
UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

Departamento de Electrónica e Computación
Centro de Investigación en Tecnoloxías da información (CITIUS)

PhD Dissertation

NEW HARDWARE SUPPORT FOR TRANSACTIONAL
MEMORY AND PARALLEL DEBUGGING IN MULTICORE

PROCESSORS

Author:
Lois Orosa Nogueira

Phd Advisors:
Javier Díaz Bruguera
Elisardo Antelo Suárez

Santiago de Compostela, June 2013

Javier Díaz Bruguera, Profesor Catedrático de Universidade da Área de Arquitectura e Tecnoloxía de

Computadores da Universidade de Santiago de Compostela

Elisardo Antelo Suárez, Profesor Titular de Universidade da Área de Arquitectura e Tecnoloxía de

Computadores da Universidade de Santiago de Compostela

FAN CONSTAR:

Que a memoria titulada NEW HARDWARE SUPPORT FOR TRANSACTIONAL MEMORY AND
PARALLEL DEBUGGING IN MULTICORE PROCESSORS foi realizada por D. Lois Orosa
Nogueira baixo a nosa dirección no Departamento de Electrónica e Computación e no Centro Singular

de Investigación en Tecnoloxías da Información (CITIUS) da Universidade de Santiago de Compostela,

e constitue a Tese que presenta para optar ao grado de Doutor pola Universidade de Santiago de Com-

postela.

Santiago de Compostela, Xuño 2013

Javier Díaz Bruguera
Codirector da tese

Elisardo Antelo Suárez
Codirector da tese

Lois Orosa Nogueira
Autor da tese

Aos meus pais

Everything that can be invented has been invented.

Charles H. Duell, U.S. patent office, 1899

It would appear that we have reached the limits of

what it is possible to achieve with computer

technology, although one should be careful with

such statements, as they tend to sound pretty silly
in 5 years.

John Von Neumann, 1949

O verdadeiro heroísmo está en transformar os

desexos en realidades e as ideas en feitos.

Castelao

Acknowledgements

Five years ago I gave a radical turn to my life: I quit a stable job in a private company to
start this research adventure. The way was long, it had ups and downs, but at the end, it was
worth it. It was an invaluable experience that changed and marked me forever, personally and
professionally, and I would not have been able to do it alone. It is at this point that I want to
thank all the people that made this thesis possible.

First of all, and the most important, I want to thank my advisors Elisardo Antelo and Javier
Bruguera. They trusted in me from the beginning of this adventure, and we start and finish this
trip together. Without them, this thesis would simply not be possible. Their constant support
was essential to finish it, as also the advices and motivating talks of Elisardo. Thank you very
much.

To Professor Josep Torrellas, who supervised my work in my stay in the University of
Illinois at Urbana-Champaign, and to all the members of his group for their kind welcome.
Special thanks to Shanxiang Qi and Norimasa Otsuki for the good work environment and the
intriguing discussions.

To the people of IBM R&D research Lab in Haifa for their friendly welcome during my
HiPEAC internship there. My acknowledgements goes specially to Olga Golovanevsky, Ma-
rina Biberstein and Bilha Mendelson for their daily support and the motivating work made
there.

To Recore Systems, specially to Gerard Rauwerda, for trusting me to perform a very en-
gaging project during my HiPEAC internship, and to John Donker, Jordy Potman and Eduard
Fernández for their every day support and knowledge, which enriched my stay.

I also want to express my gratitude with the funding institutions. The work related to this
PhD thesis was partially supported by the Spanish Ministry of Science and Education under
Project TIN2007-67537-C03-01. I also wish to thank the European Network of Excellence on

x

High Performance and Embedded Architecture and Compilation (HiPEAC) for the funding
that allowed me to perform my internships in Haifa and Enschede during my thesis period.

Fora do ámbito profesional, tamén quero agradecer á xente que estivo ao meu arredor to-
dos estes anos deixando un recordo indeleble da miña etapa de tese e servindo como válvula
de escape cando mais o necesitaba. Grazas aos meus amigos, compañeiros de piso, com-
pañeiros de departamento, á xente que fixo mais levadeiras as miñas estancias no estranxeiro e
a esas persoas especiais que pasaron pola miña vida. Grazas a Xacobo&Marta, Marcos, Jose,
Rodrigo, Rafa, Antón, Manolo, Nerea&Manolo, Ricardo, Fran, Saul e Ángela por tódolos
momentos vividos en Compostela; grazas a Antón por todo o tempo e aventuras compartidas;
grazas a Carlos, Manolo e Yolanda por ser os compañeiros de piso perfectos; grazas a Ale,
Juli, Emi, Nino, Aitor, Miguel, Gabi, Víctor, Jose, Manu&Patri, Paula, Tania, Deborah e de-
mais tropa viguesa polos momentos vividos nas nosas xuntanzas; grazas aos compañeiros de
ESF por tanta implicación e rebeldía; grazas a Cris, Fer, Enrique(s) e demais xente do departa-
mento por compartir preocupacións, sufrimentos e festas; thanks to Norimasa for making my
stay at Urbana-Champaign very special; thanks to Vladimir, Waldemar and Per for making my
stay in Haifa an experience that I will never forget; thanks to Jarkko, Eduard, Aria-Lena and
Stefania for being my happiness during my stay in Enschede; grazas a Sandra por axudarme a
tomar a decisión de comezar esta aventura, e por apoiarme nos meus primeiros anos de tese;
grazas a Sol por estar aí nesta última etapa; e grazas a moitos outros que non nomeo pero que
igualmente foron parte fundamental para o meu desenvolvemento persoal e profesional.

Quero dar tamén as grazas á miña familia, sobre todo aos meus primos Marcos, Telmo,
Paula&Alberto , Marta, Lucía, Laura, Alex, e Noa, e moi especialmente aos meus pais Suso
e Carmiña, por apoiarme sempre. Ademais quero ter un recordo moi especial coa miña avoa
Dolores. Por último, quero dar tamén as gracias ao meu irmán Adrián, a Maca, e ao novo
recén chegado, o meu sobriño Ían.

Moitas grazas a todos! Thank you very much!
Santiago de Compostela, June 2013

Contents

List of Figures 1

List of Tables 5

Preface 7

1 Introduction 11
1.1 Parallel Architectures . 12

1.1.1 Why Parallel Architectures? . 12
1.1.2 Levels of Parallelism . 13
1.1.3 Shared Memory Multicore Processors 14

1.2 Parallel Programming . 18
1.2.1 Data Communication . 20
1.2.2 Problem Decomposition . 21

1.3 Parallel Programming Issues in Shared Memory 22
1.3.1 Synchronization . 22
1.3.2 Debugging Concurrency Bugs in Parallel Programs 26

1.4 Transactional Memory (TM) . 29
1.4.1 Basic Concepts . 30
1.4.2 Hardware Transactional Memory (HTM) 34
1.4.3 Software Transactional Memory (STM) 42
1.4.4 Hybrid Transactional Memory (HyTM) 44
1.4.5 Other Speculative Techniques . 45

1.5 Background on Signatures . 45
1.5.1 Fundamentals . 46

xii Contents

1.5.2 True Bloom Signature . 49
1.5.3 Parallel Bloom Signature . 51
1.5.4 Other Signature Implementations 52

1.6 Conclusions . 54

2 Evaluation Methodology 55
2.1 Simulator Framework . 55

2.1.1 Simics and GEMS . 56
2.1.2 PIN . 58
2.1.3 Rochester STM . 59
2.1.4 SESC . 61

2.2 Benchmarks . 61
2.2.1 SPLASH-2 . 61
2.2.2 STAMP . 65
2.2.3 PARSEC . 67
2.2.4 EigenBench . 69
2.2.5 Other Benchmarks . 70

2.3 Conclusions . 70

3 Reducing the Use of Signatures in a HTM system 71
3.1 System Architecture . 72

3.1.1 Managing Transactional Writes with CFM-TM 72
3.1.2 Replacement Algorithm . 76
3.1.3 Commit and Abort Actions . 76
3.1.4 Limitations . 77
3.1.5 Interactions between CFM-TM and LogTM-SE 77

3.2 Signatures . 82
3.3 Evaluation . 82

3.3.1 System Model . 83
3.3.2 Workloads . 83
3.3.3 Results . 84

3.4 Related Work . 89
3.5 Conclusion . 90

Contents xiii

4 Tolerating Asymmetric Data Races with a Hardware Signature Module 91
4.1 Asymmetric Data Races in Real World . 92
4.2 PACMAN: Tolerating Asymmetric Data Races 93

4.2.1 Overview of the Idea . 94
4.2.2 Basic Pacman Protocol . 96
4.2.3 Interaction with Cache . 97
4.2.4 Advanced Pacman Protocol to Avoid Deadlocks and Stalls 100

4.3 Implementation Issues . 103
4.3.1 Other Issues . 105

4.4 Evaluation . 107
4.4.1 Experimental Setup . 107
4.4.2 Characterization . 109
4.4.3 Overheads . 109
4.4.4 Handling Bugs . 113

4.5 Related Work . 115
4.5.1 Software Proposals for Asymmetric Races 115
4.5.2 Other Related Work . 116

4.6 Conclusions . 117

5 Implementing a Flexible Hardware Signature Module 119
5.1 FlexSig: Implementing Flexible Hardware Signatures 120

5.1.1 Allocation Algorithm . 122
5.1.2 Influence of the Bloom Filters Release on the False Positive Rate . . . 125
5.1.3 Software Interface . 125
5.1.4 Register Grouping . 126
5.1.5 FlexSig Overflow and Fault Tolerance 127

5.2 Implementation Issues . 128
5.3 Evaluation in a TM System . 129

5.3.1 Unified signatures: Simplifying FlexSig Implementation in TM . . . 130
5.3.2 Experimental Setup . 131
5.3.3 Configuration . 132
5.3.4 Results . 134

5.4 Related Work . 138
5.5 Conclusions . 139

xiv Contents

6 Asymmetric Allocation in a Flexible Signature Module 141
6.1 Asymmetric Policies . 142

6.1.1 Asymmetric Allocation Algorithm with Two Priority Classes 143
6.1.2 Asymmetric Algorithms for TM . 145

6.2 Implementation Issues . 149
6.2.1 Placement of FlexSig in a Multicore Processor 149
6.2.2 Hardware Implementation in a TM System 149
6.2.3 Basic Elements . 150
6.2.4 Allocation Implementation: Arithmetic Calculations 152
6.2.5 Control Logic . 155

6.3 Evaluation for a TM System . 158
6.3.1 Experimental Setup . 158
6.3.2 Evaluation for the PCIN Priority Class 159
6.3.3 Evaluation for Multiple PCIN Priority Classes 163
6.3.4 Evaluation for Combined PCOUT and PCIN Priority Classes 164
6.3.5 FlexSig with a High Number of Threads 166
6.3.6 Signature Size Comparison . 166

6.4 Related Work . 168
6.4.1 Comparing Asymmetric FlexSig and ASYM signatures 169

6.5 Conclusion . 171

Conclusions and Future Work 173

Resumo da Tese 177

Bibliography 187

List of Figures

Fig. 1.1 Basic strucure of a shared memory multicore processor. 15
Fig. 1.2 Transition states in a MESI cache coherence protocol. 17
Fig. 1.3 Dinning philosophers problem. 22
Fig. 1.4 Deadlock scenario. 25
Fig. 1.5 Examples of data races. 27
Fig. 1.6 Eager-Lazy conflict detection example. 32
Fig. 1.7 LogTM-SE hardware organization. 37
Fig. 1.8 Example of H3 hash function. The inputs are defined by the Hexample of

Equation 1.4. 48
Fig. 1.9 Bloom signatures. 49
Fig. 1.10 False positive rate for parallel Bloom filter with m = 1024. 51
Fig. 1.11 High level scheme of the ASYM signature. 53

Fig. 2.1 SIMICS+GEMS overview. 57
Fig. 2.2 Simulation framework of Chapters 5 and 6. 59

Fig. 3.1 Check for conflicts in a LogTM-SE system with the CFM-TM filter. 74
Fig. 3.2 Transactional write action in the LogTM-SE system using the CFM-TM filter. 75
Fig. 3.3 Abort and commit actions. 77
Fig. 3.4 Interaction between CFM-TM and LogTM-SE in a transactional store miss. . 78
Fig. 3.5 Interaction between CFM-TM and LogTM-SE in a transactional store miss. . 80
Fig. 3.6 Interaction between CFM-TM and LogTM-SE in a transactional store hit. . . 81
Fig. 3.7 Normalized number of aborts. 84
Fig. 3.8 Write management distribution. 85

2 List of Figures

Fig. 3.9 Speed-up of LogTM-SE + CFM-TM. 86
Fig. 3.10 Variation of L1 cache misses when the CFM-TM is activated. 86
Fig. 3.11 Normalized breakdown of execution cycles. 88
Fig. 3.12 Benchmarks breakdown. 88

Fig. 4.1 Examples of asymmetric data races where the unsafe thread can proceed
(OK) or not (NOT OK). 94

Fig. 4.2 Overview architecture of Pacman. 96
Fig. 4.3 Examples to understand the Pacman’s operation. 98
Fig. 4.4 Examples to understand Cache State Prior to Entering the Critical Section. . 98
Fig. 4.5 Examples of data race bugs which lead to deadlock. 101
Fig. 4.6 Breaking atomicity due to false sharing. 102
Fig. 4.7 Pacman Implementation. 103
Fig. 4.8 Execution time overhead of Pacman. 113
Fig. 4.9 An asymmetric race in "Bodytrack" benchmark. 114
Fig. 4.10 An asymmetric race in "FMM" benchmark. 114

Fig. 5.1 Block diagram of FlexSig. 120
Fig. 5.2 FlexSig module architecture. 121
Fig. 5.3 Insertion, check and deallocation request in FlexSig. 122
Fig. 5.4 Example of the symmetric allocation algorithm of FlexSig. 123
Fig. 5.5 Example of conventional signatures used in a system with a maximum of 16

simultaneous signature requesters. 123
Fig. 5.6 False positive rate in FlexSig for different signature sizes. 126
Fig. 5.7 Example of register grouping. 127
Fig. 5.8 Parallel controller implementation. 130
Fig. 5.9 Percentage of decrease of the absolute number of false positives in FlexSig-

conf1 compared with conventional signatures for all benchmarks. 136
Fig. 5.10 Percentage of decrease of the absolute number of false positives in FlexSig-

conf2 compared with conventional signatures for all benchmarks. 136
Fig. 5.11 Increment of the signature size in FlexSig-conf2. 138

Fig. 6.1 Example of an asymmetric R/W allocation algorithm. 146
Fig. 6.2 Example of an asymmetric allocation algorithm based on transaction identifier. 148

List of Figures 3

Fig. 6.3 Example of an asymmetric allocation algorithm combining PCOUT and
PCIN priority classes. 149

Fig. 6.4 The basic FlexSig elements in a two-way implementation (issue 2 instructions). 150
Fig. 6.5 Generation of the allocation signal and the update of the registers that count

the number of transactions. 153
Fig. 6.6 Calculation of the maximum number of Bloom filters for high and low

priority transactions. 154
Fig. 6.7 Calculation of the maximum number of Bloom filters per signature,

depending on its priority and the priority of the transaction which it belongs. 154
Fig. 6.8 Control logic for each Bloom filter. 156
Fig. 6.9 Generation of the Nx values with a parallel prefix popcount compressor tree. 157
Fig. 6.10 Percentage of decrease of false positives in symmetric FlexSig. 161
Fig. 6.11 Percentage of decrease on false positives in FlexSig with asymmetric

allocation policies (PCIN priority class). 162
Fig. 6.12 Percentage of reduction of false positives for single PCIN priority and for

Multiple (one per transaction) PCIN priorities. 164
Fig. 6.13 Percentage of decrease on false positives in FlexSig implementing priorities

for PCIN priority class, for PCOUT priority class, and combining both PCIN
and PCOUT priority classes. 165

Fig. 6.14 Percentage of decrease of false positives in asymmetric FlexSig (PCIN
priority class) with up to 128 threads. 167

Fig. 6.15 Number of bits required for registers in asymmetric FlexSig (PCIN priority
class) and Bloom signatures. 168

Fig. 6.16 Percentage of decrease of false positives in asymmetric FlexSig

implementing the PCIN priority class, compared with Bloom and ASYM
signatures. 170

List of Tables

Tabla 2.1 System configuration. 58
Tabla 2.2 RSTM implementations. 60
Tabla 2.3 Benchmarks. 62

Tabla 3.1 Workload characteristics. 83
Tabla 3.2 Benchmark inputs. 83
Tabla 3.3 Signature’s size configuration with and without CFM-TM. 84

Tabla 4.1 Real examples of harmful asymmetric data races. 93
Tabla 4.2 Size of the SigTable’s fields. 104
Tabla 4.3 Default architecture parameters. 108
Tabla 4.4 SigTable parameters. 108
Tabla 4.5 Characteristics of the critical sections (CS) in the applications. 110
Tabla 4.6 Quantification of the overheads. 112

Tabla 5.1 Benchmark Inputs. 131
Tabla 5.2 Benchmark set A, characterization with 16 threads. 132
Tabla 5.3 Benchmark set B, characterization with 16 threads. 133
Tabla 5.4 Configuration used with unified signatures. 133
Tabla 5.5 Benchmark Set A. False positives comparison (in %) for Unified Signatures. 134
Tabla 5.6 Benchmark Set B. False positives comparison (in %) for Unified Signatures. 134

Tabla 6.1 Values calculated by FlexSig in the examples of the Figures 6.1, 6.2 and 6.3. 146
Tabla 6.2 Benchmark Inputs. 159
Tabla 6.3 Size of the read and write sets for different benchmarks. 159

6 List of Tables

Tabla 6.4 Configuration of the signatures used. 160
Tabla 6.5 s_ f actorin (prioHighin|prioLowin) for 2, 4, 8 and 16 threads. 161
Tabla 6.6 Priorities used for single and multiple PCIN priorities. 163
Tabla 6.7 s_ f actor used to evaluate both PCOUT and PCIN priority classes. 165
Tabla 6.8 s_ f actorin used to evaluate the scalability of FlexSig. 166
Tabla 6.9 Configuration of FlexSig and Bloom signatures. 167
Tabla 6.10 Number of Bloom filters for read and write set in ASYM signatures. 170

Preface

In the multicore era, parallel programming is becoming a must for general purpose program-
mers. However, the parallelization of programs is not intrinsically intuitive and prone to
errors. To face these drawbacks, new tools have arisen to make this task easier by providing
new programming models and debugging tools. Usually, these new tools add complexity that
needs to be addressed with hardware support to achieve a good performance. Transactional
Memory and data race detection are two of the most popular.

Transactional Memory (TM) is a software abstraction to make parallel programming eas-
ier, by providing an abstraction less prone to errors than locks. TM provides an speculative
synchronization mechanism to the programmer, who has to enclose critical sections in trans-
actions which will be executed atomically and in isolation by the TM system. Furthermore,
transactions are executed in parallel and speculatively, so it is pretty common to use hardware
support to accelerate the system.

A data race occurs when two or more threads access the same shared variable without
the proper synchronization. Data races can produce errors which are very difficult to debug,
because it is usual that the error manifests itself much later than the actual race is produced.
Therefore, to efficiently detecting these bugs has become very important, and also for these
tools, it is not strange to use hardware support to not degrade the performance of the system.

Among the hardware resources for accelerating this kind of tools, one of the most gen-
erally used in research papers, and therefore, with a lot of potential to be included in future
general purpose processors, are signatures. Signatures are a fixed piece of hardware that can
host an unbounded number of addresses in a bounded space. To do that, each address is hash
encoded and inserted in the signature, which may produce aliasing among address. This leads
to the possibility of reporting false positives when the signature checks for the ownership of
an address. However, it never reports false negatives.

8 Preface

This thesis contributes with new hardware support for TM and data race detection in
multicore processors. The hypothesis to build this thesis are:

– Hardware signatures are not optimized for the many applications and tools that use
them (very different ones in the same system).

– Signatures can be used in a large number of applications related with parallel program-
ming of multicore processors, and some of them are unexplored.

– Signatures are a promising hardware resource because of their efficiency, but they have
drawbacks that have not been explored: they are not flexible to adapt to the different
requirements of the applications and tools that may require them in a multicore proces-
sor.

Under this hypothesis, we set up and perform experiments to address these observations
and problems. In Chapter 3 we configure a Hardware Transactional Memory (HTM) sys-
tem where signatures are part of the hardware support and we propose a new hardware filter
based on minor modifications of the hardware, which allows a considerable reduction of the
signature size either their false positive rate (we call this filter CFM-TM). Under certain cir-
cumstances, the performance of the system is also significantly improved. We observe from
this work that to optimize the resources and the false positive rate, we require signatures with
different sizes.

In Chapter 4 we build the first hardware asymmetric data race detector (which also toler-
ates these races), called Pacman 1. Asymmetric data races are a very common type of data
race that may cause dangerous concurrent bugs, and that until this work, have only been ex-
plored as a software approach. The hardware support of our detector is essentially based on a
centralized module of hardware signatures. We demonstrate that Pacman introduces negligi-
ble slowdowns in the system, and that it is able to efficiently detect and tolerate asymmetric
data races.

Chapter 5 and Chapter 6 propose a novel hardware signature module (called FlexSig) that
solves some of the problems that we found when building the previous tools for multicore
architectures based on signatures. Specifically, we design a signature module that can host a
large number of signatures when there is a high demand of signatures, and it can also achieve

1This work was developed at the University of Illinois at Urbana-Champaign in collaboration with the members
of the I-ACOMA group.

Preface 9

a very low false positive rate when the demand of signatures is modest. We explore several
strategies to allocate signatures in FlexSig to adapt to the different characteristics of the tools
and applications that use them.

Summarizing, we optimized the use of signatures in a HTM system by introducing our
CFM-TM filter, we developed a new debugging tool with signatures as main hardware sup-
port, and we built a new hardware signature module that allows a great flexibility in the size
and number of signatures allocated. This fits in a real scenario represented by a general pur-
pose multicore processor executing a wide range of signature-demanding applications and
tools. We have gathered the contributions in the next publications:

Lois Orosa, Javier D. Bruguera, and Elisardo Antelo. A Cache Filtering Mechanism for
Hardware Transactional Memory Systems Decoupled from Caches. In XX Jornadas de

Paralelismo, A Coruña (Spain), September 2009.

Shanxiang Qi, Norimasa Otsuki, Lois Orosa, Abdullah Muzahid, and Josep Torrellas.
Pacman: Tolerating Asymmetric Data Races with Unintrusive Hardware. In High Per-

formance Computer Architecture (HPCA), 2012 IEEE 18th International Symposium on,
pages 1 –12, feb. 2012.

Lois Orosa, Elisardo Antelo, and Javier D. Bruguera. Flexsig: Implementing Flexible
Hardware Signatures. ACM Trans. Archit. Code Optim., 8(4):30:1–30:20, January 2012.

Lois Orosa, Javier D. Bruguera and Elisardo Antelo. Asymmetric Allocation in a Flexi-
ble Signature Module for Multicore Processors. Submitted.

CHAPTER 1

INTRODUCTION

Sequential single-core wide superscalar processors were the dominant architecture in com-
modity products during many years for their capacity of improving performance by just scal-
ing the clock frequency (with contributions from both technological and pipeline depth scal-
ing), and keeping the cycles per instruction. The software for these processors is an ordered
sequence of instructions, being easy to write and reason about it, and therefore, the perfor-
mance scales naturally with clock frequency.

Parallel computers were already used many years ago, but mainly for scientific applica-
tions. The programming skills required were very high because of the difficulty of debugging
and reasoning about parallel programs.

Nowadays, parallel architectures have become a mainstream research topic among in-
dustry and academia for general purpose computing, specially focusing on integrating many
processor units in the same chip (multicore processor). The interest in multicore architectures
arose mainly for two reasons: the Instruction Level Parallelism (ILP) was no longer cost ef-
fective (ILP wall), and the power consumption resulting from increasing the clock frequency
started to become a limiting effect (Power Wall). Multicore processors encourage thread par-
allelism, that scales better than ILP (if the applications are efficiently parallelized), and also
allows us to maintain the clock frequency in moderate rates and improve performance by
augmenting the number of cores in the chip. However, there is another problem that could
limit the multicore scaling: not all the transistors of the chip can be powered at the same time
because of power limitations; the area of the chip that can not be powered is known as dark

12 Chapter 1. Introduction

silicon, and with each new generation of processors (which imply more transistors in the same
area), the percentage of the chip that can actively be used is dropping exponentially.

The non deterministic execution of parallel programs in most of the parallel architec-
tures, as well as the previous experience programming the old parallel machines, teach us that
parallel programming is not an easy task. One of the main challenges in this field is to make
parallel programming affordable by most of the general purpose programmers, which requires
new tools, programming models, debugging tools, etc, and in most of the cases, hardware to
accelerate and support them.

This introductory chapter is organized as follows: we discuss issues related to parallel
architectures in Section 1.1, Section 1.2 exposes some aspects about parallel programming,
Section 1.3 explains the most common issues in parallel programming, Section 1.4 introduces
Transactional Memory and finally, Section 1.5 is devoted to the discussion of signatures, an
essential building block for the schemes proposed in this thesis.

1.1 Parallel Architectures

1.1.1 Why Parallel Architectures?

Moore’s Law [108] predicts that the number of transistors doubles approximately every two
years, and along the time, this law proved to be pretty accurate. The design goal was to
drive the frequency up and add more transistors to the chip. However, in the last years the
increased frequency also augmented the power dissipation beyond the capacity of the cooling
techniques (the power wall). In this context, to have several cores in the same chip without
scaling clock frequency became the best option to continue increasing the performance with
a reasonable power consumption.

Multicore processors are composed by several cores in the same chip. In this thesis, we
will focus on shared memory multicore processors, which are composed by several processing
cores (with private cache), a last level shared cache memory and an on chip interconnection
network. Usually, the core uses its local private memory as caches to keep private and shared
data locally (for performance reasons), and the system maintains the data coherent with a
cache coherent protocol. This shared memory model is widely used in parallel programming
because it is in principle easy and intuitive.

The inspiration of the multicore processors comes from the Symmetric Multi-Processors
(SMPs) used in High Performance Computing (HPC). In 1962 it was implemented the first

1.1. Parallel Architectures 13

SMP (BURROUGHS D825 [9]), and since then, these machines have been used to solve very
complex simulations and problems, such as scientific applications in many different domains
(bio-sciences, computer engineering, physics, chemical engineering, etc). They are composed
of many processors (hundreds or thousands) connected with high bandwidth networks. The
idea of multicore processors is to build a SMPs in a single chip, which allows a very low power
consumption and very fast inner-chip communication. The biggest microprocessor manufac-
turers already have multicore processors with a few cores in the market, and prototypes and
future commercial chips with tens of cores [59]. Notice that the SMPs used nowadays in HPC
usually are composed of many multicore processors connected among them.

There are two trends in parallel architectures: homogeneous architectures and heteroge-
neous architectures. Homogeneous processors are composed of many replicas of the same
core, like many of the multicore processors in the market. However, heterogeneous architec-
tures also have a big importance, as many chips are composed of cores of different natures (it
is very common to integrate Central Processing Units (CPUs) and Graphics Processing Units
[23] (GPUs) in the same chip). Examples of heterogeneous architectures are the IBM Cell
[79] (composed of one Power architecture core and eight specialized co-processors), Nvidia’s
Tegra [117] (that consists of eight independent processors for graphics, video encode and
decode, image processing, audio processing, power management, and general-purpose func-
tions) or AMD’s Fusion [5] (CPU and GPU).

1.1.2 Levels of Parallelism

The most well known kinds of parallelism are Instruction Level Parallelism (ILP), Thread
Level Parallelism (TLP) and Data Level Parallelism (DLP), which we describe below.

Instruction Level Parallelism (ILP) exploits parallelism at instruction level, by using
pipelining to overlap the execution of instructions, and superscalar out of order execution.
Different instructions can be executed simultaneously if they are not using the same functional
units (which is the reason to replicate some of them), if there are no data dependencies and
provided that branches are predicted in a correct way most of the time. One of the main
advantages of the ILP is that it is transparent to the programmer, because the parallelism is
obtained automatically with processor and compiler techniques. However, the limit on how
much ILP can be achieved seems to already have reached a saturation point [174] and is one
of the reasons of the architecture shift from single core architectures to multicore. Almost all
current general purpose processors have implemented some kind of ILP.

14 Chapter 1. Introduction

Thread Level Parallelism (TLP) exploits parallelism at thread level. A program is struc-
tured in threads by the programmer (unlike ILP) that executes different tasks composed of
many instructions. With the popularity of the multicore processors, these type of parallelism
began to have more relevance. TLP is orthogonal and compatible with ILP.

Data Level Parallelism (DLP) consists of performing the same operation over multiple
data simultaneously (vector machines, array computers, vector extensions in modern micro-
processors, etc.). One particular architecture to exploit DLP are GPUs. GPUs are composed
of many lightweight cores (100s), and unlike multicore processors, GPUs use lightweight
threads, the single thread performance is very poor, and are good at parallel, arithmetically
intense, streaming memory problems. Originally they were designed for graphics processing,
but nowadays they are also used to solve complex computing parallel problems, which are
know as GPGPU (General Purpose on Graphics Processing Units).

1.1.3 Shared Memory Multicore Processors

The base architecture over which this thesis was developed is based on Shared Memory Mul-
ticore processors [53] [18]. They are homogeneous architectures designed to exploit thread
level parallelism and run multiple threads simultaneously in the different processing cores.

Usually, each core in the chip has one or two levels of private cache to improve the per-
formance of data access. Furthermore, they also have a last level cache shared by all the cores
which is distributed along all the chip. To access the shared resources efficiently, the cores
are connected with a high bandwidth on-chip network. Shared data is kept coherent among
cores through the cache coherence protocol, which can be implemented very effectively by the
low latency interconnection network. Figure 1.1 depicts a basic instance of a simple shared
multicore architecture.

Furthermore, the memory consistency model is also very important. This is a conceptual
model for the semantics of memory operations to allow them to correctly use the shared
memory (more details in Section 1.1.3). This model should be simple from the point of view
of the programmer, and at the same time should have a good performance.

Cache Coherence

Despite being easy to program, shared memory architectures also have some drawbacks, re-
sulting in more hardware complexity. These architectures usually support the caching of
private and shared data. Private data are used by a single core, while shared data can be used

1.1. Parallel Architectures 15

L2 Cache

CPU
...

Interconection

Main Memory

Memory

Controller

L1 Cache
shared

L2 Cache

CPU

L1 Cache
shared

L2 Cache

CPU

L1 Cache
shared

System

Interconnect

System Network

Figure 1.1: Basic strucure of a shared memory multicore processor.

by all cores. When private data is cached, a copy of the data is migrated to cache, reducing
the access time in future accesses. Shared data can also be in multiple private caches for re-
ducing the average access time, but at the same time two different cores could end up using
two different values for the same data address. This situation introduces the problem of the
cache coherence [161].

In modern multiprocessors, the cache coherence protocols are implemented in hardware,
and there are two basic classes:

– Snoopy protocols: the caches are accessible by some broadcast medium (a bus, for
instance), and all cache controllers monitor (or snoop) the medium to determine the
appropriate actions to take in response to memory operations issued by other cores.

– Directory-based protocols: The status of the cache lines is maintained in a directory,
which can be hosted in the main memory or distributed among the caches with a linked
list. It has slightly more overhead than snoopy protocols but it can scale to larger core
counts.

A simple and very common instance of a cache coherence protocol is MESI 1. In this
protocol each cache line can be in four different states:

1Industrial implementations add some additional states to adapt for specific situations. For instance, the MESIF
and MOESI protocols are used by Intel and AMD respectively, for optimizing NUMA implementations.

16 Chapter 1. Introduction

– Modified: the line has been modified in the cache, and it is the only copy in local
caches. This data is inconsistent with the copy in main memory, so the protocol should
update it when the cache line is evicted.

– Exclusive: the line is present only in that cache and it is consistent with main memory.

– Shared: the line is unmodified (with respect to the copy in main memory), and may
have other unmodified copies in other local caches. All copies of the cache line are
consistent with main memory.

– Invalid: the copy of the line is invalid.

The coherency states are maintained through communication among caches. Figure 1.2
shows an instance of the transition states for a MESI snoopy protocol. The local processor
is capable of performing the following actions: to load data in the local cache (Load Rd), to
store data into a local cache line (Local Wr) and to replace one line for another one (Flush).
The local actions can result in the bus activity seen by the other cache controllers (Remote Rd
and Remote Wr).

The basic transitions among the MESI states are shown in Figure 1.2. When a local read
request arrives at a cache for a line in M, E or S states, the controller provides the line, but if it
is in I state, it has to verify that it is not in M in a remote cache, in which case this cache with
the data in M state has to write back the data in memory, and change the state to S. Finally, the
cache that originally requested the data gets a copy from memory or from other caches with
the data in S or E state.

When a local write request arrives in a cache for a line in M or E state, the cache modifies
the data locally. If the line is in S state, the cache must notify to other caches that might
contain the line in S, E or M states that they must invalidate the line. Then the data may be
locally modified. If the line is in the I state, the cache must notify any other caches that might
contain the line in the S, E or M states that they must invalidate the line. If the line is in
another cache in the M state, that cache must either write the data to main memory or supply
it to the requesting cache. If at this point the cache does not yet have the line locally, the line
is read from the main memory before being modified in the cache. After the data is modified,
the cache line is in state M.

The MESI protocol can be implemented with a snoopy protocol, as in the previous ex-
ample, or with a directory. The implementation of MESI with a directory introduces new

1.1. Parallel Architectures 17

Modified

Shared

Invalid

Local Wr

Local Rd

Remote Wr/Flush

Local Read

Local Wr

Remote Wr/Flush

Local Rd/Wr

Exclusive

Remote Wr/Flush

Remote Rd

Local Rd

Local Rd

Remote Rd

Local Wr

Remote Rd

Figure 1.2: Transition states in a MESI cache coherence protocol.

intermediate states in the protocol because there is not an atomic bus over which to make
atomic operations. Also, a directory consumes less bandwidth than a broadcast protocol.

Consistency Models

One of reasons why parallel systems are not intuitive is the memory consistency model [54].
In a sequential processor, it is easy to reason that a load operation reads the most recent written
value. However, a parallel computer with shared memory has several threads accessing to data
(issuing reads and writes) independently and concurrently. In this scenario it might be very
complex to reason about the value that should be retrieved from a read. Memory consistency
models have been developed to specify what values may be returned by a read, because the
operations are not fully ordered (unlike in sequential systems).

The sequential consistency model [86] is the most intuitive, and straightforward. It re-
quires that the result of any execution be the same as if the memory accesses executed by
each processor were kept in order and the accesses among different processors were arbitrar-

18 Chapter 1. Introduction

ily interleaved. Although sequential consistency presents a simple programming paradigm, its
implementation reduces the performance, specially when the number of cores in the proces-
sor is high. There are some examples of parallel architectures with a sequential consistency
model [29] [90].

Relaxing the consistence memory model is the way to improve performance and to re-
duce hardware overhead. The idea is to allow reads and writes to update main memory or a
shared cache out of program order, and to use synchronization operations (introduced by the
programmer) to enforce ordering, so that a synchronized program behaves as a sequentially
consistent processor. There are a variety of relaxed models that are classified by the relaxed
read and write orderings. Sequential consistency requires maintaining all possible orderings:
R->W (a write can not be executed until preceding reads have been completed), R->R (a read
can not be executed until preceding reads have been completed), W->R (a read can not be
executed until preceding writes have been completed) and W->W (a write can not be exe-
cuted until preceding writes have been completed). The total store ordering (TSO) [74]
is characterized for relaxing the W->R; because this ordering retains ordering among writes,
many programs that operate under sequential consistency operate under this model without
extra synchronization. The partial store order (PSO) [74] relaxes the W->W ordering. The
release consistency (RC) [55] relaxes R->W and R->R.

By relaxing these orderings, the processor can achieve performance advantages over se-
quential consistency at the cost of more programming and debugging effort.

1.2 Parallel Programming

Architectures with many cores in the same chip scale their performance with the number
of cores only if the software executed is parallelized efficiently. For parallel programming
success among general purpose programmers, it has to be easy to code, debug, and easily
understood by an average programmer (not an expert in parallel programming).

The natural way of thinking about algorithms to solve problems is sequentially. The so-
lution of a problem is always envisioned as a series of steps that are performed one after the
other, and many times parallelism is not an option for many programmers. Changing the
mentality into parallel reasoning is a challenge that should be driven through new software
abstractions and tools (easy to understand), and efficient parallel debugging tools.

1.2. Parallel Programming 19

However, programs usually have sections of code that can not be parallelized. The Am-
dahl law [7] states that the theoretical maximum speedup of a program using multiple cores
is limited by the time needed for the sequential fraction of the program (and the overhead
introduced by parallelization, such as synchronization or message latencies). Therefore, the
performance of a parallel program does not depend only on the hardware architecture, but
also on the amount of parallelizable sections of code, and in the ability of the programmer to
identify and efficiently parallelize these sections.

To get an idea of why parallel programming is difficult, we will expose some ideas that
are advocated by several authors [166][56]. Below, we depict some historical facts which
impacted parallel programing.

– The community concentrated on improving performance instead of reducing software
development cost.

– Early parallel machines had poor support for communication among processors, and
much of the compiler and programming effort was to reduce communications cost,
rather than high level ideas about how to simplify applications and algorithms.

– The emphasis was to produce simple modifications to sequential languages, such as
adding libraries, rather than thinking in parallelism from scratch.

These could be some reasons that explain the current state of the art in parallel program-
ming. Furthermore, parallel programming is also intrinsically difficult because:

– Finding parallelism might be difficult and add programing complexity. There are
some steps needed to create a parallel program not needed in sequential codes, such as
synchronization issues, concurrency detection, task decomposition, load balancing, etc.

– It is error-prone. To decompose the problem or algorithm into tasks may lead to errors
(main problems are synchronization and non deterministic data races). With several
threads running concurrently, and accessing the same data, a new type of bug is intro-
duced: the data races. The threads have to be perfectly coordinated and synchronized
to avoid them.

– Tuning performance. In the world of multicore processors, things like cache behavior,
how the cores are connected, etc. makes a much bigger difference for performance.
Due to these issues, programmers may spend a significant time tuning for performance.

20 Chapter 1. Introduction

– Future proofing. In sequential applications the performance increases with the clock
frequency, but in parallel applications it is not so easy, because the scaling in the number
of cores and the changes of the cache system may affect the previous tuning.

– Too little knowledge of parallel programming systems. OpenMP, Erlang, Haskell,
X10, Thread Building Blocks (TBB) or Cilk are not widely know by general purpose
programmers.

Nowadays, the best known parallel languages/APIs are PThreads [131], MPI [110], Op-
enMP [120], CUDA [40], OpenCL [119], TBB [141], X10 [149] or Cilk [88]. Despite the
fact that concurrent programming may look like a very new paradigm, parallel programming
languages has existed from the seventies [65]. The architecture of parallel machines have
been changing along the years, and with them also the parallel languages. In the era of vector
machines, the parallel languages were only loop annotations; when SIMD processors were
the mainstream, data parallel languages becomes popular (CMF, *Lisp, C*, Global Arrays,
High Performance Fortran, ...); when shared memory multiprocessors appeared, shared mem-
ory models also appeared, such as PosixThreads, OpenMP, etc; and with clusters and Massive
Parallel Processors (MPP), message passing become dominant (MPI for instance).

However, there is an alternative to release the programmer from explicit parallelization:
automatic parallelization of sequential programs by compilers [21] [162]. Automatic par-
allelization converts a serial code into parallel code to execute in a shared memory parallel
processor. However, fully automatic parallelization of code is still a big challenge because
it needs a very complex code analysis, and it has a limited effectiveness without the explicit
help of the programmer.

1.2.1 Data Communication

The different threads of an application running in a multicore processor require communica-
tion. There are two ways of communication among threads. One is by reading and writing
in memory (typically in shared memory multiprocessors), and the other by sending messages
(typically in distributed memory multiprocessors) [75]. These two techniques can also be
combined and use shared memory communication in a system with distributed memory (Dis-
tributed Shared Memory).

1.2. Parallel Programming 21

Shared Memory Communication

In shared memory parallel programming [57], the communication among threads or pro-
cesses is done by just shared memory values, since all of them have a common address space.
However, to ensure correctness, it is necessary to add mechanisms for correct synchronization.
Without proper synchronization among threads, the integrity of data may be destroyed.

The problem of synchronization will be discussed in Section 1.3.1. This model is the most
popular in mainstream processors because it is easier to program, and the one that better fits
for shared memory multicore processors.

Message Passing

In distributed memory programming [24], the synchronization among processors is done
by explicit message passing. Message passing libraries allow the writing of parallel programs
for distributed memory systems efficiently. These libraries provide routines to configure the
messaging environment and to send and receive packets of data (point to point or collective).
The most popular high-level message passing library is MPI (Message Passing Interface).
MPI has become the facto standard for message passing parallel programming. This kind of
communication has the drawback of being difficult to program because the programmer has
to include explicit messages for communication in the code.

1.2.2 Problem Decomposition

Depending on how a problem is decomposed to parallelize it, we distinguish between data
and task decomposition.

Data Decomposition

The data parallel model focuses on distributing the data among different computing nodes.
It is achieved when the same task is applied over different data in different cores. Data paral-
lelism emphasizes the parallelized nature of the data.

Task Decomposition

Task decomposition refers to dividing the problem in tasks to execute them in different
computing nodes (in threads, processes, etc). In general, these processes or threads commu-

22 Chapter 1. Introduction

Figure 1.3: Dinning philosophers problem.

nicate with each other (with some form of communication, as showed in Section 1.2.1). Task
parallelism emphasizes the parallelized nature of the processing.

1.3 Parallel Programming Issues in Shared Memory

Multicore processors with the shared memory communication model (Section 1.2.1) have
some programming issues that have to be considered to program efficiently in parallel. Specif-
ically, synchronization is one of them: it provides mechanisms to programmers for control
access to shared data (where there are several threads running concurrently and accessing the
same resources) with the aim of avoiding unexpected behaviors caused by thread interleavings
not desired by the programmer. Another issue is debugging, as concurrency bugs are difficult
to detect and fix so more sophisticated tools are needed to debug programs efficiently. In
both cases, hardware support is usually necessary to achieve good performance while keeping
correctness.

This thesis is focused on contributing to reduce the overhead of these issues. CFM-TM
(Chapter 3) makes a contribution in a speculative synchronization mechanism and Pacman
(Chapter 4) in debugging.

1.3.1 Synchronization

The most common synchronization mechanism are locks, which are used for another user
level abstractions to build high level synchronization mechanisms (such as semaphores or
monitors). To illustrate the synchronization problem, we will expose a classic example (see
Figure 1.3):

1.3. Parallel Programming Issues in Shared Memory 23

EXAMPLE: Dining philosophers problem

– Five silent philosophers sit at a table around a bowl of rice.

– A chopsticks is placed between each pair of adjacent philosophers.

– Each philosopher must alternately think and eat.

– Eating is not limited by the amount of rice left: assume an infinite supply.

– A philosopher can only eat while holding both the chopsticks to the left and
the chopsticks to the right.

– Each philosopher can pick up an adjacent chopsticks, when available, and put
it down, when holding it. These are separate actions: chopsticks must be
picked up and put down one by one.

The problem is how to design a discipline of behavior (a concurrent algorithm) so
that each philosopher doesn’t starve, and they can forever continue to alternate be-
tween eating and thinking without a deadlock situation.

If we translate this problem to a shared memory multicore system, we could identify
the philosophers as the cores, and the chopsticks as the shared resources. There are several
possible solutions for this problem [30] [47], but all of them require some synchronization
mechanism to avoid problems like deadlock, one of the most frequent synchronization bugs.
In this example, a deadlock could be produced when all the philosophers are frozen with one
chopstick in the right hand, and waiting for another chopstick for the left hand (not eating, not
thinking).

Locks

Locks are the most common synchronization mechanism [164], used to restrict the concurrent
access to some shared data to only one thread at a time. To synchronize threads with them, the
critical sections have to be enclosed with locks. Before a thread enters in the critical section,
it has to acquire the lock, and when it finishes, it has to release it to allow other threads

24 Chapter 1. Introduction

executing their critical sections. Only one thread can acquire a lock at a time, and the other
threads trying to acquire it have to wait.

As locks serialize operations on shared data, the programmer try to either minimize the use
of synchronization, or use fine grain locks (multiple locks protect different shared data). With
the use of fine grain synchronization, the performance is optimized, but the code becomes
prone to errors and difficult to program. On the other hand, if a single lock is used to protect
large regions of code (coarse grain synchronization), programming is simpler, but scalability
is drastically reduced. It is not appropriate to use coarse grain synchronization with locks for
this reason.

The most common bugs due to the use of locks are summarized as follow:

– Deadlock: occurs when a thread is blocked because a resource requested by it is being
held by another waiting thread. Figure 1.4 shows an example of deadlock.

– Priority inversion: a high priority thread can not proceed because it is waiting for a lock
which is held by a low priority thread.

– Convoying: when multiple threads of equal priority contend repeatedly for the same
lock. The threads in a lock convoy do progress, however, each time a thread tries to ac-
quire a lock and fails, it renounces the remainder of its scheduling quantum and forces
a context switch. The overhead of this repeated context switching and the underutiliza-
tion of the quantums degrades performance.

– Livelock: It is similar to deadlock, but the state of the different threads is changing
continuously despite there being no progress.

These bugs are very well known, and result in a serious problem for programming pro-
ductivity.

Locks are built in software, but for performance reasons, they rely on hardware synchro-
nization instructions. The key hardware capability is an uninterruptible instruction capable of
atomically retrieving and changing a value. One of these synchronization instructions is the
atomic exchange, which interchanges a value in a register with a value in memory.

Another common operation is test-and-set, which tests the value, and sets it if the value
passes the test. For example, we could define an operation that tested for 0 and set the value
to 1 (that can be used in a similar way to atomic exchange).

1.3. Parallel Programming Issues in Shared Memory 25

Thread 1 Thread 2 Thread 3

lock(m1) lock(m2) lock(m3)

lock(m3) lock(m1) lock(m2)

. . .

. . .

. . .

. . .

. . .

. . .

A B (A is blocked by B)

Figure 1.4: Deadlock scenario: the three threads are holding a lock that other thread is trying to get.

Another atomic synchronization primitive is test-and-increment: it returns the value of a
memory location and atomically increments it (it can be also used in a similar way to atomic
exchange).

However, even with these primitives, implementing a single atomic memory operation
introduces some challenges, since it requires both a memory read and write in a single, un-
interruptible instruction. This requirement complicates the implementation of the coherence,
since the hardware can not allow any other operations between the read and the write, and yet
it must not deadlock.

An alternative is to have a pair of instructions where the second instruction returns a value
from which it can be deduced whether the pair of instructions is effectively atomic if it appears
as if all other operations executed by any processor occurred before or after the pair. These
pair of instructions includes a special load called load linked and a special store called store
conditional. These instructions are used in sequence: if the contents of the memory location
specified by the load linked are changed before the store conditional to the same address
occurs, then the store conditional fails. The store conditional is defined to return 1 if it was
successful and 0 otherwise.

Semaphores and Monitors

Semaphores and monitors are high-level synchronization mechanisms build on top of
locks. Semaphores are pretty close to locks, but add some functionality (for instance, al-
lowing more than one thread access to the critical section). Monitors are a set of multiple
routines that are protected by locks and these locks are acquired and released automatically

26 Chapter 1. Introduction

when the routines are used (it is not the responsibility of the programmer). Both are used for
the same purposes, the difference is the level of control and abstraction that the programmer
has.

Alternatives

The synchronization mechanism based on locks are perfectly valid for modern multicore
processors. However, it is difficult to program with them, and they are prone to errors. To
improve these approaches, in recent years some proposals like Lock Elision [138] (specula-
tively removing unnecessary lock-induced serialization in run time) or Transactional Memory
[72] have arisen as promising alternatives. We will describe Transactional Memory in detail
in Section 1.4.

1.3.2 Debugging Concurrency Bugs in Parallel Programs

Thread interleaving in parallel programs is unpredictable on most of the architectures, which
makes it hard to debug because of the difficulty of reproducing a concurrency bug. The
production phase of parallel software takes a lot of time, and many errors are not even detected
until years of correct execution. In many cases, the time invested in debugging is higher than
that invested in coding. Usually these concurrent bugs are showed up only under certain
timing conditions, and their effects manifest many instructions after the real bug is produced.

For these reasons, parallel debugging is very important and needs to be supported by
appropriate tools to help and accelerate this task. Without them, parallel programming will
not become mainstream.

Classical bug techniques (like the "printf" technique) are practical for some easy-to-solve
bugs, but with concurrency bugs usually it is very impractical to debug in this way, because
of the non-deterministic nature of parallel software.

Most previous concurrency bug detection schemes were focused on detecting data races
[33] [48] [151] [130], deadlocks [22] [48] [151] or atomicity violations [92] [94]. There are
also other approaches to support and help debugging, such as deterministic replay [107] [10]
[114] [115] [181] [128] [34], which can replay a bug deterministically, or parallel architec-
tures that implement more easy to understand memory models, such as BulkSC [29], with a
sequential consistency model.

1.3. Parallel Programming Issues in Shared Memory 27

Thread 1 Thread 2 Thread 1 Thread 2

lock(l1)

unlock(l1)

pvar->x=X; pvar=NULL;

var1=var2;

var3=var1;

var1=var4;

...

(a) (b)

pvar->y=Y;

if(pvar!=NULL){

}

Figure 1.5: Examples of data races. (a) An example of a common data race, and (b) An example of asymmetric
data race.

Detecting Data Races

A key type of concurrency bug is a data race. A data race occurs when two or more concurrent
accesses to one shared variable (with at least one write) are executed without proper synchro-
nization, and therefore it may result in an undesired behavior. Figure 1.5(a) shows an example
of a data race; Thread 1 uses var1 to save the value of var2 and then assigning it to var3 in
an atomic way, but the atomicity of this action is broken by Thread 2. However, in practice
some of these races are not harmful and are intentionally introduced by the programmer in
their code for optimization reasons.

There are many approaches in the literature for hardware data race detection [113] [132]
[94] and software data race detection [151] [48] [49] [92] [172].

Detecting Asymmetric Data Races

One type of typically harmful data race are the asymmetric data races, which may occur
when some threads are properly synchronized and others are not. In these races, there is a
well-tested, correct thread that accesses shared variables with appropriate synchronization. In
addition, there is a second thread, typically external to the well-tested application, which is
insufficiently tested and accesses shared variables without correct synchronization protection.
These threads are called the safe and the unsafe thread, respectively. An asymmetric race
occurs when the safe thread is executing a critical section protected by synchronization and
the unsafe thread corrupts the state of the critical section or reads inconsistent data. In these
cases, the program can lead to unexpected results.

28 Chapter 1. Introduction

Figure 1.5(b) shows an example of an asymmetric data race, where Thread 1 protects
the access to the variable pvar inside a critical section, and Thread 2 modifies pvar without
adquiring the lock.

These races are common in bug reports, and can often appear in well-tested codes that
interact with third-party or legacy routines [140]. They are likely to be harmful because the
data being corrupted is critical data already protected by synchronization.

Asymmetric data races are very common in software development projects [140]. Mi-
crosoft lists two main reasons for them [140] [137]. The first one is that code developed by
good software developers has to share synchronization operations with code developed out-
side, in third party libraries. The latter can be racy and buggy. The second reason has to do
with legacy code. For instance, a library may have been written assuming a single-threaded
environment, but later the requirements change to a multithreaded environment. This requires
that all users acquire and release the appropriate synchronization at the appropriate times.

There are some software implementations which target asymmetric data races [137] [140].
This thesis contributes to the first hardware solution to detect and tolerate asymmetric data
races in production runs (Chapter 4).

Detecting Deadlock Bugs

Even having all the critical sections synchronized, several problems can arise, like deadlocks
(see Section 1.3.1). There are several approaches to handle deadlocks such as those proposed
in [22] [48] [151].

Detecting Atomicity Violations

Atomic violations happen when programmers fail to enclose memory access that should exe-
cute atomically, and that can lead to incorrect behavior because of the conflicting access from
other interleaving threads.

There are some architectural proposals that address the problem in different ways. One
example of a hardware detection of atomicity violations is Atom-aid [94]. The main idea of
this implementation is to group the instructions in chunks, intelligently formed, to hide and
reduce the number of potential atomicity violations. Another example is AVIO [93], which
runs several training executions to find invariant interleaving patterns, which will be used to
check the correct execution of future runs.

1.4. Transactional Memory (TM) 29

Deterministic Replay

Deterministic replay is a technique to re-execute a non deterministic program in a determin-
istic way. To achieve this goal, when the program runs, some critical information is stored to
reconstruct exactly the same execution.

Therefore, a deterministic replay system has two modes:

– Record mode: records the logical thread information (data interleaving, schedule infor-
mation, etc), that is different depending on the implementation.

– Replay mode: reproduces the execution behavior of the program by enforcing the
recorded information.

For a practical implementation, the system should record almost at production-run speed,
it should keep their logging requirements as low as possible and it should replay at a speed
similar to the initial execution. These requirements are very difficult to meet without hardware
support, and because of that, hardware approaches [107] [10] [114] [115] [181] are more
common than software approaches [128] [34].

Other Techniques to Simplify Parallel Debugging

Another set of approaches to simplify parallel programming are the support of more intuitive
memory consistence models or forcing the system to be deterministic. BulkSC [29] imple-
ments sequential consistency (See Section 1.1.3) in a multicore processor without sacrificing
performance. RCDC [44] is an example of a deterministic multiprocessor architecture with a
hybrid hardware-software approach.

1.4 Transactional Memory (TM)

Transactional memory (TM) [72] is one of the abstractions that has become very popular in
the last years in academia and industry, and it has resulted in several important projects in
software (like TM support for gcc [52]) as well as in hardware (Intel Haswell [80], IBM Blue
Gene/Q [66] [175], IBM System Z [77] or Vega 2 [39]).

TM is a concurrency control mechanism (analogous to database transactions) that simpli-
fies parallel programming and avoids many of the problems associated with the use of locks
[173]. With TM, programmers enclose the piece of code that they want to make atomic in

30 Chapter 1. Introduction

a transaction, which has the properties of atomicity (it executes completely or it is not exe-
cuted at all) and isolation (other transactions or operations cannot read or write data that has
been written by the transaction currently in progress). These properties are automatically sup-
ported by the underlying TM system (runtime and hardware support). Usually transactions
are explicitly delimited by the programmer through a software constructor, but it can also be
implicitly delimited though lower-level operations [62].

TM is a coarse grain synchronization mechanism, which is easier to program and less
prone to errors than locks, but thanks to the speculation, its performance is comparable or
better than fine grain locks (depending on the TM implementation). Programming with trans-
actions has the big advantage of composability, that is the capacity of composing a large trans-
action from several smaller transactions together allowing the handling of nested transactions.
This is not possible with locks.

TM can be implemented both in hardware or software. Hardware implementations (HTM)
achieve better performance, in many cases far better than fine grain locks, but their weak point
is the flexibility and the hardware cost. Software implementations (STM) are totally flexible,
but in many cases the overhead produces an intolerable performance decrease. To balance the
inconveniences and advantages of both alternatives, some hybrid implementations (HyTM)
have been developed [84] [106].

TM was seen by some researchers as a research toy [27], but it became a serious tool from
the moment when the manufacturers decided to turn TM into a reality in their new genera-
tion of microprocessors. Recently, IBM, Intel, Sun, AMD or Azul systems have announced
multicore processors implementing some TM support [66] [80] [168] [6] [39]. In software,
there are also very popular alternatives, like the support of TM by gcc [52], DSTM2 [121] by
Oracle, the Intel compiler [158] or Microsoft’s NET framework [105].

1.4.1 Basic Concepts

TM executes atomic blocks of instructions (transactions) speculatively and in parallel [67]
[87]. For a transaction to be executed successfully, it has to complete in isolation with respect
to other transactions. To achieve that, the basic requirement is that no other transaction reads
or writes data that the local transaction modified, and that no other transaction writes data that
the local transaction reads. The set of addresses read by a transaction is the read set and the
set of addresses written by a transaction is the write set. A transaction commits when finished
correctly and the changes are made permanent. Furthermore, a transaction may abort at any

1.4. Transactional Memory (TM) 31

moment (for example, because of data conflicts), causing all of its prior changes to be rolled
back.

Conflict Detection and Resolution

The concurrency control mechanism is composed by a conflict detector and a conflict
resolution mechanism. To detect conflicting access to the same data among transactions, a
conflict detection mechanism is needed. A conflict detector detects when a transaction is
accessing to data that another concurrent transaction is modifying, or when it is writing data
that another concurrent transaction has read. There are two basic classes of conflict detectors
based on when the conflict is detected:

– Eager conflict detection - it is active, and the conflicts are detected on the fly.

– Lazy conflict detection - it is passive, and the conflicts are detected at the end of the
transaction.

Depending on the implementation, the benchmark or the input, one policy will behave
better than the other. The eager policy is used in pessimistic concurrency control (the con-
flict detection and resolution occur when the conflict is produced), and it can save a lot of
work of doomed transactions. However, lazy policy is used in optimistic concurrency con-
trol (conflict detection and resolution can happen after the conflict is produced), which allows
multiple transactions to access data concurrently and to continue running even if they conflict,
as long as the TM detects and resolves these conflicts before a transaction commits. This pro-
vides considerable implementation leeway (for instance, conflicts can be resolved by aborting
a transaction or by delaying one of the conflicting transactions).

Figure 1.6 shows an example of how both policies behave in two different scenarios: in
(a) the write transaction (T2) commits earlier than the read transaction (T1) (and therefore,
from the point of view of the system, T2 is executed before T1), and in (b) just the opposite
happens (T1 commits before T2). In (a) the conflict is detected correctly with both strategies,
because T2 breaks the atomicity of T1 by writing the A value. However, in (b) the atomicity
is not broken because T2 commits after T1, and the B value read by T1 is correct (it is the old
value). In this case, the eager conflict strategy will detect a conflict that finally does not break
the atomicity, and the lazy strategy does not detect the conflict because it check them in the
commit phase.

32 Chapter 1. Introduction

T1 T2 T1 T2
BeginTx

Read(A)

Write(A)

Read(B)

Write(B)

EndTx

BeginTx BeginTx BeginTx

EndTx

EndTx

EndTx

(a) (b)

Figure 1.6: In (a), both eager and lazy conflict detection would detect a conflict. In (b) only eager conflict detection
detects a conflict.

Depending on the implementation, TM can detect conflicts with different levels of gran-
ularity. For example, conflicts can be detected at object level in some software implementa-
tions, or at cache line level granularity in most of the hardware implementations. After the
conflict is detected, the resolution mechanism decides what to do with the implied transactions
(continue, abort, stall, etc.). Furthermore, a contention manager may be required to execute
the conflict resolution policies and to avoid some problems that can arise, such as deadlock or
livelock.

Isolation

Related to conflict detection, a TM system can also be classified in terms of the level of
isolation of the transactions [101]:

1.4. Transactional Memory (TM) 33

– Strong isolation - the data enclosed in one transaction is protected against conflicts
with transactional and non transactional data. This approach has a significant overhead,
so that it is implemented mainly in HTM systems.

– Weak isolation - the data enclosed in one transaction is only protected against conflicts
with transactional data. This option is more common in STM systems due to its low
overhead.

Version Management

To resolve conflicts, the TM system generally needs to abort and rollback one or more
transactions. For doing so, it needs to maintain two versions of data during the time the
transaction executes, just in case the transaction rolls-back. The data version management
is in charge of keeping the new and the old data, and depending on where the version of data
is saved, we can classify them as:

– Eager version management - this approach maintains the new speculative data in place
at memory, whereas the old data is maintained in a separate virtual cacheable memory.

– Lazy version management - this approach maintains the old data in place, and the
speculative data is saved in another location (a log, a specific cache for speculative
writes, etc.).

Eager version manager makes the commits fast, and the aborts slow, whereas lazy version
manager makes the commits slow, and the aborts fast. If one transaction completes without
conflicts, it commits by making the speculative written data accessed by the transaction visible
to the rest of the system, and the old data is discarded. In case the transaction is aborted
because of conflicts with other transactions, the speculative data is discarded, and the old data
is restored.

Nested Transactions

Concerning nesting transactions, a TM system can handle them in three ways:

– Flattened nested transactions: All the transaction are flattened and treated as only one
(the outer transaction).

34 Chapter 1. Introduction

– Closed nested transactions: A closed transaction can abort without aborting the outer
transaction, and when it commits, the results are seen by the outer transaction (but not
for the rest of the system).

– Open nested transactions: When an open transaction commits, its changes are seen
by the outer transaction and also by the whole system. On aborts, open transactions
have the same behavior as closed transactions.

These basic mechanisms are enough to implement a complete TM system. Next we will
review some representative hardware, software and hybrid implementations.

1.4.2 Hardware Transactional Memory (HTM)

TM implementations in hardware are the best in terms of performance. Many of them were
developed in academia [72] [62] [183], but also industry has developed several HTM ap-
proaches in recent years [167] [6] [80] [66] [39], which reflect the potential of TM for the
future of parallel programming.

In the following, we describe three academic implementations and five commercial HTM
proposals.

The First HTM System: the Herlihy and Moss Implementation

The first HTM implementation was proposed by Herlihy and Moss [72] in 1993. The hard-
ware added is restricted to the first level caches and some new instructions, and TM is imple-
mented by modifying the cache coherence protocol and exploiting the access rights (imple-
mented in most of the cache coherence protocols).

The implementation proposed is based on a snoopy protocol, a separate cache for the
speculative data and new transactional cache states. Moreover, the processor maintains a state
that indicates if there is or not an active transaction in the processor. The transactional cache
behaves as a normal cache if the local core is not executing a transaction.

The basic behavior is the following: the transactional cache holds all the tentative writes,
without propagating them to other processors or to main memory unless the transaction com-
mits. If the transaction aborts, the lines holding tentative writes are dropped (invalidated); if
the transaction commits, the lines may then be snooped by other processors and written back
to memory upon replacement. The transactional cache augments the classical cache states

1.4. Transactional Memory (TM) 35

(shared, modified) with some additional tags to handle speculative data and tracks conflicts by
slightly modifying the cache coherence protocol (by adding information to distinguish trans-
actional messages). The conflicts are detected by the transactional cache coherence controller,
which snoops all the coherence messages to know the possible conflictive remote accesses.

The idea of taking advantage of the cache coherence protocol to detect conflicts of data
among transactions would be used later by many other proposals (LogTM[109], LogTM-
SE[183], etc.).

Transactional Coherence and Consistency (TCC)

Transactional coherence and consistency (TCC) [62] is a shared memory model based on TM,
and one of the most representative lazy HTM systems (lazy conflict detection and lazy version
manager).

In this system all the instructions execute inside transactions, which are always the basic
unit of work, communication, cache coherence and memory consistency. To develop software
for this system, the programmer (or the compiler) has to divide the program into transac-
tions. Optionally, the programmer can also specify order among transactions, which allows
speculative parallelization of sequential programs.

In TCC, the write buffer stores all the updates until they commit or abort. The read bits
in the cache maintain the read set, the modified bits in the cache tracks the write set and the
rename bits are optional bits to optimize the protocol.

Each transaction produces a set of writes that are committed atomically to shared memory
only when the transaction finishes successfully. Once a transaction completes, the system
has to arbitrate for the permission to commit its writes. When the permission is granted, the
processor broadcasts the writes to all the system.

TCC has a greatly simplified coherence protocol, since it only needs to manage sequenc-
ing among entire transactions, and not among individual loads and stores. Also, it is consistent
because it imposes sequential order among all the transaction commits. Moreover, it is co-
herent: stores are kept in a buffer until the end of the transaction (to maintain atomicity),
and several processors can keep and modify the same data. At the end of the transaction, the
processor notifies to all the other processors about the changes, and makes the proper invali-
dations and updates to keep the coherence, and at the same time determines if there are data
conflicts that force the transaction to abort and restart and reload the correct data.

36 Chapter 1. Introduction

The main drawback of TCC is the high broadcast bandwidth required to send the commit
packages, which include all the modified data of the committed transaction

LogTM-SE: Log-based Transactional Memory - Signature Edition

LogTM [109] is the most representative of the eager systems (eager conflict detection and
eager version manager). There is a later version of LogTM called LogTM-SE [183], which
includes signatures (see Section 1.5) to manage conflicts. We describe this implementation in
detail because it is the basis of one of the contributions of this thesis (Chapter 3).

Signatures, usually composed of a register and one or several hash functions, can keep a
probabilistic representation of an unbounded number of addresses in a bounded space, at the
cost of false positives (a positive that actually is not). The addresses are inserted in the sig-
nature by hash encoding the address and setting the positions on the register that corresponds
with the result of the hash function. Checking if an address is in the signature is an analogous
operation, but checking the positions instead of setting (if all of them are one, the result of
the check is positive). Notice that signatures never report a false negative (a genuine match is
always reported).

Beside signatures, LogTM-SE has the characteristic of supporting transactional data over-
flowing from the local cache without aborting the transaction, because the old versions of
speculative data are saved in a software log, and not in the lower levels of the cache hierarchy
as in other implementations.

LogTM-SE builds upon a conventional shared memory multiprocessor with two (or more)
levels of private caches that keep coherent by a MESI directory protocol [41]. The old values
are saved in a per-thread log in cacheable virtual memory, which is allocated on the thread
creation. On a store, LogTM-SE appends to the log the virtual address of the stored line
and the line’s old value. Writing log entries generates less overhead than one might expect.
Log writes will often be cache hits, because the log is cacheable, thread private, and most
transactions write few lines. To abort, LogTM-SE must undo the transaction by writing old
values back to their appropriate virtual addresses from the log.

Figure 1.7 shows the basic hardware organization of LogTM-SE. The read and write sets
are tracked with two signatures, which implement insert, check and clear operations (see
Section 1.5), and the eager conflict detection is performed using the MESI cache coherence
protocol implemented in the system. In LogTM-SE, the MESI protocol is implemented using
a directory.

1.4. Transactional Memory (TM) 37

Register

Checkpoint
User

Registers

PC

Log Base

Log Pointer

TM Nest

Begin PC

Handler PC

R/W Sig

Summary Sig

Log Filter

Thread Context 0

Core 0
1

2
...

Figure 1.7: LogTM-SE hardware organization. The shaded elements are the LogTM-SE specific state.

In this protocol, each read/write miss generates a request to the directory, and the directory
forwards this request if necessary. In case the line is shared by several L1 caches, or owned in
exclusivity by one of them, the directory forwards the request to the involved caches. In case
the line is not in L2 cache, a L2 miss is produced, and the data is requested to memory.

LogTM-SE performs eager conflict detection in several steps: (a) the requesting processor
sends a coherence request to the directory, (b) the directory responds and possibly forwards
the request to one or more processors, (c) each responding processor examines some local
state to detect a conflict, (d) each responding processors ack (no conflict), or nack (conflict)
the request, and (e) the requesting processor resolves any conflict.

To support conflict detection, LogTM-SE introduces some changes on the original MESI
directory protocol. If a L1 cache data is evicted, the L2 does not update the exclusive pointer
or sharer’s list (sticky states). This ensures that a subsequent request will still be forwarded to
the evicted L1 line, allowing the conflict detection.

If the L2 replaces transactional data, it loses the corresponding directory information,
as the main memory does not maintain directory information. As a result of the inclusion
property, subsequent requests to the same data result in a L2 miss. But to preserve correctness,
the L2 conservatively broadcasts the coherence request to the L1s, allowing them to check

38 Chapter 1. Introduction

their signatures. To avoid multiple broadcasts for the same line, the L2 rebuilds the directory
state by recording the L1s’ responses. If an L1 NACKs the request due to a conflict, the L2
directory goes to a new state that requires L1 signature checks for all subsequent requests. A
line leaves this state when the request finally succeeds.

For conflict resolution, the contention manager is activated and it executes a timestamp
resolution policy, so that if the requester transaction is younger, it should be stalled until
the older transaction finishes (commits or aborts), but if the requester is older, the younger
transaction aborts. Furthermore, LogTM-SE does not allow us to cache a line in the L1 cache
that is in the write set of another core, which ensures isolation.

LogTM-SE is also able to operate in multi-threaded cores, adding additional mechanisms
to detect conflicts among threads in the same core. Each thread context maintains its own read
and write signatures.

Regarding the version management, the eager approach uses a software log allocated in
thread-private memory. LogTM-SE uses an array of recently logged lines for each thread
context as a simple but effective log filter. When a thread stores to a line not found in its log
filter, LogTM-SE logs the line and adds its address to the log filter. Stores to addresses in the
log filter are not logged.

Commits in LogTM-SE are a local and fast operation, which consists of clearing the local
signatures and resetting the log pointer. Aborts are managed using a software handler, which
walks the log in FIFO order restoring transactional modified lines, and after that, the read and
write signatures are cleared.

With a naive directory protocol, cache victimization could lead LogTM-SE to miss some
signature checks and hence miss some conflicts. LogTM-SE avoids this case by extending the
directory protocol to use LogTM’s sticky states [109]. LogTM-SE’s caches silently replace
lines in states E and S and write back lines in state M. When evicting a cache line, however,
LogTM-SE does not change the directory state, so that the directory continues to forward
conflicting requests to the evicting core. Thus, LogTM-SE allows transactions to overflow the
cache without a loss in performance.

Sun Rock TM Implementation

The Sun Rock [167] [168] [45] [32] was the first commercial HTM implementation. It has
very modest TM support (best effort approach), and can be used for lock elision or for some

1.4. Transactional Memory (TM) 39

hybrid implementations. Unfortunately, the Sun Rock was canceled in 2009, but it showed
the way to follow for other manufacturers.

Rock uses two new instructions to support TM, one that denotes the beginning of a transac-
tion and the other that denotes the end. Rock also adds a s-bit in cache lines. The transactional
loads set the s-bit in the corresponding cache memory line, and if a cache line with its s-bit
set is evicted, the transaction is aborted.

Stores within a transaction are placed in the store queue in program order. The addresses
of stores are sent to the L2 cache, which then tracks conflicts with loads or stores from other
threads. If the L2 cache detects such a conflict, it reports the conflict to the core, which then
aborts the transaction. When the commit instruction executes, the L2 locks all lines being
written by the transaction. Locked lines cannot be read or written by any other threads. This
is the point at which other threads view the transaction’s loads and stores as being performed,
thus guaranteeing atomicity. The stores then drain from the store queue and update the lines,
with the last store to each line releasing the lock on that line. The support for locking lines
stored by a committed transaction is the primary hardware mechanism added to Rock to im-
plement TM.

Unlike many other HTM systems, the Rock processor implementation ensures weak iso-
lation (detection of conflicts only among transactions).

AMD ASF (Advanced Synchronization Facility)

The Advanced Synchronization Facility (ASF) [6] [37] is an AMD64 extension to provide a
very limited form of HTM support. It exposes a mechanism for atomically updating multiple
independent memory locations, and allowing software to implement the intended synchro-
nization semantics. ASF is a high level specification, and it does not provide any specific
hardware implementation.

ASF specify the execution of the atomic sections of code in a speculative way, and if a
conflict is produced, ASF report it to the software, which can retry the transaction as desired.

Furthermore, despite the fact that ASF protects memory at cache-line granularity, software
can work on the level of memory objects because:

– ASF-protected memory objects have a size of up to 64 bytes and are naturally aligned
(all ASF implementations should have cache lines of at least 64 bytes).

40 Chapter 1. Introduction

– The speculative region does not reference more than four objects (this is the minimum
guarantee, but more may be supported depending on the architecture).

– Memory objects protected using ASF do not share cache lines with memory objects
that are not protected. (False sharing may lead to unwanted protection, exceptions and
unnecessary aborts).

Some limitations are that ASF supports only a limited form of nested speculative regions,
and that only operates on cacheable data and has a weakened memory-access-ordering model
in certain aspects.

Chung et all [38] proposed an ASF hardware design to implement in a future AMD out-
of-order processor, which is close to the classical approaches on cache-based HTM designs
[183] [62].

Intel Haswell TM Implementation

The new Intel Haswell architecture [80] includes some synchronization extensions to take
advantage of the underlying TM system. The Intel’s Transactional Synchronization extension
(TSX) describes two software interfaces for HTM in Haswell, one is for Hardware Lock
Elision (HLE) [138], and the second mode is Restricted Transactional Memory (RTM), which
is similar to classical TM proposals.

The HTM implementations following the specifications of TSX have cache line granular-
ity and strong isolation. Typically, conflicts cause the transaction to abort, and false conflicts
can occur because of cache-line granularity. TSX also supports nested transactions, which
are managed by flattening the nested transactions in a single transaction. Transactions can
only be used with write-back cacheable memory operations, and not all the instructions can
be used safely inside a transaction (for example instructions related with interrupts, I/O, vir-
tualization, etc). There are also limits to the size of the transaction (probably because the size
of the transaction is restricted to the L1 cache).

The first of the interfaces defined is RTM, which exposes nested transactional memory
to the programmer. For implementing RTM, there are three new instructions, one for starting
the transaction, one to indicate the end of a transaction and a explicit instruction to trigger an
abort.

The other interface defined is HLE, which introduces two new instructions to denote the
bounds of the lock elision (see Section 1.4.5). One instruction indicates the beginning of a

1.4. Transactional Memory (TM) 41

region for lock elision, and the other instruction is for releasing the lock address when the
HLE region finishes. The HLE region is treated as a transaction, and the memory address of
the lock instruction is added to the read set (but the lock is not acquired). If a conflict occurs,
the transaction is aborted, and the HLE region is executed again, but this time acquiring the
locks (without HLE hardware support).

Regarding the architectural support, unfortunately Intel has not revealed many details
about the architecture, but we can outline some ideas suggested by D. Kanter [80] and that
probably match the actual architecture. The Haswell coherency changes are probably re-
stricted to L1 and L2 cache (in a three level cache system). Probably a read and a write bit are
used per cache line and thread to indicate that the line belongs to the read or the write set of
the transaction. The L3 cache would store the old data. It is also likely that the size of trans-
actions is restricted to the L1 data cache. The conflicts would be detected eagerly through the
existing cache coherency protocol. To commit a transaction, the L1 data cache and L2 cache
controllers make sure that any cache line in the write set (WS) is in the Modified state and
clean the WS bits. Similarly, any cache line that is in the read set (RS) -but not the WS- must
be in the Shared state and the RS bits are cleared. To abort a transaction, the cache controllers
change all the WS lines to the Invalid state and clear the WS bits and the RS bits.

IBM Blue Gene/Q TM Implementation

The last generation of the IBM Blue Gene [66] [175] is a 18-core high-performance energy-
efficient computing system that also incorporates HTM.

The main TM characteristic of the Blue Gene is the multiversioned L2 cache used to
support speculative execution, TM and atomic operations. During memory speculation, the
L2 cache tracks state changes caused by speculative threads and keeps them separate from
the main memory state. The speculative data is only visible for the thread that writes it. At
the end of the speculative code, the changes can either be made permanent (commit), or be
reverted (abort). Also, the L2 track for Read-after-Write (RAW), Write-after-Write (WAW)
and Write-after-Read (WAR) conflicts. The L2 can be configured to react to a conflict with
an invalidation, with a notification to the software, or both. In the second case, the software
decides which transaction to abort to resolve the conflict.

42 Chapter 1. Introduction

IBM System Z TM Implementation

The last generation of the IBM system z CPU [77] also implements a pure HTM system and
incorporates architectural features to support debugging and testing. It introduces six new
transactional instructions: TBEGIN (it indicates the beginning of the transaction), TBEGINC
(it mostly behaves like TBEGIN), TEND (it indicates the end of the transaction), ETND (it
is used to load the current nesting depth into a general register), NTSTG (non-transactional
store; unlike a normal store, it is committed to memory even in the case of transaction abort,
mainly for debugging purposes) and TABORT (it causes an immediate abort). The main
implementation components of the TM system are a register file to save the old versions of
transactional data, a cache directory to track the cache lines accessed during the transaction,
a store cache to buffer transactional stores until the transaction ends, and firmware routines to
perform various complex functions. Furthermore, it includes other architectural registers to
support and track different events of the transactional behavior.

1.4.3 Software Transactional Memory (STM)

The main advantage of STM over HTM is the flexibility to implement different strategies
of conflict detection and version management, as well as the capacity to manage unbounded
transactions. Also, STM is easier to modify and evolve than HTM, and it can be integrated
easily with the existing software systems. The main drawback of STM is its large runtime
overhead.

The STM precursor scheme was proposed by Lomet in 1977 [91], who proposes a pro-
gramming language construct very similar to STM, but with a different name. Lomet analyze
the disadvantages of synchronization mechanisms (locks, semaphores. monitors, etc), and
noted that programmers use these mechanisms to execute sets of code atomically. However,
the term STM first appeared in a paper of Shavit and Touitou [153] in 1995, which is con-
sidered the first STM implementation. In this first implementation the programmer had to
declare which locations might be accessed by the transactions and to propose the memory
updates in advance. This approach inspired many early non-blocking STM implementations.

There are some basic core techniques that are used across most of the STM systems:
concurrency control metadata, version management and read and write track. To associate
the metadata (data that describes the data) with the locations that the program is accessing,

1.4. Transactional Memory (TM) 43

there are two basic approaches: an object-based STM approach (held with each object) or a
word-based STM approach (associated with each memory location).

Regarding version management, STM needs and undo-log for eager version manage-
ment (to save the old values that would be restored if an abort occurs), and a redo-log for
lazy version management (with the values that will be written to memory if the transaction
commits).

There are two types of concurrency control. Pessimistic concurrency control needs a
mechanism to track read and write sets, so that the transaction can release any lock that has
acquired. In optimistic concurrency control, it is the transaction which detects the conflicts.

Beyond these core techniques, we can classify the STM systems in four groups, depending
on the specific implementation: Lock-based STM with Local version numbers, Lock-based
STM with Global Clock, Lock-based STM with Global Metadata and Nonblocking STM
Systems. Below, we briefly describe each one of these groups:

Lock-based STM with Local Version Numbers

This variant combines a pessimistic concurrency control for writes (using locks acquired dy-
namically) with optimistic concurrency control for reads, implemented by checking version
numbers during validation, which are incremented independently in each piece of STM meta-
data. The main algorithmic choices are eager or lazy conflict detection, and they lock the
locations when they are accessed (encounter-time locking or ETL) or in the commit phase
(commit-time locking or CTL). ETL supports both eager or lazy version manager, detecting
conflicts among running transactions (whether or not they commit). CTL only support lazy
version management, which allows supporting lazy conflict detection. This approach has been
used in many STM systems [1] [2] [68] [145] [146].

Lock-based STM with Global Clock

Unlike local version numbers, this implementation uses a global clock to maintain the version
numbers, which is incremented globally in the process. These implementations can easily
provide opacity (the property of guaranteeing that a transaction always sees a consistent view
of memory as it runs). One good example of this approach is TL2 [46].

44 Chapter 1. Introduction

Lock-based STM with Global Metadata

The techniques that use global metadata do not have individual locks or version number as-
sociated. The only shared metadata are global structures and they only use a fixed amount
of global state for detecting conflicts. Because of this, this approach may have scalability
problems. With this approach, the number of atomic operations involving running and com-
mitting transactions can be reduced. JudoSTM [118] and NOrec [42] are good examples of
this approach.

Nonblocking STM Systems

The nonblocking synchronization implementations are characterized by the absence of block-
ing when a process tries to access a concurrent object (data object shared by multiple pro-
cesses). Instead of that, the process can either abort their own atomic operation, or abort the
atomic operation of the conflicting process. One of the most influential approaches is DSTM
[71], which was the first that didn’t need to specify the locations to be accessed by a transac-
tion in advance. Other designs that were strongly influenced by DSTM were also developed
in [60] [152] [51] [99] [158].

1.4.4 Hybrid Transactional Memory (HyTM)

HyTM is a compromise between HTM and STM. It is becoming a very interesting approach
because it takes the best of both worlds: the flexibility and relatively low cost implementation
of STM, and the performance of HTM.

There are two ways of building a HyTM system:

1. A complete HTM system that can manage short transactions. By default, the trans-
actions are executed in hardware, but when the transaction exceeds the hardware re-
sources, the transaction is aborted and re-executed by software.

2. Hardware support to accelerate some specific STM functions, such as, for instance,
conflict detection.

The HyTM proposed by Kumar [84] is an example of HyTM that fits in the first class of
HyTM systems: if the HTM system can not handle the transaction, the transaction is restarted
in an object based STM system.

1.5. Background on Signatures 45

SigTM [106] proposes a HyTM system with strong isolation guarantees. This implemen-
tation fits in the second class of HyTM systems: it uses hardware signatures (Section 1.5) to
perform conflict detection among threads and to reduce the overhead of the STM. It is also
the first Hybrid implementation that guarantees strong isolation, because the conflicts are de-
tected through the cache coherence protocol, and it is easy to track all read and write data with
signatures tracking all the cache coherence messages.

1.4.5 Other Speculative Techniques

There are other speculative techniques based on speculation that are pretty similar in concept
to TM.

Thread-Level Speculation (TLS) [63] [157] [160] is an automatic technique to extract
parallelism from a thread. Usually the parallelism is extracted by splitting the dynamic exe-
cution path of a single-threaded application into multiple ordered threads. These threads are
executed concurrently, and only the first thread in order is nonspeculative. When the nonspec-
ulative threads complete, the next thread in order becomes nonspeculative. The speculative
threads have to maintain the speculative writes in a special buffer, and only when the thread
becomes nonspeculative, are these writes seen by all the system.

Speculative Lock Elision (SLE) [138] executes the region of code inside the lock spec-
ulatively. In case of no conflicts, the execution would be very fast, and in case of detecting
conflicts, the old data values are restored, and the region of code is re-executed acquiring the
corresponding lock. This technique was used in hardware implementations like Haswell [80].

1.5 Background on Signatures

New paradigms and tools related to parallel programming and debugging require hardware
support to achieve a reasonable performance. One promising hardware support element for
parallel architectures are signatures, which can be used in a variety of different tools with
different purposes, and provide a significant performance improvement compared with their
cost.

A signature keeps a probabilistic representation of an unbounded number of elements
in a bounded space, and it is used to check if an element belongs to the set of elements
previously inserted in it. As a consequence of the bounded space, aliasing among elements
can be produced, and therefore, the check operation can return false positives (a positive that

46 Chapter 1. Introduction

actually it is not). However, a check operation never results in false negatives (a genuine
match is always reported), because usually it is not possible to remove individual elements
from the signature.

One of the most critical features to implement in a TM system (Section 1.4) is the conflict
detection, so that many approaches have used signatures for this purpose. This is the case of
LogTM-SE [183], SigTM [106], FlexTM [155] or DynTM [96]. Another example of the use
of signatures is BulkSC [29], a novel multicore architecture that provides sequential consis-
tency with a high performance by executing atomic blocks of code atomically and in isolation,
using signatures to detect conflicts and preserve isolation. Signatures are also used in code
analysis tools such as SoftSig [169], which exposes hardware signatures to the software for
code analysis and optimization. Concerning data race detection, SigRace [113] is a very ef-
ficient race detection tool with signatures as a key element. Related also with debugging,
there are implementations of deterministic replay with signatures as hardware support, such
as DeLorean [107]. Other very popular uses of signatures, apart from applications related
to parallel programming, are: web cache [78], packet classification [3], packet inspection
[82], network services [180], grid services [89], cloud computing applications [127], routing
protocols [125], etc.

These are only some examples of the wide variety of tools that are already using signatures
as a key element of their behavior, which indicates that signatures are a good candidate to
include in a general purpose processor to support these and future tools. Chapters 5 and 6
presents our contribution on signatures.

For the applications discussed in this thesis the elements inserted and checked on signa-
tures are addresses. Moreover, for high performance we concentrate on hardware signatures.

1.5.1 Fundamentals

A signature is composed of a storage element (usually a register) and at least one hash func-
tion. To insert an address in the signature, some bits of the storage elements are set (the bit
position corresponding to the result of hash encoding the element). For testing if an address
was inserted in the signature, all the bits of the storage element corresponding to hash encode
the address have to be set to one. The third basic operation is to clean the signature, that resets
all the bits of the storage element.

1.5. Background on Signatures 47

The rate of false positives is the major figure of merit of a signature, and depends basically
on the size of the signature storage element, the quality of the hash functions and on the
number and the distribution of elements inserted.

There are many different designs and implementations for signatures (the most popular
implementations use Bloom filters [20]), but all of them share two common components: a
storage element, and one or more hash functions. Below, we describe these elements.

Hash Functions

The mission of a hash function is to map an address of l bits into a bit position of a m = 2c

bit register. The desirable requirements of a hash function are an easy and fast implementation
and an appropriate design to minimize the false positives (good statistical properties).

The simplest choice for a hash function is the bit-selection, where each hash value (that
points to a bit of the signature register) comes from a fixed subset of the bits of the address.
It uses trivial hardware, but it presents limited variation to approximate a uniform distribution
of the generated hash values.

The H3 family of hash functions [26] [139] are more popular in hash implementations.
These functions are just a reduction implemented with a tree of XOR gates per result bit of
the hash function (determination of the parity of the groups of bits of the input address). It
uses fixed boolean matrices to select address bits. Each one of the k H3 hash functions of a
signature can be characterized by a c× l matrix

H =

h0,0 h1,0 · · · hc−1,0

h0,1 h1,1 · · · hc−1,1
...

...
...

h0,l−1 h1,l−1 · · · hc−1,l−1

 (1.1)

whose coefficient hi, j is 1 if the bit j of the address is an input bit of the XOR tree which
computes the bit i of the hash value. The hash output value y = [y0y1 · · ·yc−1] of an l-bit
address with binary expression x = [x0x1 · · ·xl−1] is computed as

[y0y1 · · ·yc−1] = [x0x1 · · ·xl−1]×H (1.2)

Thus, a generic Bloom filter with k hash functions can be completely characterized by k

H3 matrices H0,H1, ...,Hk−1.

48 Chapter 1. Introduction

0
y

x0x2 x4x6 x0x1 x4x5 x1x3 x5x7 x2x3 x6x7 x0x1 x2x3 x4x5 x6x7 x0x3 x4x7 x1x2 x5x6

1
y

2
y

3
y

4
y

5
y

6
y

7
y

Figure 1.8: Example of H3 hash function. The inputs are defined by the Hexample of Equation 1.4.

In general, given fixed boolean matrices, the number of 2-input XOR gates required to
implement k hash functions, producing c-bit hash values (that point to a m = 2c bit register)
is given by

#XOR =
k−1

∑
j=0

c−1

∑
i=0

(
l−1

∑
s=0

hi,s −1

)
≈ (INbits−1)× c× k (1.3)

being INbits the average number of address input bits for generating each output bit (y0,y1, ...).
For instance, assuming a signature of m = 1024 bits (c = 10) and one hash function (k = 1),
with addresses of 32 bits (l = 32), and INbits = 16 bits, 150 XOR gates would be required.
The number of gates can be reduced by applying some optimizations [170].

Figure 1.8 shows a very simple and trivial H3 hash implementation with one hash function
(k = 1) for 8-bit addresses (l = 8) and a register of m = 28 = 256 bits, just to illustrate the
previous explanation. The input address bits are selected by using the fixed boolean matrix of
Equation 1.4 (4 address bits produce each bit of a 8-bit hash value). On average half of the
input address bits can affect a given bit of a hash value, and it requires 15 XOR gates.

Hexample =

1 1 0 0 1 0 1 0
0 1 1 0 1 0 0 1
1 0 0 1 1 0 0 1
0 0 1 1 1 0 1 0
1 1 0 0 0 1 1 0
0 1 1 0 0 1 0 1
1 0 0 1 0 1 0 1
0 0 1 1 0 1 1 0

(1.4)

1.5. Background on Signatures 49

1 1 10000 . . .

h1 h2 hk

address

m bits

K-ported SRAM

m bits

h1

h2

hk

...

word lines

b
it lin

e
saddress

1 00 . . .

m/k bits

0 10 . . . 0 01

h1 h2 hk

address

h1

...h2 hk

single-ported SRAM

m/k bits

address

(a) True Bloom signature. (b) Parallel Bloom signature.

Insert

Check

. Insert

Check

. . .

. . .

Figure 1.9: Bloom signatures.

Registers

The registers are usually implemented with bit-addressable SRAMs, which can be single
or multi ported, depending on the number of hashes for writing the register at the same time.
Multiported SRAMS are not area-efficient because the size of a SRAM cell increases quadrat-
ically with the number of ports. As described below, multi-ported SRAMs are used in true
Bloom signatures, whereas parallel Bloom signatures use single-ported SRAMs.

1.5.2 True Bloom Signature

A true Bloom signature is a signature implemented with a Bloom filter [20]. It is composed
by one multi-ported SRAM register of m bits (that is initially set to zero) and k hash functions
that return a value in the range [0..m−1], as shown in Figure 1.9 (a).

To insert and address in the signature, the k hash functions are calculated, and the bit
indicated by the result of this operations is set to one in the register. The check operation
consists of checking if all the bits of the register pointed by the results of the hash functions

50 Chapter 1. Introduction

are all set to one. In case at least one bit is set to zero, the address is not in the signature. If
all the bits are set to one, the address was previously inserted (or it is a false positive).

Each hash function in the Bloom filter set or check one bit of the register. All k hash
functions are independent, and they map the addresses into k randomly distributed bits of the
register.

The most critical design decisions in a true Bloom filter are the size of the register (m)
and the number of hash functions (k). Large registers decrease the probability of a false
positive, but increase the hardware resources and power/energy required. On the other hand,
the probability of false positives depends also on the number of hash functions and the number
of elements inserted [147] [20].

The number of false positives is influenced as well by how the hash functions are im-
plemented (H3, bit-selection, etc). A theoretical approach for the false positive rate [147]
assumes that the hash values are independent and uniformly distributed (very similar to H3

functions). This leads to the following expression for the lower bound of the false positive
rate (PFP):

PFP = (1− e−
nk
m)k (1.5)

where n is the number of addresses inserted and assuming m >> 1. The effect of the number
of hash functions is shown in the example of Figure 1.10 (a), where the false positive rate of a
signature with m = 1024 is represented , with the number of inserted addresses from 0 to 500,
and k = 1,2,4,8,16. We see that the best value of k (minimum false positive rate) depends
on the number of addresses inserted: with a high number of addresses inserted, the better
results are achieved with a small value of k, and with a low number of addresses inserted,
the signature requires a higher value of k to minimize the false positive rate. Figure 1.10 (b)
shows the evolution of the false positive rate depending on the k value, and for 5 different
values of n. We see more clearly in this figure that there is an optimal value of k depending
on the number of addresses inserted (n). Specifically, the absolute minimum of the Equation
(1.5) is obtained for k = ln(2)× m

n [163], and the lower bound of the false positive rate using
this value is given by:

PFP = 2− ln(2)×m
n

Since k, in practice can take only integer values, the value of k that minimizes the false
positive rate (kopt) is the closest integer to ln(2)× m

n that minimizes the value of PFP (Equation

1.5. Background on Signatures 51

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 100 200 300 400 500

fa
ls

e
po

si
tiv

e
ra

te

Addresses inserted (n)

K=1

K=2

K=4
K=8

K=16

(a) False positive rate vs n default values of k.

 0

 0.05

 0.1

 0.15

 0.2

 1 2 4 8 16 32

fa
ls

e
po

si
tiv

e
ra

te

k

n=40

n=80n=120

n=180

n=240

(b) False positive rate vs k for default values of n.

Figure 1.10: False positive rate for parallel Bloom filter with m = 1024.

(1.5)). For the particular example of Figure 1.10 (b) with m = 1024 and n = 180, the optimal
value is kopt = 4.

1.5.3 Parallel Bloom Signature

Figure 1.9 (b) shows an alternative to the true Bloom signature, the parallel Bloom signature
[147] [31]. In this case, the m–bit register is split into k registers of m/k bits, each with a
hash function associated. In this approach, each hash function operates on one of the m/k–bit
registers. Hence, the parallel Bloom signature can be seen as k true Bloom signatures with
one hash function and a m/k–bit register (or like k single Bloom filters). The insert operation
hashes the addresses and inserts one bit in each m/k–bit register, and the check operation
reports that an address is in the signature only if all individual single Bloom filters have the
hash mapped bit of their register set to one. The advantage of parallel signatures is that
hash functions are simpler and are implemented with fewer resources. Therefore, each of the
individual SRAMs of the Bloom filters can be single-ported, thereby reducing significantly
the hardware area/power/latency.

The false positive rate depends on the size of the signature m, the number of hash functions
k (which is the same as the number of single Bloom filters) and the number of inserted ad-
dresses n. Particularly, the theoretical false positive rate is given by the following expression
[147] [31]:

PFP ≈ (1− (1− k
m
)n)k

52 Chapter 1. Introduction

and applying the Taylor series approximation of ex the equation results in

PFP ≈ (1− e−
nk
m)k when

k
m

� 1

This is approximately the same expression obtained for the true Bloom signatures when
the size of the signature is much bigger than the number of single Bloom filters (k/m � 1).
Therefore, Figures 1.10 (a) and (b) are also representative of the behavior of parallel Bloom
filters.

1.5.4 Other Signature Implementations

There are other interesting signature approaches that improve some aspect of signatures based
on Bloom filters, or at least they adapt better to a specific tool. We describe some of them
below.

Scalable Bloom Filters

Scalable Bloom Filters [4] are software signatures that can adapt dynamically their size
depending on the number of elements. It allows the signature to grow arbitrarily: when a
Bloom filter reaches a certain number of addresses inserted (that is correlated with the false
positive rate), another Bloom filter is added. This concept of signature requires an arbitrarily
number of Bloom filters, and therefore it is more appropriate to implement it in software than
in hardware.

AdaptSig [129] or Dynamic Bloom Filters [61] are inspired by this idea, but also both
approaches are intended for software implementations.

Cucko Bloom Signatures

Cucko Bloom Signatures [147] represent small read/write sets by adapting Cucko hash-
ing [126]. Cucko Bloom signatures are formed by a hash function that tracks the addresses
when their number is low, and eventually is transformed in a Bloom filter when the number of
addresses increases. These signatures match the low false positive rates of Bloom signatures
with many hash functions when the number of addresses is small, and show the good asymp-
totic behavior of Bloom signatures with few hash functions when the number of addresses is
large.

1.5. Background on Signatures 53

Register

h0

Register

h1

Register

hk-2

Register

h
k-1

0 1 k-2 k-1
. . .

0 a-1 a k-1Read Set Write Set

Figure 1.11: High level scheme of the ASYM signature.

Locality-sensitive Signatures

Locality-sensitive signatures [135] are specially designed to exploit locality in transac-
tional memory systems. The design is based on new hash function mappings, so that nearby
located addresses are mapped sharing some bits. These signatures are particularly favorable
for large transactions that usually exhibit some amount of spatial locality. Their implementa-
tion do not require extra hardware.

ASYM Signatures

ASYM signatures [136] are new schemes specially designed for TM systems. Among
these signatures, ASYM signatures are of special interest for us because they are related with
our FlexSig module implementing asymmetric allocation policies. In Chapter 6 we will dis-
cuss the differences between both proposals and the advantages of our approach.

ASYM signature deals with the asymmetry of the read and write sets in TM systems. The
high level idea is that the ASYM signature configures the number of Bloom filters devoted
to each data set. As we show in Figure 1.11, the ASYM signature is composed of k hash
functions, each one associated with a register, and a mask register that provides the parameter
a which establishes the sizes of the read and write signatures. Specifically, assuming an
ASYM signature with k (hash,register)-pairs, and a ∈ [1,k−1], the hashes h0,h1, ...,ha−1 are
assigned to the read set, and the hashes ha,ha+1, ...,hk−1 are assigned to the write set. The a

parameter is dynamically reconfigurable at run-time (it can change among transactions). With
a good configuration of the a parameter (it depends on the transaction and the application),
the false positive rate of ASYM signatures is improved regarding conventional signatures.

54 Chapter 1. Introduction

1.6 Conclusions

Parallel programming is the way to continue scaling the performance of programs in multicore
processors, but it is not an easy task. Some tools, abstractions and programming languages
have been proposed to make this task more accessible for programmers. One of the most
popular software abstractions adopted by academia and industry is TM, which simplifies the
synchronization of shared memory by defining atomic blocks and ensuring their isolation
and atomicity. Furthermore, the development of new tools to support and help debugging
(specially related with synchronization bugs) is also important, because with multiple threads
accessing shared data, this task has become very complex. Moreover, these new tools and
abstractions usually are supported by hardware to achieve a better performance; one common
hardware resource used in many tools and applications are hardware signatures, which keep
a probabilistic representation of an unbounded number of addresses in a bounded space (low
hardware cost), and which can significantly improve the performance of these tools.

CHAPTER 2

EVALUATION METHODOLOGY

Simulation is essential for evaluating new architectures, protocols, or other hardware modi-
fications and additions, because it is more flexible and cheaper than making a prototype in
hardware. Furthermore, it is very useful for obtaining information and statistics about perfor-
mance and events in the system. One of the main advantages of simulation is the flexibility:
some simulators allow a very fast execution at the expense of simulation detail, or alterna-
tively, other simulators execute very detailed simulation and obtain a lot of traces and event
information (at the cost of simulation time).

In computer architecture, a common way to test the improvement of a contribution is to
compare a well known implementation with the new solution. The simulation framework
consists in a system simulator and a series of benchmarks running on it.

In this chapter we present the experimental setup used in the evaluation of the different
proposals of this thesis. In Section 2.1 we describe the framework used to simulate our pro-
posals, and in Section 2.2 we described the set of benchmarks used.

2.1 Simulator Framework

This section describes the simulators and tools used for this thesis. Section 2.1.1 describes
Simics [98] and GEMS [102], the system simulators used for evaluating our CFM-TM pro-
posal in Chapter 3. This framework provides a cycle accurate simulation environment, with
support for TM, which we use to obtain detailed statistics of the memory system and of the
TM system.

56 Chapter 2. Evaluation Methodology

Section 2.1.2 is dedicated to the PIN instrumentation tool [81], which is used for the evalu-
ation of Pacman (Chapter 4) and FlexSig (Chapters 5 and 6). PIN has the capacity of enabling
the creation of dynamic program analysis tools. With these tools, we build the simulation
framework by monitoring the data accessed in transactional and lock based applications, and
making the appropriate simulations with the observed data.

Furthermore, in Section 2.1.3 we describe the Rochester STM system [100], which forms
part of the experimental framework for the FlexSig evaluation. RSTM is an open source STM
library, which we use to run transactional code which we monitor with PIN.

Finally, in Section 2.1.4 we describe SESC [124], a cycle accurate simulator used in the
evaluation of Pacman.

2.1.1 Simics and GEMS

The ensemble composed of Simics and GEMS is the simulation framework in the evaluation
of our TM work in Chapter 3. Figure 2.1 shows an overview of this framework. The main
advantages of using Simics and Gems are that they simulate a complete Sparc architecture that
can run a complete operating system with a deep level of detail (cycle accurate simulation).
Furthermore, with GEMS we obtain a detailed memory system simulator. Despite there being
other good alternative simulators, like SESC [124], we choose this environment to simulate for
its performance, the strong support of the community of users, and its support for transactional
memory.

Virtutech Simics

Simics is a full system functional multiprocessor simulator that tries to maintain the balance
between accuracy and performance. It can simulate processors at instruction-set level (with
models for Ultrasparc, Alpha, x86, etc), and it can run operating systems, including Solaris,
Linux or Windows. Furthermore, Simics allows us to add new user-developed modules to
expand the simulator with new features.

In our experiments, we run Simics 2.2.19 with a target system composed of a 16-core
UltraSparc-III processor running the Solaris 9 operating system.

Simics provides a deterministic environment for a variety of hardware and software engi-
neering tasks. However, it does not provide micro-architecture timing detail nor cache/memory
subsystem timings. To overcome these limitations, GEMS have added these functionalities
through a software module for Simics.

2.1. Simulator Framework 57

BENCHMARKS

SIMICS

GEMS

Ruby - Memory systems simulator

L1

L2

Main Memory M S

I

LogTM-SE

Interconnection

network

Caches & Memory Coherence

controllers

Transactional

Memory

Figure 2.1: SIMICS+GEMS overview.

GEMS

GEMS is a software module developed as part of the Multifacet project at the University of
Wisconsin. GEMS is built on top of Simics, enables the simulation of multicore systems, and
as shown in Figure 2.1, provides detailed models and timing information of the memory sys-
tem, coherence controllers and the interconnection network, and supports HTM (specifically
LogTM-SE [183] and ROCK [168]).

GEMS is composed by two basic modules: Ruby and Opal. Ruby models the memory
hierarchy, using for that a specific language call SLICC, and Opal models the timing of an
out-of-order SPARC processor. In this thesis we use only Ruby for simulation, because OPAL
does not support TM programs.

Simulated Architecture

The configuration of Simics and GEMS for our experiments is shown in Table 2.1. The
simulated multicore processor is composed of 16 single-issue in order cores, with a 32Kb
data cache (L1D), and a 32Kb instruction cache (L1I). Both caches are 4-way set associative,
with 2-cycles of latency and 64 bytes size lines.

The shared L2 cache has a total size of 8 megabytes, and it is distributed along all the cores
of the chip (512 Kb per core). Furthermore, the L2 cache is an 8-way set associative cache
with a latency of 15 cycles. The directory, placed in L2, has an access delay of 6 cycles. The

58 Chapter 2. Evaluation Methodology

Table 2.1: System configuration.

Cores 16, single issue, in-order
Cache Data Line 64 bytes
L1 I&D caches 32KB, 4-way, 2-cycles latency

L2 cache 8MB, 8-way, 15-cycles latency
Memory 4GB, 500-cycles latency
Directory 6-cycles latency

Network Topology point to point
Link latency 1-cycle

main memory has 4 Gigabytes and an access latency of 500 cycles. The network topology in
our simulation is a point-to-point network (full connected crossbar) with an access latency of
1 cycle.

Moreover, our simulated architecture is configured to support the LogTM-SE HTM [183].
In our CFM-TM proposal we modify this base system to perform our experiments.

Compilation Infrastructure

The compilation infrastructure for the transactional memory benchmarks is a Solaris gcc
compiler without modifications. The transactional boundaries are simulated through the Sim-
ics "magic instructions", which are special assembly instructions which are functionally no-op
in a real machine, but they are reinterpreted by Simics to simulate the TM system.

2.1.2 PIN

PIN is an instrumentation tool used in our experiments with Pacman (Chapter 4) and FlexSig

(Chapters 5 and 6). It can access information such as register contents, symbols or debugging
information.

PIN runs attached to program code, instruments just before it runs (discovers code at
runtime), and it does not need to recompile or re-link. With PIN it is possible to set up
instrumentation tools (called PinTools), which are composed by two kinds of routines: the
instrumentation routines define where the instrumentation is inserted and the analysis routines
define the actions to take when the instrumentation is activated. Therefore, a PinTool can

2.1. Simulator Framework 59

PIN

PINTOOL

FLEXSIG

Rochester STMBenchmarks

Figure 2.2: Simulation framework of Chapters 5 and 6, composed of our FlexSig PinTool for PIN, which
instruments the benchmarks running on RSTM.

replace functions in the program by other functions (defined by the PinTool) or examine all
the application instructions.

In the particular case of our experiments with Pacman, we used instrumentation routines
in PIN to detect the beginning and end of a critical section (when the lock is acquired and
released), and analysis routines to monitor the data accesses inside the critical sections (in-
cluding the code to simulate our hardware module implementation).

In our evaluation of FlexSig, we used instrumentation routines in PIN to detect the begin-
ning and the end of the transactions, an analysis routines to track all the transactional accesses
and to implement the new signature hardware module. Figure 2.2 shows a high level repre-
sentation of the simulation framework in this particular case.

The reason to choose PIN for the evaluation of these chapters is because of its flexibility
to simulate only the hardware elements which we are interested in, allowing a very good
performance and a high level of detail of the simulated modules.

2.1.3 Rochester STM

Rochester Software Transactional Memory (RSTM) [100] is a STM library that can be con-
figured with a wide variety of STM implementations. Specifically, it implements word-based
and object based implementations, which are summarized in Table 2.2.

We use RSTM to build a transactional environment and run transactional benchmarks for
testing our FlexSig work. In our evaluation we use a lazy acquisition and lazy versioning with
extendable timestamps [143] to configure RSTM (ET implementation in Table 2.2).

60 Chapter 2. Evaluation Methodology

Table 2.2: RSTM implementations.

Granularity Variant Implementation Description

Object based
RSTM Nonblocking, shallow object

cloning, one level of indirection

Redo-lock RSTM modified to eliminate the
one level of indirection

Word based

Single-Lock

CGL Coarse Grained Lock, no
concurrency

TML Transactional Mutex Lock,
concurrent read-only transactions

TML + Lazy lazy acquire/lazy versioning
policy for writers

Global-Hash

LLT Lazy-Lazy-Timestamp

SGLA Extends the ET with the start time
linearization

ET Extendable-Timestamps

Fair Extends ET with support for
transactional priorities

Strict

Extends ET with support for the
acquire and release fences

required by the SSS transactional
memory model

Flow Extends LLT with implicit
privatization safety

Others
RingSW Single-writer variant of RingSTM

[159]

Precise Extends TML + Lazy with
value-based conflict detection

2.2. Benchmarks 61

We choose RSTM over other STM implementations because it is very flexible and config-
urable, it is well-known and has good support.

2.1.4 SESC

The SuperESCalar (SESC) [124] is a microprocessor architectural simulator written in C++,
which models different processor architectures, such as single processors, chip multicore and
processors-in-memory. It models a full out-of-order pipeline with branch prediction, caches,
buses, and every other component of a modern processor necessary for accurate simulation.

SESC is an event-driven simulator. It has an emulator built from MINT [171], an old
project that emulates a MIPS processor. Many functions in the core of the simulator are
called every processor cycle. But many others are called only as needed, using events.

SESC is used in the evaluation of Pacman to simulate a chip multiprocessor with a private
cache hierarchy system. We use SESC because it is the simulator of the laboratory where the
work was carried out.

2.2 Benchmarks

In this thesis we use several sets of benchmarks to evaluate our proposals. SPLASH-2 bench-
marks [178] are used in the evaluation of CFM-TM and Pacman, STAMP bechmarks [25]
are used to evaluate CFM-TM and FlexSig, PARSEC benchmarks [16] are used to evaluate
Pacman and "EigenBench" is used to evaluate asymmetric FlexSig (in Chapter 6). Table 2.3
shows the list of all benchmarks, and below we describe each benchmark suit.

2.2.1 SPLASH-2

The SPLASH-2 benchmarks [178] are a set of applications and kernels developed to study
shared memory multiprocessors, and represent a wide range of computations in the scientific,
engineering and graphics domain. The applications are "Barnes", "FMM", "Ocean", "Radios-
ity", "Raytrace", "Volrend" and "Water", and the kernels are "LU", "Cholesky", "FFT" and
"Radix".

We use all SPLASH-2 benchmarks for evaluation of Pacman, and one application of the
suite ("Barnes") in the evaluation of CFM-TM. All of them are written in C language, us-
ing pthreads, and the critical sections are protected with locks in case of Pacman, and with
transactions in the evaluation of CFM-TM.

62 Chapter 2. Evaluation Methodology

Table 2.3: Benchmarks.

Suite Benchmark Description

SPLASH-2

Barnes Interaction of a system of bodies
FMM Interaction of a system of bodies
Ocean Large-scale ocean movements

Radiosity Equilibrium distribution of light in a scene
Raytrace Real-time raytracing
Volrend Rending of a 3D volume
Water Water molecules simulator

LU Matrix factorization
Cholesky Matrix factorization

Radix Sorting algorithm
FFT Discrete fourier transform

STAMP

Intruder Network intrusion detection
Labyrinth Maze routing
Vacation Travel reservation system
Genome Gene sequencing
kmeans K-means clustering

ssca Graph kernels
yada Delaunay mesh refinement
bayes Bayesian network learning

PARSEC

Blackscholes Option pricing
Bodytrack Body tracking of a person
Facesim Simulates the motions of a human face
Ferret Content similarity search server

Fluidanimate Fluid dynamics
Raytrace Real-time raytracing

Swaptions Pricing of a portfolio of swaptions
Vips Image processing
x264 H.264 video encoding

Canneal Simulated cache-aware annealing
Dedup Next-generation compression with data deduplication

Streamcluster Online clustering of an input stream
- EigenBench Synthetic benchmark for TM systems

Other Apache Web Server
Sphinx3 Speech recognition

2.2. Benchmarks 63

Next, we briefly describe all of them:

– Barnes: This application is a 3-D system of bodies using the Barnes-Hut hierarchical
N-body method. The computational domain is an octree with leaves which contain in-
formation on each body, and each internal node of the tree represents a cell (a collection
of bodies in close physical proximity). The main data structures are two arrays, one for
the bodies and one for the cells. The main phases of the algorithm are: constructing the
tree, partitioning the bodies among processors, computing the forces in the bodies (one
computation per thread on its own bodies), and updating the position and forces of the
bodys (also per thread).

– FMM: This application simulates a system of bodies similar to the Barnes-Hut algo-
rithm. However, the simulation is in two dimensions using a different hierarchical
N-body method called the adaptive Fast Multipole Method [58].

– Ocean: This application simulates ocean movements based on eddy and boundary
currents. This grid-based simulation goes through many time-steps until the system
achieves a mutual balance. The work done in each step involves configuring and solving
a set of partial differential equations on two dimensional grids (with the same resolution
in both dimensions) representing the ocean.

– Radiosity: This application computes the equilibrium distribution of light in a scene
using the iterative hierarchical diffuse radiosity method [64]. The scene is modeled with
a large input of polygons, and the benchmark computes the light transport iterations
among these polygons. At the same time, the polygons are divided into patches to
improve accuracy. In each step, the algorithm iterates over the current interaction lists
of patches, subdivides patches recursively, and modifies interaction lists as necessary.
At the end of each step we check if the algorithm have converged. The structure of the
computation and the access patterns to data structures are highly irregular. Parallelism
is managed by distributed task queues, one per processor, with task stealing for load
balancing.

– Raytrace: This application renders a three-dimensional scene using ray tracing. The
scene is represented with a hierarchical uniform grid. A ray is traced through each
pixel in the image plane, and reflects in unpredictable ways off the objects it strikes.
Each contact generates multiple rays, and the recursion results in a ray tree per pixel.

64 Chapter 2. Evaluation Methodology

The image plane is partitioned among threads in contiguous blocks of pixel groups, and
distributed task queues are used with task stealing. This application is also included in
PARSEC benchmarks.

– Volrend: This application renders a three-dimensional volume using a ray casting tech-
nique. The volume is represented as a cube of volume elements, and an octree data
structure is used to traverse the volume quickly. The program renders several frames
from changing viewpoints. A ray is shot through each pixel in every frame, but rays
do not reflect. Instead, rays are sampled along their linear paths using interpolation
to compute a colour for the corresponding pixel. The partitioning and task queues are
similar to those in "Raytrace".

– Water: This application simulates the forces and potentials in a system of water mo-
lecules. There are two variants of this benchmark: Water-Nsquared and water-spatial.
In water-Nsquared, the forces and potentials are calculated using a O(n2) algorithm,
and the integration of the water particles motion over time is made through a predictor-
corrector method. The water-spatial variant is a more efficient algorithm for a large
number of molecules: the problem domain is represented in a 3-D grids of cells. The
advantage of this model is that the thread that owns a cell only has to look at its cell
and the neighbours. The movement into and out of the cells causes the communication
among threads.

– LU: This kernel factorizes a matrix as the product of a lower triangular and an upper
triangular matrix (LU decomposition). The division of the work among processes is
done through a 2D-block scheme, by which the matrix is divided into square blocks
along both axes, and blocks are assigned to the processes in an interleaved manner.
Each process is responsible for allocating and working on equal numbers of blocks,
with the aim of reducing communication.

– Cholesky: This kernel factors a sparse matrix into the product of a lower triangular
matrix and its transpose. It is similar to the "LU" factorization kernel, but more efficient.
The main differences are that "Cholesky" requires more communication and it is not
globally synchronized between steps.

– Radix: This kernel is a non-comparative integer sorting algorithm implemented with
the method described in [19]. The algorithm is iterative, performing one iteration per

2.2. Benchmarks 65

radix r digic of the keys. In each iteration, each thread generates a local histogram by
passing over its assigned keys. The local histograms are then accumulated into a global
histogram. Finally, each thread uses the global histogram to permute its keys into a new
array for the next iteration. This last step requires all-to-all communication.

– FFT: This kernel computes the discrete Fourier transform and its inverse by a complex
1-D version of the radix-

√
n six-step FFT algorithm described in [12], which is opti-

mized to minimize communications. The input data set is composed of n complex data
points to be transformed, and another n complex data points referred to as the roots of

unity. Both data sets are organized in
√

n×
√

n matrices, which are divided into sets of
rows, each one assigned to a thread that allocates them in its local memory. Communi-
cation occurs in three of the six steps, which requires all-to-all thread communication.

2.2.2 STAMP

Stanford Transactional Applications for Multi-Processing (STAMP) is a benchmark suite to
evaluate TM systems. We use three STAMP [25] benchmarks ("Vacation", "Intruder" and
"Labyrinth") in the evaluation of CFM-TM, and all of them in the evaluation of FlexSig.

All of the STAMP benchmarks are written in C, and the critical sections are enclosed in
transactions. With CFM-TM, transactions are implemented with magic instructions and in
FlexSig the transactions uses the RSTM interface.

– Intruder: This benchmark scans network packets for matches against a known set of
intrusion signatures. The packets are processed in parallel in three phases: capture,
reassembly and detection. The capture phase is structured using a FIFO queue, and is
enclosed in a transaction. The reassembly phase uses a dictionary that contains a list
of packages that belongs to the same session, and it is also enclosed in a transaction.
The detection phase is not enclosed in a transaction, so, in general this benchmark has
a moderate amount of total transactional execution time.

– Labyrinth: This benchmark implements a maze with a data structure representing a
three dimensional grid. Each thread sets one start point and one destination point, and a
conflict occurs when two threads overlap their paths. To reduce the conflict probability,
this benchmark implements the privatization technique described in [176], which con-
sists of each thread making its path with a private copy of the grid, and at the end, when

66 Chapter 2. Evaluation Methodology

the thread wants to add the new path to the grid, making the validation. If the validation
fails, the transaction aborts, and it starts again with an updated copy of the grid.

– Vacation: This benchmark emulates a travel reservation system, implemented as a set
of trees that keep track of customers and their reservations. The execution of the bench-
mark consists of several threads (clients) interacting with the travel system database in
three different ways: reservations, cancellations and updates. Each one of these interac-
tions is enclosed in one transaction, and consequently, "Vacation" spends a lot of time
on transactions. These transactions are medium length with moderate read and write
set sizes, and they have low to moderate levels of contention (depending on the input).

– Genome: This benchmark takes a large number of DNA segments and matches them
to reconstruct the original source genome. The process is divided in two phases. The
first phase creates a set of unique segments (some segments are duplicated), and each
addition to the set of unique elements is enclosed by a transaction. In the second phase,
each thread tries to remove a segment from a global pool of unmatched segments and
add it to its partition of currently matched segments. The access to the global pool are
also enclosed by a transaction.

– Kmeans: This benchmark groups objects in a N-dimensional space into K clusters, and
it is usually used to partition data items into related subsets. In each iteration, the update
of the cluster center is protected by a transaction. The amount of contention depends
on the input parameters, the read and write sets are relatively small, and the total time
spent on transactions is low.

– Ssca: Scalable Synthetic Compact Applications 2 (SSCA2) [11] is comprised of four
kernels, but the STAMP implementation focuses only on one of them. This kernel con-
structs a graph data structure using adjacency arrays and auxiliary arrays. Transactions
are used to protect the access to adjacency arrays, and since this action is relatively
small, not much time is spent on transactions. Additionally, the length of the transac-
tions and the sizes of their read and write sets is also small, as well as the amount of
contention.

– Yada: This benchmark implements an algorithm for Delaunay mesh refinement [144].
The main structures are a graph to store all the mesh triangles, a set with the boundary
segments and a task queue with the elements that need to be refined. In each step of the

2.2. Benchmarks 67

algorithm, a triangle is removed from the queue, its retriangulation is performed on the
mesh and the new triangles formed are added to the work queue. The transactions are
used to enclose the access to the queue, and as almost all the execution time is spent
recalculating the retriangulation, this benchmark has relatively long transactions and
almost all of the execution time is spent on them. This benchmark also has large read
and write sets and moderate contention.

– Bayes: This benchmark implements an algorithm for learning the structure of Bayesian
networks. The bayesian network is represented as a directed acyclic graph with a node
for each variable and an edge for each conditional dependence between variables. The
algorithm implemented gradually learns dependencies among variables by analyzing
the observed data. A transaction is used to protect the calculation and addition of a
new dependency. "Bayes" spends almost all its time in transactions, which have large
read/write sets and high contention.

2.2.3 PARSEC

The Princeton Application Repository for Shared-Memory Computers (PARSEC) [16] is
a benchmark suit to study multicore processors, which unlike SPLASH-2 or STAMP, in-
cludes applications in recognition, mining and synthesis (RMS). Some of the benchmarks are
from Intel ("Blackscholes", "Bodytrack", "Facesim", "Fluidanimate", "Raytrace" and "Swap-
tions"), some of them from the Princeton University ("Ferret", "Canneal", "Dedup" and "Stre-
amcluster"), and others are based on well known applications ("VIPS" and "x264") .

PARSEC benchmarks are written in C language, and the critical sections are enclosed with
locks for the simulation of Pacman.

Below we describe all the PARSEC benchmarks used in this thesis.

– Blackscholes: This application calculates an estimation of the current value of Eu-
ropean options with the Black-Scholes formula, the derivative of a partial differential
equation (PDE) [17] which governs the price of the option over time.

– Bodytrack: This is a computer vision application which tracks a 3D pose of a human
body with multiple cameras through an image sequence [13] [43].

– Facesim:This application (originally developed by the Stanford University) takes a
model of a human face and a time sequence of muscle activations and computes a

68 Chapter 2. Evaluation Methodology

visually realistic animation of the modelled face by simulating the underlying physics
[156] [165]. The goal is to create a visually realistic result.

– Ferret: This application is based on the Ferret toolkit which is used for content-based
similarity search of feature-rich data such as audio recordings, digital images, sensor
data, 3D shapes and so on [97].

– Fluidanimate: This application uses an extension of the Smoothed Particle Hydrody-
namics (SPH) method to simulate fluid dynamics for interactive animation purposes
[111].

– Raytrace: This application renders an animated 3D scene for real-time animations
(such as computer games). Ray tracing is a technique that generates a visually realis-
tic image by tracing the path of light through a scene [177]. This application is also
included in SPLASH-2 benchmarks (Section 2.2.1).

– Swaptions: The swaptions application uses the Heath-Jarrow-Morton (HJM) frame-
work to price a portfolio of swaptions. The HJM framework describes how interest
rates evolve for risk management and asset liability management [69] for a class of
models. It employs MonteCarlo simulation to compute the prices.

– Vips: This application is based on the VASARI Image Processing System (VIPS) [103].
The benchmark is an imaging processing system, which includes fundamental image
operations such as an affine transformation and a convolution.

– x264:This application is an H.264/AVC (Advanced Video Coding) video encoder. It is
based on the ITU-T H.264 standard which is now also part of ISO/IEC MPEG-4. It im-
proves on previous video encoding standards with new features such as increased sam-
ple bit depth precision, higher-resolution colour information, variable block-size motion
compensation (VBSMC) or context-adaptive binary arithmetic coding (CABAC).

– Canneal: This kernel uses cache-aware simulated annealing (SA) to minimize the rout-
ing cost of a chip design [14]. SA is a common method to approximate the global
optimum in a large search space.

– Dedup: This kernel compresses a data stream with a combination of global compres-
sion and local compression in order to achieve high compression ratios. Such a com-
pression is called ’deduplication’.

2.2. Benchmarks 69

– Streamcluster: This kernel solves the online clustering problem [85]: for a stream of
input points, it finds a predetermined number of medians so that each point is assigned
to its nearest center. The quality of the clustering is measured by the sum of squared
distances (SSQ) metric. It is used in network intrusion detection, pattern recognition
and data mining.

2.2.4 EigenBench

"EigenBench" [73] is a lightweight, flexible and powerful synthetic benchmark designed to
evaluate and understand TM systems by forcing different TM orthogonal characteristics.
These characteristics are the basics to understand TM behavior, and it is also useful to re-
produce some TM pathologies, or evaluate corner cases that are not easily reachable with
standard applications. These characteristics are the following:

– Concurrency: Number of concurrently running threads.

– Working-set size: size of the frequently used memory.

– Transaction length: Number of shared accesses per transaction.

– Pollution: Fraction of shared writes to shared accesses.

– Temporal locality: Probability of repeated address per shared access.

– Contention: Probability of conflict of a transaction.

– Predominance: Fraction of shared access cycles to total execution cycles.

– Density: Fraction of non-shared cycles executed outside transactions to total non-
shared cycles.

There exists an actual mapping from a real application to a set of these orthogonal char-
acteristics [73]. Furthermore, "EigenBench" is written in C, and it uses the same TM API as
used by STAMP. In our case, we use a certain set of C Macros that maps TM accesses with
RSTM. We use this benchmark to explore some TM scenarios in our evaluation of asymmetric
FlexSig (in Chapter 6).

70 Chapter 2. Evaluation Methodology

2.2.5 Other Benchmarks

We use two additional benchmarks to evaluate Pacman, which we describe below.

Apache

"Apache" [50] is the most used web server software. At a high level, the Apache server
architecture is composed of a core that implements the most basic functionality of a web
server and a set of standard modules that actually service the phases of handling an HTTP
request.

Sphinx3

"Sphinx3" is a decoder for speech recognition research written in C [150]. It includes both
an acoustic trainer and various decoders, i.e., text recognition, phoneme recognition, N-best
list generation, etc.

2.3 Conclusions

We present in this chapter the simulator environment and the benchmarks used in this the-
sis. The techniques of simulation used are very well know, and very popular for analyzing
computer architecture innovations. Furthermore, the benchmarks represent a high variety in
their characteristics, and also are very representative of the current workloads which can be
potentially used in real world environments.

CHAPTER 3

REDUCING THE USE OF SIGNATURES IN A

HTM SYSTEM

Hardware Transactional Memory (HTM) systems have been very popular due to their perfor-
mance advantages. However, this performance improvement comes at the cost of increasing
the hardware resources. Typical hardware additions in a HTM are cache add-ons, cache co-
herence support, special caches for speculative data or hardware signatures.

In this chapter we propose a method to save resources in a HTM system. Specifically, we
propose a simple Cache Filtering Mechanism (CFM-TM) for HTM systems [123], which acts
like a filter by managing part of the write set of the application, with the aim of reducing the
use of signatures (see Section 1.5) and log information in the transactional memory baseline
system. In addition, to fully take advantage of this method, the CMP system should have
signatures with different sizes, or, preferably, it should have signatures of variable size using
a system like the schemes proposed in Chapters 5 and 6.

We test our CFM-TM with LogTM-SE [183] as the baseline system (Section 1.4.2), be-
cause it is a popular implementation that uses signatures for conflict detection. Based on our
experimental evaluation, by using this filtering mechanism the size of signatures are signifi-
cantly reduced with no significant degradation of performance (in one of the benchmarks used
in the evaluation, there is even an important improvement).

72 Chapter 3. Reducing the Use of Signatures in a HTM system

3.1 System Architecture

The system architecture is composed by the LogTM-SE implementation [183] as the baseline
system, and our CFM-TM attached to this system.

The general vision of the architecture is a multicore system with private L1 data caches
and shared L2 cache memory. The caches are inclusive, and therefore, if a line is stored in
the L1 cache, it has to be also stored in the L2 cache. In this environment the LogTM-SE
HTM system implements an eager conflict detector that detects conflicts among transactions
with signatures, and an eager version manager, which logs old versions of transactional writes
in per-thread private memory. Furthermore, LogTM-SE uses the same structure and tags for
the cache lines, but introduce some changes in a conventional cache coherence protocol (it is
expanded with sticky states [183]). More details about LogTM-SE can be found in Section
1.4.2.

The goal of CFM-TM is to manage transactional writes faster, and free the LogTM-SE
system from these operations. The architecture of CFM-TM is based on modifications of
the private L1 cache memory, cache coherence protocol and the replacement algorithm. The
baseline cache coherence scheme used in this work is the directory-based MESI protocol
explained in Sections 1.1.3 and 1.4.2, with the directory placed at the shared L2 cache.

3.1.1 Managing Transactional Writes with CFM-TM

The CFM-TM filters some transactional writes to the LogTM-SE base system. This filter is
implemented with several changes in the base architecture, which we describe below.

The WTx Bit

CFM-TM adds a WTx bit at every L1 private cache line with to aims: detecting conflicts
and hosting speculative data in L1. A transactional modified line is managed by the CFM-TM
if its WTx bit is active (set to one). This bit is only accessible by the local core, and when it
is set to 1, the cache line can not be evicted from L1 during the transaction (to maintain both
versions of the data, the speculative version in L1, and the old version in L2). When a core is
trying to access to a remote transactional line managed by the CFM-TM (WTx=1), the filter
detects a conflict of data that is managed by the contention manager.

If a line has the WTx unset, it is managed by the transactional baseline system with the
regular protocol (the line is not managed by the CFM-TM filter). However, a cache line with

3.1. System Architecture 73

the WTx bit set to 1 has to be in state Exclusive or Modified (the copy of the line has to be
present only in this L1 cache).

Associativity Reduction

CFM-TM works at the cost of reducing some cache capacity for other cache lines not
hosted in the filter. When the WTx bit is set in a cache line, this line can not be evicted from
the L1 private cache until the transaction commits or aborts, and because of this, the maximum
number of speculative data in an associativity set has to be limited. This limit, which sets up
the maximum amount of transactional data in the associativity set that can not be evicted, is
called MNW (Maximum Non-evicted Ways). The MNW value is bounded by the number of
ways of the associativity set of the L1 cache. According to our tests, a value of MNW of
25% of the associativity ways is the most appropriate. The value of MNW can be modified
by software through a new instruction. Since the transactional data with the WTx bit set is
not evicted, the number of ways of the associativity set might be dynamically and temporary
reduced to other data lines. The MNW parameter can be changed dynamically at execution
time (before each transaction starts). If MNW is zero, the filter never hosts transactional
writes, and it remains deactivated.

Check for Conflicts

Figure 3.1 shows a flowchart that illustrates the checking for conflicts in the write set
using CFM-TM and LogTM-SE. First, the value MNW is checked to know if the CFM-TM
is active. In case the value of MNW is zero, the filter is deactivated, and the transactional
memory system use the baseline LogTM-SE system. In case the value MNW is not zero, the
filter is active, and it has to check if the WTx bit associated with the cache line is set to one. In
affirmative case, a conflict is produced, and it is not necessary to activate the conflict detection
system of the baseline TM system. In case the WTx is zero, the line is not managed by the
CFM-TM, and the LogTM-SE system has to check the signatures looking for data conflicts.

Managing L2 Transactional Data

Since the memory cache system is inclusive, if a transactional write can not be evicted
from L1 (WTx bit is set), then it can not be evicted from L2. Therefore, an associativity set
of the L2 cache memory might be filled with non-evictable cache lines if we do not prevent

74 Chapter 3. Reducing the Use of Signatures in a HTM system

Address MNW!=0 ?

no no

WT ==1 ? Con�ict
yes yes

LogTM-SE

Check for Con�icts

x

Figure 3.1: Check for conflicts in the write set in a LogTM-SE system using the CFM-TM filter.

this situation. To solve this, a control bit WTxL2 analogous to WTx is defined in the directory,
and a new parameter MNWL2 (analogous to MNW) is managed by the system. The parameter
MNWL2 (Maximum Non-evicted Ways in L2) indicates the maximum amount of transactional
data in the associativity set that can not be evicted in L2. If the WTxL2 bit is set in the L2
cache, it means that the line is transactional, and the corresponding speculative data is in L1.
The WTxL2 parameter is also used for preventing a speculative line from being evicted when
the eviction starts at the L2 cache controller.

Transactional Write Actions

Figure 3.2 shows a flowchart that illustrates the actions taken when a transactional write
is produced. As we see in the figure, first, the system checks if the CFM-TM filter is active
(MNW greater than zero). If the filter is deactivated, the system uses directly the LogTM-
SE system, but when it is active, in order to check if CFM-TM can host the transactional
cache line, the L1 cache controller checks if the limit of MNW speculative writes has been
reached. In case the limit is reached, the LogTM-SE system takes the control. Otherwise,
the L1 cache controller requests the L2 for the line (in case the line is in invalid state) or
informs the directory that needs the exclusivity of the line (in case the line is in shared state).
When the directory responds to the requester, it informs if the L2 can host the speculative
line according to the MNWL2 parameter. When a transactional write is produced in a line that
is in an Exclusive or Modified state with its WTx bit unset, the baseline coherence protocol
does not make any request because the state does not change (with respect to the directory).

3.1. System Architecture 75

MNW=0 ?

#WTx<MNW

L1

?

?

or
Shared

Invalid

L1

Extra
control request

LogTM−SE

Transactional
Write

yes

no

yes

no

yes

no

L1

L2
set WTxL2

set WTx

yes

no

L2

?

#WTxL2<
MNWL2

Figure 3.2: A transactional write action in the LogTM-SE system using the CFM-TM filter.

Furthermore, in order to test the conditions established by the MNWL2 parameter, an extra
control request to the directory is necessary.

76 Chapter 3. Reducing the Use of Signatures in a HTM system

3.1.2 Replacement Algorithm

To keep speculative data within the private L1 cache, the LRU (Least Recently Used) replace-
ment algorithm is modified so that the cache lines having the WTx bit set are not evicted. The
LRU algorithm changes slightly: when the algorithm finds that the line to be evicted (the least
recently used) has the WTx bit set, the line is marked as the most recently used, and it searches
the next least recently used line. If the line does not have the WTx bit set, it can be evicted.

This scheme is analogous for replacements at the L2 cache. When a core request a line
that it is not in the cache, and has to make room in L2 because there is not free space, the
replacement algorithm can not evict a transactional line that holds the old data in L2. The
replacement algorithm is the same than in the L1 cache and it keeps the data that had been
written during the transaction in the caches till the end of the transaction (when the WTx bits
are all set to zero).

3.1.3 Commit and Abort Actions

When a transaction commits, the WTx bits in the corresponding private L1 cache are flash
cleared by the CFM-TM system, and consequently all the speculative data transits to non-
speculative and is accessible by all cores. Figure 3.3 shows an example how commits are
managed by the CFM-TM system by just changing the WTx bits to zero.

In an abort all lines with the WTx bit set are marked as invalid, the M bit (corresponding
to M and E states) is cleared, and then the WTx bits are flash cleared. All the speculative data
is discarded. Figure 3.3 shows all these commit actions. In this situation the directory is not
warned (silent abort), and some actions are added to manage this situation: when a request
forwarded by the directory arrives at a core that has that line in an invalid state, it means
that a silent abort was produced in that core recently. In this case, the core that receives the
request, responds to the directory informing that it is no longer the owner of the line. Then,
the directory updates the state information and send to the original requester the valid line
hosted at the L2 shared cache.

Usually, not all the transactional data can be managed by the filter, and therefore, the
LogTM-SE system has to manage the data that overflows the filter. Hence, the commit and
abort actions has two phases: the CFM-TM phase (very fast, 1 cycle), and the LogTM-SE
phase, that takes more time, because it is required to clean signatures and in case of aborts,
restore old data hosted in the log.

3.1. System Architecture 77

Tag State WTx Data

L1D

Flash clearing

Tag State WTx Data

L1D

Private L1 cache controller Private L1 cache controller

COMMITABORT

1−>0
1−>0

1−>0
0

0

M−>I
M−>I

M−>I
S

E

flash clearing
Conditional Flash clearing

1−>0
1−>0

1−>0
0

0

M
M

M
S

E

Figure 3.3: Abort and commit actions.

3.1.4 Limitations

The main drawback of the CFM-TM scheme is that it is not virtualizable, because software
access to transactional information is not allowed. In case of context switching, paging or any
virtual action is produced, the running transactions that used this filtering must be aborted.

Also, because CFM-TM fix the speculative data to the caches, and these lines can not
be evicted, a wrong dimensioning of the MNW parameter (by the programmer) can lead to
a slowdown of the system, usually because of the limited associativity for other cache lines.
However, deadlock can not be produced, as there is a mechanism that prevents to set the MNW

value with values equal or greater than the number of ways of and associativity set.

3.1.5 Interactions between CFM-TM and LogTM-SE

To incorporate CFM-TM to LogTM-SE it is necessary to make the changes described in Sec-
tions 3.1.1 and 3.1.2 to the cache array, the coherence protocol and the replacement algorithm.
The implementation of CFM-TM for other decoupled TM systems is very similar for systems
with an eager conflict detection policy.

CFM-TM affects LogTM-SE when a transactional write is produced (see Figure 3.2).
Before inserting an address into the write signature and logging the old version of data, the
filter checks if the transactional write can be hosted in the L1 private cache without eviction,
and if this is the case, LogTM-SE does not manage that write. Moreover, before checking
read/write signatures to detect if a conflict is produced, it is necessary to know if the line has

78 Chapter 3. Reducing the Use of Signatures in a HTM system

(Check Signatures)

Conflic Detection

L2/Directory

Logging

M
an
ag
er

C
o
n
te
n
ti
o
n

CFM−TM
(Insert)

LogTM−SE No Conflict

Conflict

Inv

(3)

(3)Inv

NACK

CFM−TM
(Check)

(1)

ST_XACT

core1

core2

ACK(4)

(4)

(5)

n
o
co
n
fl
ic
t

Conflict

Insert Signature

LogTM−SE

OK

fail

core0

Data (3)

GETX(2)

LOCAL REMOTE

L1 cache coherence

S
−
>
I

L
1
ca
ch
e
co
h
er
en
ce

I−>M

Figure 3.4: Interaction between CFM-TM and LogTM-SE in a transactional store miss. The missed line is shared
by other two caches.

its WTx bit set, and in this case, because the line is a transactional write, a conflict is produced
without checking signatures (see Figure 3.1).

Next, we explain some possible scenarios where a transactional store miss or a transac-
tional store hit is produced.

Store Miss

Figure 3.4 illustrates the actions in a transactional store miss in core 0, when it is shared
by two cores (core1 and core2):

– In (1), a transactional write (ST_XACT) is produced in core0 over a invalid line.

– The core0 sends a request (GETX) to the directory asking for the line in exclusivity (2).

3.1. System Architecture 79

– The directory checks that this line is shared by core1 and core2, and it sends an Invali-
dation signal (Inv) to these cores, and sends the data to core0 (3).

– core1 and core2 check for conflicts (in the CFM-TM and (if necessary) in the both
LogTM-SE signatures), and in case of no conflict these cores, invalidate the local copies
of the line, and send and ACK to core0 (4) . When core0 receives the ACK, the line
make the transition to Modified (M) state.

– In case a conflict is detected in core1 or core2, a NACK is send to core0 (4), that initiates
the conflict resolution in the contention manager.

– Finally, if no conflict is detected, the core0 inserts the speculative data in the filter in
case there is enough space, or in the LogTM-SE otherwise (5).

The actions to be taken in the same situation, but with the local line in the Shared state,
are very similar.

The case of a transactional store miss in core0, when the line was modified by core1, is
illustrated in Figure 3.5:

– In (1), a transactional write (ST_XACT) is produced in core0 over a invalid line.

– Core0 sends a request (GETX) to the directory asking for the line in exclusivity (2).

– The directory checks that such line might be dirty and owned in exclusivity by core1,
and it sends and Invalidation (Inv) to that core (3).

– core1 checks for conflicts. In case of conflict, core1 sends a NACK to core0, that
activates its contention manager (4).

– In case of no conflict, the core0 receives the data from the core1 (4).

– Finally, the speculative data is inserted in the filter if there is enough space, or it is
handled by the LogTM-SE otherwise (6).

Store Hit

Figure 3.6 illustrates the actions in a transactional store hit when the line is already in M
state in the local cache (core0):

80 Chapter 3. Reducing the Use of Signatures in a HTM system

(Check Signatures)

Conflic Detection

L2/Directory

Logging

M
an
ag
er

C
o
n
te
n
ti
o
n

CFM−TM
(Insert)

LogTM−SE No Conflict

Conflict

Inv

(3)

NACK

CFM−TM
(Check)

(1)

ST_XACT

core1

(4)
n
o
co
n
fl
ic
t

Conflict

Insert Signature

LogTM−SE

OK

fail

core0 GETX(2)

L1 cache coherence

L
1
ca
ch
e
co
h
er
en
ce

I−>M

M
−
>
I

(6)

LOCAL
REMOTE

Data(4)

Figure 3.5: Interaction between CFM-TM and LogTM-SE in a transactional store miss. The missed line is in other
cache in M state.

– In (1), a transactional write (ST_XACT) is produced in core0 over a modified line.

– The CFM-TM has to send an extra request to L2 (2), to inform that the line is transac-
tional now (and set the WTxL2 bit)

– If an ACK is received from L2 (3), the line is managed by the CFM-TM if possible
(enough room in L1 cache). If a NACK is received from the L2 cache (3), then LogTM-
SE handles directly the line.

Commits and Aborts

In a commit, LogTM-SE has to reset the log pointer, and clean the read and write signa-
tures, and in an abort it has to restore old versions hosted in the log and clear the read/write

3.1. System Architecture 81

L2/Directory

Logging

M
an
ag
er

C
o
n
te
n
ti
o
n

CFM−TM
(Insert)

(1)

ST_XACT

Insert Signature

LogTM−SE

OK

fail

core0 (2)

L1 cache coherence

LOCAL

M−>M

extraRequest

(4) ACK/NACK (3)

Figure 3.6: Interaction between CFM-TM and LogTM-SE in a transactional store hit. The line is already in M state
in the local cache.

signatures. Moreover, LogTM-SE has to give the order to commit or abort to the CFM-TM
system if it is activated.

LogTM-SE performs commits fast, but aborts are slow. On the other hand, CFM-TM per-
forms fast commits and fast aborts. When the CFM-TM system is incorporated to LogTM-SE,
commits are fast anyway, but aborts might be faster, due to the transactional writes managed
by CFM-TM.

The temporary reduction of associativity in certain cache sets may increase the cache
misses of data, but as we show in the evaluation section, this is compensated with the misses
saved since logging in per-thread private memory is not required. For very large transactions,
with a huge read and write set, the system may perform better if the CFM-TM filter is deacti-
vated. However, the filter works well even with workloads that are considered large (see the
evaluation in Section 3.3).

82 Chapter 3. Reducing the Use of Signatures in a HTM system

3.2 Signatures

As mentioned above, LogTM-SE uses read and write hardware signatures (see Section 1.5)
to detect conflicts. When LogTM-SE works with CFM-TM, the write signature may be re-
duced, because CFM-TM manages some transactional writes which does not reach the write
signature of LogTM-SE. This contributes to use a smaller write signature without increasing
the false positives rate. Other papers deal also with this problem, like Notary [184], where
new techniques are proposed for reducing hardware cost and false conflicts (by privatization)
that result in more efficient signatures.

Signatures have the problem of having a fixed size and being not scalable. Specifically, a
single size is not well suited to all kind of applications, i.e. signatures of 1024 bits might be
oversized for a benchmark with small transactions [178], but too small for long size transac-
tions [106]. To solve this problem, more signatures with different sizes could be provided, so
that the application chooses the signature of minimum size that allows good performance.

One contribution of this thesis proposes a new module of signatures, called FlexSig (see
Chapter 5 and Chapter 6). This work goes further, and try to adapt the resources available
for signatures to the demand of the request. To achieve this, priorities can be established
depending on the needs of the requesters.

FlexSig is an appropriate solution to manage the read and write signatures of a TM system
with a CFM-TM filter, because it provides a flexible module that can assign few resources
to the write signature, and to use the remaining resources for other purposes (for instance, a
bigger read signature and the read and write signatures of other transactions). FlexSig can
change the assigned resources in run time, it allows a more efficient use of the signature
resources and it reduces the false positive rate (which improves the overall performance),
which make it a good option for combining with the CFM-TM filter.

3.3 Evaluation

In this section we evaluate the proposed CFM-TM filter. To evaluate the system, we compare
LogTM-SE with and without CFM-TM.

3.3. Evaluation 83

3.3.1 System Model

We evaluate CFM-TM and LogTM-SE by using GEMS [102] and the Simics [98] full system
simulator (the framework described in Section 2.1.1) with the configuration of Table 2.1.

The sizes of signatures are between 128 bits and 8192 bits, and are chosen depending on
the application, trying to obtain a reduced false positive rate, with the minimum signature
size. The size of signatures are chosen in order to maintain a rate of false positives similar in
both systems.

3.3.2 Workloads

We use three STAMP benchmarks [106] 1 ("Vacation", "Intruder" and "Labyrinth"), described
at Section 2.2.2, and the "Barnes" SPLASH-2 workload [178], described in Section 2.2.1.
Table 3.1 shows the workload characteristics, indicating the number of transactions and the
average sizes of the read and write sets. Table 3.2 shows the inputs for each benchmark
evaluated.

Table 3.1: Workload characteristics.

Benchmark #Tx Av.RS Av.WS
Intruder 11224 7.23 3.36
Barnes 2330 5.8 4.4

Vacation 24776 19.7 3.6
Labyrinth 158 136.8 90.82

Table 3.2: Benchmark inputs.

Benchmark INPUT
Intruder -a10 -l4 -n2038 -s1
Barnes 4096 bodies

Vacation -n4 -q60 -n90 -r16384 -t4096
Labyrinth -i random-x32-y32-z3-n64.txt

1with Luke Yen’s patches from the University of Wisconsin.

84 Chapter 3. Reducing the Use of Signatures in a HTM system

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Intruder Barnes Vacation Labyrinth

N
or

m
al

iz
ed

 n
um

be
r

of
 a

bo
rt

s

LogTM−SE
CFM−TM

Figure 3.7: Normalized number of aborts.

3.3.3 Results

For each benchmark and system configuration we determined the minimum signature size that
allowed a rate of false positives less than 1%. We obtain a general reduction in the size of
the write signature, and for some benchmarks even a performance improvement. It is very
difficult to calculate so precisely the size of the signatures for achieve a number of aborts
equal in all the benchmarks. This variability in the number of aborts is reflected in Figure
3.7. Following this rule, as Table 3.3 shows, the write signatures are reduced 75% in 3 of the
benchmarks (from 512 to 128 bits), and it is reduced a 50% for the "Labyrinth" case (from
8192 to 4096 bits).

Table 3.3: Read/Write signature’s size configuration in LogTM-SE with and without CFM-TM.

Benchmark LogTM-SE RS/WS CFM-TM RS/WS WS reduction
Intruder 512/512 512/128 75%
Barnes 512/512 512/128 75%

Vacation 1024/512 1024/128 75%
Labyrinth 8192/8192 8192/4096 50%

3.3. Evaluation 85

 0%

 20%

 40%

 60%

 80%

 100%

Intruder Barnes Vacation Labyrinth

W
rit

es
Writes managed by LogTM−SE
Writes managed by CFM−TM

Figure 3.8: Write management distribution.

To illustrate the influence of CFM-TM in the system, Figure 3.8 shows the proportion of
writes managed by CFM-TM, and the writes managed by the LogTM-SE system (when the
CFM-TM can not manage those writes). As the figure shows, most of the writes are managed
by the CFM-TM system in "Intruder", "Barnes" and "Vacation", and near 50% is managed in
"Labyrinth".

Figure 3.9 shows the speedup of LogTM-SE + CFM-TM with respect to using LogTM-SE
alone. Three of the benchmarks have roughly the same performance, whereas "Intruder" is
more than 40% faster with the CFM-TM.

For the benchmark "Barnes" we obtain a reduction of the signature size by a factor of four
with roughly the same performance. It has an average read/write set that CFM-TM manage
without problems.

"Intruder" behaves specially well with CFM-TM. It is a high contention benchmark with
an average read/write set that LogTM-SE doesn’t manage well because it does not have a
sophisticated contention management policy, leading to a high number of transactions that
abort. When CFM-TM is active, performance is improved in more than 40% because the
average write set of the benchmark is managed almost completely by the filter, which allows
fast aborts. Furthermore, the write signature reduction is 75%.

86 Chapter 3. Reducing the Use of Signatures in a HTM system

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Intruder Barnes Vacation Labyrinth

S
pe

ed
−

up
LogTM−SE
LogTM−SE + CFM−TM

Figure 3.9: Speed-up of LogTM-SE + CFM-TM.

 −35

 −30

 −25

 −20

 −15

 −10

 −5

 0

 5

 10

Intruder Barnes Vacation Labyrinth

V
ar

ia
tio

n
of

 #
m

is
se

s
(%

)

Figure 3.10: Variation of L1 cache misses when the CFM-TM is activated (with respect to LogTM-SE alone).

For benchmarks "Vacation" and "Labyrinth", with larger transactions, CFM-TM perfor-
mance is slightly worse, but the signature size is reduced 75% for "Vacation" and is reduced
50% for "Labyrinth".

Figure 3.10 shows the variability in the number of L1 cache misses due to a reduced as-
sociativity by transactional execution. For "Vacation" and "Intruder" there is a small increase
of 5% in the number of misses. However, for "Barnes" and "Intruder" even the number of L1
cache misses are reduced because the logging is not performed.

3.3. Evaluation 87

Cycle Breakdown

The cycle breakdowns provides detailed information about the execution time. Figure
3.11 shows the normalized cycle breakdown for each benchmark, with both configurations:
the LogTM-SE alone and with the CFM-TM. The cycles are grouped in different phases:
NON_TRANS represents the cycles used in non transactional code, BAD_TRANS represents
the transactional cycles that were wasted in transactions that finally aborted, GOOD_TRANS
are the good transactional cycles that lead to successful transactions, ABORTING are the
cycles expended in the abort process, COMMITTING are the cycles expended in commits,
BACKOFF are the backoff cycles (randomized number of cycles to reduce contention after
aborts), BARRIER are the cycles spent in barriers and STALL are the cycles that transactions
are stalled (when a conflict is produced, and trying to resolve the conflict without aborting).

Figure 3.12 shows the normalized cycle breakdown of each benchmark, showing the spe-
cific phase in the x axis. The values are normalized to compare the time spent in each situation
with and without the CFM-TM. In these normalized graphs we can appreciate much better the
improvement or deterioration of the behavior in each specific phase for each benchmark.

Figure 3.12 (a) shows the results for the "Intruder" benchmark. The cycles are reduced
in BAD_TRANS, ABORTING, BACKOFF, BARRIER and STALL phases because the num-
ber of aborts is less (see Figure 3.7) as well as the time spent in them. In the "Intruder"
benchmark there is a barrier at the end of the transactional processing, which explains that the
BARRIER time is also decreased (if there are less aborts, the barrier has to wait less time for
the transactions).

Figure 3.12 (b) shows the results of the "Barnes" benchmark. We see that the BAD_TRANS
are increased with CFM-TM, because without the filter, some false positives are detected be-
fore the actual conflict is produced, and therefore these transactions abort before, and save
some cycles. The GOOD_TRANS variability may be caused because fluctuations in the
benchmark and the small relative time spent in transactions (see Figure 3.11). The ABORT-
ING and BACKOFF reduction time are caused because the action of the CFM-TM filter.

Figure 3.12 (c) shows the results for the "Vacation" benchmark. ABORTING cycles are
less with CFM-TM (as expected), and it has worse behavior in BAD_TRANS, BACKOFF
and STALL, because the number of aborts is slightly superior.

Figure 3.12 (d) shows the results for the "Labyrinth" benchmark. We see again that the
biggest difference is with the ABORTING cycles, due to the CFM-TM.

88 Chapter 3. Reducing the Use of Signatures in a HTM system

 0

 0.2

 0.4

 0.6

 0.8

 1

Lo
gT

M
−

S
E

C
F

M
−

T
M

Lo
gT

M
−

S
E

C
F

M
−

T
M

Lo
gT

M
−

S
E

C
F

M
−

T
M

Lo
gT

M
−

S
E

C
F

M
−

T
M

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e
(b

re
ak

do
w

n)

Intruder Barnes Vacation Labyrinth

stall
barrier
backoff
commiting
aborting
good_trans
bad_trans
non_trans

Figure 3.11: Normalized breakdown of execution cycles.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

NON_TRANS

BAD_TRANS
GOOD_TRANS

ABORTING
COMMITING

BACKOFF
BARRIER

STALL

 N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

LogTM−SE
 CFM−TM

(a) "Intruder" breakdown.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

NON_TRANS

BAD_TRANS
GOOD_TRANS

ABORTING
COMMITING

BACKOFF
BARRIER

STALL

 N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e LogTM−SE
 CFM−TM

(b) "Barnes" breakdown.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

NON_TRANS

BAD_TRANS
GOOD_TRANS

ABORTING
COMMITING

BACKOFF
BARRIER

STALL

 N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

LogTM−SE
 CFM−TM

(c) "Vacation" breakdown.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

NON_TRANS

BAD_TRANS
GOOD_TRANS

ABORTING
COMMITING

BACKOFF
BARRIER

STALL

 N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

LogTM−SE
 CFM−TM

(d) "Labyrinth" breakdown.

Figure 3.12: Benchmarks breakdown.

3.4. Related Work 89

It is clearly visible from Figure 3.12 that the number of cycles spent in the abort process
is drastically reduced.

3.4 Related Work

The CFM-TM scheme tries to reduce write signature utilization and enhance the performance
of TM systems that are decoupled from caches. In our paper we choose LogTM-SE as baseline
system, because it is a very representative decoupled HTM system and it is easily virtualiz-
able. Moreover, some HTM systems use the cache buffering capability in a similar way as
CFM-TM (FlexTM [155] and UTM [8]).

FlexTM is a flexible HTM that, among other things, uses signatures for conflict detection,
uses L1 as a buffer for speculative data, and uses a per thread log when the cache overflows.
The difference with CFM-TM is that FlexTM uses signatures all the time to detect conflicts,
meanwhile CFM-TM detects conflicts using a WTx bit in L1 private cache.

Unbounded Transactional Memory (UTM) uses a special structure held in memory to log
old versions, and add two bits for each line that may be visible in all the memory hierarchy,
in order to track transactional data. If the transaction fits in cache, the system does not log old
versions (similar to CFM-TM) unless the line is evicted.

CFM-TM differs from the previous HTM systems by hosting transactional data in L1
private cache until the transaction commits or aborts, that allows the system to use signatures
in a conservative way (they are used as little as possible).

FASTM: A Log-based Hardware Transactional Memory with Fast Abort Recovery

FASTM [95] proposed a similar solution to CFM-TM, and it was published at the same
time. It also proposes to use the cache memory to maintain the speculative data whereas
the old data remains in higher levels of the cache memory. The difference with CFM-TM
is that FASTM does not fix the transactional data to the cache, and it does not reduce the
associativity temporally. Instead, when it has to evict a transactional write, the address is
inserted in the signature. FASTM achieves a speed-up of 43% compared to LogTM-SE using
the same signature sizes.

90 Chapter 3. Reducing the Use of Signatures in a HTM system

3.5 Conclusion

In this paper we presented CFM-TM, a Cache Filtering Mechanism for Transactional Memory
systems in order to reduce the hardware resources of the baseline TM system without reducing
performance.

We evaluate CFM-TM with LogTM-SE as baseline system using some benchmarks. We
showed that in most of the cases the system performs better when the CFM-TM is activated,
and what is more important, it is possible to reduce the size of the write signature used by
LogTM-SE. CFM-TM can be deactivated by software at any time if virtualization is needed.
To fully take advantage of the proposed filter, the multicore processor system should support
a flexible management of signatures, and allowing signatures of variable size, such as our
proposals in Chapters 5 and 6.

CHAPTER 4

TOLERATING ASYMMETRIC DATA RACES

WITH A HARDWARE SIGNATURE MODULE1

Parallel debugging is one of the keys to improve the productivity of parallel programmers.
Concurrent errors are difficult to detect and debug, and it is an important source of low pro-
ductivity. To solve this problem, many approaches have been proposed to deal with different
kind of concurrent bugs. Data races are one of the most frequent causes of bugs, and they
have received a significant attention by the research community [113] [132] [94] [151] [48]
[49] [92] [172].

However, an important type of data races that have not received much attention are Asym-

metric data races, described in Section 1.3.2. In these type of races, the state of well-tested,
correct threads is corrupted by racing threads from external, typically third-party code.

Figure 1.11 shows an example of an asymmetric data race, where a correctly synchro-
nized thread (the safe thread) is corrupted by a thread that is not (the unsafe thread). In this
example, the safe thread (T1) access to the content of a pointer in a correctly synchronized
critical section, whereas T2 access the same pointer without synchronization, which produces
a unpredictable behavior in T1 when it tries to update the contents of the pointer. The idea of
this work is to detect when an unsafe thread tries to modify the state being accessed by a safe

thread and prevent it from doing so. The result is a correct critical section. Correctness means

1This work was developed at the University of Illinois at Urbana-Champaign in collaboration with the members
of the I-ACOMA group. Specifically, my contribution was: active participation in the discussion of the general and
advanced ideas, evaluation and experimental results, as well as writing and reviewing the resulting conference paper.

92 Chapter 4. Tolerating Asymmetric Data Races with a Hardware Signature Module

that the value of shared variables inside the critical section should not be changed between the
first access inside the critical section and the end of the critical section.

Current schemes to detect and tolerate asymmetric races are software based [140, 137].
They prevent the corruption of the state in a critical section by copying the data accessed in
the critical section to a local area, or by setting address translation protection bits in the core.
However, this requires substantial execution overhead.

In this chapter we propose the first scheme to detect and tolerate asymmetric data races
in hardware. The approach, called Pacman [132], induces negligible execution overhead
and requires minimal hardware modifications. In addition, compared to past software-based
schemes, Pacman eliminates deadlock cases. Pacman is based on using hardware signatures
(see Section 1.5) to detect the asymmetric races.

The rest of the chapter is organized as follow: Section 4.1 introduces the problem, Section
4.2 describes Pacman architecture, Section 4.3 is focused on the hardware implementation,
Section 4.4 evaluates Pacman, Section 4.5 discusses related work and Section 4.6 presents
some conclusions.

4.1 Asymmetric Data Races in Real World

The focus of this chapter is a common and likely harmful type of race condition called Asym-
metric data race. This is a data race where at least one of the racing threads is inside a
synchronization-protected critical section [137] [140]. In addition, we are interested in effi-
ciently tolerating them in production runs.

Harmful asymmetric data races are common in the real world. To assess their frequency,
we examined 50 harmful data race bugs from bug libraries of open source software and from
Microsoft reports. We define harmful as being a bug that the user wants to be fixed (as
opposed to the many data races explicitly created by the programmer for performance). Of
the 50 harmful races, we found 10 that are asymmetric. This is a significant 20%. They are
shown and described in Table 4.1.

The high frequency of asymmetric data races is confirmed by Microsoft researchers in
[137] [140], who claim that they frequently encounter them in software development. They
provide two intuitive sources of asymmetric data races. One source is the case of code de-
veloped by reliable software developers that has to share memory state with less-tested code
developed outside of the house (e.g., various device drivers). A second source is legacy code.

4.2. PACMAN: Tolerating Asymmetric Data Races 93

Application Source Description Outcome

Apache 1.1 Beta Bug number 1507 AppenderAttachableImpl object should be
protected by synchronization in AsyncAp-
pender.getAllAppenders

Exception

MySQL6.0 Bug number 48930 lock state is updated by two different threads
holding different mutexes

System hangs

Mozilla-JS Bug number 622691 The write to cx→ runtime→ defaultCom-
partmentIsLocked is not consistently pro-
tected by the lock

Incorrect result

Mozilla-
XPConnect

Bug number 557586 One thread sets gLock to null before another
thread drops the lock

Segmentation
fault

Mozilla-
Video/Audio

Bug number 639721 mInfo is written by nsBuiltinDecoderReader
without its lock while mInfo is read from
HaveNextFrameData with a lock

Incorrect result

Pbzip2-0.9.4 Paper [179] [186] main() frees fifo→mut without protection Segmentation
fault

Windows Kernel Case study 2 in
slides of [76]

Two threads access the same structure with
different mutexes

Incorrect result

Windows Kernel Case study 3 in
slides of [76]

parentFdoExt→idleState is not protected by
a lock

Incorrect result

Windows Kernel Real data race ex-
ample in [76]

gReferenceCount is updated without protec-
tion

Incorrect result

Trie benchmark An example in [137] The prefix match function reads the leaf field
of the root object without acquiring a lock on
the trie

Incorrect result

Table 4.1: Real examples of harmful asymmetric data races (20% of harmful data races are asymmetric).

Specifically, a library may have been written assuming a single-threaded environment, but
later the requirements change to multithreading. This requires that all the threads acquire a
lock before accessing shared state. Unfortunately, some corner cases are missed.

Asymmetric data races are likely harmful. Indeed, all of the ones shown in Table 4.1 that
come from bug libraries have been confirmed as bugs in the libraries, and fixed in later releases
of the software. In addition, the fact that the programmer protected one thread’s accesses to the
racy variables in a critical section suggests that these are important variables. The atomicity
of the critical section accesses, as intended by the programmer, is broken through accesses
from other threads; this is likely to be harmful.

4.2 PACMAN: Tolerating Asymmetric Data Races

Our goal is to tolerate asymmetric data races in production runs without the needing of training
tests. This approach is complementary to conventional in-house data-race debugging. It is
motivated by four facts. First, even after extensive testing, date race bugs appear in released

94 Chapter 4. Tolerating Asymmetric Data Races with a Hardware Signature Module

T1 T2

lock(l1)

unlock(l1)

=a;

=a;

a=

a=

T1 T2

lock(l1)

unlock(l1)

a=

a=

=a;

=a;

(a) (b)

OK

NOT OK

OK

NOT OK

Figure 4.1: Examples of asymmetric data races where the unsafe thread can proceed (OK) or not (NOT OK).

code. Second, it often takes years between the time when a bug is detected in the field and
when a fix is available from the vendor [179]. Third, for the fraction of asymmetric races
caused by third party or (perhaps) legacy code, fixing the bug may not be a feasible option
because the source code may be unavailable. Finally, the structure of these races already
suggests a way to minimize their potential harm: prevent the unsafe thread from corrupting
the state or reading inconsistent state while the safe one is in the critical section.

4.2.1 Overview of the Idea

We want to prevent unsafe threads from corrupting the state or reading inconsistent state
while the safe thread is in the critical section. We must ensure that an access A from an
unsafe thread that conflicts with an access inside the critical section is ordered in the same
way with respect to all of the accesses in the critical section. As shown in Figure 4.1(a), the
first write by T2 can proceed, but the second one has to be prevented until after the unlock is
performed. Similarly, the first read by T2 in Figure 4.1(b) can proceed, but the second one
has to wait until the unlock is performed.

The idea behind Pacman is to leverage the hardware cache coherence protocol in a mul-
tiprocessor to temporarily protect the variables that a thread is accessing in a critical section.
The hardware performs two concurrent actions. One is to record the addresses of (a subset
of) the variables that the safe thread is accessing while executing a critical section. In fact,
to a large extent, we only need those addresses that can be observed by the cache coherence
protocol, as we will explain below. The second action is to reject any requests from the unsafe

threads that conflict with these variables, until the safe thread leaves the critical section.
For efficiency, Pacman does not record the addresses in a table. Instead, it uses hardware

signatures (see Section 1.5). Moreover, to make the hardware as unintrusive as possible, the
signatures are stored in a module called SigTable that is connected to the on-chip network

4.2. PACMAN: Tolerating Asymmetric Data Races 95

and snoops all coherence transactions. Physically, the SigTable is associated with the net-
work controller in a ring-based multiprocessor, or is distributed across the different directory
modules in a directory-based multiprocessor. Since multiple cores may be executing criti-
cal sections concurrently, the SigTable stores as many signatures as critical sections are in
progress.

The application code is unmodified, however, Pacman assumes that the critical section
entry and exit points of safe threads are marked in the code with synchronization macros or
libraries. Inside these macros or libraries, Pacman makes sure that there is a network access,
implemented as part of the synchronization operation as we will see below. As a result, the
Pacman module always knows when a core enters and exits a monitored critical section.

All previous works on tolerating data races are based on software systems [140] [137].
Hardware approaches mainly focus on detecting the data races [113] [33] [116]. This makes
Pacman the first hardware approach to not only detect but also tolerate asymmetric data
races.

Pacman addresses several shortcomings of the existing data race tolerance schemes. First,
from a theoretical point of view, Pacman will not generate any new deadlocks or inconstancy
behaviors that are not allowed by the original programs. Second, since we use hardware to
check dynamic addresses on the fly, Pacman has more precise results than static alias analy-
sis. Besides this, Pacman does not rely on hardware nor OS support for memory protection.
Therefore, if the program uses fine-grained locks, Pacman would not cause any memory frag-
mentation. In fact, there is no need for compiler transformations or source code modifications.

Unlike existing hardware data race detection schemes, Pacman has several advantages.
First, Pacman does not need additional hardware to support rollback and re-execution. Sec-
ond, although it is a signature based system, false positive are typically not very significant,
because Pacman only records the read/write addresses inside the critical section and usually
the size of the critical section is small. Finally, there is no need to modifications on the cache
coherence protocol or cache structure to support Pacman. We only need some small exten-
sions on the cache coherence protocol to ensure that the module captures all the required
information. The need of this extensions are discussed in Section 4.2.3.

In the following, we describe Pacman’s operations in detail in three steps: basic Pacman
protocol, interactions with cache, and the advanced Pacman protocol (to avoid deadlocks).

96 Chapter 4. Tolerating Asymmetric Data Races with a Hardware Signature Module

P1 P2 P3

P4

SigTable
Memory

Controller

P
a
c
m

a
n

M
o
d
u
le

On-chip network

Figure 4.2: Overview architecture of Pacman.

4.2.2 Basic Pacman Protocol

As shown in Figure 4.2, the key component of Pacman is a SigTable and a controller, which
are connected to the on-chip network. SigTable is a hardware component that stores the ad-
dresses accessed by each in-progress critical section, and prevent accesses by other cores to
these addresses. Despite the SigTable can be implemented in a distributed way, here we de-
scribe a centralized module, for an instance implementation based on a ring on-chip network.

To detect asymmetric data races, the basic Pacman protocol needs a SigTable with several
entries, each one with a CID and a signature. CID is the identifier of the core currently
executing the critical section that owns the entry. The signature field contains the encoded
addresses accessed in the critical section so far.

These two elements are enough to define the basic protocol, when a request arrives to the
Pacman module:

1. Lock acquire: if the grab is performed successfully, Pacman allocates a new entry
in the SigTable by assigning the CID to the requesting core ID, and inserting in the
signature the address of the lock.

2. Data access inside a critical section: Pacman inserts the address of the data accesses
in the corresponding signature of the SigTable entry.

3. Data accesses from other threads: the SigTable checks on every network access if the
address is in the signatures of the SigTable. If there is a match, the request is Nacked to
the requester, which will retry.

4. Lock release: Pacman deallocates the entry in the SigTable.

4.2. PACMAN: Tolerating Asymmetric Data Races 97

Nacks are often used in cache coherence protocols, to avoid having to buffer messages that
cannot be processed immediately [70]. While they can cause traffic hot spots in pathological
cases, the probability of an asymmetric race is low enough that there is no need to provide
any contention management mechanism.

When a program uses nested locks, Pacman manages the situation by flattening, which
means that the signature will store all the addresses inside the outermost lock and does not
allocate a new entry to inner locks. To support this feature, Pacman needs a new element for
each entry in SigTable, called NestingLevel. On a lock acquire, if the core does not own a
SigTable entry yet, it sets the NestingLevel field to one, otherwise increments the value of the
field. On a lock release, the Pacman module decrements the NestingLevel field, and, if it is
zero, deallocates the entry in the SigTable.

With this simple protocol, Pacman isolates the safe threads from the unsafe threads, and
it has negligible execution overhead for the safe thread.

4.2.3 Interaction with Cache

To minimize the hardware modifications to support Pacman, the module simply attaches to
the on-chip network without modification of processor, cache coherent protocol, etc. How-
ever, in this way, Pacman can only monitor the events on the network, but some read/write
operations which are not reported on the network may affect Pacman’s correctness. Usually
there are two kinds of read/write operations which cannot be detected in the network: write
to a dirty data in the owner cache, and read of a clean data from the owner cache. We discuss
the following cases when Pacman cannot monitor the events, assuming a basic MESI cache
coherence protocol.

To illustrate the problem, we depict in Figure 4.3 two different situations. In the case of
Figure 4.3(a), T1 acquires l1, and then writes the x data, which misses in the cache. l1 and x

are inserted in the signature of SigTable entry, and any subsequent read or write from T2 will
require a coherence transaction, which will be Nacked, as we can see in the figure.

Figure 4.3(b) shows the situation where T1 reads x, which misses the cache, and Pacman
records the addresses of l1 and x. If T2 reads x, there may be a coherence transaction (de-
pending if the line is in the T2 local cache or not). If there is a transaction, the access will
be Nacked, otherwise, it will not. The situation is ok in both cases because two reads never
conflict. However, if T2 writes x, the thread will be Nacked, as we observe in Figure 4.3(b).

98 Chapter 4. Tolerating Asymmetric Data Races with a Hardware Signature Module

T1 T2

lock(l1)

unlock(l1)

wr(x)
rd(x)/wr(x)

rd(x)/wr(x)

Miss
Nack

Done

T1 T2

lock(l1)

unlock(l1)

rd(x)
rd(x)

Miss

Nack

Done

wr(x)

wr(x)

(a) (b)

Figure 4.3: Examples to understand the Pacman’s operation.

T1 T2

lock(l1)

unlock(l1)

wr(x)
rd(x)/wr(x)

T1 T2

lock(l1)

unlock(l1)

rd(x)

Nack wr(x)

(a) x in Modified or Exclusive state before

enter the critical section.

(b) x in Shared state before enter the critical

section.

Nack

Writte back
Inv.

Figure 4.4: Examples to understand Cache State Prior to Entering the Critical Section.

These two cases are straightforward, and Pacman is able to manage them without archi-
tectural modifications. Next we will describe three cache coherence situations that are more
complex to deal with: cache state prior to enter the critical section, cache replacements during
the critical section, and synchronization operations.

Cache State Prior to Entering the Critical Section

When a thread enters in a critical section, some cache lines may be in a state that enables the
core to silently access them. Specifically, there are two cases: when x is Dirty (or Exclusive)
in T1’s cache in Figures 4.4(a) and (b), and when x is Shared in T1’s cache in Figure 4.4(b).
In these cases, the Pacman module will not observe T1’s access to x.

None of the two cases prevent Pacman from ensuring the atomicity of the critical section.
Consider the case when x is in M or E state in T1. When T2 attempts to access the line
and a miss is produced, the coherence protocol forces T1 to write back the line. When the
Pacman module detects that a core with a SigTable entry writes back a line, it assumes that
the core had accessed the line. Consequently, while allowing the line to be written back
to memory, it inserts the line’s address in the entry’s Signature and Nacks the requesting

4.2. PACMAN: Tolerating Asymmetric Data Races 99

(unsafe) core (hence ensuring critical section atomicity). No functional changes to the caches
or coherence protocol is needed. If T1 had not accessed the data in the critical section, Pacman
acts conservatively but not incorrectly.

In the second case, being x in Shared state in T1, if T2 writes x, the hardware issues
a coherence transaction that invalidates T1’s copy. In this case, Pacman requires a simple
hardware extension. Specifically, it requires that T1’s cache informs, in its response to the
invalidation, that indeed, it has invalidated a line. When the Pacman module detects that a
core with a SigTable entry has invalidated a line, it assumes that the core has accessed the
line in its critical section. Again, it may occur that this line has not been access in the critical
section, but Pacman acts conservatively but in a correct way2.

Supporting this change is simple. In a directory-based protocol, when a cache invalidates
a line, it must set a bit in the invalidation acknowledgement returned to the directory. In a
snoopy-based protocol, the cache that invalidates the line must set a bit in the network that is
visible to the Pacman module.

Cache Replacements During the Critical Section

Consider the case when a core is executing a critical section and its cache evicts a line that
was in the cache before the core entered the critical section. Such line is not in the signature,
but it must be conservatively put there as the core may have accessed it silently during the
critical section.

There are two kinds of replacements: if the cache line is dirty (M state), the line is written
back to memory, so the Pacman module detects this transaction. However, if the replaced
line is clean, the Pacman module does not have any notification of the event. Therefore,
another modification of Pacman is required: to send a notification (including the address line)
when a cache replaces a clean line in a critical section, with the aim of including it in the
corresponding SigTable entry. This modification can be implemented easily. Specifically, a
new counter named Mode is added to the controller of the last level private cache. When
Mode is not zero, the cache is in notification mode, and it sends a notification each time that
replaces a clean line. Every successful lock acquire increments the counter and every unlock
decrements it. This ensures that, in nested critical sections, the cache remains in notification
mode throughout the outermost critical section.

2In all of these cases, a Nacked write has already invalidated the line from all the caches. This can hurt perfor-
mance slightly if caches have to re-access the data. However, this occurs only once.

100 Chapter 4. Tolerating Asymmetric Data Races with a Hardware Signature Module

Synchronization Operations

Every acquire and release operation should be notified to the Pacman module to allocate or
release a new entry in the SigTable. But when the lock is in a line in M or E state, this does
not happen. To solve this problem, we propose to send an extra notification in each successful
acquire or release operation that do not need a network access. Another alternative would be
to change the lock macros or libraries to add an explicit uncached write inside them.

4.2.4 Advanced Pacman Protocol to Avoid Deadlocks and Stalls

To deal with more involved cases, we describe possible deadlock situations and the mecha-
nism that Pacman uses to avoid them.

Stalls and Deadlocks

The potential deadlock situations in a Pacman basic protocol are three:

1. Some race bugs where all the threads synchronize.

2. False sharing.

3. False positives.

Figure 4.5 shows two examples of the first situation. In Figure 4.5(a), T1 and T2 acquire
two different locks (l1 and l2) and enter in their respective critical sections. As both are safe

threads, both are protected against external accesses to the critical data, and both threads ac-
cessing at the same data (a1 and a2) with a timing that produces the stall of both threads.
Figure 4.5(b) shows two threads (T1 and T2) acquiring two different locks (l1 and l2) access-
ing the same variable (a2). T2 successes accessing a2 and T1 gets Nacked, but T2 tries to
acquire l1 (acquired by T1) and gets also stalled.

The second possible deadlock situation is false sharing. For example, this would be the
case of Figure 4.5(b), if T1, instead of accessing a2, access to another variable that share the
cache line with a2.

The third situation of deadlock is due to the false positives in signatures due to aliasing
(see Section 1.5) or due to the cache state prior to entering the critical section (see Section
4.2.3).

4.2. PACMAN: Tolerating Asymmetric Data Races 101

T1 T2 T1 T2

lock(l1) lock(l2)

a1=

a2=

a2=

a1=Nacked

lock(l1) lock(l2)

lock(l1)a2=

a2=

Nacked

(a) (b)

Figure 4.5: Examples of data race bugs which lead to deadlock.

Mechanism to Avoid Deadlocks

The mechanism used by Pacman to avoid deadlocks are described here. To handle deadlocks,
we add two new fields to each entry of the SigTable:

1. Stall_index: tells if the thread that owns the entry is being Nacked. Specifically, St-

all_index stall the index of the SigTable entry that sends Nacks to the owner thread.

2. Lock_Acquire?: indicates if the thread that owns the entry is being Nacked while trying
to acquire a lock (if Stall_index is not null).

The algorithm to avoid the deadlock is the following:

– When a core Ci is Nacked by the core corresponding to the j entry of the SigTable, the
Pacman module checks if Ci also has a entry in the SigTable. If so, it sets the value of
Stall_index to j in the entry corresponding to the Ci core.

– It sets also Lock_Acquire? bit in case Ci is trying to acquire a lock.

– The Pacman module follows the Stall_index pointer by checking entry j in the SigTable
and reading its own Stall_index.

– If, by following the Stall_index pointers in this way, the hardware ends up in entry i, it
has detected a cycle.

Once the deadlock is detected, the hardware needs to decide which thread among those
in the cycle is allowed to perform one access without being Nacked. A simple approach is
to pick one of the threads that holds locks requested by other threads (such as T2 in Figure
4.5(b)). Such threads are detected from the Lock_acquire? bit of other entries, and they need

102 Chapter 4. Tolerating Asymmetric Data Races with a Hardware Signature Module

T1 T2

lock(l1) lock(l2)

g0=
g1=

g1'=
g0'=

unlock(l2)

=g0

Nacked

Figure 4.6: Breaking atomicity due to false sharing.

to make progress to break the cycle. If there is no such thread, the hardware picks one thread
at random. The next time that the Pacman module detects a request from the picked thread, it
does not Nack it.

Breaking Atomicity of Critical Sections

With the algorithm described in the previous section, Pacman immediately finds and breaks
any deadlock — unless it was already present in the original application. However, by letting
one stalled thread complete one access, it can conceivably break the atomicity of a critical
section. To understand the problem, we consider each of the three sources of deadlock listed
in Section 4.2.4.

In the first case (all the threads synchronize), Pacman can potentially break the atomicity
of one of the critical sections. While Pacman could be designed to break only the atomicity
of unsafe threads, such approach would not work for all the race bugs. An example is when
T1 in Figure 4.5(b) is the unsafe thread. Overall, given the very low probability of breaking
atomicity in this way, we do not attempt to avoid it.

In the second case (false sharing), atomicity can potentially be broken unless special care
is taken. To see why, consider Figure 4.6, which is a slightly modified version of Figure
4.5(a). In this example, variables g0 and g0’ share the same cache line, while g1 and g1’
share another line. Because of false sharing, threads T1 and T2 deadlock. By breaking the
deadlock through letting T2 read g0’, Pacman is allowing the line to go to T2’s cache. Right
after the end of T2 critical section, T2 could attempt to silently access g0 from its cache,
which could break T1’s atomicity.

To prevent this case from occurring, we could augment Pacman so that, when Pacman
lets one access break a deadlock, it marks it as non-cacheable. The requesting core would be
allowed to use (read or write) the word, but its cache would not be allowed to keep the line.

4.3. Implementation Issues 103
H

-B
lo

c
k

Controller

SigTable

Pacman Module

Ring

Cycle detection

& Breakup

Nack

Request

Ring

H-Block

h1 h2 hk. . .

. . . Signature_in

Hash functions

SigTable

CID Signature NL SI LA

CID Signature NL SI LA

.

.

.

PID_in=

Nack

?

?

=
PID_in

. . .

1

(a) Pacman Module. (b) SigTable and H-Block.

Nack 1Nack 2

addressWr.-back/Inv.

=

Nack
2

Figure 4.7: Pacman Implementation.

As a result, accesses to other words would miss in the cache. This extension would avoid
breaking atomicity when false sharing occurs between words. However, a more elaborated
solution would be needed when false sharing occurs between bytes of the same word. Given
the very low probability of breaking atomicity due to false sharing, Pacman does not include
this support (it can not handle this case).

In the third case (false positives), letting one thread proceed does not break the atomicity
of any critical section.

4.3 Implementation Issues

The Pacman module is a hardware module connected to the on chip network (see Figure
4.7(a)). It comprises the SigTable and its controller. The controller is composed of one
simple hash block (H-Block) and the cycle detection & breakup module. The latter chases
the Stall_index links as described in Section 4.2.4 to detect and break deadlocks.

Figure 4.7(b) shows the H-Block and the SigTable. The implementation is optimized to
reduce the complexity of the controller. In case of an ordinary request in the network, the
H-Block takes the address of the incoming request and insert it into an empty signature using

104 Chapter 4. Tolerating Asymmetric Data Races with a Hardware Signature Module

CID N bits
Signature 1k bits
NestingLevel (NL) 5 bits
Stall_index (SI) N bits
Lock_acquire? (LA) 1 bit

Table 4.2: Size of the SigTable’s fields.

a parallel Bloom filter (Signature_in in Figure 4.7(b)). The hash-encoded address (stored in
Signature_in) is then checked for membership in valid SigTable entries from other cores (∈
or check operation in Figure 4.7(b)). Overall, in case of an ordinary request in the network,
the H-Block’s operations can be performed in 2-3 cycles and are hidden under the first half of
the network transaction.

In the second half of the network transaction, when the caches have finished snooping, the
network may receive a write back or invalidation response (Section 4.2.3). In this case, the
H-Block checks if the core ID that writes back or is invalidated has a SigTable entry. If so, it
bit-wise ORs the hashed address with the correct signature and raises the signal Nack2 . In
this case, the H-Block’s operation takes 1-2 cycles.

If Nack1 or Nack2 are raised and the cycle detection and breakup module does not prevent
it, a Nack signal is returned on the network. All of the operations of the Pacman module
except for cycle detection are simple enough to be overlapped with the network transaction.
In a directory protocol, they overlap with directory module accesses. The cycle detection may
take over 10 cycles, which is acceptable since it is done in background.

In our current implementation, the sizes of the SigTable’s fields of Figure 4.7(b) are shown
in Table 4.2. The size of CID and Stall_index depend on how many threads may be monitored
at a time (the maximum number of threads is 2N). For Signature, we found that, with 1,024
bits, false positives are typically less than 1%. For NestingLevel, we allocate 5 bits, which is
enough for all the benchmarks used in the evaluation.

Finally, the Pacman module is enabled and disabled by the Pacman on and Pacman off

commands, respectively. These can be implemented as writes to memory-mapped registers.
These commands can be used to exclude the program regions that are serial or otherwise un-
interesting. These two commands would be mainly used to exclude serial regions of programs
and shared libraries. This way, overheads and signature pollution are reduced when Pacman
is not necessary.

4.3. Implementation Issues 105

4.3.1 Other Issues

Current systems usually support two functionalities that we did not mention up to now: mul-
tithreading and OS thread migration. Multithreading is when a core supports multiple threads
at the same time, and thread migration is when the OS migrates one thread from one core to
another.

The previous discussion of Pacman assumes a single threaded core without virtualization
support. In this section, we discuss how Pacman supports these two functionalities in a simple
way. Furthermore, we also show a distributed version of the Pacman module.

Virtualization: Pre-emption and Thread Migration Support

While executing a critical section, a thread can be pre-empted and even migrated to another
core. In an advanced design that requires OS support, we would like that (i) while a thread
is pre-empted in a critical section, we keep protecting its critical section, and (ii) when it
resumes in a potentially different core, we keep storing its accesses in the same signature. To
support this, when the OS pre-empts a thread from core i, it checks the SigTable for an entry
with CID equal to i. If it finds one, it changes its CID field. Specifically, if the thread does
not run anywhere, it sets the CID field to a special code (e.g., OUT); if it finally runs on core
j, then it sets the CID field to j.

With this scheme, if a thread gets pre-empted and not running, it still has its critical sec-
tion protected from asymmetric races. Indeed, its SigTable entry is still valid and coherence
messages are checked against its signature. The checks may result in sending Nacks. Then,
when the thread is scheduled on a different core, its accesses are still stored into the same old
signature.

This approach is efficient, since there is no copying or saving/restoring of SigTable entries.
Moreover, the hardware is kept simple, since it always does the same thing: store accesses
from core i into the SigTable entry tagged with CID i. Stall_index does not get stale, since
it contains a table index. If the program has more threads than cores, there may be several
SigTable entries with a CID equal to OUT. In addition, at a given time, the SigTable entries
may belong to threads from several different programs. Pacman works correctly because it
uses physical addresses.

There is an issue with the cache state left behind by a thread that migrates while executing
a critical section. Recall from Section 4.2.3 that the thread may have entered the critical
section with a cache state that it is later accessed while in the critical section without notifying

106 Chapter 4. Tolerating Asymmetric Data Races with a Hardware Signature Module

the Pacman module. We showed that Pacman (conservatively) captures this information at
cache replacements or at write-backs/invalidations triggered by other core. However, if we
now migrate the thread, we cannot capture such events.

To keep the design simple, we accept this limitation. This means that Pacman misses the
few cases listed in Section 4.2.3 for threads that migrate while in a critical section. A more
aggressive approach would be to write back to memory all the dirty cache lines at the time the
thread migrates while in a critical section. The addresses of these writebacks would be put in
the signature. A more drastic approach would be not to allow migration during critical section
execution. Overall, since critical sections are typically small, migration during their execution
is rare and does not justify additional actions. Like all data-race handling techniques, Pacman
is a best-effort approach (the probability of not tolerating an asymmetric data race is very
low).

Multithreading Support

Multithreaded cores have multiple hardware contexts and run multiple threads at a time. It is
possible that different threads executing on different contexts of the same core concurrently
execute different critical sections. In this environment, Pacman requires an extension where
the messages sent by cores to the SigTable include both the core ID and the hardware context
ID within the core. Similarly, SigTable entries have both a CID and a ContextID field.

The cache-state issues of Section 4.2.3 are handled conservatively. If multiple contexts in
a core are concurrently executing critical sections, any writeback, invalidation, or replacement
that needs to insert an address in a signature, lead to insert it in all the SigTable entries owned
by that core. Since the SigTable is connected to the network, it can only observe data sharing
across cores, not across contexts in a core. Consequently, for Pacman to tolerate races as
described, a program can only use one context per core — although multiple programs can
use the multiple contexts of a core. To allow a program to use multiple contexts in a core,
bigger changes would be needed, such as stalling all the other threads in the core when one
thread is executing a critical section.

Extensions for a Distributed Pacman Module

The discussion so far assumed a centralized Pacman module, which is reasonable for a snoopy
protocol. To use Pacman in a system with a directory-based protocol, we need to distribute
the Pacman module across the different directory modules. Since such a design is outside

4.4. Evaluation 107

our scope, we only outline it briefly. Like the directory, the module naturally lends itself to a
distributed environment, with partitions based on address ranges. Consequently, each direc-
tory module has an associated Pacman module, which is in charge of the range of physical
addresses assigned to the local directory module. When a thread enters a critical section, the
hardware allocates an entry for the core in the SigTable of all the Pacman modules; when
it exits it, all the entries are deallocated. When a thread misses on an address, the request
naturally reaches the home directory of that address. There, the address is checked against
the entries in the local Pacman module using the usual algorithm. The Pacman modules in the
other directory modules are not checked.

4.4 Evaluation

4.4.1 Experimental Setup

To evaluate the potential and performance of Pacman, we model Pacman by using the soft-
ware framework for dynamic library instrumentation Pin [81] connected to a cycle-by-cycle
execution driven architecture simulator based on SESC [142]. The simulator models a chip
multiprocessor of 4 or 8 cores, configured by default by the parameters in Table 4.3. The
cores are two-issue, in-order, and overlap memory accesses with instruction execution. Each
core has a private cache hierarchy kept coherent by a basic MESI coherence protocol on an
on-chip bus. The bus is connected to the Pacman module and to off-chip main memory. Un-
less otherwise indicated, the sizes of the fields in a SigTable entry are those shown in Table
4.4. To generate a signature, Pacman uses eight 128-bit Bloom filters in parallel using the H3
hash function from [147], for a total of 1,024 bits per signature.

For sensitivity analysis, we consider two cache hierarchy models, namely one where each
core only has an L1 cache, and one where it has both a private L1 and a private L2. The first
model puts more pressure on Pacman.

We evaluate Pacman with all the fourteen SPLASH-2 applications, the twelve PARSEC
applications that support pthreads, the "Sphinx3" speech recognition software [150], and
"Apache 2.2.3". The SPLASH-2 codes use their default inputs, while the PARSEC codes use
the simmedium inputs. For "Sphinx3", we use the test input provided, which executes over
500 million instructions, while for "Apache", we set up clients that keep sending requests to
the server, so that the server executes around 40 million instructions.

108 Chapter 4. Tolerating Asymmetric Data Races with a Hardware Signature Module

Architecture CMP with 4 or 8 cores
Core type 2-issue, in-order, 1Ghz
Private L1 cache 32Kbytes, 4-way assoc., 64byte lines
Private L2 cache 512Kbytes, 8-way assoc., 64byte lines
L1 hit latency 2 cycles round trip
L2 hit latency 8 cycles round trip
L2 miss latency 30 cycles round trip to other L2s
L2 miss latency 250 cycles round trip to other Memory
Coherence protocol Snoopy basic-MESI on 64byte bus
SigTable parameters From Table 4.4
Cycle detection latency 4-14 cycles
H-Block latency (with a normal request) 2 cycles
H-Block latency (with a Write-back or Nack) 2 cycles

Table 4.3: Default architecture parameters.

SigTable entries 8 (Max.)
Signature size 1024 bits
Signature structure 8 128-bit Bloom filters with H3
CID 2 bits
Stall_index 2 bits
NestingLevel 5 bits
Lock_acquire 1 bit

Table 4.4: SigTable parameters.

For the evaluation, we slightly modify the "Canneal" and "Ferret" applications. At the
beginning of "Canneal", a thread uses a critical section to initialize a large memory space
(even though there is no other active thread at that time). Consequently, we turn off Pacman
during that time. In "Ferret", each thread initializes a random number generator within a
critical section. Since only the seed is a shared variable, we move the local-variable accesses
in the random number generator initialization routine outside of the critical section. If we did
not do these changes, the statistics on critical section sizes (Section 4.4.2) would be biased. In
addition, for "Ferret", if all the local-variable addresses were inserted into the signature, this
could potentially induce, through address aliasing in the signatures, false positive conflicts
with other threads, and unnecessarily stall them.

In the rest of this section, we characterize the critical sections, evaluate the overheads of
Pacman, and examine the asymmetric data races discovered. On PARSEC benchmarks, we
use a pthreads configuration to run them as multithread applications. The critical sections
are also defined by a pair of pthread_mutex_lock and pthread_mutex_unlock in the pthreads
library. We use all twelve benchmarks supported in the pthreads configuration in PARSEC.

4.4. Evaluation 109

4.4.2 Characterization

Table 4.5 characterizes the critical sections in all of the 28 applications on the 4-core multicore
processor. Column 3 lists the number of dynamic critical sections in each program. Column
4 shows the percentage of the dynamic instructions in the programs that are inside the critical
sections. We see that all programs except "Sphinx3" execute less than 1% of their instructions
in critical sections. The percentage in "Sphinx3" is 3.5%. Columns 5 and 6 show the average
and maximum number, respectively, of instructions executed per critical section. We see that
the applications tend to have modest-sized critical sections. Most applications execute less
than 100 instructions per critical section on average. The maximum number of instructions
in a critical section reaches nearly 7,000 in "Vips". Columns 7-8 list the average number of
reads and writes per critical section.

Columns 9,10 and 11 correspond to results obtained with the architecture with only the L1
caches. They show, per critical section, the average number of clean line replacements, and
the average and maximum number of line addresses included in the signature. We see that the
average number of clean replacements per critical section is close to zero. This means that
this effect is minor. The average number of line addresses included in a signature per critical
section is typically less than 10 and, except for a few cases, the maximum number is not
much higher. These numbers suggest that the probability of false positives in the signatures is
low. Note that for the architecture with both L1 and L2 private caches, these numbers will be
smaller, because caches keep more state in this case.

The last column shows the maximum nesting level of critical sections. A value more than
one means that the application has nested locks. The value one indicates that the benchmark
has no nested locks and the value zero means no critical section in the benchmark. Only
"Radiosity" and "Vips", which have a recursive structure, have significantly deeper levels.

Overall, given the typical sizes and properties of the critical sections observed, we believe
that a simple solution for asymmetric race detection is enough. Pacman provides such a simple
solution.

4.4.3 Overheads

There are two sources of execution overhead in Pacman. The first one is that some cores
receive Nacks and have to retry. The second one is additional network traffic created by three
event types: a notification message in a clean replacement inside a critical section, a retry

110 Chapter 4. Tolerating Asymmetric Data Races with a Hardware Signature Module

1
2

3
4

5
6

7
8

9
10

11
12

C
S

M
ax

#sig
M

ax
#

M
ax

C
S

#
D

ynam
ic

insts
#insts

insts
#reads

#w
rites

#disps
addrs

sig
addrs

nesting
C

ategory
A

pplication
C

S
(%

)
perC

S
in

C
S

perC
S

perC
S

perC
S

perC
S

in
C

S
level

SPL
A

SH
-2

cholesky
6,957

0.0
30.3

161
10.7

4.7
0.0

6.4
11

1
K

ernels
fft

32
0.3

33.9
47

11.9
10.5

0.1
5.8

7
1

lu/contiguous
272

0.0
36.1

47
12.6

10.7
0.0

6.0
7

1
lu/non_cont.

80
0.0

35.2
47

12.4
10.5

0.1
5.8

8
1

radix
78

0.0
26.1

47
9.4

8.4
0.0

5.9
7

1

SPL
A

SH
-2

barnes
68,938

0.4
118.1

1,898
40.1

29.3
0.0

11.9
56

1
A

pps
fm

m
44,622

0.2
142.1

252
54.7

27.9
0.0

13.4
21

1
ocean/cont.

4,432
0.0

31.5
45

11.8
9.6

0.0
6.8

9
1

ocean/non_cont.
4,312

0.0
30.9

45
11.8

9.5
0.0

5.9
7

1
radiosity

273,087
0.9

18.2
1,226

8.7
5.9

0.0
5.6

89
5

raytrace
95,475

0.3
29.3

6,661
7.5

5.8
0.0

6.0
343

1
volrend

72,524
0.0

12.1
50

5.0
3.0

0.0
4.9

8
1

w
ater-nsquared

6,292
0.0

50.3
51

34.4
12.4

0.0
17.0

18
1

w
ater-spatial

157
0.0

23.8
47

9.6
7.0

0.0
6.0

9
1

PA
R

SE
C

canneal
4

0.0
7

10
2.5

3.5
0.0

3.3
4

1
K

ernels
dedup

17,932
0.1

315.9
802

121.2
67.9

0.1
14.4

33
1

stream
cluster

52,128
0.0

21.0
32

7.1
4.8

0.0
3.2

5
1

PA
R

SE
C

blackscholes
0

-
-

-
-

-
-

-
-

-
A

pps
bodytrack

8,273
0.0

37.0
1,228

15.6
11.1

0.0
6.9

34
1

facesim
7,921

0.0
37.0

154
18.0

9.9
0.0

5.4
11

2
ferret

733
0.0

19.2
44

5.4
7.2

0.0
5.0

9
2

fluidanim
ate

2,113,870
0.7

15.9
32

10.2
4.1

0.0
8.0

10
1

raytrace
73

0.0
7.8

31
2.6

2.3
0.0

2.2
6

1
sw

aptions
0

-
-

-
-

-
-

-
-

-
vips

14,056
0.0

49.0
6,723

18.6
11.8

0.0
8.0

106
23

x264
4,071

0.0
10.6

39
5.9

1.7
0.0

4.0
6

1

O
ther

A
pache

8,301
0.4

24.4
40

9.7
5.3

0.0
5.6

8
1

A
pps

Sphinx3
94,382

3.5
208.5

2,946
86.7

29.1
0.1

6.0
243

2

Table
4.5:

C
haracteristics

ofthe
criticalsections

(C
S)in

the
applications.

4.4. Evaluation 111

after a Nack, and the extra message in a successful lock acquire or release that hits on a cache
line that is in Dirty or Exclusive state (see Section 4.2.3).

Table 4.6 quantifies these effects for each application. Columns 3 to 8 show the total
number of Nacks observed during the execution of the application. For each application,
we performed 3 to 5 runs, and show the maximum number of Nacks seen in any individual
run. The data corresponds to the architecture with L1 caches only, which is the worst case.
Columns 3 to 5 correspond to 4-core runs, while Columns 6 to 8 correspond to 8-core runs.
For "Apache", since the server automatically sets the number of threads to a number larger
than 8, we put the data under the 8-thread columns. In each group of three columns, the first
one shows the Nacks observed due to true conflicts (i.e., two threads access the same variable),
the second one shows the Nacks due to true conflicts or false sharing, and the last one shows
the Nacks due to true conflicts, false sharing, or false positives.

The number of Nacks is very small. Only "FMM" and "Bodytrack" exhibit Nacks due
to true conflicts. Each of them has one Nack. False sharing and false positives increase the
number of Nacks. The highest number is 32 for "Radiosity". This is negligible compared to
the 454M dynamic instructions executed by "Radiosity". Overall, the impact of any core stall
due to Nacks is insignificant.

Columns 9 to 10 show the percentage increase in network traffic due to the three effects
listed above. Column 9 applies to the architecture with L1 private caches only, while Column
10 applies to the one with L1 and L2 private caches. The data shows that the increase in traffic
is very small. In the worst case, the increase is 1.5% for the case of L1 private caches and
2.4% for the case of L1 and L2 private caches. These low numbers result from the fact that
critical sections have a modest size and account for a small fraction of the execution time.
Overall, the impact of this extra traffic is negligible.

Column 11 shows the number of successful lock acquires and releases that hit on a cache
line that is in Dirty or Exclusive state and, therefore, introduce an additional bus access.
The data corresponds to the architecture with both L1 and L2 caches. The column gives
the number of such events as a percentage of dynamic instructions. We see that, typically,
such number is negligible. In the worst case, we have 0.05 such events per 100 instructions.
Therefore, the impact of such events is insignificant.

Finally, Figure 4.8 shows the increase in the execution time of the applications due to all of
the Pacman overheads combined. The data is shown as a percentage of the original execution
time of the applications for 1, 4 and 8 threads. There is a data point for each program, and a

112 Chapter 4. Tolerating Asymmetric Data Races with a Hardware Signature Module

1
2

3
4

5
6

7
8

9
10

11
N

um
berofN

acks
N

um
berofN

acks
Increase

in
Increase

in
Sync

hits
(L

1
only,4

threads)
(L

1
only,8

threads)
traffic

w
ith

traffic
w

ith
perdyn

C
ategory

A
pplication

True
True+FS

True+FS+FP
True

True+FS
True+FS+FP

L
1

only
(%

)
L

1+L
2

(%
)

inst(%
)

SPL
A

SH
-2

cholesky
0

0
0

0
0

0
0.0

0.0
0.00

K
ernels

fft
0

0
0

0
0

0
0.0

0.0
0.00

lu/contiguous
0

0
0

0
0

0
0.0

0.0
0.00

lu/non_cont.
0

0
0

0
0

0
0.0

0.0
0.00

radix
0

0
0

0
0

0
0.0

0.0
0.00

SPL
A

SH
-2

barnes
0

2
4

0
2

4
0.0

0.3
0.01

A
pps

fm
m

1
1

1
1

1
1

0.0
0.1

0.00
ocean/contiguous

0
0

0
0

0
0

0.0
0.0

0.00
ocean/non_cont.

0
0

0
0

0
0

0.0
0.0

0.00
radiosity

0
13

15
0

28
32

1.0
1.4

0.04
raytrace

0
0

4
0

0
6

0.0
0.1

0.01
volrend

0
0

0
0

0
0

0.0
0.1

0.00
w

ater-nsquared
0

0
0

0
0

0
0.0

0.1
0.00

w
ater-spatial

0
0

0
0

0
0

0.0
0.0

0.00
PA

R
SE

C
canneal

0
0

0
0

0
0

0.0
0.0

0.00
K

ernels
dedup

0
0

0
0

2
2

0.1
0.2

0.00
stream

cluster
0

0
0

0
0

0
0.0

0.0
0.00

PA
R

SE
C

blackscholes
0

0
0

0
0

0
0.0

0.0
-

A
pps

bodytrack
1

1
2

1
1

2
0.0

0.0
0.00

facesim
0

0
0

0
0

0
0.0

0.0
0.00

ferret
0

0
0

0
0

0
0.0

0.0
0.00

fluidanim
ate

0
0

0
0

0
0

1.5
2.4

0.05
raytrace

0
0

0
0

0
0

0.0
0.0

0.00
sw

aptions
0

0
0

0
0

0
0.0

0.0
-

vips
0

0
2

0
0

3
0.0

0.0
0.00

x264
0

0
0

0
0

0
0.0

0.0
0.00

O
ther

A
pache

-
-

-
0

3
8

0.3
0.5

0.02
A

pps
Sphinx3

0
4

6
0

10
14

0.8
1.1

0.02

Table
4.6:

Q
uantification

ofthe
overheads.

4.4. Evaluation 113

Figure 4.8: Execution time overhead of Pacman.

line for the average of all of them. The figure shows that, even for 8 threads, the maximum
overhead in any application is only 0.4%, while the average is only 0.07%. The figure also
shows that, for most applications, the overhead increases slowly with the number of threads.
The overhead for 1 thread is due to the extra bus accesses in synchronizations. Overall, the
execution time overhead of Pacman is negligible.

4.4.4 Handling Bugs

The Pacman module found two unreported bugs in the PARSEC benchmarks and it was able
to tolerate all asymmetric data races in an artificial bug-intensive test.

Unreported Data Race Bugs

Since SPLASH-2 and PARSEC are widely used benchmarks, usually they are well synchro-
nized and Pacman cannot find asymmetric races in most applications. However, in PARSEC,
we found two asymmetric races, one in "Bodytrack" application (Figure 4.9) and another one
in "FMM" application (Figure 4.10).

In the case of "Bodytrack" (Figure 4.9), T1 accesses nWakeupTickets before and after
a while loop inside a critical section and T2 accesses nWakeupTickets outside the critical
section. We suggest that it is not necessary to put nWakeupTickets inside the critical section.

The asymmetric race in "FMM" is shown in Figure 4.10. It happens in subroutine Com-
puteSubTreeCosts, where multiple threads are accessing a tree structure. When two threads
T1 and T2 are concurrently executing the subroutine, it may be that the two point to the same

114 Chapter 4. Tolerating Asymmetric Data Races with a Hardware Signature Module

T1

lock(l1)

. . .

while(nWakeupTickets == 0){

. . .

}

nWakeupTickets--;

unlock(l1)

T2

if(slack>0){

nWakeupTickets++;

}

Figure 4.9: An asymmetric race in "Bodytrack" benchmark.

T1

void ComputeSubTreeCost(...){
...

pb=b->parent;

lock(l1)

pb->subtree_cost+=b->subtree_cost;

pb->interaction_synch +=1;

unlock(l1)

...

}

T2

void ComputeSubTreeCost(...){

...

b->interaction_synch=0;

b->subtree_cost+=b->cost;
...

...

...

Figure 4.10: An asymmetric race in "FMM" benchmark.

node from two different places (pb in T1 is the same as b in T2), and an asymmetric data race
may happen.

Artificial Inserted Bugs

We also modified some SPLASH-2 benchmarks to have intentional asymmetric race colli-
sions on their shared variables. We assume that all original threads in SPLASH-2 are safe

threads. We concurrently create an extra unsafe thread that continuously write random values
to the shared variables without any locks. These accesses cause asymmetric race problems
during the execution. In the tests on Pacman simulation, we checked that Pacman detects and
tolerates all asymmetric race cases introduced.

4.5. Related Work 115

4.5 Related Work

4.5.1 Software Proposals for Asymmetric Races

To put our work in perspective, we describe in detail two existing proposals to tolerate asym-
metric data races, namely, ToleRace [140] and ISOLATOR [137]. Both schemes are software-
only (i.e., no hardware support is provided). We then summarize Pacman’s advantages over
them.

In ToleRace, when a safe thread Ts enters a critical section, it makes two copies in software
of all the shared variables in the critical section. Let us call the original variables V and the two
copies V ’ and V ”. The safe thread then executes the critical section reading and writing V ’.
In the meantime, any unsafe thread Tu can access the original variables V . When Ts completes
the critical section, it compares V and V ”. Based on whether V and V ” are the same and on a
knowledge of the access pattern interleaving of Ts and Tu , the safe thread makes one of three
choices: (i) when Tu’s execution can be serialized before Ts’s, it copies in software V ’ to V ,
(ii) when Ts’s execution can be serialized before Tu’s, it leaves V as it is, and (iii) when the
execution of Tu and Ts cannot be serialized in any way, it interrupts the program. In cases (i)

and (ii), the race has been tolerated; in case (iii) the race induces a sequentially inconsistent
execution and, therefore, ToleRace is unable to handle it.

ToleRace has several shortcomings. First, a race type of case (iii) cannot be handled ad-
equately: leaving version V or V ’ produces an inconsistent execution (a detailed example is
described in [137]). Second, when the critical section contains multiple variables and ac-
cesses, the analysis of what is the race case may become complicated. Third, analysis of
access patterns is either conservative (if static) or slow (if dynamic). Finally, comparisons and
copies are slow and race-prone.

ISOLATOR [137] takes a different approach. When a safe thread Ts enters a critical
section, it makes a copy in software of the pages that contain the shared variables that will
be accessed in the critical section (Shadow Pages). Then, it changes the protection bits of
the original pages to make them inaccessible. Ts operates on the shadow pages. If an unsafe

thread Tu accesses the original pages, it gets an exception and gets de-scheduled. When Ts

leaves the critical section, it copies the shadow pages back to the original pages and unprotects
the latter.

ISOLATOR has the advantage of always producing consistent executions. In addition,
thanks to an optimization, the number of page copies can be reduced. However, it has several

116 Chapter 4. Tolerating Asymmetric Data Races with a Hardware Signature Module

shortcomings. The first one is the substantial compiler and operating system (OS) support
(or code re-writing by the user) required to place variables in the correct pages and adapt to
changing access patterns in the program. To apply ISOLATOR to PARSEC, we would have
to rewrite the code and change the variable allocations significantly. A second shortcoming is
that, if such rewriting is not provided, ISOLATOR will often need to copy large amounts of
data at critical section entries and exits. For example, such data copying is the main reason
why ISOLATOR reports up to 8x overhead for the microbenchmarks in [137]. Finally, ISO-
LATOR is prone to deadlocks and livelocks due to false sharing at page level — e.g., assume
that the unsafe thread Tu gets de-scheduled and then Ts attempts to access a variable in a page
that Tu has protected. Moreover, the timeout-based mechanism that is used to detect such
deadlocks is very slow.

Overall, we conclude that neither ToleRace nor ISOLATOR provides the desired solution
to handle asymmetric races.

4.5.2 Other Related Work

Pacman is related to Transactional Memory (TM) (Section 1.4) in that it presents a concept
analogous to strong atomicity [101] between a transaction and a non-transactional access.
However, Pacman operates on lock-based code. Moreover, compared to HTM, Pacman does
not need speculation, rollback, timestamp support, or version management. Even to detect
inter-thread conflicts, Pacman cannot leverage HTM’s tagging of cache lines: since Pacman
is non-speculative, data can overflow into memory. Hence, Pacman needs to keep a SigTable
in memory. Compared to STM, Pacman does not need to analyze the code.

Pacman is also related to hardware-based mechanisms for fine-grain memory protection,
such as UFO [15] and iWatcher [187]. In UFO, each memory line has some bits that specify
protection information. Such bits travel with the line to caches. It is possible to support
Pacman-like functionality with UFO. However, UFO is substantially more intrusive, as it
requires maintaining these distributed bits and building exception handlers for them. iWatcher
is similar although it targets single core processors.

Moreover, Pacman is also related to the many software or hardware schemes that de-
tect and avoid atomicity violations, such as AVIO [92], AtomAid [94], AtomTracker [112],
or LifeTx [185]. While Pacman focuses on avoiding races rather than atomicity violations,
its hardware is effectively being used to keep atomicity, albeit for only user-defined critical
sections. As a result of the latter, Pacman needs no training runs. Finally, there are some

4.6. Conclusions 117

software-only schemes to tolerate races and bugs, such as Rx [133] or Frost [172]. Such
techniques, while effective, have substantially higher overheads. We find Pacman to have
negligible overhead.

Pacman differ from the previous proposals in that is the first hardware approach that de-
tects asymmetric races, it is not based on data replication to maintain correctness in critical
sections, and introduce a low overhead hardware solution based on signatures. Pacman also
solve the inconsistency problems of ToleRace and the deadlocks of ISOLATOR.

4.6 Conclusions

In this chapter we propose Pacman, the first scheme designed to tolerate asymmetric data
races in production runs with negligible execution overhead. Pacman leverages cache coher-
ence hardware to temporarily protect the variables that a thread accesses in a critical section.
Unlike the previous, software-based schemes, Pacman induces negligible slowdown, needs
no compiler or (in the base line design) OS support, and requires no application source code
changes. Moreover, its hardware is unintrusive since it is concentrated in a module in the net-
work, rather than in the cores. We evaluated Pacman for SPLASH-2, PARSEC, "Sphinx3",
and "Apache" and showed that it has negligible overhead. Moreover, we uncovered two unre-
ported asymmetric data races.

CHAPTER 5

IMPLEMENTING A FLEXIBLE HARDWARE

SIGNATURE MODULE

Signatures are a hardware resource that can keep an unbounded number of addresses in a
bounded space (see Section 1.5) and they can be used for many hardware tools related with
parallel computer architecture, to optimize their resources and to enhance their performance.
Examples of these tools are TM systems, data race detectors, deterministic replay or code
analysis and optimization.

A drawback of hardware signatures is the lack of flexibility. If signatures are designed
for a specific purpose or application (with a specific size, number of hashes, etc.), probably
doesn’t fit well for other different purposes. The contribution of the thesis presented in this
chapter contributes to make signatures more flexible, proposing a new hardware signature
module specifically designed to work in a concurrent environment, that we call FlexSig [122].
The aim is to make the best use of the hardware resources available, by hosting a large num-
ber of signatures in a limited and reduced amount of hardware resources, and to achieve a
low false positive rate. This chapter presents a basic FlexSig module with symmetric alloca-
tion algorithms, whereas in Chapter 6 we present a more advanced FlexSig with asymmetric
allocation algorithms and a higher performance parallel hardware implementation.

The chapter is organized as follow: Section 5.1 describes our flexible signature module,
Section 5.2 depicts a high-level implementation of the module, Section 5.3 evaluates the pro-
posal, Section 5.4 discusses related work and Section 5.5 concludes the chapter.

120 Chapter 5. Implementing a Flexible Hardware Signature Module

. . .0 0 0

hT

. . .0 0

h4

0

FREE

0 . . . 0. . .

h h h1 2 3

1 . . . 1 0 000

. . .

. 00 01

ID1

(Address, ID1)

IDx
M/T bits

No operation performed

hT−1

Figure 5.1: Block diagram of FlexSig. Each allocated signature in FlexSig has a variable number of hash functions
k between 1 and T , depending on the number of signatures allocated concurrently. Each signature is
identified with an ID. The total register space assigned to each signature is m = k ∗M/T bits.

5.1 FlexSig: Implementing Flexible Hardware Signatures

FlexSig is based on parallel Bloom filters (see Section 1.5), but introducing mechanisms to
use all the signature resources as much as possible and with a large flexibility to adapt to
different signature demands, allowing a better efficiency and reconfigurability.

Figure 5.1 shows the block diagram of FlexSig. It is composed of T Bloom filters, each
one composed of a M/T –bit register (M is the total size of FlexSig) and a hash function,
that can host between 1 and T signatures, each signature being composed of one or more
Bloom filters. Each Bloom Filter has an identifier (ID) of the signature to which it belongs.
The number of Bloom filters assigned to each signature depends on the number of signatures
allocated. Moreover, the resources assigned to a given signature may change dynamically.
The modules h1,h2, ...hT are independent H3 hash functions, each operating on one register.
The registers in FlexSig are usually relatively small (for instance 64 bits), because a signature
is composed of several of them. Every time FlexSig receives a request to insert a new address
in one of its signatures, each hash function assigned to the signature sets one bit in its register.
On the other hand, to check if an address is already stored in the signature, all the bits read
by the corresponding hash functions should be 1. Deallocation requests clear all the IDs and
registers assigned to the signature.

Each time a new signature allocation request arrives, FlexSig assigns k Bloom filters,
k ≤ T , to the new signature. Then, the k Bloom filters operate as a parallel Bloom filter
inside FlexSig. The number of Bloom filters assigned depends on the current resource avail-

5.1. FlexSig: Implementing Flexible Hardware Signatures 121

1 ...

Reg Reg Reg

ID ID ID

FLEXIBLE SIGNATURE MODULE

Request

h1

1

control

C
o
n
tr
o
ll
er

addrs

0

 : hash functions (there is T hash functions).hx

 : we call Bloom Filter to the set composed by one register and one hash.

Reg

Bloom Filter

ID

different signatures with the thread, and by sID that identifies different signatures with the same thID.

 : implements the FlexSig logic.

T : number of Bloom Filters.

 : one register per hash (T registers).

 : identifier of the owner. It is composed by thID that identifies the thread, and by sID that identifies

Controller

Insert-Check-Clear

h2 hT

Figure 5.2: FlexSig module architecture.

ability, that is, on the already allocated Bloom filters to previous signatures. If the hardware
resources in FlexSig are fully used by previous signatures, FlexSig has to free several Bloom
filters, already assigned, to allocate the new signature. This means that FlexSig has to reduce
dynamically the size of any signature by releasing Bloom filters. In this case, the false positive
rate may increase, but false negatives are never produced.

Figure 5.2 shows the FlexSig module architecture. As said before, there are T Bloom
filters, each one composed of a register and a hash function. Attached to each register there
is a thread identifier (thID) and a signature identifier (sID) (a thread might have more than
one signature allocated), used to identify the registers assigned to a given signature. There-
fore, being num_threads the maximum number of threads managed by the filter, and being
max_sigs_per_thread the maximum number of signatures that a thread can allocate, thID and
sID are log2(num_threads)–bit and log2(max_sigs_per_thread)–bit wide, respectively. Both
thID and sID form the signature owner identifier (ID).

The maximum number of Bloom filters per signature is T (when only one signature is
allocated), and the minimum size is T/#max_csigs (the Bloom filters are distributed equally
among signatures), being #max_csigs the maximum number of concurrent signatures in the
module.

The controller implements the allocation algorithm and the rest of functions needed for
the correct operation of FlexSig. The complexity and efficiency of the controller is determined
by the algorithm to allocate signature registers.

122 Chapter 5. Implementing a Flexible Hardware Signature Module

ids register hash

ID1

ID2

ID3

ID2

ID3

ID1

ID1

ID1

ids register hash

ID1

ID2

ID3

ID2

ID3

ID1

ID1

ID1

FlexSig

check(addr,ID1)

ids register hash

ID1

ID2

ID3

ID2

ID3

ID1

ID1

ID1

FlexSig

deallocate(ID1)

FlexSig

insert(addr,ID1)

Figure 5.3: Insertion, check and deallocation request in FlexSig.

Figure 5.3 shows how to perform the insertion, check and deallocation requests. The
insertion request must include the ID of the signature, so that the address is only inserted
in the registers that matches this ID. The check operation is very similar to the insertion
operation, but it is read-only. The deallocation consists of clearing the registers and IDs.

5.1.1 Allocation Algorithm

The allocation algorithm is required to make room for a new signature. This algorithm may
be very complicated, for example, by defining priorities to assign more or less Bloom filters
depending on the requirements of the allocated signature. In this chapter we show a simple
allocation algorithm with no priorities. In Chapter 6 we will extend FlexSig with priorities
implementing several asymmetric allocation algorithms.

Figure 5.4 shows a very simple graphical example of the allocation algorithm. At the
beginning, the module is empty, and to allocate the new signature ID1, the controller just
assigns all the resources to it. Next, to allocate ID2, the controller calculates the number of
necessary resources for the new signature (8 Bloom filters) and it frees them from ID1. Finally,
to allocate resources for ID3, the controller calculates the number of necessary resources for
the new signature (5 Bloom filters) and it frees them from ID1 and ID2.

To illustrate the advantages of FlexSig, the same example but in a system with conven-
tional signatures (implemented with Bloom filters) is shown in Figure 5.5: a fixed number of

5.1. FlexSig: Implementing Flexible Hardware Signatures 123

Allocate(ID2)
Allocate(ID3)

Allocate(ID1)

Figure 5.4: Example of the symmetric allocation algorithm of FlexSig.

Allocate(ID2)
Allocate(ID3)

Allocate(ID1)

Figure 5.5: Example of conventional signatures used in a system with a maximum of 16 simultaneous signature
requesters.

Bloom filters are assigned in each allocation request (only one Bloom filter in this case, to
allow a maximum of 16 concurrent allocated signatures, the same as in the FlexSig example
of Figure 5.4). This example illustrates the advantage of FlexSig with respect to conventional
signatures, that make an inefficient use of resources because only for maximum concurrency
(when the number of concurrent allocated signatures is 16 in this example) all the resources
are used.

Therefore, by generalizing the example of Figure 5.4, the controller of FlexSig should
determine the average number of Bloom filters per signature taking into account the incoming
request, that is T/n_sig, with T being the number of Bloom filters and n_sig the number of
signatures. Since T may not be a multiple of n_sig, in general it is not possible to assign
exactly the same number of Bloom filters to each signature (for example the Allocate(ID3) in
Figure 5.4). Moreover, there might be signatures in FlexSig with fewer than T/n_sig Bloom
filters, due to previous allocations and deallocations and the fact that signatures can only
reduce their size, but are not allowed to grow.

One implementation that seeks to allocate resources as evenly as possible, would use
the following policy to take into account these factors. The FlexSig controller computes the

124 Chapter 5. Implementing a Flexible Hardware Signature Module

integer value of the average number of Bloom filters per signature

nb =

⌊
T

n_sig

⌋
(5.1)

and determines the value of T ′ and n_sig′, with T ′ being the total number of Bloom filters in
FlexSig that are allocated to n_sig′ signatures with more resources than nb. Then, it assigns

nb′ =
⌊

T ′

n_sig′

⌋
(5.2)

Bloom filters to n_sig′− (T ′ mod n_sig′) signatures, and it assigns nb′+ 1 Bloom filters to
(T ′ mod n_sig′) signatures, where mod is the modulo operator. The implementation of this
policy in the FlexSig controller is complex and may involve several cycles for the allocation.
As an alternative, we propose a simple method described below.

To perform the description of the allocation algorithm, we define a new parameter nb_ f ree,
that is the number of free Bloom filters in FlexSig.

Three different situations are possible when a thread tries to allocate space for a new
signature in FlexSig: (1) FlexSig is empty, (2) FlexSig is full, or (3) FlexSig is partially full.

1. FlexSig is empty (n_sig = 1, nb_ f ree = T). All the resources of FlexSig are assigned
to the new signature. This is one of the basic principles of FlexSig: if there are free
resources, take as much as possible.

2. FlexSig is full (n_sig > 1, nb_ f ree = 0). The controller must free space in FlexSig

when it is necessary to allocate a new signature. Then, the other signatures in FlexSig

are made smaller by reducing the number of Bloom filters per signature. The release
of one or several Bloom filters assigned to a given signature may increase the false
positive rate but false negatives are never produced, because all the hash functions are
independent and all the registers in a signature have the information corresponding to
every address inserted. The number of Bloom filters to free is given by nb (Equation
(5.1)). The free filters are assigned to the new signature. Therefore, the filters are
redistributed among all the signatures including the new one.

3. FlexSig is partially full. The controller must decide whether the free resources are
enough to allocate a new signature or if additional resources are needed. In the latter
case, some filters should be freed and assigned to the new signature. If nb_ f ree < nb,
the controller frees (nb−nb_ f ree) Bloom filters as explained for the case when FlexSig

5.1. FlexSig: Implementing Flexible Hardware Signatures 125

is full. On the other hand if nb_ f ree ≥ nb all the available Bloom filters are assigned to
the new signature.

Notice that, despite FlexSig tries to distribute the resources equally among all the sig-
natures, there can be situations where signatures have assigned a number of Bloom filters
different among each other. This is due the fact that the signatures can not grow in size to
balance the resources in the allocation algorithm.

5.1.2 Influence of the Bloom Filters Release on the False Positive Rate

As said before, when a new signature is needed and there is not room to host it, the con-
troller must free some Bloom filters assigned to other signatures and assign them to the new
signature. But, how does this affect the false positive rate?

The lower bound probability of a false positive is PFP = (1− (1− k/m)n)k (see Section
1.5), being m the number of bits of the signature, k the number of registers or hash functions,
and n the number of elements inserted in the signature. In FlexSig, the relation m/k is constant.
When the number of Bloom filters assigned to a signature is reduced, m and k are reduced in
the same proportion.

Let us illustrate this influence with an example. Figure 5.6 shows the variation of the false
positive rate when the resources allocated to a given signature are reduced: as an instance,
assume that initially the signature is composed of k = 16 filters with a total register size of
m = 2048 and then it is reduced to k = 8 filters with m = 1024. If the number of addresses
inserted in the signature, n, is low, the reduction in signature size has no practical influence
on the false positive rate. However, if n is large the false positive rate increase significantly
(for instance, in a signature with k = 4, m = 512, for a value of n = 250 the false positive rate
is 54,5%).

5.1.3 Software Interface

To provide a basic software interface to FlexSig, the following instruction set extensions
should be added:

– Allocate(ID): allocate the signature with identifier ID. The size of the allocated signa-
ture is defined by the controller.

– Deallocate(ID): deallocate the signature with identifier ID.

126 Chapter 5. Implementing a Flexible Hardware Signature Module

Figure 5.6: False positive rate in FlexSig for different signature sizes.

– Insert(addr, ID): insert the address addr in the signature with identifier ID.

– Check(addr, ID): check if address addr was inserted previously in the signature with
identifier ID.

This instruction set extension allows the proper interface to the basic operations of the module.
Moreover, the instruction set can be extended with new instructions for specific purposes. For
instance, to support TM systems, it can be extended with functionalities to forward signatures
to cores, etc. Alternatively, this actions can be implemented as writes to memory-mapped
registers, which allows not to modify the instruction set architecture.

5.1.4 Register Grouping

In the case of just one or few signatures allocated in FlexSig, the number of Bloom filter
elements per signature is high, i.e. equivalent to having a high value of k in conventional
parallel Bloom filters. However, as we learned from Figure 1.10(b) in Chapter 1, the optimum
value of k, in terms of the false positive rate, is low (between 3 and 8 for the parameters used
in Figure 1.10(b)). To reduce the false positive rate in these cases, FlexSig can group several
Bloom filters so that only one is used at a time in operations that involve hash functions (insert
and check). A simple implementation consists of selecting the Bloom filter of the group based

5.1. FlexSig: Implementing Flexible Hardware Signatures 127

. . .0 0 0

h
T

. . . 00 1

h
T-1

. . .0 0 0
. . .

h
3

h
2

h
1

m/T bits

. . . 00

h
4

. . . 001

n_group= (m/T) * 2 bits
ID1

(Address, ID1)

. . . 0 01 0

No operation performed

Figure 5.7: Example of register grouping, for the case of only one signature allocated and grouping of two elements.

on the value of a few least significant bits of the address involved in the operation. Figure 5.7
illustrates the grouping scheme for groups of two elements, being each element m/T bits
wide, and each group n_group = (m/T)∗2 bits wide.

Grouping can be implemented in a static or dynamic way. For a static implementation,
the grouping size is chosen before the first allocation, and only can change when the FlexSig

is totally empty. This forces all signatures to have the same grouping size, simplifying the
implementation. If it is implemented dynamically, the grouping size is chosen for each sig-
nature when it is allocated, depending on the number of Bloom filters assigned to it. This
complicates the logic and can cause other problems with many corner cases. Because of that,
we chose to implement static grouping in our evaluation.

The maximum level of grouping is a design decision for FlexSig. The specific grouping
for each application can be established through the software interface. For the case of our
benchmarks (see Section 5.3.3) with up to 16 threads, we determined that a maximum group-
ing of two elements is enough to achieve good results. Moreover, this grouping is activated
only for applications configured to run with two and four threads.

5.1.5 FlexSig Overflow and Fault Tolerance

FlexSig allows to host several signatures at the same time. However, a situation of overflow
may be produced in exceptional (low probability) cases when a new allocation request arrives,
and the controller can not free any Bloom filter because FlexSig hits the maximum number of

128 Chapter 5. Implementing a Flexible Hardware Signature Module

signatures allowed (when the software tries to allocate more signatures than the total number
of Bloom Filters available). In this case, the situation is managed by software, signaling an
exception that jumps to a pre-registered software handler.

In the case that an application allocates signatures, but fails to deallocate them (due to a
software bug or fault), FlexSig will have fewer resources to allocate new signatures for the
remaining running application time (similar to the memory leak problem). This case is very
hard to manage in hardware, and therefore it should be handled by software. As an instance,
a straightforward scheme for TM systems is to clear FlexSig when serial code is executing or
when no transactions are running in the system.

FlexSig has nice fault tolerant properties regarding the storage of the signatures due to
its flexibility. If one register fails (permanent or soft error detected with standard fault de-
tection techniques), such register is marked as invalid if the error is permanent (not used any
more) or freed if it is a soft error (it can be used in new signature allocations). Moreover, re-
garding permanent faults, only stuck-at-zero faults would lead to the invalidation of a register
(stuck-at-one faults only increase the false positive rate). No special operations are needed for
managing this situation, as the only implication of loosing one Bloom filter is to increase the
false positive rate. Of course, an exception is raised if the failing Bloom filter is the only one
assigned to the signature.

5.2 Implementation Issues

The FlexSig system can be placed in each core, or as a centralized resource attached to the
chip interconnection network, or it can be distributed among directories in a system with a
directory based cache coherence protocol (for instance, each FlexSig module serving a cluster
of cores). The flexibility of FlexSig is achieved at the cost of extra logic compared with
conventional parallel Bloom filters. In this sense, a key element is the FlexSig controller,
which should support the functionality of FlexSig with a simple architecture to reduce power
an area overhead.

The controller needs one queue for the incoming requests, because the requests are served
sequentially. There are four types of requests, Allocate, Deallocate, Check and Insert, each
with an ID that the controller uses to take action on the corresponding registers. To implement
efficiently the straightforward allocation algorithm described in Section 5.1.1, some extra reg-
isters are needed in the controller to take fast decisions for the allocation operation. There are

5.3. Evaluation in a TM System 129

T log2(T)-bit counters in the controller to count the number of registers of FlexSig allocated
by the corresponding ID. There is also a counter that keeps track of empty records. Using this
stored information a finite-state machine performs the allocation operations.

For implementations using a centralized FlexSig for all cores, the module might be a
bottleneck. After analyzing the concurrency of the possible arriving requests, we determined
that the controller can serve some of them in parallel. Specifically:

– Insert : it can be executed in parallel with other inserts, checks or deallocates with
different IDs.

– Check : it can be executed in parallel with other inserts and deallocates with different
IDs and with other checks with any ID.

– Allocate : it can not be executed in parallel with other requests.

– Deallocate : it can be executed in parallel with deallocates, inserts and checks with
different ID.

Taking into account these rules, the controller can be parallelized in several ways. Figure
5.8 shows a simple parallel controller proposal. This controller may perform up to P opera-
tions in parallel. Basically it is an in-order issue superscalar engine. The incoming requests
are placed in an input queue. The issue logic determines up to P requests to be issued in paral-
lel, following the rules listed above. We have one finite-state machine (and the corresponding
counters) to execute the allocate requests, and P very simple circuits to process inserts, checks

or deallocates.
Most of the time, the finite-state machine has the calculations ready when a new allocate

request arrives, because it recalculates these parameters immediately after the previous allo-
cate or deallocate request. Only when two consecutive allocate requests arrive, the finite-state
machine has no time to recalculate the parameters before the second request, incurring in
some additional delay.

5.3 Evaluation in a TM System

The aim of the evaluation is to show the effectiveness of the FlexSig system with respect to
conventional parallel Bloom filters. In this work we concentrate on TM applications, since for
many TM implementations signatures are a key element. Some TM systems use signatures

130 Chapter 5. Implementing a Flexible Hardware Signature Module

addrs ids type

finite−state machine (FSM)

request issue
logic

allocate

...

Request

Input queue

...

1

ids type

P

ids type

execution execution

insert/check/deallocate

logic for request logic for request

addrs addrs

Parallel Controller

Figure 5.8: Parallel controller implementation.

to detect conflicts among transactions. Each transaction inserts in signatures its read and
write addresses to maintain a summary of its read/write set. Conflicts with other transactions
reads/writes are detected through the check operation. Since our purpose is to evaluate only
signatures, our figure of merit is the false positive rate of the signature system. Higher false
positive rates degrade performance, because for each false positive, the TM system has to do
an unnecessary abort (rollback to the initial state and restart the transaction).

For simplifying the allocation algorithm, we use unified signatures (see Section 5.3.1) to
evaluate FlexSig, so we only need one signature per transaction for the read and write set,
which allows us to implement the simple allocation algorithm described in Section 5.1.1.

5.3.1 Unified signatures: Simplifying FlexSig Implementation in TM

TM uses two signatures per transaction, one for the read set and another one for the write
set. Usually the read set is larger than the write set, and therefore, in order to use efficiently
the resources, the signature of the read set should be larger than the signature of the write
set. However, having signatures of different sizes for the write set and the read set introduces
additional difficulties in the allocation algorithm and makes its implementation more complex.
Unified signatures [36] propose to use only one signature for both the read set and the write

5.3. Evaluation in a TM System 131

Bench. input
Genome -g128
Intruder -a10 -l16 -n4096 -s1
Kmeans-high -m15 -n15 -t0.05 -i random-n2048-d16-c16.txt
Kmeans-low -m40 -n40 -t0.05 -i random-n2048-d16-c16.txt
Labyrinth -i random-x256-y256-z3-n256.txt
Ssca -s14 -i1.0 -u1.0 -l9 -p9
Vacation-high -n4 -q60 -u90 -r1048576 -t4096
Vacation-low -n2 -q90 -u98 -r1048576 -t4096
Yada -a10 -i ttimeu10000.2
Streamcluster 10 20 32 4096 4096 1000
Canneal 2000 2000 10.nets

Table 5.1: Benchmark Inputs.

set. This approach may generate read-read conflicts, however, these conflicts rarely lead to a
performance lost [148][36]. Using unified signatures each thread only needs to allocate one
signature per transaction, and the complexity of the controller is reduced. This is the approach
we have used for evaluating FlexSig.

5.3.2 Experimental Setup

To evaluate the FlexSig scheme we use a TM system with signatures used to track data ac-
cesses in transactions. Our aim is not to implement a fully functional TM system, but to work
out a challenging scenario for FlexSig, and compare it with conventional parallel Bloom filters
in the same situation. For the TM system we use the software implementation RSTM [159].
RSTM is a software TM system that allows many different configurations. In our evaluation
we use a lazy acquisition and lazy versioning with extendable timestamps [143] to configure
RSTM. We use PIN [81] to track all transactions and memory accesses of RSTM and to emu-
late the hardware signatures. This conforms the simulation of a Hybrid Transactional Memory
system.

We run several benchmarks over the RSTM system. Specifically, we use all the STAMP
Benchmarks [25], two PARSEC Benchmarks [16] and nine micro benchmarks (included in
the RSTM distribution). Table 5.1 shows the inputs of the benchmarks. The benchmarks not
included in the table run with the default input. For this evaluation, we classify the bench-

132 Chapter 5. Implementing a Flexible Hardware Signature Module

Benchmark #Tx TxTime RS WS
Intruder 101780 32% 19 2
Vacation-high 4096 94% 384 7
Vacation-low 4096 94% 283 5
Yada 14316 68% 59 17
LinkedList 175 52% 141 0.3
DList 152 55% 138 0.6
PrivList 94 81% 256 1

Table 5.2: Benchmark set A, characterization with 16 threads.

marks in two categories. One group is composed by benchmarks with a high false positive rate
(Benchmark set A), and the other with a modest false positive rate (Benchmark set B). The
purpose of this is to run each group of benchmarks with a different signature configuration to
show the advantages of FlexSig for workloads with different characteristics.

Tables 5.2 and 5.3 show the characterization of the benchmarks. The parameter #T x is
the number of transactions of the benchmark, T xTime is the percentage of time spent on
transactions, and RS and WS are the average number of reads and writes per transaction.
The time spent in transactions is, in general, very significant. This parameter is affected
by the instrumentation tool, because only transactions are instrumented. This scenario is a
pessimistic approximation, since in a real system the time spent inside the transactions should
be less, and therefore, it should be less likely that those transactions demand signatures at the
same time in the FlexSig system. Therefore, the results should be better than in the simulated
case.

5.3.3 Configuration

For the evaluation we use the configurations shown in Table 5.4. The hardware configuration
for parallel Bloom filters (k and m are the parameters in Figure 1.9) was chosen specifically
to manage up to 16 threads (that is, the conventional signature system has 16 parallel Bloom
filters of fixed size). We run experiments with 2, 4, 8 and 16 threads. Two configurations
are used for FlexSig: configuration conf1 uses the same resources as their equivalent parallel
Bloom filter, and conf2 uses half of the resources. For the benchmarks belonging to the set A,
the registers are of 512 bits for the unified parallel Bloom filter (a total of 8192 bits for a 16
thread system); for FlexSig we have 32 registers of 128 bits for conf2, and 64 registers of 128

5.3. Evaluation in a TM System 133

Benchmark #Tx TxTime RS WS
Bayes 644 46% 8 2
Genome 353994 76% 26 0
Kmeans-high 8238 43% 13 13
Kmeans-low 8557 70% 13 13
Labyrinth 544 54% 84 80
Ssca 93731 49% 1 2
Streamcluster 592 17% 1 0
Canneal 4000 44% 2 1
Counter 759 23% 1 1
HashTable 2772 47% 2 0.3
RBTree 16385 68% 18 2
RBTreeLarge 134 61% 27 3
LFUCache 62 61% 7 2
RandomGraph 53 59% 506 2

Table 5.3: Benchmark set B, characterization with 16 threads.

Signature Description

Unified Parallel Bloom (set B) 16 registers with k=4 and m=32 bits (512 bits total)
Unified Parallel Bloom (set A) 16 registers with k=4 and m=512 bits (8192 bits total)

Unified FlexSig conf2 (set B) 32 registers of 8 bits (256 bits total)
Unified FlexSig conf1 (set B) 64 registers of 8 bits (512 bits total)
Unified FlexSig conf2 (set A) 32 registers of 128 bits (4096 bits total)
Unified FlexSig conf1 (set A) 64 registers of 128 bits (8192 bits total)

Table 5.4: Configuration used with unified signatures.

bits for conf1. Similarly, for the benchmarks belonging to the set B, the size of the registers
for the unified parallel Bloom filter is 32 bits and the corresponding FlexSig configurations
conf1 and conf2 are described in Table 5.4. To group registers (see Section 5.1.4), we choose
groups of one register for 8 and 16 threads, and groups of two registers for executions with 2
and 4 threads. This decision was taken to have an efficient configuration (see Figure 1.10(b)).

134 Chapter 5. Implementing a Flexible Hardware Signature Module

Benchmark 2 threads 4 threads 8 threads 16 threads
Bloom conf2 conf1 Bloom conf2 conf1 Bloom conf2 conf1 Bloom conf2 conf1

Intruder 1.5 0.0 0.0 2.0 0.2 0.0 2.4 2.4 0.2 2.9 12.0 2.7
Vacation-high 38.1 3.7 0.5 37.9 13.0 3.7 38.1 38.0 24.2 38.3 52.9 38.2
Vacation-low 25.3 0.8 0.0 25.3 6.0 0.8 25.4 25.3 11.1 25.2 42.5 25.1
Yada 18.8 0.6 0.0 19.7 4.7 0.7 20.4 20.4 8.9 20.1 34.4 20.1
LinkedList 4.6 0.1 0.0 2.6 0.4 0.0 1.5 1.5 0.2 0.7 4.7 0.7
DList 4.0 0.1 0.0 2.9 0.5 0.0 2.0 2.0 0.2 0.7 2.9 0.7
PrivList 6.2 0.5 0.1 8.1 3.8 1.5 3.5 3.5 2.1 4.2 7.1 4.2

Table 5.5: Benchmark Set A. False positives comparison (in %) for Unified Signatures.

Benchmark 2 threads 4 threads 8 threads 16 threads
Bloom conf2 conf1 Bloom conf2 conf1 Bloom conf2 conf1 Bloom conf2 conf1

Bayes 43.2 7.1 3.0 33.1 13.0 6.5 32.4 31.7 23.5 24.9 34.1 24.4
Genome 41.8 4.8 0.7 40.7 13.6 4.6 43.3 42.0 29.2 9.7 54.4 9.4
Kmeans-low 45.1 11.2 1.0 41.2 17.9 10.6 40.0 40.0 36.4 36.7 69.8 36.6
Kmeans-high 40.6 7.6 0.7 37.6 16.4 8.3 36.6 36.6 33.8 37.5 66.1 37.4
Labyrinth 19.0 17.9 14.7 16.7 15.8 15.6 41.9 41.9 41.6 72.2 77.3 72.2
Ssca 1.1 0.0 0.0 1.1 0.1 0.0 1.2 1.1 0.0 1.2 7.7 1.1
Streamcluster 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Canneal 3.3 0.0 0.0 3.2 0.0 0.0 3.5 3.5 0.5 3.3 9.6 3.1
Counter 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
HashTable 2.5 0.0 0.0 2.0 0.1 0.0 1.9 1.9 0.2 1.9 8.8 1.7
RBTree 49.7 16.7 8.3 53.6 30.8 19.7 46.8 46.8 40.3 44.0 50.1 44.0
RBTreeLarge 48.8 16.5 8.3 47.1 25.1 16.3 44.5 44.5 35.8 37.4 46.4 37.3
LFUCache 26.2 8.8 4.7 28.3 12.8 10.5 29.7 29.7 26.2 27.6 31.6 27.6
RandomGraph 17.9 13.4 11.8 17.0 12.7 10.7 16.6 16.6 14.4 16.9 20.3 16.9

Table 5.6: Benchmark Set B. False positives comparison (in %) for Unified Signatures.

5.3.4 Results

Tables 5.5 and 5.6 show the false positive rate of FlexSig with configurations conf1 and conf2

compared with the results obtained with parallel Bloom filters (see Table 5.4), for the case of
2, 4, 8 and 16 threads. A white cell (in conf1 and conf2 columns) means that the false positive
rate is roughly the same as the one obtained with the parallel Bloom filter, a gray cell means
that the false positive rate of FlexSig is better (lower), and a dark gray means that the false
positive rate of FlexSig is worse (higher).

First, we comment the results with conf1 for both benchmark sets A and B. As Tables 5.5
and 5.6 show, the FlexSig-conf1 outperforms parallel Bloom filters in almost all the cases. For
2, 4 and 8 threads, the improvement is very high; for instance, for the case of "Vacation-high"
running with 2 threads, the false positive rate is reduced from 38,1% to 0,5%. As the number
of threads increases, the advantage of FlexSig decreases. However, even in the worst case

5.3. Evaluation in a TM System 135

(16 threads), FlexSig improves with respect to conventional Bloom filters in many cases, and
never performs worse. The results are better as fewer threads are running, because FlexSig

tries to use all the resources, while the parallel Bloom filter implementation has fixed size for
each signature independently of the number of threads.

The results of FlexSig-conf1 with 16 threads are very similar to the implementation with
parallel Bloom filters since for this case all the signatures are used. FlexSig achieves better
results because not all the threads allocate signatures at the same time, and it can use the free
resources also in this case. The results are only slightly better because the benchmarks are
highly concurrent (in part due to the instrumentation performed by PIN).

FlexSig-conf2 uses half of the resources of the parallel Bloom filter implementation. Even
with this configuration, FlexSig clearly outperforms the parallel Bloom filter implementation
for 2 and 4 threads. For instance, for "Vacation-high" the false positive rate with two threads
is reduced from 38,1% to 3,7%. For the case of 8 threads, the results are similar in both
implementations, but FlexSig outperforms the parallel Bloom filter implementation in many
cases, and at least matches it. For 16 threads, FlexSig has worse performance, but it has the
flexibility to manage the 16 threads with half the resources.

It is of interest to show the reduction of the number of false positives in absolute terms,
since each false positive may lead to an unnecessary abort in a TM system. Figure 5.9 shows
the percentage of decrease of the number of false positives in FlexSig-conf1 compared with
conventional signatures for all benchmarks, which is specially high for 2,4 and 8 threads.
Figure 5.10 shows the percentage of decrease of the absolute number of false positives in
FlexSig-conf2 (with half of the resources of conventional signatures) compared with con-
ventional signatures for all benchmarks, with very good results, except for 16 threads (the
negative values represents – changing the sign to positive – the percentage of decrease of the
absolute number of false positives in conventional signatures compared with FlexSig-conf2).
For "StreamCluster" and "Counter" benchmarks, the number of false positives does not de-
crease in Figure 5.9 nor Figure 5.10, because in both simulations the number of false positives
is zero for FlexSig and conventional signatures.

Notice that the advantage of FlexSig when compared to conventional signatures is reduced
as the number of threads increases. As we show in Section 6.3.5 (for FlexSig supporting prior-
ities), this is not due to any scalability issue. The reason is that FlexSig always take advantage
of all the resources of the module for any number of threads, and therefore increasing the
number of threads reduces the average size of signatures for each thread.

136 Chapter 5. Implementing a Flexible Hardware Signature Module

 0%

 20%

 40%

 60%

 80%

 100%

Intruder
Vac.−high
Vac.−low
Yada
Link.List
D

List
PrivList
Bayes
G

enom
e

Km
.−low

Km
.−high

Labyrinth
Ssca
Stream

cl.
C

anneal
C

ounter
H

ashTable
R

BTree
R

BTreeL.
LFU

C
ache

R
.G

raph
 R

ed
uc

tio
n

of
 fa

ls
e

po
si

tiv
es

2 threads
4 threads
8 threads
16 threads

Figure 5.9: Percentage of decrease of the absolute number of false positives in FlexSig-conf1 compared with
conventional signatures for all benchmarks.

 −80%

 −60%

 −40%

 −20%

 0%

 20%

 40%

 60%

 80%

 100%

Intruder
Vac.−high
Vac.−low
Yada
Link.List
D

List
PrivList
Bayes
G

enom
e

Km
.−low

Km
.−high

Labyrinth
Ssca
Stream

cl.
C

anneal
C

ounter
H

ashTable
R

BTree
R

BTreeL.
LFU

C
ache

R
.G

raph
 R

ed
uc

tio
n

of
 fa

ls
e

po
si

tiv
es

2 threads
4 threads
8 threads
16 threads

Figure 5.10: Percentage of decrease of the absolute number of false positives in FlexSig-conf2 compared with
conventional signatures for all benchmarks.

5.3. Evaluation in a TM System 137

It is of interest to have an estimation of the average signature size that is used per trans-
action in FlexSig. The average signature size is the weighted average in time of the signature
size, and is given by

ave_sig_size =
∑num_changes_size

e=1 sig_sizee ∗ time_intervale

∑num_changes_size
e=1 time_intervale

(5.3)

where num_changes_size is the number of times a signature changes its size (number of reg-
isters) before deallocation, and time_interval is the number of time units that a signature has
a size sig_size.

Figure 5.11 shows the improvement in the average signature size of FlexSig-conf1 running
16 threads compared with conventional signatures. The configuration of the signatures is
shown in Table 5.4. This figure tries to show the advantage of FlexSig over conventional
signatures with the same resources than FlexSig even in the situation where conventional
signatures can use all their resources (in this case, with 16 running threads). Moreover, in a
situation with less threads running, the advantage of FlexSig is much bigger. The improvement
shown in the figure is achieved because not all the threads use signatures simultaneously, and
therefore, threads can take resources that others are not using. The average signature size for
FlexSig depends basically on the concurrent nature of the benchmark (less concurrent threads
lead to a better performance of FlexSig). The best result in terms of FlexSig average signature
size improvement is for "Streamcluster", with a more than 50% improvement, due to the low
transaction concurrency in this benchmark. In this case, the improvement of the signature size
doesn’t imply a significant reduction of the false positive rate because this is already very low
in absolute terms.

As a conclusion, the FlexSig system improves the false positive rate when compared with
conventional parallel Bloom filters. In a system configured to run 16 threads, our signa-
ture system clearly outperforms the parallel Bloom filter implementation when the number
of threads is lower than 16 (for the conf1 with the same resources), due to the flexibility of
FlexSig to assign the physical resources depending on the demand (number of concurrent
threads). General purpose multicore and multiprocessors are able to run a large number of
concurrent threads, but many applications use only a few threads. FlexSig is flexible enough to
provide these applications all the available signature resources to achieve better performance.
We used very hard conditions in our evaluation to demonstrate that FlexSig can perform well
even in an unfavourable scenario. The benchmarks used are highly concurrent, which means
that many transactions use signatures at the same time. Moreover, because of the instru-

138 Chapter 5. Implementing a Flexible Hardware Signature Module

 0%

 10%

 20%

 30%

 40%

 50%

Intruder
Vac.−high
Vac.−low
Yada
Link.List
D

List
PrivList
Bayes
G

enom
e

Km
.−low

Km
.−high

Labyrinth
Ssca
Stream

cl.
C

anneal
C

ounter
H

ashTable
R

BTree
R

BTreeL.
LFU

C
ache

R
.G

raph
 Im

pr
ov

em
en

t i
n

si
ze

 o
f t

he
 S

ig
na

tu
re

Figure 5.11: Increment of the average signature size in FlexSig-conf1 with 16 threads compared to regular
signatures for Benchmark Set A and Set B.

mentation tool, the benchmarks spend more time inside transactions, increasing transactional
concurrency.

5.4 Related Work

Most of the papers dealing with signatures are focused on improving performance, reducing
chip area or reducing the false positive rate [147][134][182][154][184]. However none of
these papers focus on flexibility and scalability. The Scalable Bloom Filters (SBF) proposed
by [4] tries to make an approximation of scalable signatures. They use one signature, and
when a fill ratio is reached, another signature is used. SBF was proposed to avoid the problem
of oversize signatures due to the fact that the size of the signature must be defined previously
based on the number of elements to be stored and the desired upper bound of the false positive
rate. The SBF method can reduce the specific size of the signature used. However, it may
use several signatures depending on the number of elements to be stored, and therefore, in
reference to our context, the system has to be oversized anyway (with regard to the number of

5.5. Conclusions 139

signatures). FlexSig does not fully avoid the problem of oversized signatures, but it is more
flexible and efficient in the sense that it uses as many hardware resources as possible, having
a significant effect on the false positive rate for a TM system.

In recent publications we find TM systems that fit very well for using FlexSig. In [104]
proposes a STM system with a centralized conflict detection mechanism (based on software
signatures) placed in one core. One way to improve this scheme would be to use FlexSig in-
stead of their software signatures. This would improve performance maintaining the flexibility
of the software signatures. Another example is the scheme proposed by [28], that describes a
new centralized hardware outside the processor chip to accelerate STM systems. This special
hardware includes signatures. They also propose two algorithms for conflict detection, one
using two signatures per transaction and other using three signatures. FlexSig would allow to
implement both with the same hardware and also performance would be improved.

The idea behind FlexSig is similar to the recent trend of incorporating a shared last level
cache in multicore systems. The cache size used by each core varies dynamically depending
on the application. This leads to a more flexible system than having a fixed size slice of the
last level cache assigned to each core. FlexSig follows this trend for a resource that might be
of interest for future multicore implementations.

5.5 Conclusions

In this chapter we propose a module for hardware signatures to improve conventional signa-
tures in terms of flexibility, scalability and fault tolerance. The main feature of FlexSig is
that it can host a high number of signatures for cases with applications with a high number of
threads and significant contention, and for the cases for low contention or few threads, it can
achieve a very low false positive rate.

We described the module and its implementation, defined a detailed algorithm to allocate
signatures and evaluated FlexSig in the context of a TM system and compared it to an imple-
mentation with conventional parallel Bloom filters. From the evaluation performed, we show
that, when the number of threads is low, FlexSig achieves a significant improvement because
of the flexibility to use all the available resources. When the number of threads is high, the
results are similar to the conventional implementation due to the highly concurrent nature of
the benchmarks. However, with the same amount of resources, FlexSig never behave worse
than conventional parallel Bloom filters.

140 Chapter 5. Implementing a Flexible Hardware Signature Module

FlexSig makes signatures more flexible to use as a general purpose hardware resource,
since it is able to adapt to the concurrent demand of signatures, and decouples, to some extent,
the type of benchmark from the hardware.

CHAPTER 6

ASYMMETRIC ALLOCATION IN A FLEXIBLE

SIGNATURE MODULE

In Chapter 5 we propose FlexSig, a new shared signature module system designed to make
hardware signatures more flexible. The goal is to provide a supporting building block for the
different parallel multicore programming tools and applications to make an efficient use of
signatures.

The algorithms explored in Chapter 5 are symmetric (they assign the same resources to
all the signatures). In this chapter we explore new asymmetric allocation algorithms and
their hardware implementation to reduce false positives in FlexSig by exploiting the asym-
metry present in applications and tools. FlexSig with asymmetric allocation policies achieves
important reductions of false positives compared with symmetric FlexSig and conventional
signatures. We concentrate on TM as a driver application, although FlexSig with asymmetric
allocation algorithms can be used for other applications as well. The reduction of false posi-
tives has a direct impact on the performance of the applications, that in case of TM, leads to
reduce the unnecessary aborts an re-execution of transactions.

This chapter is organized as follows. In Section 6.1 we present our new asymmetric
allocation algorithms. Section 6.2 discusses implementation issues leading to a highly parallel
hardware implementation. Section 6.3 is devoted to the evaluation of the proposed system.
Section 6.4 reviews related works and finally, Section 6.5 presents the conclusions.

142 Chapter 6. Asymmetric Allocation in a Flexible Signature Module

6.1 Asymmetric Policies

In the FlexSig module described in Chapter 5, the assignment of resources follows a single
policy for all allocations. In this chapter, we propose new asymmetric allocation algorithms
for FlexSig with a set of priorities to take advantage of asymmetric characteristics in appli-
cations or among applications. With an asymmetric strategy the controller assigns signatures
with a different number of Bloom filters depending on the priority. As we show in Section 6.3,
the asymmetric policies lead to a very significant reduction in the number of false positives
compared to the symmetric FlexSig implementation.

There are many opportunities to explore asymmetric allocation algorithms. In a general
purpose processor, usually there are several applications running at the same time, which
might require different signature sizes. Moreover, an application may require several sig-
natures for different tasks with different demands in terms of resources. The design space of
FlexSig considering priorities in allocations is very wide and may severely affect the complex-
ity of the allocator. Some of the parameters to consider are: number of states for a priority
class, support for several orthogonal priority classes, variable or fixed ratio of resources in a
priority class, etc.

In this work, inspired by the specific characteristics of TM applications we use two or-
thogonal priority classes, and each one with only two possible states: high priority and low
priority. In a signature-based TM system, a thread executing a transaction requests the simul-
taneous allocation of two signatures: one to keep the read set and the other to keep the write
set. Therefore two orthogonal priority classes arise naturally: a priority class for distributing
Bloom filters among transactions (for instance, large versus small transactions), and an inner
priority class for distributing the Bloom filters allocated to a transaction among the read set
signature and the write set signature (usually read sets are larger than write sets, so a possible
policy is to assign a higher priority to the read set signature; however, this is not always the
case).

As we show in Section 6.2.2 these design decisions lead to a reasonable complexity in-
crease in the allocator compared to the case of FlexSig without priorities. However, this sim-
ple priority scheme allows a significant reduction in the number of false positives (see Section
6.3) for TM applications. More involved priority schemes lead to a very complex allocator.

6.1. Asymmetric Policies 143

6.1.1 Asymmetric Allocation Algorithm with Two Priority Classes

The general scheme with two orthogonal priority classes is as follows. An agent (typically
a thread) issues an allocation request to FlexSig to allocate signatures. One of the priority
classes (we call it Outer Priority Class - PCOUT) is used for determining the total number
of Bloom filters assigned to the agent request. Regarding the PCOUT priority class, agents
are classified as of high and low priority, and there can be any number of agents of different
priorities. The other priority class (we call it Inner Priority Class - PCIN) is used to distribute
the Bloom filters assigned to the agent among its internal signatures. Regarding the PCIN
priority class, the signatures of one agent are classified as of high and low priority. To simplify
the presentation and to match the characteristics of TM, we assume that only two signatures
are allocated to one agent.

For the PCOUT priority class, we considered a fixed ratio of resources among the agents
of different priorities during the entire execution of a program, but this ratio can be statically
changed (before a program starts execution). For the PCIN priority class, the ratio of resources
can be dependent on the identifier of the agent (thread) that issues an allocation.

We call prioHigh (prioLow) the number that defines the high priority (low priority). Then,
the ratio of resources assigned is given by the ratio of the priority values, that is

s_ f actor =
prioHigh
prioLow

(6.1)

To avoid any misunderstanding in the presentation, we indicate the priority class by adding
the subscript "out" for the PCOUT class and "in" for the PCIN class to s_ f actor, prioHigh

and prioLow.
In an incoming allocation request, FlexSig tries to distribute the Bloom filters according to

the different priorities and the corresponding ratios of resources (s_ f actorout and s_ f actorin).
As in the symmetric case, a very accurate allocation algorithm leads to a very complex imple-
mentation that has a negligible improvement of performance compared with our implemented
policy, which we explain below.

First, the controller computes the maximum number of Bloom filters that a low priority
agent (excluding the new agent) may have:

nbLout =

⌊
T

#agH × s_ f actorout +#agL

⌋
(6.2)

144 Chapter 6. Asymmetric Allocation in a Flexible Signature Module

where #agH is the number of agents of high priority, and #agL is the number of agents of
low priority (including the new agent). The controller also calculates the maximum number
of Bloom filters that a high priority agent (excluding the new agent) may have:

nbHout = bnbLout × s_ f actoroutc (6.3)

Once the controller has calculated the maximum number of Bloom filters per agent, it has
to calculate how many of these Bloom filters correspond to the internal high priority signature
and how many correspond to the internal low priority signature, and then it frees the Bloom
filters of the signatures that exceed these values.

Particularly, for the resources of each agent, the controller frees the number of Bloom
filters of the high (PCIN) priority signatures that exceeds the value

nbHin(x) =
⌊

x× prioHighin

prioHighin + prioLowin

⌋
(6.4)

with x = nbLout for low priority agents, and x = nbHout for high priority agents. Also, the
controller frees the number of Bloom filters of the low (PCIN) priority signatures that exceeds
the value

nbLin(x) = x−nbHin(x) (6.5)

with x = nbLout for low priority agents and x = nbHout for high priority agents. That is, the
low priority signature for each agent gets an upper bound of resources given by the difference
between the number of Bloom filters of the agent and the number of Bloom filters assigned to
the high priority signature.

Finally, all the free Bloom filters are assigned to the signatures of the new allocated agent.
In case of a high priority agent, nbHin(nbHout) (see Equation (6.4)) Bloom filters are assigned
to its high priority signature, and the remaining free Bloom filters are assigned to its low
priority signature. In the same way, when the agent is of low priority, nbHin(nbLout) Bloom
filters are assigned to its high priority signature, and the remaining free Bloom filters are
assigned to its low priority signature.

Again, this policy favours the incoming agent, but this advantage is lost in the next allo-
cation. Moreover, regarding the distribution of resources assigned to each agent, the policy
favours the internal low priority signature, assuring a lower bound of resources allocated to it
of at least one Bloom filter.

6.1. Asymmetric Policies 145

6.1.2 Asymmetric Algorithms for TM

FlexSig is not intended to work exclusively with TM, but it is illustrative to show how TM
applications can take advantage of asymmetric policies. These policies can be adapted to
other applications easily, as the concept of asymmetry is more general.

There are several ways to take advantage of the characteristics of a TM system with a
specific transactional code. In the following subsections we show some alternatives that we
evaluate later in Section 6.3, based on the simple implementation of the previous section.

In a TM system the agents are the transactions which need to allocate two signatures,
one for the read set, and one for the write set. Therefore we may use each of the two levels
of priority described in Section 6.1.1 to exploit the asymmetries between transactions and
between the read and the write set signatures. The algorithm could be simplified by using
one unified signature [35] for both read and write set, but we choose to use two conventional
signatures to simulate a more complex scenario.

Asymmetric Read/Write Signatures Using PCIN Priority Class

Many TM systems use a read and a write signature to collect the read and the write sets of
the transactions [147] [106] [95] [155]. Benchmark programs show that there is a significant
variability in the relative sizes of the read and write sets. In many occasions the read set is
bigger than the write set, but sometimes they are similar, or even the write set is the bigger.
The characteristics of the read and write set totally depend on the benchmark. Therefore, the
false positive rate also depends on the characteristics of the read and write set. Thus, it would
be of interest to adapt the sizes of the read or write signatures to optimize the overall false
positive rate.

To explore read/write asymmetry, the PCIN priority class is used. The values of priorities
can be different for each transaction. Specifically, the controller calculates Equation (6.2) and
(6.3) with s_ f actorout = 1 (same priority for all transactions),

nbout = nbHout = nbLout =

⌊
T

#agents

⌋
(6.6)

where #agents is the total number of transactions that have signatures in FlexSig (including
the new transaction).

Then, the controller frees the Bloom filters from the PCIN high priority signatures that
exceed the value nbHin(nbout) (Equation (6.4) with x = nbout), and it frees the Bloom filters
of the low priority signatures that exceed the value (nbout −nbHin(nbout)).

146 Chapter 6. Asymmetric Allocation in a Flexible Signature Module

Allocate(ID3)

Allocate(ID1)

Allocate(ID2)

wwwwwrrrrrrrrrr

wwwrrrrr r r r r r wwwr r r r r r r r r wwwwww

w

r

Figure 6.1: Example of an asymmetric R/W allocation algorithm with s_ f actorin = 2, s_ f actorout = 1 (no
PCOUT) and with 3 signatures.

Table 6.1: Values calculated by FlexSig in the examples of the Figures 6.1, 6.2 and 6.3.

Ex. Figure 6.1 Ex. Figure 6.2 Ex. Figure 6.3
request ID1 ID2 ID3 ID1 ID2 ID3 ID1 ID2 ID3
nbHout - 8 5 - - - - 10 8
nbLout - 8 5 - 8 4 - - 4

nbHin(nbHout) - 5 3 - - - - 7 6
nbLin(nbHout) - 3 2 - - - - 3 2
nbHin(nbLout) - 5 3 - 4 2 - - 3
nbLin(nbLout) - 3 2 - 4 2 - - 1

f reeBF 16 8 6 16 8 8 16 6 4
nbHin(f reeBF) 10 5 4 8 4 4 12 4 3
ID1 resources 10+6 5+3 3+2 8+8 4+4 2+2 12+4 7+3 6+2
ID2 resources - 5+3 3+2 - 4+4 2+2 - 4+2 3+1
ID3 resources - - 4+2 - - 4+4 - - 3+1

Finally, all the free Bloom filters are assigned to the new transaction, with nbHin(nbout)

Bloom filters for the high priority signature, and the remaining Bloom filters for the low
priority signature.

Figure 6.1 shows an example of the algorithm with T = 16 and s_ f actorin = 2. The cells
with an "r" are associated with the read signature (of high priority in this example) of the
transaction, and the cells with a "w" are associated with the write signature (of low priority in
this example).

Table 6.1 shows the values calculated by FlexSig for the example of Figure 6.1 (and for
two more examples of next sections). From the row nbHout until the row nbLin(nbLout) are
values that are used to free exceeding Bloom filters in the signatures currently allocated in the
module, the row f reeBF are the number of free Bloom filters that are finally assigned to the
new thread, and the row nbHin(f reeBF) indicates how many of these free Bloom filters are

6.1. Asymmetric Policies 147

for the high priority signature. Furthermore, the rows ID1 resources, ID2 resources and ID3
resources indicate the number of BF assigned to the signatures of the corresponding thread
after executing the allocation requests (decomposed in BF for the high priority signature + BF
for the low priority signature).

At the beginning, all the Bloom filters of FlexSig are free. Then, the thread ID1 issues an
allocation request, and FlexSig assigns all the resources to this thread, because it is the only
one in the module. Having 16 free Bloom filters (f reeBF = 16), FlexSig assigns nbHin(16) =
10 Bloom filters to the read signature and the remaining Bloom filters to the write signature.
For the second allocation request from thread ID2, FlexSig is not empty, and it has to free the
exceeding Bloom filters from the signatures allocated in the module. For doing that, FlexSig

calculates the value nbout = nbHout = nbLout = 8 (#agents = 2), and it frees the Bloom filters
of the ID1 read signature that exceeds the value nbHin(8) = 5 (5 Bloom filters are freed), and
it frees the Bloom filters of the ID1 write signature that exceeds nbLin(8) = 3 (3 Bloom filters
are freed). After this, FlexSig assigns the 8 free Bloom filters (f reeBF = 8) to the new ID2
thread (nbHin(8) = 5 Bloom filters for the read signature and the remaining Bloom filters to
the write signature). The last allocation request comes from thread ID3; FlexSig calculates
nbout = nbHout = nbLout = 5, (nbHin(5) = 3) and (nbLin(5) = 2), and it frees the exceeding
Bloom filters from ID1 and ID2 signatures (2 exceeding Bloom filters for the read signatures
and 1 for the write signatures). Finally, the 6 free Bloom filters (f reeBF = 6) are assigned
to the new ID3 thread, assigning nbHin(6) = 4 Bloom filters to the read signature and the
remaining Bloom filters to the write signature.

Asymmetric Signatures by Transaction Identifier Using PCOUT Priority Class

Benchmark programs have transactions with very different characteristics regarding the total
size of the data sets and their access patterns. To take advantage of this, the allocation algo-
rithm assigns resources based on the identifiers of the transactions using the PCOUT priority
class. Thus, there is a set of more demanding transactions (that require bigger signatures to
achieve a reasonable false positive rate), that are marked as high priority transactions, and oth-
ers that are more lightweight, and that are marked as low priority transactions. The controller
distributes the resources asymmetrically among transactions based on priorities, but continues
distributing resources equally between read and write signatures (no PCIN priority class).

148 Chapter 6. Asymmetric Allocation in a Flexible Signature Module

Allocate(ID2)
Allocate(ID3)

Allocate(ID1)

Figure 6.2: Example of an asymmetric allocation algorithm based on transaction identifier with s_ f actorout = 2,
s_ f actorin = 1 (no PCIN) and with 3 Transactions (ID1 and ID2 of low priority, and ID3 of high
priority).

In a new allocation request, the controller uses a simplified version of Equations (6.4) and
(6.5), and it frees the Bloom filters from the signatures (both read and write signatures) that
exceed the value

nbin = nbLin(R) = nbHin(R) =
⌊

R
2

⌋
(6.7)

with R = nbHout (Equation (6.3)) in case of a high priority transaction, and R = nbLout

(Equation (6.2)) in case of a low priority transaction.
Finally, the controller assigns nbin Bloom filters to the write (read) signature of the new

transaction, and the remaining free Bloom filters to the read (write) signature.
Figure 6.2 shows an example of this algorithm, with T = 16 and s_ f actorout = 2, and

with three transactions, ID1 and ID2 with low priority, and ID3 with high priority. The values
calculated by FlexSig are shown in Table 6.1, and the description of the algorithm is similar
to the description done before for the example of Figure 6.1.

Combining PCOUT and PCIN Priority Classes

The two previous strategies of using asymmetry in Section 6.1.2 and Section 6.1.2 are totally
orthogonal and compatible. The FlexSig controller can take advantage of priorities if a bench-
mark is asymmetric in read and write signatures (PCIN priority class), and at the same time
has transactions with much bigger data sets than others (PCOUT priority class). In this case,
the controller behaves exactly as explained in Section 6.1.1.

Figure 6.3 shows an example of this algorithm, with s_ f actorout = 2, s_ f actorin = 3 and
T = 16, and with three transactions, ID1 with high PCOUT priority, and ID2 and ID3 with
low PCOUT priority. In this example the write signature is of low PCIN priority. The values

6.2. Implementation Issues 149

Allocate(ID3)

Allocate(ID1)

Allocate(ID2)

wwwrrrrrrrrrrrr

wwwrrrrr r r r r r r wwr r r r r r r r r r r www r w

w

Figure 6.3: Example of an asymmetric allocation algorithm combining PCOUT and PCIN priority classes, with
s_ f actorout = 2 and s_ f actorin = 3 (ID1 of high PCOUT priority, ID2 and ID3 of low PCOUT priority;
write signature of low PCIN priority).

calculated by FlexSig are shown in Table 6.1, and the description of the algorithm is similar
to the description done before for the example of Figure 6.1.

6.2 Implementation Issues

In this section we briefly discuss two implementation issues: the placement of the module in
the system and the hardware implementation of the module.

6.2.1 Placement of FlexSig in a Multicore Processor

There are several possibilities to place the module in the chip depending on the system, the
target tool, the interconnection network, etc. In a system with a ring interconnection network,
the FlexSig module could be placed in the cache controllers or connected to the network. In
case of a system with a distributed directory cache coherence protocol, the module could be
partitioned among directories based on address ranges, or the system could be clustered, by
assigning one or more cores to a predefined directory. These two techniques could also be
combined.

An example of location could be a centralized FlexSig in a ring-based TM system with
a MESI cache coherence protocol. The module is connected to the on-chip interconnection
network, physically associated with a switch of the ring. The scheme defined for the FlexSig

module is very similar to the one defined for the Pacman module in Chapter 4.

6.2.2 Hardware Implementation in a TM System

This section describes the hardware implementation of the FlexSig in the context of a TM
system. We propose a hardware implementation for asymmetric allocation algorithms using

150 Chapter 6. Asymmetric Allocation in a Flexible Signature Module

Bloom Filter
1

clear
ID SET Po N

(1)(3)(4)(5)(6)(8)(9)(10)(11)

check 1 1 1 1

Bloom Filter
2

(2)(6)

Bloom Filter
T

.
.

.

.
.

.

.
.

.

out insert

1

1

1

AND

. . .

. . .

control logic
1

Check_out1

1

Check_out
2

(instr , Address , inID , inSET , alloc_param)

(1) (2) (3) (4)

request request

req
1

req
2

req
T

req
1

in

req
2

req
T

1

1

in2

out2

outT

inT

1bit

1bit

1bit

1 2

1 1 1 1 1 2 2 22 2

Pi1

(5)

(1)(3)(4)(5)(6)(8)(9)(10)(11)

(1)(3)(4)(5)(6)(8)(9)(10)(11)

control logic
2

control logic
T

(instr , Address , inID , inSET , alloc_param)

(6) (7) (8) (9) (10)

clear
check
insert

2

2

2

clear
check
insert

T

T

T

AND
2

ID SET Po N2 2 2 2Pi2

ID SET Po NT T T TPiT

Arithmetic

 Calculations

Module

(1)(5)(6)(10)

(11)

Figure 6.4: The basic FlexSig elements in a two-way implementation (issue 2 instructions).

read and write signatures. Despite the fact that this instance implementation is specifically
designed for a TM system, it can be easily extended to other applications.

We assume a single transaction request to allocate the write and read signature. The
hardware proposed implements the two classes of priorities described in Section 6.1.1. Sym-
metric allocations are performed by just setting the corresponding priorities to one (resulting
in s_ f actorin or s_ f actorout equal to one).

6.2.3 Basic Elements

Figure 6.4 shows the basic elements and signals of a FlexSig module that can issue two in-
structions in parallel. The controller can be adapted to manage a greater number of parallel
instructions at the expense of increasing complexity. Below, we describe the figure in detail.

6.2. Implementation Issues 151

There are two requests managed by the controller in parallel (request1 and request2 in
the figure), each one composed of the code of the instruction (instr1 and instr2), an address
(address1 and address2) used only in insert and check operations, the identifier of the trans-
action (inID1 and inID2), the identifier of the signature (inSET1 and inSET2) used only in
insert and check operations and the allocation parameters (alloc_param1 and alloc_param2)
used only in allocation operations. The allocation parameters include prioHighin, prioLowin,
pHSig, which indicates if the high priority signature is the read signature (pHSig is one) or
the write signature (pHSig is zero), and pOUT , which indicates if the transaction is of high
priority (pOUT is set to one) or low priority (pOUT is set to zero).

The controller has several simple elements that are replicated for each Bloom filter to
achieve maximum parallelism:

– Bloom_filterx: it is a storage element composed of a register and a hash function.

– inx: input port for the address in the insert operation.

– outx: one bit output port for the result of the check operation.

– IDx: register to store the identifier of the transaction to which the Bloom_ f ilterx is
allocated.

– SETx: register of one bit to identify a read (SETx = 1) or write (SETx = 0) signature.

– Pix: one bit register that indicates that a Bloom Filter is part of a high priority signature
or a low priority signature (PCIN priority).

– Pox: one bit register that indicates that the Bloom Filter is part of a high priority trans-
action or a low priority transaction (PCOUT priority).

– Nx: register that stores the order of the Bloom filter in the signature. The Nx values
are used to simplify the allocation algorithm (Section 6.2.5). For each signature, all
the Bloom filters are numbered from one to the total number of Bloom filters in the
signature, in consecutive and ascendant order.

– control logicx: is a simple per Bloom filter control logic that performs the Check, In-
sert, Allocate and Deallocate operations by generating the required control signals (see
Section 6.2.5).

152 Chapter 6. Asymmetric Allocation in a Flexible Signature Module

There are also several signals in each Bloom Filter that are activated by the control logicx

controller:

– reqx: this signal is used to control input and output multiplexers for each Bloom filter.

– clearx: this signal is used for the allocating and deallocating request to clear the corre-
sponding Bloom Filter.

– checkx: is an enabling signal for reading the output of the Bloom filter.

– insertx: synchronous load signal for the Bloom filter.

Furthermore, the controller has an arithmetic calculations module that calculates the max-
imum number of Bloom filters per signature according to their priorities. These values are
required by all the per filter control logic in each allocation request. Below, we describe this
module in detail.

6.2.4 Allocation Implementation: Arithmetic Calculations

In this subsection we show the implementation of the arithmetic part of the allocation algo-
rithm. We present an implementation for specific values of some parameters in order to fully
consider all possible optimizations. The extension to other values requires the redesign of
some parts in order to optimize them for the specific parameters. Specifically we present the
design for T=64 (total number of Bloom filters in FlexSig), and priorities defined by three bits
(prioHigh and prioLow are three bit numbers for both the PCIN and PCOUT priorities).

In our implementation, the high and low priority signatures correspond either to the read
signature (when pHSig is one) or to the write signature (when pHSig is zero).

Figure 6.5 shows the generation of the allocation signal. If one of the two request is an
Allocate, the controller executes the instruction in isolation, not serving additional requests
until the end of the allocation, because this instruction can potentially affect all the Bloom
filters. Furthermore, Figure 6.5 also shows how the number of transactions of high priority
(#agH) and low priority (#agL) are maintained in a register and are updated in each allocate
and deallocate by an up/down counter. The input parameters of the up/down counter are the
type of the requests (references (1), (2) and (3) in the figure), and the priority of the requests
(pOUT1 and pOUT2).

6.2. Implementation Issues 153

DECODER

Allocate

Allocate

instr2

instr1

Allocate

1

2

Deallocate

Deallocate

1

2

(1)
(2)

(3)

pOUT2

pOUT1

up/down counter #agH

(1) (2) (3)

DECODER

pOUT2

pOUT1

up/down counter #agL

(1) (2) (3)

Figure 6.5: Generation of the allocation signal (common to all the Bloom Filters) and the update of the registers
that count the number of transactions of low priority (#agL) and high priority (#agH) in the FlexSig.

The calculations necessary to perform the allocation are described by Equations (6.2),
(6.3), (6.4) and (6.5). In order to reduce hardware complexity, and since our allocation al-
gorithm is in fact heuristic, we designed the arithmetic units so that an error of one unit is
allowed with respect to the exact arithmetic implementation of these equations. These errors
have a negligible effect in the final results (as we will see in the evaluation in Section 6.3), but
allow a significant hardware reduction.

Figure 6.6 shows the calculation of nbLout (Equation (6.2)) and nbHout (Equation (6.3)).
First, it calculates the divisor in Equation (6.2) by multiplying s_ f actorout by #agH and
adding #agL. At this point, according to Equation (6.2) a division operation is performed.
The implementation of the division operation is simplified because: i) the dividend is a con-
stant of the system (T); ii) the output is a six bit integer number (the range is from 1 to T ,
with T =64 in our implementation); and iii) we allow an error of one unit with respect to the
exact arithmetic calculation. This allowed us to use a look-up table to implement the divisor
(due to the reduced number of bits of the input).

Figure 6.6 shows the number of bits (integer + fractional) required at the input/out of each
module so that a maximum of one unit of error is obtained in the final result with respect to
the exact arithmetic implementation.

As we show in the figure only the leading five bits of the denominator are necessary
at the input of the divisor unit (look-up table), therefore the result of the previous adder is

154 Chapter 6. Asymmetric Allocation in a Flexible Signature Module

x
#agH +

#agL

LOOKUP

TABLE

OUT_1

6 bits
6 bits

 (8+5)bits

6 bits5 bits

s_factor

x nbH

nbL

6 bits

6 bits

Normalization Shift & trunc

(3+7) bits

(3+5) bits

 (9+5)bits

3 bits

6 bits

OUT_1

Shift & trunc

out

s_factorout

k

out

out

Figure 6.6: Calculation of the maximum number of Bloom filters for high and low priority transactions.

x
(prioHigh , prioLow)

nbL

-

xnbH

-
6 bits

6 bits

6 bits

6 bits

6 bits

6 bits

Lookup

Table

6 bits 4 bits

in in

nbH (nbH)out

out

out

in

nbL (nbH)outin

nbH (nbL)outin

nbL (nbL)outin

Figure 6.7: Calculation of the maximum number of Bloom filters per signature, depending on its priority and the
priority of the transaction which it belongs.

normalized and truncated to five bits. The normalization is compensated at the output with
the corresponding shift and a truncation to integer is performed.

To calculate nbHout (also in Figure 6.6), the output of the divisor (OUT _1 in the figure)
is multiplied by s_ f actorout , and then, the result is shifted and truncated to an integer (as for
nbLout).

In Figure 6.7 we show the calculation of the maximum number of Bloom filters per high
and low priority (for PCIN class) signatures, by distributing the values computed in Fig-
ure 6.6 (nbHout and nbLout) according to Equations (6.4) and (6.5), again allowing a max-
imum error of one unit. A look-up table is used to compute the result of the calculation
prioHighin/(prioHighin + prioLowin) (part of Equation (6.4)).

The output of the lookup table is a number in the interval (0,1], with four fractional bits.
This value is multiplied by nbHout and nbLout to obtain the maximum resources of a high

6.2. Implementation Issues 155

priority signature, nbHin(nbHout) and nbHin(nbLout). The maximum resources of a low prior-
ity signature are the remaining number of Bloom filters, which are computed by means of a
subtraction operation (see Equation (6.5)).

6.2.5 Control Logic

In this section, we describe the control logic that generates local signals for each Bloom filter
in Figure 6.4. Figure 6.8 shows the control logic for each one of the Bloom Filters of the
FlexSig. In the figure BLOCK_1 and BLOCK_2 are used to activate Insertx, Checkx and
Deallocatex instructions, and other intermediate signals used for the Allocation instruction.

In BLOCK_1 we obtain the signals with reference (1), (2) and reqx. The signal reqx in-
dicates, (when signal (1) is one), the request that matches the Bloom filter (zero if it matches
request1 and one if it matches request2). BLOCK_2 generates Checkx, Insertx and Deallocatex

signals, depending on signals (1) and (2).
If the instruction is an insert, the Insertx signal is generated (in BLOCK_2), and it enables

directly the input of the Bloom filter (inx in Figure 6.4). If the instruction is a Check, the
Checkx signal is generated (in BLOCK_2), and it enables directly the output (outx in Figure
6.4) and the input (inx in Figure 6.4) of the Bloom filter .

The Deallocatex signal produces the clearx signal that clears the register of the Bloom
filter, and IDx is also set to 0 (in BLOCK_3 of the figure).

BLOCK_4 is used for the allocation algorithm, and it is explained in the next subsection.

Allocation Request

The allocation request involves all the Bloom Filters, and therefore, this request can not be
executed in parallel with other requests.

The allocation process is divided in two phases (controlled by a signal) that are needed
to set all Nx values (that indicate the order of the Bloom Filter in the signature) of the new
signatures, and to establish the corresponding values of SETx, Pix and Pox.

First phase: In the first phase (signal phase equal to zero), the controller frees the ex-
ceeding Bloom filters of the signatures. Each signature has its Bloom filters numbered in
ascendant order, storing this number in Nx. The controller frees the Bloom filters that have
a Nx value that exceeds the maximum number of Bloom filters allowed for that signature ac-
cording to its priority (reference (6) in the BLOCK_3 of Figure 6.8). It also frees the Bloom
filters with IDx = 0 (reference (7) in BLOCK_3 of Figure 6.8). During this first phase of the

156 Chapter 6. Asymmetric Allocation in a Flexible Signature Module

>

x

P
i

N

(3
)

P
i

1
x

>
x

N

ID
x

0

x

=
in

ID
1

=

x

IDin
ID

2

(2
)

D
e
a
llo

c
a
te

A
llo

c
a
te

=

x

ID0

D
e
a
llo

c
a
te

x

c
le

a
r

in
ID

2

in
ID

1

(2
)

I
x

D
E
C
O
D
E
R

In
s
e
rt

C
h
e
c
k

D
e
a
llo

c
a
te

in
s
tr

2

in
s
tr

1

(3
)

p
h
a
s
e

B
L
O

C
K

_
1

B
L
O

C
K

_
2

B
L
O

C
K

_
3

B
L
O

C
K

_
4

x

P
o

xx
x

x

x

D
e
a
llo

c
a
te

A
llo

c
a
te

x

=
p
h
a
s
e P
i

x

P
o

x

A
llo

c
a
te

(4
)

re
s
L
 (n

b
H

)
o
u
t

re
q

x

(1
)

re
q

x

=
in

S
E
T

1

=

x

S
E
T

in
S
E
T

2

(2
)

(5
)

A
llo

c
a
te

0

p
h
a
s
e

(2
)

0 0

(1
)

(6
)

(7
)

p
h
a
s
e

S
E
T

x

A
llo

c
a
te

p
H

S
ig

in

(1
)

re
q

x

p
O

U
T

1

p
O

U
T

2

re
s
L
 (n

b
L
)
o
u
t

in

re
s
H

 (n
b
H

)
o
u
t

in

re
s
H

 (n
b
L
)
o
u
t

in

6666

5555

66

6

6

66

55

5

5

5

5

22

2

2

5

(7
)

Figur e
6.8:

C
ontrollogic

foreach
B

loom
filter.

6.2. Implementation Issues 157

N1N2N3N4Nn-1Nn

I1I2I3I4In-1In

Parallel Prefix PopCount

Compressor Tree

log (T)
2

log (T)
2

log (T)
2

log (T)
2

log (T)
2

log (T)
2

111111

AllocateEN

Figure 6.9: Generation of the Nx values with a parallel prefix popcount compressor tree.

allocation the corresponding Bloom filters are cleared (signal clearx in BLOCK_3), the trans-
action identifier is set (IDx in BLOCK_3) to the input transaction identifier (either inID1 or
inID2, reference (3) in BLOCK_2), the priority of the signature (Pix) is set to one (BLOCK_3
of the figure) and the signature type (SETx) is set to zero (for the read signature) or one (for
the write signature), depending on pHSig in BLOCK_3. Note that all the Bloom Filters of the
new transaction have high priority in this first phase.

Additionally, the Nx values for the Bloom filters of the new transaction are determined (for
the high priority signature). Figure 6.9 shows how this computation is performed. The signals
Ix are set to one if the corresponding Bloom filter belongs to the new transaction (if the signal
with reference (2) is active in BLOCK_4 of Figure 6.8) and if it belongs to a high priority
signature (as are all the Bloom filters of the new transaction in this first phase). The values of
Nx are calculated from the Ix values with the parallel prefix population count compressor tree
show in Figure 6.9, that computes

Nx =
x

∑
j=1

I j (6.8)

with 1 ≤ x ≤ T . Note that this circuit is composed of full adders organized in the form of
a prefix tree.

Furthermore, in this first phase, the priority of the transaction is established by setting Pox.
The controller assigns to Pox the value of pOUT1 or pOUT2 (shown in BLOCK_4 of Figure
6.8).

Second phase: At the end of the first phase, there is only a signature (the high priority
signature). In the second phase (phase equal to one), the controller assigns Bloom filters to the
low priority signature. This action is taken by the controller by setting Pix to zero (reference

158 Chapter 6. Asymmetric Allocation in a Flexible Signature Module

(4) in BLOCK_3 of Figure 6.8) to those Bloom filters of the high priority signature whose
Nx values exceeds the maximum value previously calculated for the high priority signatures
(reference (4) in Figure 6.8).

The low priority signature also needs to set the correct Nx values. In this phase, the Ix

values are set to one if the Bloom filter belongs to the low priority signature (Pix is zero)
of the new transaction (BLOCK_4 in Figure 6.8). The new Nx values for the low priority
signature are calculated as in the first phase (Figure 6.9), reusing the same circuit. Moreover,
the signature type (SET _x) is set depending on pHSig, as in the first phase.

Note that the control logic per Bloom filter (Figure 6.8) is composed of simple gates, and
that some datapath elements are at most six bits wide. In general those datapath elements
have bit widths that grow logarithmically with the total number of Bloom filters in FlexSig.
Moreover, the hardware for calculations of Figure 6.7 and 6.6 are shared among all the Bloom
filters, and its datapath elements have widths that grow also logarithmically with the total
number of Bloom filters. Therefore, the hardware complexity to support different priorities in
FlexSig scales in a reasonable way (logarithmically) with the total size of FlexSig.

6.3 Evaluation for a TM System

In this section we evaluate the asymmetric policies in FlexSig in the context of a TM sys-
tem. Specifically we use the information regarding the read and write sets from some well
known TM benchmarks. Our goal is to evaluate the improvements in the false positive rate
by implementing asymmetric strategies in FlexSig. The false positive rate is directly related
with performance [182], since a false positive leads to an unnecessary conflict, and therefore
one of the conflicting transactions has to stall or rollback and restart, with the consequent
inefficiency.

6.3.1 Experimental Setup

We use RSTM [100] as TM system, and PIN [81] to instrument the transactional code (to
gather read and write sets) and to simulate hardware signatures.

For testing our scheme, we chose some widely accepted benchmarks for testing on TM
systems: STAMP [25] benchmarks, some micro benchmarks included in RSTM and "Eigen-
Bench" benchmark [73] (a simple synthetic benchmark that can be configured to stress differ-
ent TM characteristics). Table 6.2 shows the inputs of these benchmarks in our experiments.

6.3. Evaluation for a TM System 159

Table 6.2: Benchmark Inputs.

Benchmark input
Intruder -a10 -l16 -n4096 -s1
Vacation-high -n4 -q60 -u90 -r1048576 -t4096
Vacation-low -n2 -q90 -u98 -r1048576 -t4096
Yada -a10 -i ttimeu10000.2
Bayes
Genome -g128
Kmeans-high -m15 -n15 -t0.05 -i random-n2048-d16-c16.txt
Kmeans-low -m40 -n40 -t0.05 -i random-n2048-d16-c16.txt
Labyrinth -i random-x256-y256-z3-n256.txt
Ssca2 -s14 -i1.0 -u1.0 -l9 -p9
MicroBench -X(5000/num_threads)
Eigen1 ID1=(RS:15,WS:15) ID2=(RS:30,WS:2)
Eigen2 ID1=(RS:30,WS:2) ID2=(RS:4,WS:1)
Eigen3 ID1=(RS:75,WS:14)

Table 6.3: Size of the read and write sets for different benchmarks.

In
tr

ud
er

V
ac

.-h
ig

h

V
ac

.-l
ow

Y
ad

a

L
is

t

D
L

is
t

B
ay

es

G
en

om
e

K
m

.-h
ig

h
K

m
.-l

ow
L

ab
yr

in
th

Ss
ca

2
H

as
h

Tr
ee

Tr
ee

O
ve

r.

Fo
re

st

RS 22 385 283 142 149 148 12.9 40.3 13 13 92 1 2 17.6 39.7 17.6
WS 2.6 8.9 6.4 21 0.3 0.6 3.2 0.03 13 13 88 2 0.3 2 6 2

Table 6.3 shows the average size of the read and write sets of the benchmarks used in the
evaluation in Section 6.3.2.

Table 6.4 shows the four different configurations that we use to achieve the adequate false
positive rates to compare the improvements in all the cases (more details below).

6.3.2 Evaluation for the PCIN Priority Class

In this case there is no priority for distribution of resources among transactions, but for each
transaction a priority is provided to distribute the resources for the read and write set (PCIN
priority class).

For testing this experiment, we chose STAMP [25] benchmarks and some micro bench-
marks included in RSTM. We simulate the benchmarks using from 2 to 16 threads in a sys-

160 Chapter 6. Asymmetric Allocation in a Flexible Signature Module

Table 6.4: Configuration of the signatures used.

Conventional FlexSig Benchmarks
Conf. 1 32sigs x (256bits,k=4) 128BF x 64bits Intruder, Vacation,

Yada, List, DList
Conf. 2 32sigs x (64bits,k=4) 128BF x 16bits Bayes, Genome,

Kmeans, Labyrinth,
Ssca2, Hash, Tree,
TreeOver., Forest

Conf. 3 - 128BF x 8bits Eigen1, Eigen2
Conf. 4 (a) 256sigsx(64bits,k=4)

(b) 128sigsx(64bits,k=4)
(c) 64sigsx(64bits,k=4)
(d) 32sigsx(64bits,k=4)

(a) 1024BFx16bits
(b) 512BFx16bits
(c) 256BFx16bits
(d) 128BFx16bits

Eigen3

tem with 32 conventional signatures (parallel Bloom filters), and in a system with a FlexSig

module. In this experiment we use the Conf. 1 and Conf. 2 shown in Table 6.4: The first
configuration uses 32 signatures (16 read signatures and 16 write signatures) of 256 bits and
k = 4 (k is the number of hashes in the parallel Bloom filter) for conventional signatures, and
a FlexSig with 128 Bloom filters of 64 bits (the same total number of bits as conventional
signatures). This configuration is used for the evaluation with the benchmarks that produce a
higher rate of false positives. The second configuration uses 32 signatures of 64 bits and k = 4
for conventional signatures, and a FlexSig with 128 Bloom Filters of 16 bits (the same total
number of bits than conventional signatures). It is used for the evaluation for benchmarks
with lower levels of false positives.

For reference, Figure 6.10 shows the percentage of reduction on false positives of FlexSig

with no priorities (s_ f actorin = 1 and s_ f actorout = 1) with respect to conventional Bloom
filters (higher is better, and a 100% reduction means no false positives). The Table 6.4 shows
the configuration of the signatures used for this experiment. In contrast to the results showed
in Chapter 5, this simulation corresponds to an implementation with separate read and write
set signatures, and the number of total resources also differs in both cases. As it was shown
in Chapter 5, there is a significant reduction in the number of false positives in this case (the
reduction improves as the number of threads is reduced) due to the flexibility in resource
management.

6.3. Evaluation for a TM System 161

 0%

 20%

 40%

 60%

 80%

 100%

Intruder
Vac.−high
Vac.−low
Yada
List
D

List
Bayes
G

enom
e

Km
.−low

Km
.−high

Labyrinth
Ssca2
H

ash
Tree
TreeO

ver.
Forest

 R
ed

uc
tio

n
of

 fa
ls

e
po

si
tiv

es

2 threads
4 threads
8 threads
16 threads

Figure 6.10: Percentage of decrease of false positives in symmetric FlexSig compared with conventional signatures.

Table 6.5: s_ f actorin (prioHighin|prioLowin) for 2, 4, 8 and 16 threads.

In
tr

ud
er

V
ac

.-h
ig

h

V
ac

.-l
ow

Y
ad

a

L
is

t

D
L

is
t

B
ay

es

G
en

om
e

K
m

.-h
ig

h

K
m

.-l
ow

L
ab

yr
in

th

Ss
ca

2

H
as

h
Tr

ee

Tr
ee

O
ve

r.
Fo

re
st

2th. 1|1 7|1 7|1 3|1 7|1 7|1 4|1 1|1 1|1 1|1 7|6 1|1 1|1 2|1 2|1 2|1
4th. 3|1 7|1 7|1 1|1 7|1 7|1 3|1 1|1 5|4 5|4 7|6 1|1 1|1 3|2 2|1 3|2
8th. 2|1 4|1 6|1 1|1 6|1 6|1 2|1 1|1 4|3 7|6 1|1 1|1 1|1 3|2 4|3 3|2
16th. 2|1 2|1 2|1 2|1 6|1 6|1 5|4 4|3 1|1 1|1 1|1 1|1 4|3 4|3 3|2 3|2

Table 6.5 shows the values used for prioHighin and prioLowin (that define s_ f actorin)
for the simulation using the PCIN priority class. We show the two values in each benchmark
depending on the number of threads. We determined these values empirically, by profiling
each benchmark for the different number of threads. In the table, white (shaded) cells indicate
the cases where the read (write) signature is of high priority. When prioHighin and prioLowin

have the same value, it is represented also with a white cell, despite there is no priority. For

162 Chapter 6. Asymmetric Allocation in a Flexible Signature Module

 0%

 20%

 40%

 60%

 80%

 100%

Intruder
Vac.−high
Vac.−low
Yada
List
D

List
Bayes
G

enom
e

Km
.−low

Km
.−high

Labyrinth
Ssca2
H

ash
Tree
TreeO

ver.
Forest

 R
ed

uc
tio

n
of

 fa
ls

e
po

si
tiv

es

2 threads
4 threads
8 threads
16 threads

Figure 6.11: Percentage of decrease on false positives in FlexSig with asymmetric allocation policies (PCIN
priority class) compared with the conventional FlexSig.

example, "Yada" benchmark with 2 threads uses the values prioHighin = 3 and prioLowin = 1
(the read signature has high priority), the "Kmeans-high" benchmark with 4 threads uses the
values prioHighin = 5 and prioLowin = 4 (the write signature has high priority in this case),
and the "Genome" benchmark with 2 threads uses the values prioHighin = 1 and prioLowin =

1 (read and write signatures have the same priority).
Figure 6.11 shows the percentage of reduction in the number of false positives in a FlexSig

when we use an asymmetric policy to implement priorities for the PCIN class, compared with
a conventional FlexSig system implementing a symmetric policy. As shown in Figure 6.11, for
some benchmarks the asymmetric policy in allocation of resources for the read and write set
allows a further significant reduction in the number of false positives. For instance, "Intruder",
"Vacation-high", "Vacation-low", "List", "DList", "Kmeans-high", "Tree" and "TreeOver-
write" achieve reductions higher than 50%. Other benchmarks (such as "Ssca2", "Labyrinth"
or "Genome") do not get a significant advantage from using the asymmetric policy, so they
can be executed using a symmetric allocation algorithm. The results are usually worse when

6.3. Evaluation for a TM System 163

Table 6.6: Priorities used for single and multiple PCIN priorities.

2 th. 4 th. 8 th. 16 th.
s_ f actorin 3|2 6|5 6|5 6|5

s_ f actorm_in
1|1 (ID1) 2|1 (ID1) 2|1 (ID1) 2|1 (ID1)
7|1 (ID2) 7|1 (ID2) 6|1 (ID2) 3|2 (ID2)

the number of threads increases because the average signature size decreases leading to more
saturated signatures that reduce the advantage of the asymmetry.

6.3.3 Evaluation for Multiple PCIN Priority Classes

The difference with the experiment in Section 6.3.2 is that in this case we evaluate the re-
sults for a configuration with a specific per transaction s_ f actorin (PCIN priorities may differ
among transactions).

The configuration used in FlexSig is the Conf. 3 in Table 6.4: a FlexSig with 128 Bloom
filters of 8 bits. For this experiment we use "EigenBench" benchmark [73], with the Eigen1
configuration in Table 6.2. This benchmark has two different transactions, ID1 and ID2. ID1
has the same read and write set size (RS= 15, WS=15), and ID2 is configured with a much
bigger read set, larger than the write set (RS= 30, WS=2). Half of the threads execute ID1
transactions, and the other half execute ID2 transactions.

Table 6.6 shows the values of prioHighin and prioLowin used in this experiment. We
show the values for the case when a single PCIN priority is used for the two transactions
(row s_ f actorin), and when a different PCIN priority is used (row s_ f actorm_in). For exam-
ple, with 2 threads, the s_ f actorin is defined by prioHighin = 3 and prioLowin = 2, and the
s_ f actorm_in is defined by prioHighin = 1 and prioLowin = 1 for the ID1 transaction, and
it is defined by prioHighin = 7 and prioLowin = 1 for the ID2 transaction. The white cells
indicate that the read signature has high priority, or that both signatures have the same priority
(when prioHighin = prioLowin), and the shadow cells indicate that the write signature has
high priority.

Figure 6.12 shows the results comparing the two configurations. The use of a per transac-
tion priority allows a further significant reductions in the number of false positives. Therefore,
as we show with this synthetic benchmark, there might be cases where it is worth to use a per
transaction PCIN priority.

164 Chapter 6. Asymmetric Allocation in a Flexible Signature Module

 0%

 5%

 10%

 15%

 20%

 25%

 30%

 35%

 40%

 45%

2threads 4threads 8threads 16threads

 R
ed

uc
tio

n
of

 f
al

se
 p

os
iti

ve
s

PCIN
Multiple PCIN

Figure 6.12: Percentage of reduction of false positives for single PCIN priority and for Multiple (one per
transaction) PCIN priorities (compared with a symmetric FlexSig).

6.3.4 Evaluation for Combined PCOUT and PCIN Priority Classes

In this experiment, we explore the two priority classes (PCOUT and PCIN) using also "Eigen-
Bench" benchmark. Specifically we configure this benchmark according to Eigen2 configu-
ration in Table 6.2. As before we use two types of transactions. The first type (ID1) is a
transaction with a read set of 30 addresses, and a write set of 2 addresses, and the second
type (ID2) has a read set of 4 addresses and a write set of one address. Half of the threads
execute transactions ID1, and the other half execute ID2. We have two classes of asymmetry,
one because of the different size of both types of transactions (PCOUT priority class), and the
other because the read set is much bigger than the write set in both types of transaction (PCIN
priority class).

The FlexSig setup for this experiment is the Conf. 3 in Table 6.4 (128 Bloom filters of 8
bits). Furthermore, we use three priority configurations. The first configuration (PCIN) uses
different priorities for the read and write signatures (as in the previous experiment), the second
configuration (PCOUT) uses different priorities for different transactions depending in their
IDs, and the third configuration (PCIN + PCOUT) uses a combination of the two previous
configurations. Table 6.7 shows the different s_ f actor values used in the three configurations
(represented in the form prioHighin|prioLowin). The s_ f actorin row shows the priorities of
the read and write signatures (PCIN priority class), having the read signatures high priority

6.3. Evaluation for a TM System 165

Table 6.7: s_ f actor used to evaluate both PCOUT and PCIN priority classes.

2 th. 4 th. 8 th. 16 th.
s_ f actorin 4|1 4|1 4|1 2|1
s_ f actorout 3|1 3|1 2|1 2|1

s_ f actorin+out
3|1 (out)
4|1 (in)

3|1 (out)
4|1 (in)

2|1 (out)
4|1 (in)

2|1 (out)
2|1 (in)

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

2threads 4threads 8threads 16threads

 R
ed

uc
tio

n
of

 f
al

se
 p

os
iti

ve
s PCIN

PCOUT
PCIN+PCOUT

Figure 6.13: Percentage of decrease on false positives in FlexSig implementing priorities for PCIN priority class,
for PCOUT priority class, and combining both PCIN and PCOUT priority classes.

in all cases; the s_ f actorout row shows the priorities of the transactions depending on its
identifier (PCOUT priority class); and the row s_ f actorin+out shows the priorities for the
combined priorities (PCOUT and PCIN priority classes at the same time).

Figure 6.13 shows the results of the three different configurations compared with sym-
metric FlexSig. It is clear that combining both kind of priorities the results are improved
significantly. For instance, with two threads, the reduction in the number of false positives is
under 40% when PCIN or PCOUT priorities are used alone. When both priorities are com-
bined, the net effect is a reduction of about 65%.

166 Chapter 6. Asymmetric Allocation in a Flexible Signature Module

Table 6.8: s_ f actorin used to evaluate the scalability of FlexSig.

2 th. 4 th. 8 th. 16 th. 32 th. 64 th. 128 th.
16-thr. system 3|1 2|1 3|2 4|3 - - -
32-thr. system 4|1 3|1 2|1 2|1 6|5 - -
64-thr. system 5|1 5|1 5|1 3|1 3|2 4|3 -
128-thr. system 4|1 4|1 4|1 3|1 2|1 5|3 5|3

6.3.5 FlexSig with a High Number of Threads

In the same way that for the symmetric FlexSig described in Chapter 5, the results of asymmet-
ric FlexSig are worse when the number of threads increases. In this section we demonstrate
that this is not due to any scalability issue.

In this experiment we show that FlexSig can scale up to a high number of threads. The
Conf. 4 of Table 6.4 is used to simulate an environment with a maximum number of 16, 32,
64 and 128 threads (configurations (a),(b),(c) and (d) respectively). We use the "EigenBench"
benchmark with the Eigen3 configuration in Table 6.2, FlexSig implementing the PCIN pri-
ority class, and the s_ f actorin values used are shown in Table 6.8 (in each cell, to the left is
prioHighin and to the right is prioLowin).

Figure 6.14 shows the reduction of false positives of asymmetric FlexSig (PCIN priority
class) compared with conventional Bloom filters for a system with a maximum of 16, 32, 64
and 128 threads. FlexSig achieves significant reductions, specially when the benchmarks are
executed with less threads than the maximum allowed in the system. With this experiment we
show that FlexSig is getting worse when it runs with the maximum number of threads allowed
in the system, but it has good scalability, as the behavior has the same pattern with systems
up to 128 threads. The worst results are when a benchmark is executed with the maximum
number of threads in the system. However, even in the worst case, FlexSig clearly outperforms
conventional Bloom filters.

6.3.6 Signature Size Comparison

This experiment compares the size of asymmetric FlexSig (PCIN priority class) with the size
of conventional Bloom signatures. The idea is to build the two signature schemes in such a
way that the false positive rate of both are roughly the same, and compare the sizes of their
registers to achieve this rate. For simplicity, we chose the "EigenBench" benchmark with the

6.3. Evaluation for a TM System 167

 0%

 20%

 40%

 60%

 80%

 100%

2th. 4th. 8th. 16th. 32th. 64th. 128th.

 R
ed

uc
tio

n
of

 fa
ls

e
po

si
tiv

es
128−threaded system
64−threaded system
32−threaded system
16−threaded system

Figure 6.14: Percentage of decrease of false positives in asymmetric FlexSig (PCIN priority class) compared with
conventional Bloom filters for "EigenBench" benchmark with up to 128 threads.

Table 6.9: Configuration of FlexSig and Bloom signatures.

FlexSig Bloom
#BF BF size prio #sig sig. size k

2th. 128 16 4|1 32 208 4
4th. 128 21 3|1 32 224 4
8th. 128 30 2|1 32 224 4
16th. 128 51 5|3 32 224 4

Eigen3 configuration (Table 6.2) to do this comparison, and the false positive rate achieved in
all the cases is bounded between 0.9% and 1.1%.

The parameters used to configure the signatures are in Table 6.9. FlexSig is configured in
all the cases with 128 Bloom filters (#BF), and the register size of the Bloom filter (BF size)
and the PCIN priority (prio) change depending on the number of threads. Moreover, each one
of the 32 Bloom signatures (16 signatures for the read set and 16 signatures for the write set)
is composed by 208 bits (for 2 threads) or 224 bits (for 4,8 and 16 threads), and k = 4 in all
the cases.

168 Chapter 6. Asymmetric Allocation in a Flexible Signature Module

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

2threads 4threads 8threads 16threads

 S
to

ra
ge

 R
eg

is
te

r
bi

ts
Asymmetric FlexSig
Bloom

Figure 6.15: Number of bits required for registers in asymmetric FlexSig (PCIN priority class) and Bloom
signatures, with a false positive rate between 0.9% and 1.1%.

Figure 6.15 shows the number of bits of storage needed for obtaining roughly the same
false positive rate (the smaller the bars, the better) in each of the two compared signature
schemes. We see that asymmetric FlexSig achieves very good results for 2, 4 and 8 threads,
with register size reductions of the order of two and three times. Even with 16 threads, asym-
metric FlexSig needs less bits than Bloom signatures.

6.4 Related Work

Quislant et al. [136] have proposed a new reconfigurable asymmetric signature (ASYM) to
deal with the asymmetry of the read and write sets in TM systems. The high level idea is to
configure the ASYM signature to establish the number of Bloom filters devoted to the read
and the write sets (see Section 1.5.4).

This signature would be equivalent to a FlexSig module managing only one transaction
and implementing the PCIN priority class. Because of the simplicity of the scenario, this
module would not require an allocation algorithm, and the size of the signatures would be
constant from the beginning to the end of the transaction (in FlexSig the size can be reduced
in a running transaction). Compared with FlexSig, the scheme proposed in [136] is more

6.4. Related Work 169

limited, in the sense that it only deals with asymmetry of read and write sets of one transac-
tion, while FlexSig is a shared module, which deals with many transactions and more types
of asymmetries, such as asymmetry among user transactions or asymmetry among applica-
tions. Also, FlexSig is not intended to work only with TM, and it can be easily adapted to
work with other applications or tools. In Section 6.4.1 we show the results of an experiment
comparing asymmetric FlexSig with ASYM signatures. These results show that asymmetric
FlexSig allows significant reductions in the number of false positives compared with ASYM
signatures.

Korgaonkar et al. [83] propose to distribute the resources in FlexSig according to the size
of the transactions. However, they do not propose any hardware implementation, nor do they
describe the algorithm implemented in detail. In contrast, we propose a hardware approach of
a general asymmetric algorithm (not only for TM) with several levels of asymmetry.

Scalable Bloom Filters [4], AdaptSig [129] or Dynamic Bloom Filters [61] propose alter-
natives in the same way: they expand signatures with more resources when the false positive
rate reaches a prefixed level. For example, the Scalable Bloom Filters (SBF) are composed by
one or more single Bloom filters; when the filters reach the fill ratio, a new filter is added to
the SBF. Each successive Bloom filter is created with a tighter maximum error probability on
a geometric progression, so that the compounded probability over the whole series converges
to some predefined value. The check and insert operations are made by testing/setting all the
filters. With this method, the false positive rate is always contained. However, it might be
very difficult to implement these approaches in hardware, because an indefinite number of
resources would be needed (it depends on the application).

6.4.1 Comparing Asymmetric FlexSig and ASYM signatures

We repeat the experiment of Section 6.3.2 for some benchmarks, but this time comparing
the results of asymmetric FlexSig (with PCIN priority class) with the results of ASYM and
conventional Bloom signatures. The configuration used for FlexSig is the Conf. 1 in Table
6.4 and the priorities of the Table 6.5. The system with ASYM signatures is configured with
16 ASYM signatures, each one composed by 8 Bloom filters (each Bloom filter composed by
a H3 hash and a 64 bit register), that accumulate the same storage capacity that our FlexSig.
The 8 Bloom filters of each ASYM signatures are distributed among the read and write set
according to Table 6.10, where, in each cell, to the left it is the number of Bloom filters
assigned to the read set, and to the right the number of Bloom filters assigned to the write set.

170 Chapter 6. Asymmetric Allocation in a Flexible Signature Module

Table 6.10: Number of Bloom filters for read and write set in ASYM signatures composed by 8 Bloom filters (to
the left the number of read Bloom filters and to the right the number of write Bloom filters).

2threads 4threads 8threads 16threads
Intruder 4|4 5|3 5|3 5|3

Vacation-high 5|3 5|3 5|3 5|3
Vacation-low 6|2 5|3 5|3 5|3

Yada 3|5 3|5 3|5 3|5
List 6|2 6|2 6|2 6|2

DList 6|2 6|2 6|2 6|2

 0%

 20%

 40%

 60%

 80%

 100%

Intruder(2th.)

Intruder(4th.)

Intruder(8th.)

Intruder(16th.)

Vac.−high(2th.)

Vac.−high(4th.)

Vac.−high(8th.)

Vac.−high(16th.)

Vac.−low
(2th.)

Vac.−low
(4th.)

Vac.−low
(8th.)

Vac.−low
(16th.)

Yada(2th.)

Yada(4th.)

Yada(8th.)

Yada(16th.)

List(2th)
List(4th)
List(8th)
List(16th)
D

List(2th.)

D
List(4th.)

D
List(8th.)

D
List(16th.)

 R
ed

uc
tio

n
of

 fa
ls

e
po

si
tiv

es

Bloom
ASYM

Figure 6.16: Percentage of decrease of false positives in asymmetric FlexSig implementing the PCIN priority class,
compared with Bloom and ASYM signatures for "Intruder", "Vacation", "Yada", "List" and "Dlist"
with 2,4,8 and 16 threads.

Finally, the conventional Bloom signature system is configured with 32 parallel Bloom filters,
each one with a total size of 256 bits and 4 H3-hash functions.

Figure 6.16 shows the results of comparing ASYM and Bloom signatures with asymmetric
FlexSig implementing the PCIN priority class (lower bars are better). We can see that, for 2
threads, the reduction of false positives in FlexSig is very significant in comparison with

6.5. Conclusion 171

both ASYM and conventional signatures, because these signatures do not take advantage of
all resources when the number of threads is less than 16. For this same reason, the better
results of ASYM with respect to Bloom signatures are masked by the superiority of FlexSig.
Just when the number of threads is 16 we can clearly appreciate the advantage of ASYM with
respect to Bloom signatures. However, FlexSig has a clear advantage over the two alternatives
in almost all the cases.

For this test, we only use a subset of the benchmarks that better represent the advan-
tage of ASYM signatures over conventional Bloom filters. For the test used in Section 6.3.2
that are not shown in Figure 6.16, the better results of ASYM are obtained with a symmet-
ric configuration, and therefore the results for the ASYM signatures are the same than for
the conventional Bloom filters shown in Section 6.4.1, that are also clearly outperformed by
asymmetric FlexSig.

6.5 Conclusion

FlexSig is an interesting approach for making signatures flexible and adaptable to different
situations. However, the symmetric algorithm for allocating signatures proposed in Chapter
5 is very simplistic. In this chapter we explored more involved techniques to allocate signa-
tures in FlexSig based on the asymmetry of the demands, and defined priorities for assigning
more or fewer resources to the signatures. By implementing these asymmetric techniques we
are able to significantly reduce the number of false positives compared with the symmetric
FlexSig design in Chapter 5. We demonstrate with our experimental setup for a specific ap-
plication (TM) that in some cases the reduction of false positives can be important, achieving
reductions of over 60% in several benchmarks when implementing the PCIN priority class.
We also evaluate other asymmetric policy with two priority classes that achieves reductions
of up to 64%, and we perform a size comparison that demonstrates that asymmetric FlexSig

can achieve up to a 60% reduction in the area occupied by the signature registers for a given
upper bound in the false positive rate. Finally, a highly parallel high throughput hardware
implementation has been developed, which allows a high performance asymmetric FlexSig

module for future multicore systems.
These asymmetric policies strengthen the case for FlexSig as a flexible hardware resource

to be used in a general purpose multicore processor, extending the original concept of flexi-
bility in FlexSig with the adaptation to application-dependent characteristics (asymmetry).

Conclusions and Future Work

This dissertation presents novelty mechanisms related with hardware signatures in the context
of multicore processors. Specifically, we focus on two mechanisms to help parallel program-
ming in multicore processors (a HTM system and a Data Race Detector), and in a flexible
hardware signature module that fits the requirements of the many tools and applications that
can be potentially executed in a modern general purpose multicore processor. This chapter
summarizes the main contributions of this thesis, exposes the conclusions and proposes future
research lines.

We have improved a signature based HTM system by adding a filter mechanism that
allows a reduction in the use of signatures in the baseline system. This filter (called CFM-
TM) is implemented by slightly changing the cache coherence protocol and adding one bit to
the L1 cache lines (it can maintain two versions of data in private L1 and shared L2 cache).
CFM-TM allows us to reduce the write signature up to 75% (maintaining the false positive
rate) while keeping approximately the same performance of the baseline system running alone
(the CFM-TM can also be deactivated if needed), and it can improve the performance under
certain conditions (as we prove with one of the benchmarks, which reduces the execution
time more than 40%). To fully take advantage of this filter, the CMP should provide a flexible
management of signatures.

We have proposed the first Hardware Asymmetric Data Race Detector.1 Despite the
fact that some software approaches have been developed before, our approach (called Pac-
man) is the first hardware approach that besides detecting asymmetric data races, is also able
to tolerate them. Pacman requires minimum hardware support: it is implemented as a central-
ized module that hosts some signatures and some logic and that snoops the cache coherence

1This work was developed at the University of Illinois at Urbana-Champaign in collaboration with the members
of the I-ACOMA group.

174 Conclusions and Future Work

protocol traffic to detect and tolerate these races. Pacman temporally protects the variables
accessed in critical sections in safe threads against buggy accesses from unsafe threads, and
furthermore, it produces a negligible performance slowdown (the average execution time over-
head is always under 0.1% in our evaluation). Our test shows the efficiency of Pacman, which
was able to detect two unreported asymmetric data races in two well tested benchmarks, and
to detect all the asymmetric races of a benchmark which was modified to artificially generate
asymmetric data races.

We have also contributed with a flexible signature module to optimize the use of
signatures in a general purpose multicore processor. From the two previous works, and
from other tools for multicore processors, we realize that hardware signatures are too rigid
to be really useful in general purpose multicore processors. We proposed a module (called
FlexSig) that allows us to assign a variable number of resources to a signature depending on
the needs of the requester. The FlexSig module can host a high number of signatures when
the demand of signatures is high, and when the demand is low, FlexSig can achieve a very
low false positive rate in the allocated signatures. We also propose several alternative alloca-
tion algorithms for improving the performance of the module by considering the asymmetry
patterns of the requester needs. With FlexSig we can achieve very important improvements in
the false positive rate (up to 100% in many cases when the demand is low). In summary, we
have achieved a signature module that allocates signatures according to the demand, allowing
from simple patterns of allocation (all the signatures with the same size) to more complex
algorithms that assign more or less resources depending on the needs of the requester, and
achieving important false positive rate reductions compared with conventional signatures.

Describing the thesis contributions in a nutshell, the performed experiments show novelty
solutions in the area of Transactional Memory (TM) and Data Race Detection, with hard-
ware signatures as the common element. We also develop a new flexible hardware signature
module, designed to be placed in a multicore processor and to serve different tools and appli-
cations that require it. Despite these conclusions, there are some interesting ways to continue
the work begun in this thesis. The future work can be open in several lines, of which we want
to highlight the following:

– The CFM-TM filter (that we test in a HTM system) could be adapted to be used in
other applications in a multicore processor, as for instance, speculative lock elision,
that also requires speculation in their normal operation. Other techniques, tools, parallel

Conclusions and Future Work 175

abstractions or other speculative techniques could be also be benefited by an adaptation
of our CFM-TM filter.

– The Pacman asymmetric data race detector could also be expanded for detecting races
in other architectures, as for instance GPUs.

– Pacman could be expanded to detect more types of bugs and data races, such as atom-
icity violations, and to use it with another synchronization mechanisms (such as TM).

– We only test the FlexSig module in a HTM system. However, as we claim, FlexSig

is designed to work in general purpose processors, which implies that many tools and
applications may use it. We propose for future work to test our module in other tools,
such as data race detectors, deterministic replay systems, other parallel abstractions,
etc.

– Outside the world of multicore processors, signatures are also widely used in network
applications, such as packet classification, packet inspection, routing protocols, etc. To
test FlexSig in these scenarios could also be a good test to prove the flexibility and
adaptability of FlexSig.

To conclude, the thesis has reached its goals of exploring the optimization in different
tools for multicore processors, and of designing a signature module that fits in a general
purpose multicore processor with very good results. Furthermore, the future work has also
potential to continue exploring the possibilities of signatures in tools for supporting parallel
programming, and to try to bring signatures near to a common resource in general purpose
multicore processors by making them more flexible and a generally used.

Resumo da Tese

Seguindo o regulamento dos estudios de terceiro ciclo da Universidade de Santiago de Com-

postela, aprobado na Xunta de Goberno do día 7 de abril de 2000 (DOG de 6 de marzo de

2001) e modificado pola Xunta de Goberno de 14 de novembro de 2000, o Consello de Gob-

erno de 22 de novembro de 2003, de 18 de xullo de 2005 (artigos 30 a 45), de 11 de novembro

de 2008 e de 14 de maio de 2009; e, concretamente, cumprindo coas especificacións indi-

cadas no capítulo 4, artigo 30, apartado 3 de dito regulamento, amósase a continuación un

resumo en galego da presente tese.

Os procesadores multinúcleo comezaron unha nova era na que a programación paralela
se fixo fundamental para continuar co escalado do rendemento nas novas aplicacións que se
executan nestes procesadores. Porén, a programación paralela é mais difícil de codificar, mais
propensa a erros, e máis difícil de comprender que a programación secuencial tradicional .
O proceso de depuración paralela é unha das tarefas máis complicadas e que require maiores
esforzos por parte dos programadores.

Para afrontar estas dificultades engadidas, e para que a programación paralela sexa acep-
tada e masivamente usada por a maioría dos programadores, é necesario desenvolver novas
ferramentas que faciliten esta tarefa. Entre estas ferramentas podemos salientar dúas ver-
tentes: aquelas que avogan por novas linguaxes de programación ou abstraccións especifica-
mente pensadas para a programación paralela, e ferramentas que fagan máis sinxela as tarefas
de depuración dos programas paralelos.

A raíz da dificultade da programación e depuración paralela reside en que todos os núcleos
dun procesador multinúcleo comparten memoria, e polo tanto os programadores precisan da
sincronización como mecanismo de control para acceder aos datos compartidos, e así non

178 Resumo da Tese

obter resultados inesperados. A ferramenta de sincronización máis utilizada son os ferrollos
(locks), que protexen variables compartidas que o programador considera que deben de ser
accedidas en exclusión mutua. Con todo, os ferrollos son difíciles de programar e son moi
propensos a erros cando son utilizados en programación paralela.

Unha nova abstracción que cobrou moita importancia nos últimos anos dentro do mundo
académico e da industria, é a Memoria Transaccional (TM, Transactional Memory) [72].
TM é unha abstracción software para a programación paralela que se basea na definición
de rexións atómicas (transaccións) que o programador usa para garantir a exclusión mutua
dun anaco de código. As características proporcionadas por esta abstracción son garantidos
polo sistema TM implementado. TM foi pensado para mellorar os ferrollos como mecanismo
de sincronización de memoria [173]. As transaccións deben ser executadas atomicamente e
en illamento con respecto ao resto, mais poden executarse concorrentemente de maneira es-
peculativa (usando para elo sistemas de detección de conflitos e dúas versións dos datos). O
sistema de TM é o encargado de realizar esta especulación, sendo transparente para o progra-
mador. TM evita moitos dos posibeis fallos xerados polos ferrollos, tales como interbloqueo,
interbloqueo activo ou inversión da prioridade.

Un sistema TM pode ser implementado en hardware (HTM), en software (STM), ou nunha
mestura de ámbolos dous (HyTM). Porén, os sistemas STM normalmente non poden manter
un nivel de rendemento equiparábel aos ferrollos, debido á complexidade que implica estes
sistemas de tipo especulativo, mais si permiten unha flexibilidade total nas políticas de resolu-
ción de conflitos e de manexo das versións dos datos, a diferencia dos sistemas HTM e HyTM.
Os sistemas HTM están implementados enteiramente en hardware, e teñen un rendemento moi
superior a STM, e en moitos casos tamén superior aos ferrollos. Porén, estes sistemas teñen
unha flexibilidade moi limitada. Por último, os sistemas HyTM son un compromiso entre
as dúas implementacións anteriores, con un hardware limitado para executar algunhas tarefas
(por exemplo detección de conflitos), e con unha parte software que da certa flexibilidade
ao sistema. Nesta tese interésannos os sistemas con algún tipo de soporte hardware (HTM e
HyTM).

Ademais de novas abstraccións e linguaxes de programación, tamén é moi importante a
creación de ferramentas para acelerar o proceso de depuración. Tense demostrado que en
moitos casos o tempo investido na programación de programas paralelos destínase en grande
parte á tarefa de depuración do código, debido á dificultade para atopar e corrixir estes erros.
A técnica do "printf" pode resultar útil en erros triviais, mais na maioría dos erros de conco-

Resumo da Tese 179

rrencia, esta técnica é insuficiente. Exemplos destas ferramentas de apoio á depuración son
os detectores de condicións de carreira de datos, sistemas de re-execución determinista, etc.

Os erros máis frecuentes en programación paralela sobre arquitecturas multinúcleo son
debidos ás carreira de datos. Unha condición de carreira ocorre cando dous ou mais fíos
de execución acceden á mesma variable sen a sincronización axeitada, podendo resultar nun
comportamento non desexado. Estes erros son especialmente difíciles de depurar por que
normalmente os seus efectos non se fan notar de maneira inmediata, e son complicados de
localizar. Ao igual que pasa con TM, existen sistemas de detección de condicións de carreira
que están implementados en software [151] [48] [49] [92] [172], e outros que usan hardware
para mellorar o seu rendemento [113] [132].

Entre os diferentes tipos de condicións de carreira, hai unha que nos interesa especial-
mente nesta tese por ser un problema real moi frecuente [140], e por non ter recibido até
agora moita atención por parte da comunidade investigadora. Esta é a condición de carreira
asimétrica, que ocorre cando unha un fío accede a variables compartidas coa sincronización
adecuada, mentres que outro fío accede a estas mesmas variables sen ningún tipo de sin-
cronización. O escenario típico no que ocorren estes erros é cando nun programa hai un fío
correctamente sincronizado, e outro fío (tipicamente externo, tal como librerías, etc.) non o
suficientemente ben probado e que accede a variables compartidas sen a sincronización ade-
cuada, o que desencadea nun funcionamento imprevisíbel. Todos os detectores de condicións
de carreira asimétricas previos están implementados en software [140] [137], e é nesta tese
cando se propón o primeiro sistema hardware para detectar e ademais tolerar condicións de
carreira asimétricas.

Todas estas ferramentas desenvolvidas para facilitar a accesibilidade da programación par-
alela teñen en común que, para obter un rendemento razoábel, precisan de algún tipo de
soporte hardware. Por iso non é estraño que este tipo de ferramentas veñan acompañadas
de aceleración hardware para manter un rendemento aceptábel. Para mostra, salientar que
os principais fabricantes de procesadores multinúcleo (Intel, AMD, IBM) contan con proce-
sadores con soporte hardware para TM, ben en forma de prototipos ou como procesadores
comerciais que xa están no mercado (como por exemplo o Intel Haswell ou o Blue Gene/Q).

Un dos elementos de soporte hardware máis prometedores son as firmas [20] hardware,
que poden ser usadas en grande variedade de ferramentas con diferentes propósitos, e pro-
porcionan un aumento de rendemento significativo comparado co seu custo. As firmas son
elementos de tamaño delimitado que poden albergar unha representación probabilística dun

180 Resumo da Tese

número ilimitado de direccións de memoria, e ademais poden comprobar se unha determinada
dirección de memoria foi previamente introducida na firma. Unha firma está composta por
un elemento de almacenamento (rexistro) e mais unha ou mais funcións de hash que serven
para codificar as direccións cando son introducidas no rexistro. Para comprobar se unha di-
rección foi previamente introducida na firma, a dirección é codificada coas funcións de hash,
que devolven as posicións dos bits do rexistro; se todos os bits están a un, a firma reporta
que a dirección foi previamente introducida na firma, pero reporta que non foi introducida se
cando menos un bit é cero. Este proceso pode reportar falsos positivos (reportar pertenza á
firma cando en realidade non pertence) debido a que pode producirse solapamento entre as
direccións da firma polo tamaño limitado de esta. Porén, nunca se van a producir falsos neg-
ativos (se unha dirección foi previamente introducida na firma, o resultado da comprobación
será sempre positiva).

Contribucións

No contexto presentado anteriormente, a nosa tese móvese a cabalo entre ferramentas de
soporte á programación paralela e as firmas como soporte hardware en procesadores mult-
inúcleo. O noso obxectivo é explorar e optimizar o uso das firmas hardware como apoio
para mellorar o rendemento de ferramentas relacionadas coa programación paralela, así como
xeneralizar e flexibilizar o uso das firmas en procesadores multinúcleo de propósito xeral.
Especificamente, nesta tese propoñemos: un filtro para sistemas Hardware TM (HTM) basea-
dos en firmas hardware que permite reducir o tamaño das mesmas, o primeiro sistema hard-
ware que detecta e tolera condicións de carreira asimétricas, e un módulo hardware de firmas
flexibeis adecuado para satisfacer adecuadamente as demandas das diferentes aplicacións e
ferramentas que o requiran nun procesador multinúcleo de propósito xeral. A continuación
describimos estas contribucións en máis detalle.

Reducindo o Uso de Firmas nun Sistema HTM

Tomando como base un HTM baseado en firmas ven coñecido [183], deseñamos un filtro que
permite reducir o uso das firmas hardware por parte do sistema base.

Este filtro, chamado CFM-TM [123], introduce lixeiras modificacións no protocolo de
coherencia cache, así como un bit adicional (chamado WTx) en cada liña de memoria caché
privada de primeiro nivel. Este bit adicional é o que indica (se o seu valor é un) que a liña

Resumo da Tese 181

cache está sendo xestionada polo CFM-TM, e polo tanto non ten que ser xestionado polo
sistema HTM de base. A xestión por parte do filtro das liñas transaccionais é o seguinte:
cando se produce un acceso de escritura dentro dunha transacción que pode ser manexado
polo CFM-TM (como veremos, non todos os datos transaccionais poden ser manexados polo
filtro), o bit WTx da liña correspondente ponse a un; con esta operación conseguimos manter
a nova versión da liña transaccional (especulativa) na cache privada de primeiro nivel (L1),
mentres que a versión vella da liña mantense na caché compartida de segundo nivel (L2).
Ademais, este bit tamén será consultado para a detección de conflitos causados polos accesos
doutros núcleos (aproveitando as mensaxes xeradas polo protocolo de coherencia caché).

Cando unha liña transaccional é manexada polo CFM-TM, esta non deixará o filtro até
que remate a transacción. Isto implica que todas as liñas na caché L1 co bit WTx a un non
poderán ser desaloxadas da mesma até que remate a transacción. Para conseguir isto, é preciso
modificar o algoritmo de substitución de liñas cache, para que as liñas co bit WTx a un non
poidan ser substituídas. Por esta razón, hai que poñer límites á capacidade do filtro para que
a cache non chegue a un estado de interbloqueo.

Na avaliación do noso filtro observamos que se consegue unha redución da firma de es-
critura de até un 75%, conservando a mesma porcentaxe de falsos positivos que nun sistema
sen filtro. Ademáis, o rendemento do sistema permanece practicamente inalterado coa intro-
dución do filtro, e baixo certas circunstancias, conséguese mesmo un aumento considerábel
do rendemento (para un dos programas usados, mellórase o rendemento do sistema global nun
40%).

Tolerando Condicións de Carreira Asimétricas con un Módulo de Fir-
mas Hardware

Neste traballo deseñamos o primeiro módulo de firmas hardware (chamado Pacman) que de-
tecta e tolera condicións de carreira asimétricas [132] 1 (todas as propostas anteriores foran
desenvolvidas en software). Este módulo aproveita a información contida nas mensaxes do
protocolo de coherencia caché para facer o seguimento das liñas caché accedidas durante as
seccións críticas, así como aqueles accesos fora das rexións críticas coas que poden ter con-
flito. Mediante unhas mínimas modificacións no protocolo de coherencia, Pacman pode pro-

1Este traballo foi desenvolvido na Universidade de Illinois en Urbana-Champaign en colaboración cos membros
do grupo I-ACOMA.

182 Resumo da Tese

texer e tolerar condicións de carreira asimétricas. A información de todas as liñas é gardada
por Pacman en firmas hardware, unha por cada posíbel fío de execución.

O funcionamento básico de Pacman é o seguinte: cando un fío de execución entra nunha
sección crítica, Pacman activa a firma asociada a ese fío de execución, e empeza a introducir
todas as direccións das liñas caché ás que se está accedendo nesa sección crítica; no caso de
que outro fío de execución intente acceder de maneira non sincronizada a algunha dirección
previamente introducida na firma, a condición de carreira asimétrica é detectada. Ademais,
Pacman permite que o fío correctamente sincronizado continúe a súa execución, mentres que
o fío que accede de maneira non sincronizada é paralizado por Pacman até que o outro fío sae
da súa rexión crítica.

Pacman sitúase na rede de interconexión do procesador multinúcleo, e é capaz de rastrear
todos os mensaxes de coherencia do sistema. Porén, hai situacións nas que o protocolo de
coherencia caché non xera ningunha mensaxe, pero que Pacman debería rexistrar para o seu
correcto funcionamento. Hai tres tipos de situacións: (1) cando un fío entra nunha sección
crítica, algunhas liñas caché poden estar nun estado que permita ao fío acceder a estas liñas
sen xerar ningunha mensaxe de coherencia, (2) cando se producen substitucións silenciosas
de liñas caché (que non xeran mensaxes de coherencia) durante as seccións críticas e (3), e
nas operacións de sincronización (adquirir e liberar os ferrollos). Todas estas situacións resól-
vense incluíndo modificacións moi pequenas no protocolo de coherencia para xerar mensaxes
adicionais que apenas teñen influencia no rendemento do sistema. Ademais, Pacman resolve
eficientemente algunhas situacións de potenciais bloqueos do sistema.

A implementación hardware de Pacman é moi sinxela, ten unha repercusión case nula
no tempo de execución dos programas (nas probas realizadas, a media de deterioro do ren-
demento non supera o 0.1%), e consegue detectar con eficiencia as condicións de carreira
asimétricas. Concretamente, nas nosas probas Pacman foi capaz de detectar dous erros que
non foran descubertos antes en dous programas robustos, e todas as condicións de carreira
asimétricas dun programa que foi modificado artificialmente para xerar condicións de carreira
asimétricas de maneira continua.

Implementando un Módulo Flexíbel de Firmas Hardware

Os traballos con firmas realizados con TM e con detección de condicións de carreira, xunto
con moitos traballos actuais para facilitar e mellorar a programación paralela, servíronos para
darnos conta de que as firmas son unhas estruturas hardware que poden ser usadas en moitas

Resumo da Tese 183

ferramentas, polo que teñen potencial para ser incorporadas en procesadores multinúcleo de
propósito xeral. Porén, as firmas hardware teñen unha estrutura demasiado ríxida para que
poida ser usada de maneira xeral.

Neste traballo propoñemos un módulo flexíbel de firmas hardware para optimizar o uso
das firmas nun procesador multinúcleo de propósito xeral. Este módulo, chamado FlexSig

[122], asigna firmas hardware de tamaño variable (en función da demanda) ás ferramentas e
aplicacións que as solicitan. FlexSig pode albergar unha grande cantidade de firmas cando a
súa demanda é moi alta, e cando a demanda e baixa, FlexSig consegue unha taxa de falsos
positivos moi baixa.

O funcionamento de FlexSig basease nos seguintes principios:

– FlexSig está composto por un certo número de recursos que poden ser agrupados para
formar firmas de diferentes tamaños.

– FlexSig sempre trata de usar o máximo número de recursos e repartilos equitativamente
entre as firmas presentes no módulo.

– As firmas aloxadas en FlexSig poden decrecer en tamaño en tempo de execución (isto
repercute no número de falsos positivos), pero non poden aumentar.

Cando se queren asignar recursos de FlexSig para albergar unha nova firma, pódense dar
tres casos, que FlexSig resolve da seguinte maneira:

1. FlexSig ten todos os recursos libres: todos os recursos de FlexSig son asignados á nova
firma.

2. FlexSig ten todos os seus recursos ocupados: libéranse algúns recursos das firmas que
teñen recursos xa asignados en FlexSig para deixar espazo para a nova firma, sempre
tendo en conta o principio de equidade entre firmas.

3. FlexSig ten parte dos seus recursos sen usar, e parte deles asignados a firmas: asígnanse
á nova firma os recursos libres da FlexSig, e se non son suficientes para cumprir o
principio de equidade entre firmas, libéranse os recursos necesarios de outras firmas
para manter este principio.

A avaliación de FlexSig está feita nun sistema de TM, e mostra a grande redución no
número de falsos positivos de FlexSig con respecto a firmas convencionais. Especificamente,

184 Resumo da Tese

FlexSig mellora considerablemente o rendemento das firmas convencionais cando o número
de transaccións medias no módulo é baixo, e ao mesmo tempo, é capaz de manexar moitas
transaccións ao mesmo tempo (a costa dos falsos positivos), o que lle confire unha gran flexi-
bilidade.

Asignación Asimétrica nun Módulo Flexíbel de Firmas para Procesado-
res Multinúcleo

FlexSig ten un algoritmo de asignación de recursos simétrico, é dicir, asigna os recursos de
forma igualitaria entre todos os solicitantes. Porén, moitas das aplicacións e ferramentas que
usan firmas non requiren os mesmos tamaños de firma, polo que o comportamento de FlexSig

ten moito potencial de mellora en aplicacións deste tipo.
Esta proposta expón diferentes algoritmos asimétricos de varios niveis baseados en priori-

dades para a asignación de recursos ás firmas. Na avaliación usamos un sistema TM con unha
firma de lectura e outra de escritura por transacción. Isto permítenos distinguir dous niveis de
prioridade: un referente aos distintos tamaños das transaccións (as transaccións mais grandes
ou que requiren mais recursos terán unha prioridade alta, e os que necesitan menos terán unha
prioridade baixa), e outro, interno a cada transacción, que ten en conta o tamaño relativo do
conxunto de lectura e do conxunto de escritura (normalmente a firma de lectura terá maior
prioridade que a de escritura).

Neste traballo describimos os algoritmos en detalle, e ademais propoñemos unha imple-
mentación hardware altamente eficiente e paralela, tanto para algoritmos simétricos como
asimétricos.

A nosa avaliación experimental explora diferentes combinacións dos dous niveis de pri-
oridades expostos anteriormente. Os resultados evidencian unha mellora considerábel dos
algoritmos asimétricos con respecto aos simétricos, conseguindo melloras superiores ao 60%
en varios casos.

Conclusións e Traballo Futuro

Para concluír, en poucas palabras, podemos resumir as contribucións desta tese da seguinte
maneira: elaboramos técnicas para a redución do uso de firmas nun sistema HTM, propoñe-
mos a primeira aproximación hardware para detectar e tolerar condicións de carreira asimétri-
cas baseada nun módulo de firmas, deseñamos un novo módulo de firmas flexíbel para ser

Resumo da Tese 185

usado por aplicacións e ferramentas en procesadores multinúcleo, e implementamos novos
algoritmos para estes módulo de firmas flexíbeis que melloran de maneira considerábel os
resultados dos anteriores.

Por último, o traballo futuro relacionado con esta tese podería ir dirixido en varios camiños,
dos cales queremos destacar as seguintes:

– O filtro CFM-TM podería ser adaptado para o seu uso noutras aplicacións en procesa-
dores multinúcleo, como por exemplo elisión especulativa de ferrollos, que comparte
moitas características comúns con TM.

– Pacman podería ser adaptado para detectar condicións de carreira asimétricas noutras
arquitecturas, como por exemplo GPUs.

– Pacman podería ser ampliado para detectar outro tipo de erros e condicións de carreira,
como por exemplo violacións de atomicidade, e podería ser utilizado con outro tipo de
mecanismos de sincronización (como TM).

– Dado que FlexSig foi probado soamente nun sistema TM, propoñemos probalo tamén
con outras ferramentas como detectores de condicións de carreira, sistemas de re-
execución determinista, etc.

– Fora dos procesadores multinúcleo, as firmas son tamén amplamente usadas en apli-
cacións de rede tales como clasificación de paquetes, inspección de paquetes, proto-
colos de encamiñamento, etc. Probar FlexSig neste escenario sería un bo test para a
flexibilidade e adaptabilidade do módulo.

Bibliography

[1] Martín Abadi, Tim Harris, and Mojtaba Mehrara. Transactional memory with strong
atomicity using off-the-shelf memory protection hardware. In Proceedings of the 14th

ACM SIGPLAN symposium on Principles and practice of parallel programming,
PPoPP ’09, pages 185–196, New York, NY, USA, 2009. ACM.

[2] Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay Menon, Brian R. Murphy, Bratin Saha,
and Tatiana Shpeisman. Compiler and runtime support for efficient software
transactional memory. In Proceedings of the 2006 ACM SIGPLAN conference on

Programming language design and implementation, PLDI ’06, pages 26–37, New
York, NY, USA, 2006. ACM.

[3] M. Ahmadi and S. Wong. K-stage pipelined bloom filter for packet classification. In
Computational Science and Engineering, 2009. CSE ’09. International Conference

on, volume 2, pages 64–70, 2009.

[4] P Almeida, C Baquero, N Preguica, and D Hutchison. Scalable Bloom Filters.
Information Processing Letters, 101(6):255–261, March 2007.

[5] AMD. The industry-changing impact of accelerated computing, 2008.

[6] AMD. Advanced synchronization facility – proposed architectural specification, 2009.

[7] Gene M. Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of the April 18-20, 1967, spring joint computer

conference, AFIPS ’67 (Spring), pages 483–485, New York, NY, USA, 1967. ACM.

[8] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E. Leiserson, and
Sean Lie. Unbounded transactional memory. In Proceedings of the 11th International

188 Bibliography

Symposium on High-Performance Computer Architecture, pages 316–327,
Washington, DC, USA, 2005. IEEE Computer Society.

[9] James P. Anderson, Samuel A. Hoffman, Joseph Shifman, and Robert J. Williams.
D825 - a multiple-computer system for command & control. In Proceedings of the

December 4-6, 1962, fall joint computer conference, AFIPS ’62 (Fall), pages 86–96,
New York, NY, USA, 1962. ACM.

[10] David F. Bacon and Seth Copen Goldstein. Hardware-assisted replay of
multiprocessor programs. In Proceedings of the 1991 ACM/ONR workshop on

Parallel and distributed debugging, PADD ’91, pages 194–206, New York, NY, USA,
1991. ACM.

[11] David A. Bader and Kamesh Madduri. Design and implementation of the hpcs graph
analysis benchmark on symmetric multiprocessors. In Proceedings of the 12th

international conference on High Performance Computing, HiPC’05, pages 465–476,
Berlin, Heidelberg, 2005. Springer-Verlag.

[12] D. H. Bailey. Ffts in external of hierarchical memory. In Proceedings of the 1989

ACM/IEEE conference on Supercomputing, Supercomputing ’89, pages 234–242,
New York, NY, USA, 1989. ACM.

[13] A. O. Balan, L. Sigal, and M. J. Black. A quantitative evaluation of video-based 3d
person tracking. In Proceedings of the 14th International Conference on Computer

Communications and Networks, ICCCN ’05, pages 349–356, Washington, DC, USA,
2005. IEEE Computer Society.

[14] Prithviraj Banerjee. Parallel algorithms for VLSI computer-aided design.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994.

[15] Lee Baugh, Naveen Neelakantam, and Craig Zilles. Using hardware memory
protection to build a high-performance, strongly-atomic hybrid transactional memory.
In Proceedings of the 35th Annual International Symposium on Computer

Architecture, ISCA ’08, pages 115–126, Washington, DC, USA, 2008. IEEE
Computer Society.

[16] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec
benchmark suite: characterization and architectural implications. In Proceedings of

Bibliography 189

the 17th international conference on Parallel architectures and compilation

techniques, PACT ’08, pages 72–81, New York, NY, USA, 2008. ACM.

[17] Fischer Black and Myron Scholes. The pricing of options and corporate liabilities.
Journal of Political Economy, 81(3):pp. 637–654, 1973.

[18] G. Blake, R.G. Dreslinski, and T. Mudge. A survey of multicore processors. Signal

Processing Magazine, IEEE, 26(6):26 –37, november 2009.

[19] Guy E. Blelloch, Charles E. Leiserson, Bruce M. Maggs, C. Greg Plaxton, Stephen J.
Smith, and Marco Zagha. A comparison of sorting algorithms for the connection
machine cm-2. In Proceedings of the third annual ACM symposium on Parallel

algorithms and architectures, SPAA ’91, pages 3–16, New York, NY, USA, 1991.
ACM.

[20] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 13(7):422–426, July 1970.

[21] U. Bondhugula, M. Baskaran, A. Hartono, S. Krishnamoorthy, J. Ramanujam,
A. Rountev, and P. Sadayappan. Towards effective automatic parallelization for
multicore systems. In Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE

International Symposium on, pages 1 –5, april 2008.

[22] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership types for safe
programming: preventing data races and deadlocks. In Proceedings of the 17th ACM

SIGPLAN conference on Object-oriented programming, systems, languages, and

applications, OOPSLA ’02, pages 211–230, New York, NY, USA, 2002. ACM.

[23] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike
Houston, and Pat Hanrahan. Brook for gpus: stream computing on graphics hardware.
In ACM SIGGRAPH 2004 Papers, SIGGRAPH ’04, pages 777–786, New York, NY,
USA, 2004. ACM.

[24] David Callahan and Ken Kennedy. Compiling programs for distributed-memory
multiprocessors. The Journal of Supercomputing, 2:151–169, 1988.

[25] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun. STAMP:
Stanford transactional applications for multi-processing. In IISWC ’08: Proceedings

190 Bibliography

of The IEEE International Symposium on Workload Characterization, September
2008.

[26] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions
(extended abstract). In Proceedings of the ninth annual ACM symposium on Theory of

computing, STOC ’77, pages 106–112, New York, NY, USA, 1977. ACM.

[27] Calin Cascaval, Colin Blundell, Maged Michael, Harold W. Cain, Peng Wu, Stefanie
Chiras, and Siddhartha Chatterjee. Software transactional memory: Why is it only a
research toy? Queue, 6(5):46–58, September 2008.

[28] Jared Casper, Tayo Oguntebi, Sungpack Hong, Nathan G. Bronson, Christos
Kozyrakis, and Kunle Olukotun. Hardware acceleration of transactional memory on
commodity systems. In Proceedings of the sixteenth international conference on

Architectural support for programming languages and operating systems, ASPLOS
’11, pages 27–38, New York, NY, USA, 2011. ACM.

[29] Luis Ceze, James Tuck, Pablo Montesinos, and Josep Torrellas. Bulksc: bulk
enforcement of sequential consistency. In Proceedings of the 34th annual

international symposium on Computer architecture, ISCA ’07, pages 278–289, New
York, NY, USA, 2007. ACM.

[30] K. M. Chandy and J. Misra. The drinking philosophers problem. ACM Trans.

Program. Lang. Syst., 6(4):632–646, October 1984.

[31] Francis Chang, Kang Li, and Wu chang Feng. Approximate caches for packet
classification. In INFOCOM, 2004.

[32] Shailender Chaudhry, Robert Cypher, Magnus Ekman, Martin Karlsson, Anders
Landin, Sherman Yip, Håkan Zeffer, and Marc Tremblay. Rock: A high-performance
sparc cmt processor. IEEE Micro, 29(2):6–16, March 2009.

[33] Jong-Deok Choi et al. Efficient and precise datarace detection for multithreaded
object-oriented programs. In PLDI, 2002.

[34] Jong-Deok Choi and Harini Srinivasan. Deterministic replay of java multithreaded
applications. In Proceedings of the SIGMETRICS symposium on Parallel and

distributed tools, SPDT ’98, pages 48–59, New York, NY, USA, 1998. ACM.

Bibliography 191

[35] W. Choi and J. Draper. Improving utilization of hardware signatures in transactional
memory. Parallel and Distributed Systems, IEEE Transactions on, PP(99):1–1, 2012.

[36] Woojin Choi and Jeff Draper. Unified signatures for improving performance in
transactional memory. In IPDPS, pages 817–827. IEEE, 2011.

[37] Dave Christie, Jae-Woong Chung, Stephan Diestelhorst, Michael Hohmuth, Martin
Pohlack, Christof Fetzer, Martin Nowack, Torvald Riegel, Pascal Felber, Patrick
Marlier, and Etienne Rivière. Evaluation of amd’s advanced synchronization facility
within a complete transactional memory stack. In Proceedings of the 5th European

conference on Computer systems, EuroSys ’10, pages 27–40, New York, NY, USA,
2010. ACM.

[38] Jaewoong Chung, Luke Yen, Stephan Diestelhorst, Martin Pohlack, Michael
Hohmuth, David Christie, and Dan Grossman. Asf: Amd64 extension for lock-free
data structures and transactional memory. In Proceedings of the 2010 43rd Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO ’43, pages
39–50, Washington, DC, USA, 2010. IEEE Computer Society.

[39] Cliff Click. And now some hardware transactional memory comments. . . , 2009.

[40] Cuda. http://www.nvidia.com/object/cuda_home_new.html.

[41] David Culler, J.P. Singh, and Anoop Gupta. Parallel Computer Architecture: A

Hardware/Software Approach. Morgan Kaufmann, 1st edition, 1998. The Morgan
Kaufmann Series in Computer Architecture and Design.

[42] Luke Dalessandro, Michael F. Spear, and Michael L. Scott. Norec: streamlining stm
by abolishing ownership records. In Proceedings of the 15th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, PPoPP ’10, pages
67–78, New York, NY, USA, 2010. ACM.

[43] Jonathan Deutscher and Ian Reid. Articulated body motion capture by stochastic
search. Int. J. Comput. Vision, 61(2):185–205, February 2005.

[44] Joseph Devietti, Jacob Nelson, Tom Bergan, Luis Ceze, and Dan Grossman. Rcdc: a
relaxed consistency deterministic computer. In Proceedings of the sixteenth

international conference on Architectural support for programming languages and

operating systems, ASPLOS XVI, pages 67–78, New York, NY, USA, 2011. ACM.

http://www.nvidia.com/object/cuda_home_new.html

192 Bibliography

[45] Dave Dice, Yossi Lev, Mark Moir, and Daniel Nussbaum. Early experience with a
commercial hardware transactional memory implementation. In Proceedings of the

14th international conference on Architectural support for programming languages

and operating systems, ASPLOS ’09, pages 157–168, New York, NY, USA, 2009.
ACM.

[46] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking ii. In Proceedings of the

20th international conference on Distributed Computing, DISC’06, pages 194–208,
Berlin, Heidelberg, 2006. Springer-Verlag.

[47] Edsger W. Dijkstra. Hierarchical ordering of sequential processes. Acta Inf.,
1:115–138, 1971.

[48] Dawson Engler and Ken Ashcraft. Racerx: effective, static detection of race
conditions and deadlocks. In Proceedings of the nineteenth ACM symposium on

Operating systems principles, SOSP ’03, pages 237–252, New York, NY, USA, 2003.
ACM.

[49] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk Olynyk.
Effective data-race detection for the kernel. In Proceedings of the 9th USENIX

conference on Operating systems design and implementation, OSDI’10, pages 1–16,
Berkeley, CA, USA, 2010. USENIX Association.

[50] Apache Software Foundation. Apache HTTP Server Reference Manual - for Apache

version 2.2.17. Network Theory Ltd., 2010.

[51] Keir Fraser and Tim Harris. Concurrent programming without locks. ACM Trans.

Comput. Syst., 25(2), May 2007.

[52] Transactional memory in gcc.
http://gcc.gnu.org/wiki/TransactionalMemory.

[53] D. Geer. Chip makers turn to multicore processors. Computer, 38(5):11 – 13, may
2005.

[54] Kourosh Gharachorloo. Memory consistency models for shared-memory
multiprocessors. Technical report, 1995.

http://gcc.gnu.org/wiki/TransactionalMemory

Bibliography 193

[55] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop
Gupta, and John Hennessy. Memory consistency and event ordering in scalable
shared-memory multiprocessors. In Proceedings of the 17th annual international

symposium on Computer Architecture, ISCA ’90, pages 15–26, New York, NY, USA,
1990. ACM.

[56] Anwar Ghuloum. What makes parallel programming hard?, 2007.

[57] P.B. Gibbons. What good are shared-memory models? In Parallel Processing, 1996.

Proceedings of the 1996 ICPP Workshop on Challenges for, pages 103 –114, aug
1996.

[58] Leslie Frederick Greengard. The rapid evaluation of potential fields in particle

systems. PhD thesis, New Haven, CT, USA, 1987. AAI8727216.

[59] M. Gries, U. Hoffmann, M. Konow, and M. Riepen. Scc: A flexible architecture for
many-core platform research. Computing in Science Engineering, 13(6):79 –83,
nov.-dec. 2011.

[60] Rachid Guerraoui, Maurice Herlihy, and Bastian Pochon. Polymorphic Contention

Management. 2005.

[61] Deke Guo, Jie Wu, Honghui Chen, Ye Yuan, and Xueshan Luo. The dynamic bloom
filters. IEEE Trans. on Knowl. and Data Eng., 22(1):120–133, January 2010.

[62] Lance Hammond, Peter G. Gyarmati, Christos Kozyrakis, Kunle Olukotun, Brian D.
Carlstrom, Ben Hertzberg, Vicky Wong, Mike Chen, John D. Davis, Manohar K.
Prabhu, and Honggo Wijaya. Transactional memory coherence and consistency (tcc).
In IN PROCEEDINGS OF THE 11TH INTL. SYMPOSIUM ON COMPUTER

ARCHITECTURE (ISCA, 2004.

[63] Lance Hammond, Mark Willey, and Kunle Olukotun. Data speculation support for a
chip multiprocessor. In Proceedings of the eighth international conference on

Architectural support for programming languages and operating systems,
ASPLOS-VIII, pages 58–69, New York, NY, USA, 1998. ACM.

[64] Pat Hanrahan, David Salzman, and Larry Aupperle. A rapid hierarchical radiosity
algorithm. In Proceedings of the 18th annual conference on Computer graphics and

194 Bibliography

interactive techniques, SIGGRAPH ’91, pages 197–206, New York, NY, USA, 1991.
ACM.

[65] P.B. Hansen. The programming language concurrent pascal. Software Engineering,

IEEE Transactions on, SE-1(2):199 –207, june 1975.

[66] Ruud Haring, Martin Ohmacht, Thomas Fox, Michael Gschwind, David Satterfield,
Krishnan Sugavanam, Paul Coteus, Philip Heidelberger, Matthias Blumrich, Robert
Wisniewski, alan gara, George Chiu, Peter Boyle, Norman Chist, and Changhoan
Kim. The ibm blue gene/q compute chip. Micro, IEEE, 32(2):48 –60, march-april
2012.

[67] T. Harris, A. Cristal, O.S. Unsal, E. Ayguade, F. Gagliardi, B. Smith, and M. Valero.
Transactional memory: An overview. Micro, IEEE, 27(3):8 –29, may-june 2007.

[68] Tim Harris, Mark Plesko, Avraham Shinnar, and David Tarditi. Optimizing memory
transactions. In Proceedings of the 2006 ACM SIGPLAN conference on Programming

language design and implementation, PLDI ’06, pages 14–25, New York, NY, USA,
2006. ACM.

[69] David Heath, Robert Jarrow, and Andrew Morton. Bond pricing and the term structure
of interest rates: A new methodology for contingent claims valuation. Econometrica,
60(1):77–105, January 1992.

[70] Mark Andrew Heinrich. The performance and scalability of distributed

shared-memory cache coherence protocols. PhD thesis, Stanford, CA, USA, 1999.
AAI9924431.

[71] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer, III.
Software transactional memory for dynamic-sized data structures. In Proceedings of

the twenty-second annual symposium on Principles of distributed computing, PODC
’03, pages 92–101, New York, NY, USA, 2003. ACM.

[72] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural support
for lock-free data structures. In Proceedings of the 20th annual international

symposium on computer architecture, ISCA ’93, pages 289–300, New York, NY,
USA, 1993. ACM.

Bibliography 195

[73] Sungpack Hong, T. Oguntebi, J. Casper, N. Bronson, C. Kozyrakis, and K. Olukotun.
Eigenbench: A simple exploration tool for orthogonal tm characteristics. In Workload

Characterization (IISWC), 2010 IEEE International Symposium on, pages 1 –11, dec.
2010.

[74] Version Sparc International, David L. Weaver, and Tom Germond. The sparc
architecture manual, 1992.

[75] Introduction to parallel computing.
https://computing.llnl.gov/tutorials/parallel_comp/.

[76] S. Burckhardt J. Erickson, M. Musuvathi and K. Olynyk. Effective data-race detection
for the kernel, October 2010.

[77] Christian Jacobi, Timothy Slegel, and Dan Greiner. Transactional memory
architecture and implementation for ibm system z. In Proceedings of the 2012 45th

Annual IEEE/ACM International Symposium on Microarchitecture, MICRO ’12,
pages 25–36, Washington, DC, USA, 2012. IEEE Computer Society.

[78] Chi Jing. Application and research on weighted bloom filter and bloom filter in web
cache. In Web Mining and Web-based Application, 2009. WMWA ’09. Second

Pacific-Asia Conference on, pages 187–191, 2009.

[79] C. R. Johns and D. A. Brokenshire. Introduction to the cell broadband engine
architecture. IBM Journal of Research and Development, 51(5):503 –519, sept. 2007.

[80] David Kanter. Analysis of haswell’s transactional memory,
http://www.realworldtech.com/page.cfm?articleid=rwt021512050738, 2012.

[81] Chi keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa, and Reddi Kim Hazelwood. Pin: Building
customized program analysis tools with dynamic instrumentation. In In Programming

Language Design and Implementation, pages 190–200. ACM Press, 2005.

[82] T. Kocak and I. Kaya. Low-power bloom filter architecture for deep packet inspection.
Communications Letters, IEEE, 10(3):210–212, 2006.

https://computing.llnl.gov/tutorials/parallel_comp/

196 Bibliography

[83] Kunal Korgaonkar, Kashyap Garimella, and Kamakoti Veezhinathan.
Size-proportional signature sharing for transactional memory systems. FASPP

workshop, June 2012.

[84] Sanjeev Kumar, Michael Chu, Christopher J. Hughes, Partha Kundu, and Anthony
Nguyen. Hybrid transactional memory. In Proceedings of the eleventh ACM

SIGPLAN symposium on Principles and practice of parallel programming, PPoPP
’06, pages 209–220, New York, NY, USA, 2006. ACM.

[85] R. M. N. Mishra L. O’Callaghan, A. Meyerson and S. Guha. High-performance
clustering of streams and large data sets. In In Proceedings of the 18th International

Conference on Data Engineering, February 2002.

[86] L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. Comput., 28(9):690–691, September 1979.

[87] James R. Larus and Ravi Rajwar. Transactional Memory. Morgan & Claypool, 2006.

[88] Charles E. Leiserson. The cilk++ concurrency platform. In Proceedings of the 46th

Annual Design Automation Conference, DAC ’09, pages 522–527, New York, NY,
USA, 2009. ACM.

[89] Xueming Li, Lijuan Peng, and Chunlin Zhang. Application of bloom filter in grid
information service. In Multimedia Information Networking and Security (MINES),

2010 International Conference on, pages 866–870, 2010.

[90] Changhui Lin, Vijay Nagarajan, and Rajiv Gupta. Efficient sequential consistency
using conditional fences. In Proceedings of the 19th international conference on

Parallel architectures and compilation techniques, PACT ’10, pages 295–306, New
York, NY, USA, 2010. ACM.

[91] D. B. Lomet. Process structuring, synchronization, and recovery using atomic actions.
In Proceedings of an ACM conference on Language design for reliable software,
pages 128–137, New York, NY, USA, 1977. ACM.

[92] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. Avio: detecting atomicity
violations via access interleaving invariants. In Proceedings of the 12th international

conference on Architectural support for programming languages and operating

systems, ASPLOS-XII, pages 37–48, New York, NY, USA, 2006. ACM.

Bibliography 197

[93] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. Avio: Detecting atomicity
violations via access interleaving invariants. In In ASPLOS, pages 37–48, 2006.

[94] Brandon Lucia, Joseph Devietti, Karin Strauss, and Luis Ceze. Atom-aid: Detecting
and surviving atomicity violations. In Proceedings of the 35th Annual International

Symposium on Computer Architecture, ISCA ’08, pages 277–288, Washington, DC,
USA, 2008. IEEE Computer Society.

[95] Marc Lupon, Grigorios Magklis, and Antonio Gonzalez. Fastm: A log-based
hardware transactional memory with fast abort recovery. In Proceedings of the 2009

18th International Conference on Parallel Architectures and Compilation Techniques,
PACT ’09, pages 293–302, Washington, DC, USA, 2009. IEEE Computer Society.

[96] Marc Lupon, Grigorios Magklis, and Antonio Gonzalez. A dynamically adaptable
hardware transactional memory. In Proceedings of the 2010 43rd Annual IEEE/ACM

International Symposium on Microarchitecture, MICRO ’43, pages 27–38,
Washington, DC, USA, 2010. IEEE Computer Society.

[97] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. Ferret: a toolkit
for content-based similarity search of feature-rich data. In Proceedings of the 1st ACM

SIGOPS/EuroSys European Conference on Computer Systems 2006, EuroSys ’06,
pages 317–330, New York, NY, USA, 2006. ACM.

[98] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren, Gustav
Hållberg, Johan Högberg, Fredrik Larsson, Andreas Moestedt, and Bengt Werner.
Simics: A full system simulation platform. Computer, 35(2):50–58, February 2002.

[99] Virendra J. Marathe, William N. Scherer, and Michael L. Scott. Adaptive software
transactional memory. In Proceedings of the 19th international conference on

Distributed Computing, DISC’05, pages 354–368, Berlin, Heidelberg, 2005.
Springer-Verlag.

[100] Virendra J. Marathe, Michael F. Spear, Christopher Heriot, Athul Acharya, David
Eisenstat, William N. Scherer Iii, and Michael L. Scott. Lowering the overhead of
nonblocking software transactional memory. In Dept. of Computer Science, Univ. of

Rochester, 2006.

198 Bibliography

[101] Milo Martin, Colin Blundell, and E. Lewis. Subtleties of transactional memory
atomicity semantics. IEEE Comput. Archit. Lett., 5(2):17–17, July 2006.

[102] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty, Min
Xu, Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and David A. Wood.
Multifacet’s general execution-driven multiprocessor simulator (gems) toolset.
SIGARCH Comput. Archit. News, 33(4):92–99, November 2005.

[103] K Martinez and J Cupitt. Vips - a highly tuned image processing software
architecture. In IEEE International Conference on Image Processing, volume 2, pages
574–577. IEEE, 2005. Event Dates: Sept. 2005.

[104] Mojtaba Mehrara, Jeff Hao, Po-Chun Hsu, and Scott Mahlke. Parallelizing sequential
applications on commodity hardware using a low-cost software transactional memory.
In Proceedings of the 2009 ACM SIGPLAN conference on Programming language

design and implementation, PLDI ’09, pages 166–176, New York, NY, USA, 2009.
ACM.

[105] Xstm. http://www.xstm.net.

[106] Chi Cao Minh, Martin Trautmann, JaeWoong Chung, Austen McDonald, Nathan
Bronson, Jared Casper, Christos Kozyrakis, and Kunle Olukotun. An effective hybrid
transactional memory system with strong isolation guarantees. In Proceedings of the

34th annual international symposium on Computer architecture, ISCA ’07, pages
69–80, New York, NY, USA, 2007. ACM.

[107] Pablo Montesinos, Luis Ceze, and Josep Torrellas. Delorean: Recording and
deterministically replaying shared-memory multiprocessor execution eficiently. In
Proceedings of the 35th Annual International Symposium on Computer Architecture,
ISCA ’08, pages 289–300, Washington, DC, USA, 2008. IEEE Computer Society.

[108] G. E. Moore. Cramming More Components onto Integrated Circuits. Electronics,
38(8):114–117, April 1965.

[109] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill, and David A.
Wood. Logtm: Log-based transactional memory. In in HPCA, pages 254–265, 2006.

http://www.xstm.net

Bibliography 199

[110] Message passing interface (mpi).
https://computing.llnl.gov/tutorials/mpi/.

[111] Matthias Müller, David Charypar, and Markus Gross. Particle-based fluid simulation
for interactive applications. In Proceedings of the 2003 ACM

SIGGRAPH/Eurographics symposium on Computer animation, SCA ’03, pages
154–159, Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics Association.

[112] A. Muzahid, N. Otsuki, and J. Torrellas. Atomtracker: A comprehensive approach to
atomic region inference and violation detection. In Microarchitecture (MICRO), 2010

43rd Annual IEEE/ACM International Symposium on, pages 287 –297, dec. 2010.

[113] Abdullah Muzahid, Dario Suárez, Shanxiang Qi, and Josep Torrellas. Sigrace:
signature-based data race detection. In Proceedings of the 36th annual international

symposium on Computer architecture, ISCA ’09, pages 337–348, New York, NY,
USA, 2009. ACM.

[114] Satish Narayanasamy, Cristiano Pereira, and Brad Calder. Recording shared memory
dependencies using strata. In Proceedings of the 12th international conference on

Architectural support for programming languages and operating systems,
ASPLOS-XII, pages 229–240, New York, NY, USA, 2006. ACM.

[115] Satish Narayanasamy, Gilles Pokam, and Brad Calder. Bugnet: Continuously
recording program execution for deterministic replay debugging. In Proceedings of

the 32nd annual international symposium on Computer Architecture, ISCA ’05, pages
284–295, Washington, DC, USA, 2005. IEEE Computer Society.

[116] R. Netzer and B. Miller. Improving the accuracy of data race detection. In PPoPP,
1991.

[117] Nvidia. The benefits of multiple cpu cores in mobile devices., 2010.

[118] M. Olszewski, J. Cutler, and J.G. Steffan. Judostm: A dynamic binary-rewriting
approach to software transactional memory. In Parallel Architecture and Compilation

Techniques, 2007. PACT 2007. 16th International Conference on, pages 365 –375,
sept. 2007.

https://computing.llnl.gov/tutorials/mpi/

200 Bibliography

[119] Opencl - the open standard for parallel programming of heterogeneous systems.
http://www.khronos.org/opencl/.

[120] Openmp. http://openmp.org/wp/.

[121] Dstm2 oracle corporation. http://www.oracle.com/us/sun/index.html.

[122] Lois Orosa, Elisardo Antelo, and Javier D. Bruguera. Flexsig: Implementing flexible
hardware signatures. ACM Trans. Archit. Code Optim., 8(4):30:1–30:20, January
2012.

[123] Lois Orosa, Javier D. Bruguera, and Elisardo Antelo. A cache filtering mechanism for
hardware transactional memory systems decoupled from caches. In XX Jornadas de

Paralelismo, A Coruña (Spain), September 2009.

[124] P. M. Ortego and P. Sack. SESC: SuperESCalar Simulator. December 2004.

[125] T. Osano, Y. Uchida, and N. Ishikawa. Routing protocol using bloom filters for
mobile ad hoc networks. In Mobile Ad-hoc and Sensor Networks, 2008. MSN 2008.

The 4th International Conference on, pages 89–94, 2008.

[126] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In Proceedings of the

9th Annual European Symposium on Algorithms, ESA ’01, pages 121–133, London,
UK, UK, 2001. Springer-Verlag.

[127] S.K. Pal, P. Sardana, and K. Yadav. Efficient multilingual keyword search using
bloom filter for cloud computing applications. In Advanced Computing (ICoAC),

2012 Fourth International Conference on, pages 1–7, 2012.

[128] Harish Patil, Cristiano Pereira, Mack Stallcup, Gregory Lueck, and James Cownie.
Pinplay: a framework for deterministic replay and reproducible analysis of parallel
programs. In Proceedings of the 8th annual IEEE/ACM international symposium on

Code generation and optimization, CGO ’10, pages 2–11, New York, NY, USA, 2010.
ACM.

[129] Lin Peng, Lun guo Xie, Xiao qiang Zhang, and Xin yan Xie. Conflict detection via
adaptive signature for software transactional memory. In Computer Engineering and

Technology (ICCET), 2010 2nd International Conference on, volume 2, pages V2–306
–V2–310, april 2010.

http://www.khronos.org/opencl/
http://openmp.org/wp/
http://www.oracle.com/us/sun/index.html

Bibliography 201

[130] Milos Prvulovic and Josep Torrellas. Reenact: Using thread-level speculation
mechanisms to debug data races in multithreaded codes. In International Symposium

on Computer architecture, 2003.

[131] Posix threads programming.
https://computing.llnl.gov/tutorials/pthreads/.

[132] Shanxiang Qi, N. Otsuki, Lois Orosa, A. Muzahid, and J. Torrellas. Pacman:
Tolerating asymmetric data races with unintrusive hardware. In High Performance

Computer Architecture (HPCA), 2012 IEEE 18th International Symposium on, pages
1 –12, feb. 2012.

[133] Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and Yuanyuan Zhou. Rx: treating
bugs as allergies—a safe method to survive software failures. In Proceedings of the

twentieth ACM symposium on Operating systems principles, SOSP ’05, pages
235–248, New York, NY, USA, 2005. ACM.

[134] Ricardo Quislant, Eladio Gutierrez, Oscar Plata, and Emilio L. Zapata. Improving
signatures by locality exploitation for transactional memory. In Proceedings of the

2009 18th International Conference on Parallel Architectures and Compilation

Techniques, pages 303–312, Washington, DC, USA, 2009. IEEE Computer Society.

[135] Ricardo Quislant, Eladio Gutierrez, Oscar Plata, and Emilio L. Zapata. Ls-sig:
Locality-sensitive signatures for transactional memory. IEEE Transactions on

Computers, 99(PrePrints), 2011.

[136] Ricardo Quislant, Eladio Gutierrez, Oscar Plata, and Emilio L. Zapata. Hardware
signature designs to deal with asymmetry in transactional data sets. IEEE

Transactions on Parallel and Distributed Systems, 99(PrePrints), 2012.

[137] Sriram Rajamani, G. Ramalingam, Venkatesh Prasad Ranganath, and Kapil Vaswani.
Isolator: dynamically ensuring isolation in comcurrent programs. In ASPLOS ’09:

Proceeding of the 14th international conference on Architectural support for

programming languages and operating systems, pages 181–192, New York, NY, USA,
2009. ACM.

[138] Ravi Rajwar and James R. Goodman. Speculative lock elision: enabling highly
concurrent multithreaded execution. In Proceedings of the 34th annual ACM/IEEE

https://computing.llnl.gov/tutorials/pthreads/

202 Bibliography

international symposium on Microarchitecture, MICRO 34, pages 294–305,
Washington, DC, USA, 2001. IEEE Computer Society.

[139] M. V. Ramakrishna, E. Fu, and E. Bahcekapili. Efficient hardware hashing functions
for high performance computers. IEEE Trans. Comput., 46:1378–1381, December
1997.

[140] Paruj Ratanaworabhan, Martin Burtscher, Darko Kirovski, Benjamin Zorn, Rahul
Nagpal, and Karthik Pattabiraman. Detecting and tolerating asymmetric races. In
PPoPP ’09: Proceedings of the 14th ACM SIGPLAN symposium on Principles and

practice of parallel programming, pages 173–184, New York, NY, USA, 2009. ACM.

[141] James Reinders. Intel threading building blocks - outfitting C++ for multi-core

processor parallelism. O’Reilly, 2007.

[142] Jose Renau, Basilio Fraguela, James Tuck, Wei Liu, Milos Prvulovic, Luis Ceze,
Smruti Sarangi, Paul Sack, Karin Strauss, and Pablo Montesinos. SESC simulator,
January 2005. http://sesc.sourceforge.net.

[143] Torvald Riegel, Christof Fetzer, and Pascal Felber. Time-based transactional memory
with scalable time bases. In Proceedings of the nineteenth annual ACM symposium on

Parallel algorithms and architectures, SPAA ’07, pages 221–228, New York, NY,
USA, 2007. ACM.

[144] Jim Ruppert. A delaunay refinement algorithm for quality 2-dimensional mesh
generation. In Selected papers from the fourth annual ACM SIAM symposium on

Discrete algorithms, SODA ’93, pages 548–585, Orlando, FL, USA, 1995. Academic
Press, Inc.

[145] Bratin Saha, Ali-Reza Adl-Tabatabai, Anwar Ghuloum, Mohan Rajagopalan,
Richard L. Hudson, Leaf Petersen, Vijay Menon, Brian Murphy, Tatiana Shpeisman,
Eric Sprangle, Anwar Rohillah, Doug Carmean, and Jesse Fang. Enabling scalability
and performance in a large scale cmp environment. In Proceedings of the 2nd ACM

SIGOPS/EuroSys European Conference on Computer Systems 2007, EuroSys ’07,
pages 73–86, New York, NY, USA, 2007. ACM.

[146] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao Minh, and
Benjamin Hertzberg. Mcrt-stm: a high performance software transactional memory

Bibliography 203

system for a multi-core runtime. In Proceedings of the eleventh ACM SIGPLAN

symposium on Principles and practice of parallel programming, PPoPP ’06, pages
187–197, New York, NY, USA, 2006. ACM.

[147] Daniel Sanchez, Luke Yen, Mark D. Hill, and Karthikeyan Sankaralingam.
Implementing signatures for transactional memory. In Proceedings of the 40th Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO 40, pages
123–133, Washington, DC, USA, 2007. IEEE Computer Society.

[148] Sutirtha Sanyal, Sourav Roy, Adrian Cristal, Osman S. Unsal, and Mateo Valero.
Dynamically filtering thread-local variables in lazy-lazy hardware transactional
memory. In Proceedings of the 2009 11th IEEE International Conference on High

Performance Computing and Communications, pages 171–179, Washington, DC,
USA, 2009. IEEE Computer Society.

[149] Vijay Saraswat, Bard Bloom, Igor Peshansky, Olivier Tardieu, and David Grove. X10
language specification. Technical report, IBM, January 2012.

[150] Ruchira Sasanka, Man-Lap Li, Sarita V. Adve, Yen-Kuang Chen, and Eric Debes.
Alp: Efficient support for all levels of parallelism for complex media applications.
ACM Trans. Archit. Code Optim., 4(1), March 2007.

[151] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas
Anderson. Eraser: a dynamic data race detector for multithreaded programs. ACM

Trans. Comput. Syst., 15(4):391–411, November 1997.

[152] William N. Scherer and Michael L. Scott. Contention Management in Dynamic
Software Transactional Memory, April 2004.

[153] Nir Shavit and Dan Touitou. Software transactional memory. In Proceedings of the

fourteenth annual ACM symposium on Principles of distributed computing, PODC
’95, pages 204–213, New York, NY, USA, 1995. ACM.

[154] Zhang Shenghua, Qin Zheng, Zhao Yuan, and Peng Xiaolan. A cascade hash design
of bloom filter for signature detection. In Information Technology and Applications,

2009. IFITA ’09. International Forum on, volume 2, pages 559 –562, may 2009.

204 Bibliography

[155] Arrvindh Shriraman, Sandhya Dwarkadas, and Michael L. Scott. Flexible decoupled
transactional memory support. In Proceedings of the 35th Annual International

Symposium on Computer Architecture, ISCA ’08, pages 139–150, Washington, DC,
USA, 2008. IEEE Computer Society.

[156] Eftychios Sifakis, Igor Neverov, and Ronald Fedkiw. Automatic determination of
facial muscle activations from sparse motion capture marker data. In ACM

SIGGRAPH 2005 Papers, SIGGRAPH ’05, pages 417–425, New York, NY, USA,
2005. ACM.

[157] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. Multiscalar processors. In
Proceedings of the 22nd annual international symposium on Computer architecture,
ISCA ’95, pages 414–425, New York, NY, USA, 1995. ACM.

[158] Michael F. Spear, Virendra J. Marathe, William N. Scherer, and Michael L. Scott.
Conflict detection and validation strategies for software transactional memory. In
Proceedings of the 20th international conference on Distributed Computing,
DISC’06, pages 179–193, Berlin, Heidelberg, 2006. Springer-Verlag.

[159] Michael F. Spear, Maged M. Michael, and Christoph von Praun. Ringstm: scalable
transactions with a single atomic instruction. In Proceedings of the twentieth annual

symposium on Parallelism in algorithms and architectures, SPAA ’08, pages
275–284, New York, NY, USA, 2008. ACM.

[160] J. Gregory Steffan and Todd C. Mowry. The potential for using thread-level data
speculation to facilitate automatic parallelization. pages 2–13, 1998.

[161] P. Stenstrom. A survey of cache coherence schemes for multiprocessors. Computer,
23(6):12 –24, june 1990.

[162] Yu Sun and Wei Zhang. On-line trace based automatic parallelization of java
programs on multicore platforms. In Interaction between Compilers and Computer

Architectures (INTERACT), 2011 15th Workshop on, pages 35–43, 2011.

[163] S. Tarkoma, C.E. Rothenberg, and E. Lagerspetz. Theory and practice of bloom filters
for distributed systems. Communications Surveys Tutorials, IEEE, 14(1):131–155,
2012.

Bibliography 205

[164] Gadi Taubenfeld. Synchronization Algorithms and Concurrent Programming.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006.

[165] Joseph Teran, Eftychios Sifakis, Geoffrey Irving, and Ronald Fedkiw. Robust
quasistatic finite elements and flesh simulation. In Proceedings of the 2005 ACM

SIGGRAPH/Eurographics symposium on Computer animation, SCA ’05, pages
181–190, New York, NY, USA, 2005. ACM.

[166] Tilera. http://www.cs.cmu.edu/ scandal/nesl/info.html, 2012.

[167] M. Tremblay and S. Chaudhry. A third-generation 65nm 16-core 32-thread plus
32-scout-thread cmt sparcÂ R© processor. In Solid-State Circuits Conference, 2008.

ISSCC 2008. Digest of Technical Papers. IEEE International, pages 82 –83, feb. 2008.

[168] Marc Tremblay. Transactional memory for a modern microprocessor. In Proceedings

of the twenty-sixth annual ACM symposium on Principles of distributed computing,
PODC ’07, pages 1–1, New York, NY, USA, 2007. ACM.

[169] James Tuck, Wonsun Ahn, Luis Ceze, and Josep Torrellas. Softsig: software-exposed
hardware signatures for code analysis and optimization. In Proceedings of the 13th

international conference on Architectural support for programming languages and

operating systems, ASPLOS XIII, pages 145–156, New York, NY, USA, 2008. ACM.

[170] Hans Vandierendonck and Koen De Bosschere. Xor-based hash functions. IEEE

Trans. Comput., 54(7):800–812, July 2005.

[171] Jack Veenstra and Robert J. Fowler. Mint: A front end for efficient simulation of
shared-memory multiprocessors. pages 201–207, 1994.

[172] Kaushik Veeraraghavan, Peter M. Chen, Jason Flinn, and Satish Narayanasamy.
Detecting and surviving data races using complementary schedules. In Proceedings of

the Twenty-Third ACM Symposium on Operating Systems Principles, SOSP ’11, pages
369–384, New York, NY, USA, 2011. ACM.

[173] Haris Volos, Andres Jaan Tack, Michael M. Swift, and Shan Lu. Applying
transactional memory to concurrency bugs. In Proceedings of the seventeenth

international conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS XVII, pages 211–222, New York, NY, USA, 2012.
ACM.

206 Bibliography

[174] David W. Wall. Limits of instruction-level parallelism. In Proceedings of the fourth

international conference on Architectural support for programming languages and

operating systems, ASPLOS IV, pages 176–188, New York, NY, USA, 1991. ACM.

[175] Amy Wang, Matthew Gaudet, Peng Wu, José Nelson Amaral, Martin Ohmacht,
Christopher Barton, Raul Silvera, and Maged Michael. Evaluation of blue gene/q
hardware support for transactional memories. In Proceedings of the 21st international

conference on Parallel architectures and compilation techniques, PACT ’12, pages
127–136, New York, NY, USA, 2012. ACM.

[176] Ian Watson, Chris Kirkham, and Mikel Lujan. A study of a transactional parallel
routing algorithm. In Proceedings of the 16th International Conference on Parallel

Architecture and Compilation Techniques, PACT ’07, pages 388–398, Washington,
DC, USA, 2007. IEEE Computer Society.

[177] Turner Whitted. An improved illumination model for shaded display. Commun. ACM,
23(6):343–349, June 1980.

[178] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and
Anoop Gupta. The splash-2 programs: characterization and methodological
considerations. In Proceedings of the 22nd annual international symposium on

Computer architecture, ISCA ’95, pages 24–36, New York, NY, USA, 1995. ACM.

[179] Jingyue Wu, Heming Cui, and Junfeng Yang. Bypassing races in live applications
with execution filters. In Proceedings of the 9th USENIX conference on Operating

systems design and implementation, OSDI’10, pages 1–13, Berkeley, CA, USA, 2010.
USENIX Association.

[180] Bin Xiao and Yu Hua. Using parallel bloom filters for multiattribute representation on
network services. Parallel and Distributed Systems, IEEE Transactions on,
21(1):20–32, 2010.

[181] Min Xu, Rastislav Bodik, and Mark D. Hill. A "flight data recorder" for enabling
full-system multiprocessor deterministic replay. In Proceedings of the 30th annual

international symposium on Computer architecture, ISCA ’03, pages 122–135, New
York, NY, USA, 2003. ACM.

Bibliography 207

[182] Luke Yen. Signatures in transactional memory systems. PhD thesis, Madison, WI,
USA, 2009. AAI3367330.

[183] Luke Yen, Jayaram Bobba, Michael R. Marty, Kevin E. Moore, Haris Volos, Mark D.
Hill, Michael M. Swift, and David A. Wood. Logtm-se: Decoupling hardware
transactional memory from caches. In In HPCA 13, pages 261–272, 2007.

[184] Luke Yen, Stark C. Draper, and Mark D. Hill. Notary: Hardware techniques to
enhance signatures. In Proceedings of the 41st annual IEEE/ACM International

Symposium on Microarchitecture, MICRO 41, pages 234–245, Washington, DC,
USA, 2008. IEEE Computer Society.

[185] Jie Yu and Satish Narayanasamy. Tolerating concurrency bugs using transactions as
lifeguards. In Proceedings of the 2010 43rd Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO ’43, pages 263–274, Washington, DC,
USA, 2010. IEEE Computer Society.

[186] Wei Zhang, Chong Sun, and Shan Lu. Conmem: detecting severe concurrency bugs
through an effect-oriented approach. In Proceedings of the fifteenth edition of

ASPLOS on Architectural support for programming languages and operating systems,
ASPLOS XV, pages 179–192, New York, NY, USA, 2010. ACM.

[187] Pin Zhou, Feng Qin, Wei Liu, Yuanyuan Zhou, and Josep Torrellas. iwatcher:
Efficient architectural support for software debugging. In Proceedings of the 31st

annual international symposium on Computer architecture, ISCA ’04, pages 224–,
Washington, DC, USA, 2004. IEEE Computer Society.

	NEW HARDWARE SUPPORT FOR TRANSACTIONAL MEMORY AND PARALLEL DEBUGGING IN MULTICORE PROCESSORS
	Contents
	List of Figures
	List of Tables
	Preface
	CHAPTER 1. INTRODUCTION
	1.1 Parallel Architectures
	1.1.1 Why Parallel Architectures?
	1.1.2 Levels of Parallelism
	1.1.3 Shared Memory Multicore Processors

	1.2 Parallel Programming
	1.2.1 Data Communication
	1.2.2 Problem Decomposition

	1.3 Parallel Programming Issues in Shared Memory
	1.3.1 Synchronization
	1.3.2 Debugging Concurrency Bugs in Parallel Programs

	1.4 Transactional Memory (TM)
	1.4.1 Basic Concepts
	1.4.2 Hardware Transactional Memory (HTM)
	1.4.3 Software Transactional Memory (STM)
	1.4.4 Hybrid Transactional Memory (HyTM)
	1.4.5 Other Speculative Techniques

	1.5 Background on Signatures
	1.5.1 Fundamentals
	1.5.2 True Bloom Signature
	1.5.3 Parallel Bloom Signature
	1.5.4 Other Signature Implementations

	1.6 Conclusions

	CHAPTER 2. EVALUATION METHODOLOGY
	2.1 Simulator Framework
	2.1.1 Simics and GEMS
	2.1.2 PIN
	2.1.3 Rochester STM
	2.1.4 SESC

	2.2 Benchmarks
	2.2.1 SPLASH-2
	2.2.2 STAMP
	2.2.3 PARSEC
	2.2.4 EigenBench
	2.2.5 Other Benchmarks

	2.3 Conclusions

	CHAPTER 3. REDUCING THE USE OF SIGNATURES IN A HTM SYSTEM
	3.1 System Architecture
	3.1.1 Managing Transactional Writes with CFM-TM
	3.1.2 Replacement Algorithm
	3.1.3 Commit and Abort Actions
	3.1.4 Limitations
	3.1.5 Interactions between CFM-TM and LogTM-SE

	3.2 Signatures
	3.3 Evaluation
	3.3.1 System Model
	3.3.2 Workloads
	3.3.3 Results

	3.4 Related Work
	3.5 Conclusion

	CHAPTER 4. TOLERATING ASYMMETRIC DATA RACES WITH A HARDWARE SIGNATURE MODULE
	4.1 Asymmetric Data Races in Real World
	4.2 PACMAN: Tolerating Asymmetric Data Races
	4.2.1 Overview of the Idea
	4.2.2 Basic Pacman Protocol
	4.2.3 Interaction with Cache
	4.2.4 Advanced Pacman Protocol to Avoid Deadlocks and Stalls

	4.3 Implementation Issues
	4.3.1 Other Issues

	4.4 Evaluation
	4.4.1 Experimental Setup
	4.4.2 Characterization
	4.4.3 Overheads
	4.4.4 Handling Bugs

	4.5 Related Work
	4.5.1 Software Proposals for Asymmetric Races
	4.5.2 Other Related Work

	4.6 Conclusions

	CHAPTER 5. IMPLEMENTING A FLEXIBLE HARDWARE SIGNATURE MODULE
	5.1 FlexSig: Implementing Flexible Hardware Signatures
	5.1.1 Allocation Algorithm
	5.1.2 Influence of the Bloom Filters Release on the False Positive Rate
	5.1.3 Software Interface
	5.1.4 Register Grouping
	5.1.5 FlexSig Overflow and Fault Tolerance

	5.2 Implementation Issues
	5.3 Evaluation in a TM System
	5.3.1 Unified signatures: Simplifying FlexSig Implementation in TM
	5.3.2 Experimental Setup
	5.3.3 Configuration
	5.3.4 Results

	5.4 Related Work
	5.5 Conclusions

	CHAPTER 6. ASYMMETRIC ALLOCATION IN A FLEXIBLE SIGNATURE MODULE
	6.1 Asymmetric Policies
	6.1.1 Asymmetric Allocation Algorithm with Two Priority Classes
	6.1.2 Asymmetric Algorithms for TM

	6.2 Implementation Issues
	6.2.1 Placement of FlexSig in a Multicore Processor
	6.2.2 Hardware Implementation in a TM System
	6.2.3 Basic Elements
	6.2.4 Allocation Implementation: Arithmetic Calculations
	6.2.5 Control Logic

	6.3 Evaluation for a TM System
	6.3.1 Experimental Setup
	6.3.2 Evaluation for the PCIN Priority Class
	6.3.3 Evaluation for Multiple PCIN Priority Classes
	6.3.4 Evaluation for Combined PCOUT and PCIN Priority Classes
	6.3.5 FlexSig with a High Number of Threads
	6.3.6 Signature Size Comparison

	6.4 Related Work
	6.4.1 Comparing Asymmetric FlexSig and ASYM signatures

	6.5 Conclusion

	Conclusions and Future Work
	Resumo da Tese
	Bibliography

