy realizations [33] (see also the seminal paper [34]). In particular, even if some caution
remarks should be quoted at this point, the AdS/CFT correspondence seems to apply in
higher dimensions too.

We know very little about non-trivial conformal field theories in higher dimensions (see
[35] for a recent discussion). The interest of the AdS/CFT correspondence in this context
is twofold. It provides an effective definition of higher dimensional CFTs from the gravity
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side, whereas, in the opposite sense it opens new perspectives in the gravitational dynamics
and its quantization. In the particular case of Lovelock gravity this effective approach has
yielded some unsuspected surprises in the form of very interesting connections. These will be
reviewed in the second part of the thesis and involve some central concepts in physics, such
as positivity of energy and causality [1, 2, 36–38]. This results also motivated the discovery
of new relations between unitarity and causality in CFTs [39].

Applications of AdS/CFT towards the understanding of the hydrodynamics of CFT plas-
mas in arbitrary dimensions demand a proper understanding of Lovelock black holes in AdS.
This provides the final bit of motivation to pursue the present investigation. Regardless of
the phenomenological dimensionality required by these applications, it is customarily the
case that pushing some ideas to their extremes, besides verifying their robustness, allows to
discover novel features that are hidden in the somehow simpler original formulation (see, for
instance, [40] for a beautiful recent example of this statement).

1.1 Lovelock gravity

Lovelock theories of gravity are the most general second order gravity theories in higher-
dimensional spacetimes. They have the same degrees of freedom as General Relativity and
it is free of higher derivative ghosts [15, 41]. The bulk action has a very complicated form
in terms of the Riemann tensor and its contractions, nonetheless it can also be written very
simply in terms of differential forms as

I =
1

16πGN(d− 3)!

K∑
k=0

ck
d− 2k

∫
Lk , (1.1.1)

GN being the Newton constant in d spacetime dimensions. {ck} is a set of couplings with
length dimensions L2(k−1), L being a length scale related to the cosmological constant, while
K is a positive integer,

K ≤
[
d− 1

2

]
, (1.1.2)

labeling the highest non-vanishing coefficient, i.e., ck>K = 0. Lk is the exterior product of k
curvature 2-forms with the required number of vielbein, ea, to construct a d-form,

Lk = ε
[
Rked−2k

]
= εf1···fd R

f1f2...f2k−1f2k ∧ ef2k+1...fd . (1.1.3)

The zeroth and first term in (1.1.1) correspond, respectively, to the cosmological term and
the Einstein-Hilbert action. It is fairly easy to see that c0 = L−2 and c1 = 1 correspond to the
usual normalization of these terms, the cosmological constant having the customary value
2Λ̂ = −(d−1)(d−2)/L2. Either a negative (c0 = −L−2) or a vanishing (c0 = 0) cosmological
constant can be easily incorporated as well. The first non-trivial Lovelock term contributes
just for dimensions larger than four and corresponds to the LGB coupling c2 = λL2.

The Lovelock action written in this way has the advantage that it can be equivalently
considered in first order formalism, i.e. we can consider the vielbein and the spin connection
as independent variables. We then have two equations of motion, one for each field. First,
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varying the action with respect to the connection 1-form the resulting equation is propor-
tional to the torsion. We may use all the technology of exterior algebra and treat exterior
covariant derivatives as normal derivatives inside the brackets. We can then integrate by
parts to show,

δωLk = k ε
[
D(δω)Rk−1ed−2k

]
(1.1.4)

= k d
[
ε(δωRk−1ed−2k)

]
− k(d− 2k) ε(δωTRk−1ed−2k−1)

where we have used that δωR
ab = D(δωab) and the Bianchi identity DRab = 0. The first

term in the above variation is a total derivative and does not contribute to the equations
of motion whereas the second is proportional to the torsion. We may safely restrict to the
torsionless sector as usual, allowing us to compare our results with those coming from the
tensorial formalism based on the metric.

The second equation of motion is obtained by varying the action with respect to the
vielbein. It can be cast into the form

Ea ≡ εaf1···fd−1
cK Ff1f2

(1) ∧ · · · ∧ F
f2K−1f2K

(K) ∧ ef2K+1...fd−1 = 0 , (1.1.5)

where Fab(i) ≡ Rab−Λi e
a∧eb. This expression involves just the curvature 2-form and no extra

covariant derivatives, making explicit the two derivative character of the Lovelock equations
of motion. Also, for the critical dimension d = 2k, the kth term contribution to the equations
vanishes. In our approach this is simply due to the absence of vielbeins in the corresponding
action term, thus yielding zero upon variation. More generally, the integral of that term
becomes a topological invariant, the Euler number for that particular dimension. We will
comment more on this in the next section. In dimensions lower than the critical one the
corresponding Lovelock term exactly vanishes and we are led to the restriction (1.1.2).

Besides, (1.1.5) makes manifest that, in principle, this theory admits K constant curva-
ture vacuum solutions,

Fab(i) = Rab − Λi e
a ∧ eb = 0 . (1.1.6)

Inserting Rab = Λ ea ∧ eb in (1.1.5), one finds that the K different cosmological constants are
the solutions of the Kth order characteristic polynomial

Υ[Λ] ≡
K∑
k=0

ck Λk = cK

K∏
i=1

(Λ− Λi) = 0 , (1.1.7)

each one corresponding to a different vacuum, positive, negative or zero for dS, AdS and flat
spacetimes. The effective cosmological constants correspond to the possible radii of these
(A)dS spaces and should not be confused with the bare cosmological constant, Λ̂ appearing
in the action. The theory will have degenerate behavior whenever two or more effective
cosmological constants coincide. This is captured by the discriminant,

∆ =
K∏
i<j

(Λi − Λj)
2 , (1.1.8)
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that vanishes in a certain locus of the parameter space corresponding to the coupling con-
stants of Lovelock theory where some special features arise. The discriminant can be written
as well in terms of the first derivative of the Lovelock polynomial, Υ, as

∆ =
1

cKK

K∏
i=1

Υ′[Λi] . (1.1.9)

As we move forward through the text it will become clear the preeminent rôle played by this
polynomial in the most diverse situations.

For the sake of clarity let us briefly consider the K = 2 case. In LGB gravity there are
two possible values of the effective cosmological constant

Λ± = −1±
√

1− 4λ

2λL2
, (1.1.10)

and they agree when the discriminant

∆ ≡ (Λ+ − Λ−)2 =
1− 4λ

λ2 L4
= 0 for λ =

1

4
, (1.1.11)

vanishes. This implies that, for 1 − 4λ > 0, there are two (A)dS vacua around which we
can define our theory. If 1 − 4λ < 0, there is no constant curvature vacuum. For the exact
value 4λ = 1, the theory displays a degenerate behavior due to symmetry enhancement.
In the particular case of d = 5, the symmetry enhances to the full SO(4, 2) group and the
expression (1.1.1) gives nothing but the Chern-Simons Lagrangian for the AdS group [42]
(see also [43]). It is a well-known fact in LGB gravity that one of the vacua, the one with the
+ sign in front of the square root, leads to negative mass black holes with a naked singularity
that signals the instability of the vacuum [44]. We are thus led to the remaining branch of
solutions, so called EH-branch as it is continuously connected to the solution of General
Relativity as λ→ 0.

Another property of any degenerate vacuum is the absence of linearised gravitational
degrees of freedom about it. The equations of motion for a metric perturbation, hab, around
a given vacuum, Λ1, are easily obtained from the perturbation of the curvature

Rab = Λ1e
ab + δgR

ab (1.1.12)

yielding
Ea = Υ′[Λ1] εaf1···fd−1

δgR
f1f2 ef3···fd−1 (1.1.13)

to the linear level, thus exactly zero as the first derivative of Υ vanishes for a degenerate
vacua,

Υ′[Λ1] = cK
∏
i6=1

(Λ1 − Λi) = 0 . (1.1.14)

Moreover, it is easy to verify that the equations of motion around a non-degenerate vacuum
are exactly the same as for Einstein-Hilbert gravity multiplied by a global factor propor-
tional to Υ′[Λi]. The propagator of the graviton corresponding to the vacuum Λi is then
proportional to Υ′[Λi] in such a way that when Υ′[Λi] < 0 it has the opposite sign with
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respect to the Einstein-Hilbert case and thus the graviton becomes a ghost. This generalizes
the observation first done by Boulware and Deser [44] in the context of LGB gravity. Thus,
a given vacuum of Lovelock gravity, Λ1, must satisfy

Υ′[Λ1] > 0 (1.1.15)

in order to correspond to a vacuum that hosts gravitons propagating with the right sign of
the kinetic term. See [45] for a recent discussion on the subject. In the non-degenerate case
the number of degrees of freedom about any of these vacua is exactly the same as in General
Relativity.

Curiously enough, most of the studies in the context of Lovelock theory have been per-
formed within the degenerate locus, ∆ = 0. In this thesis however we will aim at making the
complementary effort of digging into the non-degenerate case Υ[Λk] = 0, Υ′[Λk] 6= 0, where
Λk is the vacuum under consideration. We will eventually see that, among the branches
of solutions of (1.1.7), only one would end up being physically relevant, say Λ = Λ?. De-
generacies that do not involve Λ? are harmless, our analysis being thus valid for the whole
parameter space, except the zero measure set Υ[Λ?] = Υ′[Λ?] = 0.

As the simplest examples of the Lovelock family, we will later focus in the LGB and
third order Lovelock lagrangians. Let us discuss in some detail the cubic case. The lowest
dimensionality where this term arises is 7d reducing in lower dimensions to LGB gravity.
Consider the following action,

I =
1

16πGN

∫
ddx
√
−g

[
R− 2Λ̂ +

(d− 5)!

(d− 3)!
λL2 L2 +

(d− 7)!

(d− 3)!

µ

3
L4 L3

]
, (1.1.16)

where the quadratic and cubic Lagrangians are

L2 =R2 − 4RµνR
µν +RµνρσR

µνρσ , (1.1.17)

L3 =R3 + 3RRµναβRαβµν − 12RRµνRµν + 24RµναβRαµRβν + 16RµνRναR
α
µ

+ 24RµναβRαβνρR
ρ
µ + 8Rµν

αρR
αβ
νσR

ρσ
µβ + 2RαβρσR

µναβRρσ
µν . (1.1.18)

This complicated tensorial expression can be casted very simply in the language of our
previous discussion as (c2 = λL2 and c3 = µ

3
L4)

I =
µL4

3(d− 6)

∫
εabcdefg1···gd−6

(
Rabcdef +

d− 6

d− 4

3λ

µL2
Rabcd ∧ eef

+
d− 6

d− 2

3

µL4
Rab ∧ ecdef +

d− 6

d

3

µL6
eabcdef

)
∧ eg1···gd−6 , (1.1.19)

whose equations of motion, once the torsion is again set to zero, can be written as:

εa···fg1···gd−6

(
Rab − Λ1 e

ab
)
∧
(
Rcd − Λ2 e

cd
)
∧
(
Ref − Λ3 e

ef
)
∧ eg1···gd−7 = 0 . (1.1.20)
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Figure 1.1: Singular locus for cubic Lovelock gravity. The shaded region is the domain
where ∆ > 0. At the (dotted) vertex, λ = 1/3 and µ+(1/3) = µ−(1/3) = µ = 1/9, the
theory becoming maximally degenerated (the symmetry enhances at that point to the full
AdS group). The (dotted yellow) point, belonging to the locus, is nothing but the singular
locus of LGB gravity, λ = 1/4. The point λ = µ = 0 naturally belongs to the curve: it
corresponds to Einstein’s gravity.

The values of the effective cosmological constants are complicated functions of the couplings
that are not really important (see section 2.4 for specific formulas). They must satisfy,∑

i

Λi = − 3λ

µL2
,

∑
i<j

Λi Λj =
3

µL4
,

∑
i<j<k

Λi Λj Λk = − 3

µL6
, (1.1.21)

or, equivalently,

L2 Υ[Λ] =
µ

3
(L2 Λ)3 + λ (L2 Λ)2 + (L2 Λ) + 1 = 0 . (1.1.22)

There is always (i.e. for any λ and µ 6= 0) at least one real cosmological constant. This is to
be contrasted with the case of LGB gravity where 1−4λ should be positive for the theory to
have an AdS vacuum. The theory will have degenerate behavior whenever the discriminant
(1.1.8), which can be nicely written in terms of the couplings of the action,

∆ = −1

3

(
12λ3 − 3λ2 − 18λµ+ µ(9µ+ 4)

)
, (1.1.23)

vanishes. The singular locus is Γ : µ(λ) ≡ µ+(λ) ∪ µ−(λ), with

µ±(λ) ≡ λ− 2

9
± 2

9
(1− 3λ)3/2 . (1.1.24)

It is convenient, for later use, to write the discriminant as

∆ = −3
(
µ− µ+(λ)

) (
µ− µ−(λ)

)
, (1.1.25)



12 CHAPTER 1. LOVELOCK THEORIES OF GRAVITY

since it makes clear that ∆ < 0 if µ > µ+(λ) or µ < µ−(λ), ∆ = 0 if µ = µ+(λ) or
µ = µ−(λ), and ∆ > 0, elsewhere. We will see in what follows that the singular locus Γ
plays an important rôle. Notice that it does not depend in the spacetime dimensionality (for
d ≥ 7). A similar analysis can be readily performed for higher-order Lovelock theories.

1.2 Gauss-Bonnet theorem and boundary terms

The action principle (1.0.4) define a variational principle from which the equations of motion
of general relativity can be defined. However, in the event that the manifold has a boundary,
the action should be supplemented by a boundary term so that the variational principle is
well-defined. This can be understood by means of simple 1-dimensional example.

Consider the free particle lagrangian4

I =
1

2

∫ t2

t1

ẋ2dt. (1.2.1)

This action principle is designed in order to fix the position x at initial and final times, t1,2,
i.e. δx(t1,2) = 0. Indeed,

δI =

∫ t2

t1

ẋδẋ dt =

∫ t2

t1

[−ẍδx+ ∂t(ẋδx)] dt (1.2.2)

=

∫ t2

t1

(−ẍ)δx dt+ ẋ(t2)δx(t2)− ẋ(t1)δx(t1).

Therefore for a solution of the equations, ẍ = 0, of motion the action is minimal, δI = 0.
We could equivalently have started off with a different action yielding the same equations

of motion,

I ′ = −1

2

∫ t2

t1

xẍdt . (1.2.3)

This action principle is analogous to EH in the sense that it is linear on second derivatives
of x. In the same way as for EH, it is not possible to fix just x at the borders. In this case
we get

δI ′ =

∫ t2

t1

(−ẍ)δx dt (1.2.4)

− 1

2
x(t2)δẋ(t2) +

1

2
x(t1)δẋ(t1) +

1

2
ẋ(t2)δx(t2)− 1

2
ẋ(t1)δx(t1) .

Obviously, fixing x at t1,2 is not enough for solutions of the equations of motion to minimize
the action. We need to add a boundary term, the analog of Gibbons-Hawking term in order
to fix the metric in GR. In this case it is easy to identify the missing term. The second
action is related to the first by integration by parts, the difference being

1

2
(x(t2)ẋ(t2)− x(t1)ẋ(t1)) . (1.2.5)

4We thank Andrés Gomberoff for pointing this very pedagogical example to us.
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The variation of this term cancels the first two terms in (1.2.4) and adds up to the other
two such that we get the same result of (1.2.2). Again the action with the boundary term
is obviously devised to fix x in the boundary, it is exactly the original action. This is trivial
in this context nevertheless conceptually the same happens with the EH action. We need
to supplement it with the Gibbons-Hawking term so that the variational principle is well
defined. The difference is that in the context of gravity we do not have available the analog
of action (1.2.1).

The same logic carries over to any gravity theory and in particular to the Lovelock class.
The need for boundary terms can be seen explicitly from the variation of the action with
respect to the spin connection (1.1.5). The first (boundary) term in the right hand side is
analogous to the unwanted terms in (1.2.4). Even though these terms do not change the
equations of motion, they contribute to the variation of the action in such a way that the
latter is not minimized for solutions. We want to fix just the metric on the boundary, δea = 0,
not its normal derivative, δωab 6= 0. Thus in order to calcel this boundary contribution we
must add a boundary term analogous to the Gibbons-Hawking term of GR [46,47].

IGH = ± 1

8πGN

∫
∂M
dd−1x

√
±hK (1.2.6)

where hµν is the boundary metric and K = Kµ
µ the trace of the extrinsic curvature. The

plus (minus) sign apply to a spacelike (timelike) boundary.
The well-posedness of the variational problem in the context of Lovelock gravity was

first analyzed in [48] and the explicit expression for the boundary terms was found. In the
same way as the kth Lovelock term is the dimensional continuation of the 2k-dimensional
Euler characteristic for closed manifolds, the corresponding boundary terms appear in the
generalization of the Gauss-Bonnet theorem to manifolds with boundaries. For completeness
we give account of some basic formulae connected to the Gauss-Bonnet theorem below. We
basically follow the discussion of [12].

The Euler number or Euler-Poincaré characteristic, χ(M), is a topological invariant of
any manifold M on even dimensions, being zero if the dimension is odd. It is preserved
under homeomorphisms, i.e. one-to-one maps from one manifold to another in such a way
that the topology is preserved. For instance, a coffee cup and a donut share the same Euler
number, χ = 0. In general the Euler number is related to the genus, g, of the manifold, the
number of handles on it, as

χ = 2− 2g . (1.2.7)

The Gauss-Bonnet theorem [11] allows to calculate the Euler number of a manifold of
dimension 2k as the integral of a density constructed solely from the curvature 2-form. It
can be written as

χ(M) =
(−1)k

(4π) k!

∫
M
ε(R, . . . R) (1.2.8)

A very important property of the function function L(ω) = ε(Rk) is that under a continuous
change of the connection, ω → ω′, L(ω) changes by an exact form. This can be easily seen
as follows. We omit indices for simplicity and define an interpolating connection

ωt = tω + (1− t)ω′ (1.2.9)
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calling

θ =
d

dt
ωt = ω − ω′ . (1.2.10)

We also define the curvature associated with this new connection

Rt = dωt + ωt ∧ ωt (1.2.11)

and notice that
d

dt
Rt = Dtθ (1.2.12)

where Dt is the covariant derivative associated with ωt. Then, we may write the variation
of the Euler density as

ε(R, . . . R)− ε(R′, . . . R′) =

∫ 1

0

dt
d

dt
ε(Rt, . . . Rt) = k

∫ 1

0

ε

(
d

dt
Rt, Rt, . . . Rt

)
= k

∫ 1

0

ε(Dtθ, Rt, . . . Rt) = k

∫ 1

0

dε(θ, Rt, . . . Rt) (1.2.13)

where symmetry and linearity of ε(. . .) has been used as well as the Bianchi identity, DtRt =
0. If we define

Q(ω, ω′) = k

∫ 1

0

dtε(ω − ω′, Rt, . . . Rt) (1.2.14)

then
L(ω) = L(ω′) + dQ(ω, ω′) (1.2.15)

in such a way that in case the manifoldM is compact (or non-compact vanishing fast enough
asymptotically) ∫

M
L(ω) (1.2.16)

does not depend on ω, and obviously does not depend on the vielbein. Hence, the integral
above is a topological invariant as implied by the Gauss-Bonnet theorem. In the case of a
manifold with boundary, ∂M, we can slightly modify the argument very easily in order to
construct another invariant quantity. We may introduce a third (reference) connection, ω0,
in such a way that

L(ω)− L(ω′) = [L(ω)− L(ω0)]− [L(ω′)− L(ω0)] = dQ(ω, ω0)− dQ(ω′, ω0) (1.2.17)

and we have demonstrated that

L(ω)− dQ(ω, ω0) = L(ω′)− dQ(ω′, ω0) (1.2.18)

Therefore the new quantity ∫
M
L(ω)−

∫
∂M
Q(ω, ω0) (1.2.19)

is invariant under a continuous change of connection. This is a poor man’s way to put into
evidence that the Euler class is a topological invariant, the real work is to show that the
actual value of the integral is related to χ.
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For vanishing torsion the above properties carry on trivially to any of the Lovelock terms
in such a way that the variation of the full action with respect to the spin connection is exactly
zero without any boundary contribution. The variational problem is then well defined. The
variation of the generalized Gibbons-Hawking term with respect to ω cancels the unwanted
term coming from the bulk action. The reference connection, ω0, is chosen to depend on the
boundary metric, therefore it is kept fixed.

In fact, even though the above argument is independent of ω0, this reference connection
is usually taken to be the spin connection for a product metric that agrees with the original
one on the boundary. In particular if we choose a set of adapted coordinates such that the
boundary is y = 0, ω0 would be the connection associated with the metric

ds2
0 = n2dy2 + ds2

y=0 (1.2.20)

where na is the normal vector to the boundary. It is clear that all the components aligned
along the normal direction of this intrinsic spin connection are zero in the same way as it
happens for the corresponding intrinsic curvature,

R0 = dω0 + ω0 ∧ ω0 . (1.2.21)

In this a way the difference with respect to this refence metric,

θ = ω − ω0 , (1.2.22)

has a very neat geometric interpretation, becoming the second fundamental form of the
boundary surface. As we will explain below, the second fundamental form is related to the
extrinsic curvature of the surface and it is zero for purely boundary components.

The boundary terms appearing in the Gauss-Bonnet theorem, once dimensionally con-
tinued, are the natural generalization of the Gibbons-Hawking term. The latter corresponds
to the simplest k = 1 case that can also be written as

Q1 = θa1a2 ∧ ea3···adεa1···ad . (1.2.23)

in terms of differential forms and the analogous term in LGB gravity, so called Myers term [48]

Q2 = 2θa1a2 ∧ (Ra3a4 − 2

3
θa3

c ∧ θca4) ∧ ea5···adεa1···ad (1.2.24)

For the reasons outlined above, any general Lovelock action (1.1.1), defined by a set
coupling constants {ck}, has to be supplemented by a boundary term

I∂ =
K∑
k=1

ck
d− 2k

∫
∂M
Qk , (1.2.25)

the individual boundary densities being simply,

Qk = k

∫ 1

0

dξ εa1···adθ
a1a2 ∧Ra3a4

ξ ∧ . . . ∧Ra2k−1a2k

ξ ea2k+1···ad , (1.2.26)
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where
Rab
ξ = ξRab + (1− ξ)Rab

0 − ξ(1− ξ)(θ ∧ θ)ab . (1.2.27)

We have omitted the overall normalization factor 1/16πGN(d − 3)!. The total action is in

this way Ĩ = I −I∂ and can be written as a sum of dimensionally continued Euler densities,
in particular ensuring the well-posedness of the variational problem for Lovelock actions.

In order to get simplified expressions involving just the curvature, R, and θ in the spirit
of (1.2.24) we may make use of

Rab = Rab
0 +D0θ

ab + (θ ∧ θ)ab (1.2.28)

and also take into account that D0θ
ab = dθab + (ω0 ∧ θ)ab + (θ ∧ ω0)ab is zero unless either

one of the indices is in the normal direction. As the whole expression is multiplied by the
second fundamental form that necessarily picks one index in the normal direction in order
not to vanish, this term does not contribute to (1.2.26) and we can write it in terms of just
the full curvature and the second fundamental form as

Qk = k

∫ 1

0

dξ θa1a2 ∧Ra3a4(ξ) ∧ . . . ∧Ra2k−1a2k(ξ) ∧ ea2k+1···adεa1···ad , (1.2.29)

where Rab = Rab + (t2 − 1)(θ ∧ θ)ab. The Gibbons-Hawking and Myers terms as written
above are the individual contributions for k = 1, 2.

Sometimes it is more natural and useful to write (1.2.29) in terms of the extrinsic and
intrinsic curvatures of the boundary. In chapter 5 we will make extensive use of this form of
the boundary terms. The extrinsic curvature is related to the second fundamental form as

θab = n2(naKb − nbKa) (1.2.30)

where again na is the normal vector to the surface and KA = KA
Be

B is the extrinsic
curvature 1-form. The extrinsic curvature can in turn be calculated as covariant derivative
of the normal vector as

KAB = eµA∇eBnµ = −nµ∇eBe
µ
A (1.2.31)

where we used the fact that na is normal to the vielbein basis induced on the surface. Taking
into account (1.2.30) and from that

θab ∧ θbc = −n2Ka ∧Kc , (1.2.32)

we finally get

Qk = −2k

∫ 1

0

dξ KA1 ∧RA2A3
0 (ξ) ∧ . . . ∧R

A2k−2A2k−1

0 (ξ) eA2k···Ad−1εA1···Ad−1
, (1.2.33)

where RAB
0 = RAB

0 − t2 n2KA ∧ KB and everything has been expressed in terms of the
vielbein basis adapted to the surface such that

Naεab... ∼ −n2εB... (1.2.34)

This will be consistent with our conventions in chapter 5.
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Another important rôle of the boundary terms in General Relativity is that they give
rise to the so called Israel junction conditions that govern the dynamics of shells separating
different bulk domains [49]

K+
AB −K

−
AB = 8πGN

(
SAB −

1

2
ηABS

)
(1.2.35)

By performing an integration of Einstein’s equations accross the shell and taking the thickless
limit it is possible to show that the jump in the extrinsic curvature is related to the surface
stress-energy tensor, SAB. It can be shown that Israel’s method for singular hypersurfaces is
equivalent to an action principle with boundary terms at the hypersurface. In this case the
variation of the metric evaluated there should not be fixed, its variation giving the junction
conditions [50].

The Lovelock action in the presence of singular hypersurfaces can also be written in
terms of smooth bulk integrals plus a boundary term [51–53], that in the case of n = 2 LGB
theory was first written down by Davis [54]. One may consider the spacetime manifold as
the union of two submanifolds with a commom boundary Σ in such a way that in addition
to the boundary term at infinity we get two extra surface terms at the boundary between
the two. The action in this case would be written as

Itot = (I− − I−∂ ) + (I+ + I+
∂ )− I∂ (1.2.36)

where − (+) denote the inner (outer) region. Remark that the contribution of the hyper-
surface Σ can be written as the sum of two boundary terms of the same form seen above

IΣ = −I−∂ + I+
∂ (1.2.37)

the plus sign in the second term coming from the fact that the bulk regions induce opposite
orientations on the wall5. In case the spin connection is continuous in Σ the surface terms
cancel and we recover the usual Lovelock action.

This way of writting the action is useful in order to find solutions where the spin con-
nection is discontinuous across some co-dimension one hypersurface (the metric being con-
tinuous). The variation of the bulk terms on each side yield the usual Lovelock equations
of motion while the junction conditions arise from the variation of the boundary terms with
respect to the induced vielbein field or equivalently the pullback of the metric on Σ. We will
comment more on this on section 5 where we will be interested in distributional solutions.
The issue of finding equations with singular sources is a non-trivial one in non-linear gravity
theories as many operations with distributions are not unambiguously defined.

In order to take the variation of the action written in this way we have to also vary
with respect to the metric and the spin connection induced in the intermediate surface.
The variation with respect to the intrinsic spin connection is again zero as it cancels the
boundary term coming from the bulk integrals (this is the reason we introduced these terms

5One can also construct solutions with the same orientation on both sides leading in turn to wormholes
and Randrall-Sundrum-like models [55,56]
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to begin with) whereas the variation with respect to the intrinsic metric is proportional to
the canonical momenta in such a way that the variation of each term may be written as

δI∂ = −
∫
∂M

dd−1x πABδhAB . (1.2.38)

Therefore, the equations of motion for the surface Σ amount just to the continuity of the
canonical momenta [57–59]. The analogous term from the boundary does not contribute as
we keep the boundary metric fixed, δh = 0. The canonical momenta in Lovelock gravity can
be expressed as

πBC = −1

2

δI∂
δeC
∧ eB (1.2.39)

=
K∑
k=1

k ck

∫ 1

0

dξ KA1 ∧RA2A3
0 (ξ) ∧ . . . ∧R

A2k−2A2k−1

0 (ξ) eA2k···Ad−2BεA1···Ad−2C ,

The generalization of the Israel junction conditions to Lovelock gravity being

π+
AB − π

−
AB = 8πGN(SAB −

1

2
ηABS) (1.2.40)

that reduces to (1.2.35) in the case of EH gravity.
Junction conditions can also be seen to arise in our 1-dimensional example. First of all,

the same kind of boundary term appears if we split the action, or the interval of integration,
in two. The variation of each term in that case is

δI− =

∫ t?

t1

dt

[
∂L

∂q
− d

dt

(
∂L

∂q̇

)]
δq +

∂L

∂q̇

∣∣∣∣
t?

δq? (1.2.41)

The first term vanishes because of the equations of motion but the second does not as the
position is not fixed for t = t?. That term combines from an analogous one coming from the
other part of the action, I+, to yield the junction condition

p− − p+ = 0 (1.2.42)

i.e. continuity of the canonical momentum. For univalued momentum such as in (1.2.1) this
in turn implies the continuity of the velocity. The free particle is necessarily continuous
without any need of imposing this continuity à priori. There is no discontinuous solution of
ẍ = 0. In the same way as for EH gravity, in order to add a discontinuity we have to include
new source terms. In the particle example the analogous of a dust shell would be localized
at a given time, t = 0 for simplicity.

Ĩ = I +

∫ t2

t1

dtλxδ(t) = I + λx(0) (1.2.43)

When varying the action, fixing x in the borders, x(t1,2) = x1,2 we get the equation

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= λδ(t) (1.2.44)
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This equation includes junction conditions that can be found by integrating in infinitesimal
region around t = 0, entre t = 0− and t = 0+. In this way we find

p+ − p− = λ (1.2.45)

where p± = p(0±). We could also have started with the splitted action in which case the
junction conditions may arise from the variation on the boundary, in this case the variation
of x(0) which is not fixed by the boundary conditions.

In order to keep the discussion as general as possible we will consider the action written
in terms of the canonical variables q and p instead of the velocity

L(q, p) = pq̇ −H(q, p) (1.2.46)

In this way the lagrangian can be varied independently with respect to the two canonical
variables, q and p, yielding the well known Hamilton equations,

ṗ = −∂H
∂q

; q̇ =
∂H

∂p
(1.2.47)

In the same way as before this action is prepared to fix the value of the position at the
extrema, δq = 0. However we can also use a different lagrangian

L′(q, p) = −ṗq −H(q, p) (1.2.48)

that in turn is prepared to fix the momenta p instead. This can be easily understood as a
result of the symmetry q ↔ p, q̇ ↔ −ṗ. However we can supplement this lagrangian (1.2.48)
with a boundary term in such a way that it is equivalent to (1.2.46)

L(q, p) = L′(q, p) +
d

dt
(pq) (1.2.49)

Obviously the right hand side is obtained from the original lagrangian just by integrating
by parts. The nice thing about this way of writting the lagrangian is that now we can split
a given interval in two pieces and vary the action not just with respect to the bulk variables
but also with respect to the ones at the splitting surface, t = 0,

I ′ =

∫ t?

t1

dt L′(q, p) + (p− − p+)q? +

∫ t2

t?
dt L′(q, p) (1.2.50)

The variation with respect to the boundary momentum vanishes automatically and so do
the variations inside the intervals (t1, t?) and (t?, t2) due to the equations of motion. The
only contribution to the variation thus comes from the intermediate boundary term at t = t?

δI ′ = (p− − p+)δq? (1.2.51)

again implying the continuity of the canonical momentum accross the discontinuity. In the
same way as before we may add source terms that induce jumps in the canonical momentum
in the same way as matter in GR.

As we mentioned above, for univalued momentum continuity of momentum implies the
continuity of the the velocity as well. In more general cases however, the momentum may
be multivalued this becoming a non-trivial equation. The velocity may jump as long as the
canonical momentum is conserved. We will comment more on this on chapter 5, with a
specific example.



Chapter 2

Lovelock black holes

“To myself I am only a child playing on the beach,
while vast oceans of truth lie undiscovered before me.”

Isaac Newton

The concept of singularity is central to General Relativity. Due to the attractive and uni-
versal nature of the gravitational interaction, the theory predicts that these kind of objects
inevitably form, either in the form of black hole or as a cosmological singularity such as the
Big Bang.

The first to describe a singular solution was Karl Schwarzschild [60] as soon as 1916,
a little more than a month after the publication of Einstein’s original paper. It was the
first exact solution of the Einstein field equations other than the trivial flat space solution.
Schwarzschild died shortly after his paper was published, as a result of a disease he contracted
while serving in the German army during World War I. The singular character of the solution
he found was at first considered just as a mathematical curiosity, of none physical relevance,
until it was realized quite a long time afterwards that such objects actually do generally form
from the collapse of matter [61, 62] such as that of a dying star. Any physical object whose
radius R becomes less than or equal to the Schwarzschild radius will undergo gravitational
collapse and become a black hole. However it was not until the sixties, with the advent
of the singularity theorems of Hawking and Penrose [63, 64], that the debate was definitely
settled. In short, a black hole is a self-gravitating object so densely packed that nothing, not
even light, can scape its gravitational attraction. Nowadays black holes are thought to be
quite commom objects in the universe being generally present at the center of galaxies such
as the Milky Way. They cannot be directly seen but their presence is detected through the
trajectories of stars on their vicinity or radiation coming from their accretion disks.

The fact that the gravitational field can affect the trajectory of light rays is well known.

21
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In fact it was the way Eddington proved Einstein theory right in his famous 1919 expedition
to Africa. The concept of black hole as that of an object from which not even light can
scape is much older though. We can trace it back as far as 1783, to a letter [65] John Michell
sent to Henry Cavendish, his fellow at the Royal Society of London. In that letter, using
just Newtonian gravity, Michell describes the hypothetical case of a heavenly object massive
enough to prevent light from scaping. Michell calculated that when the escape velocity at
the surface of a star was equal to or greater than lightspeed, the generated light would be
gravitationally trapped, so that the star would not be visible to a distant astronomer. He
named his discovery dark star, the precursor of black holes.

For an object leaving the surface of a dark star of mass M with some speed v to reach
infinity we need the sum of its kinetic and gravitational energy to be equal or greater than
zero,

1

2
mv2 − GNMm

R
≥ 0 ⇒ v2

s =
2MGN

R
(2.0.1)

in such a way that the radius of the dark star has to be smaller than

R ≤ RS ≡
2MGN

c2
(2.0.2)

which, curiously enough, is independent of the mass of the object and actually coincides with
the Schwarzschild radius of General Relativity, r = 2M in geometric units. In the context
of GR, this particular radial position is named event horizon.

The concept of black hole is quite different from that of a dark star. Nothing sent from
the dark star can reach infinity but it can leave the star and even reach infinity if we furnish
some extra acceleration. The black hole however is provided with an event horizon that acts
as a one way membrane in the sense that objects can get into the horizon but they cannot get
back out. More precisely, consider the form of the Schwarzschild metric in General Relativity

ds2 = −
(

1− 2M

r

)
dt2 +

dr2(
1− 2M

r

) + r2dΩ2 . (2.0.3)

The time and radial variables exchange their rôles beyond r = 2M in such a way that the
r coordinate becomes timelike and t spacelike. Being timelike, r has to increase along any
timelike trajectory in the same way as the time ticks forward outside the black hole. In fact,
any object falling through the event horizon will reach the central singularity in finite proper
time, it would be inevitably driven there.

The event horizon plays yet another very important rôle. As it prevents anything from
leaving the black hole, it effectively divides the spacetime in two. Nothing happening inside
the horizon can ever influence the dynamics of the exterior region. This is essential in order
to have a well defined initial value problem in the presence of a singularity. The singularity
represents a break down of the theory, in a sense, it is the place where General Relativity
shows its failure. It is also the place where quantum effects become dramatically important so
that we would need a quantum theory of gravity to disclose the dynamics at the singularity.
The existence of the event horizon protects the exterior region from this unknown dynamics,
the exterior evolution being always well defined.
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We will study the analogous solution to that of Schwarzschild in the context of Lovelock
theories of gravity in general. Finding an analytic black hole solution requires to explicitly
solve a polynomial equation and we are certainly restricted by the implications of Galois
theory; meaningly, quartic is the highest order polynomial equation that can be generically
solved by radicals (Abel-Ruffini theorem). However, an implicit but exact solution can be
found, and we develop some tools to extract all relevant information, mainly their horizon
structure and thermodynamics. We will devote this chapter to present our proposal to deal
with generic black holes in Lovelock theory, focusing in the case of LGB and cubic Lovelock
for a detailed description. In the next chapter we perform a classiffication of all possible black
hole solutions, including the case of asymptotically dS solutions, and all possible horizon
topologies within maximally symmetric conffigurations.

The analysis of these solutions for the Lovelock family may also provide some useful infor-
mation about the dynamics of black holes in more general gravity theories. This is specially
important due to the high nonlinearity of the field equations that make very difficult finding
nontrivial exact analytical solutions of Einstein’s equation with higher derivative terms. In
most cases, one has to adopt some approximation methods or find solutions numerically. In
the last few months there were some papers constructing gravitational theories that share
some compelling properties with Lovelock lagrangians [66,67]. In particular, these are lower
dimensional theories displaying black hole solutions whose profile precisely correspond to
Lovelock black holes [68, 69]. In particular these theories allow for the addition of an extra
term of degree K = d+1

2
in odd dimensions [69], contributing in every way as the correspond-

ing Lovelock term in higher dimensions. Some other higher order terms may be also added
that do not change the form of the black hole solution. Some of the results of this paper
are therefore of direct application to those cases as well. This is particularly interesting due
to the fact that quasi-topological gravities are higher curvature theories in dimensions lower
than their corresponding Lovelock cousins, thus the results are of interest in more ‘physical’
setups of AdS/CFT [70].

2.1 Black holes in Lovelock gravity

It has been shown in [71] that Lovelock theories admit asymptotical (A)dS solutions with
non-trivial horizon topologies. We can consider for instance solutions with a planar or
hyperbolic symmetry as a straightforward generalization of the usual spherically symmetric
ansatz,

ds2 = −A(t, r) dt2 +
dr2

B(t, r)
+
r2

L2
dΣ2

d−2,σ , (2.1.1)

where

dΣ2
d−2,σ =

dρ2

1− σρ2/L2
+ ρ2dΩ2

d−3 , (2.1.2)

is the metric of a (d−2)-dimensional manifold of negative, zero or positive constant curvature
(σ = −1, 0, 1 parameterizing the different horizon topologies), and dΩ2

d−3 is the metric of the
unit (d− 3)-sphere. This does not imply that the horizon is just spherical or non-compact.
By means of the Killing-Hopf theorem [72], any complete connected Riemannian manifold of
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Euclidean signature and constant curvature σ can be written as a quotient space Σd−2,σ/Γ,
where Γ is a discrete subgroup of the isometry group of Σd−2,σ. Thus, even in (what we shall
call) the spherical case, we have non-spherical possibilities; for example, one may take the
horizon to be a lens space. Besides, planar or hyperbolic horizons can be made compact in
this way.

It has been proven in [73] that these black holes admit a version of Birkhoff’s theorem,
in such a way that in addition to the SO(d−1), Ed−2 or SO(1, d−2) isometry groups, these
spacetimes admit an extra timelike killing vector (for A,B > 0). This means that these so-
lutions of the field equations are locally isometric to their corresponding static counterparts,
which can be found by means of the ansatz

ds2 = −f(r) dt2 +
dr2

f(r)
+
r2

L2
dΣ2

d−2,σ . (2.1.3)

There are extra solutions with different functions in the timelike and radial direction but
they are just valid for degenerate values of the cosmological constant [74]. In that case, the
most general solution is

ds2 = −f(r) dt2 +
dr2

(σ − Λ r2)
+
r2

L2
dΣ2

d−2,σ , (2.1.4)

for any function f(r). This allows in particular Lifshitz-like solutions f(r) ∼ r2z for any
value of the critical exponent z.

These black hole solutions are all three asymptotic to a maximally symmetric space.
Thus, when considering the same curvature for all of them they are locally asymptotically
equivalent, but globally different. They are often referred to as topological black holes for
this reason. Indeed, there are global changes of coordinates that relate the sets of coordinates
corresponding to the three topologically different vacuum solutions associated with a given
Λ [75]. Each set covers a different patch of AdS and has a different time coordinate. Thus, we
can also look at the different topologies as static black holes for different classes of observers.

Using the natural frame,

e0 =
√
f(r) dt , e1 =

1√
f(r)

dr , ea =
r

L
ẽa , (2.1.5)

where a = 2, . . . , d− 1, and R̃ab = σ ẽa ∧ ẽb. The Riemann 2-form reads

R01 = −1

2
f ′′(r) e0 ∧ e1 , R0a = −f

′(r)

2r
e0 ∧ ea ,

R1a = −f
′(r)

2r
e1 ∧ ea , Rab = −f(r)− σ

r2
ea ∧ eb . (2.1.6)

If we insert these expressions into the equations of motion, we get[
d

d log r
+ (d− 1)

] ( K∑
k=0

ck g
k

)
= 0 , (2.1.7)
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where g = (σ − f)/r2. This can be readily solved as

Υ[g] =
K∑
k=0

ck g
k =

κ

rd−1
, (2.1.8)

where κ is an integration constant related to the mass of the spacetime [76,77],

M =
(d− 2)Vd−2

16πGN

κ , (2.1.9)

Vd−2 being the volume of the unit (d− 2)-dimensional horizon. Notice that the polynomial
giving the implicit black hole solution is the same as the one defining the possible vacua
of the theory. This is not surprising as maximally symmetric spaces appear as massless
solutions, M = 0. This can also be understood as follows. If there is actually a mass source
for the gravitational equations of motion, ρ = Mδ(d−1)(r), therefore

E0 ∧ e0 ∼ T 0
0 ⇒

[
d

d log r
+ (d− 1)

]
κ

rd−1
∼ ρ , (2.1.10)

and, as the right hand side of the equation does not depend on the Lovelock theory we are
considering, the left hand side cannot either. Thus, the relation between κ and the mass
must be the same as in Einstein-Hilbert gravity (2.1.9). This assertion can be made precise
using the Hamiltonian formalism [77].

For arbitrary dimension, the spherically symmetric solutions where found in [44, 78, 79]
and their extension to planar and hyperbolic symmetry was given in [71, 80].

2.2 Branches

Notice that (2.1.8) leads to K different roots for every value of the radius and, thus, to K
different branches associated to each of the cosmological constants (1.1.7) (some of them
may be imaginary, though), in such a way that gi(r → ∞) = Λi. For instance, in LGB
gravity there are two branches that read

g(±) = − 1

2L2λ

(
1±

√
1− 4λ

(
1− κL2

rd−1

))
, (2.2.1)

each one associated with a different cosmological constant. As for the corresponding vacua
we need λ ≤ 1/4 in order to have real solutions, otherwise the argument of the square root
may become negative at some finite radius. Only one of the solutions, g(−), is connected to
the standard Einstein-Hilbert gravity, in the sense that it reduces to it when λ→ 0,

g(−) ≈ −
1

2L2λ

(
1−

[
1− 2λ

(
1− κL2

rd−1

)])
= − 1

L2

(
1− κL2

rd−1

)
, (2.2.2)

while g(+) blows up in that limit. It will be referred to as the EH-branch. It can be seen that
this is the branch corresponding to the intersection of Υ[g] with the vertical axis, g = 0. The
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Figure 2.1: A branch of the polynomial Υ[g] for the case K = 2, i.e., GB theory (with
λ = 0.2 and L = 1), in arbitrary spacetime dimension, for different values of the radius
ranging from∞ to r+, r1 > r2 > . . . > r+. The projection of the depicted points give g(ri)
for the EH-branch in the planar case (σ = 0).

K different branches of (2.1.8) are continuous functions of the radial coordinate, as long as
the roots of a polynomial equation depend continuously on its coefficients [81], and r enters
monotonically in the zeroth order coefficient c̃0(r) ≡ c0 − κ/rd−1. When r → ∞, (2.1.8) is
nothing but the expression leading to the K cosmological constants.

The different Lovelock couplings ck>1 fix the shape of the polynomial Υ[g]. While vary-
ing r from ∞ to r+ (see figure 2.1), the function g(r) is given by the implicit solution of
equation (2.1.8) that graphically corresponds to climbing up (down for negative masses) a
given monotonic part of the curve Υ[g] starting from one of its roots (tantamount of a given
comological constant). The metric function g is a monotonic function of r since c̃0(r) is
so and the remaining coefficients are frozen. Then each branch can be identified with a
monotonic section of the polynomial Υ[g], and can easily be visualized graphically.

As discussed above, the propagator of the graviton corresponding to the vacuum Λi is
proportional to Υ′[Λi] in such a way that we will restrict to positive values of that derivative.
It is zero just for degenerate vacua where there are actually no linearized degrees of freedom.
In the present context the restriction Υ′[Λi] > 0 is just verified by positive slope branches thus
we will only consider those in the future. All the relevant or BD-stable branches correspond
then to positive slope sections of the polynomial and, therefore, g will be considered a
monotonically decreasing function of r.

For positive κ the solution runs over the points with positive value for Υ[g] while for
negative mass it is the other way around. Either way, every branch always encounters a
maximum/minimum, or it grows unboundedly.

For the sake of clarity and the ease of reading, let us first classify the different types
of branches that one may encounter when dealing with a Lovelock theory of gravity. The
appearance of a given type of branch will depend, in general, on the specific theory considered
and on the values of the different coupling constants. On the one hand, we may classify the
branches by their asymptotics: AdS, flat or dS branches. In the particular case we are
considering, with c0 = L−2, there are no asymptotically flat branches. The sign of the
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cosmological constant corresponding to the EH-branch (when real) is the opposite to c0 (or,
equivalently, the same as the explicit cosmological constant, as in standard Eintein-Hilbert
gravity); thus, the EH-branch is asymptotically AdS. Due to the particular features and
relevance of this branch, we will consider it separately.

Some of the branches (monotonic sections of the polynomial) may also be associated
to complex values of Λ. Therefore, they do not correspond to real metrics and should be
disregarded as unphysical. We will refer to these as excluded branches, and to the sector of
the parameter space where the EH-branch is excluded as the excluded region.

We will then exhaustively classify branches on (non-EH) AdS (i.e., not crossing g = 0),
EH, dS and excluded branches. The latter, being unphysical, do not need further discussion.
The AdS-branches must end at a maximum of the polynomial in order not to cross g = 0.
The other two cases may end at a maximum or, else, continue all the way up to g →∞. We
will then consider two subclasses of branches: those (a) continuing all the way to infinity or
(b) ending at a maximum. For the AdS-branches we will also consider two subclasses: (a)
positive mass and (b) negative mass.

2.3 Singularities and horizons

Where are the singularities of these spacetimes located? The simplest way to answer this
question is to calculate the curvature scalar and see where it diverges. As it depends on the
metric and its derivatives, these divergences can be traced back to those of the first derivative
of g,

g′ = −(d− 1)κ

rd
Υ′[g]−1 . (2.3.1)

Then, the metric is regular everywhere except at r = 0 and at points where Υ′[g] = 0; that
is, whenever the branch we are looking at coincides with any other. In such case,

Υ′[g] =
K∑
k=1

k ck g
k−1 = 0 . (2.3.2)

These are precisely the maxima/minima at which all branches end, except those growing
unboundedly (that also approach asymptotically to a singularity located at r = 0). The
values of r where this happens exhibit a curvature singularity that prevents from entering a
region where the metric becomes complex. Type (a) branches correspond to solutions with
a singularity at r = 0 whereas those of (b) type display the singularity at finite radius.

It can be easily seen that the mass parameter κ must be positive in the planar case
(σ = 0) in order for the spacetime to have a well defined horizon. We can actually rewrite
equation (2.1.8) as

K∑
k=1

ck g
k =

κ

rd−1
− 1

L2
, (2.3.3)

and realize that the equation admits a vanishing g only when r = r+ ≡ (κL2)
1
d−1 . In the

planar case, furthermore, only one branch has a horizon at r+ and all the rest display naked
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singularities. This is so since the polynomial root g = 0 has multiplicity one at r = r+

(higher multiplicity would require a vanishing coefficient of the Einstein-Hilbert term). In
the case of LGB theory, for instance, we can see from (2.2.1) that it is g(−). This is the
above mentioned EH-branch, a deformation of the solution to pure Einstein-Hilbert theory,
and the only branch that remains when turning all the extra couplings off. Since Υ′[0] > 0,
g(r) in the EH-branch is decreasing close to r+ and, thus, it is a relevant branch.

For non-planar horizons the situation is more complicated and, in principle, some of the
branches admit horizonful black hole solutions even for negative values of κ. The physical
mass of the black hole has to match the one of the matter contained in that region of
spacetime. Thus, κ will be considered a positive quantity, except for hyperbolic black holes
for which some comments on negative mass solutions shall be made. In [82], indeed, the
formation by collapse of black holes with negative mass has been considered. We shall see
that spherical or planar black holes always exhibit a naked singularity in the case of negative
mass. The only horizon that may arise for those solutions is a cosmological one. This is the
case for negative mass asymptotically dS branches even for hyperbolic topology.

Taking into account that the value of g at the event horizon, r = r+, reads

g+ ≡
σ

r2
+

, (2.3.4)

we can write κ = rd−1
+ Υ[σ/r2

+]. The other way around, the radii of the location of the
horizons are given by solutions of the previous equation for any given value of κ. This leads
to a more handy formula for the mass

M =
(d− 2)Vd−2

16πGN

rd−1
+ Υ

[
σ

r2
+

]
. (2.3.5)

Following the argument used to derive (2.1.10), and taking into account that Einstein-Hilbert
gravity has a positive energy theorem, we are tempted to conjecture that the same should
apply to any Lovelock theory though this has not been proven so far. This conjectured
positivity would not in principle rule out the negative mass solutions mentioned before as
it may happen that the positive mass corresponds to the difference of the mass previously
defined with the extremal one [83].

We can recast the equation for the horizon, by means of (2.1.8) and (2.3.4), in such a
way that it can be plotted in the (g,Υ[g]) plane,

Υ[g+] = κ

(√
g+

σ

)d−1

, (2.3.6)

where the right hand side is just defined for positive/negative values of g+, for σ = ±1,
while for σ = 0 the expression is not strictly valid since, in that case, g+ exactly vanishes.
Notice that in the high mass limit, κ → ∞, the curve (2.3.6) approaches the vertical axis
–the planar black hole– regardless of the value of σ.

It is interesting to note that monotonicity of the function g implies that every branch of
black holes, for (positive mass) hyperbolic or planar topology, can have just one horizon. For
σ = 0 we recover just g+ = 0, but for σ 6= 0 we can actually have several possible values for
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Figure 2.2: Seven dimensional cubic Lovelock theory for λ = 1/4 and µ = 1/20 (L = 1)
possesses two hyperbolic black holes for sufficiently low positive values of the mass. The
dashed lines are plots of (2.3.6) for the indicated values of σ and κ (in units of L). The
crossing of these lines with the polynomial give the possible values for g at the horizon and
then of r+. For σ = −1 and large enough values of κ, κ > κ?, the blue branch has a naked
singularity (as it always has for σ = 0, 1).

g+ (see figure 2.2). Nonetheless, the right hand side of (2.3.6) is monotonic in g+ and each
branch corresponds to a monotonic part of the polynomial Υ[g]. We observe that, contrary
to what happens for planar topology, there exists the possibility of having several branches
with a horizon for σ 6= 0. Some of them may be discarded by means of Boulware-Deser-like
instabilities, while for some other branches horizons will appear or disappear depending on
the actual values of the different couplings and κ.

For the case of hyperbolic horizons, as the slopes of both sides have opposite signs, there
can just be at most one horizon per branch. In the positive curvature case, the determination
of the number of horizons is, however, a non trivial matter. As the slope in both sides of
the equation are positive we can even conceive the possibility of them crossing each other
several times. We will illustrate this phenomenon below.

Depending on the couplings of Lovelock theory, it may happen that certain branches
do not correspond to a proper vacuum. These coefficients fix the shape of the polynomial
and, as they vary, some branches can become pathological in reason of their cosmological
constant becoming imaginary. This happens whenever a monotonic part of the polynomial
ends (towards the left) at a minimum without ever touching the g-axis (see figure 2.3). We
refer to them as excluded branches. When the EH-branch is excluded we say that we are in
the excluded region of the parameter space. These spacetimes have two singularities, one
for small values of the radial coordinate at the maximum, and another one for large values
of r at the minimum. In the cases where we can just have one horizon, the nakedness of the
singularity associated with the minimum cannot be avoided. In the σ = 1 case we may have
two (or more) horizons, each of them hiding a singularity and describing a regular spacetime
in between.

At this point it should be clear that several different kinds of branches may generically
arise in Lovelock theory, depending on the topology of the spacetime slicing, the coupling
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Figure 2.3: Three examples of excluded branches running over positive, negative and
positive, and just negative values of g respectively. We also plot the values of the horizons
for several values of the mass κ1 < κ2 < κ3 < κ4 and all the topologies. The one crossing
g = 0 corresponds to the (excluded) EH-branch. The blue branch describes a well defined
spacetime for some values of the mass with both singularities hidden behind the black hole
and the cosmological horizons.

constants and the relevant AdS/dS vacuum. These are schematically summarized in Table
2.1.

The existence of at least one horizon fixes hyperbolic topology as the only possible one
for AdS branches (see the first row in the table), as well as it sets an upper bound on the
mass of such spacetimes (corresponding to r? in such plot). It also sets a lower bound if we
consider the possibility of negative mass black holes in those branches. Also this sets a lower
bound for the spherical black hole in the EH-branches that end up at a maximum, that we
call type (b) (or even in those extending all the way to r = 0, named type (a), in the critical
case, d = 2K + 1).

For dS branches this requirement also fixes the only possible topology admitting an event
horizon as spherical at the same time as it imposes a double bound, upper and lower, as will
be discussed further later on. The physical or untrapped region of the spacetime (f > 0) is
that located to the left of the dashed line in all figures appearing in the table. The region
to the right corresponds to the inside of the would be horizon or trapped region (f < 0).

We will also have more untrapped regions inside the black hole in the presence of several
black hole horizons. We already mentioned, indeed, the possibility of black hole spacetimes
with multiple horizons. This is for instance the case for some regions of the parameter space
with (either EH or dS) branches displaying inflection points. The simplest situation where
this can be observed is therefore the cubic theory, as shown in figure 2.4. This very same
behavior will be found in general for some region of the parameter space in the critical
Lovelock theory; for d = 2K + 1 this can be easily understood as we can always construct a
polynomial

Υ[g] =

L≤K∏
i=1

(
1− g

gi

)
+ α gK , (2.3.7)
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Table 2.1: Classification of (non-excluded) branches attending their asymptotics and
topology. Black hole solutions exist in those cases where the given branch (in red) inter-
sects the dashed curve: hyperbolic for an AdS-branch (top left), spherical for a dS-branch
(bottom right), while only for the EH-branch supports all possible horizon topologies (sec-
ond row). Spherical black holes in dS-branches exhibit, in addition to the event horizon,
a cosmological horizon, rc. We distinguish those branches ending up at extrema of Υ[g],
called type (b), from those extending all the way to r = 0, named type (a).
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Figure 2.4: Seven dimensional cubic Lovelock theory for λ = −0.746 and µ = 0.56. In
the green branch we observe the occurrence of two (outer and inner, respectively) horizons,
r+ and r−. For d = 8 we find a similar behavior with one further inner horizon, three in
total.

for large enough α and suitable coefficients, gi > Λ?, in order to make the slope everywhere
positive for the EH or dS branches with cosmological constant Λ?. Then, for κ = α, the
polynomial equation has all gi as solutions. Different (positive) gi correspond to different
spherical horizons, each degenerate gi giving rise to a degenerate horizon. From this value,
varying the mass of the solution the number of horizons will in general change. For the
EH-branch, the number of black hole horizons has to be always one for high enough mass,
and it is so as well in the low mass regime for d > 2K + 1 as well for the EH as for any dS
branch. Thus, we have in general couples of horizons appearing and disappearing depending
on the values of the mass. We will always refer as r+ to the outermost horizon of the black
hole, i.e., the biggest root of (2.3.6) besides the cosmological horizon, if present. The very
same logic applies to the case of negative mass black holes with hyperbolic horizon. We will
comment more on this later.

The algebraic reasoning presented in previous paragraphs leads us to an alternative for-
mulation: we can visualize each branch as a segment corresponding to the continuous running
of the roots, gi (in the complex plane) while r goes from the boundary to the horizon. We
will focus on the planar case where the horizon corresponds simply to g = 0. This will also
be the most relevant case in view of the holographic applications described in the second
part of this thesis. As discussed before just the EH-branch displays a horizon in that case
so that it is the only relevant solution. Rescaling the coefficients ck = ak L

2k−2 and calling
x ≡ L2g,

p[x; r] =

(
1− rd−1

+

rd−1

)
+ x+

K∑
k=2

ak x
k = 0 , (2.3.8)

where, of course, x = x(r).

For instance, the solution of the standard Einstein-Hilbert gravity with negative cosmo-
logical constant is described by the root of the linear polynomial (see figure 2.5),
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Figure 2.5: The AdS black hole solution of the Einstein-Hilbert theory.
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Figure 2.6: The AdS black hole solution of the LGB theory for λ = −0.4. There are two
real branches. The green one is the branch connected to the Einstein-Hilbert AdS black
hole, the one we named f− in (2.2.1).

pEH[x; r] =

(
1− rd−1

+

rd−1

)
+ x = 0 . (2.3.9)

The LGB case, instead, presents a richer structure. It is given by the roots of the quadratic
polynomial

pLGB[x; r] =

(
1− rd−1

+

rd−1

)
+ x+ λx2 = 0 . (2.3.10)

The discriminant is ∆(r) = 1 − 4 a0(r)λ, which immediately suggests that there are two
different regions. When λ < 1/4, ∆(r) > 0 ∀r ∈ [r+,∞), while for λ > 1/4, there is a
value r? ∈ [r+,∞) where ∆(r?) = 0 (see figures 2.6 and 2.7). For r > r?, ∆(r) < 0 and
the solutions become complex (see Figure 2.8). The critical value λ = 1/4, which is the
singular locus of the LGB theory, leads to r? = ∞. In the previous figures we have plotted
the different solutions x(r) as a function of a0(r) between one, that correspond to r = ∞,
and zero, corresponding to the horizon in the EH-branch. For all other solutions r+ does
not represent a horizon.

This quite simple behavior for different values of the LGB coupling serves as a preliminary
exercise to clarify the algebraic approach in higher order theories. The situation, indeed, gets
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Figure 2.7: The AdS black hole solution of the Gauss-Bonnet theory for λ = 0.2. For
λ > 0, the (still real) red branch jumps to the left of the green one, without flipping its
orientation. For bigger values of λ, it slides to the right, approaching the green branch.
Needless to say, their infinities collide at λ = 1/4.
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Figure 2.8: The AdS black hole solution of the LGB theory for λ = 0.26. For λ > 1/4
the branches become complex conjugates to each other. The critical value, indeed, is the
singular locus of the theory (see figure 1.1).
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Figure 2.9: Vanishing locus of ∆(r) for different values of r, spanning from ∞ (thickest
red and blue curve in the left) to r = (20/17)1/(d−1) r+ (thinest red and blue curve in the
right). The vertex of the curve slides up along the parabola µ = λ2 (dashed curve). Points
in the brown region (as the one depicted in yellow) belong to two curves. The black curve
is µ = 3

4λ
2 (that corresponds to ∆(r+) = 0), which bounds the regions colored in light

blue, where ∆(r) only vanishes for one value of the radius between infinity and the horizon.
The zoom in the right allows to better understand the structure where the different regions
merge.

more involved in the third order Lovelock theory. The relevant polynomial is

pLL3 [x; r] =

(
1− rd−1

+

rd−1

)
+ x+ λx2 +

µ

3
x3 = 0 , (2.3.11)

whose discriminant is ∆(r) = a0(r)λ (6µ− 4λ2)−3a2
0(r)µ2 +λ2−4µ/3. As a function of the

radius, ∆(r) = 0 spans a family of curves in the (λ, µ) plane that go from µ = 3
4
λ2 (namely,

∆(r+) = 0) to the singular locus Γ depicted in figure 1.1. It is not difficult to see that for
intermediate values of r, the curves look roughly like Γ, the singular vertex sliding up the
parabola µ = λ2 (see figure 2.9). Thus, the (λ, µ) plane has two regions, M(±), where there
is a value r? ∈ [r+,∞) such that ∆(r?) = 0,

M(+) =

{
λ ≤ 0 , µ+(λ) ≤ µ ≤ 3

4
λ2

}
∪
{

0 < λ <
8

27
,

3

4
λ2 ≤ µ ≤ µ+(λ)

}
∪
{

8

27
≤ λ ≤ 1

3
, µ−(λ) < µ ≤ µ+(λ)

}
, (2.3.12)

M(−) =

{
λ <

8

27
, µ ≤ µ−(λ)

}
∪
{
λ ≥ 8

27
, µ <

3

4
λ2

}
, (2.3.13)

and one region, M(2), where there are two values r±? ∈ [r+,∞) where ∆(r±? ) = 0,

M(2) =

{
8

27
< λ ≤ 1

3
,

3

4
λ2 ≤ µ ≤ µ−(λ)

}
∪
{
λ >

1

3
,

3

4
λ2 ≤ µ < λ2

}
. (2.3.14)
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Figure 2.10: Geometrical meaning of the parameters of the cubic. Recall also that the
cubic is symmetric with respect to the point of inflexion.

Everywhere else, ∆(r) does not vanish for real values of r (unless they are hidden by the
horizon). The previous analysis suggests that the space of parameters is divided into different
regions that should be treated separately. Depending on the sign of the discriminant we will
have one or three real solutions (cosmological constants). As we shall see, for ∆ > 0 we have
three real solutions while for ∆ < 0 we will have just one.

The algebraic approach portrayed in this section can be extended to arbitrary higher
order Lovelock theory in higher dimensions. It can be surely dealt with analytically up to
the fourth order gravity while higher order cases may require numerical analysis since the
quartic is the highest order polynomial equation that can be generically solved by radicals
(Abel-Ruffini theorem). Despite these difficulties most of the relevant information about
black holes in a given Lovelock theory can be extracted from the implicit solution (2.1.8), as
we will see in the next chapter. This effective approach will allow the discussion of completely
general Lovelock theories, namely their thermodynamic properties. We will focus from here
on in the case of cubic Lovelock theory. This particular case has taught us that it is a subtle
issue to determine which is the branch of solutions connected to Einstein-Hilbert and, thus,
presumably stable. From the point of view of a black hole background, the relevant question
is whether one can find an asymptotically AdS black hole with a well-defined horizon. This
is a delicate problem that can be amusingly casted in terms of a purely algebraic setup.

2.4 Black holes in third order Lovelock theory

As discussed in the preceding paragraphs, most of the information needed to clarify the
existence of black hole solutions for different values of the Lovelock couplings relies in the
behavior of a cubic polynomial. There is a very convenient way of parametrizing the cubic,
suitable for analyzing the EH branch of the black solution in terms of the geometry of the
polynomial. We can characterize a cubic in terms of four fundamental parameters [84],
δ, h, xN and yN (see figure 2.10). Let us show how this works in our case.
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If we start from our cubic polynomial, pLL3 [x; r] = µ
3
x3 + λx2 + x+ a0(r), a shift on the

variable x = z + xN , where xN = −λ
µ
, leads to a polynomial, pLL3 [z; r], that is known as the

reduced cubic. N is the point of inflexion, and it can be shown that h is a simple function
of δ, namely

h = −2

3
µ δ3 , where δ2 =

λ2 − µ
µ2

. (2.4.1)

Thus, the shape of the cubic is completely characterized by the parameter δ. Either the
maximum and minimum are different (δ2 > 0), or they coincide at N (δ2 = 0), or there
are no turning points (δ2 < 0). We choose the sign of δ so that δ > 0 corresponds to the
situation depicted in the figure (µ < 0) and h (when δ is real) is a positive quantity,

δ = − 1

µ

√
λ2 − µ ⇒ h =

2

3µ2

(
λ2 − µ

)3/2
. (2.4.2)

Consider the usual form of the cubic equation pLL3 [x; r] = 0, with roots α, β and γ, and
obtain the reduced form by the substitution x = xN + z. The equation has now the form,

µ

3
z3 − µ δ2 z + yN(r) = 0 , (2.4.3)

with roots α− xN , β − xN and γ − xN . The parameter yN(r) is obviously the only one that
depends on the radial coordinate through a0(r),

yN(r) = a0(r) +
λ

3µ2

(
2λ2 − 3µ

)
. (2.4.4)

This form allows us to use the identity

(p+ q)3 − 3p q(p+ q)− (p3 + q3) = 0 . (2.4.5)

Thus z = p+ q is a solution where

p q = δ2 and p3 + q3 = −3 yN
µ

. (2.4.6)

Solving these equations by cubing the first and substituting into the second, and solving the
resulting quadratic in p3 gives

p3 =
3

2µ

(
−yN ±

√
y2
N − h2

)
. (2.4.7)

The discriminant of the polynomial reads

∆(r) = −3µ2
(
y2
N − h2

)
= −3µ2 (y+ y−) , (2.4.8)

where y± = yN ± h are the y-coordinates of the maximum and the minimum respectively.
∆(r) acquires a neat geometrical meaning in the light of this expression. We can see that
the sign of the discriminant is determined by the position of the maximum and the minimum
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with respect to the x-axis. When h ∈ C, y+, y− ∈ C, this corresponding to the case µ > λ2.
The singular locus ∆ = 0 corresponds to y± = 0 at r =∞ (see figure 1.1).

We can treat separately the different regions. For y2
N > h2 (y+y− > 0), there are just one

real root that can be easily obtained as1

α = xN +
3

√
−yN +

√
y2
N − h2 +

3

√
−yN −

√
y2
N − h2 . (2.4.9)

For y2
N = h2 (y+ y− = 0), there are three real roots two of them equal. The roots are

α = xN + 2δ̃ and β = γ = xN − δ̃, where the sign of δ̃ depends on the sign of yN and has to
be determined from

δ̃ = 3

√
−yN
2a

= ± 3

√
−h
2a

= ±δ (2.4.10)

If yN = h = 0, then δ = 0, in which case there are three equal roots at x = xN .
For y2

N < h2 (y+y− < 0), all three roots are real and distinct. The easiest way to proceed,
without having to find the cube root of a complex number, is to use trigonometry to solve
the reduced form with the substitution z = 2δ cos θ, that gives

cos 3θ =
yN
h

. (2.4.11)

The three roots are therefore given by

α = xN + 2δ cosθ ,

β = xN + 2δ cos(θ + 2π/3) , (2.4.12)

γ = xN + 2δ cos(θ + 4π/3) .

The important point to notice here is that, as yN varies (or equivalently r since yN(r) is
monotonic), the angle θ can run from zero (where β = γ and α is the real branch parame-
terized by (2.4.9)) and π/3 (where α = γ and β is the real branch parameterized by (2.4.9)).
We can follow the real root(s) as yN changes. For yN > h we have just (2.4.9) as a real
root. For yN = h we have α = xN + 2δ and β = γ = xN − δ. For −h < yN < h, the
angle θ is monotonic with yN going from θ = 0 to θ = π/3. Beyond that point, two roots
become complex again but not the same two that were imaginary for yN > h. Thus we have
β = xN − 2δ and α = γ = xN + δ for yN = −h the latter two roots becoming complex for
yN < −h where β correspond to (2.4.9). Each of this solutions is continuous with yN and the
same can be checked with the other parameters of interest, µ and λ. The only presumably

1The complex branches being,

β = xN +
−1 + i

√
3

2

3

√
−yN +

√
y2N − h2 +

−1− i
√

3

2

3

√
−yN −

√
y2N − h2 ,

γ = xN +
−1− i

√
3

2

3

√
−yN +

√
y2N − h2 +

−1 + i
√

3

2

3

√
−yN −

√
y2N − h2 .
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Figure 2.11: ∆(r) < 0 ∀r ∈ [r+,∞) corresponding to M(0)
− . There is a single branch

which is real. As we will see later, it is the EH-branch for the black hole solution.

singular point is µ = 0 where the degree of the equation changes, but we can take a well
defined limit where one of the solutions diverges and the other two coincide with those of
the quadratic polynomial. These solutions are continuous, but the ‘always real branch’ as
usually parameterized in (2.4.9) is discontinuous since there is an interval of values of x that
cannot be taken by the α nor the β branches (see figure 2.16). From now on we will refer to
as α (β) the branch real for yN →∞ (−∞).

Just by analyzing the shape of the cubic we can understand which one is the branch
connected to the horizon (x = 0 for r = r+ (a0 = 0)). We have given values of a1 and a0

and so the polynomial at the origin and its first derivative there. The first derivative of the
polynomial at x = 0 is always 1, and so the polynomial is growing at that point. Also, we
know the sign of xN when λ and µ are given. We can distinguish several different cases.
We know from our previous analysis that we can take a representative point in each of the
relevant regions and analyze the behavior of the solutions.

For µ ≥ λ2 (δ2 < 0) there are no turning points (or they coincide at the inflexion point)
and the polynomial is monotonically growing. There is just one real branch of solutions for
all values of r and it has then no discontinuity. The same happens in the region contained
in between the curve µ = 3/4λ2 and µ = λ2 for λ < 0 and in between µ = µ+(λ) and µ = λ2

for λ > 0. In this whole region we have ∆(r) < 0 ∀r ∈ [r+,∞). This happens for any point

(λ, µ) lying in the upper white part of figure 2.9. Let us call this region M(0)
− ,

M(0)
− =

{
λ ≤ 0 , µ >

3

4
λ2

}
∪
{

0 < λ ≤ 1

3
, µ > µ+(λ)

}
∪
{
λ >

1

3
, µ > λ2

}
. (2.4.13)

In this case, the roots of (2.3.11) behave the same all along the radial flow; there is a single
real branch which is the relevant one for asymptotically AdS black hole solutions with a
well-defined horizon, and two complex conjugate unphysical branches (see figure 2.11). The

µ = λ2 line for λ > 1/3 is excluded from M(0)
− since in this case the inflection point is

situated above the x-axis

yN(∞) =
1

λ

(
λ− 1

3

)
> 0 (2.4.14)
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Figure 2.12: ∆(r) > 0 ∀r ∈ [r+,∞) corresponding toM(0)
+ . This situation is very similar

to LGB gravity. One of the solutions diverges as µ→ 0

with xN < 0, and then, when the inflection point crosses the x-axis (r = r? where ∆(r?) = 0)
a (naked) singularity shows up even if the spacetime is perfectly regular for r 6= r?. The
lower white part of figure 2.9, instead, has ∆(r) > 0 ∀r ∈ [r+,∞). Let us call this region

M(0)
+ ,

M(0)
+ =

{
λ ≤ 0 , µ−(λ) < µ < µ+(λ)

}
∪
{

0 < λ <
8

27
, µ−(λ) < µ <

3

4
λ2

}
. (2.4.15)

In this case, again, the roots of (2.3.11) behave the same all along the radial flow (see figure
2.12); there are three real branches but only one is relevant for asymptotically AdS black
hole solutions with a well-defined horizon (see figure 2.12), the EH one. This is reminiscent
of the LGB case where there are two real solutions for λ < 1/4. One of the branches diverge
as µ→ 0.

For µ < λ2 we have in general two values of r (or yN) for which ∆(r) = 0, but they can be
included or not in the interval r ∈ [r+,∞) (in the previously analyzed regions these values
lie outside this interval). For µ > 0 (δ < 0) λ < 0 (xN > 0) maximum and minimum are
located at positive values of x and so the branch connected to the horizon has no problems
of reality or continuity even if eventually (in the subregion contained in M(+)) ∆(r∗) = 0
for some value r∗ ∈ [r+,∞) (see figure 2.13).

For µ < 0 (δ > 0) the only growing part of the polynomial is the one in between the
minima and the maxima, corresponding to the branch γ. The maximum is located to the
right of the origin x = 0 and does not pose any problem regarding the EH branch, but the
minimum is located in negative values of x and then we must have y−(∞) < 0 (yN(∞) < h)
in order to have a real cosmological constant. The singular curve y− = 0 correspond in this

region to µ = µ−(λ). The region with real cosmological constant correspond to M(0)
+ while

the region with complex cosmological constant correspond to the region M(−) (see figure
2.14).

The γ branch for µ < 0 is continuously deformed into α or β when crossing the µ = 0
line. For λ < 0 the α branch diverges and γ and β interchange their rôles. For λ > 0 is
β the diverging branch and γ is deformed into α. For µ = 0 we can identify the remaining
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Figure 2.13: ∆∞ < 0 and ∆(r+) > 0 corresponding to M(+).
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Figure 2.14: ∆∞ < 0 and ∆(r+) > 0 corresponding to M(−). Regarding the behaviour
of ∆(r) this region seems similar to the previous one but in this case one of the degen-
erate branches when ∆(r) = 0 is the one connected to the horizon. Thus, there is a real
cosmological constant but it does not correspond to the branch with horizon.
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Figure 2.15: ∆∞ > 0 and ∆(r+) < 0 corresponding to M(+).
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Figure 2.16: ∆(r) < 0 ∀r ∈ [r+, r
−
? ) ∪ (r+

? ,∞) corresponding to M(2). In this case as in
the figure 2.14 there is no way of continuously connect the real cosmological constant to
the horizon

branches as the solutions for the LGB case.

The remaining case to be discussed is µ > 0 (δ < 0) and λ > 0 (xN < 0). In this
region (except as already discussed for µ ≥ λ2) the two critical points are located at negative
values of x, and they can have positive or negative y-values. For the subregion contained in
M(+), see figure 2.15. As in the previous case, in order to have a real value for the relevant
cosmological constant the value y− for the minimum must be negative. Again, the limiting
case (y− = 0) corresponds to µ = µ−(λ) as can be seen in figures 2.16 and 2.14

In any case the necessary and sufficient condition for the cosmological constant to be
real is y−(∞) < 0 or yN(∞) < h. Therefore we have an excluded region of parameters
below µ = µ−(λ). The other curve µ = µ+(λ) does not affect the qualitative behaviour
of the EH solution since it is just indicating the appearance of two new real cosmological
constants. Thus, in most of the space of parameters the existence of two extra solutions
does not qualitatively affect the solution with horizon, except in the excluded region where
the cosmological constant connected to the horizon is not real. This excluded region reduces
to λ > 1/4 in the LGB limit, as it should be expected. The remaining boundary of the
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excluded region, for λ > 1/3, is the µ = λ2 line.
Notice that the well behaved solution is regular when crossing the curve µ = µ+(λ);

the would be symmetry enhancement affects the other two cosmological constants. In other
words, the two cosmological constants that agree over this curve are not those connected to
the horizon, and then the theory has propagating linear perturbations when expanded about
the EH vacuum. Symmetry enhancement for this vacuum occurs at µ = µ−(λ) and this is
the boundary of the excluded region.

The usual parameterization of the black hole solution [85, 86] shall make manifest the
different properties portrayed in the previous section. In fact, the usual parametrization of
the three, in general complex, solutions for the function f in third order Lovelock gravity is

fi =
r2

L2

λ

µ

[
1 + αi

(
J(r) +

√
Ω(r)

)1/3

+ ᾱi

(
J(r)−

√
Ω(r)

)1/3
]
, (2.4.16)

where

Ω(r) = J(r)2 + Γ3 , (2.4.17)

with

J(r) = 1− 3µ

2λ2
+

3µ2

2λ3

(
1−

r6
+

r6

)
=

3µ2

2λ3
yN(r) , (2.4.18)

Γ ≡
( µ
λ2
− 1
)

⇒ Γ3 =
3µ2

2λ3
h2 . (2.4.19)

αi are the three cubic roots of unity, α0 = 1, α± = −1±i
√

3
2

, and the bar indicates complex
conjugation. Each of these solutions is associated with one possible value of the cosmological
constant, and so, fixing the value of the cosmological constant fixes the function. Notice that
f is directly related to our previous parameterization as

f = − r
2

L2
x , (2.4.20)

where x is the relevant branch (α, β or γ) in each region.

2.5 Charged and rotating solutions

One obvious extension of Lovelock gravity, probably the simplest one, is that of Lovelock-
Maxwell theory. Solutions charged under both Maxwell and Born-Infeld electrodynamics
have been known for long time [87, 88], and were reconsidered recently [89–103]2. Most of
these efforts have been devoted to the simpler LGB case and a complete classification of
all possible black hole solutions in Lovelock theories is still missing. Even though Lovelock-
Maxwell solutions have in general a more complex structure, it is quite straightforward how
to modify the general approach outlined throughout this chapter to the charged case.

2The analogous solutions in quasi-topological gravity have been considered in [104]
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For the action principle we just need to include the Maxwell action as part of the matter
action

I =
1

16πGN

(
1

(d− 3)!

K∑
k=0

ck
d− 2k

∫
Lk + F ∧ ?F

)
, (2.5.1)

where the normalization of the Maxwell term has been chosen for later convenience. The
equations of motion for the electromagnetic field in absence of currents reduce to

d ? F = 0 ; dF = 0 (2.5.2)

where the second equation corresponds to the Bianchi identity coming from the fact that
the field strength arises from a Maxwell 1-form as F = dA. The black hole ansatz will be
the same assumed for the uncharged black hole (2.1.3) whereas the field strength F takes
the form

F =
q

rd−2
e0 ∧ e1 (2.5.3)

In 4-dimensions we can also add the magnetic charge but this would not change the form of
the black hole metric.

This expression solves the above equations and sources the gravitational interaction in
such a way that the tt-component of the equations of motion now becomes[

d

d log r
+ (d− 1)

]
Υ[g] =

(d− 3)Q2

r2(d−2)
, (2.5.4)

Q being related to the electric charge q (in geometric units),

Q2 =
q2

(d− 2)(d− 3)
(2.5.5)

whereas the remaining field equations are either equal or follow from energy conservation.
The final, implicit but exact, solution is very similar to the uncharged one it just has an extra
term in the right hand side of the polynomial equation that changes its radial dependence,

Υ[g] =
κ

rd−1
− Q2

r2(d−2)
, (2.5.6)

Instead of just having a monotonically decreasing piece, the right hand side grows at first,
it reaches a maximum and then decreases. The two usual horizons appearing in the general
relativistic case correspond each of them to one of the monotonic pieces. In order to find
the horizons in general we may perform the change g+ = σ/r2

+ in such a way that we get an
equation for g+ that we can analyze in very much the same way as in the uncharged case.
See figure 2.17 for a graphical visualization of the resulting equation,

Υ[g+] = κ
(g+

σ

) d−1
2 −Q2

(g+

σ

)d−2

(2.5.7)

As for the neutral case, the different Lovelock couplings fix the shape of the polynomial
Υ[g]. While varying r from infinity to zero, the function g(r) is given by the implicit solution
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Figure 2.17: Einstein-Hilbert gravity in five dimensions for L = 1, κ = 1 and Q2 =
0.15. The dashed lines are plots of (2.5.7) for the indicated values of the mass and charge
parameters and σ = ±1, for positive and negative values of g respectively. The line
corresponding to σ = 0 is just the vertical line g = 0. The crossing of these lines with
the polynomial give the possible values for g (in blue) at the horizon and then of r+.
Contrary to the uncharged case, the solution climbs up the polynomial up to a maximal
value given by the maximum of (2.5.7) (in red) and then goes back down. This happens
for all three topologies in such a way that for planar black holes g = 0 is actually a double
root corresponding to two different horizon radius.
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of equation (2.5.6) that graphically corresponds to climbing up (for positive mass) a given
monotonic part of the curve Υ[g] starting from one of its roots (tantamount of a given
comological constant). This is illustrated in the figure by just Einstein-Hilbert gravity but,
except for the position of the singularities, everything holds for any other branch of solutions
in qualitatively the same way. The metric function g is monotonic in r up to a given radial
position r? correspnding to the maximum value of the right hand side of (2.5.6). Beyond
that point the solution slope changes sign and g is again monotonic in the opposite direction.
Despite the differences, each branch can be again identified with a monotonic section of the
polynomial Υ[g], and can easily be visualized graphically.

For each of the two monotonic section of g we can analyze the existence of horizons
in the same way as we did in previous sections. Indeed planar black holes may just have
horizons for the EH-branch as before. As in the uncharged case g = 0 is just crossed by this
particular branch. Nevertheless, the addition of charge implies that we need to satisfy an
extra requirement for g = 0 to actually be a horizon. We need the maximum of the right
hand side of (2.5.6), let us call it Υ?, be bigger than Υ[0] so that we get two crossings of
the polynomial under radial flow. In fact Υ[0] = Υ? correspond to the extremal limit in the
planar case. Once this condition is fulfilled, the solution will always display two horizons
for type (a) solutions whereas those of (b) type may have one or two depending on Υ?

being smaller or bigger than the value of Υ[g] at maximum that indicates the position of
the singularity. In the latter case we run into the singularity as we climb up our branch
of interest, radial positions beyond that point being unphysical. Notice that the negative
parts of the polynomial become relevant in this case, even though for regular solutions these
regions lie behind the horizon. They are explored in general as we approach r = 0 in such a
way that zero radius singularities happen now for branches extending all the way to g = −∞
and the minima indicate as well the position of singularities.

For non-planar topology the discussion is a bit more involved but follows in similar terms.
For spherical black holes we may have several horizons as we climb up the branch, as in the
uncharged case, but just one when going back down. As before the existence of horizons in
the second monotonic section of g is precluded in type (b) branches when Υ? is bigger than
the value of the polynomial at the maximum, we encounter the singularity before we get to
the turning point Υ[g] = Υ?. For hyperbolic branches the maximal number of horizons is
one for the first section of g (going up) but it may be bigger than one in the second (going
down), generalizing the observation made for negative mass hyperbolic solutions. Actually,
for negative masses, there is just one section of g, this function being completely monotonic.

Considering masses for which the black hole has a horizon in the uncharged case, there
will be in general an upper bound in the charges we may consider corresponding the bound
itself to an extremal black hole. Even though the exact expression for the radius of the black
hole in terms of the charge and mass is complicated in general we may find it combining the
horizon equation (2.5.7) and its first derivative

Υ′[g+] =
d− 1

2σ
κ
(g+

σ

) d−3
2 − d− 2

σ
Q2
(g+

σ

)d−3

(2.5.8)

the horizon being degenerate when both equations are satidfied. This system can be solved
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Figure 2.18: LGB extremality curves in the (κ,Q2) parameter space in 5 dimensions for
λ = −1 and λ = 0.1 respectively in units of L. The dot indicates where the curve ends.
For negative λ the extremality curve ceases to exist for masses below the one for which the
degenerate horizon coincides with the singularity. The dashed line indicates the boundary
between black holes and naked singularities in that case.

in parametric form as

κ =
2rd−1

+

d− 3
((d− 2)Υ[g+]− g+Υ′[g+]) (2.5.9)

Q2 =
r

2(d−2)
+

d− 3
((d− 1)Υ[g+]− 2g+Υ′[g+]) (2.5.10)

this expressions parameterizing a curve that divides the (κ,Q2) space in two pieces, one
corresponding to black holes with at least one horizon and the other to naked singularities.
At this point it would be interesting to generalize the arguments of [105] to charged solutions
in Lovelock gravity in order to elucidate the possibility of turn non-extremal into extremal
black holes through any physical process. However, the existence of naked solutions in
the uncharged case suggests this is not straightforward. In chapter 4 we will explore an
alternative route although just for the neutral case. Notice that for a given branch g+ takes
values on a range (so does r+), beyond that point we may go from a black hole to a naked
singularity without ever becoming extremal.

Two prototypical examples in the case of LGB gravity are shown in figure 2.18. For
negative λ the extremality curve stops at the value of g+ corresponding to the maximum.
Beyond that point the separation between black holes and naked singularities corresponds
to those solutions where the (non-degenerate) outer horizon coincides with the singularity.
Instead of zero this solutions have diverging temperature, as we will see in the next chapter.
For positive λ the curve extends all the way to Q2 = 0. In five dimensions the extremal
value of κ at Q2 is finite, actually κ = λ, the gap found in the neutral case, whereas for
dimensions greater than five the intersect is zero.
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For non-linear electrodynamic sources, such as for instance Born-Infeld charges, the r-
dependence of the solution will be a bit different but in general lines the same logic applies.

Before concluding this section let us say something about the addition of angular momen-
tum. Rotating solutions which would generalize the Kerr or Myers-Perry rotating black holes
of General Relativity are hard to find in general Lovelock gravity. Despite the many attempts
in that direction this remains an unsolved problem. Recently, it was proven in [106] that
the Kerr-Schild ansatz does not yield any solution in Lovelock theory (except for the very
special cases of Einstein-Hilbert and Chern-Simons gravity), making manifest the intricacy
of Lovelock equations in this case.

Nonetheless, some advances in this area were recently achieved. In [106] an exact analytic
rotating solution was found for Chern-Simons gravity in five dimensions. This LGB solution,
however, does not present a horizon, and thus it does not represent a black hole. Moreover
the numerical analysis of [107] supports the idea of the existence of rotating solutions, in
the same way as the approximated analytic solutions found in [108]. Other solutions are
known which represent rotating flat branes, a simple extension of topological black holes
with σ = 0.

Despite the difficulties, the linear approximation to the (slowly) rotating solution is quite
simple, and can be easily generalized to any order in curvatures. We just need to modify the
spherically symmetric ansatz as

e0 =
√
f(r) (dt− a sin2 θdφ2) , e1 = 1√

f(r)
dr , e2 = rdθ ,

e3 =
1

r
sin θ

(
r2dφ+ a(Λr2 − 1)dt

)
ea = r cosθẽa , (2.5.11)

where the ẽa are the vielbein basis of the (d− 4)-sphere, yielding a very simple form for the
curvature 2-form

R01 = −1

2
f ′′(r) e0 ∧ e1 + ag′(r) cos θ e2 ∧ e3 ,

R02 = −f
′(r)

2r
e0 ∧ e2 +

1

2
ag′(r) cos θ e1 ∧ e3 ,

R12 = −f
′(r)

2r
e1 ∧ e2 +

1

2
ag′(r) cos θ e0 ∧ e3 , (2.5.12)

R03 = −f
′(r)

2r
e0 ∧ e3 − 1

2
ag′(r) cos θ e1 ∧ e2 ,

R13 = −f
′(r)

2r
e1 ∧ e3 − 1

2
ag′(r) cos θ e0 ∧ e2 ,

R0a = −f
′(r)

2r
e0 ∧ ea , R1a = −f

′(r)

2r
e1 ∧ ea ,

R23 = g(r) e2 ∧ e3 − ag′(r) cos θ e0 ∧ e1 , Rab = g(r) ea ∧ eb .
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for f(r) = 1 − r2g(r). In this way it is simple to see that the extra terms appearing in
the curvature do not contribute to the equations of motion to first order in a. The two
terms on any component of the curvature 2-form are orthogonal, they have components in
two non-intersecting planes. In this way the first correction to the field equation is order
a2. The same happens for the mass or any of the thermodynamic quantities, they do not
get corrected either. The only thermodynamic variables that are modified are the angular
velocity and the angular momentum

J =
2aM

d− 2
(2.5.13)

The obtained metric becomes

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

d−1 − 2ar2 sin2 θ(g(r)− Λ)dtdφ (2.5.14)

with an indetermined constant Λ related to the angular velocity at infinity. We may choose
Λ to be the effective cosmological constant of the branch under study, g(∞) = Λ, in such a
way that this angular velocity vanishes,

Ω∞ =
gtφ
gφφ

= ar2(g(r)− Λ) → 0 (2.5.15)

at the horizon however
ΩH = a(1− r2

+Λ) (2.5.16)

2.6 Lovelock cosmologies

Another particularly simple solution in the context of Lovelock gravities are FRW cosmolo-
gies. In a bit more involved way we may use the same graphical techniques to analyze them
as well. We consider the usual homogeneous FRW ansatz

ds2 = −dt2 + a(t)2dΣ2
d−1,σ (2.6.1)

whose natural vielbein basis and resulting spin connection correspond to

e0 = dt , ea = a(t)ẽa , (2.6.2)

ωa0 =
ȧ

a
ea , ωab = ω̃ab (2.6.3)

where (ẽa, ω̃ab) are the vielbein and spin connection of the maximally symmetric piece. This
choice yields a particularly simple form for the curvature 2-form

R0a =
ä

a
e0 ∧ ea , Rab =

σ + ȧ2

a2
ea ∧ eb . (2.6.4)

The equations of motion are also very simple, diagonal, the tt-component being proportional
to the characteristic polynomial of the Lovelock theeory whereas the rest

Eb ∼
[

d

d log a
+ (d− 1)

]
Υ[G] (2.6.5)
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the argument function G being in this case G = σ+ȧ2

a2 , the rôle of the f function of the black
hole being played by −ȧ2. The vacuum solutions are in this way exactly the same ones we
found using the black hole ansatz, i.e. maximally symmetric solutions with

σ + ȧ2

a2
=
ä

a
= Λ (2.6.6)

If we source these equations by a homogeneous isotropic perfect fluid filling the whole uni-
verse, then we have that the polynomial is basically the energy density, ρ and the second
equation of motion defines the corresponding pressure, p, subject the energy conservation
equation. That system of equations can be equivalently written as

Υ[G] =
8πGN

d− 1
ρ (2.6.7)

ρ̇+ (d− 1)
ȧ

a
(ρ+ p) = 0 (2.6.8)

We can even introduce a third equation for G[
d

d log a
+ 2

]
G = 2

ä

a
(2.6.9)

in such a way that σ appears as an integration constant, thus set by the initial conditions. We
thus have a complete set of three differential equations that fully determine the dynamics
of our solution. The only missing piece is the equation of state of the fluid, consider for
simplicity a single species fluid with a linear equation of state, p = (ω − 1)ρ. Then we can
use the conservation equation together with this last expression to get a density function,
ρ(a), in our case

ρ =
ρ0

a(d−1)ω
, (2.6.10)

effectively reducing the number of equations to two; one conservation equation (2.6.7) and
one acceleration equation (2.6.9). ω = 0 is equivalent to the cosmological constant and can
be reabsorved into Υ, we will not consider this case and asume 0 < ω ≤ 2 which satisfies the
dominant energy condition, ρ > ‖p‖. We can make an analogy with a one-dimensional system
of a particle on a potential, although with a non-canonical kinetic term. The conservation
equation is in general of the form

E(ȧ2, a) = 0 (2.6.11)

whereas the acceleration equation derives from the first one deriving with respect to time

∂E

∂(ȧ2)
ä = −1

2

∂E

∂a
, (2.6.12)

analogous to the 1
2
ẋ2 +V (x) = E0 and ẍ = −V ′(x) equations of a particle in a potential. Due

to the higher order form of the equations of motion the form of these is more complicated but
the logic is the same. In our case the conservation and acceleration equations are independent
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because we have an extra variable G. Still we may integrate (2.6.9) in order to get G = σ+ȧ2

a2

and everything will then reduce to the conservation equation

Υ

[
σ + ȧ2

a2

]
=

8πGN

d− 1
ρ(a) (2.6.13)

We just introduced the acceleration equation (2.6.9) in order to make clear that σ may be
considered an integration constant instead of something of our choice. Even though we can
rescale this constant to the three 0,±1 usual values, it may take in principle any value. σ
plays the same rôle as the energy, E0, of the one-dimensional particle. We have effectively
changed from a system in real space (t, a(t)) to a problem in phase space (a, ȧ(a)). We can
even write the original metric in those variables as

ds2 = − da2

ȧ(a)2
+ a2dΣ2

d−1 (2.6.14)

Making the analogy with the black hole solution much more transparent. This parallelism
is even more explicit taking into account that R2

AH = 1
G(a,ȧ)

is the radius of the apparent

horizon of that spacetime [109] and has associated thermodynamic variables in very much
the same way as the black hole.

Once the conservation equation (2.6.7) has been stablished the dynamics of the system
is completely determined by two initial conditions

a(0) = a0 ; ȧ(0) = v0 (2.6.15)

and the choice of a given branch of the polynomial.
In the general relativistic case we would just plug ρ(a) into the constraint in order to

find a = a(t). In this more general case this cannot always be done and even when we can
the equation for the different branches would be very complicated. Nevertheless we can still
use graphical techniques in order to analyze the qualitative behavior of the solutions.

We can determine the position of the turning points as we did for the black hole positions
in the black hole case. This is even clearer taking into account that the rôle of f is now
played by −ȧ2, thus horizons, f = 0, are now turning points, ȧ = 0. There is a crucial
difference however as the cosmological evolution corresponds to ȧ2 ≥ 0, hence the trapped
region in black hole language. The regions of interest are exactly complementary to those
analyzed in the black hole case. The turning points G+ = σ/a2, are the roots of the following
equation

Υ[G+] =
8πGN

d− 1
ρ
(√

σ/G+

)
(2.6.16)

For pressureless matter (ω = 1) this reduces to exactly the same equation as for black hole
horizons with κ = 8πGN

d−1
ρ0. Remark that considering positive energy, ρ0 > 0 density the

behavior of ρ(a) is monotonic even for several species. This follows from conservation of the
energy and the energy conditions. Notice also that we recover the vacuum solutions in the
limit of infinite expansion, a→∞, at least for dS branches. For AdS branches the vacuum
is in the untrapped region and thus we always encounter a turning point before reaching that
point. Remarkably, in the presence of radiation (ω = 2) the right hand side of (2.6.16) grows
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at least as Gd−1
+ whereas the polynomial grows at most as G

d−1
2

+ . The Big Bang singularity
a = 0 is then always in the ȧ2 > 0 (trapped) region and for low enough densities there is also
always at least one turning point.

As we have seen, the analogy with the black hole solution is very useful, vacua and
branches are the same, horizons map to turning points and f(r) to −ȧ2. In black holes we
usually restrict our analysis to the untrapped region f > 0 whereas in this case the physically
relevant region is the opposite, ȧ2 > 0, so that the cosmological stories lie to the right of the

ρ
(√

σ/G+]
)

curve.

The singularities are also the same as in the black hole case and occur either as a→ 0 (Big
Bang) or at points Υ′[G] = 0 where the acceleration (or equivalently Ġ) is not determined by
the equations of motion. In this case however, contrary to the black hole case this singularity
is transversable. There is no reason à priori for the energy density to be monotonous with
G. We just need to change the affine parameter describing the trajectory to the length in
phase space, ds =

√
da2 + dȧ2 and verify that the motion is then regular and the time spent

finite. An analogous phenomenon has also been observed in the context of braneworlds in
LGB gravity [110].

The curvature singularity appears just because the potential is multivalued and has a
degenerate point as Υ′[G] = 0. The prototypical example of this is a potential with two
branches of the form

V±(a) = ±
√
ak?
ak
− 1 (2.6.17)

that degenerates at a = a? and becomes imaginary beyond that point. The acceleration is
not well defined at the degenerate point

ä =
k

2

ak?
ak+1V (a)

(2.6.18)

diverging in opposite directions depending on wether we approach a? trough the + or −
branch. On the contrary, if we perform the change of variable mentioned above we get

da

ds
=

1√
1 +

(
ä
ȧ

)2

=
V (a)

√
E0 − V (a)√

V 2(a)(E0 − V (a)) + k2

16
ak?
ak+1

(2.6.19)

dȧ

ds
=

1√
1 +

(
da
ds

)2
(2.6.20)

well defined evolution equations for a and ȧ. As we approach the singular point, a = a?,
da/ds vanishes and then changes sign whereas dȧ/ds goes to one. In other words we have
a turning point with finite ȧ! Our cosmological particle just follows the potential through
the singularity changing from one branch to the other. The same happens for maxima and
minima of the Lovelock polynomial in this context. If we do not encounter a turning point
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Figure 2.19: Linear polynomial corresponding to the usual EH-branch for negative (c0 =
1), zero (c0 = 0) and positive (c0 = −1) cosmological constants (L = 1). The dashed lines

are just κ (g/σ)
d−1

2 for d = 5, corresponding to pressureless matter. The crossing of these
lines with the polynomial gives the turning points. The solid black line corresponds to
the critical value of the mass, κNariai = 1/4, that in this case corresponds to the critical
mass for the existence of a potential barrier in the dS case. For σ = 1 and κ > κNariai (or
r+ > rNariai), starting from the Big Bang singularity at a = 0 (equivalently Υ = ∞) the
asymptotically dS branch describes an always expanding spacetime whereas for the other
cases and topologies the turning point always exist. For the dS branch for κ < κNariai there
is also a second type of solution that describes a spacetime that collapses from vacuum
and then reexpands. This solution can be connected to the Big Bang by tunneling.

in the way we may start for a→∞ in a given dS vacuum, pass through the singularity and
end up in a different dS space after enough time. This would be the case, for instance, for
LGB gravity with two dS branches (i.e. c0 < 0 and c2 < 0).

We can take the analogy with the one particle system a bit further. The existence of
turning points will imply in some cases the existence of forbidden regions separating possible
cosmological trajectories. Quantum-mechanically we may calculate the tunneling probability
by performing a Wick rotation and computing the Euclidean action of the resulting trajectory
with the same energy. In the gravitational context we may think of doing the analogous
thing, this would amount to the computation of the Euclidean on-shell action, Î, of our
cosmological solution while going through the barrier. The tunneling probability will be
proportional to e−Î . As we will see in the next chapter, the Euclidean section has very
important applications also in the context of black holes.

We can now take any of the figures corresponding to black hole solutions from previ-
ous sections and reinterpret their trapped regions as possible cosmological solutions for a
pressureless fluid. As an example we may analyze graphically the case of Einstein-Hilbert
gravity with cosmological constant, our Lovelock cosmologies lie to the right of the black
dashed lines.



Chapter 3

Black hole thermodynamics

“Pour atteindre la vérité,
il faut une fois dans la vie se défaire de toutes les opinions qu’on a reçues,

et reconstruire de nouveau tout le système de ses connaissances.”

René Descartes

In the early 1970s, Bekenstein [111] argued that the second law of thermodynamics requires
one to assign a finite entropy to a black hole, even though this seemed to contradict the fact
that, as classical objects, they have zero temperature. Näıvely they would absorb matter
without ever emit anything. Bekenstein’s worry was that one could collapse any amount of
highly entropic matter into a black hole – which is an extremely simple object – leaving no
trace of the original disorder. This would in turn violate the second law of thermodynamics,
which asserts that the entropy of any closed system can never decrease. However, adding
mass to a black hole will increase its size, which led Bekenstein to suggest that the area of a
black hole is a measure of its entropy. This conviction grew when, in 1972, Hawking proved
that the surface area of a black hole, like the entropy of a closed system, can never decrease.

The similarity between black holes and thermodynamic systems was considerably strength-
ened when Bardeen, Carter, and Hawking [112] showed that these enigmatic obey a complete
set of rules that parallel exactly the laws of thermodynamics,

• The surface gravity κ is constant over the event horizon (zeroth law).

• For any two stationary black holes differing only by small variations in the mass M ,
angular momentum J , and charge Q (first law),

δM =
κ

8πGN

δA+ ΩHδJ + ΦHδQ (3.0.1)

55
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where ΩH and ΦH are the angular velocity and the electromagnetic potential at the
horizon respectively.

• The area of the event horizon of a black hole never decreases (second law),

δA ≥ 0 (3.0.2)

• It is impossible by any procedure to reduce the surface gravity κ to zero in a finite
number of steps (third law).

These laws were later shown to be much more general than the particular 4-dimensional
setting where they were discovered. In particular, the first law holds for much more general
gravitational actions, for which the entropy can be understood as a Noether charge [113].

In these laws the rôle of the temperature is played by the surface gravity but Bardeen,
Carter and Hawking, in their original paper, added: “It should however be emphasized that
κ/8πGN and A are distinct from the temperature and the entropy of the black hole. In fact
the effective temperature of a black hole is absolute zero. In this sense a black hole can be
said to transcend the second law of thermodynamics.”

At the time, there seemed to be a fundamental contradiction between the hypothesis of
black holes’ entropy being non-zero and them being perfectly absorptive objects. Classical
black holes are, after all, black: when placed in contact with a heat bath they will absorb
energy while emitting none, thus behaving as if they have a temperature of zero. Couple
of years later, Hawking himself came up with the resolution of this apparent paradox, the
problem being solved by quantum theory [114]. In the presence of a horizon quantum fields
were shown to be emitted with a thermal spectrum of temperature proportional to the surface
gravity of the hole, TH = κ/2π. This temperature has not yet been directly observed, that
would pressumably grant Hawking the Nobel prize! For typical black hole masses, Hawking’s
temperature is several orders of magnitude smaller than the cosmic microwave background,
thus impossible to identify. To have a Hawking temperature larger than 2.7 K (and actually
be able to evaporate), a black hole needs to have less mass than the Moon. Such a black
hole would be smaller than a needle’s eye1.

The above results establish that the parallel between the laws of black hole mechanics
and the laws of thermodynamics is not a mere coincidence. Indeed they seem to be hints
of some very deep physics, intertwining classical and quantum properties of these objects.
The Hawking effect establishes that the surface gravity of a black hole can indeed be in-
terpreted as a physical temperature. Further, mass in black hole mechanics is mirrored by
energy in thermodynamics, and we know from relativity theory that mass and energy are
actually equivalent. Connecting the two sets of laws also requires linking the surface area
of a black hole with entropy, as Bekenstein had suggested. This black hole entropy is called
its Bekenstein entropy, and is proportional to the area of the event horizon of the black
hole. The Generalized Second Law of thermodynamics then conjectures that the sum of the
entropy of the matter outside a black hole and its own never decreases. Black holes can be
described as thermodynamic ensembles to which all the usual machinery of thermodynamics

1Data from Einstein online

http://www.einstein-online.info/elementary/quantum/evaporating_bh/?set_language=en
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can be applied, allowing the description of new and interesting phenomena, including phase
transitions.

The phase structure of General Relativity is quite well understood at present. As we
increase the dimensionality however this phase structure gets increasingly intricate and di-
verse. In dimensions greater than four the metric has many more degrees of freedom and,
as a result, the spectrum of the theory gets richer. We may have extended black objects,
like strings or branes; but also more rotation planes and extra dimensions that may be com-
pactified à la Kaluza-Klein. The analysis of this phase structure is very interesting for a
wide variety of reasons. First of all it may help to elucidate which features of general rela-
tivity are universal and which are on the contrary d-dependent. This particular question is
exacerbated in the context of Lovelock, or more general gravity theories, as we also increase
the number of tunnable couplings as we increase the dimension. In this context even the
properties of static solutions are poorly understood and seemingly pathological features have
appeared. The detailed analysis of the thermodynamics of these solutions is crucial for the
understanding of the consistency of the theory.

On the other hand the proposed study may uncover the existence of critical dimensions
where properties of black holes change dramatically, it will yield information about the
stability and phase transitions, and the possibility of thermodynamic and perturbative sta-
bility being correlated. Also, information about static and stationary solutions may provide
some clues about the endpoint of instabilities and even about time dependent trajectories
connecting different phases. Many interesting questions that deserve further investigation.

The thermodynamics of Lovelock theories is not as well understood as for the general
relativistic case, neither at the level of the basic principles. The zeroth law has been shown to
hold also in this context for matter respecting the dominant energy condition [115], exactly
as in the Einstein-Hilbert case. The first law is also verified, as expected in general grounds,
and has been used to extract the expression for the entropy [116, 117] of Lovelock black
holes that no longer coincides with the area of the event horizon. In particular, it has been
shown that the entropy may become negative in some cases, in conflict with any microscopic
interpretation. We will comment more on this below. An extended version of the first law has
also been proposed [76] where the Lovelock couplings play the rôle of extra thermodynamic
variables.

The second law of thermodynamics has a crucial rôle in the thermodynamic picture of
black hole dynamics as it enforces the irreversibility intrinsic to thermodynamic processes.
It has been shown that the second law also holds for general Lovelock theories in a number
of cases [118–120], namely a physical process version has been proven on [121]. Some words
on the third law can be also found in [122].

In the next sections we will take the usual thermodynamic interpretation inherited from
General Relativity for granted, discussing its implications for the stability and phase tran-
sitions of static black holes in Lovelock gravity. Some seemingly pathological features will
appear, its resolution, when available, being proposed and discussed. We will start with
some clarifying description of the connection between gravity and thermodynamics and the
presentation of the basic formulas for the thermodynamic variables.
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3.1 The path-integral approach to Quantum Gravity

The first attempts to the quantization of gravity were based naively on the usual techniques
of Quantum Field Theory combined with general considerations about the nature of the
gravitational interaction itself. Even though these theories were not completely consistent
they yield some partial results compelling enough to be trusted as a good first approximation
to the problem. These results are related to the Hawking effect, the connection between black
holes and thermodynamics and other semi-classical features. The most useful approach to
make this connection manifest is what is usually called Euclidean Quantum Gravity.

The starting point for this approach is the idea that one can represent the amplitude to
go from a state with metric g1 and matter fields φ1, on a spacelike hypersurface S1, to a
state with a metric g2 and matter fields φ2, on a hypersurface S2, as a path integral over all
field configurations g and φ which take the given boundary values on S1 and S2 [123]. More
precisely,

〈g2, φ2, S2 |g1, φ1, S1〉 =

∫
D[g, φ] eiI[g,φ] . (3.1.1)

This is the usual way a path integral is defined in any quantum-mechanical system, where
D[g, φ] is a measure in the space of all field configurations g and φ and I[g, φ] is the action of
the fields. Not all the components of the metrics g1 and g2 are physically relevant. We need
to specify only the three-dimensional induced metric h on S1 and S2, up to diffeomorphisms
which map this two surfaces into themselves.

Consider now an intermediate surface S0 between the two boundary surfaces. One would
expect that

〈h2, φ2, S2 |g1, φ1, S1〉 =
∑
h0,φ0

〈h2, φ2, S2 |h0, φ0, S0〉 〈h0, φ0, S0 |g1, φ1, S1〉 . (3.1.2)

This is a general property of amplitudes in quantum mechanics that one would want the
theory to verify. The amplitude to go from the initial state to the final state should be
obtained also by summing over all possible configurations on the intermediate surface. The
usual Lovelock bulk action alone does not verify this property, it needs to be supplemented
with the boundary terms discussed in section (1.2) [123]. This is an alternative motivation
for its inclusion, now in the quantum framework.

3.1.1 Spacetime complexification and thermodynamics

For real Lorentzian metrics g and real matter fields the action I[g, φ] will be real. The path
integral (3.1.1) will then oscillate and it is not clear whether it converges or not. In quantum
field theory one usually deals with this difficulty by a Wick rotation in the complex time
variable, i.e. t = −iτ . This idea applied to our general case leads to a path integral of the
form

Z =

∫
D[g, φ] e−Î[g,φ] , (3.1.3)
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where Î = −iI is called the Euclidean action,

Î[g, φ] = − 1

16πGN(d− 3)!

K∑
k=0

ck
d− 2k

(∫
M
Lk −

∫
∂M
Qk
)
−
∫
d4x
√
gLm , (3.1.4)

and g and h are now positive-definite.

A very important use of the Euclidean section is to construct the canonical ensemble for
a field theory. Consider a field φ. The amplitude to propagate from a configuration φ1 at
time t1 to a configuration φ2 at time t2 is given by the path integral

〈φ2, t2| φ1, t1〉 =

∫
D[φ] eiI[φ] , (3.1.5)

with the given boundary values. Using the Schrödinger picture we can also write this am-
plitude as

〈φ2| e−iH(t2−t1) |φ1〉 =

∫
D[φ] eiI[φ] , (3.1.6)

where H is the Hamiltonian driving the time evolution of the system. By going to periodic
complex time via a Wick rotation with t2 − t1 = −iβ and φ2 = φ1, and summing over a
complete orthonormal basis of configurations, we get the partition function,

Z =
∑
En

e−βEn =

∫
D[φ] e−Î[φ] , (3.1.7)

for the field φ at temperature T = β−1, where En is the energy of the n-th eigenstate. In
this last expression the path integral is taken over all fields φ which are real in the Euclidean
section and periodic in imaginary time with period β.

The same idea can be applied directly to any gravitational system making the connection
with thermodynamics explicit. The canonical partition function associated with a gravita-
tional system at temperature T can be defined as a path integral (3.1.3) extended to all
configurations with given boundary values and identified in with period β in Euclidean time.
Henceforth, we are going to consider only the gravitational part of the action setting all
matter fields to zero.

Once the partition function of our theory has been computed, it can be used to extract
information about the system. In particular we can derive all the thermodynamic magnitudes
of interest using the usual relations from statistical mechanics, namely the Helmholtz free
energy, relevant thermodynamic potential for the canonical ensemble,

F = M − TS = −T logZ , (3.1.8)

which tends to be minimum. The average energy and the entropy can be calculated from it
as
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〈E〉 =
1

Z
∑
En

Ene
−βEn = − ∂

∂β
logZ , (3.1.9)

S = −
(
∂F

∂T

)
= β 〈E〉+ logZ . (3.1.10)

In the canonical ensemble, the temperature is an external constraint applied over the system
and cannot be determined using this framework. In the gravitational context the temperature
of a black hole solution is computed from the required regularity of the Euclidean section of
the solution.

Finally, if one is to recover the classical gravitational theory we started with in the limit
of macroscopic objects, one expects that the dominant contribution to the partition function
will come from metrics which are an extremum of the action, i.e. solutions of the classical
equations of motion. This is known as the stationary-phase or saddle point approximation.
As a extreme version of this we can estimate the partition function by the single contribution
of the metric with least action,

logZ ≈ −Î[gmin] , (3.1.11)

and the free energy will coincide essentially with it, Î = βF = βM−S. As we will see in the
next section, the free energy is in general divergent due to infinite volume of the spacetime.
In order to regularize the Euclidean action we will then substract the contribution of some
reference background that customarily is taken to be the maximally symmetric vacuum for
the considered asymptotics.

3.1.2 AdS spacetime and the canonical ensemble

The canonical ensemble describes a system in thermal equilibrium with an infinite heat
reservoir so that the temperature of the system is fixed. This ensemble is ill-defined in
asymptotically flat spacetimes [124] because of the attractive nature of gravity and the
possibility of having a black hole. To illustrate this, let us consider four dimensional flat
space at temperature T . In this hypothetical situation every region of spacetime would be
filled with homogeneous thermal energy density, ρ ∼ T 4. Due to the infinite volume of the
spacetime, the total energy would be thus also infinite and the configuration, albeit simple,
inconsistent. The backreaction of this infinite mass would lead the spacetime to warp, and
it would be no longer flat. Another, argument from the classical point of view, is that
thermal perturbations of wavelength larger than the Jeans length scale2 grow exponentially
and collapse to form a black hole [124]. Thermal flat space is thus unstable to the formation
of black holes and these black holes are also unstable, in this case thermodynamically. They
cannot be in equilibrium with their enviroment, either decaying into pure thermal radiation
or engulfing the whole spacetime.

2Critical radius of a cloud (typically a cloud of interstellar dust) where thermal energy, which causes the
cloud to expand, is counteracted by gravity, which causes the cloud to collapse.
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This problem is naturally solved if we consider an anti-de Sitter space instead. In AdS
the locally measured temperature

Tloc =
T√
−gtt(r)

(3.1.12)

from any origin undergoes an infinite redshift as r → ∞, and the thermal energy density
decreases fast enough to ensure that the mass of the AdS space at any temperature T is
finite. In addition to this, the higher mass branch of black hole solutions is stable and,
as we will show in what follows, this determines a well defined partition function. In fact,
although AdS space at finite temperature is stable a black hole will be formed above some
critical energy density, the action for the hole becoming lower to that of thermal AdS. The
black hole metric is the dominant saddle in that case and the change from one phase to the
other is known as the Hawking-Page (HP) phase transition [125]. Even though the previous
argument is based in general considerations from General Relativity, something similar will
happen also for Lovelock theories of generic type.

We proceed now to make some of the above considerations concrete. We will then study
asymptotically AdS metrics identified periodically in τ with period β = T−1. Pure AdS
spacetime periodic in imaginary time is one of the solutions to be considered and we take it
to be the zero of action and energy. The analog of the Schwarzschild-AdS black hole solution
is probably the only other non-singular positive-definite solution for the classical equations
that satisfies the periodic boundary conditions. Its Euclidean section is

ds2 = f(r) dτ 2 +
dr2

f(r)
+ r2dΣ2

d−2,σ . (3.1.13)

The metric inside the horizon is not positive definite, and the manifold should then end
regularly at r = r+. Near the horizon the metric in the τ − r plane looks like R2 in polar
coordinates,

ds2 ≈ 4

f ′(r+)

(
dρ2 + ρ2 dτ 2

4/f ′(r+)2

)
+ r2

+dΣ2
d−2,σ , (3.1.14)

where ρ2 = r− r+ and ′ denotes derivation with respect to the radial coordinate r. Then, in
order to avoid a conical singularity at ρ = 0, the angular variable

τ

2/f ′(r+)
≡ ϕ , (3.1.15)

must be identified with period 2π. We have a smooth Euclidean section that cannot be
continued inside r = r+ only with period in complex time

β =
4π

f ′(r+)
, (3.1.16)

the solution being singular also for naked singularities. By the previous analysis this peri-
odicity corresponds to the theory being at finite temperature T = β−1, exactly the same
result we would get via the surface gravity, κ = f ′(r+)/2. As we will see in what follows, for
any given possible asymptotics of the Lovelock theory, the black hole solutions with under
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scrutiny can be divided into different branches, depending on the monotonicity properties of
the temperature as a function of the mass (or horizon radius). Some of them, as the lower
mass branch of GR, have negative specific heat this implying that the canonical ensemble
is unstable when this kind of black holes are present. However, some of the branches, in
particular the higher mass one of the EH solutions, have positive heat capacity and this
allows us to define the partition function in the path integral approach. Moreover, we will
see that, despite the non-compact nature of asymptotically AdS spaces, the action has a
finite value.

3.2 Lovelock black holes and thermodynamics

Some aspects of Lovelock black holes thermodynamics have been considered earlier in [126].
In the present section we will proceed to a complete analysis including all possible cases and
branches.

As discussed previously, Lovelock solutions displaying an event horizon have a well defined
temperature

T =
f ′(r+)

4π
=
r+

4π

[
(d− 1)

Υ[g+]

Υ′[g+]
− 2 g+

]
. (3.2.1)

From this expression, however, it is not clear what the sign of the temperature is. The first
term is always positive, for positive slope branches and mass. The sign of the second term
depends on σ in such a way that it is negative for spherical topology. Then the temperature
is trivially positive for positive mass black holes with hyperbolic or planar topology. It is also
positive for negative mass AdS black holes as will be explained shortly. This simply derives
from the fact that the temperature can just change sign if it vanishes at some intermediate
r+, i.e., if the black hole is extremal and the event horizon degenerates (f ′ = 0). This very
same logic will ensure the positivity of the temperature of spherical black hole horizons. This
will be explained later following a different approach.

We will also have negative temperature horizons but this is also a common feature of
Einstein-Hilbert gravity. For instance, the temperature of the cosmological horizon of pure
dS space is negative in our conventions, as it is negative for the inner horizon of a Reissner-
Nördstrom black hole, regardless of the asymptotics of the solution. The same will happen
here.

Following the approach outlined above we will compute the on-shell Euclidean action and
from that all the relevant thermodynamic variables of the system. The contribution to the
partition function from the black hole solution can be calculated as the difference between
its Euclidean action and that of pure AdS space (the maximally symmetric vacuum with the
chosen asymptotics) identified with the same period in imaginary time. The region inside
the horizon is excluded since it is not positive-definite. Then,

Î = − Vd−2

16πGN

K∑
k=0

ak(d− 2)

d− 2k

[∫ R

r+

dr

∫ β

0

∂2
r

(
rdgk

)
−
∫ R

0

dr

∫ β′

0

∂2
r

(
rdΛk

)]

= β
Vd−2

16πGN

∂r

[
rd+

K∑
k=0

ak(d− 2)

d− 2k
gk

]
(3.2.2)
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There is a subtlety, as we need to impose a slightly different periods, β and β′ (equal as
R → ∞), in each solution so that the geometry at any finite R is the same in both cases.
This is achieved by imposing the same physical radius in the τ circle,

β′
√
σ − ΛR2 = β

√
f(R) . (3.2.3)

Otherwise it would appear an extra constant piece coming from the subleading behavior at
infinity. With the above relation this constant piece becomes

βκ

2ΛΥ′[Λ]

[
dΥ̃[Λ]− 2ΛΥ̃′[Λ]

]
=

βκ

2ΛΥ′[Λ]
Υ[Λ] = 0 (3.2.4)

where we introduced a new polynomial

Υ̃[g] =
K∑
k=0

ck
d− 2k

gk , (3.2.5)

related to the one used in previous sections (2.1.8), as

Υ[g] = ∂x

[
xdΥ̃[g/x2]

]∣∣∣
x=1

(3.2.6)

or more precisely

Υ[g] = dΥ̃[g]− 2gΥ̃′[g] (3.2.7)

Υ′[g] = (d− 2)Υ̃′[g]− 2gΥ̃′′[g]

The characteristic polynomial used so far was related to the equations of motion whereas
the one introduced above is directly related to the coefficients appearing in the action. In
order to distinguish them in the text, they may be sometimes referred to as the black hole
and action polynomials respectively.

In the computation of the on-shell Euclidean action we have not considered the contri-
bution coming from the boundary terms appearing in (3.1.4). It can be easily verified that
these terms yield actually no contribution. Their subleading piece decays too fast for the
integral to be non-zero. In chapter 5 we will analyze the structure of these kind or terms in
more detail.

Using the new polynomial the expression for the free energy can be written in a much
more compact way,

F =
(d− 2)Vd−2

16πGN

∂r

[
rd+Υ̃[g+]

]
(3.2.8)

where the derivative is with respect to the radial variable not to the horizon radius, we
have to derive before evaluating at r = r+. The same simplicity will be inherited by other
quantities such as the entropy and will ease some of the manipulations that follow. The free
energy can also be written in a much more suggestive way as

F =
(d− 2)Vd−2

16πGN

[
κ− f ′(r+) rd−2

+ Υ̃′[g+]
]

(3.2.9)
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where we have taken into account the expression of the mass in terms of r+ (2.1.9).
This magnitude is relevant for processes at constant temperature to analyze the global

stability of the solutions. If we express everything in terms of g+ (see (3.2.1) for the expression
of f ′(r+)), the free energy has degree 2K − 1 in the numerator. Hence, that is the maximal
number of zeros that may eventually correspond to Hawking-Page-like phase transitions,
provided they have the adequate sign for each topology (see [127] for a concrete example in
the LGB theory). This expression also diverges at any maximum of the polynomial. We will
comment further about this below.

From the expression of the free energy it is now very easy to calculate the rest of the
thermodynamic variables. We can easily determine the expression of the entropy following
(3.1.10) yielding

S ≡ (d− 2)Vd−2

4GN

rd−2
+ Υ̃′[g+] (3.2.10)

=
A

4GN

(
1 +

K∑
k=2

k ck
d− 2

d− 2k
gk−1

+

)
.

This actually coincides with the entropy obtained by other means like the Wald entropy [117]
or integrating the first law [4]. In this way it was first found in [116]. The resulting expression
for K = 3 agrees also with that arising in cubic quasi-topological gravity [68]. The general
result will presumably coincide in general for that class of theories [69], as they also share
the same expressions for the mass and temperature of these solutions. The integration of
the first law will trivially yield the same form also for the entropy.

We fixed the integration constant such that the entropy vanishes when the horizon radius
goes to zero. For planar horizons (g+ = 0) this formula reproduces the proportionality of en-
tropy and area of the black hole horizon, A = Vd−2 r

d−2
+ , whereas it gets corrections for other

topologies. Interestingly enough, it has been recently suggested that this expression can be
extended towards the interior of the geometry by performing a radial foliation and replacing
g+ by g(r); the resulting function, S(r) being interpreted as the information contained inside
a given region of the spacetime [40].

Notice that the entropy is such that the ground state (r+ = 0) entropy vanish. We can
also verify that the radial derivative of the entropy is positive

dS

dr+

=
1

T

dM

dr+

=
(d− 2)Vd−2

4GN

rd−3
+ Υ′ [g+] . (3.2.11)

for branches free from BD instabilities this implying the positivity of the entropy. Negative
values for the entropy may however be encountered [116, 128–131] in the case of hyperbolic
horizons, in which such ground state does not exist, and also for type (b) spherical solutions,
that do not have a r+ → 0 limit. In both cases the r+ = 0 black hole does not belong
to the same branch where the negative entropies appear. It is actually unclear what is the
suitable vacuum solution to be used as a reference state with hyperbolic topology [132].
Generally the horinzonful solution of minimal mass corresponds to a extremal black hole.
As the hyperbolic vacuum (M = 0) has temperature, the extremal state has been proposed
as groundstate [133,134].
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The black hole solution presented has κ as its only parameter, but we can equivalently
consider r+. Following the computation of the entropy we may realize that some combination
of variations with respect to r+ vanishes

(d− 2)Vd−2

16πGN

(
∂+

[
rd−1

+ Υ[g+]
]
− f ′(r+) ∂+

[
rd−2Υ̃[g+]

] )
δr+ = 0 (3.2.12)

where in this case the derivatives are taken with respect to the horizon radius. This is
equivalent to first law of thermodynamics, dM −TdS = 0, the first term being the variation
of the mass and the second that of the entropy multiplied by the temperature. To actually
check this we have to verify that what we called the mass in (2.1.9) is actually the total energy
of the system (with respect to the reference background). From the above expressions this
is also very easy to see as the free energy has the expected expression

F = M − TS (3.2.13)

the expectation value for the energy (3.1.9) thus being exactly the mass identified before in
(2.1.9)

〈E〉 = F + TS = M (3.2.14)

For large mass the relation between the entropy and the mass can be made explicit, being
actually equivalent to the relation in the general relativistic or planar case,

S ≈ Vd−2

4GN

(
16πGN

(d− 2)Vd−2

L2M

) d−2
d−1

(3.2.15)

Notice that this expression is just valid for the EH-branch as all other branches do not
possess a well defined high mass limit.

The entropy is related to the number of microstates compatible with the macrostate of

the system. The previous result means that the density of states grows like log(N ) ∼M
d−2
d−1 ,

sufficiently slow so as to make the integral defining the partition function,

Z =

∫
N (M) e−βMdM, (3.2.16)

converge. This shows that the canonical ensemble in asymptotically AdS space is well be-
haved, at least for the EH branch, the general case being a bit more involved. In asymptot-

ically flat space the density of black hole states goes as logN ∼M
d−2
d−3 and so the canonical

ensemble is pathological. This pathology translates into the thermodynamical instability of
these black holes that have negative specific heat.

In the AdS case, for large r+, we can also approximate

M ∼ T d−1 , (3.2.17)

which again coincides with the planar case. Then, dM/dT > 0 and the black hole is locally
thermodynamically stable; it can be put in equilibrium with a thermal bath. In general, this
will not happen for small black holes. This points towards the occurrence of Hawking-Page-
like phase transitions of the kind interpreted as confinement/deconfinement phase transitions
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in the corresponding dual conformal plasma [135, 136], which have been already studied in
the case of LGB gravity [137, 138]. We will further investigate these in the case of general
Lovelock gravities for any of the branches of the theory. We will use the preceeding formulae
to calculate the free energy (the Euclidean on-shell action) and compare it between the
different phases, the lowest value corresponding to the globally stable phase on that branch.
This has to be studied in the non-planar case, otherwise scale invariance would only allow
for phase transitions at zero temperature. The complicated structure of phase transitions
would then be hidden and any black hole will correspond to the stable highest temperature
deconfined phase.

In chapter 5 we will perform the same kind of analysis for a slightly more general class
of solutions. In particular we will be interested in describing transitions between different
branches of a given Lovelock theory [5, 8].

One important feature that will be relevant later on, when discussing classical stability,
is that the temperature is proportional to the derivative of the mass (2.3.5) with respect to
the radius of the black hole horizon,

dM

dr+

=
(d− 2)Vd−2

4GN

rd−3
+ Υ′ [g+] T . (3.2.18)

The proportionality factor is exactly the radial derivative of the black hole entropy (3.2.11).
We can see that, as long as we are in a branch free from Boulware-Deser instabilities, the
radial derivative of the mass and the entropy are positive for T > 0. On the one hand, this
will be important when discussing classical instability as the heat capacity of the black hole
reads

C =
dM

dT
=
dM

dr+

dr+

dT
, (3.2.19)

and then the only factor that can be negative leading to an instability is dT/dr+.
Another useful application of (3.2.18) is to determine the sign of the temperature, which

is the same as that of the variation of the mass with respect to the horizon radius. One can
easily realize (see figure 3.1) that the sign of the temperature depends just on the direction
of the change of sign of the function f across the horizon. If this sign changes from f < 0
to f > 0 as, for instance, in the cosmological horizon of any asymptotically dS spacetime,
the temperature is negative, whereas it is positive in the opposite case. This is, of course,
consistent with temperature being basically the radial derivative of f (3.2.1). The black hole
horizon, as the largest root of (2.3.6), always corresponds to the latter case, separating an
untrapped region (f > 0) from a trapped one (f < 0), and as such it always has positive
temperature. The inner horizons have alternating signs for the temperature starting from
a negative one. Degenerate horizons obviously have zero temperature corresponding to
extremal black holes.

All the formulae presented so far in this chapter are also trivially valid, for inner and
cosmological horizons as we just used the fact that f(r+) = 0, something that will also
carry on for charged solutions [139,140]. Other properties that recently got some attention,
e.g. the product of inner and outer entropies being independent of the mass, do not have
this universal character. It is easy to see that the latter property follows from the simple
form of the thermodynamic variables in Einstein-Hilbert gravity and will not hold in general.
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Figure 3.1: Determination of the sign of the temperature for the cosmological and black
hole horizon of a dS branch. The cosmological horizon has Tc ∝ dκ/drc < 0 whereas the
event horizon of the black hole has T+ ∝ dκ/dr+ > 0. Recall that sign(δg+) = −sign(δr+)
and the same holds for every horizon.

If we take a derivative with respect to the mass of a product of two horizons from the same
black hole, thus corresponding to the same mass, charge, etc. we get

1

S+S−

∂

∂M
S+S− =

1

T+S+

+
1

T−S−
(3.2.20)

The product of entropies will be independent of the mass when the above derivative vanishes,
i.e. T+S+ + T−S− = 0, and this will happen in very specific cases within higher curvature
theories. In general we will be just interested in the outermost horizon and we will keep for
it the name of r+.

3.2.1 Vacuum horizons and Einstein-Hilbert gravity

Let us start this subsection by discussing the horizon structure of the vacuum solutions. The
general form of the metric function f is in this case

f(r) = σ − Λ r2 , (3.2.21)

so it can vanish at r =
√
σ/Λ, whenever σ and Λ have the same sign, thus for hyperbolic

AdS and spherical dS spacetimes. These horizons are observer dependent features since these
spacetimes are maximally symmetric and, thus, any point can be considered as the origin.
The dS case is widely known [141], this corresponding to the cosmological event horizon.

The AdS case is, however, more obscure as long as the horizon is actually cloaking a finite
size region in a similar way as a regular black hole horizon does. The black hole horizon is
actually just a deformation of this ‘vacuum’ horizon. This has a problematic interpretation
and has led to the proposal that the true ground state for hyperbolic spacetimes is not the
massless one, but an extremal negative mass solution [133, 134]. The cosmological horizon
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Figure 3.2: Linear polynomial corresponding to the usual EH-branch for negative (c0 =
1), zero (c0 = 0) and positive (c0 = −1) cosmological constants (L = 1). The dashed lines

are just κ (g/σ)
d−1

2 for d = 5. The solid black line corresponds to the critical value of the
mass, κNariai = 1/4, for dS black holes with spherical horizon. The crossing of these lines
with the polynomial gives the possible values for g at the horizon and then of r+ (and rc).
For σ = 1 and κ > κNariai (or r+ > rNariai), the asymptotically dS branch describes a big
crunch spacetime (f < 0, ∀r) without horizons.

of pure dS spacetime has negative temperature, while for the AdS case the temperature is
positive as for a regular black hole horizon.

In order to analyze the horizon structure, let us focus on the asymptotically AdS, dS and
flat black holes in Einstein-Hilbert gravity with cosmological constant [134]. We include this
simple case here for completeness and as an illustration of our method. As clearly depicted
in figure 3.2, the only case accepting all three distinct topologies without exhibiting naked
singularities is the asymptotically AdS configuration, the other two cases being well-defined
just for spherical topology. This AdS case, furthermore, has just one horizon for all three
topologies. The asymptotically flat spherical black hole has one event horizon as well. The
asymptotically dS spherical black hole has in general two horizons: One of them is just
the deformation of the cosmological horizon already present in the maximally symmetric
solution, while the other corresponds to the black hole. As the mass increases both horizons
get closer to each other until, for some critical value of the mass, the so-called Nariai mass,

κNariai =
2Ld−3

d− 1

(
d− 3

d− 1

) d−3
2

, (3.2.22)

they actually meet (they disappear for masses above that value). The untrapped region,
the spacetime as we usually consider it, is comprised between the two horizons and so for
this extremal case it seems to disappear. A proper limiting procedure [142] shows that the
geometry remains perfectly regular as κ → κNariai, and becomes the geometry of the Nariai
solution. This space is the direct product of a dS2 and a Sd−2, both with the same radius.
Above this critical mass, though, it describes a big crunch spacetime.

In the asymptotically AdS case, a negative mass extremal hyperbolic black hole has been
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Figure 3.3: Negative mass hyperbolic black holes in Einstein-Hilbert gravity. The dashed
line corresponds to a black hole with an outer and inner horizon (segment in red), while
the solid line represents the extremal case, κ0 = −κNariai.

proposed as the ground state in Einstein-Hilbert gravity. The same would apply to any
Lovelock theory. Black holes with larger (but negative) mass than this extremal one,

κ0 = −κNariai = −2Ld−3

d− 1

(
d− 3

d− 1

) d−3
d−1

, (3.2.23)

have two horizons, in a way reminiscent of the asymptotically dS spherical black hole with
positive mass. The difference being that in the asymptotically dS case the two correspond
respectively to the cosmological and black hole horizons, while in the AdS case they are the
outer and inner horizons of a black hole (see figure 3.3). It is worth noticing that for negative
masses we are exploring a completely different section of the polynomial than for positive
values, the similarities being just due to the extremely simple form of the polynomial in the
case under current analysis. In general, positive and negative mass black holes may have
dramatically different features.

As we can easily see in this simple example, the existence of just one black hole horizon
in all positive mass cases implies that the singularity at the origin is always spacelike, while
it is timelike in the negative mass hyperbolic case due to the presence of two black hole
horizons that become degenerate in the extremal limit. In the case where the horizon and
the singularity coincide, the nature of the latter is null.

3.2.2 Black hole entropy at extremality

As we have seen in the last section, the vacuum (M = 0) state with hyperbolic topology has
non-zero temperature as it displays a horizon. This is related to the fact that an accelerated
observer in AdS would see a horizon with temperature related to its acceleration, in a similar
manner as for the Unruh effect in Minkowski space. This makes it difficult to assume this
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state as groundstate, it cannot be considered at arbitrary temperature as it already has one.
The alternative is to consider an extremal state instead. For that we have to make some
comments on the special properties of extremal black holes.

There has been some debate (see [143, 144] for some recent discussion) about whether
the entropy of extremal black holes corresponds to the usual Bekenstein-Hawking (or Wald
in more general cases) or it’s simply zero as seems to indicate the semiclassical calculation
[145–147]. Both approaches yield the same result in the non-extremal case, the reason for
this discrepancy at extremality being the qualitative difference in the near horizon topology
in both cases. In the Euclidean section, it has the topology of R2×Σd−2 in for non-extremal
black holes case whereas it is R × S1 × Σd−2 in the extremal case, effectively removing the
horizon from the geometry. In the first case regularity of the flat factor forces the Euclidean
time to be identified such that the period is the inverse of the temperature. This introduces
a non-trivial temperature dependence on the solution and thus in the Euclidean on-shell
action, Î, that it is at the origin of the entropy in this semiclassical picture. The entropy is
defined as

S =

(
β
∂

∂β
− 1

)
Î (3.2.24)

In the extremal case the geometry is regular independently of the period βand the solution
does not depend on this parameter either. The action depends on β just because of the
integration of the volume of the time circle, Î being just proportional to β. The entropy
thus vanishes as it can also be explicitly seen from the on-shell action computation. The
näıve result is

Î = β
(
M − T̃ S

)
(3.2.25)

where T̃ = f ′(r+)/4π is the usual expression for the black hole temperature. In the non-
extremal case, the regularity of the solution at the horizon requires β = T̃−1 in such a way
that the β-dependence of the secod term cancels and we get

Î = βM − S (3.2.26)

as expected. The extremal black hole is different as β and T̃ are unrelated in that case.
Actually T̃ = 0 yielding Îe = βM e. The entropy would then vanish for the extremal black
hole.

Some other approaches yield the same form of the Bekenstein or Wald entropy but they
usually rely on extremal limits of near-extremal solutions, whereas in our case we have
asumed that the extremality condition holds à priori. In case we want to consider any
extremal state as ground state for a sector of the theory we will need it to be identified with
arbitrary periodicity in Euclidean time. This cannot be done as we take the extremal limit
of near-extremal solutions as in that case the temperature would be bound to vanish. We
may however include the thermal extremal states at any temperature with zero entropy as,
as we already explained, in that case the periodicity is not fixed. In what follows we will in
general include extremal states in this way even though we will make some comments on the
alterative situation in which they are not present. As we will see the latter case would have
much more problematic interpretation. In particular, the introduction of extremal states as
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Table 3.1: Taxonomy of the EH-branch black holes.

groundstate will avoid the presence of negative entropy states, at least as globally preferred
phases, as the free energy of any such state would be bigger than the extremal one

F = M − TS > M > M e (3.2.27)

This also happen for the other situations where negative entropies appear. In the case of
type (b) spherical branches the analogous rôle of the extremal state is played by the vacuum.

3.3 Taxonomy of Lovelock black holes

We will study generic features of maximally symmetric Lovelock black holes in a case by
case basis, considering the previously introduced classes of black hole branches (table 2.1).
Some work in this direction has already been done considering just the LGB case [94, 148].
Let us have a look on the different cases that we can encounter.

3.3.1 The Einstein-Hilbert branch

The Einstein-Hilbert branch is just a deformation of the Schwarzschild-AdS black hole (c0 =
L−2) and can be identified as the branch crossing g = 0 with slope Υ′[0] = 1, exactly as in the
Einstein-Hilbert case, and so the slope will be positive for the whole branch. This condition
protects this branch from Boulware-Deser-like instabilities. When real, the cosmological
constant associated with this branch is negative and so the spacetime is asymptotically AdS.
We can proceed with this analysis in an analogous way for asymptotically dS spaces, just
by changing the sign of the explicit cosmological constant in the action c0 → − 1

L2 , or for
asymptotically flat ones, just by setting c0 = 0. We include the relevant part of table 2.1
below, for the reader convenience.

Even though the EH-branch is just a deformation of the usual Schwarzschild-AdS black
hole, it can be a quite dramatic one. For instance, it may happen that the polynomial has
a minimum at gmin < 0 (if there are several, gmin refers to the lowest one in absolute value),
such that Υ[gmin] > 0. A naked singularity would arise for large radius: the solution does not
approach AdS asymptotically. This case was first discussed in [2,38] for third order Lovelock
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theory, but the same applies in the general case for a vast region of the space of parameters
that will be named, following the aforementioned reference, the excluded region. In order to
avoid the excluded region the value of Υ[gmin] at the biggest negative minimum, gmin, has to
be negative. Notice that this does not depend on the topology of the solution, the excluded
region being the same for all of them. The sector of the parameter space where this new
kind of singularity appears has to be excluded in general, not only because of its nakedness
but in reason of the perturbative instability of the corresponding solution [6], as we will see
in section 4.4.

For hyperbolic or planar topology, as this branch always crosses g = 0 with positive slope,
Υ′[0] = 1, it has always a horizon hiding the singularity of the geometry that is located (see
table 3.1)

• either at r = 0 [(a) type],

• or at the value corresponding to a maximum of Υ[g] [(b) type].

For hyperbolic horizons we have again the possibility of considering negative mass black
holes, for masses above a critical value corresponding to the extremal case. This makes no
difference with respect to the same situation taking place in an AdS branch and, thus, will
be discussed at length below.

The spherical case is quite more involved. For high enough mass, the existence of the
horizon is ensured, but this is not the case in general. For the (a) type EH-branch the
existence of the horizon can be elucidated by analyzing (2.3.6) in the limit of small mass
g+ →∞,

Υ[g+] ≈ cKg
K
+ ≈ κg

d−1
2

+ (3.3.1)

For the horizon to exist in this limit, we need the right hand side of the equation to be bigger
than the left hand side. This is ensured for d > 2K + 1 as in this case the biggest power in
the left hand side would be smaller than (d− 1)/2. The existence of a horizon in the small
mass limit ensures the existence of (at least) one for all values of the mass, simply due to
the continuity of Υ[g].

The case d = 2K+ 1 is critical. There will be a minimal mass (κcrit ≤ cK) below which a
naked singularity appears. In principle, for high enough orders of the Lovelock polynomial,
more than one horizon can exist but for the critical case, at some point, all of them disappear.
The number of black hole horizons determines the type of singularity situated at r = 0, space
or timelike. For d > 2K + 1 we will always have an odd number of horizons (taking into
account possible degeneracies), since the (spacelike) singularity is in the trapped region of
the spacetime. For d = 2K + 1, the number of horizons depends on the value of the mass.
For masses above cK the number is odd and at least one horizon will always exist, whereas
for masses below this critical mass the number of horizons will change to an even quantity,
and will actually disappear at some point. In any case the minimal mass horizonful solution
always corresponds to a zero temperature state with a gap to the actual vacuum. This is
similar to what happens for quasi-topological black holes with the difference of the number of
horizons being always even. The zero tempearature state is reached as two of these horizons
merge in this case.
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Figure 3.4: EH-branch in GB gravity in 5 dimensions for λ = 1/5 and λ = −1/4

respectively (L = 1). The dashed curves correspond to the κ (g/σ)
d−1

2 for spherical topol-
ogy (σ = 1). The singularity becomes naked for κ ≤ λ = 0.2 in the first case and for
κ ≤ κ? = 0.5 in the second case. For higher dimensions, the second figure would be qual-
itatively the same with just a different value of the critical mass. The first one, instead,
changes as long as the horizon exists for all positive values of κ in that case. For the (b)
type branches the singularity is always located at r? =

√
−2λL.

The case where the EH-branch ends up at a maximum for some positive value of g = g?
(r = r?), or (b) type branch, is even simpler. There is a critical value of the mass for which
r+ = r?. Below that mass a naked singularity appears. This is very similar to the situation
described in the previous paragraph, the only difference being that in that case the radius
of the singularity is zero, r? = 0. Also, for type (b) black holes, the temperature diverges as
we approach the radius of the singularity.

The simplest example of Lovelock theory is GB gravity [149], where we have just two
branches, one of them suffering from BD instabilities. The remaining branch is thus an EH-
branch. For λ > 0 this branch is of the (a) type, extending all the way up to a singularity
situated at r = 0. For λ < 0, instead, this branch has a maximum at positive values of g
(see figure 3.4). This is a singularity at a finite value of r that may or may not be naked
depending on the value of the mass. The mass for which the horizon coincides with the
singularity is

κ? =
1

2
(1− 4λ)(−2λL2)

d−3
2 . (3.3.2)

For bigger masses we have a well defined horizon while below this bound the singularity
becomes naked.

Another intriguing possibility, that cannot be observed within the simple setting of GB
gravity, is the would be appearance of several black hole horizons. For this to happen we need
inflection points in Υ[g], and so the minimal example would be the cubic Lovelock theory.
In the critical d = 7 case, we have the possibility of obtaining two black hole horizons for
some regions of the space of parameters, while this number is three in higher dimensions.
One remarkable thing worth noticing here is that, as couples of horizons appear or disappear
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Table 3.2: Taxonomy of the AdS (other than EH) branches.

when we vary the value of the mass, the value of (the biggest horizon) r+ may change
discontinuously. Thus, the temperature as a function of the mass also varies discontinuously
when crossing the values of κ for which the outermost couple of horizons appear or disappear.
One of the sides of the discontinuity has zero temperature (since the black hole is extremal
for such critical mass) while the other has finite temperature. We must recall that the
inner horizons are in general unstable [150–153] and this possibly means that we should not
trust our solution behind the outermost inner horizon. We may interpret these extremal
states as black hole ground states, each one for a given range of masses. These seem naively
accessible by evaporation and, thus, point towards a violation of the third law of black hole
dynamics [122]. They are in general unstable solutions [154, 155], though (see also section
4.3). At low temperatures, this particular branch will have several possible black hole masses
and transitions might occur among them and the thermal vacuum. As for temperatures close
to zero the free energy essentially coincides with the mass, the globally preferred solution is
the less massive one: the vacuum. We will comment more on this later on.

3.3.2 AdS (other than EH) branches

The second class of branches that we describe in what follows are asymptotically AdS black
holes different from the EH-branch. The latter will be included just for the discussion of
negative mass solutions since the analysis is exactly the same.

Consider first the positive mass solutions, for which the AdS branches always end at a
maximum of the polynomial (see table 3.2). As before, the existence of a horizon cloaking the
singularity fixes the topology of such branches: As the considered sections of the polynomial
run over negative values of g, horizons exist just for σ = −1. On the other cases, the solutions
describe a spacetime with a timelike naked singularity. The condition for the existence of a
horizon sets an upper bound on the mass, κ < κmax, κmax corresponding to the critical value
for which the radius of the horizon coincide with that of the singularity (r+ = rmax), i.e.,

κmax = rd−1
max Υ[gmax] . (3.3.3)

When we encountered a naked singularity with positive mass in the Einstein-Hilbert
theory, it corresponded to the low mass limit of a multi-horizon black hole (below a given
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Figure 3.5: Qualitative representation of (positive mass) AdS branches. The blue and
red branches will be referred to as type (b1) and (b2) respectively, when considered for
negative masses. The green one is an excluded branch. There are asymptotically AdS
massive black holes for κ < κmax (red branch), otherwise the geometry displays a naked
singularity.

mass, the two horizons merge and disappear altogether, leaving the singularity naked). The
case here is somehow different as the black hole horizon cannot degenerate as we increase the
mass approaching the critical value. Thereby, the solution infinitesimally close to the critical
one has non-zero temperature, diverging as we approach the bound. This is more reminiscent
of the low mass limit of Schwarzschild black holes (ultimately leading to a regular geometry)
than of the usual naked singularities in Einstein-Hilbert gravity. It is also similar to what
happens for type (b) spherical black holes.

For negative mass solutions, the analysis of the existence of black hole horizons and its
number is more involved. The main qualitative feature is the possibility of having a minimum
of the polynomial associated to the branch under analysis (see blue and red branches in figure
3.5 for instance). We will refer to the case without such minimum (blue branch) as type (b1)
solution and as type (b2) for the other one (red branch). The structure of horizons and the
type of singularity will differ in both types of branches.

When d = 2K + 1 and the branch we are considering is of (b1) type, there is a minimal
mass for which, instead of an extremal regular spacetime with a degenerate horizon, we
have a naked singularity (see figure 3.6). The temperature also vanishes asymptotically as
we decrease the mass. We will not comment further on these kind of solutions as they are
gravitationally unstable against perturbations [9].

In case we have a well defined extremal negative mass black hole, we always have at least
two horizons for (b1) type branches and d > 2K + 1, as we depart from extremality. For
(b2) type branches, however, the inner horizon disappears when its radius coincides with the
radius of the singularity, changing its nature from timelike to spacelike, or viceversa. There
is a critical mass for which this happens. This is irrelevant for an outside observer who
cannot extract information from the inner horizon. Figure 3.7 shows both kinds of solutions
in the simplest case of GB gravity, for (b1) type (λ < 0) and (b2) type (λ > 0), respectively.



76 CHAPTER 3. BLACK HOLE THERMODYNAMICS

-6 -5 -4 -3 -2 -1
g

-5

-4

-3

-2

-1

1

U@gD

Κ1

Κ2

Κ0

Κ3

Hb1L

Figure 3.6: EH-branch in the cubic theory in 7 dimensions for λ = 0.4 and µ = 0.2 (L =

1). The dashed curves correspond to κ (g+/σ)
d−1

2 with κ0 = −µ/3 = −2/30, κ1 = −0.022,
κ2 = λ = −0.015, and κ3 = −0.008 (σ = −1). For masses above κ0 we have one horizon
with no distinction between positive and negative masses. For κ ≤ κ0 there is a naked
singularity at r = 0. No extremal state exists.
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Figure 3.7: EH-branch in GB gravity in 5 dimensions for λ = −1/2 and λ = 0.15

respectively (L = 1). The dashed curves correspond to κ (g+/σ)
d−1

2 with κ0 = −0.75,
κ1 = −0.6, κcrit = λ = −0.5, and κ2 = −0.3 (left) and κ0 = −0.1, κ1 = −0.08, κ? = −0.06
and κ2 = −0.05 (right) (σ = −1). In both cases we have two horizons for κ0 < κ < κ? and
one for κ? < κ. For κ = κ0 we have a degenerate horizon. The singularity becomes naked
for κ ≤ λ−1/4 in both cases. In higher dimensions, the behavior is qualitatively the same.
For the (b2) type branches the singularity is always located at r? = L

√
−2λ, while it is at

the origin in the (b1) case.
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Table 3.3: Taxonomy of the dS branches.

Both classes of branches may have several horizons in the presence of inflection points.
The (b1) type will always have an even number, except when κ ≥ cK where the smallest
horizon disappears. Thus, the singularity at r = 0 is timelike below this critical mass and
spacelike above it. The same change of behavior for the singularity appears in the other type
of branches with the critical mass being set by the minimum, κ?. In the same way as described
for spherical black holes in the EH-branch, the couples of horizons appearing or disappearing
as a function of the mass translate into discontinuous changes on the temperature. The
possibility of having several extremal solutions in one branch amounts to several ground
states for different ranges of (negative) masses, with possible transitions among them. At
zero temperature, though, one does not have a thermal vacuum to compare with, contrary to
what happens at finite temperature. The negative mass black holes are the preferred phase
in that regime, namely the lowest mass one among them.

3.3.3 dS branches

The existence of event horizons will again set a series of constraints both on the admitted
topologies as well as in the possible values for the mass parameter. For hyperbolic or flat
horizons, the metric function f is always negative and the solution describes a big crunch.
For σ = 1 the solution may still describe a big crunch if we consider a high enough mass,
above the Nariai mass. Slightly below it, at least two horizons exist, the biggest one being
the cosmological horizon. Notice that there may be several Nariai masses.

Like the EH-branch, the dS branches can end up at a maximum, (b) type, or extend all
the way to r = 0 (a) type; red and green branches on figure 3.8 respectively. For (b) type
branches, there is a critical mass, κmin, for which the outermost black hole radius coincides
with the radius of the singularity, r+ = r?. Below that mass, the horizon disappears. A
naked singularity will always show up for sufficiently low masses.

For (a) type branches, the same happens if d = 2K+1 just replacing the critical mass by
κ? ≡ cK . Again, we cannot avoid naked singularities as we approach arbitrarily low masses.
Therefore, the existence of horizons sets, in this case, two bounds for the mass. Above the
upper bound the geometry displays a spacelike singularity, whereas below the lower bound
it has a naked timelike singularity. For d > 2K + 1, instead, the black hole horizon always
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Figure 3.8: Generic features of dS branches are captured in these figures. The different
sections of the polynomial qualitatively represent (b) type (in red), excluded (in blue) and
(a) type (in green) dS branches. The right figure zooms on the (b) type dS branch showing
that for κ2, κmin < κ2 < κmax, there are asymptotically dS massive black holes, with outer
and inner horizons. At κmax the black hole becomes extremal. For κ not in this range,
the red branch displays a naked singularity. Even though the (a) type branch does not
seem to have a black hole horizon (in the left figure, e.g., the green dots correspond to the
cosmological horizon), it always exists for d > 2K + 1 and, for some range of masses, also
in the 2K + 1 dimensional case.
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exists, all the way down to zero mass. Thus, solely the upper Nariai bound for the mass
exists.

Another situation that we may encounter, for d = 2K + 1, is the absence of a Nariai
solution. Below a certain critical mass we are faced with a naked singularity, the only
remaining horizon being the cosmological one. This is the symmetric situation to the non-
existence of extremal negative mass black hole discussed earlier for AdS branches. Mirroring
that case, here we also find solutions with a large number of horizons. Their variation, as
a function of κ, may translate into discontinuities in the temperature as a function of the
mass. The discussion regarding how to interpret this phenomenon is the same as before.

3.4 Heat capacity and local thermodynamic stability

The details of the solutions and the behavior of their associated thermodynamic quantities
strongly depend on the particular case under consideration. Therefore, a general thermody-
namic analysis is cumbersome. However, once we have described the qualitative features of
the different branches of solutions, much and very interesting information can be extracted,
most of it arising as universal features of these black hole solutions.

For positive mass black holes, the sign of the heat capacity on a BD stable branch,
because of (3.2.18), depends just on

dT

dr+

= −g+

2π

[
(d− 2)− d− 1

2

Υ[g+]

g+Υ′[g+]

(
1 + 2g+

Υ′′[g+]

Υ′[g+]

)]
, (3.4.1)

where the second term (in brackets) seems to be related to the potential felt by perturbations
in the shear channel [5]. We did not manage to check classical stability in full generality,
but in the regimes of high and low masses. This should not be confused with the stability
analysis focusing on perturbations of the black hole solutions that will be treated in the next
chapter. Earlier relevant works on this include [156–162]).

We will just consider solutions possessing event horizons, since they are the only ones
with associated thermodynamic variables. Then, taking into account our earlier discussion
(see table 2.1), we will have to deal with hyperbolic AdS branches; hyperbolic, flat and
spherical EH-branches and spherical dS branches, classified in different subclasses.

3.4.1 Black holes in the EH-branch

The simplest case to analyze is that of toroidal or planar black holes in the EH-branch.
The thermodynamic variables, in this case, do not receive any correction from the higher
curvature terms in the action and the expression reduces to the usual formula of Einstein-
Hilbert gravity,

dT

dr+

=
d− 1

4πL2
. (3.4.2)

This expression is positive. Therefore, these black holes are locally thermodynamically stable
for all values of the mass.
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For the EH-branch, the only one admitting all three topologies, the situation is exactly
the same for σ = ±1 in the large mass limit. The value of g at the horizon, g+ = σ/r2

+,
asymptotically approaches zero from both sides, and the formulas reproduce the planar case.
Einstein-Hilbert gravity captures the universal thermodynamic description of Lovelock black
holes with large enough mass. It does not capture other features in this regime. For instance,
those related to the stability and causality preserving properties of the solutions [2, 3, 38].
EH-branch’s black holes in this regime are then always stable.

This is also the case for a special class of (maximally degenerated) Lovelock theories
whose analysis is not considered in the present article. Those theories admit a single (EH-
)branch of black holes [163]. The results there also coincide with the generic analysis for
spherical black holes presented here.

It is worth recalling here that for sufficiently large mass, just the EH-branch admits
black holes, the other branches describing geometries with naked singularities or big crunch
spacetimes.

As we decrease the mass, particular features of the different topologies pop up and we
need to consider them separately. Small mass hyperbolic black holes correspond to a smooth
deformation of the vacuum. In that regime, the second term inside the brackets of (3.4.1)
becomes negligible, Υ[g+] ≈ Υ[Λ] = 0, and the expression approaches

dT

dr+

≈ d− 2

2π
(−g+) . (3.4.3)

Therefore, as g+ < 0, the low mass hyperbolic black holes are also stable. Notice, though,
that even if both extrema of the spectrum for hyperbolic black holes in the EH-branch are
stable, one may encounter unstable intermediate phases. This is not the case in GB gravity
(contrary to what is stated in [127]; the negative specific heat found there corresponds to
inner horizons and, thus, does not indicate any instability of the system), where we find that
hyperbolic black holes are always locally thermodynamically stable, as can be seen in figure
3.9 (left), even for negative masses above the extremal one (depicted in red in the figure).
The cubic theory, in turn, as shown in figure 3.9 (right), already displays intermediate mass
hyperbolic black holes which are locally thermodynamically unstable.

The extremal hyperbolic black hole can be shown to be always stable from this point of
view. It has zero temperature and all black holes with higher masses have positive temper-
ature. Thereby, the heat capacity has to be positive, close enough to this state. In some
cases, for d = 2K+1, the extremal negative mass black hole does not exist. In that situation
we may consider, in principle, infinitesimally small black holes, r+ → 0, with temperatures
approaching zero asymptotically. The singular ‘zero size black hole’, again, fixes a bound in
the mass, and black holes close to that bound are stable, in the same way as the ones close
to the extremal black hole.

For spherical black holes we have to distinguish between different cases. In the (a) type,
the small black hole limit, r+ → 0, may correspond respectively to finite or zero mass for
d = 2K+ 1 and d > 2K+ 1. If the branch is of (b) type, there is a lower bound for the mass
of the black hole for which the temperature diverges. When d > 2K + 1, in the low mass
regime,

dT

dr+

≈ −d− 2K − 1

4πK
g+ < 0 . (3.4.4)
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Figure 3.9: Temperature versus horizon radius (equivalently versus black hole mass, κ)
for hyperbolic black holes (L = 1). The first figure corresponds to GB gravity in d = 5
for λ = −10,−5,−2,−1, 0, 0.2 (from bottom to top). The behavior is qualitatively the
same in higher dimensions. Such black holes are stable for all values of the mass (even
negative, in red). The black dashed line corresponds to the planar case to wich all curves
asymptote. The second figure corresponds to an example of intermediate unstable phase
in cubic Lovelock theory in d = 8 with λ = 0.65 and µ = 0.5.

Thereby, small spherical black holes in the EH-branch are thermodynamically unstable, in
exactly the same way as in the usual Einstein-Hilbert gravity. The situation changes for
d = 2K + 1, where the temperature vanishes asymptotically. Therefore, small black holes
are stable in odd dimension for the highest order Lovelock gravity (in particular, we need
cK > 0 for type (a) EH or dS-branches to exist), whereas they are unstable in all other
cases [126].

For (b) type branches something similar happens as we approach the minimal mass, κmin,
set by the local maximum of the polynomial Υ[g]. At this critical mass the temperature
diverges, but in this case as we lower the mass. The heat capacity is negative, as we can
also infer from (3.4.5), taking into account that g+ has a positive value. Black holes close
enough to the minimal mass one are then unstable. This kind of behavior can be seen for
instance in GB gravity (see figure 3.10).

There is one further possibility when the polynomial is such that it allows for more than
one black hole horizon. Then, either for (b) type as well as (a) type solutions (in d = 2K+ 1
dimensions), we may still have an event horizon cloaking the singularity for some range
of masses below the näıve κmin. As we lower the mass further we encounter at least one
extremal black hole, which is stable in the same way as the extremal hyperbolic black hole
of negative mass. One such case is shown in figure 3.11, that corresponds to the cubic
polynomial plotted in figure 2.2. In general, we may also have unstable regions in between
the two stable ones, and also for masses below the extremal one if d > 2K + 1 (see figure
3.11, right). This situation does not decisively depend on the dimensionality of spacetime.
This case has features of the previously discussed spherical black holes but its behavior is
similar to the (negative mass) near extremal hyperbolic black holes.



82 CHAPTER 3. BLACK HOLE THERMODYNAMICS

0 2 4 6 8 10
r

2

4

6

8

T

0 1 2 3 4 5
r

0.5

1.0

1.5

T

Figure 3.10: Temperature versus horizon radius (equivalently, mass) for spherical black
holes in d = 5 GB gravity (L = 1). The first figure corresponds to negative values of the
GB coupling, λ = −10,−5,−2,−1, 0 (from top to bottom), whereas the second considers
positive values, λ = 0.001, 0.01, 0.1, 0.2 (from top to bottom). The dashed blue lines
indicate the value of the mass, κmin, for which the temperature diverges. We observe the
appearance of a new stable phase for small positive values of λ and even the disappearance
of the unstable region for high enough λ. This stable region of small black holes disappears
in higher dimensions, for all positive values of λ, the qualitative behavior being similar to
the λ = 0 case.
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Figure 3.11: Temperature versus horizon radius (equivalently, mass) for spherical black
holes in d = 7 cubic Lovelock gravity with λ = −0.746, µ = 0.56 and L = 1 (left). The
black hole reaches zero temperature for finite (positive) mass. For d = 8 (right), the shape
of the curve is qualitatively the same except in the low radius region where a new branch
of black holes with diverging temperature appears. We just show a zoom of the left bottom
corner. We can also verify the existence of the temperature (and radius) jump commented
in the main text. The dashed blue line corresponds to inner horizons, one of them becoming
outer for masses below the extremal one.
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3.4.2 Hyperbolic black holes in the AdS-branches

Most of the discussion on hyperbolic black holes in the EH-branch also applies, on general
grounds, to the AdS-branches. The only difference being that, in general, there is a maximal
mass for which the temperature diverges. Thus, close enough to that point the heat capacity
has necessarily to be positive and the black hole thermodynamically stable. This can be seen
directly from (3.4.1), as the heat capacity close to the maximum approaches

dT

dr+

≈ d− 1

2π

g+Υ[g+] Υ′′[g+]

Υ′[g+]2
, (3.4.5)

diverging as well when we reach the critical mass. Υ[g+] is positive due to the positivity
of the mass. The second derivative Υ′′[g+] is negative as we are close to a maximum, but
g+ is negative as well. The plot of temperature versus horizon radius will be in general
qualitatively similar to that corresponding to the EH-branch, with the difference that the
temperature diverges at some finite value of r+.

3.4.3 Spherical black holes in the dS-branches

The low mass regime of the spherical solutions corresponding to dS branches is very similar
to that of the EH-branch. The high mass regime, instead, is very different. These black
holes may increase their mass until they reach a maximal (so-called Nariai) mass, which is
set by the shape of the polynomial. This is an extremal state with zero temperature and, as
we reach it from lower mass configurations, the system is thermodynamically unstable close
to it.

We may construct dS branches of (a) and (b) types using GB gravity with positive
cosmological constant (setting c0 = −L−2). In this case, the (b) type branch (figure 3.12,
left) is unstable for all allowed values of the mass, since we are considering d = 5 (which
is d = 2K + 1 in this case), while a stable region of small black holes appears for (a)
type branches (figure 3.12, right) [164]. This stable region disappears in higher dimensions.
In general, spherical dS branches may have some stable intermediate region, but they are
unstable (or even non-existent) for high enough temperature.

Let us summarize the main results of this section. Hyperbolic black holes generically
have two stable domains, at low and high temperatures. For intermediate temperatures,
these solutions may have more than one possible mass, some of them unstable. The only
difference of AdS branches with respect to the EH case is that the high temperature regime
has a maximal finite mass in the former.

The case of spherical black holes exhibit quite distinct features. From the thermody-
namical point of view, we may distinguish those situations where there is, or there is not,
a minimal temperature, Tmin, for the black holes to exist. In the former case, we do not
reach any extremal black hole, neither in the low mass, nor in the high mass regimes. In the
case of the EH-branch, for T < Tmin, only the thermal vacuum may exist whereas, for high
enough temperatures, a black hole may exist with two very different masses, one close to
κmin (which is unstable) and one very high (stable). For intermediate temperatures close to
Tmin, we may in principle encounter several stable and/or unstable black holes. In the latter
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Figure 3.12: Temperature versus horizon radius (equivalently, mass) for spherical black
holes in d = 5 GB gravity with positive cosmological constant, L2 = −1 (in blue). The
first figure, λ = −0.1, corresponds to a (b) type dS branch. We can identify the zero
temperature state in the high mass regime with the Nariai solution. The temperature
diverges as we approach the lower bound, κmin, indicated by the dashed blue line. For
λ = 0.1, in the second figure, a spherical (a) type dS branch arises. We may identify again
the extremal state with maximal mass with the Nariai solution, for which the temperature
goes to zero, as well as the radius of the black hole horizon. The ‘zero size black hole’
has finite mass in this case. For higher dimensions the stable region of small black holes
disappears (gray line corresponds to d = 6), the spherical black holes being unstable as
their (b) type counterparts. The only difference is that the temperature diverges in the
zero mass limit.

case, instead, black hole solutions exist for the whole range of temperatures, except in the
case where a dS-branch reaches an extremal state at low as well as at high masses. For the
EH-branch, in this situation, we have two stable phases again, one in the low and one in the
high temperature regimes. At intermediate temperatures, the black hole may have several
possible masses, some of them unstable.

3.5 Hawking-Page-like phase transitions

The existence of unstable phases, as well as the several possible black hole solutions at
the same temperature, suggest the occurrence of Hawking-Page-like phase transitions, as
already observed in the case of LGB gravity [129, 137]. These phase transitions should be
also relevant when studying the physics of the dual CFT plasma. In order to analyze this
we need to discuss the global stability of the solutions. Any system in thermal equilibrium
with an infinite heat reservoir (and thus at constant temperature) will be described by the
canonical ensemble, whose relevant thermodynamic potential is the Helmholtz free energy,
F . The preferred, and so globally stable, solution is the one that minimizes F . For instance,
the free energy of the black hole solution calculated in (3.2.9), is the free energy with respect
to the vacuum solution, except for the hyperbolic case where the finite ground state free
energy (its mass) must be subtracted. Therefore, the sign of the free energy determines
which solution is globally preferred at any given temperature, the appropriate black hole (if
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several are possible) or a thermal bath for the groundstate (vacuum or extremal).
The general analysis is, again, hard and not very enlightening. We will just concentrate

in showing general features of these black hole solutions without entering into the details
of the different cases. We will consider the same regimes analyzed for the local stability, as
there we can easily find the expression for the free energy. In the planar case the analysis is
very simple since the free energy reads

F = − Vd−2

16πG

rd−1
+

L2
. (3.5.1)

The black hole is then always the preferred solution, as indicated by the negative sign of the
free energy, and no phase transitions occur. This will be the situation in the large mass limit
of the other topologies in the EH-branch. As for large enough r+ the free energy may be as
large as one wants, ambiguities on the reference background do not matter in this limit.

3.5.1 Spherical black holes

For spherical black holes, we will restrict our discussion to the two most generic situations.
For the EH-branch, we will consider separately the case of having a stable low temperature
phase (as in d = 5 GB gravity with positive λ), and the case where a minimal temperature is
needed for black hole solutions to exist. The second case is the analog of the usual situation
in Einstein-Hilbert gravity. At low temperatures, the thermal vacuum can be considered
as the globally stable solution whereas, for higher temperatures, two or more black hole
solutions are possible. For high enough temperature just two of them remain. The small
one has always positive free energy. For an (a) type branch,

F =
(d− 2)Vd−2

16πG

rd−2K−1
+

d− 2K
cK , (3.5.2)

whereas for the (b) type case the temperature diverges as we approach the maximum g+ →
g?, and the free energy is F ≈ −TS. Then, for positive entropy, the small black hole solution
has negative free energy and is stable against the vacuum. However, it is not the minimum
of the free energy since the big black hole has always a lower one. This is quite easy to see by
realizing that the small black hole entropy goes to a constant as we approach g? whereas the
entropy grows indefinitely for big black holes, since they approach the planar limit. Thus,
the small black holes are not just locally but also globally unstable.

The big black holes have, in general, negative free energy. We have then a Hawking-Page-
like phase transition, from the thermal vacuum at low temperatures to big black holes at
high temperatures. The difference with respect to the Einstein-Hilbert case is that we may
have several black holes at intermediate temperatures, with either sign of the free energy.
For ranges of temperature where several black holes have negative free energy, transitions
among them may happen, the globally preferred solution being the one with the lowest free
energy. This would be an example of a new kind of phase transition, different from the
Hawking-Page one, where one of the phases is always the thermal vacuum.

If the EH-branch has stable low temperature black holes, i.e., for (a) type in d = 2K+ 1,
these are globally unstable as indicated by their positive free energy that asymptotes a
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constant when r+ → 0,

F =
(d− 2)Vd−2

16πG
cK , (3.5.3)

actually to the mass as both the entropy and temperature vanish in this limit. This is
exactly equal to the earlier formula (3.5.2) for the given dimension. The same happens for
the would be extremal black holes that one may encounter in the EH-branch. In the limit of
low temperatures, the free energy coincides with the mass and, as such states have positive
mass, they are globally unstable. The globally preferred phase is the thermal vacuum which
is the minimal mass solution. Then, again, one has the same kind of transition described in
the previous paragraph.

Another situation we did not comment at length is the possibility of having negative
entropy for the spherical black hole with critical mass, κmin. This happens already in the
simplest possible case of GB gravity, for negative λ, where there is a maximum in the EH-
branch situated at g? = −1/2λ. As pathological as it may seem, the consequence of this
from the global stability point of view is clear. Again, the globally preferred solution is the
big black hole as before, and the discussion goes through. This is quite general: a negative
entropy state necessarily has bigger free energy than the vacuum (characterized by minimal
mass and vanishing entropy).

For dS branches the situation at low mass is exactly the same as for spherical solutions in
the EH-branch. At low temperatures the free energy approaches the value of the mass and
the globally stable phase is always thermal vacuum. For (a) type branches and d > 2K + 1,
no high temperature black hole exists, thereby the preferred phase in that regime would be
trivially the thermal vacuum and no Hawking-Page-like phase transition seems to occur (see,
for instance, [164], for the GB case). In any other situation (e.g., (b) type branches) with
positive entropy, the globally stable solution would be the near-critical black hole approaching
the maximum of the polynomial. Therefore, these branches seem to display phase transitions,
even though high temperature black holes are locally thermodynamically unstable.

The inclusion of the extremal Nariai space with arbitrary temperature and zero entropy
does not change these conclusions. As it has higher mass than the vacuum it is always
globally (and locally) unstable

3.5.2 Hyperbolic black holes

For the hyperbolic black holes one may compute the free energy at the high and low tem-
perature regimes as before. As the maximally symmetric space has temperature in this case
it is not clear how to use it as a ground state. Instead, we will consider the extremal neg-
ative mass black hole as the reference state –with vanishing entropy– given that it can be
identified with any temperature [147]3, as explained earlier. Otherwise, the analysis would
become trivial with just one or more black hole solutions, no matter the value of the temper-
ature. No Hawking-Page-like phase transitions would occur in that case, just the possibility
of transitions among black holes of different masses at intermediate temperatures.

3This has been disputed by some authors (see [154] for instance) in reason of the semiclassical instability
of these solutions.
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For the EH-branch in the high temperature regime we just have one possible black hole
solution. It has negative free energy as it approaches the planar limit and so it is globally
preferred. The same happens for the AdS branches, that end up at a maximum of the
polynomial. As we approach the critical mass, κmax, the free energy approaches F ≈ −TS
that is arbitrarily negative for positive entropy. For negative entropy at the maximum,
which corresponds to the biggest possible black hole in the AdS branch, every black hole has
negative entropy. In this case the globally preferred phase is the reference state, since it has
zero entropy and minimal mass.

For lower temperatures we have to consider black holes close to the extremal one. In
the zero temperature limit only these extremal states matter and their free energy is simply
given by their mass. Then, the globally preferred phase in that limit is the lowest mass
state. For slightly higher temperatures one expects that the globally preferred solution is
still described by the same minimal mass extremal state (identified with finite temperature)
or the corresponding black hole solution that is just a smooth deformation of it. It is
however hard to elucidate in general which of both solutions has the lowest free energy, and
then the existence or not of Hawking-Page-like phase transitions. As we further increase the
temperature, we might also encounter transitions among extremal or near extremal solutions
associated to different extremal masses.

3.6 Discussion

In this and previous chapters we presented a novel approach to deal with the full classification
and description of black hole solutions with constant curvature horizons in Lovelock gravity.
Our proposal allows to treat the generic case where the whole set of Lovelock coupling
constants is arbitrary, contrary to most studies existing in the literature where the analysis
is restricted to particular cases. Most of these cases, moreover, correspond to degenerate
vacua of Lovelock gravity, while our approach is valid in general and is most useful in the
non-degenerate case.

We discussed the main features of all possible configurations, focusing in the neutral case.
In particular, we have established a recipe to scrutinize the number of horizons and their
evolution with the mass, something that we expect to be useful to visualize and gain intuition
in physical processes involving black holes in such theories: evaporation, mass accretion and
appearance of naked singularities [9]. We will comment more on this on the next chapter. The
analysis of charged black holes and even cosmological solutions can be performed in a very
similar manner. The same happens for some more general classes of higher curvature gravities
described recently [69] that share the form of the black hole solutions (and consequently their
thermodynamic properties) with Lovelock theories. Most of the results of this chapter are
also of direct application there. In particular quasi-topological share some crucial properties
with Lovelock’s in their critical dimension, d = 2K + 1, despite their higher curvature order.

We presented some general features of Lovelock black holes’ thermodynamics, analyzed
their local and global stabilities and the possible existence of phase transitions. Even if these
solutions show some seemingly pathological features, such as negative values for the entropy,
these are avoided if we restrict ourselves to the globally preferred phase.
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For asymptotically AdS solutions (either in the EH or AdS-branches), global stability
in the high temperature regime always selects the biggest black hole, being the one with
biggest entropy. If we apply the same criterium to all possible solutions, regardless of the
branch to which they belong, the selected solution is always the one approaching the planar
limit, since it is the only one that has arbitrarily big entropy. The comparison of solutions
belonging to different branches is not really allowed as they have different asymptotics.
The usual Euclidean prescription says that we must compare all solutions with the same
boundary conditions what certainly includes the asymptotics. However the existence of
bubble solutions [55, 56, 165] separating regions corresponding to different vacua suggest the
possible existence of mixed solutions and transitions between branches. In that context, the
high temperature phase would näıvely always correspond to the universal planar limit. This
kind of branch transitions will be the focus of chapter 5 where we will show that the situation
is not as simple.

The usual Einstein-Hilbert gravity admits in principle topological solutions displaying
naked singularities. These may arise as a result of a bad choice of topology or as associated
to negative mass, below the extremal one for hyperbolic horizons. The latter are just a special
case of trans-extremal solutions, where the values of the parameters are chosen in such a way
that, an otherwise well defined black hole with positive temperature, is beyond the extremal
state. Example of this are the Reissner-Nördstrom or the negative mass hyperbolic black
holes. In principle, all these situations are ruled out by the cosmic censorship conjecture
that states that naked singularities do not form in the evolution of generic initial conditions.
For instance, the evaporation process for black holes with several horizons should stop at the
extremal state as it has zero temperature and this avoids the formation of trans-extremal
solutions in that case.

The situation in generic Lovelock theories of gravity is rather different. For this wide
family, there are several situations that suggest a possible violation of the cosmic censorship
conjecture, as we have seen analyzing the case of static uncharged black holes. In addition
to the cases pointed out in the previous paragraph, new kinds of naked singularities appear,
some of them which naively seem to be formed in the evolution of these black holes. This
can happen for the otherwise well-behaved Einstein-Hilbert branch, and it certainly happens
generically on the extra ‘higher order’ (A)dS-branches. Most of these naked singularities
arise because the branch of interest ends up at a maximum or a positive (for positive mass)
minimum of the Lovelock polynomial. The latter corresponds to a complex cosmological
constant associated with this particular branch. The former, in turn, appear in a variety of
cases. They constitute a maximal mass for hyperbolic black holes of AdS-branches as well
as a minimal mass for some spherical black holes in the EH or dS-branches.

The other possibility for naked singularities to appear is just the spherical case in the
maximal d = 2K + 1 Lovelock theory, for the EH or dS-branches when they extend all
the way to r = 0 without encountering any singularity (maxima or minima of Υ[g]). In
those cases we find a naked singularity for masses below a critical value. Any other possible
naked singularity may be considered in the same class as those appearing in Einstein-Hilbert
gravity.

As we think of the evolution of the black holes studied in this thesis, we realize that
naked singularities seem easy to form, at least naively. Consider for instance the evapora-
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tion of spherical black holes. For (b) type EH or dS branches these black holes always reach
a critical mass where the horizon coincides with the singularity. At that point the tempera-
ture diverges but a finite mass naked singularity remains. The naked singularity inevitably
forms. We emphasized the word naively before since the present analysis just considers the
thermodynamic stability of the solutions. These solutions are locally and globally unstable,
however they are still valid solutions that may form under evolution of generic spherically
symmetric initial conditions. In the next chapter we will perform a more detailed analysis
in order to elucidate whether naked singularities may form or not in these theories [9].

We have fixed, throughout this paper, the values of the cosmological constant and the
Newton constant appearing in the lagrangian to their customary values in AdS Lovelock
gravities. It is worthwhile mentioning that a straightforward generalization of this work
amounts to studying the case of dS Lovelock theories (note that there are AdS vacua also in
this case), as well as theories where the Newton constant has negative sign. On the one hand,
we shall mention that this sign flip was already considered in the context of three dimensional
topologically massive gravity, where it was found that a negative Newton constant is useful
to render otherwise negative energy modes harmless for the stability about flat space [166].
Furthermore, in higher dimensions, even though GN < 0, the generic structure of branches
discussed in this paper will remain, and there will always be solutions corresponding to
well-defined gravities with positive Newton’s constant.

Lovelock theories have the remarkable feature that lots of physically relevant informa-
tion is encoded in the characteristic polynomial Υ[g]. Boulware-Deser-like instabilities, for
instance, can be simply written as Υ′[Λ] < 0, which has a beautiful CFT counterpart telling
us that the central charge, CT , has to be positive. Now, Υ′[Λ] can be thought of as the
asymptotic value of the quantity Υ′[g] that is meaningful in the interior of the geometry,
and has to be positive all along the corresponding branch. Naked singularities taking place
at extremal points of the polynomial are suggestive of the fact that Υ′[g] should be a mean-
ingful entry of the holographic dictionary (see [40] for related ideas) that does not exist
in the case of Einstein-Hilbert gravity. The relevance of Lovelock and more general higher
curvature gravity theories in the context of the AdS/CFT correspondence will be the topic
of the second part of the thesis.



Chapter 4

Metric perturbations and stability

“The most incomprehensible thing about the universe
is that it is comprehensible”

Albert Einstein

Perturbation analysis is a very powerful tool to investigate the dynamical response of a system
against small disturbances. This is particularly important for the case of gravity due to their
strong non-linearity. This is already true for general relativity but even more for Lovelock or
other higher curvature theories which are much more complicated systems. The equations
of motion on any of these theories are very hard to solve analytically and exact solutions are
known just on very special circumstances. Perturbation analysis of exact solutions plays a
crucial rôle in many physical situations and opens a window into the intricate dynamics of
gravity in four and higher dimensions.

For our purposes, the most important examples of application of perturbative analysis
in the context of gravity are the studies of black holes. Such an investigation was first
systematically done for the Schwarzschild black hole by Regge and Wheeler [167] in 1957
and completed some 13 years later by Zerilli [168] and Teukolsky [169]. Among the many
applications of these methods it is of particular importance the analysis of the stability of
black holes. This is a fundamental question at many levels as unstable solutions are less
likeky to form through any physical process and even when they do they will certainly not
remain on that state for very long. This has many implications, from the dynamics of black
holes to the determination of the final fate of gravitational collapse.

Apart from the stability issue, perturbation analysis also tells us a lot about basic proper-
ties of black hole solutions. For instance the study of stationary perturbations of a stationary
black hole solution provides a criterion for uniqueness and the search for new solutions.

The stability of higher dimensional black holes in EH theory has been intensively studied
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(for a review see for instance [170] and reference therein), higher dimensional Schwarzschild
black holes being stable for any type of perturbations. For static spherically symmetric
Lovelock black holes, the analysis is not as straightforward. This is due to the complicated
form of the equations of motion, even on the linear case, but also to the form of the solutions
themselves the existence of branches, etc. Stability analyses under all type perturbations
have been performed however [127, 156–162, 171–175], also for the charged case [102, 103],
and instabilities have been found in some situations.

Perturbative analysis as the one that follows rely greatly on the developement of master
equations for gauge invariant gravitational perturbations, a much simpler and intuitive ap-
proach. In the context of Lovelock theories of gravity, generic master equations have been
found in [174], however, except for some restricted efforts, most of the work has been per-
formed however in the context of LGB gravity. We will make use of these master equations,
or rather the effective potentials they define, in order to analyse stability of black hole solu-
tions in a particular regime, that of high momentum gravitons. This restricted analysis will
greatly simplify the computations, nonetheless it will still be general enough to uncover some
very interesting features of Lovelock black hole solutions. All the computations will be per-
formed analytically and will be useful in order to gain general intuition about gravitational
instabilities in Lovelock gravities.

In section 1 we already used metric perturbations in order to show one of the pathologies
associated with Lovelock gravities. We saw that the sign of the kinetic term of the perturba-
tions about a given vacuum, Λi is proportional to Υ′[Λi] in such a way that a negative slope
indicates the presence of ghosts. This in turn ruled out the black hole solutions associated
with this vacuum for the same reason.

In the case of static black holes, we will find for instance that for planar black holes we
have to restrict the possible values of the Lovelock coefficients in order to avoid instabilities.
For non planar black holes the situation is much more involved but we will still be able to
describe some important qualitative features of these instabilities. We will uncover their
close relation to the Cosmic Censorship conjecture, its relevance for the analysis of black
hole evaporation and also for ruling out particular black hole solutions that otherwise lead
to some troublesome behavior. All these effects, rather than being pathological, seem to
provide the instabilities found with some very precise physical significance.

4.1 Graviton potentials

Throughout this chapter we will be considering the same black hole solutions of the pre-
ceeding sections as described by the metric form (2.1.3) and the corresponding black hole
polynomial (2.1.8) defining f . We add a generic perturbation of the metric, hab, with fixed
frequency, ω, and momentum, q in a fixed direction. These fluctuations split into three
channels according to their polarization relative to the momentum, namely the tensor, shear
and sound channels [176] (or equivalently helicity/spin two, one and zero respectively). The
equations of motion for these dynamical degrees of freedom, φh(r), the subindex h = 0, 1, 2
indicating the corresponding helicity, can be recast as Schrödinger type equations [174], that
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in the large momentum limit they reduce to a very simple form1

− ~2 ∂2
yΨh + Uh(y) Ψh = α2 Ψh , ~ ≡ 1

q
→ 0 , (4.1.1)

where α = ω2/q2, y is a dimensionless tortoise coordinate defined as dy/dr =
√
−Λ/f(r), and

Ψh(y) = Bh(y)φh(y), where Bh(y) are functions of the metric whose specific expression can
be found in [174]. For a regular solution Ψh(y), the metric perturbation φh(y) blows up as
Bh(y) approaches zero. In such case, it could not be considered any longer as a perturbation
and, in that sense, the linearized analysis would be spoiled. We then need to make sure that
the function Bh(y) is non-vanishing. In our regime of interest, the effective potentials Uh,
can be determined as the speed of large momentum gravitons in constant y slices,

Uh(y) =

{
c2
i (y) y < 0 ,

+∞ y = 0 ,
(4.1.2)

y = 0 being the boundary of the spacetime. The explicit computation for the helicity two
graviton and details on the other helicities are given on appendix A

For a generic Lovelock theory, in terms of the original radial variable, one finds for the
tensor, shear and sound channels, respectively [2]:

c2
2(r) =

L2f(r)

(d− 4) r2

C(2)
d [g, r]

C(1)
d [g, r]

,

c2
1(r) =

L2f(r)

(d− 3) r2

C(1)
d [g, r]

C(0)
d [g, r]

, (4.1.3)

c2
0(r) =

L2f(r)

(d− 2) r2

(
2 C(1)

d [g, r]

C(0)
d [g, r]

− C
(2)
d [g, r]

C(1)
d [g, r]

)
,

where C(k)
d [g, r] are functionals involving up to kth-order derivatives of g defined in (A.1.13).

Notice also that there is a quite simple relation between the three potentials,

(d− 2)c2
0(r)− 2(d− 3)c2

1(r) + (d− 4)c2
2(r) = 0 (4.1.4)

in such a way that any of the three can be written as a combination of the other two.

These expressions are valid in general, also for charged black holes. In the uncharged case
however the black hole equation (2.1.8) is simpler and this allows us to make a simplifying
change of variable. Instead of r we take Υ as independent variable (the relation is one-to-one
in absence of charge) and we define x ≡ logL2Υ and F ≡ logL2Υ′ so that r∂r = −(d− 1)∂x

1In the notation of [174], we must identify γi ≡ γ = q2L2, and our potentials are related to theirs,
Ui → −Vi/γ Λ, as γ →∞.
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yielding for the potentials

c2
2(x) =

(d− 1)L2 f

(d− 4) r2

(
d−3
d−1
− F ′(x)

) (
d−4
d−1
− F ′(x)

)
+ F ′′(x)(

d−3
d−1
− F ′(x)

) ,

c2
1(x) =

(d− 1)L2 f

(d− 3) r2

(
d− 3

d− 1
− F ′(x)

)
, (4.1.5)

c2
0(x) =

(d− 1)L2 f

(d− 2) r2

(
d−3
d−1
− F ′(x)

) (
d−2
d−1
− F ′(x)

)
− F ′′(x)(

d−3
d−1
− F ′(x)

) .

In this way the potentials can be thought as functions of the metric function g only, every-
thing can be written in terms of the Lovelock polynomial Υ and its derivatives, e.g. F ′ =
Υ[g]Υ′′[g]/Υ′[g]2. This makes it very easy to analyze the potentials for the different branches
of solutions (corresponding to different ranges of g) and different values of the mass that con-
trols the place where the solution ends, i.e. the horizon g = g+.

4.2 Black hole instabilities

It has been found in [37, 157, 177] that, for certain values of the LGB coupling, some ef-
fective potentials might develop negative values close to the horizon. The rôle of ~ in the
Schrödinger-like equations (4.1.1) is played by 1/q, in such a way that taking sufficiently
large spatial momentum (small ~), we can make an infinitesimally small (negative energy)
well to support a negative energy state in the effective potential. Going back to the original
fields, this translates into an exponentially growing and therefore unstable mode [178]. In
order to analyze the stability of black holes in our regime of interest we will then just be
concerned with the sign of (4.1.5).

Outside the horizon f is positive and the sign of the potential is given by the expression
on derivatives of F . The simplest one is the corresponding to the shear or helicity one
mode and remarkably this has exactly the same expression as the denominators of the other
two potentials. It is interesting to point out that this condition is also needed to ensure
the validity of the linear analysis [179], as long as all the Bi(r) functions are seen to be
proportional to some power of

∂r
(
rd−3Υ′[g]

)
= rd−4Υ′[g] ((d− 3)− (d− 1)F ′(x)Υ′[g]) (4.2.1)

The condition Υ[g] > 0 needed to avoid the BD-instability reappears now as a consistency
condition of the perturbative analysis. In addition the shear channel potential has to be
positive. Furthermore, the violation of this particular stability condition is interesting as
this potential is related to the coefficient of the kinetic term for the gravitons and so to
unitarity. Notice also that this last constraint is redundant as because of (4.1.4) when the
tensor and sound potentials are positive the shear one also is. Henceforth we can restrict
the stability analysis to just the helicity two and zero modes.

We will be particularly interested in black holes with planar horizons. This is due to their
simplicity but also as this case is the most relevant in the context of holography. It describes
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the would be dual gauge theory in Minkowski space. Within this framework, graviton po-
tentials will be important to probe several important aspects of the duality, ranging from
causality to hydrodynamic properties of plasmas. Also, the planar limit corresponds to the
high mass regime of the other two topologies and provides very important information about
them. We restrict ourselves to the EH-branch as it is the only one displaying a horizon in
that case.

We can show that a negative potential well can be found at the horizon in a general
Lovelock theory2. Such negative values of c2

i develop whenever the slope of the effective
potential at the horizon is negative, and so we must require ∂xc

2
i ≤ 0 there. Remember that

x = 0 corresponds to the horizon – where c2
i vanishes – and x = −∞ to the boundary. That

analysis is particularly simple for planar black holes as then we have g = 0 at the horizon,
and it is straightforward to make use of Υ(g) = L−2ex to find the derivatives of g(x) there,
e.g., ∂xg|g=0 = (Υ[g]/Υ′[g]) |g=0 = c0/c1 = L−2. In this way, we can relate the values of the
derivatives of F (x) at x = 0 with the coefficients of the polynomial Υ(g). In particular,

F ′(0) = 2λ , F ′′(0) = 2(µ+ λ(1− 4λ)) , (4.2.2)

where, again, λ = c2/L
2, and we have defined µ = 3c3/L

4. Using these results, we expand
the graviton effective potentials close to the horizon to get

c2
2(x) ≈ d− 1

d− 4
x

(
d−3
d−1
− 2λ

) (
d−4
d−1
− 2λ

)
+ 2(µ+ λ(1− 4λ))(

d−3
d−1
− 2λ

) +O
(
x2
)
,

c2
1(x) ≈ d− 1

d− 3
x

(
d− 3

d− 1
− 2λ

)
+O

(
x2
)
, (4.2.3)

c2
0(x) ≈ d− 1

d− 2
x

(
d−3
d−1
− 2λ

) (
d−2
d−1
− 2λ

)
− 2(µ+ λ(1− 4λ))(

d−3
d−1
− 2λ

) +O
(
x2
)
.

Stability requires that the potentials are positive. This gives rise to the following constraints
for the Lovelock couplings:

(d− 3)− 2λ(d− 1) > 0 , (4.2.4)

(d− 3)(d− 4)− 2λ(d− 1)(d− 6)− 4λ2(d− 1)2 + 2µ(d− 1)2 ≥ 0 , (4.2.5)

(d− 2)(d− 3)− 6λ(d− 1)(d− 2) + 12λ2(d− 1)2 − 2µ(d− 1)2 ≥ 0 . (4.2.6)

These inequalities represent the constraints from the shear, tensor and sound channels re-
spectively. They are required to hold, otherwise the black brane solution is unstable. For
µ = 0, these results match those for LGB gravity derived in [37]. I that case the helicity two
constraint becomes irrelevant in six or higher dimensions whereas in five it isolates the apex

2Some work in this direction has been done recently in [179,180] under some generic circumstances.
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λ = 1/4 from the rest of the stable range,

d = 5 : −1

8
≤ λ ≤ 1

8
; λ =

1

4
(4.2.7)

d ≥ 6 : −d− 6 +
√

5d2 − 40d+ 84

4(d− 1)
≤ λ ≤ −(d− 6) +

√
5d2 − 40d+ 84

4(d− 1)
(4.2.8)

It is important to notice that, in spite of considering a completely general Lovelock theory
with as many terms as we wish, these stability constraints involve just the lowest two Lovelock
couplings, λ and µ.

The first constraint comes from the shear mode and is irrelevant once the remaining ones
are taken into account. The stability constraints define a new allowed stability wedge in
parameter space (see figure 4.1):

µ ≥ −(d− 3)(d− 4)− 2λ(d− 1)(d− 6)− 4λ2(d− 1)2

2(d− 1)2
, (4.2.9)

µ ≤ (d− 2)(d− 3)− 6λ(d− 1)(d− 2) + 12λ2(d− 1)2

2(d− 1)2
, (4.2.10)

with apex at

λ = λc =
d− 3

2(d− 1)
, µ =

(d− 3)(d− 5)

2(d− 1)2
, (4.2.11)

or, equivalently, on the intersection of the λ = λc line with µ = λ(4λ − 1). In general, for
five and seven dimensions, the apex coincides with the point of maximal symmetry (λ = 1/4
and (λ, µ) = (1/3, 1/9) respectively), where the polynomial Υ[g] has a single maximally
degenerate root. This is also the Chern-Simons point of the LGB or cubic Lovelock theory
where it actually becomes a Chern-Simons theory for the AdS group (see, for example, [43]).
In higher dimensions the apex will have the same values of λ and µ as the Chern-Simons
point but all the other coefficients are unconstrained.

The above constraints will be extensively analyzed in chapter 8 in the context of holo-
graphic plasmas. The gauge/gravity correspondence allows for the description of such
strongly coupled fluids in terms of black holes in AdS, in such a way that the above in-
stabilities are interpreted as instabilities of the dual plasma. The constraints found will then
be important to restrict the values of the Lovelock couplings that describe stable plasmas and
the possible values of transport coefficients for those fluids, namely the shear viscosity [3].
In particular the above constraints rule out negative values of the shear viscosity, that also
represents an instability in the dual picture.

In addition to horizon stability we may encounter negative potential wells in the bulk of
the spacetime as examples found in [3]. For planar black holes this will be relevant when
discussing more stringent constraints on the parameters and the shear viscosity to entropy
density. We will come back to this on section 8.2.

For non-planar topology the situation is much more involved. In addition to the couplings
the instabilities will in general depend on the other parameter of the solutions, the mass or
the radius of the black hole. Its value controls the range of values for g that correspond
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Figure 4.1: Stability wedge (red regions) as defined by (4.2.9, in red) and (4.2.10, in
blue) for d = 5, 6, 7, 10, 20. For d = 5, 6 just the points on the µ = 0 axis have physical
significance and bound the LGB coupling. The gray curves that bound the faintest red
region correspond to infinite dimensionality whereas the yellow area represents the excluded
region as discussed in chapter 2. The dimensionality increases from the innermost to
the outermost curves. A given dimension stability wedge always contains those of lower
dimensions. The dashed black curve describes the locus of the apex (4.2.11, green dots)
that goes inside the excluded region (yellow area) for d = 6, 7. This apex coincides with the
maximally degenerate point of cubic Lovelock (black dot) for d = 7 and with the gray dot
as d→∞. Except for d = 5 there is always a part of the stability that has to be discarded
as it belongs to the excluded region. The dashed blue and red curves are nothing but the
degenerate locus ∆ = 0 where of the possible cosmological constants coincide.
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to the untrapped region of the spacetime where instabilities may be found. For spherical
black holes this range decreases as we increase the mass and the opposite happens in the
hyperbolic case. The planar limit is just in between in such a way that when the planar
case is unstable all spherical black holes in the EH branch are unstable as well. Hyperbolic
black holes are always stable if we decrease sufficiently the mass, and they are stable for any
mass in the EH-branch when the planar limit is stable. In any case, all vacuum solutions
are always stable as F ′ = F ′′ = 0 and so are black holes on any branch sufficietly close to
them. Despite the complexity of the generic case we may still use the stability analysis to
shed light on some interesting aspects of Lovelock theories such as evaporation of black holes
or the status of the cosmic censorship conjecture on these theories.

4.3 Stability of new uncharged extremal black holes

In section 2.3 a new type of spherically symmetric extremal black holes has been described in
Lovelock gravities without charges [4]. This result follows from the posibility for such black
holes of having more than one horizon in general, depending on the shape of the polynomial,
and couples of black hole horizons appearing or disappearing depending on the values of
the mass parameter κ. We can argue that the third law of thermodynamics protects these
black holes to become extremal by evaporation. It can be easily shown that the black hole
would spend an infinite amount of time to reach the extremal mass. The real problem is the
possibility of approaching these extremal solutions from lower masses. It would be possible
to throw matter at a non-extremal solution in the exact amount so that a new degenerate
horizon appears. This is an obvious violation of the third law.

This surprising behavior also represents a puzzle in another way. These Houdini tricks
amount to discontinuous changes on the thermodynamic variables associated with the hori-
zon. Moreover, we know that inner horizons are unstable [154,155], so that we cannot trust
our solution behind any such horizon that presumably becomes a null-spacelike singularity.
Then the appearance of the new degenerate horizon would create a bigger singularity that
suddenly swallows some previously untrapped region of the spacetime. We will see that
all these problematic properties are ruled out once we take into consideration the possible
instabilities of these spacetimes.

This possibility of appearance and disappearance of horizons is associated with particular
points in the polynomial that solve the following constraint

Υ′[ge+] =
d− 1

2 ge+
Υ[ge+] , (4.3.1)

which sets the black hole temperature (3.2.1) to zero. For masses slightly above and below
that point the the number of horizons differs by two and the thermodynamic variables have
a discontinuity (see figure 4.3 for a specific example). Two consecutive outer and inner
horizons merge and disappear. In some cases below the critical mass the central singularity
might even become naked. This however does not imply a violation of the cosmic censorshihp
conjecture as an evaporating black hole would need an infinity amount of time to reach zero
temperature.
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Figure 4.2: Cubic polynomial for L = 1, λ = −0.746 and µ = 0.56. The dashed lines

are just κ (g/σ)
d−1

2 for d = 7 and the indicated values of σ and κ (in units of L). The
crossing of these lines with the polynomial give the possible values for g at the horizon
and then of r+. We observe the occurrence of two (outer and inner, respectively) horizons,
r+ and r− which disappear for κ < κext leaving a naked singularity. For d = 8 we find a
similar behavior with one further inner horizon, three in total, with no naked singularity
no matter the value of the mass.

We can expand the equation for the horizon (2.3.6)

Υ[ge+] = κe(ge+)
d−1

2 (4.3.2)

close to the the extremal point and convince oneself that necessarily

Υ′′[ge+] >
(d− 1)(d− 3)

4
κ(ge+)

d−5
2 , (4.3.3)

as it happens in the example depicted in figure 4.2. This condition can be rewritten using
the horizon equation (4.3.2) and (4.3.1) as

Υ′′[ge+] >
(d− 1)(d− 3)

4 (ge+)2
Υ[ge+] =

d− 3

d− 1

Υ′[ge+]2

Υ[ge+]
. (4.3.4)

Both conditions make no reference to the specific value of the mass but rather express a
property of the polynomial for some particular value of g. Moreover, taking into account
that we are considering positive mass solutions, Υ[ge+] > 0, we obtain the condition

F ′e =
Υ′′[ge+]Υ[ge+]

Υ′[ge+]2
>
d− 3

d− 1
. (4.3.5)

Remarkably this is exactly equivalent to the violation of one of the stability conditions

c2
1 < 0 . (4.3.6)
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but also to having a negative coefficient for the graviton kinetic term in the black hole
background and thus to unitarity. As we reduce the mass approaching the extremal value
the black hole becomes unstable, earlier than any jump in the black hole radius. The
solution is unstable also for any lower mass as the value of g for the extremal point ge

belongs to the untrapped region. The puzzle posed by these solutions is then solved, the
pathological behavior being related to non-unitarity of the gravitons and instabilities of the
black hole. Before any pathological behavior is encountered an instability sets in driving
the system somewhere else. This also forbids the possibility of violations of the third law of
thermodynamics.

In the case where several extremal points (or masses) exist the relevant one is always the
most massive. Notice that in general the instability is triggered for masses slightly above
that extremal one.

The previous analysis can be performed in almost the same manner for other extremal
states that appeared in the classification of Lovelock black hole solutions. These examples are
dS black holes at the Nariai mass(es) and extremal hyperbolic black holes. These are present
also in general relativity and it is easy to show that they respect the stability constraint
at the extremal point. The value of F ′e is not bigger but lower than the critical value of
(d − 3)/(d − 1) in these situations as either we have negative mass or the curve κeg+ is
not below but above Υ[g+] close to the extremal point. We then do not in general expect
instabilities for such backgrouds. This supports the consideration of some of these extremal
solutions as groundstates, nonetheless they might still be unstable for the other channels.

4.4 The Cosmic Censorship Conjecture and stability

The result of previous section is also relevant for the discussion of the Cosmic Censorship
Conjecture in Lovelock theories. For the minimal dimension d = 2K+1 at any given order K
it may happen that the two merging horizons are the only ones of the solution and thus the
singularity behind them would then become naked. It is hard to imagine any physical process
that would reduce the black hole mass below the extremal threshold, nevertheless, even if it
existed, we have just shown that the instability sets in before the singularity becomes naked,
in fact before the black hole becomes extremal. However, we also need to care about black
holes of lower masses as they can à priori be created directly by collapse. We have just shown
that these solutions are also unstable, a strong indication that they cannot be the en point
of gravitational collapse on generic circumstances.

For matter collapsing to a regular black hole with a horizon, the formation of the latter
contitutes a critical moment for the matter contained within it. Think of a spherically sym-
metric configuration. The causal properties of event horizons force all the matter to end up at
the central singularity, no matter the details of the matter distribution, and it cannot scape
from there as causally it would imply travelling backwards in time. This is radically different
if the end point is a naked singularity. As this solution is not provided with an event horizon,
matter may in principle scape from the singularity without violating any causal structure
and the final configuration may be much more sensitive to the details of the configuration
under collapse. The Penrose diagrams of both such processes are schematically depicted in
figure 4.3. It makes then sense to analyze the stability of such hypothetical solutions in
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Figure 4.3: Penrose diagrams for the collapse of a shell of radiation (thick line) to a
black hole (left) and a naked singularity (right). In the case of the naked singularity the
radiation has no obstacle to scape across (or bouncing on) the singularity, the hypothetical
trajectory corresponding to the dashed line.

order to assess whether or not they represent good candidates for endpoints of gravitational
collapse. In the precedent case we have shown such singular solutions to be unstable and
most probably any small departure from spherical symmetry would imply that such naked
singularity would not be formed. Even in the spherically symmetric case the singularity
might just be spurious, mathematically just a result of all the matter ending up at the same
point at the same time due to the rigid symmetry imposed. Furthermore, once it reaches
the singularity, matter may still bounce back, even in presence of other non-gravitational
interactions. This is even clearer if we distort slightly the matter configuration in such a
way that we avoid this coincidence problem. Different parts of the matter configuration will
arrive at different times at slightly different points in such a way that the singularity is not
formed. e.g. if we provide some angular momentum the centrifugal barrier would also do the
job, at least in some cases. In the context of Lovelock theories of gravity solutions displaying
naked singularities näıvely appear in many different situations as seen in the classification of
chapter 2, and some of them seem to be formed through a plausible physical process. This
may occur for the otherwise well-behaved Einstein-Hilbert branch as well as for the higher
curvature branches. Most of these naked singularities arise because the branch of interest
ends up at a maximum of the Lovelock polynomials before a horizon is encountered. Another
type of singularity is the one associated with positive minima of the same polynomial, that
would correspond to a complex cosmological constant associated with this particular branch.
The latter type of singularity can never be avoided by any choice of mass parameter and will
not be considered here. The above argument makes clear that the stability of these solutions
is an essential point to be analyzed in order to study the status of the Cosmic Censorship
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Conjecture in these theories. It can be shown that the instabilities mentioned in the previous
paragraph show up whenever a violation of the cosmic censor may happen, as we will now
see.

Naked singularities may correspond either to r = 0 (or g = ±∞) in d = 2K + 1, for
type (a) branches or to a finite value of the radius, r = r−1(g?), where Υ′[g?] = 0, this
corresponding to type (b) or AdS branches. In the latter case it is enough to probe the
solution close to the singularity in order to show its instability. We just need to analyse the
behavior of the potentials for values of g close to the critical one, g?. In this regime we can
approximate the polynomial by

Υ[g] ≈ Υ[g?] +
1

2
Υ′′[g?](g − g?)2 (4.4.1)

and use this to compute the leading contribution to the derivatives of F (x), that diverge in
the vicinity of the singularity,

F ′[g] =≈ Υ?

Υ′′?(g − g?)2
→ −∞ ; F ′′[g] ≈ −2F ′[g]2 (4.4.2)

with negative sign as Υ′′? < 0 for a maximum. Consequently some of the potentials become
negative,

c2
2 ≈

(d− 1)L2 f?
(d− 4) r2

F ′ , (4.4.3)

c2
1 ≈

(d− 1)L2 f?
(d− 3) r2

(−F ′) , (4.4.4)

c2
0 ≈

(d− 1)L2 f?
(d− 2) r2

(−3F ′) . (4.4.5)

The instability always appears as we have that the potentials corresponding to the different
modes diverge with different sign, at least one of them being negative close to the naked
singularity.

It is important to note that not just the solution containing the naked singularity is
unstable, any black hole solution with a horizon close enough to the singularity will also be
so. Hence the black hole cannot be continuously connected to the singular solution by any
physical process as the instability would inevitably show up before the singularity becomes
actually naked. As the horizon approach the singularity, given that F ′ diverges in that limit,
the instability is increasingly important and dramatic when we get there. Remark that in
this cases the threshold between black holes and naked singularities is not extremal.

The other possibility for naked singularities to show up was for spherical black holes in the
limit of small mass when the highest Lovelock coupling is positive, cK > 0, and d = 2K + 1.
In that case we can explore all the way down to r = 0 and it will actually be enough to
show an instability in that limit. This corresponds just to g → ∞ and the instability has
been previously observed [173] without any reference to the cosmic censor. In that case
F ′ ≈ (K − 1)/K + AK/g

2 and F ′′ ≈ −2AK/(Kg
2) to leading order, for some constant AK ,
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yielding for the potentials

c2
2 ≈ − 5L2 f

(2K − 3) r2
, (4.4.6)

c2
1 ≈ 0 , (4.4.7)

c2
0 ≈

5L2 f

(2K − 1) r2
. (4.4.8)

the constraint (4.1.4) being still verified. We found again an instability for the tensor mode,
and again the instability is not just for the naked singularity but also for black holes close
enough to it. Notice that once the shear potential becomes zero to leading order, according
to (4.1.4) the two remaining potentials are bound to have opposite signs.

The instabilities uncovered in the previous discussion, both for the naked singularities and
black holes approaching that limit, clearly show that these naked singular solutions cannot
be reached either by evolution of black holes by any physical process or via gravitational
collapse3.

4.5 Instabilities and black hole evaporation

In our quest to qualitatively understand in which situations Lovelock black holes become
unstable we pass on to the case of evaporating black holes. This case is relevant as in pre-
vious analysis the instabilities under study seem to appear whenever the black hole horizon
approaches too much the singularity. This is for instance what happens for type (b) spheri-
cal solutions. As the black hole evaporates it looses mass approaching the critical value (for
which the temperature diverges) in finite time. This would leave behind a naked singularity
but we already proved that neither the extremal solution nor the naked singularity can be
reached, the solution becomes unstable as the horizon gets close to the singularity.

The same happens for the other cases analyzed throughout this chapter and the same
will also hold for other classes of evaporating spherical black holes. We have also seen that
for type (a) branches in d = 2K + 1 the black hole solution becomes unstable as well before
reaching the r+ = 0 state, that in this case is extremal. The black hole would spend an
infinite amount of time to become extremal but just a finite amount to reach the instability.
Hence, the instability seem to play a rôle in the evaporation process of black holes in Lovelock
gravities, at least for spherical topology.

The remaining case to be understood is that of type (a) solutions, either on the EH or
dS branches, for dimensions bigger than the critical, d > 2K + 1. As the mass of the black
hole shrinks to zero the horizon also shrinks approaching the central singularity. In this
case the singularity can never become naked but still instabilities show up before the black
hole shrinks to zero size. In [173, 180] it has been observed that when all possible Lovelock
couplings are turned on – the highest one being positive, cK > 0 – the instability always
shows up, in even and odd dimensions. Here we will generalize that analysis.

3Contrary to what has been proposed in [181,182].
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Expanding the tensor and scalar potentials around g →∞ we simply get

c2
2 ≈

(d− 3K − 1)L2 f

K(d− 4) r2
, (4.5.1)

c2
1 ≈

(d− 2K − 1)L2 f

K(d− 3) r2
, (4.5.2)

c2
0 ≈

(d−K − 1)L2 f

K(d− 2) r2
. (4.5.3)

Then any spherical branch under the above conditions will present a tensor instability in the
small mass limit for 2K + 1 < d < 3K + 1, where K is the order of the Lovelock theory.
Einstein-Hilbert is a special case from this perspective. It would be unstable in d = 3 but
in that dimension it escapes our analysis as it corresponds to a AdS-Chern-Simons theory,
being topological. The d = 3K + 1 is special and we need to go to the following order in
the tensor potential. In that case wether the black hole is stable or not will depend on the
actual values of (cK−1/cK)2 and cK−2/cK . The case of Einstein-Hilbert gravity is stable in
any case this being a consistency check of our computations.

Summarizing, for generic Lovelock gravities we have encountered instabilities at the end
of the evaporation process of any spherical black hole in dimensions lower than 3K + 1,
regardless of the type of singularity, (a) or (b), or the asymptotics. The latter dimensionality
has to be considered in a more detailed way. Whether this instability is pointing towards
an inconsistency of the theory, and as that we should constrain K ≤

[
d−1

3

]
, or to some

unknown but normal process taking place during the evaporation of a black hole has yet to
be answered.

4.6 Discussion

Perturbative analysis of exact solutions appears to be an extremely useful tool to get a
deeper understanding of the dynamics of gravity in four and higher dimensions, specially for
Lovelock theories. In this chapter we have presented and analyzed the graviton potentials for
generic Lovelock gravities in some particularly simple regime. Still, despite the simplicity of
the adopted approach, the results are general enough to provide some valuable information
about the behavior of black holes in these higher curvature theories.

Lovelock solutions display several seemingly pathological features, ranging from naked
singularities to violations of the third law or discontinuous changes on the horizon radius –
and consequently also on their associated thermodynamic variables. We have shown that
all the puzzling properties of these solutions are ruled out once their stability is considered.
Before any naked singularity may show up the corresponding solution becomes unstable,
this applying as well for black holes undergoing any physical process as for the collapse of
any kind of matter. Therefore, naked singularities cannot be formed under the evolution of
generic initial conditions. The existence of such solutions for collapse with exact symmetry
has no bearing on the truth of the conjecture as we can consider such initial conditions as
fine-tuned, a zero density set on the space of initial conditions. Any perturbed set of initial
conditions will not end up with the formation of the naked singularity due to the instability.
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The Cosmic Censorship Hypothesis can be saved in Lovelock gravities, at least for now.
The same happens also for the third law of thermodynamics, the solutions that would lead
to any violation of this law being also unstable. As a consequence, the thermodynamic
quantities for the remaining (stable) ranges of parameters are always continuous.

These results provide a new and unsuspected insight into these instabilities, too often
taken as pathological. Contrary to that belief they seem to have the opposite rôle, preventing
the appearance of real pathological behavior. The instabilities uncover through the last pages
get in this way physical relevance, their analysis being crucial for the understanding of the
dynamics of black holes in Lovelock and possibly other theories containing higher powers
of the curvature. In particular, we have shown that Lovelock black holes with spherical
symmetry generically become unstable as they evaporate. Then, the instabilities play also a
rôle in the way black holes decay. In most cases there is a mass gap between the lightest stable
black hole and the corresponding maximally symmetric vacuum. The instability may lead
the gravitational system to some new solutions that may fill this gap. The only possibilities
for such hypothetical states are stars made either of regular matter or gravitational hair4. In
some cases we might need to break spherical symmetry and provide some angular momentum,
as the perturbations considered do.

For hyperbolic AdS-branches the stability of the black hole solutions provides an upper
bound on the gravitational mass. If we assume that the bound cannot be of fundamental
nature we may still find more massive solutions in the form of hairy black holes. The dressing
of the horizon provides the extra required energy. In both cases, the fact that the instability
is restricted to some finite radius region of the spacetime seems to support these hypothesis,
this is the region filled by our matter configuration or geon, the rest of the spacetime being
untouched. We would need a more detailed analysis in order to confirm this intuition.

On any of the cases, the instability is associated with a particular value of g, the minimal
one for which some of the potentials become negative, gu < g?. The threshold of the
instability is then the value of the mass for which the radius of the horizon corresponds to
that critical value of g, gu = σ/r2

crit, thus

κcrit =
(gu
σ

) d−1
2

Υ[gu] (4.6.1)

For values of the mass lower than this one we can translate the stability constraints into
a bound on the amount of matter that can be contained in a sphere of radius r. For any
quantity of matter κ(r) the radius filled by it has to be bigger than the would be naked
singularity, r > ru, or equivalently g(r) < gu. Notice that this radius grows along with the
mass. For a continuous distribution of matter this has to be verified for all the values of the
radius up to r = 0 so that the configuration is stable. The equation for the metric function
g is trivially modified in that case to

Υ[g(r)] =
κ(r)

rd−1
≤ κ(r)

rd−1
u

= Υ[gu] (4.6.2)

The polynomial plays the rôle of an effective density and its value at the threshold of the
instability can be interpreted as the maximal one so that the instability is avoided. We could

4See [183] for an example of the class of solutions we are referring to.
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have played the same game with the value of g for the singularity g?, and we get another, less
stringent, bound on Υ so that the naked singularity is not formed, Υ[g] < Υ[g?]. Notice that
the bounds set by stability are always finite whereas the one that avoid the nakedness of the
singularity is infinite in the case of r = 0 singularities. The polynomial Υ[g?] diverges in that
case and any finite density matter configuration would be regular. We can schematically
plot the matter density in terms of g in the same way as we did in order to find the horizon
position, we will plot κ(

√
σ/g)(g/σ)

d−1
2 together with the polynomial. In figure (4.4) we

have depicted some possible configurations, either black holes or stars.
Even in the case these matter configurations are not possible, there is another possible

endpoint for gravitational collapse. The collapsing matter may just disperse again as it not
trapped by any event horizon. In case the symmetry is relaxed the matter will not collapse
exactly to one point in such a way that the density may remain finite through the evolution.
Then it may disperse back to infinity or form some type of bound state.



Chapter 5

Bubbles and new phase transitions

“Nothing has such power to broaden the mind
as the ability to investigate systematically and truly

all that comes under thy observation in life.”

Marcus Aurelius

Phase transitions between two competing vacua of a given theory are a quite common phe-
nomenon in physics. They occur when some parameter of the system is varied so that the
(free) energy of the actual vacuum become greater than the other. If the energy barrier
between the two is big enough, the system may stay in the false vacuum for some time
(metastability), and proceed to decay via quantum tunneling or, at finite temperature, jump
over the wall due to a thermal kick. The decay of metastable systems usually proceed by
nucleation of bubbles of true vacuum inside the false vacuum. In field theories at zero tem-
perature, this was first studied by Coleman in his classic paper [184]. There, he introduced
Euclidean methods for computing the probability of the quantum nucleation of a bubble,
whose dynamics, after nucleation, may be followed classically. In the first (tree-level) semi-
classical approximation, the probability of bubble nucleation is given by

P ∝ e−IE , (5.0.1)

where IE is the Euclidean action of the system evaluated at the appropriate solution; in this
case, the instanton. It is a time-dependent solution which, in the simplest case of a particle in
a potential, starts and ends its trajectory at the bottom of the false vacuum (given that the
potential in the Euclidean section is the negative of its Lorentzian counterpart, it is a local
maximum). This is the point x = xF in figure 5.1(b), where the particle starts its trajectory,
then bounces at x = xB, and finally gets back to xF in infinite time. The work of Coleman
generalizes this mechanism to a scalar field theory. The instant on corresponds to a scalar
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(a) (b) 

Figure 5.1: In (a) we depict a particle in a potential with two local minima.At xF , the
false vacuum, while the true vacuum is at x = xT . There is a potential barrier of height
E0 between the two vacua. In (b) the Euclidean counterpart of the same system. The
potential is now −V .

field configuration with SO(4) symmetry. The technique was then generalized by Linde, who
considered a scalar field at finite temperature [185]. In this case, the probability of nucleation
is still given by (5.0.1), but the Euclidean action has to be evaluated using a different classical
configuration, which has SO(3) symmetry. In the mechanical example of figure 5.1, if the
temperature is not high enough, this is the solution oscillating inside the Euclidean well,
between two points in (xF , xB). The period β of that solution is identified with the inverse
temperature, β = 1/T . This period has a minimum for small oscillations at the bottom of
the well. For temperatures higher than that one may use the static solution with the particle
at the bottom of the well, which, of course, has any periodicity. It is easy to see that for
this case, (5.0.1) gives precisely the Boltzmann factor e−βE0 one expects for the probability
of the particle to jump over the barrier. This is the sphaleron or thermalon [186,187].

Gravitational instantons where first discussed by Coleman-de Luccia in [188], where a
scalar field with a potential interacts with a dynamical metric. Now, the different vacua
correspond to solutions with different cosmological constants. The false vacuum decays by
nucleating an expanding bubble of true vacuum. Later, Brown and Teitelboim [189, 190]
found an analog instanton when gravity was coupled to an electromagnetic 3-form potential
and its sources, electrically charged membranes. In that case, there are infinitely many false
vacua, and the decay may proceed many times, changing the (positive) cosmological constant
at each step. The authors showed that this mechanism could relax the cosmological constant,
providing a possible mechanism for understanding the cosmological constant problem [191].
For finite temperatures, this same physical system may also decay. Now, a thermalon solution
controls the decay rate, and, interestingly enough, the decay of a pure de Sitter geometry,
turns out to leave a black hole behind [187]. In this chapter we show an analog process that
occurs in higher-curvature theories of gravity. In general, this theories contain degenerate
vacua even in the absence of matter. Furthermore, one vacuum may decay into the other by
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nucleating bubbles made of nothing but gravity itself [5, 6, 8].
Due to the non-linearity of the equations of motion, these theories generally admit more

than one maximally symmetric solution, Rµναβ = Λi(gµαgνβ − gµβgνα); (A)dS vacua with
effective cosmological constants Λi, whose values are determined by a polynomial equation
[44],

Υ[Λ] ≡
K∑
k=0

ck Λk = cK

K∏
i=1

(Λ− Λi) = 0 . (5.0.2)

K being the highest power of curvature (without derivatives) in the field equations. c0 = 1/L2

and c1 = 1 give canonically normalized cosmological and EH terms, ck≥2 are the LGB and
higher order couplings (see chapters 1 and 2 for more details).

Any vacua is à priori suitable in order to define boundary conditions for the gravity
theory we are interested in; i.e. we can define sectors of the theory as classes of solutions
that asymptote to a given vacuum [4]. In that way, each branch has associated static
solutions, representing either black holes or naked singularities,

ds2 = −f(r) dt2 +
dr2

g(r)
+ r2 dΩ2

d−2 , f, g
r→∞−−−→ −Λir

2 , (5.0.3)

and other solutions with the same asymptotics. The main motivation of the present work
is that of studying transitions between different branches of solutions. This is important in
order to investigate whether a new type of instability involving non-perturbative solutions
occurs in the theory. This new kind of phase transitions have been recently investigated in
the context of LGB [5] and Lovelock gravities [8].

5.1 Higher order free particle

The existence of branch transitions in higher curvature gravity theories is a concrete expres-
sion of the multivaluedness problem of these theories. In general the canonical momenta,
πij, are not invertible functions of the velocities, ġij [57]. An analogous situation may be
illustrated by means of a simple one-dimensional example [192]. Consider a free particle
lagrangian containing higher powers of velocities,

L(ẋ) =
1

2
ẋ2 − 1

3
ẋ3 +

1

17
ẋ4 (5.1.1)

In the hamiltonian formulation the equation of motion just implies the constancy of the
conjugate momentum, d

dt
p = 0. However, being this multivalued (also the hamiltonian), the

solution is not unique. Fixing boundary conditions x(t1,2) = x1,2, an obvious solution would
be constant speed ẋ = (x2 − x1)/(t2 − t1) ≡ v but we may also have jumping solutions with
constant momentum and the same mean velocity. Obviously for that to happen at least one
of the degenerate velocities has to be bigger than v and one smaller.

In our example, for mean velocities in the range (v1, v2) that correspond to multivalued
momentum, the solutions are infinitelly degenerate as the jumps may occur at any time and
unboundedly in number, as long as the mean velocity is the same. This degeneracy is lifted
however when the value of the action is taken into account. The minimal action path is the
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Figure 5.2: Lagrangian and momentum for the action (5.1.1). For the same mean velocity
v, the action is lower for jumps between v± (big dot) than for constant speed, the minimum
action corresponding to the value on the dashed line (effective Lagrangian).
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Figure 5.3: Hamiltonian as a function of the momentum for the action (5.1.1). Multival-
ued momenta correspond to the swallowtail part of the curve whereas those corresponding
to the effective lagrangian are the ones without that part of the curve, just the two upper
branches. The crossing correspond to the jump depicted in Figure 5.2 as a dashed line

näıve one for mean velocities outside the range (v′1, v
′
2) whereas in that range it corresponds

to arbitrary jumps between the two extremal velocities. One can actually compare the action
for both kinds of trajectories directly in the figure, we have depicted one example. In the
top figure 5.2 we have plotted the lagrangian as a function of the velocity. When this is
constant, ẋ = v, the action will just be the lagrangian L(v) multiplied by the time span of
the trajectory. On the other hand, for a jumping trajectory, the mean lagrangian can be
found as the intersect of the straight line joining the values of the lagrangian for both values
of the velocity, ẋ = v±, and that of ẋ = v,

L̄(v; v±) = L(v−) +
v − v−
v+ − v−

L(v+) (5.1.2)

Notice in the figure the action corresponding to v is bigger than the one correponding to
jumps between v± (green dot). This mean lagrangian is minimal for the lowest lying such
straight line and it is easy to see that that correspond to the dashed line for mean velocities,
v′1 < v < v′2. Outside that range the momentum is a convex function of the velocity and any
line joining to points on opposite sides of a given velocity will yield necessarily a higher action.
The effective Lagrangian (dashed line) is actually also a convex function of the velocities and
the effective momentum dependence corresponds to the Maxwell construction. In that case
the dashed line corresponds to jumps conserving both the energy and the momentum, i.e. the
crossing point on figure 5.3. Also the lowest energy state does not correspond to ẋ = 0 even
classically what has been referred to as a time crystal [193, 194]. The quantum mechanical
version of the model is well defined [192].

In the presence of a potential, the näıve choice of continuous velocities runs into problems
as we would hit the degenerate points d

dẋ
p = 0 where the acceleration is not well defined.

In the above effective approach however the momentum is a monotonous function of the
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velocity except at the transition that correspond to conservation of not only momentum but
energy.

In our example, for mean velocities corresponding to multivalued momentum (see figure
5.2) solutions are infinitely degenerate as the jumps may occur at any time and unboundedly
in number as long as the mean velocity is the same. Nevertheless, this degeneracy is lifted
once the value of the action is taken into account. The minimal action path is the näıve
one for mean velocities outside the range covered by the dashed line whereas in that interval
it corresponds to arbitrary jumps between the velocities of the two extrema. The effective
Lagrangian (dashed line) is a convex function of the velocities and the effective momentum
dependence corresponds to the analogous of the Maxwell construction from thermodynamics
(see [8] for a detailed explanation of this one-dimensional example).

Remark that in the presence of a potential, the näıve choice of continuous velocities may
run into problems as we may hit the degenerate points d

dẋ
p = 0 where the acceleration is not

well defined. This problem is avoided in the effective approach.

5.2 Generalized Hawking-Page transitions

In the context of General Relativity in asymptotically AdS spacetimes, the Hawking-Page
phase transition [125] is the realization that above certain temperature the dominant saddle
in the gravitational partition function comes from a black hole, whereas for lower temper-
atures it corresponds to the thermal vacuum. The classical solution is the one with least
Euclidean action among those with a smooth Euclidean section. In the case of Lovelock
gravities the occurrence of these transitions was analyzed in chapter 3.

When one deals with higher curvature gravity however there is a crucial difference that
has been overlooked in the literature. In addition to the usual continuous and differentiable
metrics (5.0.3), one may construct distributional metrics by gluing two solutions correspond-
ing to different branches across a spherical shell or bubble [55, 56]. The resulting solution
will be continuous at the bubble –with discontinuous derivatives, even in absence of matter.
The higher curvature terms can be thought of as a sort of matter source for the Einstein
tensor. The existence of such jump metrics, as for the one-dimensional example, is due to
the multivaluedness of momenta in the theory.

In the gravitational context, continuity of momenta is equivalent to the junction condi-
tions that need to be imposed on the bubble. In the EH case, Israel junction conditions [49],
being linear in velocities, also imply the continuity of derivatives of the metric. The gener-
alization of these conditions for higher curvature gravity contain higher powers of velocities,
thus allowing for more general situations.

Static bubble configurations, when they exist, have a smooth Euclidean continuation. It
is then possible to calculate the value of the action and compare it to all other solutions
with the same asymptotics and temperature. This analysis has been performed for the LGB
action [5] for unstable boundary conditions [44]. The result suggests a possible resolution of
the instability through bubble nucleation.

The phenomenon described here is quite general. It occurs also for general Lovelock
gravities [8] and presumably for more general classes of theories. One may even think of the
possibility of having different gravity theories on different sides of the bubble. This has a
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straightforward physical interpretation if we consider the higher order terms as sourced by
other fields that vary accross the bubble. For masses above m2 > ‖Λ±‖ a bubble made of
these fields will be well approximated by a thin wall and we may integrate out the fields for
the purpose of discussing the thermodynamics. If those fields have several possible vacuum
expectation values leading to different theories we may construct interpolating solutions in
essentially the same way discussed in this chapter. In this case the energy carried by the
bubble can be interpreted as the energy of the fields we have integrated out.

5.3 Junction conditions

We are interested in configurations involving a (timelike, n2 = 1) junction surface dividing
two regions, each of them given by a solution corresponding to a different branch of the
Lovelock action. To this end, we will split the geometry asM =M− ∪ (Σ×ξ) ∪M+, where
M∓ denote the interior/exterior regions respectively, Σ is the codimension one junction
(hyper)surface, and ξ ∈ [0, 1] is a real parameter used to interpolate both regions. The
matching condition can be obtained from an action principle constructed by means of two
auxiliary quantities [195]

Ea = ξ ea+ + (1− ξ) ea− , Ωab = ξ ωab+ + (1− ξ)ωab− , (5.3.1)

and the associated generalized curvatures

Rab
ξ = dΩab + Ωa

c ∧Ωcb = ξ Rab
+ + (1− ξ)Rab

− − ξ(1− ξ) (ω+ − ω−)ac ∧ (ω+ − ω−)cb , (5.3.2)

and Fab = δΩab +Rab, where δ is the exterior derivative on the convex simplex in the space
of connections, δ = dξ ∂

∂ξ
. That is, δΩab = dξ ∧ (ωab+ − ωab− ). These curvatures are used

to construct the secondary characteristic classes [196]. Their use in the context of Chern–
Simons gravities has been considered in [197].

In the bulk regions ξ takes a fixed value, ξ = 0, 1 respectively in M∓, whereas it runs
from 0 to 1 in Σ and has to be integrated over. The so-called secondary action is obtained
by substituting ea by Ea and Rab by Fab in (1.1.1),

L̃k = εa1a2···adF
a1a2 ∧ · · · ∧ Fa2k−1a2k ∧ Ea2k+1···ad , (5.3.3)

We can readily expand the secondary action in powers of δΩ, taking into account that
δΩ∧ δΩ = 0. The leading term corresponds to the bulk integrals onM∓ and contributes to
the standard Lovelock action (1.1.1), while the first order term captures the integral along
ξ on Σ,

Q̃k = −k
∫ 1

0

dξ (ω+ − ω−)a1a2 ∧Ra3a4 ∧ · · · ∧ Ra2k−1a2k ∧ Ea2k+1···adεa1···ad , (5.3.4)

where the minus sign has been chosen so that it coincides with the sign in section 1.2. If we
further impose the continuity of the metric such that Ea = ea for some choice of vielbeins,
we may also define θab± = ωab± − ωab0 . From this ωab+ − ωab− can be replaced by θab+ − θab− , which
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is zero unless one of the indices lies along the normal direction. Thus, the only relevant
contributions to Rab are those whose two indices are tangent to Σ. Now,

Rab = Rab
0 + Θa

c ∧Θcb + . . . , (5.3.5)

where Rab
0 is the intrinsic curvature of Σ computed from ωab0 , Θab ≡ ξ θab+ + (1 − ξ) θab− , and

the dots amount to terms having at least one index in the normal direction. Recalling the
relation between the second fundamental form and the extrinsic curvature (1.2.30), we can
finally write

Q̃k = 2k

∫ 1

0

dξ(K+ −K−)A1 ∧RA2A3
j ∧ · · · ∧R

A2k−2A2k−1

j ∧ eA2k···AdεA1···Ad , (5.3.6)

where the junction generalized curvature RAB
j (ξ), is given by RAB

j (ξ) ≡ RAB
0 − (ξ KA

+ + (1−
ξ)KA

−) ∧ (ξ KB
+ + (1 − ξ)KB

− ) (we can recover the boundary generalized curvature (1.2.33)

by switching-off Ka
+ → 0). We can surprisingly split Q̃k = Q−k −Q

+
k , where

Q±k = −2k

∫ 1

0

dξ KA1
± ∧RA2A3

0± (ξ) ∧ · · · ∧R
A2k−2A2k−1

0± (ξ) ∧ eA2k···AdεA1···Ad , (5.3.7)

with RAB
0± (ξ) ≡ RAB

0 − ξ2KA
± ∧KB

± , either term coming from each boundary region. That is,
the junction acts as a two-sided boundary. All in all, the kth contribution to the total action
can be written in terms of quantities coming from both sides,

Ik =

(∫
M−
L−k −

∫
Σ

Q−k
)

+

(∫
M+

L+
k +

∫
Σ

Q+
k −

∫
∂M
Q+
k

)
, (5.3.8)

the relative plus sign in the second term coming from the reverse orientation of the surface
in that region. The last term is irrelevant for the purposes of the present letter and will not
be considered in the following, it just makes the whole outer contribution to vanish if we
take the junction surface to infinity. The infinitesimal variation of the boundary action with
respect to ω± gives two terms. One is a total derivative. The other cancels with the total
derivative term coming from the bulk. The surface contribution to the equations of motion
is just given by the variation with respect to the frame, that correspond on each side to the
canonical momentum at the surface. As explained in section 1.2, the junction conditions
amount just to continuity of the momenta accross the hypersurface Σ defined in (1.2.39),

π+
AB = π−AB . (5.3.9)

In the particular case we are interested in, given that all the forms involved in the above
expression are diagonal, we should only care on those components.

5.3.1 Thermalon configuration

Let us be more detailed in the kind of configurations we are interested in. They correspond to
a bubble, whose outer region asymptotes AdS with a cosmological constant Λ+, while the inner
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Figure 5.4: Euclidean section of a ther-
malon configuration; a bubble pops out in
empty AdS space with cosmological constant
Λ+, hosting a black hole belonging to a dif-
ferent branch of the Lovelock theory charac-
terized by Λ−.
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r =0
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r = 8
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r = 8r= a

r= rH
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Thermal anti-de Sitter

Black hole inside a bubble

region corresponds to another branch solution characterized by the effective cosmological
constant Λ− (see figure 5.4). The junction conditions will constrain the possible combinations
of parameters that will describe the solutions of interest, instantons and thermalons. Across
the junction, the vielbein has to be continuous. We thus consider an Euclidean section of
the form

ds2 = f±(r)dt2 +
dr2

f±(r)
+ r2 dΩ2

σ,d−2 , (5.3.10)

where the ± signs denote the outer/inner regions. The junction is conveniently described by
the parametric equations

r = a(τ) , t± = T±(τ) , (5.3.11)

with an induced metric of the form

ds2 = dτ 2 + a(τ)2 dΣ2
d−2,σ , (5.3.12)

where we have made the choice

f±(a) Ṫ 2
± +

ȧ2

f±(a)
= 1 , ∀τ . (5.3.13)

The function a(τ) appears in the induced metric and so it has to be the same seen from
both sides, as long as the induced metric itself has to be continuous. The thermalon is
characterized by a static configuration, ȧ = ä = 0 (i.e., a(τ) = a?, the location of the
thermalon), that, in view of (5.3.13), translates into√

f−(a?) T− =
√
f+(a?) T+ = τ , (5.3.14)

which means that the physical length of the circle in euclidean time is the same as seen from
both sides. This matching condition will eventually allow us to determine the temperature
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of the solution. In fact, regularity of the Euclidean section (see figure 5.4) demands the
inner solution is a black hole and fixes its temperature. Once the periodicity in Euclidean
time is fixed to attain a regular horizon, the periodicity in the outer time will be determined
through √

f−(a?) β− =
√
f+(a?) β+ ≡ β0 , (5.3.15)

where β− is the usual inverse Hawking temperature of the inner solution while β+ is the one
seen by an observer at infinity, that will be different, in general, from the Hawking temper-
ature corresponding to the black hole of the given mass on either branch. β0 corresponds to
the periodicity in the new variable τ .

Consider the induced vielbein basis eτ = dτ and ei = a(τ) ẽϕi , which is intrinsic to Σ. If
we call xµ±(ζa) the coordinates of the embedding of Σ with intrinsic coordinates ζA = (τ, ϕi)
on M±, the unit normal vectors read, in Lorentzian signature,

nµ± = (
ȧ

f±(a)
,
√
ȧ2 + f±(a), 0, · · · , 0) . (5.3.16)

The extrinsic curvature is then given by

KAB = −n±µ

(
∂2xµ±
∂ζA∂ζB

+ Γµαβ
∂xα±
∂ζA

∂xβ±
∂ζB

)
, (5.3.17)

yielding

K±
τ
τ =

ä+ 1
2
f ′±(a)√

ȧ2 + f±(a)
, K±

ϕi
ϕj

=

√
ȧ2 + f±(a)

a
δij . (5.3.18)

The intrinsic curvature, in turn, is given by

Riτ
0 =

ä

a
ei ∧ eτ , Rij

0 =
σ + ȧ2

a2
ei ∧ ej . (5.3.19)

Notice that it is trivially the same as seen from either side as it is calculated from the induced
metric and this is continuous. The vielbein basis is continuous but the spin connection is
not. In that case it should be possible to write the surface term as the difference of (1.2.33)
seen from each of the bulk regions. It is clear that all the components aligned along the
normal direction of this intrinsic spin connection are zero in the same way as it happens for
the corresponding intrinsic curvature. In the Euclidean signature we may just change the
signs of the squared velocity and its acceleration as (ȧ2, ä) → (−ȧ2

E,−äE).

5.3.2 Junction conditions and bubble dynamics

The junction conditions (5.3.9) for the configurations of interest have just diagonal compo-
nents related by a conservation equation (Bianchi identity) that constrains them in such a
way that only the ττ component matters. The rest are related to that one as [54,55]

d

dτ

(
ad−2 π±ττ

)
= (d− 2) a2ȧ π±ϕiϕi , ∀i , (5.3.20)
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in such a way that if π±ττ verifies (5.3.9), all the components automatically do. This is
reminiscent of the analogous field equations for cosmological solutions studied in section
2.6 Thus, we just need to compute π±ττ . This junction condition involves just the angular
components of both the intrinsic and extrinsic curvatures; the expression reduces to

Π±(ττ) ≡
√
ȧ2 + f±(a)

a

∫ 1

0

dξ Υ′
[
σ − ξ2 f±(a) + (1− ξ2) ȧ2

a2

]
, (5.3.21)

where we avoid the inclusion of some (irrelevant for our discussion) factors, and the poly-
nomial Υ is again seen to play a central rôle. In the future we will also avoid the use of
indices, Π± referring to the (ττ)-component. If we define Π̃ = Π+ −Π−, because of (5.3.20)

the junction equations can be written as Π̃ = ∂τ Π̃ = 0. Notice that the dimensionality
of spacetime is somehow irrelevant in this expression. In the case of LGB, this expression
reduces to the one in [56]. If we conveniently introduce the functions1

g± ≡ g±(a) =
σ − f±(a)

a2
, H ≡ H(a, ȧ) =

σ + ȧ2

a2
, (5.3.22)

we can rewrite

Π± [g±, H] =
√
H − g±

∫ 1

0

dξ Υ′
[
ξ2 g± + (1− ξ2)H

]
, (5.3.23)

where it becomes clear that all the information about the branches is contained in g±, that
are implicitly given by (2.1.8). Notice that g± ≤ H in order to have a real value for Π±

(which tantamount to f±(a) ≥ 0 in order to have a real Euclidean boundary action). This
implies that the static bubble corresponding to the thermalon necessarily forms at a? ≥
max(rH+, rH−), outside the would be black hole horizons corresponding to both branches.
Moreover, this reality condition is also necessary for the equation to yield real values of the
velocity, at least for some region of the spacetime.

The difference in canonical momenta Π̃ may be rewritten in a couple more useful ways
as

Π̃ =

∫ 1

0

dξ
(√

H − g+ −
√
H − g−

)
Υ′
[
H −

(
ξ
√
H − g+ + (1− ξ)

√
H − g−

)2
]

(5.3.24)

that is the variation of (5.3.6), or changing the integration variable

Π̃ =

∫ √H−g+

√
H−g−

dxΥ′[H − x2] (5.3.25)

that is more compact and easier to manipulate.
We can interpret Π̃(ȧ, a) = 0 as a conservation equation with a non-canonical kinetic

term. We can make this statement more precise by noticing that

Π2
+ = Π2

− ⇐⇒
K−1∏
i=1

(
1

2
ȧ2 + Vi(a)

)
= 0 , (5.3.26)

1Not to be confused with the previously used notation for the horizon value of g, 1/r2+
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where we have to take into account that some of the roots or potentials, Vi(a), correspond
to the actual junction conditions (5.3.9), while some other may correspond to the reversal
orientation, Π+ = −Π−, that corresponds to gluing two interiors or two exteriors (wormhole).
Besides some roots may be discarded in case they yield imaginary momenta, g± > H. This
reality condition amounts to

ȧ2 ≥ −f± ; ȧ2
E ≤ f± (5.3.27)

in the Lorentzian and Euclidean sections respectively. Remark that in the Euclidean version
the brane may just propagate outside the horizon whereas in the Lorentzian case the bubble
may cross it. This leads to some seemingly pathological situations, namely the distruction
of the horizon by the bubble leading to a violation of the Cosmic Censorship Hypothesis.

Roots of Π̃ = 0 and Π+ + Π− = 0 may just join where Π+ = Π− = 0. The same also
happens for solutions yielding real and imaginary values of momenta, as this happens for
instance for H = g− or equivalently ȧ2 = −f− something that is possible just inside the
horizon or for negative values of ȧ2, forbidden region of the potential. In these particular
points the potential ceases to be a solution of Π+−Π− = 0 to become a solution of Π++Π− =
0. This is generic feature of any Lovelock theory as

√
H − g− does not change sign at H = g−,

as it can be seen in the figure, whereas Π− changes sign there. When this happens inside the
horizon it is unclear what happens to the bubble. It cannot go further but it cannot turn
back as it would be travelling backwards in time. We will comment more on this later on.

See figure 5.5 for specific examples of these facts. The potential becomes unphysical
beyond the point where it meets f−/2. Notice that we can get to the origin if we reduce κ+

or, for fixed κ+ if we increase κ−, actually for κ+ ≤ 4κ−.
Once a particular potential is chosen, say Vj(a), we can use (5.3.20) to determine the

corresponding acceleration equation that governs the dynamics of the bubble

ä = −V ′j (a) . (5.3.28)

Notice that this dynamics may be difficult to determine, in general, since for generic K it
might be impossible to have an explicit expression for the potentials, and, on top of that,
several of them may provide a suitable dynamics for the bubble. In all the expressions the
rôles of the two branches can be exchanged yielding the same dynamics of the bubble. As
there is no matter on the bubble, the corresponding equations are blind to which is the
inner/outer solution, the bubble behaves in exactly the same way.

There are two limiting cases of the junction conditions that are of special interest. On
the one hand we are interested in the static configurations (thermalons) and their stability.
For that it is enough to consider the slow limit of (5.3.9), in a double expansion about a?
and ȧ = 0,

Π̃ ≈ Π̃? +
∂Π̃ ?

∂H

ȧ2

a2
?

+
∂Π̃ ?

∂a
(a− a?) +

1

2

∂2Π̃ ?

∂a2
(a− a?)2 , (5.3.29)

where the upper star means that a quantity is being evaluated after the replacement H →
H? ≡ σ

a2
?

and g?± → g±(a?). Besides the two conditions

Π̃? =
∂Π̃?

∂a
= 0 , (5.3.30)
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the junction condition (5.3.9) at a = a? adopts the canonical form of an energy constraint
for an auxiliary harmonic system described by a(τ),

1

2
ȧ2 + Veff(a) = 0 , (5.3.31)

where

Veff(a) =
1

2
k (a− a?)2 , k =

a2
?

2

(
∂Π̃ ?

∂H

)−1
∂2Π̃ ?

∂a2
(5.3.32)

provided the denominator is non-vanishing, which is equivalent to the potential being a
smooth function of the radius at a?. That factor vanishes when two potentials merge, thus
becoming complex beyond that point. The bubble cannot go inside the region of complex
potential, analogously to the case of branch singularities in the cosmological context (see
section 2.6), it will turn back along the other root that merges with the one it was following.

The other interesting limiting case corresponds to the speed of the brane becoming very
large, since it will be relevant to discuss the asymptotical behavior of the running away
bubble. As a→∞, the behavior of H has to be given by a power law, and so it can either
diverge or asymptote to a constant. We can verify that one of the solutions diverges as
H ∼ ad−1 whereas the rest (K − 2) are asymptotically constant. We can prove that the
maximum number of solutions is K−1 in general just by squaring each side of the Π+ = Π−

equation in order to obtain a polynomic equation on H. Even if the näıve degree of such
equation is 2K− 1 it is easy to show that the first non-vanishing coefficient of such equation
is order K − 1 in H.

In the limit of large speeds (5.3.24) can be evaluated directly using

H −
(
ξ
√
H − g+ + (1− ξ)

√
H − g−

)2

≈ ξg+ + (1− ξ)g− +
1

4H
ξ(1− ξ) (g+ − g−)2(5.3.33)(√

H − g+ −
√
H − g−

)
≈ 1

2
√
H

(g− − g+)

(
1 +

1

4H
(g− + g+)

)
(5.3.34)

so that we can verify that

Π̃ ≈ − 1

2
√
H

[
(Υ[g+]−Υ[g−])− 1

2H

(∫ g+

g−

dxΥ[x]− (g+Υ[g+]− g−Υ[g−])

)]
(5.3.35)

to next-to-leading order in 1/H, where we have used the change of variable x = ξg++(1−ξ)g−
thus solving

H ≈ 1

2(κ+ − κ−)

[
ad−1

∫ g+

g−

dxΥ[x]− (g+κ+ − g−κ−)

]
(5.3.36)

In the lightlike limit (H → ∞), we get a consistent equation for H either if a → ∞ and
H ∼ ad−1 or κ+ → κ− which coincides with the result of [195]. In the former case the
asymptotic behavior of the potential can be just read as

H ≈ ad−1

2(κ+ − κ−)

∫ Λ+

Λ−

dxΥ[x] (5.3.37)
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Figure 5.5: Potential (in blue) of a brane
gluing spherically symmetric stable and un-
stable branches of LGB gravity with pa-
rameters λ = 0.001, L = 1, κ− = 1 and
κ+ = 2, 2.4, 7, 102, 103, 104 from left to right.
In red f−/2, metric function corresponding
to the stable branch. The blue curve slides
up the red one as we increase κ+. The dashed
curve corresponds to the asymptotic behav-
ior (5.3.37) for the three lower values of κ+.

and this solution is physical in the sense of being solution of Π̃ = 0 as opposed to Π++Π− = 0
roots. The asymptotic solution (5.3.37) is useful to analyze in which cases it is possible for
the brane to reach infinity. For that, one has to also analyze the sign of the asymptotically
constant solutions, when present, and also determine along which branch is propagating the
bubble. The constant roots are the solutions of

Π̃[Λ±, H] = 0 (5.3.38)

that is degree K−2 in H as the leading power is proportional to Υ[g+]−Υ[g−] ∼ 1/ad−1 and
vanishes as we approach the asymptotic region. In that limit the topology of the horizon
becomes irrelevant.

In case the bubble may run away to infinity, it asymptotically approaches the speed of
light. This can be seen for instance from (5.3.37), as ȧ2 grows faster than the function f .
the radial speed is then

dr

dt
=

ȧ√
f + ȧ2

f → f (5.3.39)

exactly the same as for a null geodesic in that background. In that way, as AdS space has a
timelike boundary, the bubble gets there in a finite time and as such it can be interpreted as
a change of boundary conditions for the theory, i.e. as a jump from one branch of solutions
to the other. The time from a position a0 far away to the boundary is actually

∆τ =

∫ ∞
a0

da

ȧ
∼
∫ ∞
a0

da

a
d+1

2

∼ 1

a
d−1

2
0

<∞ (5.3.40)

and is also finite for the asymptotically constant values of H, although the asymptotic speed
is a fraction of the speed of light in that case.

In the case of LGB gravity there is just one possible potential that determines the dy-
namics of the brane separating two solutions belonging to the two different branches. We
will follow the same notation as in (2.2.1), the (−) branch being the stable one. This effective
potential can be simply written as

V (a) = ad+1 ∆ [g(3 + 2λg)2]

24λ ∆κ
+
σ

2
(5.3.41)
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Figure 5.6: Potential (in blue) of a brane
gluing spherically symmetric stable and un-
stable branches of LGB gravity with param-
eters λ = −0.01, L = 1, κ− = 1 and
κ+ = 1.01, 1.2, 1.4, 2, 3, 4, 5 from left to right.
In red f−/2, metric function corresponding
to the stable branch and in orange the one
corresponding to the unstable branch, f+/2,
for κ+ = 5. Singularities are located where
the curves end, the potential ending when
we find the outermost of them. Before that
we encounter a point where V = f+/2 be-
yond which the potential is unphysical. The
dashed curve corresponds to the asymptotic
behavior (5.3.37) for κ+ = 5.
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It verifies all of the general properties described above. For instance, as the integral of Υ[g]
between Λ− and Λ+ is always positive the bubble can scape to infinity as long as κ+ > κ−,
i.e. the mass of the unstable branch has to be higher than the stable one. Remember that
any of the two can be in principle on either side of the brane and the dynamics is exactly the
same. The tension depends on the position and there is no pressure term as it would depend
on the side that corresponds to each branch. The bubble has tension despite the fact that
it contains no matter.

Depending on the values of the masses the stable branch may have a horizon and the
naked singularity of the unstable solution may be located at a higher or lower radial position.
Moreover, depending on the choice of external and internal solutions and the position of the
bubble, the (dynamical) metric may display the horizon in some situations.

Quite generally (e.g. see figure 5.5 for low enough κ+) the horizon is accesible in the
sense that the potential is finite and negative at that position. In case the stable branch is
the inner one the metric may display a horizon but, as the bubble may cross that point, it
can be destroyed. It will necessarily undergo susequent collapse until it reaches the naked
singularity that becomes visible. For that we just need the radius of the horizon to be larger
than the singularity, otherwise the latter would become naked even before the bubble reaches
the horizon. In the opposite case, with the unstable branch inside, the contraction of the
brane would instead create a horizon. In fact, even if these examples might seem fine-tuned
we will provide specific examples. The case of a expanding looks a bit more natural, at
least with the unstable branch outside. In that case one may think of a bubble poping
out from a naked singularity and creating a horizon, leaving a regular black hole behind.
This points towards a possible instability of the BD-unstable branch, namely their naked
singularity metrics, decaying through the formation of this kind of bubbles. Remember that
these solutions are also perturbatively unstable. We will analyze this issue, although in a
different manner in the next sections.
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5.3.3 Bubbles, horizons and the cosmic censor

The destruction of the horizon by the bubble might seem unnatural but seems to be what
really happens. In order to verify that this is indeed the case one has to be careful and check
that nothing goes wrong at the horizon or inside it. In particular, in order for the metric
to be continuous, the existence of a commom induced metric on the junction surface is not
enough. We also have to ensure that the change of variables between the coordinate frames
on both sides is regular.

In the vicinity of the junction (ρ = 0) we might write the metric in terms of a coordinates
set adapted to the surface

ds2 ≈ −dτ 2 + dρ2 + a2(τ)dΣ2
σ,d−2 (5.3.42)

the same in both sides and ρ being the normal. We then get constraints on the coordinate
functions of the brane T±(τ, ρ) and a±(τ, ρ) (such that T±(τ, 0) ≡ T±(τ) and a±(τ, 0) ≡ a(τ)).
One is the Lorentzian analog of the previously found (5.3.13) and additionally,

− f±T ′2± +
a′2±
f±

= 1 ; −f±T ′±Ṫ± +
a′±ȧ±
f±

= 0 (5.3.43)

where primes indicate derivatives with respect to the new variable ρ. Remark that the radial
variables are not equal in this case even though they are at the junction.

In this way we may write the change of variables as

dt± = Ṫ± dτ +
ȧ

f±
dρ

dr± = ȧ dτ + f±Ṫ±dρ (5.3.44)

that corresponds to a boost in the (t±, r±)-plane. This can be easily verified using the
orthonormal frame (2.1.5) e0

±

e1
±

 = U±

 dτ

dρ

 U± =


√
f±Ṫ±

ȧ√
f±

ȧ√
f±

√
f±Ṫ±

 . (5.3.45)

the boost matrix having unit determinant with an inverse obtained just by changing the sign
of ȧ. Remember that Ṫ± can be written in terms of ȧ using (5.3.13), being invariant under
that change. The change of variables between inner and outer coordinates corresponds thus
to a composition of boosts e+ = U+U

−1
− e−, a transformation that does not change the causal

structure, i.e. null geodesics are continuous across the bubble.
We can now address the question of the behavior of the bubble as we cross the horizon.

In that case we have to change
√
f− = i

√
‖f−‖, as f− goes negative, in such a way that the

timelike and spacelike vielbeins exchange their rôles2 preserving the orientation (e0
− ∧ e1

− =
ê0
− ∧ ê1

−)
e0
− = iê1

− ; e1
− = iê0

− . (5.3.47)

2Inside the horizon

ê0 = − dr√
‖f‖

; ê1 =
√
‖f‖dt (5.3.46)
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Consequently the change of variables behind the horizon ê0
−

ê1
−

 = Û−

 dτ

dρ

 Û− =
1√
‖f−‖

 −ȧ −
√
f− + ȧ2

−
√
f− + ȧ2 −ȧ

 . (5.3.48)

again corresponds to a boost and is completely well defined. The change is actually continu-
ous across the horizon, the bubble being able to cross it. After all there is nothing special –
locally – about that point. Besides, once it gets to the horizon the causal structure makes it
impossible for the bubble to get back (see figure 4.3 for the Penrose diagram of the process)
as it would be travelling backwards in time. This can also be seen from (5.3.48) as the
diagonal components of the Û− matrix have to be positive and bigger than one. This is also
true for U± outside the horizon.

It is remarkable that, even though the original horizon is destroyed by the bubble the
causal structure inherited by it makes it impossible for the bubble to go back. In this case
we cannot blame the symmetry of the solutions considered as we did in chapter 4. Once
the horizon is crossed, its (previous) presence forces the bubble to actually reach the central
singularity, regardless of the details of the collapse. The singularity unavoidably becomes
naked, this being a clear violation of the Cosmic Censorship Hypothesis. Nonetheless, this
violation might be a marginal one if, due to the instabilities suffered by those singular
solutions (see chapter 4 for details), the energy leaks the singularity, thus leaving regular
pure AdS+ behind. This process is allowed by the causal structure of the spacetime. Notice
that the bubble itself may also emit part of its mass, M +−M−, to infinity before it actually
reaches the singularity. However the naked singularity will still form as the mass contained
in the inner solution, M−, cannot scape until the bubble reaches the center.

5.4 Thermalons and thermodynamics

Bubble configurations when static are subject to the same discussion of chapter 3, concerning
the thermodynamics aspects of black holes. In very much the same way, the new solutions
will be characterized by the same thermodynamic variables.

In this section we will compute the value of the Euclidean on-shell action for these
thermalons. Such static solutions will exist in some cases as it can be seen in figure 5.5
for the case of LGB gravity with positive λ coupling. Being static, they trivially have a
smooth Euclidean section whenever they display a horizon in the inner solution covering
the singularity. We have to choose the periodicity in Euclidean time accordingly, so that
the full configuration is smooth. Once the inner periodicity is fixed to attain a regular
horizon, the periodicity in the outer time will be determined through (5.3.15), thus fixing
the temperature.

As for black holes, the Euclidean on-shell action is in general divergent and needs to
be regularized, either by background substraction or by other means. We will measure the
free energy with respect to the specific solution used as groundstate, usually the maximally
symmetric one. In order to simplify the discussion we will calculate the on-shell action
in terms of three parameters, a? and β±, the first being the equilibrium position of the
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Figure 5.7: Schematic Penrose diagram for a nearly static bubble that undergoes col-
lapse from t = 0 onwards. The thick dashed line represents the trajectory of the bubble
with inner black hole and outer naked singularity geometries. The spacelike singularity
becomes timelike as the bubble reaches r = 0. The resulting spacetime is a (boosted)
naked singularity, dashed lines representing constant t+ slices. The lowest one corresponds
to the Cauchy horizon introduced by the timelike singularity. The upper and right wedges
represent the physical region of the spacetime corresponding to a black hole formed by
collapse whereas the rest corresponds to the complementary white hole region.
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bubble and the others the periodicity in Euclidean time in the inner and outer regions. It
is important to keep in mind that these two variables are not independent from each other.
We will use + to denote the outer region and − for the inner one. This is more general but it
will be consistent with the notation of the LGB branches when we undertake that analysis.

Unlike the computation of the Hawking-Page effect described in section 3, where the
fields are continuous, here we have to consider the contribution to the action arising on the
bubble, when writing the Euclidean action in the form (5.3.8),

Î = Î− + ÎΣ + Î+ . (5.4.1)

The outer piece includes all the boundary terms at infinity necessary to both have a well
defined variational principle. It regularizes its divergence by subtracting the background
M+ = 0 with the same periodicity at infinity, yielding

Î+(a?, β+) = β+
(d− 2)Vd−2

16πGN

∂r

[
rd Υ̃[g+]

]∣∣∣
a?
, (5.4.2)

that has the same expression as for the usual black holes (3.2.2) evaluated at the position of

the bubble instead of the horizon. The term Î−, in turn, is integrated from the horizon to
the location of the bubble yielding two terms of the same form, one evaluated on the bubble
and one at the horizon.

Î−(a?, β−) = β−
(d− 2)Vd−2

16πGN

(
∂r

[
rd Υ̃[g−]

]∣∣∣
rH
− ∂r

[
rd Υ̃[g−]

]∣∣∣
a?

)
. (5.4.3)

where rH is the radius of the horizon, if any, or zero. Finally, ÎΣ is given by

ÎΣ = −Î−∂ (a?, β0) + Î+
∂ (a?, β0) (5.4.4)

where the periodicity in Euclidean time is inherited from the bulk regions β0 =
√
f±(a)β±.

Then, we can collect all the contributions that depend upon the location of the bubble,

Îbub(a?, β0) = β0
(d− 2)Vd−2

16πGN

(
1√
f
∂r

[
rd Υ̃[g]

]∣∣∣
a?

+ 2 ∂r

[
rd−2

√
f

∫ 1

0

dt Υ̃′
[
(1− t2)gH + t2 g

]]∣∣∣∣
a?

)∣∣∣∣+
−

(5.4.5)

in the static case, otherwise we cannot perform the τ integration, and where F(g)|+− =
F(g+) − F(g−), indicates the difference between the terms evaluated on both sides of the
brane. The rest can be consequently called

Îbh = Î − Îbub = β−M− − S , (5.4.6)

the usual contribution from the inner black hole. Trivially the surface term vanishes when
the same solution is taken in both sides of the junction.
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The contribution from the bubble can be greatly simplified making use of the relations
between the two characteristic polynomials Υ[g] and Υ̃[g], as in (3.2.8), and also some
properties obtained by integrating by parts expressions of the type∫ 1

0

dtP [t2g + (1− t2)H?] = P [g] + 2(H? − g)

∫ 1

0

dt t2P ′[t2g + (1− t2)H?] (5.4.7)

Remarkably enough, a neat result comes out after a quite lengthy calculation, once the
junction conditions are imposed

Îbub =
(d− 2)Vd−2

16πGN

(β+κ+ − β−κ−) = β+M+ − β−M− (5.4.8)

which is the exact value needed to correct the on-shell action in such a way that the ther-
modynamic interpretation is safely preserved. In fact, because of this contribution, the total
action takes the form

Î = Îbh + Îbub = β+M+ − S . (5.4.9)

That is, the brane contributes as mass (it carries the mass difference between the two solu-
tions) but not as entropy that comes solely from the horizon. From the Hamiltonian point of
view this is naturally understood as follows. The canonical action vanishes in this case, the
only possible contributions coming from boundary terms both at infinity and at the horizon,
yielding respectively β+M+ and the entropy, which are nothing but the total charges of the
solution.

For the above result we have just imposed the first junction condition, Π̃[g?±, H?] = 0,
where H? = σ/a2

? is the static value of H. The other junction condition corresponds to the
radial derivative of the first one in such a way that

∂aΠ̃[g?±, H?] = ∂g+Π̃[g?±, H?] g
′
+

∣∣
?

+ ∂g−Π̃[g±, H?] g
′
−
∣∣
?

+ ∂HΠ̃[g±, H?]H
′
? = 0 . (5.4.10)

The H derivative of Π̃ plays another fundamental rôle as it gives the overall normalization
of the effective potential (see discussion above). Using (5.3.25) we can show

∂g±Π̃[g±, H?] =
−1

2
√
H? − g?±

Υ′[g?±] . (5.4.11)

Also for the other derivative after a bit of massage we get

∂H
(
Π+ − Π−

)
= −1

2

∫ √H?−g+

√
H?−g−

dx
Υ′[H? − x2]

x2
(5.4.12)

Then, using the black hole equation (2.1.8), we can write the second junction condition as

κ+√
f+

− κ−√
f−

=
4σ

d− 1
ad−4∂HΠ̃[g±, H?] (5.4.13)

Notice that the left hand side of this expression is proportional to the contribution of the
bubble (5.4.5) to the on-shell action (or equivalently the free energy).
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This junction condition is also very important to ensure a consistent thermodynamic
picture. We have seen in the previous paragraphs that the on-shell action adopts the expected
form from the semi-classical approach (5.4.9) where the different quantities correspond to
the expected ones in the solution, i.e.

β = β+ , M = M+ , (5.4.14)

the entropy being unchanged as coming from the inner black hole horizon. In order to
show the consistency of the thermodynamics in addition to this the relations between this
quantities and the corresponding thermodynamic potentials should be also the correct ones,
as seen in 3. It is enough to show that assuming the above values for mass and entropy we
recover the correct temperature as

T =
dM

dS
=
dM+

da?

da?
drH

drH
dS

(5.4.15)

where we have to use the implicit relation between the two parameters involved, a? and rH

κ−(a?) = rd−1
H Υ

[
σ

r2
H

]
. (5.4.16)

Equivalently we can use the property

dS = β−dM− (5.4.17)

so that the inverse temperature is

β =
dS

dM
= β−

dM−
dM+

. (5.4.18)

In order for this to be equal to β+ as required we must verify

β+dM+ = β−dM− = dS (5.4.19)

where the differential is taken with respect to the parameter a? or equivalently rH or T . This
implies that the first law of thermodynamics holds true not only for the inner black hole
(β− and M−) but for the whole configuration (β+ and M+). This can be easily proven using
both junction conditions. First we derive the first one with respect to a?. For that we have
to take into account that, in contrast with the differentiation of the potential with respect
to a (not a?) from which we obtained the second junction condition, the mass parameters
κ± depend now on the variable. The expression itself depends on κ± through g?± and so one
gets

Υ[g?±] =
κ±(a?)

ad−1
?

⇒
(
g?±
)′

=
−(d− 1)κ± + a?κ

′
±

ad?Υ
′[g?±]

(5.4.20)

The final result is the same as obtained for the second junction condition with an extra term
proportional to the derivatives of the mass parameters, κ±,

κ+ + aκ′+√
f+

−
κ+ + aκ′+√

f−
=

4σ

d− 1
ad−4∂HΠ̃[g?±, H?] . (5.4.21)
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Then, the term proportional to the mass parameter cancels the right hand side of the equation
and we get just

κ′+√
f+

−
κ′+√
f−

= 0 (5.4.22)

that multiplied by β0 yields (5.4.19) that is exactly what we were looking for.

We have shown that the first law of thermodynamics holds for the whole bubble config-
uration whereas the thermodynamic parameters verify the expected relations, this proving
the consistency of the thermodynamic approach. Having computed the free energy of this
geometry, we can now compare it to the rest of the solutions sharing the same boundary con-
ditions and temperature and thus identify the preferred or classical configuration as the one
of lower free energy. We can also analyze the local thermodynamic stability of the solutions
as we did for the black hole solutions in chapter 3.

5.4.1 LGB thermalons

Before analyzing the free energy of the thermalon configurations and the occurrence of phase
transitions let us describe a bit in more detail the configurations we are dealing with in the
simplest case of LGB gravity. In this particular theory just the EH-brach may display a
horizon for planar or spherical black holes, it being the only possible inner branch. The
other, accordingly outer branch, has long been known to be unstable à la Boulware-Deser,
its vacuum contains ghosts in the sense that the kinetic term for gravitons has the wrong sign.
We will be interested in the thermodynamics of the system in the case of wrong boundary
conditions, i.e. setting the asymptotics corresponding to this ill defined branch, with some
topology and some temperature. For these topologies the thermodynamics corresponding to
EH-branch asymptotics is unchanged from what has been discussed in chapter 3. This may
shed some light on the long-standing question of the fate of the ghosty branch in this theory
(see [45] for some related ideas).

In the hyperbolic case the naked singularity of the BD-unstable branch may be covered
by a event horizon but just for positive LGB coefficient, λ, and masses below a certain
threshold. This is the only situation in which we may have thermalons with the two possible
asymptotics. This will be the only situation in which we may have the opportunity of
describing transitions between branches in both ways. Even though these present some
puzzling features and the interpretation of the phenomena is not as clear as in the planar or
spherical case, we will comment on them in the next sections.

In this case the potential has a simple expression (5.3.41) and in order to define a ther-
malon configuration we have to find mass parameters κ± such that a equilibrium position,
a?, exists. We have to solve, V (a?; g

?
±) = V ′(a?; g

?
±) = 0, where the only real variable is a?

and the extra two unknowns g?± are given implicitly by (2.1.8), once chosen the branches
such as in (2.2.1) so that the inner solution corresponds to the stable branch and the outer
one to the unstable.

We can write the potential in a more suitable way by using (2.1.8) in order to reduce the
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Figure 5.8: g?± and Υ[g?±] ∼ κ± (thick and
thin lines respectively) as a function of λ, red
and blue lines corresponding the inner, g−,
and outer, g+, solutions respectively.
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order of the polynomial in g,

V (a?) = ad+1
?

[(1− 4λ)g? + 4(2 + λg) κ
ad−1 ]

∣∣+
−

24λ(κ+ − κ−)
+
σ

2
(5.4.23)

and its a-derivative

V ′(a?) = ad?
[(1− 4λ)(d+ 1)g + (d− 17 + 2(d− 5)λg) κ

ad−1 ]
∣∣+
−

12λ(κ+ − κ−)
(5.4.24)

It is then possible use these two equations to find the mass parameters of both solutions in
terms of g?± and a? and combine these expressions with the usual ones from (2.1.8) and get
a couple of equations

Υ[g?±] = 1 + g?± + λ
(
g?±
)2

=
1− 4λ

4λ

a2
?(d− 1)(3 + 2λg?∓) + 4λ(d+ 1)σ

a2
?(d− 1) + 2(d− 5)λσ

(5.4.25)

that can then be solved for g?± = g±(a?). The general expressions are not very enlightning
but they simplify quite a lot in the planar case as the a?-dependence completely drops out.
The bubble radius just remains as the overall scale.

Due to the symmetry of the equations we have several solutions. The relevant solution
for our purposes is

g?± =
−3 + 4λ∓

√
3(1− 4λ)(3 + 4λ)

4λ
(5.4.26)

as we have to choose the values that correspond to the inner (−) branch being stable and
the outer (+) one being unstable. In particular both g?± cannot be equal.

If we plot these solutions as well as the mass parameters as functions of λ (see figure (5.8))
we can readily see that for negative values of the coupling the outer mass, corresponding
to the unstable solution, is negative. Besides, the values of g?± are positive for negative λ
which corresponds to bubble being formed inside the black hole horizon, g− = 0. There are
no static or thermalon configurations for negative values of the coupling. This feature is not
specific of planar black holes, no thermalons exist for negative λ on any topology. also for
the other topologies. For this reason we will restrict our analysis for positive values of the
LGB coupling. Remark that for λ < 0 the bubble would separate AdS and dS branches.



130 CHAPTER 5. BUBBLES AND NEW PHASE TRANSITIONS

0.2 0.4 0.6 0.8 1.0 1.2 1.4
a

-6

-5

-4

-3

-2

-1

V

Figure 5.9: Bubble potential in LGB grav-
ity for λ = 0.1, a? = 1 and d =
5, 6, 7, 10, 20, 50, 100 (from top to bottom).

We can plot the potential with the recently found values for the different parameters
involved in the configuration, κ± and the equilibrium position a? as showed in figure 5.9,
the qualitative behavior of the potential being the same for all values of a? and λ (positive).
Notice the fundamental difference between five dimensions and higher that the potential at
zero radius goes to a constant.

5.5 Generalized Hawking-Page transitions in Lovelock

theories of gravity

Having proven the consistency of the thermodynamic picture in the case of the static bubble
by deriving (5.4.9) and (5.4.19), we are ready to address the question of the global (and
local) thermodynamic stability of that configuration. This amounts to analyzing the free
energy associated to that solution, the analysis being analogous to that of section 3.5. The
only difference is that we now need to include the thermalons discussed above. This will
allow for the study of the formation of these new configurations and the consequences for
the dynamics of the system.

In the same way as for the usual Hawking-Page phase transition we can identify the ther-
modynamically preferred or classical configuration as the background of least on-shell action
among all those with a smooth Euclidean continuation and the same period in imaginary
time.

The first example that can be trivially analyzed is that of planar black holes in general
Lovelock gravity. In this case the only branch displaying a horizon, as already discussed
in the previous sections, is the EH one, all the others being unstable and displaying naked
singularities. Because of that, the only possible smooth Euclidean metrics correspond to the
vacua of the theory and bubble configurations with the inner region corresponding to the
EH-branch. Then, for any choice of asymptotics (different from EH), the configurations we
will be comparing are corresponding thermal vacuum and, when available, the horizonful
bubble configuration with the same temperature.

The junction conditions simplify a lot in this case, the free energy corresponding just to
the black hole with no bubble contribution. The presence of the junction plays no rôle except
for the change on the temperature according to (5.3.15). The free energy of the thermal
vacuum is zero, as we have taken it as reference background, and that of the thermalon
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yields

F+ =
IE
β+

=
β−
β+

F− = − M+

d− 2
, (5.5.1)

which is always negative. This implies that the preferable classical solution is, when available,
the thermalon. One of them if there are several with the same asymptotics. For any branch
of solutions such that the planar thermalon with the inner EH-branch exists, the bubble will
always form. Remember that β−M− = β+M+ and the inner mass has to be positive in order
to have a horizon.

In the LGB case the thermalon exists just for positive λ, the equilibrium position be-
ing unstable. It will therefore eventually expand in such a way that it engulfs the whole
spacetime in finite proper time, thus changing its asymptotic behavior (and the associated
thermodynamic variables) [5].

In the planar case the problem of the existence of these kind of configurations translates
into finding couples g?± that verify the static junction equations, that can be written as

Υ[g?]√
−g?

∣∣∣∣+
−

= 0 ;

∫ √−g?+
√
−g?−

dxΥ′[−x2] = 0 (5.5.2)

and subsequently as polynomial equations for g?±. The solutions for any Lovelock theory can
be plot, a specific example for cubic Lovelock theory being depicted in figure 5.10. Even
though the independent variable x =

√
−g is not the usual one for the polynomial, we can

easily recognize the three vacua, Υ = 0, and associated branches. These correspond to
the three ranges with definite sign for Υ′, positive for the branches that are stable (à la
Boulware-Deser) and negative for the intermediate unstable one. The EH-branch is the one
closest to the vertical axis and then we have two higher curvature branches, one unstable and
another stable. For this particular choice of couplings, we have three possible equilibrium
configurations connecting the same two branches. One of the points on each pair corresponds
to the EH-branch and its couple to the other stable branch. The blue and green pairs
correspond to positive mass solutions whereas the red one has negative mass, both in the
outer and inner regions, as indicated by the positive and negative respective values of the
polynomial. In the latter case (red dots), the inner region does not display a horizon and we
have to discard this solution. Unlike the LGB case analyzed before there is no thermalon
connecting the unstable branch to the EH one for this particular choice of parameters. In case
we fix such sick boundary conditions the system cannot scape via bubble nucleation. Being
unstable, it would evolve by some other means the endpoint of such instability remaining
unclear.

The analysis of cubic Lovelock theory is particularly interesting in general as, for the
range of couplings displaying three real vacua, it is the minimal example where we may
analyze the occurrence of bubble transitions between two stable vacua, as in our example.
The roots of (5.5.2) depend however on the values of the coefficients λ and µ and in general we
may have also bubbles connecting any of the stable branches with the intermediate unstable
one. Bubbles between two higher curvature branches will not have a smooth Euclidean
section however, unless the inner region corresponds to the vacuum, something not allowed
in general.



132 CHAPTER 5. BUBBLES AND NEW PHASE TRANSITIONS

1 2 3 4
x

-0.5

0.5

1.0

1.5

UA-x2E

x
, U'@-x2D

Figure 5.10: Υ[−x2]/x (solid blue line) and Υ′[−x2] (in gray) for cubic Lovelock theory
with parameters L = 1, λ = 0.17 and µ = 0.02. The couples of points with the same color
correspond to each of the three solutions of the static junction conditions (5.5.2) in that
case. The area below the gray curve between each couple of points vanishes according to
the second equation.

We can also analyze the stability of the potential at the equilibrium point by means of
(5.3.32), that up to irrelevant positive factors is

Veff ∼

(
∂Π̃

∂H

)−1(
∂2Π̃

∂a2

)
∼

(
1√

−g+Υ′[g+]
− 1√

−g−Υ′[g−]

)
∫ √g+√

g−
dx Υ′[−x2]

x2

(5.5.3)

This expression is positive for stable equilibria and negative in the opposite case. The above
expression is negative for LGB gravity with λ > 0, as expected for unstable equilibria.

In the cubic case we have two possible potentials and the equilibrium points can, in
principle, be associated to any of them. This seems much more involved but one may still
use (5.5.3) in order to study the stability of those static points. For our specific example
we find that the local potential is positive for the red and green pairs whereas it is negative
in the remaining case. Thus we have one possible stable bubble (green) and one unstable
(blue) (see figure 5.11).

We can get even more information from the asymptotic behavior of the potential. For
the branch approximated by (5.3.37), we need to first realize that the outer mass is always
bigger than the inner one due to the first condition in (5.5.2). We can compute the integral
of the polynomial between the two stable vacua∫ Λ+

ΛEH

dxΥ[x] ≈ −11 < 0 (5.5.4)

and from (5.3.37) we can then realize that H is asymptotically negative. The bubble cannot
reach infinity along this branch of the potential. It can however reach the boundary following
the branch that asymptotes to a constant H ≈ 0.76, the potential being asymptotically
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Figure 5.11: Bubble potentials for cubic
Lovelock theory with λ = 0.17 and µ = 0.02.
We just show the relevant branch of the po-
tential connected to the physical equilibrium
points, those with positive mass. The up-
per potential corresponds to the stable con-
figuration (in green in figure 5.10) while the
other is the unstable one (in blue also in fig-
ure 5.10). There is a minimum although it is
hard to see in the plot.
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negative along. This is actually the potential the two positive mass equilibrium points
correspond to, as it can be seen in figure 5.11. One of the bubbles, the unstable one may
reach infinity by expansion while the other is fixed on its position unless it can tunnel
across the barrier to subsequently expand. The point to the left where the potentials end
corresponds to a naked singularity of the outer solution that appears before we even reach
the horizon, situated at the origin of the plot.

We have analyzed a very particular example but the same analysis can be performed
in general, in cubic or any higher order Lovelock theory. The possible situations one may
encounter are extremely varied. As already seen in the cubic case, we may have stable or
unstable equilibrium points whose number may change as we vary the values of the couplings,
or a? for non-planar topology. These equilibria may in principle correspond to any of the
K − 1 bubble potentials of the theory, and each of these potentials may have any sign at
infinity. This will determine whether the bubble may reach the boundary or not, thus the
possibility of a change of branch. Also, depending on the couplings, the branches connected
by the static configurations may change, all being connected to the EH-branch, some being
connected or none being connected. Also for two given branches we may have several static
configurations connecting them. All of them have to be compared in order to decide which
is the globally stable phase. It might even happen that no static configuration exists.

Depending on the characteristics of the globally preferred phase for given asymptotics,
always a thermalon when it exists, the fate of the system may be very different. The
junction conditions considered above determine not only the equilibrium configuration but
also, in Lorentzian signature, the effective potential felt by the bubble and, consequently, its
subsequent dynamics.

If no thermalon connecting our choice of boundary conditions with the EH-branch exists
the system will remain on the only possible solution, pure AdS+. This is the case for the
unstable asymptotics of the cubic example depicted in figure 5.11. On the contrary, when
that static configuration exists it will form but whether it changes the asymptotics or not
will depend on the form of the potential. If the bubble is unstable and no potential barrier
appears on its way to the boundary, we will have a change of branch. This is for instance
what happens for LGB gravity with positive λ. For a stable bubble the situation is also quite
interesting. In a sense this stable configuration provides a regular black hole to a branch of
solutions that naively had none. The bubble being frozen at the equilibrium position, this
situation is very similar to the Hawking-Page transitions studied in section 3.5, the system
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Figure 5.12: Free energy versus tempera-
ture in 5d for λ = 0.04, 0.06, 0.09 (positiv-
ity bound), 0.219 (maximal F (T = 0)), and
λ → 1/4 (from right to left). The λ depen-
dence of the critical temperature is displayed
in a separate box.

remaining in the black hole phase. In this case however, when the asymptotic potential
allows the bubble to reach the boundary, there might be a non-vanishing probability for the
bubble to tunnel to that region. In that case the boundary conditions may eventually change
and we again have a branch transition. This is the case of the unstable configuration found
in our cubic example (see figure 5.11).

In case the bubble collapses instead of expand, it will generally lead to the destruction
of the horizon and the consequent formation of a naked singularity. We will not comment
more on this here. By the arguments given in chapter 4 and those outlined in the previous
sections, we will just assume the system then comes back to the initial phase, pure AdS+.
This is analogous to the formation of bubbles in a fluid. When these expand the phase
transition to the gas phase proceeds while, when it collapses, the system remais liquid.

The results of this section are more general than just the planar case as it also corresponds
to the high mass limit of the other two topologies. Even though the equations are much
more involved in case of spherical or hyperbolic symmetry, the analysis follows in the same
way. In the next sections we concentrate in the case of LGB gravity with σ = ±1.

5.5.1 Spherical LGB bubbles

In the case of LGB gravity the thermalon configurations being described here are just relevant
for unstable or ghosty boundary conditions, that of the unstable or (+) branch of solutions,
and positive LGB coupling. Again, we have to compare the free energy of the thermalon
configurations found in the preceeding sections with the corresponding thermal vacuum.
From the Euclidean point of view this is the only other smooth metric with that unstable
boundary conditions.

The resulting phase diagram is similar to the usual Hawking-Page phase transition. For
any value of the LGB coupling, the free energy, F , as a function of the temperature 1/β+

displays a critical temperature above which it becomes negative and, thus, the phase transi-
tion occurs (see figure 5.12). If the free energy is positive, however, the system is metastable.
It decays by nucleating bubbles with a probability given, in the semiclassical approximation
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by e−β+F . Therefore, after enough time, the system will always end up in the stable, EH
black hole solution. This is reminiscent of the HP transition, except for the fact that, here,
the thermal AdS vacuum decays into a black hole belonging to a different branch. Tc(λ)
is monotonically decreasing, the phase transition becoming increasingly unlikely the more
we come closer to the EH – classical – limit. In this sense, it is a quantum mechanical
phenomenon.

5.5.2 Hyperbolic LGB bubbles

Asymptotically AdS spacetimes with hyperbolic topology are an interesting playground for
checking various facts about the recently discovered type of phase transitions. Despite some
unclear features of the thermodynamics of these spacetimes, they allow in particular for
the discussion of transitions between two asymptotically AdS branches both having regular
horizonful black hole solutions. In particular, for the simplest case of LGB theory with
λ > 0, both, the EH and the ghosty branch black holes, may have horizons depending on
the value of the mass. Even more, even though the range of masses for the ghosty branch
is bounded from above (and below) this branch has black hole solutions for all possible
temperatures. Besides, although one of the branches is unstable we would like to investigate
if the discovered transition protects the theory against this instability in the sense that the
unstable branch would never be the preferred phase. This is actually the case for LGB theory
with planar or spherical symmetry. Despite the fact that the vacuum is preferred for some
range of temperatures in the spherical case, the thermalon may be formed with small but
finite probability in that case leading to a change of branch.

This case is much richer, not only due to the possibility of transitions in both directions,
but also because the spectrum of configurations gets richer. The existence of extremal black
holes in both branches for specific values of the mass, leads to the corresponding extremal
thermalons. These extremal configurations can be considered as qualitatively different from
their non-extremal counterparts as regularity of the horizon in the Euclidean section does
not fix their temperature. As a limit of non-extremal black holes the extremal solutions
necessarily have zero temperature and the entropy corresponding to the Wald formula. Quite
the opposite, ab initio extremal configurations may be identified with any temperature and
zero entropy (see chapter 3 for details). The same happens for the bubble configurations even
though the limiting temperature is not zero. In addition to the non-extremal bubbles seen so
far there will be extremal solutions where the horizon of the inner black hole is degenerate.

For the direct transition, the one leading to the EH branch we will fix the BD-unstable
asymptotics and compare the free energy of all possible configurations at the same tempera-
ture. These are in principle four families of solutions, extremal and non-extremal black holes
and the corresponding bubble counterparts. The same will happen for the reverse transition.

Let me first comment briefly on the thermodynamics of the unstable branch black holes.
These are unstable not only à la Boulware-Deser but also thermodynamically. Their specific
heat is negative and they also have negative entropy. Due to this fact their free energy will
always be bigger than the one corresponding to the extremal black hole that coincides with
its mass. This extremal solution corresponds to the black hole with mass saturating the
upper bound, κ = λ in five dimensions or the one corresponding to a degenerate horizon in
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higher dimensions. In the 5d case the degenerate horizon coincides with the singularity at
r = 0 but this does not represent a problem as that point is at the end of an infinite throat
and should be removed from the geometry. The near horizon geometry can be written as

ds2 ∼ 2λdρ2 + e2ρ

(
−dt

2

2λ
+ dΣ2

−1,3

)
(5.5.5)

where we have explicitly removed the point r = 0 considering a change of variables as
ρ = Logr. In higher dimensions the horizon is at finite radius and the geometry completely
regular. We will concentrate in the five dimensional case in what folows.

Thus, this particular solution is a smooth geometry interpolating between AdS5 at spatial
infinity and the previous geometry as we approach r = 0. Also, it has zero specific heat and
entropy and can be considered with any periodicity in Euclidean time and thus it is a well
motivated candidate as groundstate of the theory for the sector we are considering. Also as
the black holes are unstable all of them have higher free energy than the extremal one and
thus the chosen groundstate is always preferred in a semiclassical basis. The only relevant
configuration for the next step of the analysis will then be the extremal black hole.

We will have to compare the free energy of our thermalon configurations to that of this
groundstate. The free energy of the non-extremal configuration has the usual expression
F = M − TS and the one corresponding to the extremal once again corresponds to a
constant, thus implying a vanishing entropy. However the extremal free energy does not
coincide with the mass in this case. In the extremal case the bubble is situated exactly
at the inner horizon, f−(a?) = 0, in such a way that the rescaling of the temperature just
cancels the zero of f ′ at the horizon, √

f+√
f−

f ′−
4π
→ T̃ e+ . (5.5.6)

This is the temperature corresponding to the black dot in the figure where the non-extremal
bubble curve ends. The resulting on-shell action is then,

Îe = β+(M e
+ − T̃ e+Se) (5.5.7)

Again attending at the usual semiclassical picture the entropy of the solution vanishes and
the free energy corresponds to an effective mass that picks some contribution proportional
to the Wald entropy.

Fe,b = M e
+ − T̃ e+Se (5.5.8)

Here the word extremal does not necessarily mean zero temperature but it is rather a question
about the topology of the near horizon region. The curves for the free energy as a function
of the temperature for the different configurations is shown in figure (5.13) for several values
of the coupling λ.

For the discussion of the phase diagram we will assume that the extremal configurations
are present at any temperature with zero entropy. At the end of this section we will comment
on the alternative approach not considering them but as limiting cases of their non-extremal
counterparts.
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Figure 5.13: Free energy versus temperature for λ = 0.035, 0.05, 0.12, 0.249. The dashed
black curve corresponds to the unstable branch of black holes while the thick black one
represents its extremal free energy. The thick red curve corresponds to the bubble with the
same asymptotics and its extremal limit is indicated by the black dot. The thin red curve
corresponds to the free energy of such extremal state when vanishing entropy is assumed.
The dots indicate the locus of different kinds of possible phase transitions even though
just some of them may take place in each case. The black dot when relevant represents a
phase transition from a extremal to a non-extremal bubble and the red one a transition
from the extremal black hole to the non-extremal bubble. The green dot indicate the
minimal temperature for the existence of non-extremal bubbles when these are divided in
two branches one thermodynamically stable and one unstable.
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Figure 5.14: In red the bubble states, light for the extremal, and in gray the extremal
(BD-unstable) black hole. The red dot indicate the value of λ for which the transition
between the extremal unstable black hole and the non-extremal bubble (red line) begins to
exist. The red line corresponds to the bubble extremal limit and the red one to the minimal
temperature of these configurations when this does not correspond to the extremal one.

We have different behaviours for different ranges of the LGB coupling. For small values,
λ < λcrit ≈ 0.0404, the bubble is always the stable phase with a transition between the
extremal configuration at low temperatures and the non-extremal one preferred as we increase
the temperature. For values of λ above that critical value the low temperature phase is the
extremal black hole instead, our hypothetical vacuum, the non-extremal bubble being again
the stable phase at high temperature.

Another interesting feature is that for values of λ bigger 1/12 negative entropies appear
for the bubble, notice the positive slope of the non-extremal curve in the third and fourth
graphics. This negative entropy states however are never the preferred phase of the system
and can safely be discarded as unphysical.

This however would not happen if we consider the alternative approach to the extremal
states. In that case these are just limiting cases of the non-extremal configurations already
included as endpoints of the corresponding curves (black dot for the extremal bubble). We
have to consider the same graphics of figure (5.13) but discarding the thick black and thin
red curves corresponding to the extremal states. The stable phase at low temperature would
then always be the black hole with bubble formation at high temperature. This situation is
puzzling as the low temperature phase would in that case have negative specific heat and
entropy. The negative entropy bubble states would also be the preferred phase for some
range of the temperature in that case. We cannot just discard them as unphysical in this
case as we would not have any available metric at low temperatures. The inclussion of the
extremal states seems to solve the problem of negative entropy configurations, and reduces
it to a thermodynamic instability.



5.5. GENERALIZED HP TRANSITIONS IN LOVELOCK GRAVITY 139

In the region of the λ−T phase diagram of figure (5.14) colored in gray, the bubble con-
figurations have both lower free energy than the vacuum, this being the thermodynamically
preferred phase. Still the probability of bubble formation is non-zero being proportional to
the exponential of the difference of the actions of both solutions. Thus after enough time a
bubble will form leading again the system to the EH branch.

For the inverse transition we proceed in the same way but setting the opposite asymp-
totics. The results are depicted in figure (5.15). Strikingly, due to several physical con-
straints, for low values of the LGB coupling bubbles, either extremal or non-extremal, do
not exist, the critical value being λ = 1

24
(7 −

√
13) ≈ 0.14 where the two extremal states

degenerate. They are shown in the figure (dashed red and thin red respectively for non-
extremal and extremal bubbles) but they would be formed inside the outer horizon. Viable
bubble geometries appear above the critical λ value represented by the thick red line and
they also have a well defined extremal extension (thin red line).

For low enough values of the LGB coupling the black hole states are the only available
configurations. Below λ = 1/12 the non-extremal solutions are stable and have positive
entropy and as a consequence have lower free energy than the extremal vacuum. The non-
extremal black hole is the stable phase of the system for all temperatures. For higher values
of λ, negative entropy non-extremal states appear at low temperatures but the extremal
configuration has lower free energy in that case. We can again safely remove the unphysical
states. The low temperature phase corresponds to the extremal black holes with a transition
to the non-extremal ones at high temperature.

The stable low and high temperature phases are still the same above the critical λ =
1
24

(7−
√

13) where the bubble configurations appear. These can be divided in two branches,
one stable that merges with the black hole curve at zero temperature and one unstable close
to the extremal state that is irrelevant as it has higher free energy than the former. Any
of these bubbles have higher free energy than the extremal black holes for all temperatures.
Still and as for the transition in the other sense, the probability of a bubble being formed
is non-zero and thus after enough time a bubble the BD-unstable phase would form. This
would in principle drive the system to that pathological branch but it is also unstable to the
formation of bubbles of the EH branch. The final fate of the system seems to be a chaotic
situation with bubbles of both phases poping up everywhere. This seemingly problematic
situation is avoided for λ < 1

24
(7−

√
13).

In case we discard the free energy curves corresponding to the extremal states, thin red
and black lines, we would encounter some problematic behavior for even lower values of λ.
For λ > 1/12 negative entropy black holes appear and they would be the preferred phase for
low temperatures. Above λ = 1

24
(7 −

√
13) the bubbles appear with also negative entropy

and lower values of the free energy for some range of temperatures, between the lower thin
red and green curves of figure (5.16).

We can summarize saying that for values of the LGB coupling below λ = 1
24

(7 −
√

13)
the BD-unstable branch of hyperbolic black holes is always driven to the EH one, this being
stable against the formation of bubbles. For this scheme the EH-branch is protected and the
only transition that takes place is a change from the extremal black hole at low temperatures
to the non-extremal at higher ones. This transition only occurs when negative entropy states
are in the spectrum, namely close to the extremal configuration. For higher values of λ the
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situation is chaotic with bubbles of the opposite branch poping for any choice of the boundary
conditions, the interpretation of this being unclear.

Moreover, the transition mechanism presented here provides a possible resolution of the
instabilities found for the ghosty branch of LGB gravity. For spherical and planar topology it
is always driven to the EH-branch via bubble nucleation. We have just verified that the same
happens for hyperbolic spacetimes as long as the LGB coupling is below λ = 1

24
(7 −

√
13).

This will presumably be also valid in the cubic case for moderate values of µ.

5.6 Discussion

During this chapter we have broaden the scope of our analysis of Lovelock theories and their
solutions. In particular, we have included the possibility of distributional solutions for which
the spin connection is discontinuous at some given junction (hyper)surface. In the absence
of matter in the bubble, it glues two solutions that correspond to different branches of the
same theory, i.e. to different asymptotics. From the hamiltonian point of view the existence
of such configurations is allowed by the multivaluedness of the canonical momenta.

We have also proven that it is possible to generalize the thermodynamic notions usu-
ally applied to black holes to these new solutions. Under certain regularity assumptions,
static bubble configurations can be assigned temperature, mass, entropy and free energy,
all verifying the expected thermodynamic relations. Having proven the consistency of the
thermodynamic picture, we have then analyzed local and global stability of our system in
this generalized context and the occurrence of phase transitions. We have restricted our
attention to the LGB case even though the same kind of transitions occur also in the general
case, as it can be explicitly shown in the planar case. This is a novel mechanism for phase
transitions that is a distinctive feature of higher curvature theories of gravity. Specifically,
phase transitions among the different branches of the theory are driven by this mechanism.
Mimicking the thermalon configuration [187], a bubble separating two regions of different
cosmological constants pops out, generically hosting a black hole.

In the context of LGB gravity, this configuration is thermodynamically preferred above
some critical temperature. The corresponding phase transition can be interpreted as a gen-
eralized HP transition for the high-curvature branches, driving the system towards the EH
branch. This happens even for the hyperbolic case in which the reverse transition is also
possible. For the EH-asymptotics the usual black hole is always the preferred phase. Below
some critical λ thermalon solutions do not even exist in this sector of the theory.

The junction conditions do not just determine the existence of the static configurations
but also their dynamics. In the LGB case, the bubble configuration, being unstable, dy-
namically changes the asymptotic cosmological constant, transitioning towards the stable
horizonful branch of solutions, the only one usually considered as relevant. This is then a
natural mechanism for the system to select the general relativistic vacuum among all possi-
ble ones. We are aware of the fact that the vacuum Λ+ in the LGB theory exhibits ghosts.
The phenomenon presented in this chapter, however, takes place in the Lovelock theory as
well, where there are further healthy vacua than the one connected to the EH action [3].
The selection of the EH-branch among all the stable ones is not as universal as one may
naively think, however, as not all branches of solutions are connected to the EH one by a
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Figure 5.15: Free energy versus temperature for λ = 0.05, 0.11, 0.2(and zoom), 0.21, 0.23.
In red the bubble states and in black the black holes in the stable branch. The thin
black line correspods to the extremal geometry once assumed the vanishing of the entropy
whereas the green line corresponds to the usual Wald entropy for the same geometry. The
dashed red lines correspond to the extension for a < 1/

√
2 of M+ − T−S. These are not

viable bubble solutions in the same way as its extremal extension represented by the thin
red line. Acceptable bubble geometries appear for λ ≥ 1

24

(
7−
√

13
)

represented by the
thick red line and they also have a well defined extremal extension. The red dots indicate
the locus of extremal bubble to black hole transitions and viceversa whereas the blue and
the green ones indicate non-extremal extremal bubble transitions and bubble black hole
transitions respectively. Below the green dot when there the black line is below the red
one and so we have a low temperature black hole phase as well as a high temperature one.
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Figure 5.16: In red the buble states and in gray the black holes, light for the extremal
configurations. Below the red dot the red curve is below the blue one and they reverse
passes that point.

thermalon. Thus, choosing such boundary conditions the asymptotics cannot change due
to the mechanism presented here. Besides, even when a suitable static configuration exists,
the dynamics of the bubble might not allow the bubble to scape to infinity, e.g. being in
stable equilibrium, so that it cannot change the asymptotics either. In that case, bubble
configurations might represent new phases of for higher curvature vacua, in some situations
very similar to a regular black hole. Remember that in many cases these branches do not
have black hole solutions displaying a horizon.

Usually, AdS spacetimes are considered to have perfectly reflective boundaries so that
anything bounces back in finite proper time. This is not the case here. As the theory has
several possible asymptotics, all à priori equally valid, we might choose any of them but we
have to allow for asymptotics changing solutions such as those described in this chapter.
Through the evolution of the bubble, these also change the temperature and the mass of the
solution, as it also happens in the case of quenches (see [198] for an example in the context
of holography. We might think of the thermalon mechanism as a kind of thermodynamic
quench induced by the system, not externally.

Following the same approach that lead us to consider the thermalon configurations dis-
cussed so far, one can include in the analysis more complex solutions. For instance, in the
LGB case with positive λ (see figure 5.5), for values of κ+ slightly above the thermalon
value giving the equilibrium point, the Euclidean trajectory would be oscillatory, between a
maximal and a minimal value of the radius a±. The same happens for any unstable bubble.
Instead of picking the static value, we may tune the value of κ+ so that the period of the
oscillation

β = 2

∫ a+

a−

Ṫ−√
2V (a)

da (5.6.1)
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Figure 5.17: Oscillation period for a bubble in 5d LGB gravity for λ = 0.1, κ− = κth− and
κ+ = κth+ + ∆κ+, κth± being the mass parameters corresponding to a? = 1. The horizontal
lines, from top to bottom, correspond to β−/n for n = 1, 2, 3, 4, 5, 10, 20, 50. In this specific
example we have an infinite tower of smooth manifolds with increasing n and κ+.

fits in the periodicity β− given by the regularity at the horizon, an integer number of times.
We can plot this periodicity as a function of κ+ (see figure 5.17) and identify the values that
verify that

β− = nβ (5.6.2)

for some integer n as the values of the mass parameter that yield smooth Euclidean manifolds.
The picture is similar to the thermalon of figure 5.4 with a wiggly line as junction. The above
condition is such that the trajectory is closed. These new solutions have to considered as
well in the canonical ensemble and may lead to more general phase transitions than those
previously discussed.

Lovelock gravities, as well as any other higher curvature theory, have several branches of
asymptotically (A)dS solutions that might admit an interpretation as different phases of the
dual field theory. Phase transitions among these are driven by the mechanism described in
the present chapter.

From the holographic point of view this looks like a confinement/deconfinement phase
transition in a dual CFT, involving an effective change in the microscopic properties, e.g. the
central charges, both phases being strongly coupled. Whether a phenomenon like this
takes place in a 4d or higher dimensional CFTs, particularly within the framework of the
fluid/gravity correspondence –where both phases might be characterized by different trans-
port coefficients–, or it is overtaken by higher curvature corrections, is an open question at
this point.
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Chapter 6

AdS/CFT and Lovelock gravity

“But although all our knowledge begins with experience,
it does not follow that it arises from experience.”

Immanuel Kant

Near the end of the XIXth century, physics was thought to be an almost finished disci-
pline. For the scientific community at the time Newtonian Mechanics on the one hand and
Maxwell’s theory of electromagnetism on the other would describe perfectly any physical
process. They couldn’t be more mistaken. During the last years of the century and the first
decades of the next some new experimental evidence would require a complete revision of
our scientific paradigm. This revolution is the origin of Einstein’s Special Theory of Relativ-
ity and also that of Quantum Mechanics. Moreover, the quest for reconciling the apparent
inconsistencies between these two theories motivated the birth of Quantum Field Theory
(QFT), the basis of our current understanding of particle physics.

Furthermore, Newtonian gravity was neither compatible with the new paradigm of Special
Relativity, the solution of this problem being on the origin of Einstein’s formulation of
General Relativity. We already talked about General Relativity and its higher curvature
generalization in the first part of this thesis. QFT and General Relativity are the two pillars of
contemporary theoretical physics and our knowledge about the Universe. Both theories have
been successfully tested to extremely high accuracy and are thought to faithfully describe
any physical process within the corresponding regimes of applicability. The Higgs boson
was the only missing particle of the Standard Model of particle physics, the last discovered
building block of our understanding of the most fundamental aspects of the physical world.
Is this description of the physical world complete as our XIXth century fellows thought?

QFT ad General Relativity are two conceptually very different theories and apply to
almost complementary regimes. However, both theories are contradictory in situations for
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which both gravitational and quantum mechanical effects are relevant. In other words,
despite all its successes, General Relativity, or any classical modification of it such as Lovelock
theory, can not be a complete theory of gravity at arbitrarily high energy scales. A full
quantum theory of Gravity is needed in order to understand phenomena at energy scales

beyond the Planck mass, MPl =
√

~c
GN

(or distances smaller than the Planck length). We

need a theory of Quantum Gravity, approaching the precedent theories in the respective
regimes of validity while solving their incompatibilities. The search for a viable theory of
Quantum Gravity is one of the most important problems of our time, where by viable we
mean theoretically but also experimentally consistent with the Universe we live in.

One of the keypoints of the disagreement between the two frameworks is the rôle played by
the spacetime on each of them. From the QFT point of view this four dimensional manifold
is just a fixed background, the arena where all physical processes happen. In contrast, from
the GR perspective gravity is just another dynamical field, and as such there is no à priori
reason for it not to be quantized. Nevertheless it cannot be quantized in the same way as
all the other fields. Einstein-Hilbert or any gravity action describes the dynamics of a spin
two particle but renormalizability constrains the possible spin in the spectrum to be one
or less. Moreover, the Weinberg-Witten theorem [199] also restricts the spin of particles
if they are charged under Poincaré covariant currents. Gauge bosons and gravitons scape
the assumptions of the theorem because of gauge symmetry but this forces the spacetime
to be dynamical. Furthermore this result also forbids the existence of composite gravitons
(see [200] for a recent discusion on the topic). One cannot get a massless spin two bound
state in a theory with a local stress-energy tensor, showing that one cannot start with a
local theory in Minkowksi space and generate Einstein gravity as an emergent phenomenon,
thus eliminating the last possibility of consistently describe spin two particles in a fixed
Minkowsky background.

One of the candidate quantum theory of gravity theories is string theory, even though it
was born in a quite different context. In fact, it was first proposed in the sixties as a theory
of strong interactions, mainly because of the way the meson spectrum is organized in Regge
trajectories. We now understand the strong interaction through Quantum Chromodynamics
(QCD) although there is still much to be understood, mostly due to the fact that it is
strongly coupled at low energies. Most tools used in QFT are only suited for the peturbative
regime.

It was after the success of QCD that it was found that closed string theories always
describe a spin 2 massless state with the properties of the graviton, the quantum of the
gravitational theory. From then on it was understood that string theory was an ideal can-
didate for a complete theory of gravity. The main idea being that the softer interaction
between string-like objects would tame the divergences found in previous attempts to quan-
tize point-like gravitons.

The early connection to strong interactions was premonitory. As we will describe string
theory has offered many new and deep perspectives into QFT and its connection to gravity.
Gerard ’t Hooft was one of the scientists that most contributed to the understanding of
that connection. Looking for new ways of simplifying computations in QCD, he considered
SU(N) instead SU(3) gauge theory with a very large number of colors, N [201]. Perhaps
the understanding of this simplified theory would shed some light on QCD or we can try
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to approach the physical value N = 3 with a perturbative expansion in 1/N . Using his
famous double line representation, ’t Hooft found that Feynman diagrams may be organized
in a double expansion in terms of the genus g of the two dimensional surface defined by the
diagrams and the ’t Hooft coupling1 λ = g2

YMN as

∞∑
g=0

(
g2

YM

)2g−2
∞∑
h=2

Cg,hλ
h , (6.0.1)

strongly reminiscent of the perturbative expansion of string theory with string coupling

gs ∼ g2
YM (6.0.2)

The ’t Hooft limit is the limit N → ∞ with ’t Hooft coupling λ fixed. In this limit, only
planar Feynman diagrams (with g = 0) contribute and the putative string theory becomes
free.

The other contribution of ’t Hooft is not less fundamental for the aim of the present essay.
The idea is that of holography [202,203]. Motivated by the work of Bekenstein and Hawking
on the entropy of black holes and its scaling with the area of the system, ’t Hooft and later
Susskind proposed the holographic principle. According to it, the maximum entropy in a
spacetime volume is proportional to its surface area. This is far smaller than the entropy of
a local QFT on the same space, even with some UV cutoff. Such a theory would have an
entropy which scales with the volume. Hence for a string theory or any quantum theory of
gravity to be dual to a QFT, the field theory would have to be formulated on at least one
lower dimension, so that the degrees of freedom can in principle be matched. The idea of
the gravitational theory as effectively described in lower dimensional space is also reinforced
by the fact that it cannot have local gauge invariant observables. The notion of locality
is tightly tied to the notion of coordinate frame and in a diffeomorphism invariant theory
local quantities are thus not gauge invariant, observables having to lie at the boundary of
the spacetime. One example of this is the fact of gravitational energy not being localized in
spacetime. Just the total mass, integrated over the spacetime hence not dependent on the
position, is a well defined gauge invariant observable.

6.1 The Maldacena conjecture

The Weinberg-Witten theorem effectively forbids the notion of a spin two particle in a local
QFT with Poincaré invariance. However the holographic principle readily offers an elegant
way out that imediately solves some of the seemingly inconsistent features of the theory. The
graviton does not appear in the QFT but it has to live in a higher dimensional spacetime.

As it has been argued, the large N limit of SU(N) gauge theories is expected to be
described in terms of strings. Näıvely, for d = 4 Yang Mills theory one would expect to get
a bosonic string theory in four dimensions. However, the bosonic string is not consistent

1Even though we use the same symbol λ for the ’t Hooft and the LGB couplings, it will be easy to know
which one we are referring to as they never appear in the same context.
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quantum mechanically in d = 4 and this is not correct. The reason for this inconsistency is
that the classical Polyakov action,

I ∼
∫
dDx
√
−ggαβ∂αX∂βX, (6.1.1)

has a Weyl symmetry gαβ → Ωgαβ which is not a symmetry quantum mechanically, it has
an anomaly. In the quantum theory, under a change of the metric of the form gαβ = eφĝαβ
the partition function,

e−Ieff =

∫
D[X]D[b, c]e−I[X,g]−I[b,c,g], (6.1.2)

changes as [204]

Ieff(g)− Ieff(ĝ) =
26−D

48π

∫
dDx
√
−g
(

1

2
(∇̂φ)2 + R̂(2)φ+ µ2eφ

)
, (6.1.3)

where R̂(2) is the Ricci scalar on the worldsheet of the string.
This action for φ is called Liouville action. Even though the initial classical action for

the conformal factor in the metric was zero, a non-trivial action was generated quantum
mechanically. This new dynamic field can be thought of as an extra dimension of spacetime
in the context of string theory. If we are interested in four dimensional gauge theories we
then look for strings in five dimensions. We need to specify the space where strings move.
It should have four dimensional Poincaré symmetry, so the metric has the form

ds2 = ω2(z)(ds2
1+3 + dz2). (6.1.4)

where we have used the reparametrization invariance to set the coefficient of dz2 equal to
that of the 4 dimensional metric.

Consider now a conformal field theory, e.g. N = 4 Super Yang Mills. In this case the
action is also invariant under conformal coordinate transformations such that g = Ω2(x)g,
and Ω is any function. Then, a scale transformation x→ λx should be a symmetry. However,
string theory has a scale, the string length ls. Then, the only way that our string theory
could be symmetric under the scale transformation is that this corresponds to an isometry of
the background. This implies that the extra dimension must also change under this scaling,
z → λz and that the form of the warp factor is ω(z) = b/z. So we end up dealing with 5
dimensional anti-de Sitter space

ds2 =
b2

z2
(dx2

1+3 + dz2). (6.1.5)

In 1997 Maldacena [30] that made the relation between gauge theory and gravity precise
and allowed for a detailed understanding of the facts discussed in the previous paragraphs.
This work, together with the construction of a precise dictionary between these seemingly
unrelated theories in [205] and [135] laid the foundations of what came to be known as the
AdS/CFT correspondence (see also [206]).
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The AdS/CFT correspondence is a relation between a conformal field theory (CFT) in
d dimensions and a gravity theory in (d + 1)-dimensional anti-de Sitter background. The
first hint of this duality is the degree of symmetry in both sides of the correspondence. The
group of isometries of AdSd+1 space is SO(2, d), which coincides with the conformal group in
d dimensions. In fact it can be shown that the group of isometries of AdS space acts on its
boundary as the conformal group acting on Minkowski space. This is one of the reasons why
the CFT is usually said to live on the boundary of AdS. The extra dimension is related to
the energy scale in such a way that it is sometimes said that the AdS/CFT correspondence
geometrizes the renormalization group flow of the QFT.

In the context of string theory, gauge theories describe the low energy dynamics of open
strings living on several superposed D-branes. For example, the field theory on N D3-branes
is 4d N = 4 U(N) Yang Mills at low energies. These open string have the possibility of
colliding and merging to form a closed string, not bound to the brane any more. The bulk
spacetime where this closed strings move is warped due to the presence of the D-branes. In
fact, as Polchinski proved [207], D-branes are actually the same object as p-branes, which
are solutions of IIB supergravity in ten dimensions. The metric for one of this solutions
extended in three spatial dimensions is

ds2 = H−1/2(r)(−dt2 + d~x2
3 +H1/2(r)(dr2 + r2dΩ2

5) (6.1.6)

where H = 1 + b4/r4 and b4 = 4πgsNl
4
s . The directions d~x3 are those parallel to the brane,

and r is the distance from the brane. From the point of view of an outside observer, any
excitation near the brane (the horizon, r = 0) has very small energy,

E∞(r) =
√
−g00Er ∼ rEr → 0. (6.1.7)

.
Then, we conclude that at low energies only these excitations will survive. The near

horizon geometry, r → 0 due to the D3-branes is

ds2 ≈ b2

z2
(−dt2 + d~x2

3 + dz2) + b2dΩ2
5 (6.1.8)

where we have defined z = b2/r. This is the metric AdS5 × S5, both spaces with the same
radius b. The low energy dynamics of closed strings is determined by the usual action of
general relativity (with some extra fields), then, we have gravity in an AdS5×S5 background
at low energies. The AdS/CFT correspondence conjectures that, in the low energy regime,
the two alternative descriptions should be equivalent. So N = 4 U(N) Yang Mills is equiv-
alent to gravity in AdS5 × S5 [208]. This relation can be understood as an example of the
‘open-close’ string duality. In this context, gravity (or more precisely type IIB supergravity)
is the low energy limit of type IIB superstring theory, which is consistent in ten dimensions.

Since the gauge theory describe the dynamics of open strings whereas gravity describes
closed strings moving in the bulk, we can identify in the usual stringy way

g2
YM = 4πgs (6.1.9)

in agreement with the generic expectations of ’t Hooft’s 1/N expansion. Beyond that leading
SUGRA approximation gs correspond to 1/N corrections and α′ to 1/λ.
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The relation between the two theories is a duality. The gravity description is a good
approximation to string theory if the radius of the space is much larger than ls, since ls is
the intrinsic size of the graviton. The radius of AdS space (6.1.6) is related to the ’t Hooft
coupling such that this implies

b

ls
∼ λ1/4 � 1 (6.1.10)

We require also that the string corrections are small so gs → 0 and we need to consider the
large N limit of the theory.

In the field theory side, the large N theory has effective coupling λ = g2
YMN such that

when this coupling is small, λ� 1, we have a well defined perturbative field theory. In the
strongly coupled regime (the ’t Hooft limit) of the gauge theory we expect strings. This is
the same regime for which the classical gravitational description is valid.

Then, in the region where the ’t Hooft coupling is very small, λ � 1, the gauge theory
description is weakly coupled and the other (gravity) is strongly coupled. The opposite is
true when this parameter is large. This is what makes the conjecture so interesting but also
so hard prove or to refute. In the specific example being discussed here, supersymmetry
ensures that there are some quantities that are independent of the coupling. Computing
these on both sides, and checking that they agree, we have checks of the duality [208]. Some
of the most convincing tests have been recently reviewed in [209].

The AdS/CFT correspondence is by now a well-established non-perturbative duality of
paramount importance. After several years of research, it has overpassed dozens of checks
and has been applied in a plethora of systems that go far beyond the large N limit of
N = 4 super Yang-Mills theory in four dimensions, originally portrayed by Maldacena [30].
The strongest version of the conjecture is that this correspondence is valid for any value
of gs and N , even if we only make calculations in certain limits. There have been found
many non-trivial examples of finite N and λ corrections that agree between AdS and CFT
theories. The study of the extrapolation between large λ, where string theory is under
control, and small λ, where gauge theory perturbative computations are reliable, has led
to many interesting developments and ideas. From these, the most prominent is perhaps
the surprising hypothesis of integrability of planar N = 4 SYM (see [210] for a review) and
recently also the recovery of the bootstrap program for CFTs, [211] can be an example.

The correspondence has also been generalized to a plethora of of other examples. These
are usually obtained by applying similar reasoning to other brane configurations in string
theory. The known dual couples have are impressively varied, with different dimensionality,
global and gauge symmetries or particle content. However, the relevant closed string or
(super)gravity theory dual to physical QCD remains unknown. The advent gauge/gravity
correspondence has motivated important achievements not only for QFT and gravity but
also inmathematics and in other seemingly unrelated branches of physics, from Condensed
Matter to hydrodynamics.

6.1.1 Correlation functions

The CFT dynamics is defined by the correlation functions of its gauge invariant local oper-
ators. The dynamical information of the AdS/CFT correspondence can then be embodied
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in the relation between the generating functional for CFT correlators and the string theory
partition function with appropriate boundary conditions on the AdS boundary [135, 212].
Remember the holographic statement of the degrees of freedom of the gravitational theory
being confined to the boundary, we can only define gauge invariant observables there. In the
case of a scalar field, φ(z,x) , we have〈

exp

(
i

∫
Σ

dxµφ0(x)O(x)

)〉
CFT

= Zstring[φ(0,x) = φ0(x)] (6.1.11)

where the asymptotic value (or boundary condition) of the scalar field in AdS acts as a
source for the dual scalar operator O. Moreover the hamiltonian is realized in the CFT as
the dilatation operator in such a way that energy in AdS corresponds to conformal dimension
in the CFT, these being related as

m2 = ∆(∆− d) . (6.1.12)

The same can be also generalized to operators with spin. In the CFT side the spectrum will
always contain many operators with different spins and conformal dimension. One of them
is universal in the sense that it is present for any CFT and has some very specific properties.
This operator is the stress-energy tensor and it is realized in the dual gravitational picture by
the graviton. Restricting to purely gravitational theories will then amount to the analysis of
correlators of the stress-energy tensor. In that case we can compute the generating function
as 〈

exp

(∫
dx ηab(x) Tab(x)

)〉
CFT

= Z [gµν ] ≈ exp
(
−Î[gµν ]

)
, (6.1.13)

where Z [gµν ] is the partition function of quantum gravity, the same we used to discuss
thermodynamic properties of black holes, and gµν = gµν(z,x) such that gab(0,x) = ηab(x).
From this expression, correlators of the stress-energy tensor can be obtained by performing
functional derivatives of the gravity action with respect to the boundary metric. This, in
turn, is simply given by considering gravitational fluctuations around an asymptotically AdS
configuration of the theory. The bulk metric acts as a source for the stress-energy tensor in
the boundary (and viceversa).

6.1.2 Confinement/deconfinement phase transition

The gravity (or string theory) partition function is in general computed by integrating over
metrics that induce the given metric h on the boundary. This is calculated in the same
way as we described at the end of section 3.1, in the framework of Euclidean Quantum
Gravity. Again, in the stationary phase approximation, one can compute Z(h) by finding
a solution g for the Einstein equations with the required boundary behaviour, and setting

Z(h) ≈ exp
(
−Î[g]

)
. If there are several solutions which are asymptotic to the given

boundary, the leading contribution comes from the solution with the lowest action and
we have phase transitions when other solution dominates over the previous one. The only
difference with the Euclidean Quantum Gravity case is that here we have to consider solutions
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of AdS5 × S5, not just AdS5. Any asymptotically AdS5 solution with an extra S5 factor is
a consistent solution for Einstein’s equations in ten dimensions.

We consider N = 4 Super Yang Mills theory at finite temperature on a spatial manifold
S3 or R3. We must compute the partition function on S1×S3 with respective radius β and b.
By conformal invariance only the ratio β/b matters. This can be regarded as a dimensionless
temperature on the CFT side, TCFT = b/β = bT .

It has been shown (see citation in [136]) that the N = 4 theory on S1 × S3 has a
phase transition as a function of β/b in this limit. The large β/b phase has some properties
in common with the usual large β (small T ) phase of confining gauge theories, while the
small β/b phase is analogous to a deconfining phase. In the large N limit, a criterion for
confinement is whether the free energy (after sustracting a constant from the ground state
energy) is of order one, reflecting the contributions of singlet color hadrons, or of order N2,
reflecting the contributions of gluons [136].

We can compute the partition function of this theory from the gravity side using the
correspondence. In the case of Einstein-Hilbert gravity in five dimensions, considering the
extra V ol(S5) ∼ b5 factor arising from the volume of the 5-sphere, for the black hole solution
we have F/T ∼ b8 ∼ N2 as expected for a deconfining phase. In the low temperature phase
we have a trivial N2 contribution coming from the ground state energy. The excitations
(just thermal radiation) have no dependence on N and give a contribution of order one, as
in a confining phase.

Thus, the Hawking-Page phase transition we found in the analysis of the canonical en-
semble of AdS space corresponds to a confinement/deconfinement phase transition in the
N = 4 Super Yang Mills theory living on its boundary, for Einstein-Hilbert gravity and, by
analogy, also for Lovelock theories in AdS. For non-conformal theories, such as that described
by the Klebanov-Strassler model [213], the confinement/deconfinement transition occurs at
finite temperature. In that context the associted QGP might be affected by hydrodynamic
effects that effectively shifts the temperature at which the phase transition occurs [7], al-
though via a different mechanism. The viscous terms in a relativistic fluid result in reducing
the effective pressure, thus facilitating the nucleation of bubbles of a stable phase. This is
known as cavitation. The effect is particularly pronounced in the vicinity of the (weak) first-
order phase transition. We can use the holographic correspondence to study cavitation in
strongly coupled non-conformal gauge theory plasma close to confinement phase transition.
An example is presented in Annex D for the case of planar cascading gauge theory. While in
this particular model the shift of the deconfinement temperature due to cavitation does not
exceed 5%, we speculate that cavitation might be important near the QCD critical point.

6.1.3 Effective Conformal Theories and local AdS dynamics

We can take an alternative point of view on the AdS/CFT correspondence and use the above
prescription in order to effectively define and study CFTs in higher dimensions. We just need
to write down a gravitational action with any number of matter fields. The AdS partition
function will then provide correlation functions for the dual operators that automatically
satisfy conformal symmetry. These will however be subject to other physical constraints
such as unitarity, crossing, etc. in such a way that these translate into constraints onn the
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spectrum and the possible interaction terms. This Effective Conformal Theory (see [214]
and references therein) would describe the low-lying spectrum of the dilatation operator in
a CFT, equivalent to low energy spectrum in AdS. Such an effective theory is useful when
the spectrum contains a hierarchy in the dimension of operators, in such a way that we
can perform an expansion for large gap. These criteria ensure that there is a regime where
the dilatation operator is modified perturbatively. Local interactions in AdS thus provide a
very efficient way of organizing perturbations of the dilatation operator respecting conformal
invariance, much as Minkowski space naturally describes Lorentz invariant perturbations of
the Hamiltonian. This approach might also be useful to understand which CFTs have a
well-behaved AdS description.

This perspective may also provide some interesting insight into higher dimensional CFTs.
It is indeed unclear whether there are non-trivial higher dimensional CFTs. In general
it is thought that interacting CFTs do not exist in dimensions higher than six. Due to
dimensionality any interaction term is irrelevant so that there is no obvious way to define
interacting CFTs. There seems to be an avenue for their formulation in terms of p-forms
with p ≥ 2 (so-called generalized gerbe theories) [35]. Also from the bootstrap perspective,
it is not at all obvious that there is no solution. It should be good to understand this better
and the study of gravity in AdS opens an interesting window that might shed some light on
the issue.

In the remaining chapters of this thesis, we will investigate the uses of the framework
of the gauge/gravity duality in the case of Lovelock gravity and extract some of its conse-
quences. This provides interesting information both from a fundamental as well as from a
more effective perspective. Higher-curvature corrections to the Einstein-Hilbert action ap-
pear as next to leading orders in the low-energy expansion of string theory, e.g. the Lanczos-
Gauss-Bonnet term [29], being in any case perturvative. In the context of holography, generic
higher curvature terms may correspond both to finite N or finite λ corrections. See for in-
stance [215,216] for a recent discussion regarding the LGB term. Even if in the case of LGB
gravity, its stringy origin allows for stablishing a detailed holographic dictionary, this does
not happen for higher order Lovelock theories. Still Lovelock gravity in seven dimensions
might help to understand the rôle of cubic terms in the duality and provide information about
more general six dimensional CFTs. In turn higher order Lovelock terms, may help under-
stand the elusive higher dimensional CFTs, although there is no explicit string construction
for them, neither for AdS spaces in dimension higher than seven. These theories constitute
perfect toy models to test our ideas about the holographic duality with the addition of finite
higher curvature corrections. These introduce some of the characteristic features of higher
curvature gravities, such as several branches, new types of singularities and more complex
dynamics, without problematic higher derivative degrees of freedom.

From the CFT point of view, any stringy realization of the gauge/gravity duality will
yield correlation functions for the stress-energy tensor analogous to those arising for Einstein-
Hilbert gravity, with the possibility of some small correction due to higher order terms.
The analysis of the Lovelock family will in turn allow for the exploration of much more
general CFTs of arbitrary dimensionality and beyond the perturbative regime. All results
are consistent and compelling enough to pursue our investigations.
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6.2 Lovelock theories and holography

Lovelock theory has a rich structure of AdS vacua. Correspondingly, the AdS/CFT cor-
respondence tells us that there should be an analogously complex structure of dual CFTs.
We know very little about these higher-dimensional CFTs. Indeed, at least for the case
of supersymmetric CFTs, one naively expects to have at most six dimensional non-trivial
unitary conformal field theories, based on the algebraic construction by Nahm [217]. For
higher-dimensional CFTs, the general expectation is that they are not lagrangian theories
and their constituent degrees of freedom are not gauge fields but possibly self-dual p-forms
(in the case of even spacetime dimensions) [35]. These theories should have a stress tensor
and conformal symmetry will constrain their 2- and 3-point functions as we shall presently
describe.

6.2.1 CFT unitarity and 2-point functions

Consider a CFTd−1. The leading singularity of the 2-point function in any number of di-
mensions is fully characterized by the central charge CT [218]

〈Tab(x)Tcd(0)〉 =
CT

x2(d−1)
Iab,cd(x) , (6.2.1)

where

Iab,cd(x) =
1

2

(
Iac(x) Ibd(x) + Iad(x) Ibc(x)− 1

d− 1
ηab ηcd

)
, (6.2.2)

whereas Iab(x) = ηab − 2xa xb/x
2. This structure is completely dictated by conformal sym-

metry. For instance, CT is proportional in a CFT4 to the standard central charge c that
multiplies the (Weyl)2 term in the trace anomaly, CT = 40 c/π4.

The holographic computation of CT was performed in [37] for LGB in various dimensions
and in [3] for Lovelock theory. Since CT appears in the general 2-point function of the stress
tensor, it is sufficient to consider a particular set of components. Following [37] we consider
the correlator 〈Txy(x)Txy(0)〉. According to the AdS/CFT dictionary, it is sufficient to take
a metric fluctuation hxy(z,x) = L2/z2 φ(z,x) about empty AdS with cosmological constant
Λ?. Expanding the Lovelock action to quadratic order in φ, and evaluating it on-shell,

Iquad =
Υ′[Λ?]

2(−Λ?)d/2

∫
dx z2−d (φ ∂zφ) . (6.2.3)

Imposing the boundary conditions φ(0,x) = φ̂(x), the full bulk solution reads

φ(z,x) =
d

d− 2

Γ[d]

π
d−1

2 Γ
[
d−1

2

] ∫ dy
zd−1

(z2 + |x− y|2)d−1
Iab,cd(x− y) φ̂(y) . (6.2.4)

Plugging this expression into Iquad, we obtain

Iquad =
CT
2

∫
dx

∫
dy

φ̂(x) Iab,cd(x− y) φ̂(y)

|x− y|2(d−1)
, (6.2.5)
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where CT is the central charge of the dual CFTd−1,

CT =
d

d− 2

Γ[d]

π
d−1

2 Γ
[
d−1

2

] Υ′[Λ?]

(−Λ?)d/2
. (6.2.6)

It is easy to see that this had to be the result as the computation basically corresponds
to that of Einstein-Hilbert gravity with the overall constant Υ′[Λ?]. The upshot of this
computation in an AdS vacuum, Λ? < 0, is thought-provoking:

CT > 0 ⇐⇒ Υ′[Λ?] > 0 . (6.2.7)

The latter inequality, in the gravity side, corresponded to the generalized BD condition
preventing ghost gravitons in the branch corresponding to the AdS vacuum with cosmological
constant Λ?. Thereby, unitarity of the CFT and the absence of ghosts gravitons in AdS,
seem to be the two faces of the same holographic coin. The positivity of Υ′[Λ] has been
proven to be true for the EH branch of solutions in any Lovelock theory [2]. Thus, this
branch is protected from BD instabilities and the corresponding dual theory is unitary.

6.2.2 Three-point function and conformal collider physics

The form of the 3-point function of the stress-tensor in a (d− 1)-dimensional conformal field
theory is highly constrained. In [218,219], it was shown that it can always be written in the
form

〈Tab(x)Tcd(y)Tef (z)〉 =

(
AI(1)

ab,cd,ef + B I(2)
ab,cd,ef + C I(3)

ab,cd,ef

)
(|x− y| |y − z| |z− x|)d−1

(6.2.8)

where the form of the tensor structures I(i)
ab,cd,ef will be irrelevant for us here. Energy con-

servation also implies a relation between the central charge CT appearing in the 2-point
function, and the parameters A,B, C, namely

CT =
π
d−1

2

Γ
[
d−1

2

] (d− 2)(d+ 1)A− 2B − 4d C
(d− 1)(d+ 1)

. (6.2.9)

Since we have already computed CT in the previous section, we are left with two independent
parameters to be calculated.

A convenient parameterization of the 3-point function of the stress-tensor was introduced
in [220]. Consider a gedanken collision experiment in an arbitrary CFTd that mimics the
framework developed in [221,222] for e+–e− annihilation in QCD. We would like to measure
the total energy flux per unit angle deposited in calorimeters distributed around the collision
region,

E(n) = lim
r→∞

rd−3

∫ ∞
−∞

dt ni T 0
i(t, r n) , (6.2.10)

the unit vector n pointing towards the actual direction of measure. The expectation value
of the energy on a state created by a given local gauge invariant operator O,

〈E(n̂)〉O =
〈0|O†E(n̂)O|0〉
〈0|O†O|0〉

, (6.2.11)
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is written in terms of 2- and 3-point functions in the CFT. There is a natural operator
of this sort to be considered, that CFTs in any spacetime dimension possess, which is the
stress-energy tensor, O = εij Tij. For such operators, 〈E(n̂)〉O is given in terms of 2- and
3-point correlators of Tµν .

Using the fact that εij is a symmetric and traceless polarization tensor with purely spatial
indices, O(d− 2) rotational symmetry allows to write [2, 36]

〈E(n)〉εT =
E

Ωd−3

[
1 + t2

(
ninjε

∗
ikεjk

ε∗ikεik
− 1

d− 2

)
+ t4

(
|ninjεij|2

ε∗ikεik
− 2

d(d− 2)

)]
, (6.2.12)

with E the total energy of the insertion, and Ωd−3 the volume of a unit (d− 3)-sphere. The
energy flux is almost completely fixed by symmetry up to coefficients t2 and t4.

The existence of minus signs in the above expression leads to interesting constraints on
the parameters t2 and t4, by demanding that the measured energy flux should be positive for
any direction n and polarization εij. In spite of the fact that the positivity of the energy flux
is not self-evident, there are field theoretic arguments supporting this claim [220, 223] (see
also [224] for a more recent discussion). Furthermore, interestingly enough, it was recently
argued that this condition is equivalent to unitarity of the corresponding CFT [39]. This
condition looks physically reasonable and holds in all known examples, though we are not
aware of its general proof.

In the example under study here we can thus analyze the conditions imposed by demand-
ing positivity of the deposited energy irrespective of the calorimeter angular position. These
depend on the different polarizations εij,

tensor : 1− 1

d− 2
t2 −

2

d(d− 2)
t4 ≥ 0 , (6.2.13)

vector :

(
1− 1

d− 2
t2 −

2

d(d− 2)
t4

)
+

1

2
t2 ≥ 0 , (6.2.14)

scalar :

(
1− 1

d− 2
t2 −

2

d(d− 2)
t4

)
+
d− 3

d− 2
(t2 + t4) ≥ 0 . (6.2.15)

The three expressions come from the splitting of εij into tensor, vector and scalar components
with respect to rotations in the hyperplane perpendicular to n. In a way very similar to the
splitting of graviton polarizations for obvious reasons. These constraints restrict the possible
values of t2 and t4 for any CFT to lie inside a triangle (see figure 6.1) whose sides are given by

(6.2.13), (6.2.14) and (6.2.15). The vertices of the triangle are (− 2(d−3)d
d2−5d+4

, d
d−1

), (0, d(d−2)
2

) and
(d,−d). Each of the constraints in saturated in a free theory with no antisymmetric tensor
fields, no fermions or no scalars respectively [36,220]. It is a straightforward consequence to
see that the helicy one contribution is not restrictive for t4 <

d
d−1

. In particular, of course,
it is so for t4 = 0.

The presence of a non-trivial t4 seems to be linked to the absence of supersymmetry
[36, 220]. In particular, for any supersymmetric CFT t4 vanishes and the above constraints
translate into bounds that t2 must obey: t2 ≤ d− 2 (tensor), t2 ≥ −2(d− 2)/(d− 4) (vector)
and t2 ≥ −(d − 2)/(d − 4) (scalar). The restriction imposed by the vector polarization, as



6.2. LOVELOCK THEORIES AND HOLOGRAPHY 159

-2 2 4 6
t2

-5

5

10

15

t4

Figure 6.1: Constraints (6.2.13)–(6.2.15) restrict the values of t2 and t4 to the interior of
the depicted triangle (in d = 7).

it happens in 4d, is less restrictive than the scalar one and, thus, irrelevant. Summarizing,
positive energy constraints impose the following restriction on t2 for any SCFT,

− d− 2

d− 4
≤ t2 ≤ d− 2 . (6.2.16)

We could also analyze 1-point functions for states created by other operators of lower
spin, scalars or conserved currents, that have a much simpler form. For the scalar, as all
directions are equivalent we will have just the isotropic term

〈E(n)〉O =
E

Ωd−3

, (6.2.17)

whereas in the spin one case, O = εiji, there is just one extra contribution parametrized
by a2. In this case O(d− 2) symmetry and the energy conservation condition constrain the
form of the one point function to

〈E(n)〉εj =
E

Ωd−3

[
1 + a2

(
ninjε

∗
i εj

ε∗i εi
− 1

d− 2

)]
. (6.2.18)

These energy functions are determined in terms of 2-point functions of scalars/currents and
3-point functions of two scalar/currents with the stress-energy tensor.

For conformal field theories with a weakly curved gravitational dual, it is possible to com-
pute t2 and t4 holographically. Also a2 if we include a vector field, otherwise this coefficient
is trivially zero. This was first done in detail for LGB theory in various dimensions [37] and
later applied to quasi-topological gravity in [70]. The calculation proceeds by considering
the vacuum AdS solution perturbed by a shock wave, which corresponds holographically to
a T−− insertion. By adding a transverse metric fluctuation, one reads off the interaction
vertex from the action, and from that one obtains t2 and t4.
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Shock wave backgrounds were also considered by Hofman [223] in the context of five-
dimensional LGB theory and was to arbitrary higher-dimensions in [1] There it was found
that in the presence of the shock wave there is the possibility for causality violation in the
dual field theory. This places bounds on the parameters of the theory, which precisely match
those portrayed in (6.2.13 - 6.2.15). This will be the focus of the next chapter.

We would now like to generalize this story to higher Lovelock theories. We consider,
along the lines of [1], a helicity two perturbation φ(u, v, r) in the shock wave background

ds2
AdS,sw =

N2
# L

2

z2

(
−du dv + dxi dxi + 2 ε φ dx2 dx3 + dz2

)
+ f(u)$(xa, z) du2 , (6.2.19)

where z = L2/r is the Poincaré coordinate and u, v = x0 ± xd−1 are light-cone coordinates.
This amounts to choosing just one non-vanishing component of the polarization tensor,
ε23 6= 0. Leading contributions (in the high momentum limit) to the equations of motion
come from the exterior derivative of the perturbation of the spin connection.2 We get,

d(δω02) ≈ ε z2

L2N2
#

[
∂2
vφ e

1 ∧ e2 +

(
∂u∂vφ+

z2

L2N2
#

f(u)$(xa, z) ∂2
vφ

)
e0 ∧ e2

]
,

d(δω12) ≈ ε z2

L2N2
#

[(
∂u∂vφ+

z2

L2N2
#

f(u)$(xa, z) ∂2
vφ

)
e1 ∧ e2 + (· · · ) e0 ∧ e2

]
,

the ellipsis being used in the second expression since the corresponding term does not con-
tribute to the equations of motion. The components with index 3 instead of 2 are the only
remaining non-vanishing ones, and they are obtained just by changing3 φ→ −φ. The other
ingredient we need is the curvature 2-form of the background metric, that can be written as

Rab = Λ(ea ∧ eb + f(u)Xab) , (6.2.20)

where Λ = − 1
L2N2

#
and Xab is an antisymmetric 2-form accounting for the contribution of

the shock wave. The relevant component here is

X1a =
z2

L2N2
#

[(
2$ + z∂z$ − z2∂2

a$
)
e0 ∧ ea + (· · · ) e0 ∧ ez + (· · · ) e0 ∧ eb

]
,

X1(d−1) = −
(

z

LN#

)2 [
(3z∂z$ + z2∂2

z$) e0 ∧ ed−1 + (· · · ) e0 ∧ ea
]
,

with a, b 6= 0, 1, d− 1, and b 6= a. The relevant equation of motion is given by δE3 ∧ e3 = 0,

2The 3-point function will be determined by these kinds of terms; actually, terms in ∂2vφ since the vertex
has to be of the form φ∂2vφ∂i∂j$, as $ ∼ huu.

3dx2 → −dx3, dx3 → dx2, φ→ −φ is a symmetry of the background as well as of the vielbein basis.
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where

δE3 ∧ e3 =
K∑
k=1

k ak ε3f1···fd−1
d(δωf1f2) ∧Rf3···f2k ∧ ef2k+1··· fd−1 3

= 4(−1)d−1 ε z2

L2N2
#

K∑
k=1

k ak Λk−1

[
(d− 3)!

(
∂u∂vφ+

z2

L2N2
#

f(u)$∂2
vφ

)

− (k − 1)(d− 5)!
z2

L2N2
#

f(u)
(
−4$ − 2z∂z$ + z2(∂2

2$ + ∂2
3$)

)
∂2
vφ

]
. (6.2.21)

We made use of the equation of motion for the shock wave profile

2(d− 3)$ + (d− 6)z∂z$ − z2(∂a∂
a$ + ∂2

z$) = 0 , a = 2, . . . d− 2 . (6.2.22)

This equation admits several solutions of the type

$ = α0
zα

(z2 + (x2 − x2
0)2 + · · ·+ (xn − xn0 ))

β
, (6.2.23)

where n is the number of transverse coordinates. The relevant solution for our discussion here
is the one given by α = d− 3 and β = d− 2. This shock wave profile has been argued [220]

to be the dual field configuration to E(n) provided xi0 = ni

1+nd−2 and f(u) = δ(u).

From (6.2.21), we shall focus on those terms proportional to ∂2
vφ. The shock wave inter-

action term thus gives the following contribution to the equations of motion,[
Υ′[Λ]$ +

Λ Υ′′[Λ]

(d− 3)(d− 4)

(
4$ + 2z∂z$ − z2(∂2

2$ + ∂2
3$)

)]
∂2
vφ . (6.2.24)

There are extra non vanishing components of the form

δEi ∧ e2 ∼ ∂3∂i$∂
2
vφ ,

δEd−1 ∧ e2 ∼ 1

xd−1

(
∂3$ + xd−1∂3∂d−1$

)
∂2
vφ ,

δEi6=2,3 ∧ ej 6=2,3 ∼ ∂2∂3$∂
2
vφδ

j
i .

However, these are irrelevant for computing the three-point function we are interested in.
The tensor channel mixes with other modes but they would only affect other correlators
irrelevant for our discussion.

The 3-point function follows from evaluating the effective action for the field φ on-shell,
on a particular solution which depends on all coordinates, including x2, x3 [37]. The cubic
interaction vertex of φ with the shock wave appearing in the action will be essentially the
one in the equation of motion determined above. Up to an overall factor, the cubic vertex is
then

I(3) ∼ CT

∫
ddx
√
−g φ ∂2

vφ$

(
1− Λ Υ′′(Λ)

Υ′(Λ)

T2

(d− 3)(d− 4)

)
, (6.2.25)
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where

T2 =
z2(∂2

2$ + ∂2
3$)− 2z∂z$ − 4$

$
. (6.2.26)

This is nothing but the same T2 appearing in [37]. Indeed, following that paper the relevant
graviton profile is

φ(u = 0, v, xa, z) ∼ e−iEv δd−3(xa) δ(z − 1) , (6.2.27)

so that we need to impose xa = 0 and z = 1 yielding

T2 = 2(d− 1)(d− 2)

(
n2

2 + n2
3

2
− 1

d− 2

)
, (6.2.28)

and we therefore read off

t2 = −2(d− 1)(d− 2)

(d− 3)(d− 4)

ΛΥ′′[Λ]

Υ′[Λ]
, t4 = 0 . (6.2.29)

This expression reproduces previous results in LGB gravity [1, 37], and is exactly the same
as conjectured by de Boer, Kulaxizi and Parnachev in [225]. Using these results together
with the expression for CT , we find expressions for the usual 3-point function parameters
A,B, C in Appendix B.

In the next chapter we will analyze the constraints positivity of energy correlators poses
in the gravitational theory and its interpretation in that context.

6.3 Shock waves in higher curvature gravity

Shock waves as those considered in the previous section are very interesting backgrouds.
They have also been considered as suitable testbed for numerical relativity studies with
applications to heavy ion collisions and many other holographic applications. In the next
chapter they will be used to probe the causality properties of Lovelock theories. These
solutions have a very particular structure that make them exact solutions of any gravity
theory. In fact, Horowitz and Itzhaki [226] showed that these solutions are not corrected
once higher curvature corrections are included. They have also been shown to be exact
solutions of string theory [227]. We will rephrase their argument here for completeness
although we will be closely follow the approach of [228].

We may write the ansatz for the shock wave in asymptotically AdS space (6.2.19) as

gµν = ĝµν + F (u, xi)lµlν , (6.3.1)

with ĝµν the AdS metric and lµ = δµv a null Killing vector. We will be considering null
Poincaré coordinates, xµ = (u, v, xi, z). We can write the connection in terms of a new
vector V µ = ∂µ log z,

Γ̂µαβ = −
[
Vαδ

µ
β + Vβδ

µ
α − V µĝαβ

]
. (6.3.2)

The total connection,
Γµαβ = Γ̂µαβ + γµαβ , (6.3.3)
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has an extra term completely orthogonal to the Killing vector, γµαβl
α = γµαβlµ = 0, in such

a way that it does not contribute to the covariant derivative of lµ,

∇αlβ = ∇̂αlβ = −2V[αlβ] (6.3.4)

and the Killing condition is the same for the full metric as for the AdS term.
The Riemann tensor can be as

Rµναβ = − (gµαgνβ − gµβgνα) + Řµναβ (6.3.5)

where the extra term has a very simple expression in terms of lµ

Řµναβ = l[µKν][αlβ] (6.3.6)

where Kµν is a symmetric tensor made from F , its derivatives and V µ verifying

Kµνl
ν = 0 (6.3.7)

The last property just follows from (∇α∇β−∇β∇β)lν = Rµναβ l
µ that because of the previous

properties has to be equal to (∇̂α∇̂β −∇̂β∇̂β)lν = R̂µναβ l
µ in such a way that Řµναβ l

µ = 0.
The form of expressing the Riemman tensor is particularly useful to discuss the equations

of motion for this type of backgrounds. The AdS background is a solution of the Einstein
equations with cosmological constant

Rµν = −(d− 1)gµν (6.3.8)

in such a way that in order for the shock wave solution to be also a solution it must verify

Kµ
µ = 0 (6.3.9)

which is a linear equation for F , precisely (6.2.22) with the notation of the previous section.
Once this equation is imposed Řµναβ corresponds to the Weyl tensor.

We can now proceed to discuss higher curvature corrections to that equation. For that
we have to verify that, once the equation of motion is taken ito account any (2,0)-tensor
formed solely from the metric and its covariant derivatives is necessarily zero. It can also
be just proportional to the metric but this will just change the value of the cosmological
constant.

First we will consider scalars made just from the metric and the Riemman tensor. Their
contibution can be organized in powers of the extra piece Ř of the Riemman that contains
two lµ vectors. These have to be contracted with either another lµ or Kµν to form a scalar.
In any case the term necessarily vanishes.

In order to include covariant derivatives we will make use of the fact that lµ is a null
Killing vector orthogonal to all the tensors that can be constructed from the metric – except
the metric itself. We will denote by Sn a given scalar with n covariant derivatives. The
degree n of a given scalar can be reduced following two steps.

If the given term contains ∇αlβ we can eliminate the covariant derivative by using (6.3.4)
until we eliminate all covariant derivatives acting on it. The resulting scalar necessarily has
lower degree than the original one.
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For a general scalar, lµ has to be contracted either with one of the available tensors lµ and
Kµν , or any of their covariant derivatives. We can again make use of the Killing equation in
order to conmute the vector lµ with the covariant derivatives without increasing the degree
of the scalar, using

lα∇β(· · · ) = ∇β[lα(· · · )] + 2V[βlα](· · · ) (6.3.10)

then we can reduce all possible scalars to two possible kinds of terms depending on where
the lµ is contracted. We may have either

∇ · · ·∇[lα∇α(· · · )] or ∇ · · ·∇[lαT... α...(· · · )] (6.3.11)

contracted with some other tensor with the necessary number of indices to construct the
scalar. The first term vanishes because the quantity inside the square brackets is just the
Lie derivative with respect a constant Killing vector of some vector that of course vanishes.
The second term is also zero as any of the available tensors is orthogonal to lµ.

In this way we can reduce the degree of the initial scalar until we just scalars without any
covariant derivative which, as discussed before, necessarily vanish. Any scalar made from
the metric, the Riemman tensor and its covariant derivatives, containing at least one power
of Ř, is necessarily zero. This is actually an off-shell property as we did not need to impose
(6.3.9)on any step.

We can also verify that the only (0,2)-tensor containing at least one power of Ř that
is non-vanishing off-shell is the Ricci tensor. In this kind of terms we have at least two lµ

factors that can either be contracted as discussed in the previus section or free. If it is not
contracted with anything we can again use the property (6.3.10) to put it in front as a global
factor. If it is contracted we can use the same steps discussed above to reduce the degree of
the tensor until it either has no covariant derivatives, in which case if the lµ is contracted
necessarily vanishes, or the Killing vector is no longer contracted in which case we can again
put it as a global factor. We can perform the same type operations for the other lµ in such
a way that the only non-vanishing terms will be of the form lαlβ times some scalar made
from everything else. This scalar however cannot contain any further lµ and thus just terms
linear in Ř contribute.

There are two such terms we can form, one is the Ricci tensor

Řµν = −1

4
Kα

αlµlν (6.3.12)

and, once this is set to zero, we are left just with,

∇α∇βŘαµβν = ∇2Řµν −∇α∇µŘαν (6.3.13)

and its covariant derivatives. All of them necessarily vanish because of the Bianchi identity
and the fact that Řµν = 0 on-shell. The Einstein equation for the shock wave (6.3.9) is not
corrected by higher order terms. Any extra gravitational term in the action will just give a
contribution either proportional to this, to the metric or just vanish. The same reasoning
applies for shock waves about any of the vacua of the full higher curvature gravity, we just
have a different Newton’s and cosmological constant.
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There are a couple of useful properties of these background metrics that will be used
later on. By using the Bianchi identity we can show,

�Řµναβ ∼ Řµναβ +O(Ř2) (6.3.14)

and, once the Řµν is also set to vanish, also

∇µŘµναβ = 0 (6.3.15)

We will also make extensive use of the fact that commuting two covariant derivatives just
produces terms with an extra Riemann tensor. The terms of the Riemann containing just
the metric will contract some of the remaining indices whereas the rest will be higher order
in Ř. This will be important in the following as the most interesting terms will be linear in
this tensor.

6.3.1 Probing shock waves in general theories of gravity

We will now analyze which terms contribute to the equation of motion for perturbations in
the large momentum regime. This will be relevant for discussing which such terms contribute
to the class of computation discussed in section 6.2.2 for the three point function. For that
we will have to restrict to theories that yield two derivative equations of motion for the
perturbations about the shock wave background (and AdS), at least up to dimension six
terms.

We will see that, to that order, just the three point function matters, in the sense that
the only terms that enter the equations of motion for perturbations about the shock wave are
those contributing to t2 and t4. These the only parameters in the energy one point function
in a state created by the stress-energy tensor and also parameterize the 3-point functions
of this operator. These is also consistent with field redefinition analysis of the independent
terms in the action. Higher dimension terms may introduce some extra higher derivative
contributions that we will not consider here.

Before however it is instructive to analyze what happens for bosonic fields of lower spin.
If we consider a minimally coupled scalar in this background its equation of motion will just
be

�φ = 0 (6.3.16)

where we consider φ as a small perturbation in such a way that we do not need to consider
backreaction (we could also include φ as a source for the shock wave itself). In the large
momentum limit considering just terms yielding two derivative equations of motion for φ in
the action we have to consider terms like

Hµν∇µ∇νφ (6.3.17)

where the tensor H is just made from the background metric, Riemann and covariant deriva-
tives. However we already saw that there is no (2,0)-tensor not vanishing on-shell except for
the metric. The metric will just change the coefficient in front of the unperturbed equation.
This is at the two derivative level.
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Something similar happens for a vector field Aµ. Maxwell’s equations

∇µFµν = 0 (6.3.18)

may be corrected in the high momentum limit at the two derivative level by terms of the
form

Hµναβ∇νFαβ (6.3.19)

where againH is a background tensor. In principle, applying the same procedure discussed in
the previous section, this tensor can be at most quadratic in Ř as it has four indices and each
of them can accomodate one factor lµ. Therefore, in the quadratic case Hµναβ ∼ lµlνlαlβ but
Fαβ is antisymmetric in its two indices in such a way that lαlβ∇Fαβ = 0 and the term above
vanishes. Consequently, we are left with terms linear in Ř. Taking into account (6.3.14) –
(6.3.15) and that at the linear level in curvatures we can commute covariant derivatives, we
just have to consider tensors

∇α1 · · · ∇αnŘβ1···β4 (6.3.20)

with no indices contracted. Otherwise the term is either zero or can be reduced to another
term of the above type. The number of free indices is four so that we cannot include any
covariant derivative. The only extra contribution to the equation of motion of the vector
field is then

Řµναβ∇νFαβ (6.3.21)

that is the high momentum limit of∇ν(Ř
µναβFαβ) that arises for instance from a ŘµναβFµνFαβ

term in the action.
In both cases the possible contributions to the perturbation equations are in one to one

correspondence with the possible structures in the corresponding energy one point functions
as in (6.2.17) and (6.2.18). In the vector case the coefficient of the extra term is proportional
to the a2 constant appearing in the energy one point function of a state created by a conserved
current. If we parameterize the equation of motion for the perturbation as

∇µFµν + α2 Ř
µαβ

ν ∇µFαβ = 0 (6.3.22)

we can actually compute the value of the a2 coefficient in a similar manner as for t2,4. In
five dimensions, i.e. for a 4d CFT, this yields

a2 = −6α2 (6.3.23)

The expectation is that the same should happen also for graviton 3-point functions.
One should be able to find three possible structures corresponding to the Einstein-Hilbert
(isotropic) contribution, the one appearing in Lovelock theories and another one, as param-
eterized by t2 and t4 respectively.

Again, in the high momentum limit at two derivative level, the possible extra contribu-
tions are of the form,

Hµναβρσ δRαβρσ (6.3.24)

We have six slots in H in order to have up to six lµ vectors so in principle we have to
consider up to cubic terms in Ř. The cubic terms however do not give any contribution
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because of a similar reason as for the vanishing of quadratic terms for vector perturbations.
lµlνδRµναβ = 0 because of the antisymmetry of the first pair of indices.

The Einstein-Hilbert contribution is

δRµν ∼ �hµν (6.3.25)

when we choose the transverse traceless gauge, ∇µhµν = hα α = 0. This is the only possible
O(Ř0) term. Then the full equation will correspond to that plus higher order terms in such
a way that we can trade δRµν by those higher order terms.

The linear terms are also quite simple. In this case we have just

Ř ραβ
(µ δRν)ραβ or (∇∇Ř)µναβρσ δRαβρσ . (6.3.26)

We could also include terms in δRµν but these would reduce to quadratic terms when the
equation of motion is imposed. Also the covariant derivative indices in the second term are
symmetric as the antisymmetric part reduces to the first term plus a quadratic contribution.
There is only one independent way of contracting the indices in the second kind of term[

∇(µ∇ν)Ř
αβρσ

]
δRαβρσ (6.3.27)

all other possible terms are related to this one via the Bianchi identity and the symmetries
of δR plus maybe some quadratic terms.

These two terms exactly correspond to the two extra (in addition to the isotropic one
from the Einstein-Hilbert term) possible structures appearing in the three point function of
gravitons. The coefficients of both terms contribute to t2 and that of the second also to t4.
This can be easily checked computing the energy one point function for a h12 perturbation
as in 6.2.2 to obtain

Ř ραβ
(µ δRν)ραβ ∼

(
n2

1 + n2
2

2
− 1

d− 2

)
≡ T2 (6.3.28)

[
∇(µ∇ν)Ř

αβρσ
]
δRαβρσ ∼

(
2n2

1n
2
2 −

2

d(d− 2)

)
+ #T2 (6.3.29)

that exacyly correspond to the t2,4 structures in the energy one point function. If we
parametrize the equation of motion for perturbations as

δRµν + 2γ2 Ř
ραβ

(µ δRν)ραβ + 2γ4 [∇(µ∇ν)Ř
αβρσ]δRαβρσ = 0 (6.3.30)

in five dimensions the relation to the energy one point function parameters is

t2 = 24(36γ4 − γ2) t4 = −1440γ4 (6.3.31)

There are also some possible H, quadratic in Ř, that are not trivially zero. These are of the
form

(∇α1 · · · ∇αnŘγ1···γ4)(∇β1 · · · ∇βmŘλ1···λ4)gγ1γ2 · · · gγ2j−1γ2j
(6.3.32)

where the pairs of indices cannot be contracted inside the brackets and we have to have at
least four free indices in order to accomodate the four lµ. Any of them ends up being of the
form

lµlν S(∇, F, Vα, Kαβ, Lαβ) (6.3.33)
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where S(· · · ) is a scalar made of the indicated elements, L being

Lµν = δRµανβ l
αlβ (6.3.34)

in such a way that Lµµ = Lµνl
ν = 0. Then, all quadratic terms just contribute to Euu thus

just to the helicity zero case. They vanish in the other cases.
The terms leading to contributions on the energy one pint function are also in one to one

correspondence to the independent contributions to the effective action under field redefini-
tions. In flat space we know that (at least up to cubic order i.e dimension six terms) the
coefficients of terms containing the Ricci tensor are ambiguous in the sense that they can be
fixed freely by a general field redefinition. In AdS the analysis can be performed in exactly
the same way if we write the action in terms of

Řµναβ = Rµναβ + 2gµ[αgβ]ν (6.3.35)

and organize all terms depending on the order in Ř. Then on Einstein-shell

Řµν = 0 (6.3.36)

(or more generally Řµν ∼ O(Ř2)) and Řµναβ becomes the Weyl tensor. We can then use a
general field redefinition

g̃µν → gµν + α1 Řµν + α2 Ř gµν +O(Ř2) (6.3.37)

and the analysis carries over in exactly the same way as for asymptotically flat case.
Then, up to dimension six we have just four possible independent contributions [229],

the Einstein-Hilbert term, a quadratic contribution that can be chosen as the LGB term,
and two cubic terms. One of the cubic lagrangians terms can also be taken to be of Lovelock
type while for the other we may choose

I3 = Rµν
αβR

αβ
ρσR

ρσ
µν + . . . (6.3.38)

where the dots stand for terms containing the Ricci in such a way that the equation of
motion for perturbations about the shock wave background is second order, if that is even
possible. Both Lovelock combinations contribute to in the same way, just to t2. Whereas
the t4 contribution comes solely from I3.

The independent order six contributions to the action are already accounted for by the
terms contributing to t2 and t4. This seems to indicate that in the interaction of the shock
wave with other fields just 2- and 3-point correlators Nonetheless, higher order terms (of
dimension higher than six) may still contribute to the equations of motion through higher
derivative terms. These contributions have not been considered in the present analysis.



Chapter 7

Causality and positivity of energy

“The whole problem with the world
is that fools and fanatics are always so certain of themselves,

and wiser people so full of doubts.”

Bertrand Russell

Despite of this accumulating evidence in favor of the AdS/CFT correspondence, a novel
direction was recently explored by Hofman and Maldacena [220]. As discussed in the last
chapter, they studied a gedanken collider physics setup in the context of conformal field
theories. They focused in the case of 4d CFTs, and found a number of constraints for the
central charges by demanding that the energy measured in calorimeters of a collider physics
experiment be positive. They found, for instance, that any 4d N = 1 supersymmetric CFT
must have central charges1 within the window, 1/2 ≤ a/c ≤ 3/2, the bounds being saturated
by free theories with only chiral supermultiplets (lower bound) or only vector supermultiplets
(upper bound) [220]. Since the computation of 〈T µµ〉 in a state generated by the stress-energy
tensor is given by 3-point correlators of T , and pure Einstein-Hilbert gravity is well-known
to yield a = c [231, 232], the gravity dual of a theory with a 6= c should contain higher (at
least quadratic) curvature corrections.

In a seemingly different context, Brigante et al. [233,234] explored the addition of a LGB

1The conformal anomaly of a four-dimensional CFT can be obtained by computing the trace of the
stress-energy tensor in a curved spacetime [230]

〈Tµµ〉CFT =
c

16π2
I4 −

a

16π2
E4 , (7.0.1)

where c and a are the central charges, and E4 and I4 correspond to the four-dimensional Euler density and
the square of the Weyl curvature.
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term in the gravity side of the AdS/CFT correspondence and showed that, in the background
of a black hole, the coefficient of this term, λ, is bounded from above, λ ≤ 9/100, in order to
preserve causality at the boundary.2 If this bound is disregarded, boundary perturbations
would propagate at superluminal velocities. A natural question is immediately raised as
for whether this quadratic curvature corrections arise in the string theory framework. The
answer was given in the affirmative by Kats and Petrov [215], and further explored more
recently by Buchel et al. [216]. Both papers focus on string theory compactifications that
are relevant in the context of 4d SCFTs.

The somehow striking result came when Hofman and Maldacena realized that the upper
bound on λ was nothing but, through holographic renormalization, the lower bound on a/c.
The matching is exact. This seems to provide a deep connection between two central concepts
such as causality and positivity of the energy in both sides of the AdS/CFT correspondence.
Besides, these results provided an irrefutable evidence against the so-called KSS bound [235]
for η/s in quantum relativistic theories, η/s ≥ 1

4π
. This is due to the fact that the value for

η/s is corrected in presence of a LGB correction to η/s = 1
4π

(1−4λ). Since the upper bound
for λ is positive, the shear viscosity to entropy density ratio, for such a SCFT, would be
lower than the KSS value. Higher order Lovelock terms do not affect the value of η/s [236].
However, for positive cubic couplings, λ can surpass the upper bound obtained in the pure
LGB case. This will push down the would be lower bound for η/s. We will come back to this
in the next chapter, where we will analyze additional constraints in the context of Lovelock
gravity and its implications for transport coefficients such as the shear viscosity to entropy
density.

In another paper, Buchel and Myers [237] dug further into the constraints imposed by
causality in the holographic description of hydrodynamics. Their paper deals with a black
hole background, in which they explicitly relate the value of λ to the difference between
central charges of the dual CFT. They show that a lower bound for the LGB coupling,
λ ≥ −7/36 comes out due to causality constraints, and that it corresponds precisely to the
upper bound a/c ≤ 3/2.

It was later pointed out by Hofman [223], that bounds resulting from causality constraints
should not be a feature of thermal CFTs. The relation between causality and positivity must
lie at a more fundamental level and, as such, should show up at zero temperature. Indeed, by
means of an ingenuous computation using shock waves, he proved that the upper bound on λ
comes from causality requirements imposed on a scattering process involving a graviton and
the shock wave. He scrutinized deeper in the relation between causality and positive energy,
and showed that there are indeed several bounds resulting from the different helicities both
of the stress-energy tensor in the CFT side as well as of the metric perturbations in the
gravity side.

This perfect match, both qualitative and quantitative, is encouraging and presents new
puzzles. The addition of higher curvature corrections in the gravity side has a quantum
mechanical nature, thus exploring the holographic principle thoroughly beyond the semi-
classical level. It is immediate to ask whether this extends to CFTs in dimensions different
than four. A natural candidate to deal with is 6d, since we know that there is a well-studied

2Indeed, this is more general since any other curvature squared term can be reduced to LGB by field
redefinitions disregarding higher powers of the curvature. See for instance [233].
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system in M-theory that corresponds to a (2, 0) SCFT in 6d [238, 239]. If there exists a
SCFT in 6d with large central charges but whose difference cannot be neglected in the ’t
Hooft limit, the gravity dual shall contain terms quadratic in the curvature. This is due to
the fact that these differences appear in the 3-point function of the stress-energy tensor and,
in the gravity side, this operator is sourced by a 3-graviton vertex.

The relation between causality and positivity of the energy in 6d CFTs was studied by de
Boer, Kulaxizi and Parnachev [36]. These authors courageously performed the holographic
renormalization computation that allows to relate the central charges of the CFT with the
LGB coefficient. This case is more complicated than its 4d counterpart since the CFT
has three central charges though the positive energy conditions constrain two independent
combinations thereof. They studied causality violation in the gravity side and showed that,
again, λ is bounded from above, λ ≤ 3/16, which further reduces the value of η/s in the
corresponding plasma. They also showed that this bound is precisely the one arising in the
CFT side from positivity of the energy arguments. These latter constraints also lead to
a lower bound for the LGB coupling, λ ≥ −5/16, that arises from considering excitations
with a different polarization. This was confirmed in subsequent papers in which the relation
between causality and energy positivity was also generalized to arbitrary dimensions, first
in the context of LGB gravity [1, 37] and later for arbitrary Lovelock theories [1, 38]

We generalize all the expressions for an arbitrary higher dimensional AdS/CFT dual
pair. This is not, à priori, guaranteed to have any meaning, but it is tempting to explore
this possibility and, as we will show, it leads to interesting results. On higher dimensions,
though, the holographic renormalization computation of the CFT central charges is missing.
Its difficulty increases heavily with spacetime dimensionality and an alternative avenue was
explored in [37]. This computation was generalized in [3] for arbitrary Lovelock theories on
any dimension, yielding the results already presented in section 6.2.2 for t2 and t4. It is
indeed unclear whether there are non-trivial higher dimensional CFTs. It is still possible to
argue within the conformal collider physics setup, on general grounds, that there should be
bounds due to positivity of the energy conditions in these conjectural theories. The formulas
we obtain for higher d match these expectations. All the expressions are extended smoothly
and meaningfully, as we discuss below. This may provide evidence supporting the possibility
that AdS/CFT is not necessarily related to string theory.

An interesting puzzle indeed has to do with the string theory origin of quadratic curvature
corrections as those of LGB gravity. These curvature corrections may appear in type II string
theory due to α′ corrections to the DBI action of probe D-branes [216]. The natural context
in the 6d case, however, is to see their emergence in M-theory. Even though corrections
of this sort are known to exist due to the presence of wrapped M5-branes [240], it is not
straighforward to see how they would extend to our case. They will presumably emerge3 from
Ak−1 singularities produced in M-theory by a Zk orbifold of the AdS7× S4 background [241].
Indeed, thinking of the S4 as an S3 fibered on S1, modding out by Zk ⊂ U(1) ⊂ SU(2)L,
where SU(2)L acts on the left on the 3-sphere, after Kaluza-Klein reduction along the U(1)
circle, leads to k D6-branes in type IIA string theory (see, for instance, the discussion
in [242]). Hence, the α′ corrected DBI terms extensively discussed in [216] should extend
smoothly to our case.

3We thank Juan Maldacena for his comments about this issue.
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A natural problem that immediately arises in this context is what happens in the case
of higher curvature corrections? Whereas in the quadratic case any combination in the
Lagrangian can be written as the LGB term by means of field redefinitions, this is not the
case for cubic or higher contributions. Indeed, for instance, there are two independent terms
that can be written at third order [243]: the cubic Lovelock and a Riemman3 combination.
These two are very different in nature. While the cubic Lovelock term is the only third
order curvature contribution leading to second order wave equations for the metric, in any
spacetime dimensions (d ≥ 7), the Riemman3 contribution leads to higher order equations of
motion and, consequently, to ghosts. Furthermore, both terms lead to a different tensorial
structure for the 3-graviton vertex [243], as we have seen in the precedent chapter. This
means, à priori, that their inclusion should affect differently the corresponding tensorial
contributions to the relevant 3-point functions of the stress-energy tensor. These tensorial
structure is parameterized by two numbers, t2 and t4 [220] (that are related to the central
charges of the CFTs). In the case of Lovelock we have shown that t4 = 0, in agreement with
all the results in the literature have, which is presumably related to the fact that the CFTs
are SCFTs, in accordance with the intuition coming from the previous analysis in flat space.

We will study in this paper the whole family of higher order Lovelock gravities. We will
use the AdS/CFT framework to scrutinize these theories in arbitrary dimensions in regard of
the possible occurence of causality violation. We shall address the more general case and ex-
plicitely work out the third order Lovelock gravity in arbitrary dimension. Results for higher
order theories are contained in our formulas though some extra work is needed to extract
them explicitely. The third order case has taught us that it is a subtle issue to determine
which is the branch of solutions connected to Einstein-Hilbert and, thus, presumably stable.
We also undertake the computation of gravitons colliding shock waves to seek for causality
violation processes, and it seems clear to us that the identification of the EH branch is of
outmost importance. From the point of view of a black hole background, the relevant ques-
tion is whether one can find an asymptotically AdS black hole with a well-defined horizon.
This is a delicate problem that can be amusingly casted in terms of a purely algebraic setup
as has been shown in chapter 2. We show that the black hole computation and the shock
wave one fully agree in Lovelock theory. The shock wave computation has an additional
advantage as it makes sense also for non-EH-branches of the theory, despite the fact that
their black holes do not have a horizon.

We find the values of the quadratic and cubic Lovelock couplings that preserves causality
in the boundary. They define an unbounded (from below) region, whose intersection with
the µ = 0 axis reproduces all the results previously obtained for LGB. The region keeps its
qualitative shape for arbitrary dimension but grows in width. As it happens in the quadratic
case [1], one of the boundaries asymptotically approaches a curve that serves as the limit of
the so-called excluded region where there are no well-defined black hole solutions. This is
expected since that curve plays the rôle of an obstruction to the grow of the allowed region.
The more striking behavior happens for the other boundary, which remains at finite distance
when nothing seems to prevent its growing.
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7.1 Holographic causality and black holes

We will be interested in analyzed causality properties of black hole backgrounds in Lovelock
theory. Naively this seems quite a trivial question. Lovelock theory is locally Lorentz invari-
ant, thus the metric provides local light-cones inside which timelike particles must propagate.
This should be sufficient for the theory to be causal (see however [23] for counterexamples in
the context of QFT). As we will see the issue is not as simple though. First of all gravitons
in higher curvature gravity do not propagate according to the background metric but instead
feel an effective metric related to their equations of motion which is not simple to analyze.
Moreover, we will be interested in a different kind of causality, not related to the local prop-
agation in the bulk. With the holographic picture in mind we will analyze the possibility
of having trajectories arising from the boundary of AdS and coming back to it. This can
be interpreted as bulk disturbances created by local operators in the boundary CFT and we
expect microcausality violation in this theory if there exists a bouncing graviton traveling
faster than light from the point of view of the boundary theory.

This can be explicitly seen by writing the equation for perturbations in the background
of a black hole (4.1.1) in an alternative form as

g̃µνeff ∇̃µ∇̃νΨ = 0 , (7.1.1)

where ∇̃ is a covariant derivative with respect to the effective geometry given by g̃µνeff = Ω2 gµνeff

with

geff
µνdx

µdxν = N2
#f(r)

(
−dt+

1

c2
h

dxidxi
)

+
dr2

f(r)
, (7.1.2)

and Ω2 = c2
h is a Weyl factor whose specific form will be irrelevant for the present discussion.

We have rescaled the time variable, t→ N#t, and accordingly the graviton velocities, c2
h →

c2
h/N

2
#, in such a way that the latter are asymptotically unity. The rescaling factor is related

to the effective cosmological constant of the branch under consideration as

N2
# = 1/(−L2Λ) . (7.1.3)

In the large momentum limit, a localized wave packet should follow a null geodesic, xµ(s),
in this effective geometry (7.1.2), this following from standard geometrical optics arguments.
If we consider a wave packet with definite momentum

φ = eiΘ(t,r,z)φenv(t, r, z) , (7.1.4)

where Θ is a rapidly varying phase and φenv denotes an almost constant envelope, to leading
order we find

dxµ

ds

dxν

ds
geffµν = 0 , (7.1.5)

We have to identify dxµ

ds
= gµνeff kν = gµνeff ∇νΘ. As our effective background is symmetric

under translations in the t and z directions, we can interpret ω and q as conserved quantities
associated with the corresponding Killing vectors,

ω = kt =
dt

ds
N2

# f , q = kz =
dz

ds
N2

#

f

c2
h

. (7.1.6)
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Rescaling the affine parameter as s̃ = qs/N# (we assume q 6= 0), we get the following radial
equation of motion (

dr

ds̃

)2

= α2 − c2
h , α ≡ ω

q
. (7.1.7)

This equation describes a particle of energy α2 moving in a potential given by c2
2. Remember

that this potentials are always asymptotically one and approach zero at the horizon. In most
cases the potential is monotonic and thus the graviton inevitably falls into the black hole.
Nevertheless, in case there is a maximum in c2

h, geodesics starting from the boundary can
find its way back to the boundary, with turning point α2 = c2

h(rturn). For a null bouncing
geodesic starting and ending at the boundary, we then have

∆t(α) = 2

∫ ∞
rturn(α)

ṫ

ṙ
dr =

2

N#

∫ ∞
rturn(α)

α

f(r)
√
α2 − c2

h(r)
dr ,

∆z(α) = 2

∫ ∞
rturn(α)

ż

ṙ
dr =

2

N#

∫ ∞
rturn(α)

c2
h

f(r)
√
α2 − c2

h(r)
dr , (7.1.8)

where dots indicate derivatives with respect to s̃. Then, as the energy α approaches the value
of the speed at the maximum, α → c2,max (rturn → rmax), the denominator of the integrand
in both expressions diverges and the integrals (7.1.8) are dominated by contributions from
the region near the maximum. Thus, in such a limit we have

∆z

∆t
→ ch,max > 1 . (7.1.9)

These geodesics spend a long time near the maximum, traveling with a speed bigger than
one. Interpreting this as originating from local operators in the boundary CFT, the hypo-
thetical dual field theory is not causal if there exists a bouncing geodesic with ∆t

∆z
> 1, as

in this case. Further discussion on this point can be found in [36, 234]. Actually, it can be
shown that the superluminal graviton propagation corresponds to superluminal propagation
of metastable quasiparticles in the boundary CFT with ∆z

∆t
identified as the group velocity

of the quasiparticles.

Generically, a graviton wave packet will fall into the black brane very quickly but, pre-
cisely when the local speed of graviton can exceed unity, the potential in (4.1.1) develops a
local minimum that may support long-lived metastable states. Their lifetime is determined
by the tunneling rate through the barrier which separates the minimum from the horizon.
For very large q we are approaching the classical limit of the effective Schrödinger prob-
lem and an associated metastable state has lifetime parametrically larger than any other
timescale.

In order to avert causality violation, we must demand these effective potentials (4.1.5)
to be always smaller than one [233,234]. In particular, at the boundary we have c2

h = 1 and
there we must demand4 ∂xc

2
h ≤ 0, as x→ −∞. Using ∂xg = Υ[g]/Υ′[g], we get the following

4Recall that the boundary corresponds to xb = −∞ and the horizon to xh = 0.
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constraints:

Tensor : Υ′[Λ] +
2(d− 1)

(d− 3)(d− 4)
ΛΥ′′[Λ] ≥ 0 .

Vector : Υ′[Λ]− (d− 1)

(d− 3)
ΛΥ′′[Λ] ≥ 0 . (7.1.10)

Scalar : Υ′[Λ]− 2(d− 1)

(d− 3)
ΛΥ′′[Λ] ≥ 0 .

These can be rewritten in terms of the dual CFT parameters, using the expressions for t2, t4
in (6.2.29). The constraints become:

Tensor : 1− 1

d− 2
t2 ≥ 0 .

Vector : 1 +
d− 4

2(d− 2)
t2 ≥ 0 . (7.1.11)

Scalar : 1 +
d− 4

d− 2
t2 ≥ 0 .

Hence precisely matching the constraints (6.2.13–6.2.15) coming from positivity of energy in
the dual conformal field theory (with t4 = 0).

We shall analyze now the would be restrictions imposed on the Lovelock couplings to
avoid superluminal propagation of signals at the boundary. The above expressions are valid
for arbitrary higher order Lovelock theory and higher dimensional spacetimes. As we saw
earlier, though, there could be additional restrictions coming from the stability of the AdS
vacuum solution or, further, the existence of a black hole with a well defined horizon in
such vacuum. Instead of analyzing these expressions right away, let us discuss an alternative
computation, first introduced in [223], given by the scattering of gravitons and shock waves.

7.2 Gravitons and shock waves

The previous computations are carried on a black hole background. As such, they are
adequate in the context of thermal CFTs. As pointed out in [223], one would expect to
be able to perform a similar computation in a zero temperature background. The violation
of unitarity driven by a value of the LGB coupling outside the allowed range, is not an
artifact of the finite temperature. An adequate background to perform a computation that
is independent of the temperature is given by a pp-wave. In particular, it is easier to consider
the simplest case, provided by shock waves [223]. As we already mentioned, they are not
subjected to higher derivative corrections [226]. As such, AdS shock waves are exact solutions
in string theory.

We shall thus consider shock wave backgrounds in Lovelock gravity. We will study the
scattering of a graviton with a shock wave in AdS. This computation, originally introduced
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by Hofman in the case of LGB theory in 5d [223], and extended by us to arbitrary higher
dimensional LGB gravity [1], can also be generalized to general d spacetime dimensions in
the case of higher order Lovelock dynamics [2]. This process is, in a sense, the gravity dual
of the energy 1-point function in the CFT [220]. We will see that causality violation is again
the source of a constraint on the value of λ. For forbidden values of this coupling, a graviton
that is emitted from the boundary comes back and lands outside its light cone.

It is more convenient to work in Poincare coordinates, z = 1/r. We insist in performing
all computations in the vielbein formalism since it is significantly simpler than the usual
tensorial setup. We define light-cone coordinates5 u = t + xd−1 and v = t − xd−1, and
consider a shock wave propagating on AdS along the radial direction,

ds2
AdS,sw = ds2

AdS + f(u)$(xa, z) du2 . (7.2.1)

We should think of f(u) as a distribution with support in u = 0, which we will finally
identify as a Dirac delta function. As we did in the previous section, we consider graviton
perturbations, hµν , splitted in different helicity channel which we keep infinitesimal

ds̃2
AdS,sw =

N2
#

L2

−dudv + dxidxi + hµν dx
µdxν + L4dz2

z2
+ f(u)$(xa, z) du2 . (7.2.2)

The relevant shock wave solution is $ = αN2
# z

d−3. The proceedure is almost the same
as in the previous section, just a bit more complicated since the symmetry of the background
is lower than in the black hole solution. As before, since we are only interested in the high
momentum limit, we keep only contributions of the sort ∂2

vφ, ∂u∂vφ and ∂2
uφ. The explicit

computation can be found in the appendix A.2.

The resulting equations of motion involve just one component of the perturbation for
each helicity channel and all three have a very similar structure.

Tensor : ∂u∂vφ+ αf(u)L2zd−1

(
1− 1

d− 2
t2

)
∂2
vφ = 0 ,

Vector : ∂u∂vφ+ αf(u)L2zd−1

(
1 +

d− 4

2(d− 2)
t2

)
∂2
vφ = 0 , (7.2.3)

Scalar : ∂u∂vφ+ αf(u)L2zd−1

(
1 +

d− 4

d− 2
t2

)
∂2
vφ = 0 .

In the large momentum limit and taking the shock wave profile to be a delta function,
f(u) = δ(u), the equation of motion reduces to the usual wave equation ∂u∂vφ = 0 outside
u = 0. Then, we can consider a wave packet moving with definite momentum on both sides
of the shock wave. We can find a matching condition just by integrating the corresponding
equation of motion over the discontinuity

φ> = φ< e
−iPv α zd−1Nh , (7.2.4)

5We then have to change the tangent space metric to η00 = η11 = 0, η01 = η10 = − 1
2 , ηAB =

diag(1, 1, · · · , 1),A,B=2,...,6.
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Figure 7.1: The line u = 0 corre-
sponds to the shock wave while the line
v = const. corresponds to the graviton.
After the collision, if ∆v < 0, the parti-
cle lands outside its light-cone.

where we used Pv = −i∂v. We can find the shift in the momentum in the z-direction acting
with Pz = −i∂z,

P>
z = P<

z − (d− 1)Pv α δ(u) zd−2 Nh . (7.2.5)

If we consider a particle going inside AdS, Pz > 0, and if we want it to come back to the
boundary after the collision we need

Pv α Nh > 0 . (7.2.6)

But we know that α > 0 (since the black hole has positive mass) and Pv = −1
2
P u < 0 (since

P u = P 0 + P 6 must be positive for the energy to be so); then we need

Nh < 0 . (7.2.7)

When this happens the graviton can make its way back to the boundary and, as we can read
from (7.2.4), it comes back shifted in the v-direction a negative amount (see figure 7.1)

∆v = α zd−1Nh . (7.2.8)

The graviton lands, at the boundary, outside its light-cone. This is an explicit break up
of causality. We conclude that the theory violates causality unless Nh ≥ 0 what amounts
eaxctly to the same constraints found in the black hole case and arising from positivity of
the energy correlators on the dual CFT. Then we have shown how the calculation involving
bouncing gravitons in a black hole background and those scattering shock waves lead exactly
to the same result for completely general Lovelock gravities in arbitrary dimensions.

The first non-trivial case corresponds, as always, to the case of LGB gravity. We can
now verify that the lower and upper bounds of λ come from, respectively, helicity zero and
helicity two perturbations or, conversely, positivity of the energy in the dual CFT in the
same channels. This would lead us to a formula valid for any dimension d ≥ 5 (below 5d,
the LGB term either is a total derivative or it identically vanishes),

− (d− 3)(3d− 1)

4(d+ 1)2
≤ λ ≤ (d− 4)(d− 3) (d2 − 3d+ 8)

4 (d2 − 5d+ 10)2 . (7.2.9)
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Figure 7.2: Upper and lower bound values for λ. The upper curve corresponds to helicity
two modes, while the lower one is due to helicity zero perturbations. The window mono-
tonically increases an asymptotically approaches its maximum range −3/4 ≤ λ ≤ 1/4 for
infinite dimensional theories.

This formula reproduces earlier results [36,233,234,244] for the upper bound, and generalizes
the lower bound to arbitrary dimensions [1, 37].

There are several comments we would like to make about this result. Besides its re-
markable simplicity and smoothness, we see that λmax asymptotically approaches 1/4, when
d → ∞. This may be expected. One can show that λmax is a monotonically increasing
function, but there is an obstruction precisely at λ = 1/4, as we discussed around (1.1.11).
It is more striking what happens to the lower bound. There is no critical negative value
of λ, at least manifestly. Thus, naively one might expect that λmin → −∞ in the infinite
dimensional limit. However, we obtain λmin → −3/4 (see figure 7.2). We think that this
asymptotic behavior calls for a deeper understanding.

One of the main consequences of a positive λ is the violation of the so-called KSS bound
for the shear viscosity to entropy density ratio [235]. As pointed out in [233],

η

s
=

1

4π

(
1− 2

d− 1

d− 3
λ

)
, (7.2.10)

for a CFT plasma dual to a LGB theory. We see that the maximal violation of the KSS bound
happens for conjectural 8d CFTs, the minimum value of η/s asymptotically approaching the
ratio η/s = 1/8π. Whether there exist higher dimensional CFTs with a finite temperature
regime admitting a hydrodynamical description with such low values of η/s is, of course, an
open problem. A warning remark is however worth at this point. The low energy effective
gravity action used in these computations is strictly valid in the region of large central charges
when their relative differences are very small. Thus, finite values of the GB coupling, λ ∼ 1,
are not fully reliable.

The very existence of a negative lower bound for λ seems to imply, naively, that there
is an upper bound for η/s in strongly coupled CFTs (see figure 7.3). It is well-known that
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Figure 7.3: Upper and lower values for η/s. The upper curve corresponds to helicity
zero, while the lower one is due to helicity two perturbations. The window asymptotically
approaches its maximum range 1/2 ≤ 4π η/s ≤ 5/2 for infinite dimensions.

η/s→∞ is a generic feature in weakly coupled theories but, to the best of our knowledge,
there is no à priori reason that tells us why the strongly coupled value should be 1/4π or
differ by a factor of order 1. This seems to be a possible interpretation of our result: no
matter the dimensionality of a CFT, its strongly coupled plasma will have a very small
shear viscosity to entropy density ratio. To put this conclusion on firmer grounds, however,
one should study more carefully the effect of higher curvature corrections and have a deeper
understanding on the nature of higher dimensional CFTs and the effect of terms with powers
higher than two. This will be the focus of the next chapter, where we will be also concerned
with additional constraints coming from stability of planar black holes. These represent the
gravitational dual of the plasmas with the above shear viscosity and entropy density, the
instability of the black hole thus implying the instability of the fluid.

7.3 Causality constraints in cubic Lovelock theory

We would like to show, for definiteness, the results corresponding to third order Lovelock
theory. In this case, the analysis of the previously discussed causality constraints reduce to
studying the sign of the following set of polynomials (x = L2Λ)):

N2 ∼ 1 +
2(d2 − 5d+ 10)

(d− 3)(d− 4)
λx+

d2 − 3d+ 8

(d− 3)(d− 4)
µx2 , (7.3.1)

N1 ∼ 1− 4

(d− 3)
λx− d+ 1

(d− 3)
µx2 , (7.3.2)
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Figure 7.4: The blue shaded region correspond to negative values of N2 for the branch of
solutions with a horizon, and therefore causality violation occurs there. The red and blue
thick curves correspond to µ = 1

243

[
189λ+ 4

(
−8± (2− 9λ)

√
16− 45λ

)]
. The blue one

provides the restriction for the relevant solution branch. The thin blue and red lines are
nothing but the singular locus ∆ = 0. We can observe that this region includes the LGB
case (λGB = 3/16, µ = 0) (depicted as an orange point) [36]. If µ = λ2, contrary to what
is stated in [86], there is a forbidden region (limited by the green points) 19

81 ≤ λ ≤
1
3 .

N0 ∼ 1− 2(d+ 1)

(d− 3)
λx− 3d− 1

(d− 3)
µx2 , (7.3.3)

where we have taken into account that the first derivative of the polynomial (in the de-
nominator of t2) is positive for BD-stable branches and in particular for the EH one. The
constant x, as we discussed earlier, is one of the solutions of

1 + x+ λx2 +
µ

3
x3 = 0 . (7.3.4)

To proceed, we have to find the simultaneous solutions for each of the polynomials and the
previous equation, that is where each of the polynomials can change sign. The simplest
way of doing this is to find the solutions for each of the polynomials and substitute them
into the equation. This procedure gives several curves µ = µ(λ) for each polynomial. The
most clear way that we find to present these results is by presenting the following figures
which illustrate the situation. The analytic expression of the curves can be easily obtained
and, indeed, are discussed in the captions. We will discuss in the text their main qualitative
features.

In figure 7.4 we display both the region of the coupling space excluded by the arguments
of the preceding section and (in blue) the sector of the (λ, µ) plane that leads to causality
violation in the 7d Lovelock theory. Projected in the λ axis we reobtain the upper bound
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Figure 7.5: The helicity 1 polynomial restrict the parameters to lie inside the region
between the blue curve and the excluded region. The shaded region correspond again to
negative values of N1 for the EH branch and thus to causality violation. The equation
of the curve is µ = 1

144

[
−18λ+ 49± (7 + 6λ)

√
49− 120λ

]
. For LGB gravity we found,

λ > −2.

corresponding to LGB gravity and obtained in [1, 36]. Even if, from the point of view of
AdS/CFT, the trustable region is close to the origin, i.e., for small values of λ and µ, it is
amusing to see that the forbidden region has a structure that seems to be meaningful, even
if this is not fully justified. Notice that, had we restricted to third order Lovelock theory
with µ = λ2, we would have obtained a higher upper bound for λ (this corrects a misleading
statement in [86]). Indeed, notice that there is a disconnected (from the Einstein-Hilbert
theory) region since some finite positive values of λ are prevented by causality.

We represented the situation corresponding to helicity one gravitons colliding a shock
wave or, alternatively, helicity one perturbations of the AdS black hole background in figure
7.5. We see that it gives a complementary restriction in the coupling space. Again, it
intersects the λ axis at the point −2, as obtained in [1]. We will not extend much in the
discussion of this curve for reasons that will be clear immediately.

Let us finally explore the causality violation induced by helicity zero gravitons. A very
important feature is the fact that this curve imposes more severe restrictions than those
forced by the helicity one case. Indeed, the curve fully overcomes the helicity one constraints
in such a way that they are finally irrelevant. This has been seen earlier in LGB [1,223]. Going
to the conformal collider physics setup, this result seems to be related to the vanishing of t4 or
more precisely to the constraint (4.1.4). This equation in particular implies that whenever
both the helicity two and zero potentials are causal (less than one), the helicity one also
is. Something similar happened also for the stability constraints of chapter 4. Finally, the
intersection with the λ axis reproduces the result for LGB [1,36,37].
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Figure 7.6: As in the helicity 1 case, the helicity 0 constraint restrict the param-
eters to lie in a strip between the blue line and the excluded region, but it is al-
ways more stringent. For LGB gravity, λ > − 5

16 . The equation of the curve is
µ = 1

1125

[
315λ+ 128± 4(4 + 15λ)

√
64− 165λ

]
.

Now, the three curves should be put altogether to determine the region in the coupling
space that is allowed by all helicities. As mentioned, the helicity one curve ends up being
irrelevant. The coupling space of the third order Lovelock theory becomes, as we see in
figure 7.7, quite restricted. Several questions immediately arise and we will try to pose some
of them and answer quite a few in the discussion. It should be pointed out that there is a
subregion of the allowed sector with λ greater than 1/3 which immediately leads to negative
values of η/s [38]. We will see in the next chapter that once again stability solves the mystery
ruling out the region where η/s dips below zero.

To finish this section, it is tempting to use our expressions for third order Lovelock theory
which are valid for arbitrary higher dimensional spacetimes. It is not difficult to compute
the allowed regions for different dimensionalities. This is represented in figure 7.8. It should
be pointed out that the subregion which, being part of the allowed sector, leads to negative
values of the shear viscosity disappears for 11d (and higher). Indeed, the maximum allowed
values of λ are, respectively, 1369/3519, 147/377 and 2209/5655, for 8d, 9d and 10d, which
in all the cases exceed the critical value leading to a vanishing shear viscosity (respectively,
5/14, 6/16 and 7/18). As stated, 11d is the first dimensionality at which the maximum value
for λ, 169/432, is lower than the critical one, 8/20. Whether this is a numerical coincidence
or it is pointing out that something special happens to (super)gravity in 11d is presently
unclear.
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Figure 7.7: As the helicity 0 constraint is always more stringent than the helicity 1’s, the
allowed region of parameters is contained between the curves corresponding to helicity 0
and 2 (red and blue lines respectively). Notice that the maximum value for λ is raised from
the GB case to the value 64/165 (yellow point). Strikingly enough this gives a negative
value for the shear viscosity to entropy density ratio.

7.4 Causality for higher curvature vacua

The causality constraints discussed in the context of third order Lovelock gravity are those
arising for the EH-branch of the theory. It is the only one with black hole solutions display-
ing a horizon in the planar case, thus the only one for which the black hole computation of
previous sections is valid. Noetheless, one may still wonder which constraints imposes posi-
bility of the energy for the CFTs defined by these vacua. Notice that the values of t2 changes
whereas t4 is still zero. The shock wave scattering provides the corresponding violation of
causality for all branches.

Causality constraints can be rephrased as constraints in the characteristic polynomial
about the specific vacuum under consideration. For the EH-branch it is expected that for
any Lovelock theory of arbitrary degree and dimension there is always a region containing
the Einstein-Hilbert point where causality (and stability) is respected. These constraints
can be rewritten for BD-stable AdS vacua as

− (d− 3)(d− 4)

2(d− 1)
≤ C[Λ?] ≡

Λ?Υ
′′[Λ?]

Υ′[Λ?]
≤ (d− 3)

2(d− 1)
(7.4.1)

where Λ? is the effective cosmological constant of the vacuum being analyzed. The upper
and lower bounds correspond to the zero helicity or scalar channel and the tensor or helicity
two channel respectively. The helicity one condition is always less constraining than the zero
one and will be ignored. Remark that this bounds depend on the dimension whereas every
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Figure 7.8: Allowed region for the GB and cubic Lovelock couplings for arbitrary dimen-
sion. The inner region is the one depicted in figure 7.7 for d = 7. Towards the exterior,
we depicted with a decreasing blue shadow successively, those for d = 8, 9, 10, 11, 20, 50
and ∞. Blue points denote the boundaries of d = 5 and 6, where the cubic Lovelock term
identically vanishes. The orange points are the asymptotic values for GB gravity found
in [1]. Notice that one of the branches that bound the allowed region tend to the singular
locus ∆ = 0 when d→∞.
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Figure 7.9: We have shadowed the region of the allowed space of couplings leading to
unphysical negative values of η/s. It can be seen that the maximum λ increases with the
spacetime dimensionality, but the critical value leading to a vanishing η/s does it faster.
From 11d on, this problem disappears.

other expression involved in the problem does not (once fixed the degree of the polynomial).
The upper bound it is itself bounded from above as

(d− 3)

2(d− 1)
<

1

2
(7.4.2)

while the lower bound is unbounded. Furthermore, we may write the polynomial in terms
of its roots

Υ[Λ] = cK

K∏
k=0

(Λ− Λk) . (7.4.3)

From the reality of the Lovelock coefficients (or equivalently of the lagrangian) we know that
the roots are either real or come as conjugate dual pairs. The only further constraint we will
consider is that it has a well defined (AdS-)EH limit, i.e.

Υ′[g] > 0 , ∀g ∈ [ΛEH , 0) (7.4.4)

This defines effectively the EH vacuum.

From the equivalent polynomial (7.4.3) we can very easily express C[Λi] for each vacuum
as

C[Λi] = 2
∑
j 6=i

1

1− Λj
Λi

(7.4.5)
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Also the Boulware-Deser stability of such vacuum can be very easily assessed in this way as
the first derivative of the polynomial there yields

Υ′[Λi] = cK
∏
j 6=i

(Λi − Λj) (7.4.6)

Starting from the stable EH-vacuum the AdS roots follow a series of stable/unstable vacua
where complex conjugate pairs of roots do not matter. The same happens for the dS vacua.

For Λi < 0 we can classify the contributions to (7.4.5) according to their sign

1− Λj

Λi

> 0 ⇔ Λi ≤ Λj (7.4.7)

and the reverse for the opposite sign. This is also valid for the complex conjugate pairs
where Λj has to be replaced by its real part.

Using this it is very easy to show that in cubic Lovelock gravity, the minimal example
with two BD-stable AdS-vacua, just the EH-vacua may be causal. In the case in which both
such vacua exist the characteristic polynomial displays three real roots

ΛHC < Λu < ΛEH < 0 (7.4.8)

where the subindices stand for higher curvature, unstable and Einstein-Hilbert respectively.
If we want to analyze causality for the higher curvature vacuum ΛHC we have just to analyze
two terms, both positive and bounded from below

C[ΛHC ] =
2

1− Λu
ΛHC

+
2

1− ΛEH
ΛHC

> 4 (7.4.9)

in such a way that C[ΛHC ] automatically violates the helicity zero (also the helicity one)
constraint. The same happens for the smaller root of the polynomial when real. Assuming
there is at least one real AdS root (for instance the EH one) and that the rest has bigger
real part we can easily show

C[Λsmaller] > 2 (7.4.10)

In case there is any smaller root – with more negative real part – this would yield a neg-
ative contribution to C[Λi]. In absolute value, this term may be as big as one wants, the
corresponding (unstable) vacuum just has to approach sufficiently the one we are analyzing.
Thus, one negative term alone may compensate any positive contribution from the rest of
the roots and bring the value of C[Λi] to the interval allowed by causality.

The minimal example for which we may have a BD-stable and causal AdS vacuum in
addition to the EH one is quartic Lovelock, we just need c4 > 0 in the region of parameter
space where the four roots are real and negative.

7.5 Discussion

We have used the AdS/CFT framework to scrutinize higher order Lovelock theory in arbi-
trary dimensions with the focus on possible causality violation. We have formally addressed
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the more general case and explicitely worked out the third order Lovelock gravity in arbi-
trary dimensions. Results for higher order theories are contained in our formulas though
some extra work is needed to extract them explicitly. Provided with the values of t2 and t4
appearing in the Maldacena-Hofman parameterization of the 3-point function of the stress
tensor [220], we have checked the complete equivalence between the constraints arising from
the positivity of energy bounds conjectured in that paper and those from causality. These
results constitute a proof of previous conjectures in the literature [2, 225].

We do this computation in two different ways and we end up showing that they are
bound to give the same result. We have first computed all polarization linear perturbations
of the black hole AdS solution in Lovelock theory, and subsequently studied the collision of
gravitons and shock waves in AdS in the framework of this theory. We found a region in
the coupling space where the theory does not violate causality (at least in a way that can
be detected by this kind of computations). This generalizes the intervals found for λ in the
case of LGB theories [1,36,223,237]. Contrary to those intervals, that are now just given by
the intersection of the allowed sector and the λ axis in this paper, the region is unbounded.
Arbitrary large (simultaneous) negative values for λ and µ are allowed. The meaning of
this result is unclear since this happens in a region of couplings where the computations are
not trustable. However, the regular pattern that we found as a function of the spacetime
dimensionality is too nice to be discarded so easily. We have seen that the allowed region
increases with spacetime dimensionality, as it happened with the LGB coupling [1]. In the
infinite dimensional limit, one of the boundaries of the allowed region (roughly speaking,
the one giving the upper bound; rigorously speaking, the one due to helicity two gravitons),
asymptotically approaches the discriminant of the Lovelock theory. This is expected since
the region beyond that curve is excluded. The other curve, arising from scalar gravitons, has
a less natural behavior that calls for a deeper explanation. There is no restriction for this
curve to be asymptotically larger, but it approaches a finite curve, that of course crosses the
λ axis at λ = −3/4, in accordance with [1]. Thus, moderate (non-negative) values of λ and
µ are forbidden even for would be infinite dimensional theories. Whether this is an artifact
of our approach or there is a deep reason for this behavior, is unclear to us.

It is intriguing that classical Lovelock gravity in AdS space can capture highly non-trivial
aspects of conformal field theory physics. While Einstein gravity is known to describe the
universal spin-2 sector of a large class of strongly coupled CFTs, no dual to Lovelock gravity
(beyond GB) has been found, nor have the Lovelock terms with finite coefficients appeared
in string theory. While higher powers of curvature generically appear in string theory as
α′ corrections to the supergravity action, these corrections are necessarily perturbative. In
Lovelock theory we have dimensionful parameters appearing in the lagrangian, which do not
appear to be protected from quantum corrections by any symmetry. That from the classi-
cal theory we can obtain specific numerical predictions on which values of the parameters
should or not be allowed by causality and that these restrictions should agree with analogous
restrictions in a hypothetical dual CFTs is highly suggestive. We obtain what seem to be
splendid checks of the AdS/CFT correspondence, the results being smooth functions of the
spacetime dimensionality.

One possible hint is that Lovelock theories all satisfy t4 = 0, which is required for super-
symmetric CFTs [245]. For free field theories, t4 = 0 is obtained by picking the appropriate
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supersymmetric matter content. In Lovelock gravity, the t2 and t4 parameters can be ob-
tained in the boundary expansions of the effective potentials (4.1.3). The t4 = 0 result should
imply some relationship between these. Indeed, it is easy to see that from (4.1.3) we have

(d− 4) c2
2(r) + (d− 2) c2

0(r)− 2(d− 3) c2
1(r) = 0 , (7.5.1)

which is actually valid at any radius r and not just at the boundary, where it indeed implies
t4 = 0. Beyond the boundary expansion, the relationship written above should impose
constraints on higher n-point functions of the theory. It is tempting to conjecture that these
are the holographic duals of some sort of supersymmetric constraint.

The papers that originally dealt with causality violation did it under the spell of searching
possible violations of the KSS bound [233,234]. They found that the addition of a LGB term
in the gravity Lagrangian corrects the universal value of the shear viscosity to entropy density
ratio as

η

s
=

1

4π
(1− 4λ) . (7.5.2)

The addition of further higher order Lovelock terms does not manifestly contribute to this
quotient [236]. The possible addition of a quadratic curvature correction with positive λ is
enough to argue that the KSS bound is not universally valid. The appearance of an upper
bound for λ due to causality conservation naively seems to lower the KSS bound down to
a new one. Since (7.5.2) is not affected by higher order Lovelock terms, this has led some
authors to speculate about the nature of this newly found lower bound. However, it is not
clear if the new bound should be taken seriously: when λ approaches the maximal allowed
value, the central charges of the dual CFT explore a regime (roughly (a − c)/c ∼ O(1))
where the gravity description is à priori untrustable. Furthermore, let us point out that the
fact that higher order Lovelock couplings do not enter (7.5.2) does not mean that they are
irrelevant for this problem. Indeed, we have seen that even an infinitesimal positive value
of µ would raise the upper bound for λ thus affecting the putative lower bound for η/s.
Even more weird, there are values of µ leading to too high values of λ in the sense that
η/s becomes negative. We will see in the next chapter that the mechanism allowing us to
disregard this unphysical behavior is actually the stability of the plasma, dual to the stability
of planar black holes studied in chapter 4. These additional constraints will further restrict
the possible values of the Lovelock coefficients being crucial for the discussion of bounds on
η/s.

Previously, concerning the LGB case, it was raised the issue about the string theory
origin of quadratic curvature corrections. It seems clear after [215,216,241] that these terms
may possibly arise from D-brane probes or AN−1 singularities in M-theory. The situation
with the cubic curvature corrections is more delicate in this respect. Besides, the very fact
that the results generalize smoothly both to higher order Lovelock theory and to higher
spacetime dimensions, seems to suggest that these computations may not necessarily rely in
the framework of string theory.

Our results for arbitrary dimensions are compatible with the condition t4 = 0. This is
the expected value of t4 for a supersymmetric CFT. Cubic terms are expected to accomplish
supersymmetry breaking. However, this is not the case for the Lovelock combination. As for
t2, the result of this paper is unexpected. It is well-known that the third order Lovelock term
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endowes a 3-graviton vertex structure that does not contribute to the 3-point function [243].
However, this result is strictly valid for flat space-times while in AdS, as we see, it is not
true. The introduction of the third order Lovelock Lagrangian enters non-trivially in the
discussion of causality violation. It would be interesting to further clarify how this term
contributes to t2 by studying directly the 3-graviton vertex in AdS spacetimes.



Chapter 8

Holographic plasmas and the fate of
the viscosity bound

“A poet once said, ‘The whole universe is in a glass of wine’.
We will probably never know in what sense he meant that,

for poets do not write to be understood. But it is true that if we
look at a glass of wine closely enough we see the entire universe.”

Richard Feynman

The AdS/CFT correspondence has provided a tool to study hydrodynamical aspects of
quantum field theories at strong coupling. This was particularly timely due to the advent
of experiments that prompted the exploration of QCD in a region of phase space where it
displays such behavior. One of the most striking predictions of AdS/CFT had to do with the
shear viscosity to entropy density ratio, η/s, of strongly coupled plasmas. Policastro, Son and
Starinets computed this ratio in the canonical example of N = 4 SU(N) supersymmetric
Yang-Mills (SYM) plasma, in the planar (’t Hooft) limit and for infinitely large ’t Hooft
coupling λ = g2

YM N →∞ [246], finding

η

s
=

1

4π
(8.0.1)

Interestingly enough, it was found that there is a universal value for this ratio, η/s = 1/4π,
for theories whose gravity dual is governed by the Einstein–Hilbert action, regardless of
the matter content, the number of supersymmetries, the existence or not of a conformal
symmetry, and even the spacetime dimensionality. On the other hand, all measured values
for this ratio in any quantum relativistic system are above this value. This led to speculations
that η/s ≥ 1/4π might be an exact statement in quantum relativistic systems, the so-called

191
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KSS bound conjecture [235]. Indeed, it is possible to provide a hand waving argument
[247], relying on a quasiparticle description of the plasma, that links the KSS bound to the
Heisenberg uncertainty principle. This argument is questionable, though, since there are
convincing hints supporting a non-quasiparticle description of strongly interacting plasmas.

The KSS bound conjecture has been thoroughly scrutinized for many years (see, for
example, [248] for a recent review). It turned out to be the case, however, that when
quantum corrections are included in the gravitational action, under the form of curvature
squared terms, the η/s ratio can be smaller than the KSS bound [215, 233]. In particular,
there are string theory constructions where this is the case [215,216]. In these situations the
violation of the viscosity bound can be traced back to the inequality between the central
charges of the theory, namely to c−a > 0, quite generic in superconformal gauge theories with
unequal central charges [216]. Moreover, to ensure reliable computations, higher curvature
corrections have to be regarded as being small. As a result, any violation of the KSS bound
realized in string models of the duality is necessarily perturbative. Nonetheless, the question
of the existence of any such bound persisted. Because of the universality property of the
shear viscosity to entropy density in the supergravity approximation, any finite violation of
the KSS bound has to be studied in an effective model of AdS/CFT, rather than a particular
realization of the correspondence in string theory.

For the particular combination given by the LGB term, one may consider finite values
of the coefficient, as the gravitational theory is then two-derivative. As such, it effectively
defines via the AdS/CFT correspondence a dual conformal plasma. For this we can compute
2- and 3-point function as discussed in chapter 6 and also transport coefficients such as η/s.
In this case the ratio is modified to [249,250]

η

s
=

1

4π

(
1− 2(d− 1)

d− 3
λ

)
(8.0.2)

λ being the appropriately normalized LGB coupling, and the KSS bound is violated whenever
λ is positive [215, 233]. Up to field redefinitions, for very small λ the gravitational model
with a LGB correction is equivalent to the example of Kats and Petrov [215] embedded in
string theory. For that we have to identify

c− a
c
∼ λ (8.0.3)

that now can be taken however to finite values.
Even if à priori the addition of a LGB term would lead to an arbitrary violation of the

KSS bound, it turns out that the causality constraints studied in the previous section arise
preventing the possibility of going to arbitrarily low values of η/s [234]. This was actually
the original motivation of their discovery. In the case of 4d CFTs, for instance, this imposes
the constraint λ ≤ 9/100, which reduces the minimum value of η/s by a factor of 16/25.

The study of a possible bound is interesting both from a theoretical standpoint as well
as from a phenomenological one – it has been found experimentally that the quark-gluon
plasma created in relativistic heavy ion collisions appears to have a very low shear viscos-
ity to entropy density ratio [251]. A similar result was also found recently in a radically
different context: that of strongly correlated ultracold atomic Fermi gasses in the so-called
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unitarity limit [252]. Both systems have measured values of η/s compatible with 1/4π. On
the other hand, from a theoretical standpoint, the causality constraints coming from the
behavior of the geometry near the boundary, that rule the attainability of lower values of
η/s, have a beautiful holographic dual in the CFT side: they arise from positivity of energy
conditions [220, 223, 253]. The perfect matching of these two quite fundamental restrictions
on a physically sensible theory constitutes a striking check of the AdS/CFT correspondence.

Whether this is still valid for higher-dimensional CFTs became a natural question that
was subsequently answered in a series of papers [1,37,254]. Summarizing, it turned out that
LGB theories lead to a violation of the KSS bound in any spacetime dimensionality, and
causality constraints exactly match positivity of energy bounds on the CFT side. The fact
that this matching is valid regardless of the dimensionality is puzzling and seems to provide
clues on possible non-stringy versions of AdS/CFT. Our knowledge of higher-dimensional
CFTs is, however, too poor yet to push these arguments forward. In higher dimensions one
has in general the choice of including other Lovelock terms in the action. These are higher
order in curvature that still lead to second order equations of motion [15]. A first step in
the analysis of these theories was done in [2, 225]. There it was found that causality and
positivity of energy constraints still match perfectly. Still, something new happens here.
Since there are now more free parameters available, it turns out that causality alone cannot
prevent the η/s ratio from becoming arbitrarily small (or even negative).

In this chapter we analyze in detail the fate of the η/s ratio in AdS/CFT restricted
to the case of Lovelock theories. We will focus in the cases of LGB, cubic and quartic
Lovelock gravities in arbitrary dimension, even though general results are contained in our
formulas. We will study restrictions coming from positivity of energy correlators of the
CFT, as explained in the previous chapter. We then consider graviton fluctuations about
the black hole background for a general Lovelock theory. Near the boundary, demanding
causality of graviton propagation leads to bounds which exactly match those of positivity
of energy. Close to the horizon, in turn, we have shown that unstable modes can appear if
the parameters of the theory are not tuned properly. This leads to another set of bounds
which for the LGB gravity or cubic Lovelock theory in seven dimensions prevents the η/s
ratio from becoming arbitrarily small. In the case of higher order Lovelock theories, a new
phenomenon occurs1: causality violation and plasma instabilities may arise in the interior
of the geometry. They should be related to analogous unhealthy properties arising in the
CFT plasma far from the UV, whose identification and full characterization is left as an
open problem. They should correspond, however, to very different physical situations: while
we may expect that causality violation corresponds to some illness of the boundary theory,
instabilities should be related to either plasma instabilities or to issues such as not being
expanding around the true vacuum2. Anyway, interestingly enough, this shows that causality
violation is not necessarily a phenomenon arising in the UV and it is not generically dual to
positivity of energy in the CFT.

The attentive reader has already realized that higher order Lovelock gravities imply

1This phenomenon already takes place for the cubic Lovelock theory. It leads to a less stringent (thus
irrelevant) constraint in d = 7, but is crucial to prevent arbitrarily small values of η/s in 8 ≤ d ≤ 10 theories.
When d > 10, causality at the boundary is enough to discard this possibility in cubic Lovelock gravity [2].

2We thank Rob Myers for clarifying comments on these points.
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higher-dimensional theories. There is a second more subtle point that should be presently
raised. The analysis performed in this chapter deals with higher order curvature corrections
whose coupling constants do not need to be neccesarily small. Both conditions are unnat-
ural within the string theory realm. It seems however worth inspecting thoroughly these
theories based on the very fact that they lead to reasonable results. That is, even for these
presumably non-stringy setups we obtain what seem to be splendid checks of the AdS/CFT
correspondence.

The last section is devoted to the analysis of the η/s ratio in higher order Lovelock theo-
ries. The first part of that section presents analytic and numerical results for the minimum
ratio in any dimension up to quartic order theory. These are obtained by considering the
full stability and causality constraints. Our results are relatively smooth functions of the
spacetime dimensionality. We also show that for any given Lovelock theory of order K there
is always a lower bound on η/s. It is impossible to get arbitrarily close to η/s = 0, even
in the case where the causality constraints would not be taken into account as proposed
in [255].

In the second part we consider a limited analysis of arbitrary Lovelock theories in any
dimension. Picking a specific curve through parameter space, the properties of which are
carefully discussed in Appendix C, we show that there seems not to be a dimension inde-
pendent viscosity bound. Within our framework, we argue that a strongly coupled ideal
fluid could be achieved in the strict limit d→∞, when a correspondingly infinite number of
Lovelock terms are taken into account. This is somehow reminiscent of the so-called species
problem, though it is not clear to us whether there is a more rigorous way in which these
two setups are related.

8.1 Shear viscosity and finite temperature instabilities

It has been shown in [249,250] that the shear viscosity to entropy ratio of a generic Lovelock
theory is given by

η

s
=

1

4π

(
1− λ

λc

)
, (8.1.1)

where we have defined the critical value λc where the ratio vanishes

λc ≡
d− 3

2(d− 1)
. (8.1.2)

It is interesting to stress that the ratio only depends on the quadratic Lovelock coupling,
c2. Generically one is not free to take an arbitrary λ. There are causality constraints which
restrict the range of values where the theory is well-defined [233, 234]. These restrictions
match the restrictions on t2 and t4, and these necessarily involve all the parameters in the
theory. The maximum value λ(0) that may be achieved depends on the theory in question. In
this way it has been found [2, 225] that causality constraints alone cannot prevent one from
reaching (and even overpassing) η/s = 0. In this section we show that as one approaches
small values of η/s, the black hole becomes unstable and the linear approximation breaks
down. This places an effective set of constraints in the parameters of the theory, saving the
ratio above from ever becoming too small.
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8.1.1 Plasma instabilities

It has been already discussed in chapter 4 that particular values of the Lovelock couplings
lead to instabilities for planar Lovelock black holes. Within the gauge/gravity framework,
black holes provide the dual description of a finite temperature plasma. For certain values
of the Lovelock couplings coupling, some effective potentials might develop negative values
close to the horizon, this indicating an instability of the plasma [178]. In equation (4.1.1) we
see that the rôle of ~ is played by 1/q. By taking sufficiently large spatial momentum (small
~), we can make an infinitesimally small (negative energy) well to support a negative energy
state in the effective Schrödinger problem. Going back to the original fields, this translates
into an exponentially growing and therefore unstable mode [178].

At the horizon the effective potentials vanish in such a way that in order to avoid in-
stabilities we must demand the first radial derivative to be positive. This gives rise to the
constraints (4.2.4 – 4.2.6) that we write here as a remainder,

λ < λc ,

(d− 3)(d− 4)− 2λ(d− 1)(d− 6)− 4λ2(d− 1)2 + 2µ(d− 1)2 ≥ 0 , (8.1.3)

(d− 2)(d− 3)− 6λ(d− 1)(d− 2) + 12λ2(d− 1)2 − 2µ(d− 1)2 ≥ 0 .

These inequalities represent the constraints from the shear, tensor and sound channels re-
spectively. They are required to hold, otherwise the CFT plasma is unstable. For µ = 0,
these results match those for LGB gravity derived in [37]. It is important to notice that, in
spite of considering a completely general Lovelock theory with as many terms as we wish,
these stability constraints involve just the lowest two Lovelock couplings, λ and µ.

The first constraint immediately rules out the region of the parameter space where the
shear viscosity to entropy ratio becomes negative, since λ < λc. It is interesting to point out
that the shear channel stability condition is also needed to ensure the validity of the linear
analysis [179] and unitarity (see section 4.2). Then, we can also relate the would be negative
values of the shear viscosity – that would lead to a manifest instability given its rôle as a
damping coefficient in the sound channel (a negative value then amplifies the sound mode) –,
to the accompanying break down of the perturbative approach, at the horizon, and unitarity
there. This restriction is also implied by the other two constraints together. In fact, as
already mentioned, the shear channel constraint is always irrelevant once the other two are
taken into account. The same happens for the causality constraints, as already explained.
We may restrict our analysis to the tensor and sound channels only.

The tensor and scalar constraints define a new allowed stability wedge (4.2.9 –4.2.10) in
the parameter space with apex at

λ = λc =
d− 3

2(d− 1)
, µ =

(d− 3)(d− 5)

2(d− 1)2
, (8.1.4)

or, equivalently, on the intersection of the η/s = 0 line with µ = λ(4λ − 1). Then we can
approach, from the inside of this stable region, a unique point (in the cubic case; a (hyper-
)line in higher order cases) where η/s = 0, and this is exactly at the apex of such region,
where the stability constraints coming from each helicity meet.
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Figure 8.1: The allowed region by causality and stability for cubic Lovelock theory in
d = 7. The black points are the maximally degenerated point (1/3, 1/9) (also the Chern-
Simons point in this case) and the intersection of the helicity zero stability constraint and
the helicity two causality constraint ∼ (0.20, 0.017), that gives the lowest value for η/s.

For d = 7, the apex coincides with the point of maximal symmetry (λ, µ) = (1/3, 1/9),
where the polynomial Υ[g] has a single maximally degenerate root. This is also the Chern-
Simons point of the d = 7 Lovelock theory. We plot the different regions in the space
of parameters in figure 8.1. The minimum value for η/s in this case is attained when the
upper (helicity zero) stability curve intersects the lower (helicity two) causality curve, which
happens at

λ ' 0.202042 , µ ' 0.0175986 , (8.1.5)

giving a minimum value

η

s
' 0.393874× 1

4π
< 0.4375× 1

4π
, (8.1.6)

where the latter one is the correction to the KSS bound coming from LGB alone (this
corresponds to the value of λ at which the lower blue curve intersects the axis, λ = 3/16).
This seems to be the end of the story in d = 7, at least in the context of Lovelock gravities.
The existence of plasma instabilities (they originate in the behavior of the gravitational
potential close to the horizon) sets a definite (positive) lower bound on cubic Lovelock theory.
However, as we will see, the situation becomes more involved in higher dimensions, where
the restrictions discussed so far are not enough to prevent η/s from becoming arbitrarily
close to zero.
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Figure 8.2: Causality and stability regions in d = 9 cubic Lovelock theory (and zoom).
The thick lines correspond to causality at the boundary and stability at the horizon, re-
spectively in blue and red, while the dashed lines correspond to causality (in the tensor
channel) and stability (in the sound channel) in the full geometry.

8.2 Bulk causality and stability

8.2.1 The cubic theory in higher dimensions

Our results imply that the η/s ratio can never be too small for cubic Lovelock theory in
d = 7 by a combination of two constraints – preservation of causality, holographically dual to
positivity of energy; and stability of the black brane solution which can be broadly identified
with the stability of the thermal plasma. Of course the obvious question is whether similar
results are valid in higher order theories. As it turns out, these two constraints are indeed
enough, but not in the simple fashion we have described so far – we must require causality
and stability everywhere in the bulk, and not just from a simple near boundary or near
horizon analysis.

This can be seen already in the simplest case of cubic Lovelock theory in higher dimen-
sions. In figures 8.2 and 8.3 we show the relevant part of the causal and stable regions for
d = 9 and d = 11, as determined by the near horizon and near boundary expansions of the
effective potentials. There are also a few dashed lines plotted whose meaning we will explain
in a moment. It is apparent that by going to higher dimensions, a disconnected region close
to the apex of the stability region is now causal as well. This means that such a region
satisfies all our previous constraints, and yet it will have an arbitrarily low shear viscosity.
This is because, as we have seen earlier, the apex of the stability region actually lives on the
surface η = 0 determined by the stability constraint in the shear channel. This point lies
inside the causality allowed region for d ≤ 10 [2].

While in principle there is nothing wrong with having a small ratio, this is not the end
of the story. As we have mentioned before, by considering the full effective potentials we
can see that they develop causality problems and/or instabilities, but now in the interior of
the black hole geometry (see figures 8.4).In the left figure, even though the potential initially
rises close to the horizon (g = 0), it dips into negative values. In the same way, in the
figure on the right, the potential goes below one close to the boundary and then makes a
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Figure 8.3: Causality and stability regions in d = 11 cubic Lovelock theory (and zoom).
The thick lines correspond to causality at the boundary and stability at the horizon, re-
spectively in blue and red, while the dashed lines correspond to causality (in the tensor
channel) and stability (in the sound channel) in the full geometry.
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Figure 8.4: These figures illustrate the appearance of bulk instabilities (on the left)
and bulk causality violation (on the right) for the case of cubic Lovelock theory in ten
dimensions. They correspond, respectively, to the sound potential for λ = 0.33 and µ =
0.108 and to the tensor potential for λ = 0.35 and µ = 0.25. The plot of the potential
ends at the boundary where the function g takes the value of the cosmological constant,
respectively Λ = −2.5 and Λ = −1.512.
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hump above this value, leading to causality violation. Such features cannot be fully seen in
a perturbative analysis, although their presence is easily guessed at. Consider for instance
moving along the curve where the causality bound is saturated in the tensor channel. This
means that the effective potential is of the form

Veff = 1 + 0× ex + v4 e
2x + . . . (8.2.1)

It is clear then that along this curve we will see causality violation if v4 ever becomes
positive. Beyond the point in parameter space where this occurs, there will be a competition
between the ex and e2x terms in the potential expansion which will determine the shape of
the causality curve from that point onwards. In general it is clear that to determine this
curve one must consider the full effective potential, since all terms in the near-boundary
expansion become of the same order. Analogous statements hold for the instability analysis
near the horizon. These curves are determined numerically and shown as dashed lines in
figures 8.2 and 8.3. We can see, in particular, that the sound mode instability curve neatly
cuts off the region where η/s might become too small, thereby imposing an effective lower
bound on this ratio.

Going to higher order Lovelock theories, one may wonder if this general reasoning will
hold. Could the addition of further couplings allow us to escape even the full causality and
stability bounds? This does not seem to be so. Evidence for this conclusion comes from an
analysis of quartic Lovelock theory, to which we now turn.

8.2.2 Quartic Lovelock theory

Quartic theory corresponds to the introduction of an extra non-zero parameter, c4 ≡ ν
4
L6.

The theory exists in d ≥ 9, and examining it requires solving for quartic polynomials. The
analysis of the parameter space of this theory is made in a somewhat similar manner to the
cubic case, and we will not go into great detail here. There are resemblances and differences
to the cubic theory. For instance, as in the lower order cases the boundary of the excluded
region is just the surface where the cosmological constant associated with the EH branch
becomes degenerate. However, this surface ends at one of the triply degenerated lines (three
cosmological constants equal) and we need another surface to actually close the excluded
region. This also happens in the cubic case where the excluded region is closed by µ = λ2,
which is the line along which all three solutions become degenerate at some point inside the
geometry. In the quartic case the situation is analogous and the excluded region is closed
by the surface swept by the line where three solutions degenerate at some value of the
radius. This surface cuts off the other surfaces bounding the causal regions for the different
helicities: green for tensor channel and dark blue for the sound. As always, the causal region
is contained between the tensor and sound surfaces (figure 8.5). Besides, we also realize that
the values of λ are not bounded (neither from below nor from above) just due to causality
– by increasing ν it is possible to go to arbitrarily high λ.

This situation drastically changes once we consider stability and causality constraints (see
figure 8.6). When horizon stability is imposed, the allowed region of parameters is further
constrained by the purple surfaces; notice, in particular, that it includes a channel connecting
the Einstein-Hilbert point with the η/s = 0 line (the apex of the stability region, in purple).
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Figure 8.5: Surfaces delimiting the (boundary) causal region for the helicity zero and two
modes in d = 9 dimensions; respectively t2 = −7/5 (blue) and t2 = 7 (green). We omit the
excluded region boundary surface for the sake of clarity.
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Figure 8.6: Stability close to the horizon (in purple) and (boundary) causality surfaces
for d = 9. It can be observed that there is a channel connecting the two disconnected
regions found in cubic Lovelock theory (see figure 8.2).
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Figure 8.7: Different slices for the quartic case in 9d. Top left corresponds to ν = −0.02,
top right ν = 0 and below ν = 1/64. The black thin dashed line is an imaginary line
connecting the different end points of the causality constraints. The thick black line is the
boundary of the excluded region. The dashed red and blue lines are the full sound stability
and tensor causality curves respectively.

We are therefore in a situation analogous to the one in the cubic theory, and we expect the
full stability and causality constraints to rescue us. This is indeed the case. In figure 8.7 we
show the causality and stability constraints taken at different ν slicings. As ν increases, the
causality curves move up in the plot until at some point they block the path to the critical
point where η/s = 0. For lower values of ν, instead, we cannot reach this point due to the
full sound stability constraint.

We have actually done this analysis for various ν and have reached the same conclusions.
These results add further evidence that for every dimension, stability and causality place an
effective lower bound on the value of the shear viscosity to entropy ratio.

8.2.3 Expansions at η/s = 0

We would now like to present a general argument that shows one should expect instabilities
to appear generically as the η/s = 0 point is approached. The argument is related to the fact
that in the section 4, there is something which might invalidate the analysis. This is when
the perturbative expansion on the radius, close to the horizon, breaks down. Notice that the
tensor and sound mode effective potentials, c2

2 and c2
0 in (4.1.5) have (d− 3)/(d− 1)−F ′(x)
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in the denominator. At the horizon we have,

d− 3

d− 1
− F ′(x) ' 2(λc − λ) . (8.2.2)

This means that the near-horizon expansion breaks down whenever λ ' λc, precisely where
η/s ' 0. Close enough to this point the previous approximation is no longer valid and we
must treat this case separately. This is true for any Lovelock theory in any dimension, and
it is therefore of interest to see if there are any general statements one can make.

Let us then investigate the behavior of the effective potentials given in (4.1.3) at the
horizon. First notice that the black hole polynomial equation (2.1.8) fixes

g(x) ' x

L2
+O(x2) , (8.2.3)

and we can expand(
d− 3

d− 1
− F ′(x)

)
≈
(
d− 3

d− 1
− F ′(0)

)
−
∑
n=1

1

n!
F (n+1)(0) xn . (8.2.4)

The expansion is such that each term in the above is controlled by a different Lovelock
parameter. For instance F ′(0) = 2λ, and so the first term vanishes whenever λ = λc. When
the following derivatives F (j)(0) vanish, ∀j < n, we can actually write

F (n)(0) = Υ(n+1)[0]−
n∏
i=1

d− 2i− 1

d− 1
, (8.2.5)

and so we can set the following term to zero by choosing

(cn+1)c =
Υ(n)[0]

n!
=

1

n!

n−1∏
i=1

d− 2i− 1

d− 1
. (8.2.6)

In particular,

µc =
1

2

(d− 3)(d− 5)

(d− 1)2
, νc =

1

6

(d− 3)(d− 5)(d− 7)

(d− 1)3
, . . . (8.2.7)

For a given (odd) dimensional Lovelock theory, if we set all K = d−1
2

couplings to these
particular values, we will be at the so-called AdS Chern-Simons point [43]. Now, notice
that (8.2.4) is actually the denominator of the helicity two and helicity zero potentials (and
proportional to that of the helicity one mode). The leading correction to those potentials
close to the horizon, when we set F ′(0) = 2λc and F (j<n)(0) = 0, is then

c2
2(x) ≈ −d− 1

d− 4

n− 1

L2 Λ
+O(x) , (8.2.8)

c2
1(x) ≈ −d− 1

d− 3

F (n)(0)

(n− 1)!L2 Λ
xn (1 +O(x)) , (8.2.9)

c2
0(x) ≈ d− 1

d− 2

n− 1

L2 Λ
+O(x) . (8.2.10)
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The effective potentials have therefore discontinuous limits at the horizon as one approaches
λ = λc. Since Λ < 0, the sound channel potential tends to a negative constant at the horizon
as the critical value λc is approached3. We conclude that for any given Lovelock theory, it
is impossible to get arbitrarily close to η/s = 0 without running into an instability. This
means that, at least within Lovelock theories of gravity, it seems to be impossible to obtain
arbitrarily small values for the η/s ratio at any given dimensionality.

These arguments say nothing about the value of the minimum itself. It seems clear that
for any Lovelock theory there will be a minimum, but it is also reasonable to expect that for
higher dimensionalities, the existence of extra free parameters would allow a lower value to
be reached. For instance, looking naively into the horizon expansion of the effective potential

Veff = αx+ βx2 + . . . (8.2.11)

it seems that one could move towards higher values of λ staying inside the stability region
by simply picking parameters such that α, β, etc. are always negative. In practice, however,
we necessarily run into difficulties with this reasoning because of the breakdown of the
perturbative expansion as we approach the critical value λc.

4 In general, the precise interplay
between these two issues must be determined by numerics, on a case by case basis.

8.3 The η/s ratio in higher order Lovelock theories

8.3.1 The minimum ratio in quartic theory

In LGB gravity and cubic Lovelock theory, the parameter space is sufficiently small that it
can be explored easily. In particular, one can find the full numerical causality and instability
curves which determine the allowed regions in parameter space. As one goes to higher orders
this analysis becomes more and more baroque, as the hypersurfaces in parameter space
delimiting the causal and stable regions are more complicated and cannot be visualized in
general. However, as was clear from section 8.2.2 we have succeeded in studying in detail
quartic Lovelock theory in various dimensions. For each theory and dimensionality we have
found the minimum value for the shear viscosity to entropy ratio, and plotted the results in
figure 8.8.The first thing we can notice is the remarkable smoothness either for each separated
value of K as well as extending from one value K to K + 1. There is nothing preventing the
actual values to jump sharply given the discreteness in the number of couplings involved in
these theories. Interestingly, we find that there is a minimum as a function of dimension for
any given order. The critical dimension for these minima and the corresponding values of
the minimum η/s for each theory are quoted in table 8.1. Overall, the minimum η/s ratio
seems to be decreasing rapidly as one increases the number of couplings.

3A caveat to this conclusion is the case where one takes the full function F ′(x)− (d− 3)/(d− 1) to zero,
what actually corresponds to the Chern-Simons point. However, it is easy to see from their definition that
in this case one of the c22 and c20 potentials becomes negative.

4In other words, even though the first term in the horizon expansion might lead to a positive effective po-
tential, the higher order terms might reverse this tendency, and they are becoming more and more important
as λ→ λc.
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Figure 8.8: The dots correspond to the numerical (some analytic) bounds for LGB (red),
cubic (green) and quartic (blue) Lovelock theories, and the colored dashed lines correspond
to the estimated asymptotic value on each case. The dashed black line corresponds to the
curve 4πη/s = 2/(d − 2) that nicely fits (see the zoomed figure at the right) the first
seven absolute bounds (including the unit value for d = 4) and has a tantalizing behavior,
4πη/s ∼ 2/d ∼ 1/Kmax, for d→∞, where Kmax is the integer part of (d− 1)/2.

K dmin (4πη/s)min

2 9 219/529 ≈ 0.414

3 14 0.222

4 23 0.176

Table 8.1: Critical dimension (dmin) for which the minimum value of the viscosity to
entropy density ratio is attained for each order in Lovelock (K) theory, as well as the
corresponding actual minimum value of the quantity (4πη/s)min.
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It is interesting to comment on a very simple function that nicely fits the minimum value
of η/s for d < 11. It reads

η

s
' 1

4π

2

d− 2
. (8.3.1)

It is the simplest curve that smoothly interpolates these points. It also has a nice asymptotic
behavior, as we will discuss shortly. However, it is important to stress that this is not a
(dimension dependent) bound for η/s. Indeed, this is already clear in the most relevant case
given by d = 5, where 2/3 is actually (slightly) greater than 16/25 (see the right zoomed
figure 8.8). The expression in (8.3.1), though, approximately captures the dependence of a
dimensional dependent novel bound for η/s arising in Lovelock theories.

8.3.2 No dimension-independent η/s bound

In higher order Lovelock theories, the parameter space becomes too large and we must resort
to a more limited analysis. We have chosen to concentrate on a particular line through
parameter space, parameterized by the single parameter Λ:

Υ[g] = 1 + g + λg2 + . . . =
(

1− g

Λ

)(
1− g

Λ̃

)K−1

. (8.3.2)

All other parameters can be determined from Λ (Λ̃ is fixed by the overall normalization).
The curve has the property that it starts at the Einstein-Hilbert point and ends at the
maximally degenerate point (MDP) of the theory, at Λ = −K where the polynomial has a
single degenerate root. A detailed analysis of the stability and causality properties of this
curve is performed in appendix (C). We have found that for generic values of K and d there
is an interval of Λ values where there is instability at the horizon5. This is the range of
values where our curve goes outside the stability wedge. Beyond this interval, our curve
returns to the stability wedge, but nevertheless there are still instabilities – no longer at the
horizon but in the bulk. These instabilities persist all the way to the end of the curve, where
it reaches the maximally degenerate point.

From these results it is clear that generically, the maximum stable and causal point
one may reach along this curve is the first crossing point with the stability wedge. This
crossing point can be found analytically, though the results are not particularly enlighten-
ing. However, there is a considerable simplification at very large dimensionality. To first
approximation the crossing point is then determined by solving the algebraic equation,

K2(3 + 2Λ) + 2KΛ(4 + 3Λ) + Λ2(6 + 6Λ + Λ2) = 0 . (8.3.3)

Solving this equation, and using (C.0.3), we can find the value of λ at the crossing point.
However, this value actually decreases as K increases. This leads to a minimum η/s ratio
which increases as we include more couplings. Notice there is no contradiction here: recall
we are moving along a particular curve in parameter space, which is simply not the optimal
one in terms of finding the minimum possible value for this ratio.

5Except for K < 7, where it disappears for high enough d. Whenever the unstable interval is not present
the whole curve is stable.
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Figure 8.9: On the left, the helicity zero potential for K = 8, d = 100 and Λ = −8
(dashed), −7.9,−7.5,−7,−6.5,−6,−5 along our curve. On the right the same curve slightly
perturbed by a δλg2 term in the polynomial. The precise values of δλ are δλ = 0, 1.8 ·
10−18, 6 · 10−13, 1.9 · 10−10, 6 · 10−9, 8 · 10−8, 3 · 10−6.

Although the curve we have chosen is not optimal in this sense, it is still useful as we
can use it as a base point for exploring nearby regions of parameter space. In particular,
consider moving along the curve towards the maximally degenerate point. For high enough
d, it is shown in Appendix C that close to this point there is only an instability in the
sound channel, i.e. all other channels are causal and stable6. We now perturb our curve by
considering a small perturbation δλ g2 or δµ g3 to (8.3.2). The resulting potentials can then
be easily found numerically.

In figure 8.9 we show the spin-0 effective potential for K = 8, for various Λ before and
after adding a small fluctuation. The dashed curve represents the limiting curve for K = 8
along our particular trajectory in parameter space (Λ = −8). On the left-hand figures, we see
how although at the MDP itself the potential does not present any instabilities, it is unstable
all the way up to that point along our curve, i.e. there are negative potential wells in the
bulk. On the right-hand side figure we see how adding just a small perturbation is capable
of lifting the instability. This sensitiveness of the potential to fluctuations is due to the fact
that the maximally degenerate point is special. At this point we have Υ(n)(Λ) = 0, with
n = 0, . . . , K − 1, which means that the perturbative boundary expansion of the potentials
breaks down. Accordingly there is a discontinuous limit at that point. Indeed, taking the
Λ→ −K limit along our original curve we find that the effective potentials become (assuming
d 6= 2K + 1):

c2
2 = −d− 3K − 1

K2(d− 4)
g(x) ,

c2
1 = −d− 2K − 1

K2(d− 3)
g(x) , (8.3.4)

6The other relevant constraint is actually the tensor causality one but the causality violating region can
be made as small as one wishes just by increasing the dimensionality.
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c2
0 = −d−K − 1

K2(d− 2)
g(x) .

Since g(x) ∈ [Λ, 0] the above are actually always positive for sufficiently large dimensionality7.
In particular, although the c0 potential always has a negative region for Λ larger than but
close to −K, it is actually tending discontinuously to a perfectly reasonable potential. This
is clear from figure 8.9.

Our results then indicate that it is reasonable to expect that sufficiently close to the MDP
there should be a trajectory in parameter space which is both stable and causal. We have
shown this is certainly true up to K = 8. If this result holds for higher K, then it is always
possible to reach sufficiently close to the MDP and have well behaved effective potentials.
As such, the theory seems to be well defined at that point.

At the MDP we have

λMDP =
K − 1

2K
(8.3.5)

and therefore a value of the viscosity to entropy ratio for very large dimensionality becomes(η
s

)
MDP

=
1

4π

1

K
. (8.3.6)

By taking high enough K, this can be made arbitrarily small. Besides, since the maximum
K, Kmax, is proportional to d/2 in the large d limit, we obtain the asymptotic behavior
already suggested by the formula (8.3.1) (see also figure 8.8).

To summarize, we have given evidence that it is possible to find a point in parameter
space, sufficiently close to the MDP of a particular Lovelock theory, such that no stability
or causality issues occur for high enough d. In particular we have checked that it is possible
to do this up to K = 8. We conjecture that this can always be achieved for any K, and we
therefore come to the conclusion that the viscosity to entropy ratio can be made arbitrarily
small by considering a Lovelock theory of high enough order. In other words, there is no
bound for the η/s ratio which is independent of the dimensionality, at least in the class of
Lovelock theories of gravity. This goes in line with our expectations that adding more and
more couplings, or free parameters in the Lagrangian, it should be possible to reach lower
and lower values for the shear viscosity to entropy ratio.

It is interesting to mention at this point that the link between causality violation and
the viscosity bound does not apply for thermal theories undergoing a low temperature phase
transition. In [255] Buchel and Cremonini analyze this issue and made an important re-
mark. The shear viscosity is one of the coupling coefficients of the effective hydrodynamic
description of the theory. As such it applies to the regime of lowest momenta and frequency,
i.e. ω, ‖k‖ << T , where the rôle of the temperature may also be played by by any other
microscopic scale of the plasma – actually the smallest one. On exactly the opposite regime,
microcausality is determined by the propagation of the high energy modes regime, i.e. , for
ω, ‖k‖ >> T . A link between both kinds of features is only possible if the same phase of
the theory extends over the entire range of the energy scales. In other words, there must

7Remarkably the critical dimensionality, d > 3K + 1 is exactly the same found in chapter 4, required for
arbitrarily small black holes to be stable.
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not be any phase transitions in the plasma, as it happens for dual plasma of LGB gravity.
As it is conformal just zero temperature phase transitions are allowed and we are always in
the deconfined high temperature phase. The only free parameter of the model is the LGB
coupling, which determines both the shear viscosity ratio and its causality properties. Hence
the link between the two is in a sense a mere coincidence. Any constraint on λ will translate
into an analogous restriction on η/s without any necessary deeper connection.

In the holographic setting UV and IR properties of the field theory correspond to geo-
metrically distinct parts in AdS, the asymptotic and near-horizon regions respectively. In
this sense it is clear that causality, found at the boundary, corresponds to the UV whereas
stability, mostly related to the horizon, is a IR property. We have actually verified that
causality plays a secondary rôle on the discussion of the possible bounds on η/s. Stability
alone already prevents this ratio from becoming arbitrarily small at any fixed dimensionality,
at least in the context of Lovelock gravities.

In the specific model of [255] the LGB term is sourced by the VEV of some irrelevant
operator that condensates in the IR below some critical temperature associated with the
spontaneous breaking of some global U(1) symmetry. Geometrically, the broken phase is
characterized by a scalar field with a non-trivial profile, vanishing at infinity but finite at the
horizon, the effective LGB coupling being proportional to that field. This effective coupling
thus affects the value of the shear viscosity without changing the causality properties of the
CFT. In a sense, we are lifting the causality restrictions but the stability ones are expected
to still hold. Stability still ensures the existence of a bound on η/s, a bound that reduces its
value as we increase the dimensionality and the order of the Lovelock theory accordingly.

8.4 Discussion

We have devoted this chapter to scrutinize the finite temperature phase of the CFT in the
context of Lovelock theories. In particular we have considered in detail the restrictions
imposed by causality and stability on the shear viscosity to entropy ratio of the dual plasma.

An important part of our analysis was the study of these effective potentials, searching
for causality violation or instabilities in the large momentum limit which might rule out re-
gions of the parameter space. Notice, however, that while the former condition is a bona-fide
constraint on the theory, since it would lead to causality, the second seems to hold only for
the validity of the black brane solution, and is not a fundamental restriction. We have found
that causality violation can occur deep inside the bulk, and therefore this effect cannot be
captured by a boundary expansion. This means that, contrary to previous expectations,
causality violation is not necessarily a UV feature of the CFTs related to positivity of energy
restrictions. Holographically this means that there are interesting constraints on the param-
eters of the CFT which cannot be seen in perturbation theory. The field-theoretic origin of
such constraints remains a mystery.8 On the gravity side, these restrictions were essential to
prevent an arbitrarily small η/s ratio for a fixed theory, as seen for the concrete examples of

8It would be of definite interest to study whether these constraints are related or not to unitarity restric-
tions that were very recently shown to arise in the computation of 2-point functions of the stress-energy
tensor at finite temperature and large energy and momenta [39].
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cubic and quartic Lovelock theories.

For higher order theories, we have resorted to the study of a particular curve through
parameter space. We chose this curve on the basis of simplicity and the capability of analytic
treatment. The upshot of our analysis is that it seems likely that there is some curve leading
arbitrarily close to the maximally degenerate point of the theory. The reader might be
suspicious about this – after all, at this point the central charge of the dual conformal field
theory is vanishing, and so is the kinetic term of the graviton fluctuations around the AdS
black hole. That is why we emphasize that one is really considering a curve leading to this
point, but causality constraints keep us at a safe distance where everything is well defined.

In all cases we considered in detail, the minimum value for the ratio was obtained well
away from the maximally degenerate point. In any case, we hope our work stimulates study
of the properties of the theory around this particular point. In the case d = 2K + 1,
these theories display symmetry enhancement becoming gauge theories of the Chern-Simons
group: they have local AdS symmetry whereas all other theories with d > 2K + 1 have
local Lorenz invariance [43]. Contrary to what is suggested by the fact that CT vanishes
in the dual conformal field theory, there are some hints pointing towards the existence of
interesting physics on these theories. For instance, the thermodynamics of their black holes
displays a qualitative difference to that of generic AdS Lovelock black holes: the temperature
grows linearly with the horizon radius, and the specific heat is a continuous, monotonically
increasing and positive function of r+ [163]. Thus, Chern-Simons black holes can reach
thermal equilibrium with a heat bath at any temperature and they are stable under thermal
fluctuations. There is a mass gap between the massless black hole and AdS spacetime, as it
happens in the case of d = 3 [256].

Our results indicate that, in the case of very large d, it should be possible to reach a
value of the η/s ratio of at least

η

s
=

1

4π

1

K
(8.4.1)

in the Kth order theory. Intuitively, this is simply telling us that the more parameters we
have, the lower the ratio can become. This is reminiscent of the species counter-argument
to a minimum bound on η/s [257,258]. Of course, in Lovelock gravity one needs to increase
the number of dimensions in order to have more parameters. Then it would seem that for
all practical purposes there is a bound on η/s for any finite dimensionality. This is certainly
a possibility, and it is definitely true for Lovelock theory – a combination of stability and
causality ensures it – even if we disregard the causality constraints à la Buchel and Cre-
monini [255]. However, even for fixed dimensionality it seems like it might be possible to
have interesting higher curvature corrections with finite coefficients [66–69]. These quasi-
topological gravities have exact black hole solutions of a similar nature to those of Lovelock
theory, including their thermodynamic features. However, hydrodynamic as well as causality
and stability properties, are quite different [70]. While there is much work to be done under-
standing these theories, it seems plausible that the addition of high order quasi-topological
terms would lead to a very small η/s ratio.

The stability wedge in all Lovelock theories has a non-trivial shape in the λ-µ plane but
is otherwise a cylinder in the remaining couplings. This means, in particular, that there is
a lower bound for the cubic Lovelock parameter µ. It results from instabilities of the black
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Figure 8.10: The dots correspond to the numerical (some analytic) η/s ‘upper bounds’
for K = 2, 3, 4 (red, green and blue respectively).

brane solution and, as such, should be related to properties of the CFT plasma rather than
of the zero temperature CFT. The precise meaning of this bound in the field theory side and
its consequences in the computation of physical quantities such as transport coefficients or
thermodynamic variables, as well as the absence of a higher bound for this parameter, are
interesting avenues for further research.

As discussed earlier in the case of LGB [1] and cubic Lovelock theory [2], it is tempting
to say something about the existence of a lower bound on λ (see figure 8.10), that implies
an upper bound for η/s. It is due to the causality constraint in the former and the stability
constraint on the latter. This seems to be in line with the expectation that the shear viscosity
of a strongly coupled system cannot be too large. On this respect, it is interesting to mention
that this bound disappears in Lovelock theories of quartic or higher order – i.e., for d ≥ 9 (see
figure 8.10) –, since no expected problems as causality violation or instabilities of the sort
discussed in this paper arise in that direction. This might be hinting towards the existence
of pathologies of a different nature that we have been unable to characterize.

To conclude, we hope our work stimulates further research into holographic studies of
the η/s ratio in particular, and the dynamics of Lovelock theories of gravity and holography
in general. It might be useful to explore further the effective potentials. These relatively
simple functions seem to encode a great deal of information about the hypothetic dual CFT,
information which we are only beginning to extract.



Chapter 9

Summary and conclusions

“Who is more humble? The scientist who looks
at the universe with an open mind

and accepts whatever the universe has to teach us,
or somebody who says everything in this book

must be considered the literal truth
and never mind the fallibility of all the human beings involved?”

Carl Sagan

Lovelock theory is the natural extension of General Relativity to higher dimensions and can
also be thought of as a toy model for ghost-free higher curvature gravity. These gravity
theories capture some of the defining features of higher curvature gravities, namely the ex-
istence of more than one (A)dS vacuum and an intricate dynamics, more general black hole
solutions and instabilities; while avoiding some of their problems. In particular, Lovelock
gravities yield second order field equations so that they can be considered beyond the per-
turbative regime and are free of higher derivative ghosts. This provides an appealing arena
to explore different gravitational and holographic aspects of higher curvature gravity.

Most of the vacua of the theory support black holes that display interesting features.
Besides, black holes with maximally symmetric horizons are subject to a version of Birkhoff’s
theorem and their solutions can be found analytically. Most efforts in the literature have
been devoted however to one particular branch of solutions, often restricted to a specific
combination of the Lovelock couplings. The branch usually chosen for the analysis is the
so-called EH-branch, as it actually reduces to the general relativistic solution as we turn
off the higher order couplings. In this thesis we have presented some tools that allow for
the description of Lovelock black holes for arbitrary values of the whole set of couplings,
dimensionality and order of the theory. Despite the fact of the solution being implicit, it is
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possible to extract most relevant information and discuss all possible cases in the general
situation, analyze the number of horizons, the thermodynamic stability of the solution, phase
transitions, etc. Furthermore, this approach has been generalized to the case of charged and
cosmological solutions, and also to the so called quasi-topological gravities, that share the
same functional form of the black hole solutions with the Lovelock family while being lower
dimensional.

Our method is very useful to gain intuition about physical processes involving black holes.
One can easily visualize the evolution of the position and number of horizons as the mass
of the solution varies, this providing crucial information about, for instance, the possible
appearance of naked singularities or the violation of the third law of thermodynamics. We
have seen that the rigid symmetry imposed on the solution naively allows such problematic
behavior which is avoided once the stability of the solution is taken into full consideration.

We have analyzed the propagation of perturbations through black hole and naked sin-
gularity spacetimes in the limit of high momentum and frequency. This restricted regime
has the advantage of being very simple while still powerful enough to test the stability of
the solutions of interest. Besides, the instability seems to appear first at high energy. We
have probed in this way the solutions and found that an instability always shows up as we
approach the appearance of naked singularities, i.e. the solution becomes unstable before
the horizon of the black hole disappears, its fate being still unclear. The naked singularity
solution is also unstable in this very same way and it cannot be formed by collapse either.
This also happens for the cases for which one naively expected the appearance of an extremal
black hole (without charge) and sudden jumps on the position of the horizon, thus effectively
preserving the third law of thermodynamics in Lovelock gravities, at least for this class of
black holes.

The same instabilities appear also in the evaporation process of spherical black holes in
a wide range of situations. In fact, as the mass of the black hole is reduced, the solutions
can just avoid becoming unstable when they display a zero radius singularity (as opposed to
a branch singularity) in dimensions greater or equal than 3K + 1. Einstein-Hilbert seems to
be special in this respect as it is the only Lovelock theory that is stable for every dimension
in which it can be defined. The 3-dimensional case is special as Einstein-Hilbert gravity
becomes Chern-Simons theory for the AdS group, being topological. The global picture that
arises from this analysis seems to point to these instabilities as having some crucial rôle in
the dynamics of the theory. Rather than being a pathology of the theory as it has sometimes
been referred, instabilities avoid the appearance of truly pathological behavior. Moreover,
they generically impose an upper bound on the effective density, M/Rd−1, of any object,
bound that depends on the specific branch of the theory we are considering. This seems to
naively forbid the existence of point-like entities in most cases.

We have verified that Hawking-Page phase transitions generally occur in Lovelock the-
ories. The key difference with the general relativistic case is the possibility of more than
one thermodynamically stable black hole for some ranges of the temperature in such a way
that the transition may also happen between two black holes of different mass. By analogy
with the Einstein-Hilbert case, the transition from a thermal vacuum to a black hole may
be identified as a confinement/deconfinement phase transition of the dual CFT plasma, thus
transitions between different black holes should correspond to distinct phases of the field
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theory deconfined plasma.

Another seemingly pathological feature of Lovelock black holes is that they may have
negative values for the entropy. Nonetheless, this problematic states are avoided if we restrict
ourselves to the globally preferred phase at every temperature. For that, in some cases,
e.g. hyperbolic black holes, it has been crucial to consider in our analysis the possibility
of extremal configurations with arbitrary temperature and zero entropy, in accordance with
the semi-classical approach. This is important as we need to have a well defined groundstate
with minimal mass for any temperature in such a way that negative entropy states always
have higher free energy and are thus unstable. This might also shed some light on the
rôle of the extremal configurations and to whether they should be considered with arbitrary
temperature or just as limiting cases of their non-extremal counterparts.

Lovelock gravities display a family of vacua and corresponding black hole solutions that
point towards the possibility of an intricate phase diagram. In order to study the phase
diagram of the full theory, not of a particular branch as discussed previously, we then need
to be able to describe phase transitions between different branches of the theory. This could
also be envisaged as a possible endpoint of the instabilities mentioned above. Indeed, this was
one of the original motivations for our analysis of these transitions. We have seen, though,
that instabilities and phase transitions are correlated just in very particular situations.

In order to describe transitions among the different branches of the theory, we have
broaden the class of solutions to be considered. Keeping the same symmetry requirements,
we allow for solutions that, being continuous, have discontinuous first derivative (equivalently
discontinuous spin connection). The existence of these solutions is due to the multivaluedness
of the momenta in Lovelock gravities. At any point, the velocity may jump as long as the
momentum is continuous, this continuity of the canonical momenta across the resulting
junction being due to the absence of matter on that surface. Nonetheless, this does not
mean that the mass parameters of the inner, M− and outer, M+, solutions are the same,
the bubble effectively carrying mass M+ −M−. For static configurations, either stable or
unstable, in addition to the mass we may also asign these thermalons with temperature and
entropy. We have shown that the contribution of the boundary terms on the bubble is such
that the free energy of the whole spacetime takes the expected form F = M+ − T+S. The
mass and temperature, M+ and T+, correspond to the outer solution while the entropy S
remains untouched as coming from the inner black hole horizon. We have also checked that
the usual relations between the thermodynamic variables and the first law of thermodynamics
are verified, thus effectively proving the consistency of the thermodynamic picture for these
generalized configurations.

The only necessary assumption for all this to work is the existence of a horizon for the
inner region of the bubble. As simple as it may seem, this imposes severe restrictions on the
kind of configurations that can be considered. For instance, the inner solution for planar
topology has to necessarily correspond to the EH-branch. This in particular implies that
the thermodynamics of the EH-branch (identified by its asymptotics) is not changed by the
existence of these new solutions and that any branch transition (under some assumptions)
will necessarily lead to this branch. Actually the thermalon is always the thermodynamically
preferred phase and thus a bubble necessarily pops up hosting a black hole in its interior. In
some cases however, depending on the choice of asymptotics, the thermalon with a regular EH
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black hole inside does not exist and the transition cannot happen. The non-planar cases are
more involved and generically display one (or several) finite temperature phase transitions.
We have analyzed the simplest case of LGB gravity in great detail. The hyperbolic case is
special as it also allows for thermalons with EH asymptotics, but just above some critical
value of the LGB coupling.

The junction conditions used in order to find the static bubble configurations also de-
termine the dynamics of the bubble, namely the stability of its equilibrium position. In the
LGB case, the bubble, being unstable, will eventually expand reaching the boundary in finite
time, thus changing the asymptotics and charges of the solution. This is reminiscent of what
happens in the case of quenches where the energy and temperature of the system change as
a result of the work done by varying the boundary conditions. The thermalon mechanism
may be thought of as a thermodynamically induced quench as opposed to an external action
over the system. In the case of LGB gravity with ghosty boundary conditions, in the spher-
ical case the thermal vacuum is the globally stable phase at low temperature whereas there
is a critical temperature for which the free energy becomes negative indicating the phase
transition. Still for positive values of the free energy, the bubble solution exists and may
be formed with some finite probability, as a metastable state. In any case, the system is
necessarily driven to the EH-branch.

The most interesting situation is that of hyperbolic topology, where we have the direct
transition (to the EH-branch) with ghosty asymptotics, but also the reverse one with EH
asymptotics. The situation for the direct transition is very similar to the spherical and
planar cases the system necessarily transitioning to EH asymptotics. On the contrary, in the
reverse case with the well behaved asymptotics, the system is stable for moderate values of
the LGB as there is no thermalon configuration to mediate the transition. The spacetime is
thus necessarily driven to the EH-branch and it remains there. This is then both a natural
mechanism to select the EH vacuum and to also avoid the instability of the ghosty branch.
For higher values of λ, however, static bubbles exist and, even though the black hole is the
globally preferred phase, they may form with some probability. The result is a system in
which bubbles of both phases form in a chaotic way at any temperature. In this case the
inclusion of the extremal states at any temperature seems to be crucial in order to have a
well defined ensemble.

In the context of the AdS/CFT duality black holes correspond to deconfined phases of
the plasma whereas the confined phase is the thermal vacuum. The generalized Hawking-
Page phase transitions mentioned in the previous paragraph seem to correspond to confine-
ment/deconfinement phase transitions involving a further change in the microscopic proper-
ties of the plasma – these are associated with the asymptotics of the solution.

In the case of more general Lovelock theories the situation may change quite a bit. For
instance, the equilibrium point for some thermalons may be stable instead of unstable, in such
a way that the resulting phase is more similar to a regular black hole than to the thermalons
of LGB gravity. The system may stay in that phase if there is no other thermalon to take it
somewhere else. From the holographic point of view these stable thermalons can be meant
to provide some class of higher curvature branches with a deconfined phase.

Lovelock theories have the remarkable feature that lots of physically relevant informa-
tion is encoded in the characteristic polynomial Υ[g]. Boulware-Deser-like instabilities, for
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instance, can be simply written as Υ′[Λ] < 0, which has a beautiful CFT counterpart telling
us that the central charge, CT , has to be positive. We have computed the central charge
CT , making the above statement concrete, as well as the two extra parameters, t2 and t4,
involved in three point functions of the stress-energy tensor. t4 is actually vanishing for the
particular case of Lovelock theories. This might be related to some kind of supersymme-
try constraint on the dual CFT, although the supersymmetric version of general Lovelock
theories is unknown. We have also discussed the possible terms that may contribute to the
computation of t2 and t4 in the context of general higher curvature gravity. Restricting to
terms yielding 2-derivative equations of motion in the shock wave background, there is a one-
to-one correspondence between the possible structures appearing in the energy flux 1-point
function and the contributions from higher curvature terms. This is also consistent with the
number of independent terms that can be written in the action modulo field redefinitions.

Another very interesting correspondence that has been observed using Lovelock theory
is the one that relates holographic causality in the bulk of AdS with positivity of the energy
flux 1-point function. Both physical requirements are very different in nature, yet they imply
the same set of constraints on t2 (for t4 = 0). Lacking a definitive proof of the positivity
of the energy fluxes, this may also be considered as an indirect evidence in the restricted
context of Lovelock holography. Moreover, this has led to the discovery that these conditions
are also required by unitarity of the corresponding CFT [39]. Furthermore, even though the
connection was first found for the case of black hole backgrounds, it is not a feature of thermal
CFTs. We have in fact performed a similar computation using a shock wave background and
found a complete agreement with the previous sets of constraints. This second computation
is also simpler in the sense that it makes clear that the problem arises from the three-graviton
vertex. Notice that, contrary to the instabilities found above, causality violation is a bona
fide pathology and it should be discarded as unphysical. The instabilities, in turn, might
just be pointing to the existence of new solutions or to issues such as not being expanding
about the true vacuum. In the case of Lovelock gravity stability is necessary for the validity
of the black hole solution and is not a fundamental restriction.

The above physical constraints restrict the possible values of the Lovelock couplings that
describe a causal CFT with positive energy flux. Notice that this connection could have
never been discovered in the perturbative regime as we need t2 or t4 of order one for the
theory to ever violate causality. Besides, in the supergravity approximation, t2 ∼ α′. All
this, and the fact that all formulae seem to extend meaningfully and smoothly to arbitrary
dimension and order of Lovelock gravity, seem to entail the applicability of the AdS/CFT
correspondence beyond the context of critical string theory. Although the simplest Lovelock
term has appeared in the context of string realizations of the duality, higher order Lovelock
terms do not show up in that context, nor higher curvature terms with finite coefficients.
Do strongly coupled CFTs necessarily have equal central chages in four dimensions? The
answer to this question does not seem to be easy and we have not found any hint pointing
in any clear direction.

When dealing with higher order Lovelock gravities, contrary to previous expectations we
have also found causality violation far from the boundary of the spacetime, thus showing that
this particular pathology is not necessarily linked to the UV properties of the field theory
neither to positivity of the energy. It would be interesting to study if this effect could be
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traced back to positivity of energy flux higher point functions.

Finally, we have analyzed the constraints imposed by causality/positivity to other rel-
evant quantities of the CFT, namely transport coefficients such as the shear viscosity to
entropy density ratio. This ratio gets corrected from the universal KSS value η/s = 1/4π
by the LGB coupling in such a way that an upper bound on λ automatically translates into
a lower bound in η/s. Even though higher order Lovelock terms do not appear explicitly
in the corrected expression for η/s, they actually affect the value of the bound. They add
some freedom that consequently allows λ to take higher values, thus lowering the bound.
We have discussed the existence of a bound in that context and realized that causality alone
cannot prevent the ratio to take arbitrarily low values, even negative in some cases. Besides,
one can construct effective holographic models where the LGB term is sourced by a VEV
of another field that condenses in the IR, i.e. it has a finite value just close to the horizon
being zero asymptotically. In this way, the addition of the LGB correction does not affect
the causality properties of the theory while changing the value of the shear viscosity. In a
sense we can lift in this manner the causality restriction on η/s.

The restrictions that avoid unphysical values of the shear viscosity arise once again from
stability. After all, negative shear viscosity also corresponds to an instability of the system.
Using the stability analysis in the high momentum regime, we have shown that a non-zero
bound on the shear viscosity to entropy density actually exists for any dimensionality d, the
minimum value of η/s approaching zero as we go to higher and higher dimensions. Our
results indicate that for very large d it should be possible to reach a value of 4πη/s of at
least 1/K. Up to ten dimensions (i.e. quartic order) it can be shown that the lowest bound
for each dimensions roughly follows a curve given by 4πη/s ≈ 1/(d− 2).

Along this thesis I have tried to present Lovelock theories as an interesting playground
for testing our ideas about gravity and the holographic duality. This provided interesting
information about the viable modifications of Einstein-Hilbert gravity and, by contrast, also
shed some light on this simpler case in four or higher dimensions. Lovelock gravities have
many interesting features, a rich dynamics and effects that cannot be observed in the general
relativistic case. This would also allow us to look at Einstein-Hilbert gravity under new light,
putting it in a much broader context and maybe understanding what is so special about it.
Our investigations led to deep connections between seemingly unrelated concepts. These
unsuspected connections have the most celebrated example in the exact equivalence between
causality in AdS and positivity of the energy in the CFT, but we have uncovered more subtle
examples. Instabilities play a central rôle in this context being related to the preservation
of the Cosmic Censorship Hypothesis and the third law of black hole mechanics in Lovelock
gravity, as well as the evaporation process of black holes and the existence of a bound for
η/s. The diversity of situations where the instabilities appear to have a relevant rôle is
quite vast and deserve further investigation. Also it would be interesting to analyze further
implications of them in the context of AdS/CFT, particularly on the possible values of other
transport coefficients of the dual plasma.

After this long journey, Lovelock theories emerge as a complex and interesting set of
theories, consistent as far as we can tell. Still, there are plenty of open avenues for further
research, many unresolved issues. In higher dimensions there is a enormous increase in the
variety of rotating solutions, black rings, black saturns, multi black rings, etc. One interesting
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question to be answered in the context of Lovelock gravity would be to what extent this rich
structure survives. There is a long way to go though as we do not even know the exact
form of the simplest rotating solutions. Another insufficiently explored issue is that of the
dimensional reduction of Lovelock theories, the relations under compactification between
theories of different order – namely with Einstein-Hilbert gravity – and the stimulating
possibility of these theories undergoing self-driven compactification. In exploring ways to
simplify and get further insight into the dynamics of gravity, some attention has been recently
drawn to the large d limit of gravity. Lovelock gravity provide the most obvious extension
also in this respect as they offer a second parameter K, the order of the theory, that can scale
as fast as the dimension. In the holographic context the notion of entanglement entropy has
also recently attracted a lot of attention and Lovelock gravity seem to be a suitable testbed
in that case as well. Finally, as it was already mentioned in the main text, Lovelock theories,
through the AdS/CFT correspondence, open a window into the realm of higher dimensional
CFTs, which we do not know much about.

We hope that the tools and information obtained through our analysis will be valuable
for tackling these and other interesting questions, also when dealing with higher curvature
corrections of generic type.



Chapter 10

Resumo e conclusións

“Was du ererbt von deinen Vätern hast,
Erwirb es, um es zu besitzen.”

Goethe1

As teoŕıas de Lovelock son a extensión natural da Relatividade Xeral en dimensións supe-
riores a catro. Poden tamén ser consideradas coma un modelo de xoguete axeitado para
a análise de certos aspectos de teoŕıas con correccións de orde superior na curvatura libres
de pantasmas. Esas teoŕıas da gravidade capturan algunhas das propiedades caracteŕısticas
que definen as gravidades con termos de orde superior, nomeadamente a existencia de máis
dun beleiro (A)dS e unha dinámica complexa, solucións de buraco negro máis xerais e ines-
tabilidades; evitando aśı mesmo algúns dos seus problemas. En particular, a gravidade de
Lovelock dá lugar a ecuacións de movemento de segunda orde, que polo tanto poden ser
consideradas máis aló do réxime perturbativo, e está exenta das pantasmas associadas as
derivadas superiores. Isto proporciona un campo de traballo moi atractivo para explorar
distintos aspectos gravitacionais e holográficos das teoŕıas con correccións de orde superior
na curvatura.

A maioŕıa dos baleiros da teoŕıa teñen buracos negros asociados que presentan carac-
teŕısticas interesantes. Ademais, os buracos negros con horizontes maximalmente simétricos
están suxeitos ao teorema de Birkhoff e a correspondente métrica pódese atopar analitica-
mente. A maioŕıa dos esforzos, na literatura cient́ıfica adicáronse, con todo, a un determinado
sector de solucións, moitas veces restrinxida a unha combinación espećıfica dos coeficientes
de Lovelock. O sector ou rama xeralmente escollido para a análise é a chamada rama de
Einstein-Hilbert (EH), xa que de feito, esta se reduce á solución da Relatividade Xeral ao

1O que herdaches dos teus devanceiros, gánao, para que de verdade sexa teu.
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apagar os coeficientes de order superior. Nesta tese presentamos algunhas ferramentas que
permiten a descrición de buracos negros de Lovelock con valores arbitrarios de todo o conx-
unto de parámetros, a dimensionalidade e a orde da teoŕıa. A pesares do feito de a solución
ser impĺıcita, é pośıbel extraer a información relevante e discutir toda a posible casúıstica
na situación máis xeral, analizar o número de horizontes, a estabilidade termodinámica da
solución, transicións de fase, etc. Ademais, este enfoque ten sido xeneralizado para o caso de
solucións cargadas e mesmo cosmolóxicas, e tamén para as chamadas teoŕıas case-topolóxicas,
que comparten a mesma forma das solucións de buraco negro das gravidades de Lovelock
estando definidas en menores dimensións.

Este método é moi útil para gañar intuición sobre procesos f́ısicos que involucran buracos
negros. Por poñer un exemplo, é moi doado ilustrar a evolución da posición e número de
horizontes a medida que masa da solución vaŕıa, o que fornece información crucial sobre a
posible aparición de singularidades espidas e a violación da terceira lei da termodinámica.
Vimos que a simetŕıa ŕıxida imposta á solución inxenuamente permite tal comportamento,
o que é evitado unha vez a estabilidade da solución é tomada en consideración.

Analizamos a propagación de perturbacións no espazo-tempo definido pola solución bu-
raco negro ou singularidade espida no ĺımite de momentos e frecuencia altas. Este réxime
restrinxido presenta a vantaxe de ser moi simple, ao tempo que suficientemente potente para
probar a estabilidade das solucións de interese. Por outra banda, a inestabilidade parece
xurdir antes a enerx́ıas altas. Testamos deste xeito as nosas solucións e descubrimos que
a inestabilidade aparece sempre que nos achegarmos á aparición de singularidades espidas,
isto é, antes do horizonte do buraco negro desaparecer a solución tórnase inestábel, sendo
incerto onde conduce esta inestabilidade. As solucións con singularidades espidas son do
mesmo xeito inestábeis, polo que non poden tampouco ser formadas por colapso. Isto tamén
acontece para os casos nos que un inxenuamente agardaŕıa a aparición dun buraco negro ex-
tremal (sen carga) e saltos repentinos da posición do horizonte, preservando entón a terceira
lei da termodinámica para as teoŕıas de Lovelock, polo menos para esta clase de buracos
negros.

As mesmas inestabilidades aparecen tamén no proceso de evaporación de buracos negros
esféricos nunha gran variedade de situacións. De feito, este comportamento só é evitado por
solucións cunha singularidade puntual (tamén as hai de tamaño finito) en dimensións maiores
ou iguais a 3K + 1, sendo K a orde da teoŕıa de Lovelock. A acción de Einstein-Hilbert
semella especial a este respecto, xa que é a única teoŕıa de Lovelock que é estable en cada
dimensión na cal pode ser definida. O caso de dimension tres é especial, xa que a gravidade
de Einstein-Hilbert neste caso é unha teoŕıa de Chern-Simons do grupo de AdS, e polo tanto
topolóxica. A imaxe global, que xorde a partires desta análise, parece indicar que estas
inestabilidades teñen un rol central dinámica gravitatoria. Sen ser unha patolox́ıa da teoŕıa,
como se ten dito nalgunha ocasión, as inestabilidades evitan a aparición de comportamento
verdadeiramente patolóxico na mesma. Ademais, impoñen de maneira xenérica un ĺımite
superior sobre a densidade efectiva, M/Rd−1, de calquera obxecto, ĺımite que depende da
rama espećıfica da teoŕıa que estamos considerando. Isto semella impedir a existencia de
entidades puntuais na maioŕıa dos casos.

Asimesmo, achamos que as transicións de fase de Hawking-Page ocorren de forma xenérica
nas teoŕıas de Lovelock. A única diferenza coa Relatividade Xeral é a posibilidade de ter
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máis dun burato negro termodinamicamente estábel á mesma temperatura para certos rangos
desta última, de tal xeito que a transición pode ocorrer entre dous buracos negros de diferente
masa. Por analox́ıa co caso de Einstein-Hilbert, a transición entre o baleiro térmico e o buraco
negro pode ser identificada como unha transición de confinamento/deconfinamento da CFT
dual, en consecuencia, as transicións entre dous buracos negros corresponden a distintas fases
deconfinadas da teoŕıa de campos.

Outra caracteŕıstica aparentemente patolóxica dos buracos negros de Lovelock é a posi-
bilidade de mostrar valores negativos da entroṕıa. Con todo, estes estados problemáticos
poden ser evitadas se nos restrinxirmos á fase globalmente preferida para cada temperatura.
Para isto, nalgúns casos, por exemplo buracos negros hiperbólicos, foi crucial ter conside-
rado na nosa análise a posibilidade de configuracións extremais con temperatura arbitraria
e entroṕıa nula, de acordo cos métodos semi-clásicos. Isto é importante para ter un estado
de menor enerx́ıa ou groundstate ben definido, con masa mı́nima a calquera temperatura de
tal xeito que os estados de entroṕıa negativos teñen sempre unha enerx́ıa libre maior e son
aśı globalmente inestábeis. Isto pode tamén fornecer información de interese sobre o papel
que xogan estes estados extremais e sobre se deben ser considerados só como casos ĺımite
dos seus compañeiros non extremais ou a calquera temperatura.

As gravidades de Lovelock amosan unha familia de baleiros – e as correspondentes
solucións de buraco negro – que suxiren a posibilidade dun diagrama de fases ben com-
plexo. A fin de estudar o diagrama de fases da teoŕıa completa, sen restrinx́ırmonos a unha
rama espećıfica, temos que poder describir a posibilidade de transicións de fase entre as
diferentes ramas da teoŕıa. Isto tamén podeŕıa ser considerado como un posible desenlace
das inestabilidades mencionadas anteriormente. Isto último foi parte da motivación inicial
para a nosa análise destas transicións, porén inestabilidades e transicións de fase parecen
estar correlacionadas só en situacións moi particulares.

A fin de describir as transicións entre diferentes ramas da teoŕıa, ampliamos o tipo de
solucións a ser considerado. Mantendo os mesmos requisitos de simetŕıa permitimos solucións
que, sendo continuas, teñen a primeira derivada discontinua (ou a conexión de spin) nunha
determinada superficie. A existencia destas solucións é debida aos momentos da teoŕıa de
Lovelock seren multivaluados. As velocidade poden saltar en calquera punto sempre que os
momentos sexan continuos. Esta continuidade dos momentos canónicos a través da xuntura
é debida á ausencia de materia sobre esta superficie. Con todo, isto non quere dicir que
os parámetros de masa das solucións interior e exterior sexan iguais, tendo a burbulla unha
masa efectiva M+ −M−. Para configuracións estáticas, sexan estas estábeis ou inestábeis,
ademais da masa podemos asignar estes thermalons valores da temperatura e a entroṕıa.
Nós mostramos que a contribución dos termos de superficie na burbulla é tal que a enerx́ıa
libre de todo o espazo-tempo toma a forma esperada F = M+ − T+S, coa masa e a temper-
atura, M+ e T+, correspondentes á solución externa, mentres que a entroṕıa S permanece
sen cambios vindo do horizonte interior. Encontramos, tamén, que as relacións habituais
entre as variábeis termodinámicas e mesmo a primeira lei da termodinámica son verificadas.
Deste xeito probamos a consistencia da imaxe termodinámica para estas configuracións xen-
eralizadas.

A única hipótese necesaria para que todo o anterior funcione, é a existencia dun hori-
zonte na rexión interior da burbulla. Por simple que poida parecer, esta condición impón
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importantes restricións sobre o tipo de configuración que poden ser consideradas. Por ex-
emplo, para topolox́ıa plana a solución interna ten que pertencer necesariamente á rama
EH. Isto implica aśı mesmo que a termodinámica da mencionada rama (identificada polo
seu comportamento asintótico) non é alterada pola existencia destas novas solucións e que
calquera salto de rama (baixo certas condicións) levará necesariamente a este sector. En
realidade, o thermalon é sempre a fase termodinamicamente preferida e, polo tanto, unha
burbulla aparece necesariamente, cun buraco negro aloxado no seu interior. Nalgúns casos,
con todo, dependendo da elección da asintótica o thermalon co buraco negro EH regular
dentro non existe e a transición non pode ter lugar. Os casos non planares son un pouco
máis complexos e xenericamente conlevan unha (ou varias) transicións de fase a temperatura
finita. Analizamos o caso da teoŕıa de Lanczos-Gauss-Bonnet (LGB) en gran detalle. O caso
hiperbólico é especial, xa que tamén permite thermalons con asintótica EH, pero só por riba
de certo valor cŕıtico do coeficiente LGB.

As condicións de xuntura empregadas para atopar as configuracións de burbulla estáticas,
determinan tamén a dinámica das mesmas, nomeadamente a estabilidade da súa posición
de equilibrio. No caso da gravidade LGB, a burbulla, sendo inestábel, pode expandirse até
acadar a fronteira de AdS en tempo finito, cambiando aśı a asintótica e as cargas da solución.
Isto lembra un pouco ao que ocorre no caso dun quench onde a enerx́ıa é a temperatura
do sistema cambia como resultado do traballo realizado durante a variación das condición
de contorno. O mecanismo do thermalon pode ser considerado como un quench inducido
termodinamicamente, en contraposición a unha acción externa sobre o sistema. No caso
da gravidade LGB con condicións de contorno inestábeis (à la Boulware-Deser), no caso
esférico o baleiro térmico é a fase globalmente estábel a baixa temperatura ao tempo que
existe unha temperatura cŕıtica por riba da cal a enerx́ıa libre se volve negativa, indicando
a transición. Mesmo para valores positivos da enerx́ıa libre a solución de burbulla existe e
pode ser formada cunha probabilidade finita, o sistema dise que é metaestábel. En calquera
caso, o sistema é levado necesariamente á rama EH.

O caso máis interesante é o de topolox́ıa hiperbólica xa que temos a transición directa
(cara a rama EH) con asintótica inestábel pero tamén a inversa con asintótica EH. A situación
para a transición directa é moi semellante aos casos esférico e planar, a transición levando o
sistema necesariamente cara asintótica EH. Con estas outras condicións de contorno, porén,
o sistema é estábel para valores moderados do coeficiente LGB xa que non existe ningunha
configuración de thermalon que poida mediar a transición. O espazo-tempo é, polo tanto,
necesariamente levado para a rama EH e permanece aĺı. Para valores máis elevados de λ a
situación é abondo distinta con burbullas de ambas fases aparecendo de xeito caótico. Aı́nda
que o buraco negro representa sempre a fase globalmente preferida, as burbullas teñen unha
probabilidade non nula de se formar. Neste caso, a inclusión dos estados extremais a calquera
temperatura, parece ser de novo crucial para ter un ensemble ben definido, polo menos para
valores de λ pequenos.

No contexto da correspondencia AdS/CFT os buracos negros corresponden a fases de-
confinadas do plasma mentres que a fase confinado é o baleiro térmico. As transicións xener-
alizadas de Hawking-Page mencionadas no parágrafo anterior parecen corresponder a unha
transición de fase de confinamento/deconfinamento que inclúen un cambio nas propiedades
microscópicas do plasma.
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No caso de teoŕıas de Lovelock máis xerais a situación pode cambiar bastante. Por exem-
plo, o punto de equilibrio de certos thermalons pode ser estábel, no canto de inestábel, de tal
forma que a fase resultante é máis parecida a un buraco negro estándar que aos thermalons da
gravidade LGB. O sistema pode quedar indefinidamente nesa fase se non hai outro thermalon
que leve o sistema a outro lugar. Do punto de vista holográfico, estes thermalons estábeis
constitúen a fase deconfinada de certas ramas da teoŕıa que inxenuamente non teŕıan unha.

As teoŕıas de Lovelock teñen a destacábel caracteŕıstica de que moita información f́ısica
relevante está codificada no polinomio Υ[g]. As inestabilidades de Boulware-Deser, por
exemplo, corresponden simplemente a Υ′[Λ] < 0, o que ten unha fermosa interpretación dual
na CFT, a carga central CT ten que ser positiva para a teoŕıa ser unitaria. Nós calculamos
a carga central CT e puxemos a afirmación anterior en termos concretos, aśı como os dous
parámetros extra, t2 e t4, que aparecen nas funcións de tres puntos do tensor enerx́ıa-impulso.
t4 é cero no caso particular das teoŕıas de Lovelock, algo que pode estar relacionado con algún
tipo de condición de supersimetria da CFT, áında que a versión supersimétrica das teoŕıas
de Lovelock non é coñecida. Tamén discutimos os pośıbeis termos que poden contribúır ao
cálculo de t2 e t4 no contexto de teoŕıas xerais con correccións de orde superior na curvatura.
Restrinx́ındonos a termos con ecuacións de segunda orde na solución de shock wave, há unha
correspondencia un a un entre as pośıbeis estruturas que aparecen no fluxo de enerx́ıa e
as pośıbeis correccións de orde superior. Isto tamén coincide co número de combinacións
independentes baixo redefinicións dos campos.

Outra correspondencia ben interesante que foi atopada empregando as teoŕıas de Love-
lock é a que relaciona causalidade holográfica en AdS con positividade da enerx́ıa. Ambas
condicións f́ısicas son conceptualmente moi diferentes, porén implican o mesmo conxunto de
restricións sobre t2 (con t4 = 0). A falta dunha proba definitiva da positividade destes fluxos
de enerx́ıa, o anterior pode ser tamén considerado como unha proba indirecta restrinxida
ao caso de Lovelock. Ademais, isto levou ao descubrimento de que estas condicións son
esixidas pola unitariedade da correspondente CFT [39]. Por outra banda, áında que esta
conexión foi descuberta inicialmente para buracos negros, non é unha caracteŕıstica de CFTs
térmicas. Realizamos outro cálculo similar, usando unha solución de shock wave e obtemos
restricións equivalentes ás atopadas previamente. Este segundo cálculo tamén deixa claro
que o problema ten a súa orixe no vértice de tres gravitóns. Ao contrario das inestabilidades
atopadas arriba, a violación de causalidade é unha patolox́ıa que debe ser descartada coma
algo non f́ısico. As inestabilidades porén, poden indicar a existencia de novas solucións ou
simplemente ser debidas ao feito de estar expandindo en torno ao baleiro errado. No caso
dos buracos negros de Lovelock a estabilidade é necesaria para a validez da solución, non é
unha restrición fundamental.

As condicións f́ısicas anteriores restrinxen os pośıbeis valores dos coeficientes de Lovelock
que describen unha CFT causal. Nótese que esta conexión non teŕıa podido ser descuberta
no réxime perturbativo xa que precisamos t2 e t4 de orde un para que a teoŕıa poida violar
causalidade. Ademais, na aproximación de supergravidade t2 é da mesma orde que α′ e
polo tanto pequeno. Todo isto, e o feito de que todas as fórmulas parecen estenderse de
forma significativa e suave a dimensión e orde da teoŕıa arbitrarias, parece apoiar a idea da
aplicabilidade da correspondencia AdS/CFT alén do contexto da teoŕıa das cordas. Aı́nda
que o termo de Lovelock máis simple aparece en realizacións stringy da dualidade, os termos
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de Lovelock de orde superior non foron nunca atopados nese contexto, como tampouco
correccións con coeficientes finitos. Entón, teñen as teoŕıas conformes fortemente acopladas
cargas centrais necesariamente iguais en catro dimensións? A resposta a esta cuestión non
parece ser doada e non atopamos ningún indicio que apunte en calquera dos dous sentidos.

Contrariamente a certas expectativas previas, tamén atopamos que a violación de causa-
lidade tamén pode ocorrer no interior da xeometŕıa. Isto mostra ademais que esta patolox́ıa
non está necesariamente ligada ás propiedades ultravioletas da teoŕıa de campos nin a posi-
tividade da enerx́ıa en todos os casos, so cando ocorre perto da fronteira de AdS. Seŕıa
interesante verificar se este efecto podeŕıa estar relacionado coa positividade de funcións de
máis puntos dos operadores fluxo de enerx́ıa.

Finalmente, analizamos as restricións impostas pola causalidade/positividade sobre ou-
tras cantidades relevantes da teoŕıa de campos, en particular coeficientes de transporte coma
a viscosidade de cisallamento. O cociente desta cantidade con respecto á densidade de
entroṕıa, η/s, é corrixido do seu valor KSS, η/s = 1/4π, polo coeficiente de LGB de tal
xeito que un ĺımite superior de λ se traduce automaticamente nun ĺımite inferior para η/s.
A pesares dos termos de Lovelock de orde superior non entraren explicitamente na expresión
corrixida de η/s, estes si afectan o valor do mı́nimo. Engaden unha maior liberdade que,
consecuentemente, permite a λ tomar valores máis elevados, reducindo desta forma o mı́nimo
de η/s. Na discusión da existencia ou non dese ĺımite ficou claro que a causalidade por ela
mesma non pode impedir a η/s tomar valores arbitrariamente pequenos, mesmo negativos
nalgúns casos. De feito, é pośıbel constrúır modelos holográficos efectivos onde o termo
LGB é orixinado por un VEV doutro campo que condensa no infravermello, isto é so toma
valores finitos perto do horizonte sendo cero asintóticamente. Deste xeito, a adición de tal
corrección non afecta a causalidade da teoŕıa, ao tempo que modifica o valor da viscosidade.
Neste sentido, é pośıbel eludir as restricións impostas por causalidade nesta variable.

Unha vez máis as restricións que evitan os valores non f́ısicos da viscosidade xorden da es-
tabilidade. Despois de todo, a viscosidade negativa tamén corresponde a unha inestabilidade
do sistema. Mediante a análise da estabilidade no réxime de altas enerx́ıas, demostramos que
η/s ten sempre un valor mı́nimo distinto de cero independentemente da dimensión ou a order
da teoŕıa de Lovelock. Porén, este mı́nimo redúcese aproximándose a cero a medida que a
dimensionalidade d aumenta. Os nosos resultados indican que para valores altos de d, debe
ser posible chegar a un valor de 4πη/s de alomenos 1/K. Até dez dimensións (i.e. orde catro
da teoŕıa), pode ser demostrado que o mı́nimo para cada dimensión segue aproximadamente
unha curva dada por 4πη/s ≈ 1/(d− 2).

Ao longo desta tese, tentei presentar as teoŕıas Lovelock como un campo de probas
interesante de cara a contrastar as nosas ideas sobre a gravidade e a dualidade holográfica.
Isto proporcionou información relevante sobre a consistencia e viabilidade das modificacións
da acción de Einstein-Hilbert da gravidade e, por contraste, tamén sobre este caso en catro
ou máis dimensions. As teoŕıas de Lovelock teñen moitas caracteŕısticas interesantes, unha
rica dinámica e efectos que non poden ser observados no caso máis simple da Relatividade
Xeral. As nosas pescudas desvelaron profundas conexións entre conceptos aparentemente non
relacionados. Estas conexións insospeitadas teñen o seu exemplo máis célebre na equivalencia
entre causalidade en AdS e a positividade da enerx́ıa na teoŕıa conforme, mas descubrimos
exemplos máis sut́ıs. As inestabilidades teñen un papel destacado neste contexto, tanto
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relacionado coa preservación da Hipótese de Censura Cósmica ou a terceira lei da mecánica
de buracos negros nas gravidades de Lovelock, como co proceso de evaporación dos buracos
negros e a existencia dun valor mı́nimo de η/s nestas teoŕıas. A diversidade das situacións
nas que estas inestabilidades desempeñan unha función é moi importante e merecen unha
investigación máis aprofundada. Tamén pode ser interesante investigar as súas implicacións
no contexto da correspondencia AdS/CFT, en especial sobre os posibles valores de outros
coeficientes de transporte do plasma dual.

Despois desta longa traveśıa, as gravidades de Lovelock móstranse como un conxunto
complexo e interesante de teoŕıas gravitatorias, non inconsistentes en calquera aspecto fun-
damental. Porén, hai áında multitude de avenidas abertas para investigar, moitos problemas
sen resolver. Por exemplo, en dimensións maiores que catro hai un incremento enorme na
variedade de solucións rotantes, black rings, black saturns, multi black rings, etc. Unha in-
teresante pregunta a ser respondida no contexto das teoŕıas de Lovelock seŕıa até que punto
esta rica estrutura pervive. Para iso queda áında un longo camiño xa que nen sequera se
coñece a forma das solucións rotantes máis simples. Outra cuestión non suficientemente ex-
plorada é a da reducción dimensional das gravidades de Lovelock, as relacións entre teoŕıas
de diferentes ordes – en particular coa Relatividade Xeral – e a estimulante posibilidade da
compactificación espontánea destas teoŕıas. Na exploración de novos camiños para simpli-
ficar e obter novas perspectivas sobre a dinámica gravitatoria, o ĺımite infinito dimensional
ten atráıdo certa atención. As teoŕıas de Lovelock son a extensión máis obvia tamén a este
respecto, xa que fornecen un segundo parámetro, K, a orde da teoŕıa, que podeŕıa mesmo
escalar tan rápido coma a dimensión do espazo-tempo. No contexto holográfico, a noción de
entroṕıa de entrelazamento atraiu recentemente moita atención e a gravidade de Lovelock
parece ser um bo campo de probas tamén neste caso. Finalmente, como xa foi comentado
no cerne da tese, as teoŕıas de Lovelock, mediante a correspondencia AdS/CFT, abren unha
nova v́ıa para o estudo de CFTs de dimensión arbitraria, das que non se sabe moito.

Esperamos que as ferramentas e a información recadada na nosa análise sexa de valor no
camiño cara entender correccións de orde superior na curvatura de tipo xenérico.



Appendix A

Master equations for high
momentum perturbations

A.1 Black hole perturbations

We shall consider perturbations of the metric around the black hole solution obtained in the
previous sections along a given direction parallel to the boundary (say, xd−1 ≡ z) and propa-
gating towards the interior of the geometry. Using the direction z as an axis of symmetry, we
can classify the perturbations in helicity representations of the rotation group around it. It
is convenient to analyze each case separately. The linear order contribution to the equations
of motion (1.1.5) can be written as

δEa = εaf1···fd−1

[ d−1
2

]∑
k=0

ck
[
k δRf1f2 ∧Rf3···f2k ∧ ef2k+1···fd−1

+ (d− 2k − 1)Rf1···f2k ∧ ef2k+1···fd−2 ∧ δefd−1
]

= 0 . (A.1.1)

Helicity two perturbation

The easiest case is the one with higher helicity. For symmetry reasons we can choose
the helicity two perturbation, hµν(t, r, z)dxµdxν , simply as1 h23(t, r, z) dx2dx3. Since we
will consider small perturbations, it is convenient to include an infinitesimal parameter ε,

1In principle, one should consider hij , with i < j = 2, . . . , 6, but their equations are all decoupled and
give rise to the same answer. The remaining helicity two components are hii − hjj , with i, j = 2, . . . , 6, but
since diagonal components can be made all equal by rotation, hii = 0.
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h23(t, r, z) = ε φ(t, r, z). This can be readily included in the vielbein as ẽa = ea + ε δea [1],

ẽ 0 =
√
f dt , ẽ1 =

1√
f
dr , ẽF =

r

L
dxF , F=4...d−1 ,

ẽ2 =
r

L

(
1 +

ε

2
φ
) (
dx2 + dx3

)
, ẽ3 =

r

L

(
1− ε

2
φ
) (
dx2 − dx3

)
. (A.1.2)

From the torsionless condition we can now calculate the first order corrections to the spin-
connection, ω̃ab = ωab + ε δωab, and from them those to the curvature 2-form,

δRa
b = d(δωab) + δωac ∧ ωcb + ωac ∧ δωcb . (A.1.3)

Consider now the Fourier transform of the perturbation,

φ(t, r, z) =

∫
dω

2π

dq

2π
φ̂(r; k) e−iωt+iqz , k = (ω, 0, . . . , 0, q) . (A.1.4)

For the sake of clarity, we omit the k dependence in φ̂ in what follows.
The first thing we have to realize in order to carry out this calculation is that the relevant

contributions to order ω2, q2 and ω q, come from derivatives along the directions e0 and ed−1.
In the simplest case, for helicity two perturbations, these contributions have only an effect on
the expressions of δω02, δω03, δω(d−1)2 and δω(d−1)3. Since we are at the linearized level, we
conclude that the only non-trivial contributions to order ω2, q2, ω q come from their exterior
derivative (the second term in (A.1.1) is also irrelevant),

δR02 ≈ d(δω02) = −ω
2

2f
φ e0 ∧ e2 +

ω qL

2r
√
f
φ ed−1 ∧ e2 , (A.1.5)

δR(d−1)2 ≈ d(δω(d−1)2) = −q
2L2

2r2
φ ed−1 ∧ e2 − ω qL

2r
√
f
φ e0 ∧ e2 , (A.1.6)

where the symbol ≈ refers to those contributions relevant to compute the propagation speed
of a boundary perturbation. There are analog expressions (with the opposite sign) for the
components with a leg along the e3 direction. Notice that the cosmological constant term is
irrelevant for our purposes.

Recalling from (2.1.6) that the curvature 2-form of the black-hole spacetime is propor-
tional to ea ∧ eb, it is immediate to see that the only non-vanishing contributions are those
with d(δωab) behaving equally,

d(δω02) ≈ −ω
2

2f
φ e0 ∧ e2 , d(δω(d−1)2) ≈ −q

2L2

2r2
φ ed−1 ∧ e2 , (A.1.7)

(and, of course, an analogous expression for d(δω03) and d(δω(d−1)3)). Some of the equations

of motion are trivially satisfied. Indeed, notice that δE (d)
a ≈ 0 trivially, unless a = 2 or 3.

This is due to cancellations of contributions coming from d(δω02) and d(δω03) (similarly,
d(δω(d−1)2) and d(δω(d−1)3)). Moreover, by symmetry, the two non-trivial equations just
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differ by a global sign. We must then focus on a single component of (A.1.1), say, δE (d)
3 = 0.

The contribution to first order from each Lovelock term can be written as

δE (d)
3 = 2

ε302f3···fd−1

[ d−1
2

]∑
k=1

k ck d(δω02) ∧Rf3···f2k ∧ ef2k+1···fd−1

+ ε3(d−1)2f3···fd−1

[ d−1
2

]∑
k=1

k ck d(δω(d−1)2) ∧Rf3···f2k ∧ ef2k+1···fd−1

 = 0 . (A.1.8)

To proceed, the only thing to worry about is where the 0 and 1 indices are, since depending
on them the curvature 2-form components change (2.1.6). Notice that the first (second) line
gives the ω2 (q2) contribution. The former, for instance, can be nicely rewritten in terms of
g(r),

δE3, ω = −ω
2

f
φ

K∑
k=0

k ck
(
r(gk−1)′ + (d− 3)gk−1

)
(d− 4)! , (A.1.9)

while the latter reads

δE3, q =
q2L2

r2
φ

K∑
k=0

k ck
(
r2(gk−1)′′

+ 2(d− 3)r(gk−1)′ + (d− 3)(d− 4)gk−1
)

(d− 5)! . (A.1.10)

Here we assume that ck>K = 0. It is convenient to define the following functionals, C(k)
d [f, r],

involving up to kth-order derivatives of f (or g):

C
(0)
d [g, r] = Υ′[g] , (A.1.11)

C
(1)
d [g, r] =

(
r
d

dr
+ (d− 3)

)
Υ′[g] , (A.1.12)

C
(2)
d [g, r] =
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d

dr
+ (d− 3)

)(
r
d
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+ (d− 4)

)
Υ′[g] . (A.1.13)

Then, the speed of the helicity two graviton can be written as (see [1] for details)

c2
2(r) ≡ q2

ω2
=

L2f

(d− 4)r2

C(2)
d [g, r]

C(1)
d [g, r]

, (A.1.14)

Helicity one perturbation

It is a bit more involved but the same can be done for the other polarizations. In order to
choose an helicity one perturbation, we can proceed with a gauge fixing (h0a = 0) and, by
symmetry arguments, just turn on the components h12(t, r, z) = ε φ(t, r, z) and h26(t, r, z) =
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ε ψ(t, r, z) (recall that the direction 1 is the radial one and d− 1 is the propagation z). The
perturbation, thus, can be parameterized as,

ẽ 0 =
√
f dt , ẽ1 =

1√
f
dr +

r

L
ε φ dx2 ,

ẽ2 =
r

L

(
dx2 + ε ψdz

)
, ẽB =

r

L
dxB , B=3,4,...d−1 . (A.1.15)

Proceeding as in the previous case we get a set of algebraic equations that sets one of the
components, h2(d−1), to zero. The remaining equation yields directly the speed of the graviton
as in the previous case

c2
1 =

L2f

(d− 3) r2

C(1)
d [g, r]

C(0)
d [g, r]

. (A.1.16)

Helicity zero perturbation

We can proceed in the same way as we did for the other two types of perturbations. The
helicity zero perturbation is, anyway, a bit more involved. After gauge fixing, we still need
to turn on several components h11 = ψ(t, r, z), h22 = h33 = h44 = h55 = ξ(t, r, z), h16 =
φ(t, r, z), and h66 = ϕ(t, r, z) (as before, we will call their Fourier transforms respectively
ψ̂(r), ξ̂(r), φ̂(r) and ϕ̂(r). The vielbein for this case reads,

ẽ 0 =
√
f dt , ẽ1 =

1√
f

(
1 +

ε

2
ψ
)
dr +

r

L
ε φ dz , (A.1.17)
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2
ϕ
)
dz , ẽB =
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2
ξ
)
dxB , B=2,3,...d−2 . (A.1.18)

One of the components, φ, is set to zero by the equations of motion, while other two can be
written in terms of only one degree of freedom

ψ = −C
(1)
d [g, r]

C(0)
d [g, r]

ξ , ϕ =

(
q2

ω2

L2f(r)

r2

C(1)
d [g, r]

C(0)
d [g, r]

− (d− 3)

)
ξ . (A.1.19)

When we substitute these expressions into the equations of motion, only one of them remains
linearly independent and gives the speed of the helicity zero graviton

c2
0 =

L2f

(d− 2) r2

(
2 C(1)

d [f, r]

C(0)
d [f, r]

− C
(2)
d [f, r]

C(1)
d [f, r]

)
. (A.1.20)

The above expressions are valid for arbitrary higher order Lovelock theory and higher di-
mensional spacetimes. Instead of analyzing these expressions right away, let us discuss an
alternative computation, first introduced in [223], given by the scattering of gravitons and
shock waves.
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A.2 Shock waves and gravitons

It is more convenient to work in Poincare coordinates, z = 1/r. We insist in performing all
computations in the formalism used in the previous section since it is significantly simpler
than the usual tensorial setup. We define light-cone coordinates2 u = t+ x6 and v = t− x6,
and consider a shock wave propagating on AdS along the radial direction,

ds2
AdS,sw = ds2

AdS + f(u)$(xa, z) du2 . (A.2.1)

We should think of f(u) as a distribution with support in u = 0, which we will finally identify
as a Dirac delta function. As we did in the previous section, we consider an helicity two
graviton perturbation, h23 dx

2dx3, which we keep infinitesimal h23 = ε φ,

ds̃2
AdS,sw =

N2
#

L2

−dudv + dxidxi + 2εφ dx2dx3 + L4dz2

z2
+ f(u)$(xa, z) du2 . (A.2.2)

The calculation is very similar to the one in the previous section. We just have to modify
the vielbein considered as the input. In this case,

ẽ 0 =
N#

Lz
du , ẽ1 =

N#

Lz
dv − Lz

N#

f(u)$(xa, z) du ,
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N#√
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(dx2 − dx3) ,

ẽK =
N#

Lz
dxK , K=4,5,...d−2 , ẽd−1 =

N#L

z
dz . (A.2.3)

The constant N# (7.1.3) is related to the radius of the AdS space, and the perturbation
depends only on (u, v, z) as before. The shock wave is parameterized by the function $(xa, z).

Introducing (A.2.3) into the equations of motion for the background (ε → 0) we get an
equation for N# yielding the already known possible values, and the equation for the shock
wave propagating on AdS (6.2.22). There are several possible solutions for this equation.
The one we are going to consider is

$ = αN2
# z

d−3 , (A.2.4)

which, as discussed in [223], can be obtained from the black hole background by boosting
the solution while keeping its energy constant. The normalization constant α is proportional
to the energy density and, as such, must be positive if the solution has a positive mass.

For perturbations propagating on top of these backgrounds, the proceedure is almost
the same as in the previous section, just a bit more complicated since the symmetry of the
background is lower than in the black hole solution. As before, since we are only interested
in the high momentum limit, we keep only contributions of the sort ∂2

vφ, ∂u∂vφ and ∂2
uφ.

2We then have to change the tangent space metric to η00 = η11 = 0, η01 = η10 = − 1
2 , ηAB =

diag(1, 1, · · · , 1),A,B=2,...,6.
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These contributions come again from the exterior derivative of the perturbation of the spin
connection. In the helicity two case

d(δω02) =
L2 z2

N2
#

[
∂2
vφ e

1 ∧ e2 +
(
∂u∂vφ+ αf(u)L2zd−1 ∂2

vφ
)
e0 ∧ e2

]
, (A.2.5)

d(δω12) =
L2 z2

N2
#

[(
∂u∂vφ+ αf(u)L2zd−1 ∂2

vφ
)
e1 ∧ e2 + (· · · ) e0 ∧ e2

]
, (A.2.6)

the ellipsis being used in the second expression since the corresponding term does not con-
tribute to the equations of motion. The components with index 3 instead of 2 are the only
remaining ones non-vanishing, and they are obtained changing φ→ −φ. The other thing we
need is the curvature 2-form of the background metric, that can be written as

Rab = Λ(ea ∧ eb +Xab) , (A.2.7)

where Λ = − 1
L2N2

#
and Xab is an antisymmetric 2-form accounting for the contribution of

the shock wave

X1a = (d− 1)α f(u)L2 zd−1 e0 ∧ ea , a 6= 0, d− 1 ,

X1(d−1) = −[(d− 2)2 − 1]α f(u)L2 zd−1 e0 ∧ ed−1 .

Now, the relevant equation is, as before, given by a single component of (A.1.1),

δE3 =
K∑
k=1

k ck ε3f1···fd−1
d(δωf1f2) ∧Rf3···f2k ∧ ef2k+1··· fd−1

= 2
K∑
k=1

k ck
[
ε302f3···fd−1

d(δω02) + ε312f3···fd−1
d(δω12)

]
∧Rf3···f2k ∧ ef2k+1··· fd−1

=
4L2z2

N2
#

K∑
k=1

k ck Λk−1
[
(d− 3)!

(
∂u∂vφ+ αf(u)L2zd−1∂2

vφ
)
− (k − 1)×

×(d− 5)!
(
(d− 5)(d− 1)− [(d− 2)2 − 1]

)
αf(u)L2zd−1∂2

vφ
]
dV ol , (A.2.8)

since the diagonal part of d(δωab) contributes to all the diagonal parts of Rab and the off-
diagonal part of d(δωab) contributes to the off-diagonal part of one of the Rab. Collecting
terms type ∂u∂vφ and ∂2

vφ and simplifying constant factors (not depending on the degree of
the Lovelock term, k), δE3 = 0 implies

Υ′[Λ]

[
∂u∂vφ+

(
1 +

2(d− 1)ΛΥ′′[Λ]

(d− 3)(d− 4)Υ′[Λ]

)
αf(u)L2zd−1∂2

vφ

]
= 0 . (A.2.9)

As it should be expected we get Υ′[Λ] as an overall constant related to the unitarity properties
of these perturbations and the constant factor multiplying the ∂2

vφ term can be written in
terms of t2 defined in (6.2.29) as

N2 = 1 +
2(d− 1)ΛΥ′′[Λ]

(d− 3)(d− 4)Υ′[Λ]
= 1− 1

d− 2
t2 (A.2.10)
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The equations of motion for the other two helicities have exactly the same form with

N1 = 1 +
d− 4

2(d− 2)
t2 ; N0 = 1 +

d− 4

d− 2
t2 (A.2.11)

As discussed in chapter 7 this equations will be relevant when discussing holographic causality
properties of this spacetimes in the context of the AdS/CFT correspondence.



Appendix B

Three-point function parameters

Conformal symmetry is powerful enough to determine the form of the 3-point function for
the stress-energy tensor up to five constants and this are further constrained by conservation
laws allowing us to reduce the number of independent parameters to three, A, B and C.
Further one finds that Ward identities relate the two- and three-point functions and so CT
can be expressed in terms of these three constants.

CT =
Ωd−2

2

(d− 2)(d+ 1)A− 2B − 4dC
(d− 1)(d+ 1)

(B.0.1)

where Ωd−2 is the area of the unit (d− 2)-sphere. Also as the energy flux one-point function
is just a quocient of a three- and a two-point function t2 and t4 should also be writable in
terms of the three parameters A, B and C. This was done in [37] yielding

t2 =
2d

d− 1

(d− 3)(d+ 1)dA+ 3(d− 1)2B − 4(d− 1)(2d− 1)C
(d− 2)(d+ 1)A− 2B − 4dC

,

t4 = − d

d− 1

(d+ 1)(2(d− 1)2 − 3(d− 1)− 3)A+ 2(d− 1)2(d+ 1)B − 4(d− 1)d(d+ 1)C
(d− 2)(d+ 1)A− 2B − 4dC

,

Then the scalar, vector and tensor constraints coming from from the positivity of energy can
also be translated into

− d

d− 1

(d− 3)(d+ 1)A+ 2(d− 1)B − 4(d− 1)C
(d− 2)(d+ 1)A− 2B − 4dC

≥ 0 ,

d
(d− 3)(d+ 1)A+ (3d− 5)B − 8(d− 1)C

(d− 2)(d+ 1)A− 2B − 4dC
≥ 0 , (B.0.2)

−2d2(d− 2)
B − 2C

(d− 2)(d+ 1)A− 2B − 4dC
≥ 0 .

constraints that can be identified with those coming from causality in the boundary theory
in order to obtain expressions for A,B, C. However in order to unambiguously determine the
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normalization of these coefficients we can just obtain them in terms of CT , t2, t4 and plug
the expressions for these into them. We obtain then

A = −(d− 1)3

(d− 2)3

Γ[d]

πd−1

1

(−Λ)d/2

(
2dΛΥ′′[Λ]

(d− 4)2
+ Υ′[Λ]

)
,

B = − (d− 1)

(d− 2)3

Γ[d]

πd−1

1

(−Λ)d/2

(
(d− 1)d (d2 − 4d+ 6) ΛΥ′′[Λ]

(d− 4)2
+
(
d3 − 4d2 + 5d− 1

)
Υ′[Λ]

)
,

C = − (d− 1)2

2(d− 2)3

Γ[d]

πd−1

1

(−Λ)d/2

(
(d3 − 3d2 + 3d− 4) ΛΥ′′[Λ]

(d− 4)2
+

1

2
(2(d− 3)d+ 3)Υ′[Λ]

)
.



Appendix C

A curve through the parameter space
of Lovelock gravities

Exploring the full parameter space for a generic Lovelock theory is fairly untractable. As
such, we choose to consider a particular curve through parameter space, simple enough that
we can determine where along it a given theory preserves causality and stability. This curve
corresponds to such a choice of parameters that the defining polynomial of the Kth order
theory becomes (we set L = 1 here for simplicity)

Υ[g] = 1 + g + λg2 + . . . =
(

1− g

Λ

)(
1− g

Λ̃

)K−1

, (C.0.1)

where there is just one free parameter as

Λ̃ = −(K − 1)Λ

1 + Λ
, (C.0.2)

to ensure that the coefficient of order g on the polynomial (the Einstein-Hilbert term) is
actually one. All the Lovelock coefficients can be written in terms of this parameter,

λ =
(1 + Λ)((K − 2)Λ−K)

2(K − 1)Λ2
,

µ =
(1 + Λ)2(K − 2)((K − 3)Λ− 2K)

2(K − 1)2Λ3
, . . . (C.0.3)

We call this from now on the maximally degenerated trajectory (MDT). In figure C.1 we
show the projection of our curve on the λ-µ-plane for the particular case K = 5. For the
range Λ ∈ [−K, 0], the cosmological constant, corresponding to the root with minimum
absolute value of Υ = 0, is given by Λ, and beyond that by Λ̃. The curve parameterized
by Λ connects Einstein-Hilbert gravity (Λ = −1) with the maximally degenerated Lovelock
theory (Λ = Λ̃ = −K), henceforth denoted by the maximally degenerate point (MDP).
Given this curve, we want to see where instabilities or causality violation may occur. We
will restrict ourselves to the range Λ ∈ (−K,−1) section for any value K, i.e., to the part
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Figure C.1: Projection of the points corresponding to (C.0.1) in the λ-µ-plane for K = 5.
The dashed line correspond to the projection of the (K−1)th order trajectory, and in blue
the corresponding interval of Λ values for each part of the curve is indicated.

of the trajectory connecting the Einstein-Hilbert point with the MDP. We are looking for
solutions of c2

i (r) equals zero or one for the stability or the causality analysis respectively.
These constraints can be written as polynomial equations in g, and the appearance of new
roots is signaled by a change of sign of the corresponding discriminant. An important point
worth noticing here is that we are just interested in roots, g?, in the interval of allowed values
for the function g

g? ∈ [Λ, 0] , (C.0.4)

where Λ is the closest to zero root of Υ[Λ] = 0. The zeros of the discriminant separate the
theory space spanned by (d,K) into distinct regions. By examining the properties of curve
for a particular pair (d,K) we are guaranteed to have found the generic behaviour of the
curve within the region containing that point.

C.1 Stability analysis

All three potentials are bound to yield zero at the horizon and one at the boundary. Thus,
any root of c2

i [g] = 0 coming from outside the interval (C.0.4) has to enter it through the
horizon (g = 0) and in that case the horizon (which is always a zero for the equation)
becomes a degenerate root. This is exactly what we studied when analyzing stability at the
horizon – we look for the vanishing of the first coefficient in the horizon expansion. The
same phenomenon occurs at the boundary for the causality analysis. Conversely, if any root
leaves the interval between the boundary and the horizon one will also see a degenerate
root appearing. The only other option for an instability to show up is as a new double
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root appearing in the bulk. In any case, it is clear that a study of the discriminants of the
polynomial equations tells us exactly when these double roots occur. By carefully studying
the regions in parameter space where the discriminant changes sign, one can learn where
the stable and/or causal regions lie in parameter space. While this program is very involved
in the generic case, the particular trajectory in parameter space we have chosen is simple
enough so that this analysis of stability and causality can be done for all three potentials.

C.1.1 Stability at the horizon

The horizon stability analysis can be performed by combining the expressions (C.0.3) for the
Lovelock couplings along the MDT, with the stability constraints found in (4.2.9)-(4.2.10).
For each constraint we get a quartic equation on Λ and we can study the number of real
roots by examining the corresponding discriminants. For the lower boundary of the stability
wedge, corresponding to the tensor channel, we get

∆
(h)
s2 = −16(d− 1)6(K − 1)4K2(d− 3K − 1)(d− 2K − 1)×[

(d(162d− 1529) + 3768)K4 − (d(3d(45d− 391) + 1796) + 4044)K3 (C.1.1)

+(d(d(3d(9d− 56)− 530) + 3576)− 504)K2

−4(d− 1)(d(d(2d− 21)− 16) + 300)K + 8(d− 1)2((d− 2)d− 12)
]
,

where s stands for stability and the number to the corresponding helicity of the channel
considered. The h indicates that we are just considering stability at the horizon, for the
moment.

For general values of K this discriminant vanishes for d = 2K + 1 and d = 3K + 1. For
d < 3K+1 there is an interval of values for Λ around Λ = −K for which the tensor potential
becomes unstable. This is simply due to the fact that the end point of the MDT is outside
the stability wedge for d < 3K + 1. Then, by considering high enough d for fixed K, the
tensor channel becomes stable along our curve, close to the MDP.

We can proceed in a similar manner with the upper boundary of the näıve stability region,
given by the sound channel. The discriminant in this case is

∆
(h)
s0 = −432(d− 2)(d− 1)6(d− 2K − 1)(d−K − 1)(d−K)(K − 1)4K2 × (C.1.2)

×
(
((K − 8)K + 8)d2 − 2(K((K − 13)K + 6) + 8)d+K(20−K(23K + 2)) + 8

)
and it yields zero whenever d = 2K + 1 and

d± =
K3 − 13K2 + 6K ±

√
(K − 2)2K2 (K2 +K − 1) + 8

K2 − 8K + 8
. (C.1.3)

The relevant root for the part of the curve we are interested in is actually d−. For d < d−
there is a unstable interval of Λ values strictly inside Λ ∈ (−Λ,−1) as can be seen in figure
C.2. For d = 2K + 1 the MDP is at one of the edges of this interval. In the plot we can also
check that for d > d− this unstable interval disappears leaving a perfectly stable trajectory



242 APPENDIX C. A CURVE THROUGH PARAMETER SPACE

0.20 0.25 0.30 0.35
Λ

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Μ

Figure C.2: K = 3 trajectory (in black) and d = 7, 8, 9, 10, 11, 12, 15, 20 helicity 0 stability
constraint at the horizon (in blue). The unstable region is above the blue line. All the
roots are in the figure in this case.

until it reaches the MDP. The situation changes dramatically as we increase the order of
the Lovelock theory though. This is true for K < 7 – for K ≥ 7 the denominator of d−
changes sign and this critical value becomes negative and thus irrelevant. In other words, for
K ≥ 7 the unstable interval remains for every dimension. These statements are illustrated
by figures C.2 and C.3.

C.1.2 Full stability

For K > 7 it would appear that the sound channel is stable beyond the forbidden interval.
This turns out not to be the case. As one goes beyond this interval the instability moves
deeper in the bulk, so that there is always an instability in this channel. The full stability
analysis is performed as follows. First notice that the two functions involved in the effective
potentials, F ′(x) and F ′′(x), have particularly simple expressions along the MDT:

F ′(x(g)) =
(K − 1)(g − Λ)(Λ + 1) (2Λ2 +K (−Λ2 + gΛ + Λ + g))

(Λ2 +K (−Λ2 + gΛ + g))2 , (C.1.4)

F ′′(x(g)) =
2(K − 1)(g − Λ)Λ2(Λ + 1)(K + Λ)2((K − 1)Λ + g(Λ + 1))

(Λ2 +K (−Λ2 + gΛ + g))4 . (C.1.5)

We have removed the explicit dependence on the derivatives of the function g(r) by using
the polynomial equation (2.1.8). For instance one gets:

g′(r) = −d− 1

r

Υ[g]

Υ′[g]
. (C.1.6)

In this way we can analyze the potentials just knowing the range of values g can take
and avoiding solving the polynomial equation explicitly. In order to complete the stability
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Figure C.3: K = 8 trajectory (in black) and d = 17, 20, 25, 30, 50,∞ helicity 0 stability
constraint at the horizon (in blue and dashed black for d → ∞). The unstable region is
above the blue line. All the roots are in the figure in this case.

analysis, now in the bulk of the geometry, we have to check if there is any value of g ∈ [Λ, 0]
for which any of the potentials takes negative values. The appearance of any instability
will be signaled with a change of sign of the discriminant of the corresponding polynomial
equation c2

i = 01. This is where a minimum of the potential touches the zero axis yielding a
new double root of the equation. It is then enough to look for zeros of the discriminant and
check if there is instabilities in the different disconnected regions.

The full discriminant in the helicity zero case can be nicely written in terms of the
corresponding discriminant of the horizon condition,

∆s0 =
Λ12(K + Λ)12

(d− 1)12(Λ + 1)12
∆

(h)
s0 , (C.1.7)

and then the appearance of instabilities in the bulk is controlled by the same discriminant
analyzed in the precedent section. The Λ dependent factor vanishes just at the maximally
symmetric point as Λ = 0 is never possible in the present case. From the previous analysis
we know that there are two naively stable regions for d < d− and just a full naively stable
trajectory as we go to higher dimensions. We have to consider separately the allowed values
for Λ on both sides of the unstable interval.

For K < 7 and any value of Λ in between the forbidden interval and the MDP there is
an interval of values for g where the potential goes below zero. This instability disappears
for d > d−, at the same dimension as the näıve unstable interval does (see left figure C.4).
Notice there’s no instability either on the other allowed region as can be seen on the right
hand side of figure C.4. For higher values of K the instability in the allowed interval for Λ
close to the MDP never disappears. No matter how high the dimensionality some values of
g lead to negative values of the sound potential (see figure C.5). As one enters the stability

1This equation is not really polynomial but rational. However the denominator of the expression doesn’t
play any relevant rôle in this discussion and so we will restrict ourselves to the polynomial equation given
by the numerator
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Figure C.4: Helicity zero potential for K = 3 and d = 7, 8, 9, 10, 11, 12 to the left and to
the right of the forbidden interval on Λ, Λ = −2.5 and Λ = −1.15 respectively.
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Figure C.5: Helicity zero potential for K = 8 and d = 17, 20, 25, 30, 50, 100 to the left
and to the right of the forbidden interval on Λ, Λ = −2.5 and Λ = −1.15 respectively.

wedge the instability simply moves away from the horizon and out towards the boundary of
the geometry.

The same analysis can be done in the helicity two channel. There the full discriminant
turns out to be

∆s2 =
Λ12(K + Λ)12

(d− 1)12(Λ + 1)12
∆

(h)
s2 . (C.1.8)

In this case we just have one naively stable region for Λ ∈ (−K,−1) and the tensor potential
has been found to be stable everywhere there. Then the tensor channel is free of instabilities
as long as it is so at the horizon (see figure C.6).

Even though we haven’t made any reference to it yet, we didn’t forget the shear potential.
The reason for this disregard is that the corresponding stability constraint is always less
constraining than the helicity zero and two ones. In fact, it amounts just to λ < λc, or
equivalently η/s > 0, when the other two constraints are respected (see (4.1.5)).

All the features described in this section for the maximally degenerated trajectory can
be easily observed in the cubic Lovelock case as we increase the dimensionality (see figures
1.1.18).
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Figure C.6: Helicity two potential for K = 8 and d = 17, 20, 25, 30, 50, 100 and cosmo-
logical constant Λ = −4. We find causality violation, but no instabilities.

C.2 Causality analysis

Let’s now try doing the same kind of analysis with the causality constraints. These are of
the form

Υ′[Λ] + τΛΥ′′[Λ] = 0 (C.2.1)

For the MDT trajectory, solving this equation yields

Λ? = −K + 2(K − 1)τ

1 + 2(K − 1)τ
. (C.2.2)

Depending on the channel τ takes different values namely (see (7.1.11)),

τ2 =
2(d− 1)

(d− 3)(d− 4)

τ1 = −d− 1

d− 3
(C.2.3)

τ0 = −2(d− 1)

(d− 3)

In order to respect Λ? < 0 we must have τ > − 1
2(K−1)

or τ < − K
2(K−1)

. Then, the crossing
point of the MDT with the helicity two constraint is between the Einstein-Hilbert point
and the MDP, and the crossing with the other two constraints is before the Einstein-Hilbert
point. The helicity two crossing happens at a particular value of the LGB coupling, namely

λ =
K − 1

2K

K(K + 2(K − 1)τ)

(K + 2(K − 1)τ2)2
. (C.2.4)

For the helicity two constraint the coefficient τ goes to zero as d increases, that is, the value
of λ at the crossing point (the maximal value of λ regarding causality) is the value at the
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Figure C.7: All the different regions in the third order Lovelock case for d = 9, 11, 20
(and zoom), from top to bottom. In black, the maximally degenerated line considered in
the ‘full’ causality and stability analysis. For d < 11 the region of this curve closest to the
maximally symmetric point (black dot) is unstable whereas for d ≥ 11 it becomes stable.
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maximally symmetric point with an increasing extra factor that goes to one as d → ∞.
Then the crossing point approaches the MDP as d increases. This is explained by the fact
that the helicity two causality reduces to CT ≥ 0 for d → ∞, and hence our trajectory can
only cross it at the MDP itself.

The full causality analysis is quite more complicated that the stability one and not very
enlightening. Here we will simply cite some partial results in the most relevant case, the
helicity two one. In that case the equation c2

2(r) = 1 can be reduced to a polynomial equation
on g with discriminant

∆c2 = Λ20(1 + Λ)12(K + Λ)12 (Λ− Λ?) ∆̃c2. (C.2.5)

The factor ∆̃c2 is a complicated expression which has zeroes at points irrelevant for our
analysis. In particular, when restricted to the part of the curve connecting the Einstein-
Hilbert point with the maximally symmetric point (Λ ∈ (−K,−1)) the discriminant has
just one relevant root at Λ = Λ?, exactly the point determined by demanding causality at
the boundary. The situation is analogous for the other two helicities. Then, causality in
the MDT reduces to causality at the boundary. In particular, close to the MDP the only
constraint comes from the helicity two channel, as has been discussed.

In the same way as for the stability analysis, all the previously referred features can be
seen in the third order case (see figures 1.1.18).
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Cavitation effects on the
confinement/deconfinement
transition

Hydrodynamics is a universal framework to describe strongly coupled systems at energy
scales much lower than their characteristic microscopic scales (masses, temperature, etc).
The basic hydrodynamic equation is that of the conservation of the stress-energy tensor

∇µT
µν = 0 . (D.0.1)

For an ideal relativistic fluid the stress-energy tensor takes the form

T µνideal = E uµuν + P ∆µν , (D.0.2)

where E and P are the energy density and pressure,

∆µν = gµν + uµuν ,

and uµ is the fluid four-velocity, normalized so that uµu
µ = −1. The leading viscous correc-

tions are parameterized by the fluid shear η and bulk ζ transport coefficients in the viscous
tensor Πµν :

T µν = T µνideal + Πµν , (D.0.3)

Πµν = −η σµν − ζ ∇u ∆µν , (D.0.4)

where ∇u ≡ ∇αu
α, and we have adopted

σµν =
(
∆µλ∇λu

ν + ∆νλ∇λu
µ
)
− 2

3
∇u ∆µν . (D.0.5)

Assuming that the relevant microscopic scale is the temperature, leading hydrodynamic
approximation is valid provided

|∇µu
ν |

T
� 1 , (D.0.6)
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otherwise, higher-order gradients (typically infinitely many of them) must be included [259–
261].

It is easy to see that viscous terms tend to reduce the pressure [262]. For example, for
fluids comoving in an expanding background such as an FRW metric,

ds2
4 = −dt2 + a(t)2(d~x)2 , (D.0.7)

we find

σµν
∣∣
FRW

= 0 , ∇u
∣∣
FRW

= 3
ȧ

a
, (D.0.8)

resulting in an isotropic effective pressure

Peff = P − ζ ∇u . (D.0.9)

In the case of a boost invariant fluid expansion, the pressure is no longer isotropic [260]:

Peff
⊥ = P +

2η − 3ζ

3τ
, Peff

ξ = P − 4η + 3ζ

3τ
, (D.0.10)

where ⊥ and ξ are the transverse and longitudinal directions of the boost invariant expansion1,
and τ is the proper time. Notice that in this case the spatially averaged pressure,

(
2
3
P⊥ + 1

3
Pξ
)

still takes the form (D.0.9). In what follows, we take the trace-averaged form (D.0.9) as a
generic expression for the effective pressure.

Consider now a system which, in thermal equilibrium, can exist in one of the two phases
A or B. A first-order phase transition between these phases implies the existence of a critical
temperature Tc, such that PA > PB for T > Tc, and PA < PB otherwise. The phase with
the higher pressure is thermodynamically favored, and the transition at T = Tc proceeds
through nucleation of bubbles of a stable phase. If the system flows, the relevant pressure
determining the stability of a phase is the effective one:

Peff
A/B = PA/B − ζA/B ∇u . (D.0.11)

Close2 to Tc,
PA/B = Pc + SA/B (T − Tc) +O

(
(T − Tc)2

)
, (D.0.12)

where SA/B are the entropy densities of the corresponding phases. Thus, viscous hydrody-
namics effects would shift the transition temperature according to

|δTc|
Tc

∼ |ζA − ζB|
|SA − SB|

|∇u|
Tc

.
|ζA − ζB|
|SA − SB|

, (D.0.13)

where the upper bound is enforced from the consistency of truncating hydrodynamics at the
first order in the velocity gradients, see (D.0.6). Notice that cavitation affects the transition
temperature the more weakly the first-order transition is (the smaller the difference between
SA/B is), and the larger the bulk viscosity difference of the two phases at Tc is.

1Such expansion is conveniently described changing variables from (t, z) to (τ, ξ): τ =
√
t2 − z2, ξ =

arctanh zt .
2We use the first law of thermodynamics dF = −dP = −S dT .
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Ideally, we would like to evaluate (D.0.13) for QCD close to confinement/deconfinement
transition. While the recent lattice results provide a reliable equation of state3 [263], rather
than doing it from first principles, one has to rely on various models to evaluate transport
coefficients of gauge theory plasma at strong coupling [216, 246, 264–266]. In what follows
we present the first self-consistent estimate of (D.0.13) for a strongly coupled gauge theory
plasma.

Cascading gauge theory.— Consider [213] N = 1 four-dimensional supersymmetric SU(K +
P )×SU(K) gauge theory with two chiral superfields A1, A2 in the (K+P,K) representation,
and two fields B1, B2 in the (K + P ,K). This gauge theory has two gauge couplings g1, g2

associated with two gauge group factors, and a quartic superpotential

W ∼ tr (AiBjAkB`) ε
ikεj` . (D.0.14)

The theory is not conformal, and develops a strong coupling scale Λ through dimensional
transmutation of the gauge couplings. In the UV/IR it undergoes the cascade of Seiberg [267]
dualities with K → K ± P . The net result of the duality cascade is that the rank K of the
theory becomes dependent on the scale E at which the theory is probed [268]:

K → Keff(E) ≈ 2P 2 ln
E

Λ
, E � Λ . (D.0.15)

While not QCD, the theory shares some of the IR features of the latter: when K is an integer
multiple of P , the cascade ends in the IR with SU(P ) supersymmetric Yang-Mills theory
which confines with spontaneous breaking of the chiral symmetry. Cascading gauge theory
is always strongly coupled in the UV. In the planar limit and for large ’t Hooft coupling
of the IR SU(p) factor, the theory is strongly coupled along its full RG flow, and thus can
be studies using its holographic dual [213]. We focus on the cascading gauge theory in the
regime where the holographic description is reliable.

Thermodynamics of the cascading gauge theory plasma has been studied extensively
in the past [253, 269, 270]: cascading gauge theory plasma simultaneously undergoes (first-
order) confinement and the chiral symmetry breaking at Tc = 0.6141111(3)Λ; at a slightly
lower temperature Tχsb = 0.882503(0)Tc the deconfined phase becomes unstable towards
spontaneous development of a chiral condensate, finally, at Tu = 0.8749(0)Tc, the deconfined
phase of the theory approaches a critical point with a divergent specific heat [266]. The
shear viscosity of the plasma is universal for all phases and at all temperatures [271],

η

S
=

1

4π
. (D.0.16)

The bulk viscosity of the theory is technically difficult to compute — so far it is known

only to the fourth order in the high temperature expansion,
(
ln T

Λ

)−1
[253], which is not

enough to determine its value at the critical point Tc. We use Eling-Oz formula [272, 273]
to compute bulk viscosity of the deconfined phase of the cascading gauge theory over all

3At least at vanishing baryon chemical potential.
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Figure D.1: The ratio of the bulk viscosity ζ to the entropy density S in cascading gauge
theory plasma (solid curve) and the bulk viscosity bound [265] (dashed). The dashed
vertical line denote the critical temperature Tc of the confinement/deconfinement phase
transition.

temperature range. The results are presented in figure D.1. We find

ζ

S

∣∣∣∣
T=Tc

= 0.04(8) . (D.0.17)

Besides, the bulk viscosity bound [265] is respected all across the phase transition.
We can now address the question whether or not cavitation is expected to affect the

temperature of the deconfinement transition in cascading plasma. Here, the phase A of
a fluid is the deconfined phase of the plasma, and B is the confined phase. Since in the
planar limit both the transport coefficients and the entropy density are suppressed, we obtain
combining (D.0.13) and (D.0.17)

|δTc|
Tc

.
ζA
SA

= 0.04(8) . (D.0.18)

Discussion.— In this Letter we asked to which extent cavitation in confining gauge theories
affects the critical temperature of the confinement/deconfinement transition. We used the
specific example of a cascading gauge theory to argue that in the planar limit and at strong
coupling the effect is small. It is reasonable to expect that the result is universal as it reflects
the fact that large-N phase transitions are typically strong (as opposite to weak) first-order,
and that the bulk viscosity at the critical point remains finite. Some phenomenological
models suggest [264] that QCD bulk viscosity might diverge at the critical point of the
T − µB phase diagram. Since the QCD critical point [274] separates the line of first-order
phase transitions (at large chemical potential) from crossovers (at low chemical potential),
both of these effects tend to increase |δTc|/Tc.
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