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DEPARTAMENTO DE XEOMETRÍA E TOPOLOXÍA
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Homological properties of transitive Lie algebroids

via Sullivan models

Abstract

D. Sullivan considered a new model for the underlying cochain complex of classical

cohomologies with rational coefficients for arbitrary simplicial spaces which gives an iso-

morphism with classical rational cohomologies. This new model is determined by the Rham

complex of all rational polynomial forms defined on the simplicial complex triangulating

the space. Other cell-like constructions of cochain complexes which induce isomorphisms in

cohomology with classical cohomologies had been already presented by H. Whitney. Recent

ideas developed by K. Mackenzie and J. Kubarski concerning Lie algebroids are applied to

a generalization of a cell-like construction for transitive Lie algebroids over combinatorial

manifolds. Namely, given a compact smooth manifold M , smoothly triangulated by a sim-

plicial complex K, and a transitive Lie algebroid A on M , we define a piecewise smooth

form on A to be a family ω = (ω∆)∆∈K of differential forms such that, for each simplex

∆ ∈ K, ω∆ ∈ Ω∗(A!!
∆; ∆) is a smooth form defined on the Lie algebroid A!!

∆, restriction of

A to the simplex ∆, satisfying the compatibility condition under restrictions of the form

ω∆ to all faces of the simplex ∆, that is, if ∆′ is a face of ∆, then λ∗∆,∆′(ω∆) = ω∆′ ,

in which λ∆,∆′ denotes the canonical Lie algebroid morphism induced by the inclusion

∆′ ↪→ ∆. The set Ω∗(A;K) of all piecewise smooth forms defined on A is a commutative

cochain algebra. We define a map Ω∗(A;M) → Ω∗(A;K) which assigns, to each smooth

form ω ∈ Ω∗(A;M), the piecewise smooth form ξ = (ξ∆)∆∈K ∈ Ω∗ps(A;K) defined by the

condition ξ∆ = λ∗M,∆(ω) for each simplex ∆ ∈ K. This map is a natural morphism of

cochain algebras.

In this thesis, we prove that, for compact combinatorial manifolds, the cohomology

of this construction is isomorphic to the Lie algebroid cohomology of A. We apply this

isomorphism in piecewise invariant cohomology of Lie algebroids and piecewise de Rham

cohomology of locally trivial Lie groupoids.
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Introduction

It is very well known that the integration map gives us an isomorphism between de

Rham cohomology and the singular cohomology of a smooth manifold. This statement

is the de Rham theorem. It was originally conjectured by Elie Cartan in 1928 and, on

the beginning of years 30, Georges de Rham has proved the theorem. After de Rham, as

cohomology theory developed, other proofs have been published. In particular, we mention

the proof made by A. Weil [27] and by J. Dugundji [2].

The de Rham theorem is a result of great importance because it has been the main

connecting link between analysis on manifolds and the topological properties of manifolds.

In brief words, the homology spaces measure the number of holes of a manifold and its

level of complexity. The de Rham theorem guarantees that the homology spaces of mani-

folds can be known by using differential forms and their analytical methods. The study of

the homology spaces in terms of differential forms opened a way for studying the deeper

structure of manifolds. Sullivan, in his paper “Infinitesimal computations in topology”,

says that within the world of topology there is more topological information in the de

Rham algebra of the differential forms that simply the real cohomology. The de Rham

theory quickly originated a deep development of the topology of manifolds. There are

also a lot of mathematical situations in which the knowledge of differential forms has im-

portant consequences and consequently other mathematical theories were developed from

the de Rham theorem. The Hopf invariant, the Massey product, the mapping degree and

cohomology of compact Lie groups are some examples of the importance of the de Rham

theorem. Sullivan and other mathematicians have implemented several strategies in the

study of the de Rham algebra of all smooth forms. Among them, it is the theory of models.

This theory consists in finding other graded algebras, inside the de Rham algebra of all

smooth forms, such that the canonical inclusion induces an isomorphism in cohomology.

From these developments, an important conclusion arose, which can be expressed in the

following commutative diagram:
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H∗p.C∞(M)

R

��

H∗PL(M)⊗Q R

66mmmmmmmmmmmm

R
∼= ((QQQQQQQQQQQQ

H∗dR(M)

ffMMMMMMMMMMM

∼=

R
xxppppppppppp

H∗(M,R)

This diagram incorporates a large amount of constructions and statements. The present

work arose from efforts to extend those constructions to transitive Lie algebroids. Among

those constructions, we are particularly interested in the one which says that de Rham

cohomology of a smooth manifold, smoothly triangulated by a simplicial complex, is iso-

morphic to piecewise smooth cohomology of the simplicial complex. This isomorphism is

given by restriction of smooth forms to all simplices. The study of this construction or

other Sullivan’s constructions in simplicial manifolds is based in the de Rham theorem for

cells as well as extensions of smooth forms. Some difficulties rise from the use of de Rham

theory in the study of Lie algebroid cohomology. Nevertheless, in spite of all difficulties

that rise from de Rham theory of Lie algebroids, during the recent years, the cohomology

theory of Lie algebroids has developed from a collection of great results with strong con-

nections to many other parts of mathematics, in particular, to Chern-Weil theory. These

refinements have reduced several obstructions in the development of our work.

The key ideas concerning class obstruction arising from non-abelian extensions of Lie

algebroids have inspired Mishchenko and led him to conjecture that, given a transitive

Lie algebroid on a combinatorial manifold, the morphism given by restriction, which takes

smooth forms on the Lie algebroid into piecewise smooth forms on the same Lie algebroid,

still remains an isomorphism in cohomology.

The aim of the present work is to prove Mishchenko’s conjecture. For this purpose,

we have used a structure called a complex of Lie algebroids. This structure commences

by fixing a smooth triangulation of the base of a transitive Lie algebroid by a simplicial
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complex and taking the restriction of the Lie algebroid to all simplices of the triangulation.

Since the Lie algebroid is transitive, the restriction of the Lie algebroid to each simplex

always exists. When a complex of Lie algebroids is given, we define the notion of piecewise

smooth form in a similar way to Whitney forms on a simplicial complex and the set of

all piecewise smooth forms defined on a complex of Lie algebroids is naturally equipped

with a differential, yielding a commutative differential graded algebra. Its cohomology is,

by definition, the piecewise smooth cohomology of the Lie algebroid. Each smooth form

defined on the Lie algebroid gives a piecewise smooth form defined on the corresponding

complex of Lie algebroids by taking the restriction of the form to each simplex. This

correspondence is a natural map from the usual algebra of the smooth forms of the Lie

algebroid to the algebra of the piecewise smooth forms of the corresponding complex of Lie

algebroids. Based on three crucial results, namely the triviality of a transitive Lie algebroid

over a contractible smooth manifold (Mackenzie, Weinstein), the Künneth theorem for Lie

algebroids (Kubarski) and the de Rham-Sullivan theorem for smooth manifolds, we show

that this map is an isomorphism in cohomology.

We give an outline of this work. The manuscript is divided into 3 chapters and each

chapter into several sections which are numerated.

The first chapter of this work is divided into three sections. The first section is a

general discussion on restrictions of Lie algebroids to general submanifolds which may not

be open submanifolds. The second section is a brief introduction to the algebra of smooth

forms on a Lie algebroid and its cohomology. In the third section, we introduce the Lie

algebroid of covariant differential operators and the Lie algebra bundle of inner and outer

derivations. We recall the notions of couplings and operators extensions and state the main

result concerning actions, which states that the additive group of the cohomology space in

degree two of certain representation related to a coupling acts freely and transitively on

the affine space of operator extensions.

In the second chapter, we define a complex of Lie algebroids to be a family of Lie

algebroids defined on the simplices of a simplicial complex which is compatible with the
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restrictions to the faces. We define the notion of piecewise smooth form in a similar way

to Whitney forms on a simplicial complex. We present some considerations related to

the algebra of piecewise smooth forms. Some results concerning extensions of piecewise

smooth forms and the Mayer-Vietoris sequence are presented. We generalize the notion

of piecewise smooth cohomology to the situation in which we have, not only simplices of

a simplicial complex, but also a finite collection of transverse submanifolds in an ambient

space.

The third chapter is the main part of this work and is devoted to the proof of the

Mishchenko’s conjecture. We construct a morphism between Lie algebroid cohomology and

piecewise smooth cohomology of a transitive Lie algebroid and prove that this morphism

is an isomorphism. We apply this isomorphism in piecewise invariant cohomology of Lie

algebroids and piecewise de Rham cohomology of locally trivial Lie groupoids.
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Chapter 1

Preliminaries on Lie algebroids

The propose of this chapter is to give a brief revision of certain concepts and results on

Lie algebroids, which will be used in the rest of this work. First, we shall recall some facts

concerning to restrictions of Lie algebroids to open subsets and, more generally, to any

submanifolds of the base. We shall introduce the cochain algebra of smooth forms on a Lie

algebroid and respective Lie algebroid cohomology. Some facts concerning extensions of

smooth forms in Lie algebroids, extensions of Lie algebroids and couplings are presented.

The chapter finishes with a result on the triviality of transitive Lie algebroids over con-

tractible smooth manifolds. Most theorems are simply stated without proofs. There are

some exceptions and, in this case, some occasional indications for the proof are given. A

reasonably complete description of definitions and results on Lie algebroids can be found

in [7], [10], [11], [16], [17], [18] and [28].

1.1 Restriction of transitive Lie algebroids

Definition (Lie algebroid). Let M be a smooth manifold, possibly with boundary

and corners, Υ(M) the Lie algebra of all smooth vector fields on M , and TM the tangent
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bundle to M . We recall that a Lie algebroid on base M is a vector bundle π : A −→ M

on M equipped with a vector bundle morphism γ : A −→ TM , called anchor of A, and a

structure of Lie algebra on the vector space Γ(A) of sections of A such that the induced

map γΓ : Γ(A)−→Υ(M) is a Lie algebra homomorphism and the action of the algebra

C∞(M) on Γ(A) satisfies the natural condition:

[ξ, fη] = f [ξ, η] + (γΓ(ξ) · f)η

for each ξ, η ∈ Γ(A) and f ∈ C∞(M). The Lie algebroid A is called transitive if the anchor

γ is surjective. As usually, when there is no ambiguity, we drop the anchor map and the

Lie bracket in the notation of the Lie algebroid but, when it is needed to emphasize them,

we write (A, [·, ·], γ) for denoting this structure.

Definition (Morphism of Lie algebroids). Let M and N two smooth manifolds

and (A, [·, ·], γ) and (B, [·, ·], δ) Lie algebroids over M e N respectively. A morphism of

Lie algebroids from (A, [·, ·], γ) to (B, [·, ·], δ) consists of a pair of mappings (ψ, ϕ), with

ψ : A −→ B and ϕ : M −→ N , such that (ψ, ϕ) is a vector bundle morphism satisfying

the equality δ ◦ψ = T (ϕ) ◦ γ, in which T (ϕ) : TM −→ TN means the tangential of ϕ, and

preserving the Lie bracket condition for ψ-decompositions, that is, for each ξ, η ∈ Γ(A)

with decompositions

ψ ◦ ξ =
m∑
i=1

ai ⊗ ξi ψ ◦ η =
m∑
j=1

bj ⊗ ηj

ξi, ηj ∈ Γ(B), then

ψ ◦ [ξ, η]A =
∑
i,j

aibj ⊗ [ξi, ηj]B +
m∑
j=1

(γ ◦ ξ)(bj)⊗ ηj −
m∑
i=1

(γ ◦ η)(ai)⊗ ξj

We notice that, when M = N , a simple characterization for a vector bundle morphism

between two Lie algebroids on M to be a Lie algebroid morphism can seen in [7] or [10].

Namely, if (A, [·, ·], γ) and (B, [·, ·], δ) are Lie algebroids over the same smooth manifold M ,

then a vector bundle morphism ψ from A to B is a Lie algebroid morphism if, and only if,

γ = ψ ◦ δ and the induced map ψΓ : Γ(A) −→ Γ(B) is a Lie algebra morphism.
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We give some examples of Lie algebroids and algebraic constructions in Lie algebroids.

Other examples of Lie algebroids are given in section 3.

Example 1 (Lie algebras). Any real finite dimensional Lie algebra g over a one-point

space M = {∗} (so C∞(M) = R) with anchor equal to zero is a totally intransitive Lie

algebroid on M . Any Lie algebra morphism between two Lie algebras is a Lie algebroid

morphism for this structure of Lie algebroid.

Example 2 (Tangent Lie algebroid). If M is a smooth manifold then TM is a

Lie algebroid on M . The anchor map is the identity map of TM , and the Lie bracket is

the usual Lie bracket of vector fields. This is called the tangent Lie algebroid of M . The

anchor map γ : A −→ TM is a Lie algebroid morphism from A to the tangent algebroid

of M.

Let F be a regular foliation of M . The tangent Lie algebroid of F is, by definition, the

vector subbundle of TM consisting of the tangent spaces to F , with the usual Lie bracket

of vector fields tangent to F , and the inclusion map as the anchor. Conversely, if A is a

Lie algebroid on M , whose its anchor map γ is injective, then, setting Ex = γx(Ax) for

each x ∈ M , we obtain a vector subbundle E of TM defining a foliation of M , and the

tangent Lie algebroid of this foliation is isomorphic to the Lie algebroid A (see [7]).

Example 3 (Trivial Lie algebroid). Let g be a real finite dimensional Lie algebra

and M a smooth manifold and consider the trivial vector bundle M × g. On the Whitney

sum

TM ⊕ (M × g) = TM ×M (M × g)

we define an anchor map γ : TM ⊕ (M × g) −→ TM by taking γ to be the projection of

TM ⊕ (M × g) on TM and a Lie bracket on Γ(TM ⊕ (M × g)) by setting

[
(
X, u), (Y, v)] = ([X, Y ]TM , X(v)− Y (u)− [u, v]

)
for X, Y ∈ TM and u, v : M −→ g smooth maps. Then, TM ⊕ (M × g) is a transitive Lie

algebroid on M and called the trivial Lie algebroid on M with structure algebra g.
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Example 4 (Lie algebroid product). Let M and N be two smooth manifolds and

(A, [·, ·]A, γ) and (B, [·, ·]B, γ̂) Lie algebroids over M and N respectively. The product of

the Lie algebroids (A, [·, ·]A, γ) and (B, [·, ·]B, γ̂), denoted by A × B, is the vector bundle

product A×B over M ×N , in which the anchor is γ × γ̂ and the Lie bracket is defined in

the following way: for each ξ = (ξ1, ξ2) and η = (η1, η2) ∈ Γ(A× B)

[ξ, η]A×B = ([ξ, η]1, [ξ, η]2) ∈ Γ(A× B)

where

[ξ, η]1(x,y) = [ξ1(−, y), η1(−, y]A(x) + γ̂(ξ2(x,y)
)(η1(x,−))− γ̂(η2(x,y)

)(ξ1(x.−))

and

[ξ, η]2(x,y) = [ξ2(−, y), η2(−, y]A(x) + γ(ξ1(x,y)
)(η2(x,−))− γ(η1(x,y)

)(ξ2(x.−))

The projections πA : A×B −→ A and πB : A×B −→ B are morphisms of Lie algebroids.

Consider now a real finite dimensional Lie algebra g and the tangent Lie algebroid TM .

The Lie algebra g is a Lie algebroid over a one-point space N = {∗}. We can take the

product of Lie algebroids TM × g, which is defined over M 'M ×N . On the other hand,

we can consider the trivial Lie algebroid TM ⊕ (M × g) over M and we easily see that

the map F : TM × g −→ TM ⊕ (M × g) given by F (x, u, v) = (x, u, x, v) is a (strong)

isomorphism of Lie algebroids. Henceforth, we will identify both Lie algebroids.

Example 5 (Lie algebroid of covariant differential operators). Let M be a

smooth manifold and π : E −→ M a vector bundle on M . For each x ∈ M , denote by

A(E)x the vector space of all linear maps ψ : Γ(E) −→ Ex such that there exists a vector

u ∈ TxM satisfying the equality

ψ(fξ) = f(x)ψ(ξ) + (u · f)xξx

for all f ∈ C∞(M) and ξ ∈ Γ(E). The vector u is unique and so we can define a map

γ :
⊔
x∈M

A(E)x −→ TM

8



We denote by A(E) the disjoint union
⊔
x∈M A(E)x. We define a Lie bracket on the space

of the sections of A(E) locally as follows. Fix a local trivialization ϕ : π−1(U) −→ U × F

of the vector bundle E, in which U is an open subset of M and F is the fibre type of E.

Let gl(F ) be the Lie algebra of F and, for each ξ ∈ Γ(E), the map ξϕ : U −→ F defined

by ξϕ(x) = ϕx(ξx), in which ϕx : Ex −→ F is the linear map induced by ϕ. It can be seen

in [7], [5], [8] that the map ϕ : TU × gl(F ) −→ A(E)U defined by

ϕ(u, g)(ξ) = (ϕx)
−1(u · ξϕ + (g ◦ ξϕ(x))

is bijective. Hence, the Lie bracket and the anchor of the trivial Lie algebroid TU × gl(F )

can be carried to A(E)U and the space A(E) becomes a transitive Lie algebroid on M ,

which is denoted by D(E) and called the Lie algebroid of covariant differential operators

on the space of sections of the vector bundle E (see [5], [7], [8], [10], [11], [16], [18]).

Example 6 (Lie algebra bundles). A Lie algebra bundle over a smooth manifold M

is a vector bundle π : K −→M equipped with a section [·, ·] of the vector bundle
∧2(K,K)

such that, for each x ∈M , (Kx, [·, ·]x) is a Lie algebra and K admits an atlas

{ψj : Uj × g −→ π−1(U)} (g is a Lie algebra)

in which each ψjx is a Lie algebra isomorphism. A Lie algebra bundle is a totally intransitive

Lie algebroid (see [10]).

Let π : E −→M be a vector bundle on a smooth manifold M . Then, the vector bundle

End(E) = L(E;E), whose fibres, at each point x ∈ M , are the vector spaces L(Ex;Ex),

is a Lie algebra bundle (see [10]).

Next example is not used in this work but we include it since it has been a crucial

example on the development of integrability theory of Lie algebroids

Example 7 (Weinstein’s transformation algebroid). Suppose that we have an

action µ : g −→ Υ(M) of a Lie algebra g on a smooth manifold M . Then, we can associate

to this action a Lie algebroid which is called the corresponding transformation algebroid
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and defined as follows. The vector bundle underlying this transformation algebroid is the

trivial bundle g×M −→M . The anchor map γ : g×M −→ TM is defined by

γ(X, x) = µ(X)(x)

for each X ∈ g and x ∈ M , and the Lie bracket on the sections of g ×M , considered as

maps from M to g, is defined as

[ξ, η](z) = [ξ(z), η(z)] + (µ(ξ(z)))z(η)− (µ(η(z)))z(ξ)

This algebroid is usually denoted by g nM .

We are going to handle restriction of Lie algebroids. We consider first the case in which

the restriction is made to a open subset of the base. We are going to see that the restriction

of a Lie algebroid to an open subset of base coincides with the restriction of the underlying

vector bundle to that open subset. We note that, for restrictions to open subsets, we do

not need the Lie algebroid to be transitive. We begin with the local property of the Lie

bracket.

Proposition 1.1.1. Let M be a smooth manifold and (A, [·, ·], γ) a Lie algebroid on

M . Let U be an open subset of M and X, Y ∈ Γ(A) such that Y vanishes on U . Then,

the Lie bracket [X, Y ] vanishes on U .

Proof. Let x0 ∈ U . Take the closed subset M\U and the open subset M\F , where

F = {x0}. Obviously M\U ⊆ M\F and then there exists a smooth function g ∈ C∞(M)

such that g(M\U) = {1} and supp g ⊆M\F . If x /∈ U then g(x) = 1 and so g(x)Yx = Yx.

The restrictions of both sections to U also coincide and then gY = Y . Hence, we have

[X, Y ](x0) = [X, gY ](x0) = g(x0)[X, Y ](x0) + (γΓ(X) · g)(x0)Y (x0) = 0

because g(x0) = 0 and Yx0 = 0. Therefore, the Lie bracket [X, Y ] vanishes for all points of

the open subset U . �

Although next proposition is not used in this section, we will note it here as an appli-

cation of the local property of Lie bracket.
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Proposition 1.1.2. Let M be a smooth manifold and (A, [·, ·], γ) a Lie algebroid on

M . For each x ∈ M , denote by gx the kernel of the linear map γx : Ax −→ TxM . Then,

gx has a natural structure of Lie algebra defined by

[u, v] = [X, Y ](x)

with u, v ∈ gx and X, Y ∈ ΓA such that Xx = u and Yx = v.

Proof. We are going to check that the definition is coherent. Let Ŷ ∈ Γ(A) be a section

such that Ŷx = v. Fix a local frame of the vector bundle (A, π,M), say us, (s1, · · · , sk)

defined on an open subset U of M . Then, there are smooth functions f1, · · · , fk ∈ C∞(U)

such that Y/U − Ŷ/U =
∑

j fjsj. By using partition of unity, we can extend all maps fj

and sections sj to all of M and we obtain f̃1, · · · , f̃k ∈ C∞(M) and s̃1, · · · , s̃k ∈ Γ(A)

such that the restrictions of f̃j and s̃j to U coincide with fj and sj respectively. Denote

by Z the section of A defined by Z =
∑

j f̃j s̃j. By the local property of Lie bracket and

the third condition of the definition of Lie algebroid we have

[X, Y − Ŷ ](x) = [X,Z](x) =
∑
j

f̃j(x)[X, s̃j](x) + (γΓ(X) · f̃j)(x)s̃j(x) = 0

because f̃j(x) = 0 and (γ ◦X)(x) = 0. �

Let M be a smooth manifold and (A, [·, ·]A, γ) a transitive Lie algebroid over M . Con-

sider the vector bundle Ker γ. The Lie bracket structure on Γ(A) induces a bracket

structure on Γ(Ker γ) and so Ker γ is a totally intransitive Lie algebroid on M , called

adjoint Lie algebroid of A. We notice that a totally intransitive Lie algebroid may not be

a Lie algebra bundle. However, Ker γ is a Lie algebra bundle on M (see [7], [10]).

Proposition 1.1.3. Let (A, [·, ·], γ) be a Lie algebroid on a smooth manifold M . Let

U be an open subset of M and consider the vector bundle AU , restriction of A to U . Then,

the Lie bracket

[·, ·] : Γ(A)× Γ(A) −→ Γ(A)

11



restricts to a Lie bracket

[·, ·]AU
: Γ(AU)× Γ(AU) −→ Γ(AU)

Proof. We want define a Lie bracket on Γ(AU). For that, fix two sections X, Y ∈ Γ(AU)

and x ∈ U . We can take two sections X̃, Ỹ ∈ Γ(A) and an open subset V of M such that

x ∈ V ⊆ V ⊆ U and

X/V = X̃/V and Y/V = Ỹ/V

We define

[X, Y ]AU
(x) = [X̃, Ỹ ](x)

This definition is coherent because, if we take other section X̂ ∈ Γ(A) and an open subset

W of M such that x ∈ W ⊆ W ⊆ U and XW = X̂W , then, taking the difference X̃ − X̂

and applying the proposition 1.1.1 to the open subset V ∩W , we have that [X̃, Y ](x) =

[X̂, Y ](x). Therefore, a bracket on Γ(AU) is well defined and we easily can see that [·, ·]AU

satisfies the conditions of Lie bracket on Γ(AU). �

Next, if (A, [·, ·], γ) is a Lie algebroid on a smooth manifold M and U an open subset

of M , we want to define a structure of Lie algebroid in the vector bundle AU defined on

U . From previous proposition, we already have a Lie bracket on Γ(AU). We only need to

define an anchor map. Take then b ∈ U and u ∈ Ab. We have that γ(u) ∈ (TM)b. Since

U is an open subset of M , (TU)b = (TM)b and so γ(u) ∈ (TU)b. Hence, we may restrict

the anchor γ : A −→ TM to a map γU : AU −→ TU . Obviously, γU is a vector bundle

morphism. It remains to check that the morphism induced by γU on the sections of AU
is a Lie algebra morphism. Take X, Y ∈ Γ(AU) and b ∈ U . Fix X̃, Ỹ ∈ Γ(A) such that

X̃/V = X/V and Ỹ/V = Y/V where V is an open subset of M such that b ∈ V ⊆ V ⊆ U .

Firstly, we remark that γ ◦ X̃ and γ ◦ Ỹ are extensions of γU ◦X and γU ◦ Y respectively.

Consequently, we have that

[γU ◦X, γU ◦ Y ](b) = [γ ◦ X̃, γ ◦ Ỹ ](b)
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and so,

(γ/U ◦ [X, Y ])(b) = γ/U([X, Y ](b)) =

= γ([X, Y ](b)) = γ([X̃, Ỹ ](b)) =

= (γ ◦ [X̃, Ỹ ])(b)) = [γ ◦ X̃, γ ◦ Ỹ ](b) =

= [γU ◦X, γU ◦ Y ](b)

Also, for each g ∈ C∞(U), g̃ ∈ C∞(M) such that g̃/V = g/V

[X, gY ](b) = [X̃, g̃Ỹ ](b) =

= g̃(b)[X̃, Ỹ ](b) + ((γ ◦ X̃) · g̃)(b)Ỹ (b) =

= g(b)[X, Y ](b) + ((γ/U ◦X) · g)(b)Y (b)

We have proved the following proposition.

Proposition 1.1.4. The vector bundle AU , with the structures above, becomes a Lie

algebroid on U . This Lie algebroid will denoted by (AU , [·, ·]AU
, γAU

) or simply by AU .

Moreover, if (̃i, i) denote the pair of smooth maps i : U −→ M and ĩ : AU −→ A defined

by the inclusions, (̃i, i) is a morphism of Lie algebroids, which is fibrewise injective.

We consider now the case in which the restriction is made, non necessarily to an open

submanifold, but to a general submanifold of the base. In this case, the Lie algebroid

restricted to a submanifold may not coincide with the restriction of the underlying vector

bundle to that submanifold, but it will be a vector subbundle of the underlying vector

bundle restricted to that submanifold, which is given by image inverse of Lie algebroids

through the inclusion of submanifolds. The transitivity of Lie algebroids will be needed to

show that inverse image always exists for any smooth embedding of manifolds. We begin

by noting brief considerations on the construction of image inverse.

Let M and N be smooth manifolds and ϕ : N −→ M a smooth map. Suppose that

(A, [·, ·], γ) is a transitive Lie algebroid on M . Let π : A −→ M denote the vector bundle
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underlying the Lie algebroid A and πTM and πTN the canonical projections of the tangent

bundles TM and TN respectively. The anchor γ : A −→ TM defines A as a vector bundle

on TM . In order to complete the following diagram

Ayγ
TN

Tϕ−→ TM

take the vector bundle ((Tϕ)∗A, γ̂, TN), inverse image of the vector bundle (A, γ, TM)

by the smooth map Tϕ, where γ̂ denotes the canonical projection (Tϕ)∗A −→ TN . We

notice that the vector bundle (Tϕ)∗A exists because γ is surjective. Obviously, (Tϕ)∗A is

also a vector bundle over N , in which its projection is the composition of the projection γ̂

with the canonical projection πTN . We obtain the following commutative diagram

(Tϕ)∗A //

bγ
��

A
γ

��
π

~~

TN
Tϕ //

πN

��

TM
πM

��
N

ϕ // M

Moreover, the vector bundle
(
(Tϕ)∗A, πTN ◦ γ̂, N

)
is N -isomorphic to a vector subbundle

of the Whitney sum TN ⊕ ϕ∗A, whose sections of this vector subbundle are the sections

s = (X, ξ) : N −→ TN ⊕ ϕ∗A

(X ∈ Γ(TN) and ξ ∈ Γ(ϕ∗A)) of the vector bundle TN ⊕ ϕ∗A characterized by the

equality T (ϕ)(X) = γ(Φ ◦ ξ), where Φ : ϕ∗A −→ A stands for the canonical vector bundle

morphism defined by Φ(x, u) = u.

The notable fact is that the vector bundle
(
(Tϕ)∗A, πTN ◦ γ̂, N

)
inherits a natural

structure of transitive Lie algebroid on N . We note this structure of Lie algebroid on next

proposition. The details of the proof can be found in ([7],[10]).
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Proposition 1.1.5. Keeping the same hypothesis and notations as above, if A is

a transitive Lie algebroid on M , then the vector bundle
(
(Tϕ)∗A, πTN ◦ γ̂, N

)
carries

a natural structure of transitive Lie algebroid on N , in which the canonical projection

γ̂ : (Tϕ)∗A −→ TN is the anchor map and the Lie bracket is defined in the following

way: Fix a local frame (s1, · · · , sk) of the vector bundle (A, π,M) defined on an open

subset U of M . Take now two sections (X, ξ), (Y, η) ∈ Γ
(
(Tϕ)∗A

)
, where X, Y ∈ Γ(TN)

and ξ, η ∈ Γ(ϕ∗A). Then, on the open subset V = ϕ−1(U), we have the decompositions

ξ/V =
∑

i fi(si ◦ϕ/V ) and η/V =
∑

j gj(sj ◦ϕ/V ) with fi, gj ∈ C∞(V ). Define a Lie bracket

by setting

[(X, ξ), (Y, η)]/V =

=
(
[X, Y ]/V ,

∑
i,j

figj[si, sj] ◦ ϕ/V +
∑
j

(X · gj)(sj ◦ ϕ/V )−
∑
i

(Y · fi)(si ◦ ϕ/V )
)

Thus, the pair of mappings (ϕ!!, ϕ), in which ϕ!! : (Tϕ)∗A −→ A is the smooth map defined

by ϕ!!(X, a) = a, is a morphism of Lie algebroids.

Definition (Inverse image of transitive Lie algebroid). Keeping the same hy-

pothesis and notations as above, the vector bundle
(
(Tϕ)∗A, πTN ◦γ̂, N

)
equipped with this

structure of Lie algebroid is called the inverse image Lie algebroid ofA by the map ϕ and de-

noted by (ϕ!!A, γ̂, [·, ·]ϕ!!A). From now on, we write simply ϕ!!A instead of (ϕ!!A, γ̂, [·, ·]ϕ!!A),

dropping the anchor γ̂ and the Lie bracket [·, ·]ϕ!!A. The smooth map ϕ!! is called the in-

duced map by ϕ and the Lie algebroid morphism (ϕ!!, ϕ) is called the canonical Lie algebroid

morphism of an induced Lie algebroid.

Example. Let g be a finite dimensional Lie algebra. The Lie algebra g is a Lie

algebroid over a one-point space M = {∗}. Let N be a smooth manifold and ϕ : N −→M

the constant map. Then, (Tϕ)∗g is equal to TN ⊕ (TN × g) and we easily see that the

anchor and the Lie bracket of the Lie algebroid (T (ϕ))∗g coincides with the ones of the

trivial Lie algebroid TN ⊕ (TN × g).

We define now restriction of a transitive Lie algebroid to a general submanifold of the
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base space.

Definition (Restriction of transitive Lie algebroids). Let M be a smooth man-

ifold and ϕ : N ↪→ M an embedded submanifold, possibly with boundary and corners.

Let A be a transitive Lie algebroid on M . The Lie algebroid ϕ!!A, constructed as inverse

image of A by the map ϕ, is called the Lie algebroid restriction of A to the submanifold

N and denoted by A!!
N .

Next three propositions are widely used in this work.

Proposition 1.1.6 (Transitivity of restriction of transitive Lie algebroids).

Let M , N and P three smooth manifolds such that ϕ : N ↪→M is an embedded subman-

ifold and ψ : P ↪→ N is an embedded submanifold. Consider a transitive Lie algebroid

(A, [·, ·], γ) on M . Then,

(A!!
N)!!

P ' A!!
P

Proof.

A!!
N = {(x, u, a) ∈ TN ×A : (x, u) = γ(a)}

and

(A!!
N)!!

P = {((y, v), (x, u), a) ∈ TP × (TN ×A) : (y, v) = γA!!
N

((x, u), a)}

The map λ from A!!
P onto (A!!

N)!!
P given by λ(y, v, a) = ((y, v), (y, v), a) is an isomorphism

of Lie algebroids over P . �

Given a smooth manifold M and N a submanifold of M , the vector bundle TMN ,

restriction of TM to a N , does not coincide in general with the tangent bundle TN .

However, in the context restrictions of transitive Lie algebroids, the situation is different

and much better. We note that in the next proposition. The proof is made directly from

definition of image inverse of Lie algebroids.

Proposition 1.1.7 (Restriction of tangent Lie algebroids to submanifolds).

16



Let M be a smooth manifold and ϕ : N ↪→M a submanifold of M . Consider the tangent

Lie algebroids TM and TN . Then, (TM)!!
N = TN .

Next proposition is concerning restrictions of trivial Lie algebroids.

Proposition 1.1.8 (Restriction of trivial Lie algebroids). Let g be a real finite

dimensional Lie algebra and M a smooth manifold. Consider the trivial Lie algebroid

TM ⊕ (M × g) and let N be an embedded submanifold of M . Then,

(TM ⊕ (M × g))!!
N = TN ⊕ (N × g)

Proof. Let ϕ : N ↪→M the inclusion. The Lie algebroid (TM ⊕ (M × g))!!
N , seen as the

Lie algebroid Im ϕ!!, is constituted by the elements ((x, u), (x, v)) ∈ TM ⊕ (M × g) such

that there exists (x̃, ũ) ∈ TN satisfying the equality T (ϕ)(x̃, ũ) = γ((x, u), (x, v)). Then,

(x, u) = (x̃, ũ) ∈ TN and so we have that (TM ⊕ (M × g))!!
N = TN ⊕ (N × g). �

It is evident that, in the case in which U is an open subset of M , the Lie algebroid

restriction A!!
U has the natural structure of the transitive Lie algebroid given on the re-

stricted vector bundle AU , that is, the map ψ : AU −→ A!!
U defined by ψ(a) = (γ(a), a)

is an U -isomorphism of Lie algebroids. Therefore, the Lie algebra structure on the set of

all sections of A!!
U is defined by extending sections of AU to sections of A. We are going

to show that, if M is a smooth manifold, ϕ : N ↪→ M an embedded submanifold of M ,

which is a closed subset of M in topological sense, and (A, [·, ·], γ) a transitive Lie alge-

broid on M , the structure of Lie algebra on set of the sections of the Lie algebroid A!!
N is

also defined by natural extension of sections of A!!
N to sections of A. For that, we state a

preparatory proposition in which the Lie algebroid A!!
N can be seen as a vector subbundle

of the restricted vector bundle AN .

Proposition 1.1.9. Let M be a smooth manifold and ϕ : N ↪→ M an embedded

submanifold, possibly with boundary and corners. Let (A, [·, ·], γ) be a transitive Lie

algebroid on M and π : A −→ M the vector bundle underlying the Lie algebroid A.
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Denote by AN the vector bundle restriction of A to N and ϕ!! : ϕ!!A −→ A the canonical

morphism defined by ϕ!!(X, a) = a. Then, the following assertions holds.

a) The bundle Im ϕ!! is a vector subbundle of AN and ϕ!! : ϕ!!A −→ Im ϕ!! is an

N -isomorphism of vector bundles. Its inverse is the map (ϕ!!)−1(a) = (γ(a), a).

b) Im ϕ!! = γ−1(TN) and so the anchor γ : A −→ TM restricts to ϕ!! −→ TN .

c) If ξ, η ∈ Γ(A) are sections such that ξ/N and η/N ∈ Γ(Im ϕ!!) then [ξ, η]/N is a section

of Im ϕ!!.

d) If ξ, η ∈ Γ(A) such that ξ/N ∈ Γ(Im ϕ!!) and η/N = 0, then [ξ, η]/N = 0.

Proof. a) Standard arguments.

b) Let a ∈ Im ϕ!!. Then, there exists (x, u) ∈ TN such that

γ(a) = (ϕ(x), Dϕx(u)) = (x, u) ∈ TN

Hence, γ(a) ∈ TN .

c) Let ξ, η ∈ ΓA such that ξ/N , η/N ∈ Γ(Im ϕ!!). Then, there are vector fields X, Y ∈

TN such that (X, ξ/N), (Y, η/N) ∈ Γ(A!!
N), and so, γ ◦ ξ/N = X and γ ◦ η/N = Y . Then,

we have [(X, ξ/N), (Y, η/N)] ∈ Γ(A!!
N). We are going to calculate a local expression for

this last Lie bracket. As done in proposition 1.1.5, fix a local frame (s1, · · · , sk) of the

vector bundle (A, π,M) over an open subset U of M and set V = U ∩ N . Writing

ξ/U =
∑

i fisi and η/U =
∑

j gjsj, with fi, gj ∈ C∞(U), we also can write ξ/V =
∑

i fi/V
si/V

and η/V =
∑

j gj/V
sj/V

, and so, [(X, ξ/N), (Y, η/N)]/V =
(
[X, Y ]/V , (∗)

)
where (∗) means

the following sum

(∗) =
∑
i,j

fi/V
gj/V

[si, sj]/V +
∑
j

(X/V · gj/V
)sj/V

−
∑
i

(Y/V · fi/V
)si/V

On other side,

[ξ, η]/U = [ξ/U , η/U ] = [ξ/U ,
∑
j

gjsj] =

18



=
∑
j

gj[ξ/U , sj] +
∑
j

(
(γ ◦ ξ/U) · gj)sj

)
=

= −
∑
j

gj[sj, ξ/U ] +
∑
j

(
(γ ◦

∑
i

fisi) · gj)sj
)

=

= −
∑
j

gj[sj, ξ/U ] +
∑
j

(
(
∑
i

(fi(γ ◦ si)) · gj)sj
)

=

= −
∑
j

gj[sj, ξ/U ] +
∑
j

(∑
i

fi(γ ◦ si)
)
· gj)sj

)
=

=
∑
i,j

figj[si, sj]−
∑
j

gj
(∑

i

((γ ◦ sj) · fi)si
)

+
∑
j

(∑
i

fi(γ ◦ si)
)
· gj)sj

)
=

=
∑
i,j

figj[si, sj]−
∑
j

(∑
i

(gj(γ ◦ sj) · fi)si
)

+
∑
j

(∑
i

fi(γ ◦ si)
)
· gj)sj

)
=

=
∑
i,j

figj[si, sj]−
∑
i

(∑
j

(gj(γ ◦ sj)) · fi)si
)

+
∑
j

(∑
i

fi(γ ◦ si)
)
· gj)sj

)
=

Since X/V = γ ◦ ξ/V = γ ◦ (
∑

i fi/V
si/V

) =
∑

i fi/V
(γ ◦ si/N

) and, analogously

Y/V =
∑

j gj/V
(γ ◦ sj/N

) we conclude that

[ξ, η]/V =
∑
i,j

fi/V
gj/V

[si, sj]/V +

−
∑
i

(∑
j

(gj/V
(γ ◦ sj/V

)) · fi/V
)si/V

)
+
∑
j

(∑
i

fi/V
(γ ◦ si/V

)
)
· gj/V

)sj/V

)
=

=
∑
i,j

fi/V
gj/V

[si, sj]/V −
∑
i

(
Y/V ) · fi/V

)si/V

)
+
∑
j

(
X/V · gj/V

)sj/V

)
= (∗)

Therefore, [(X, ξ/N), (Y, η/N)]/V =
(
[X, Y ]/V , [ξ, η]/V

)
∈ Γ((A!!

N)/V ) and then [ξ, η]/V is a

local section of the vector bundle Im ϕ!!. Hence, [ξ, η] is a section of the vector bundle

Im ϕ!!.
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d) From the proof of c) and by hypothesis, we have that 0 = γ ◦ η/N = Y and so

[X, Y ] = 0. From the equality η/V =
∑

j gj/V
sj/V

, we have that gj/V
= 0 for each j. Hence,

on the sum denoted by (∗) in the proof of c), all summands are equal to zero. Then,

[ξ, η]/V = 0 and therefore, [ξ, η]/N = 0 also. �

Proposition 1.1.10. Keeping the same hypothesis and notations as in previous propo-

sition, if A is a transitive Lie algebroid on M and ϕ : N ↪→ M an embedded submanifold

which is a closed subset of M in topological sense, then Im ϕ!! carries a natural structure

of transitive Lie algebroid on N , where the anchor of this structure is the restriction of γ

to Im ϕ!! −→ TN and the Lie bracket is defined by

[ξ, η] = [ξ̂, η̂]/N

in which ξ̂ and η̂ are sections of A such that ξ̂/N = ξ and η̂/N = η. Moreover, the canonical

morphism ϕ!! : ϕ!!A −→ Im ϕ!! is an N -isomorphism of Lie algebroids whose its inverse is

the map Ψ : Im ϕ!! −→ ϕ!!A defined by Ψ(a) = (γ(a), a).

Proof. Since N is closed subset of M , it is always possible to extends sections of Im ϕ!!

to a sections of A. By using c) and d) of last proposition and similar arguments given on

the definition of Lie bracket of a restriction to an open subset ([10]), we can define a Lie

bracket on the sections of Im ϕ!!. �

Remark. The Lie algebroid Im ϕ!! constructed on last proposition can be identified

to the Lie algebroid A!!
N and so, the Lie algebroid Im ϕ!! is also called the Lie algebroid

restriction of A to N . Henceforth, the Lie algebroid Im ϕ!! will be denoted by A!!
N .

1.2 Smooth forms and cohomology

We shall recall briefly the cochain algebra of smooth forms on Lie algebroids and respec-

tive Lie algebroid cohomology. Some remarks on extensions of smooth forms are presented.
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Let RM denote the trivial bundle M×R of base M . When p = 0, we set Λ0(A∗; RM) =

RM . For each p ≥ 1, we are going to denote Λp(A∗; RM) the vector bundle of the alternat-

ing p-linear maps from the vector bundle A to the vector bundle RM , that is, by definition

Λp(A∗; RM) = {(x, ξ) : x ∈M, ξ ∈ ΛR(Ax, · · ·,Ax; R)}

For p = 1 we have Λ1(A∗; RM) = L(A; RM).

The set ΓΛp(A∗; RM) of all sections of Λp(A∗; RM) is a C∞(M)-module for each p ≥ 0.

We notice that ΓΛ0(A∗; RM) = C∞(M).

Definition. A smooth form of degree p on the Lie algebroidA is a section of Λp(A∗; RM).

The set of all smooth forms of degree p on A will be denoted by Ωp(A;M). We may write

Ωp(A;M) = ΓΛp(A∗; RM). For p = 0, we have Ω0(A;M) = C∞(M). A smooth form

of degree p on the Lie algebroid A can be seen as an element of the C∞(M)-module∧p(Γ(A), C∞(M)). We set

Ω∗(A;M) =
⊕
p≥0

Ωp(A;M)

and the elements of Ω∗(A;M) are called smooth forms on the Lie algebroid A.

Clearly, the exterior product of alternated multi-linear maps induces an exterior product

of smooth forms on A, which is is associative and graded commutative (anti-commutative).

Thus, this product makes Ω∗(A;M) into a commutative graded algebra, in which the

constant map 1 ∈ C∞(M) is the unit.

Remark 1. We notice that Ω∗(A;M) vanishes for degrees > rank of A.

Remark 2. When A is the tangent Lie algebroid TM , the space Ω∗(A;M) is the

canonical space of the smooth forms on M .

Remark 3. When A is the Lie algebroid g over a one-point set (g a Lie algebra), the

space Ω∗(A;M) is the Chevalley-Eilenberg space.
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Next, we recall the definition of exterior derivative. Let M be a smooth manifold and

A a Lie algebroid on M , with anchor γ : A −→ TM and Lie bracket [·, ·] on Γ(A). We first

consider the algebra Ω0(A;M) = C∞(M). Let f ∈ C∞(M). We can define the smooth

1-form

d(f) : M −→
1∧

(Γ(TM), C∞(M))

d(f)(X) = Dfx(Xx) = X · f

for each X ∈ Υ(M). Hence, we define d(f) ∈
∧1(Γ(A), C∞(M)) by

d(f)(X) = (γ ◦X) · f

for each X ∈ Γ(A). Now, for each p ≥ 1 we define

dp : Ωp(A;M) −→ Ωp+1(A;M)

dpω(X1, X2, · · ·, Xp+1) =

p+1∑
j=1

(−1)j+1(γ ◦Xj) · (ω(X1, · · ·, X̂j, · · ·, Xp+1)) +

+
∑
i<k

(−1)i+kω([Xi, Xk], X1, · · ·, X̂i, · · ·, X̂k, · · ·, Xp+1)

for ω ∈ Ωp(A;M) and X1, X2, · · ·, Xp+1 ∈ Γ(A).

The family of differential operators d∗ = (dp)p≥0 defines, on the commutative graded

algebra Ω∗(A;M), a structure of differential graded algebra. Hence, Ω∗(A;M) becomes a

commutative cochain algebra, which is defined over R.

Definition (Lie algebroid cohomology). Keeping the same hypothesis and notation

as above, the Lie algebroid cohomology space of A is the cohomology space of the algebra

Ω∗(A;M) equipped with the structures defined above. This cohomology space is denoted

by H∗(A;M).

In view of discuss of extensions of smooth forms in Lie algebroids, we recall the definition

of inverse image of a smooth form. Let M and N two smooth manifolds and A and B

Lie algebroids on M and N respectively. Let λ = (F, f) be a morphism of Lie algebroids
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defined by the smooth maps F : A −→ B and f : M −→ N . If ω is a smooth form on B

of degree p, we can consider a smooth form of degree p on A, denoted by λ∗ω, and defined

by (
λ∗ω

)
x
(v1, v2, · · ·, vp) = ωf(x)(F (v1), F (v2), · · ·, F (vp))

for each x ∈ M and v1, v2, . . . vp ∈ Ax. The form λ∗ω is called the pullback or inverse

image of ω by the morphism λ. Thus, for each p ≥ 0, there is a map

λ∗p : Ωp(B;N) −→ Ωp(A;M)

ω −→ λ∗ω

The family λ∗ = (λ∗p)p≥0 is a morphism of cochain algebras. Therefore, we have a con-

travariant functor from the category of Lie algebroids to the category of cochain algebras.

For details, see [4], [6] and [7].

Definition (Restriction of smooth forms). Let M be smooth manifold and A a

Lie algebroid on M . Let ϕ : N ↪→M be an embedded smooth manifold of M and consider

the canonical morphism λ = (ϕ!!, ϕ) in which ϕ!! : A!!
N −→ A is defined by ϕ!!(X, a) = a.

Consider the cochain algebras Ω∗(A;M) and Ω∗(A!!
N ;N) and the morphism

λ∗ : Ω∗(A;M) −→ Ω∗(A!!
N ;N)

ω −→ λ∗ω

For each smooth form ω ∈ Ωp(A;M), the form λ∗(ω) ∈ Ωp(A!!
N ;N) is called restriction

of ω to N and denoted by ω!!
N or simply by ωN , when there is no ambiguity with the

restriction of ω to the restricted vector bundle AN . In subsequent sections, the smooth

embedding ϕ : N ↪→ M will be often denoted by ϕM,N : N ↪→ M and the homomorphism

λ∗ : Ω∗(A;M) −→ Ω∗(A!!
N ;N) by ϕAM,N . The homomorphism ϕAM,N will be called the

homomorphism of cochain algebras generated by the inclusion ϕM,N .

We will notice here some considerations on extension of smooth forms. We begin first

with some remarks on extension of smooth forms on vector bundles. After those remarks,
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we then state a proposition concerned to extension of smooth forms on Lie algebroids. In

the case of vector bundles, we are going to divide in two cases. The first case is very basic

and is the one in which we have a vector bundle (E, π,M) defined over a smooth manifold

M , N a submanifold of M which is closed subset of M , and we want to extend smooth

forms belonging to the restricted vector bundle EN . In this case, for each x ∈ N , the fibres

of EN are the same as the fibres of E. The second case is the one in which we have a

vector subbundle (F, π′, N) of a given vector bundle (E, π,M). In this case, the fibres of

F are vector subspaces of the fibres of E and, for extension of smooth forms, we need to

fix a Riemannian structure.

Remark 1. Let (E, π,M) be a vector bundle defined over a smooth manifold M of

dimension n and N a submanifold of M which is closed subset of M in the topological

sense. Let ω ∈ Ωp(EN ;N) be a smooth form on the restricted vector bundle EN defined

over N and suppose there exist an open subset U of M such that N ⊂ U and a smooth

form ω̃ ∈ Ωp(EU ;U) such that ω̃/N = ω. Then, the form ω extends to a smooth form

ξ ∈ Ωp(E;M).

Proof. We can consider a partition of unity ϕ1,ϕ2 : [0, 1] −→ M correspondent to

the open covering of M made by M\N and U such that ϕ1(x) + ϕ2(x) = 1 ∀ x ∈ M ,

supp ϕ1 ⊂M\N and supp ϕ2 ⊂ U . Define then ξ ∈ Ωp(E;M) by

ξx =


ϕ2(x) ω̃x if x ∈ U

0 ∈
∧p(Ex; R) if x ∈M\supp ϕ2

The form ξ is then a smooth extension of ω to the whole M . �

We can improve last remark and obtain the following.

Remark 2. Let (E, π,M) be a vector bundle defined over a smooth manifold M of

dimension n and N a submanifold of M which is closed subset of M in the topological
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sense. Let ω ∈ Ωp(EN ;N) be a smooth form on the restricted vector bundle EN defined

over N and suppose there is an open subset U of M , with N ⊂ U , such that U is the

domain of a chart of the vector bundle E

(π, ψ) : π−1(U) −→ U ×Rn

Then, the form ω extends to a smooth form ξ ∈ Ωp(EU ;U).

Proof. Let

(π̂, ψ̂) : π̂−1(U) −→ U × ∧p(Rn)

be the corresponding chart of the vector bundle (
∧pE, π̂,M) and consider the smooth map

θ = ψ̂ ◦ ω : N −→
∧p(Rn). Let θ̃ : U −→

∧p(Rn) be a smooth extension of θ. Then, the

form ξ ∈ Ωp(EU ;M) defined by

ξx = (π̂, ψ̂)−1(x, θ̃(x))

is a smooth extension of ω to the open subset U . �

We can again improve last remark and obtain the following.

Remark 3. Let (E, π,M) be a vector bundle defined over a smooth manifold M of

dimension n and N a submanifold of M which is closed subset of M in the topological

sense. Let ω ∈ Ωp(EN ;N) be a smooth form on the restricted vector bundle EN defined

over N . Then, the form ω extends to a smooth form ξ ∈ Ωp(E;M).

Proof. For each x ∈ N , let Ux an open neighborhood of x in M where it is defined a

chart of the vector bundle. We can apply last proposition to the closed submanifold N ∩Ux
and then there is a smooth form ξx ∈ Ωp(EUx ;Ux) such that ξx/N∩Ux

= ω
/N∩Ux

. We have

N ⊂
⋃
x∈N Ux. Denote by U∗ the open subset U∗ = M \ N . Then (Ux)x∈N∪U∗ is an open

covering of M . Let (Vj)j∈J be a locally finite refinement of the covering (Ux)x∈N∪U∗ and

consider a partition of unity (ϕj)j∈J subordinated to the covering (Vj)j∈J . Define now the

index sets

J∗ = {j ∈ J : Vj ⊂M \N} and J0 = J \ J∗

25



We are going to check the following:

• N ⊂
⋃
j∈J0

Vj.

• For each j ∈ J0, there exists x ∈ N such that Vj ⊂ Ux.

For the first statement, if x ∈ N then there is j ∈ J with x ∈ Vj. If j could belong to

J∗, we would conclude x ∈ Vj ⊂ U∗ = M \ N and so x /∈ N . For the second statement,

given j ∈ J0, we have that Vj ⊂ Uy for some y ∈ N ∪ U∗. Since j /∈ J∗ then Vj * M \ N

and so Vj ⊂ Ux for some x which doesn’t belong to U∗. Next, we can fix, for each j ∈ J0,

xj ∈ N with Vj ⊂ Uxj
. Denote the smooth form ξxj/Vj

∈ Ωp(EVj
;Vj) by ξj. Finally, define

ξ ∈ Ωp(E;M) by

ξ =
∑
j∈J0

ϕjξj

where ϕjξj is defined by

ϕjξj(x) =


ϕj(x) ξ(x) if x ∈ Vj

0 ∈
∧p(Ex; R) if x ∈M\supp ϕj

We have that ξ is well defined since the covering is locally finite. Moreover, the form ξ is

smooth extension of ω. �

We consider now the case in which we have smooth forms defined on a vector subbundle

of a given vector bundle. Let (E, π,M) be a vector bundle defined over a smooth manifold

M . We recall that a vector bundle (F, π′, N) is called vector subbundle of (E, π,M) if F

is a submanifold of E, N is a submanifold of M , π(F ) ⊂ N and π′ = π/F : F −→ N and,

for each x ∈ N , Fx is a vector subspace of Ex. Fix Riemannian structure on the vector

bundle (E, π,M). For each x ∈ N , we have Ex = Fx ⊕ F⊥x and denote ψx : Ex −→ Ex the

orthogonal projection over the fibre Fx. Then, the map ψ : E/N −→ F defined by ψx for

each x ∈ N is a N -morphism of vector bundles from (E/N , π,N) to (F, π′, N). Using this

discuss, we get immediately the following proposition.
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Remark 4. Let (E, π,M) be a vector bundle on a smooth manifold M , N a subman-

ifold of M and (F, π′, N) a vector subbundle of (E, π,M). Let ω ∈ Ωp(F ;N) be a smooth

form. Then, the form ω extends to a smooth form ξ ∈ Ωp(EN ;N).

Proof. Using the map ψ above, the form ψ∗ω is the required extension. �

We consider now the case of extensions smooth forms in Lie algebroids. We begin with

two basic remarks.

Remark 5. Let M be a smooth manifold, U an open subset of M and

ϕ : U −→ M the inclusion map. Let (A, [·, ·], γ) be a transitive Lie algebroid on M and

consider the Lie algebroid (AU , [·, ·]AU
, γU) on U constructed in the proposition 1.1.4 as well

the Lie algebroid (ϕ!!A, [·, ·]ϕ!A, γ̂) on U constructed in the proposition 1.1.5. Then, for each

p ≥ 0, Ωp(AU ;U) and Ωp(A!!
U ;U) are isomorphic. Namely, for the maps ψ : AU −→ A!!

U

defined by ψ(a) = (γ(a), a) and ψ̂ : ϕ!!A −→ AU defined by ψ̂((x, u), a) = a, the map

ψ∗p : Ωp(A!!
U ;U) −→ Ωp(AU ;U) is the inverse of (ψ̂)∗p : Ωp(AU ;U) −→ Ωp(A!!

U ;U).

Remark 6. Let A be a transitive Lie algebroid on a smooth manifold M and

ϕ : N ↪→ M an embedded submanifold such that N is a closed subset in M in the

topological sense. Let ϕ!! : ϕ!A −→ A be the canonical morphism defined by ϕ!!(X, a) = a

and consider Im ϕ!! equipped with the natural structure of transitive Lie algebroid on N

given in the proposition 1.1.9. The map ϕ!! is a N -isomorphism of Lie algebroids between

ϕ!!A and Im ϕ!!. Hence, the map ϕ!! induces an isomorphism between Ωp(A!!
N ;N) and

Ωp(Im ϕ!!;N).

Let us notice now a proposition concerning extensions of smooth forms in Lie algebroids.

Proposition 1.2.1. Let M be a smooth manifold and ϕ : N ↪→ M an embedded

submanifold such that N is a closed subset in M in the topological sense. Let A be a

transitive Lie algebroid on M and consider the canonical morphism λ = (ϕ!!, ϕ) in which

ϕ!! : A!!
N −→ A is defined by ϕ!!(X, a) = a. Consider the cochain algebras Ω∗(A;M) and
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Ω∗(A!!
N ;N). Then, the cochain algebra morphism

λ∗ : Ω∗(A;M) −→ Ω∗(A!!
N ;N)

ω −→ λ∗ω

is surjective.

Proof. Given a smooth form ω̃ ∈ Ωp(A!!
N ;N), we can define a smooth form

ω̂ ∈ Ωp(Im ϕ!!;N) by ω̂(ξ1, . . . , ξp) = ω̃((γ ◦ ξ1, ξ1), . . . , (γ ◦ ξ1, ξp)) where γ is the an-

chor of A. We apply the remarks above to the form ω̂ and the result follows since any

smooth extension ω ∈ Ω∗(A;M) of ω̂ satisfies λ∗(ω) = ω̃. �

Previous propositions are used in the statement of the Mayer-Vietoris sequence in Lie

algebroids. We recall it briefly. The details can be seen in [6]. We suppose that U and V

are open subsets of M such that M = U ∪ V and consider the diagrams where all maps

are the inclusions

U ∩ V
i

||xxxxxxxxx
j

""FFFFFFFFF AU∩Vbi
{{wwwwwwww bj

##GGGGGGGG

U

k ##FF
FF

FF
FF

F V

l{{xx
xx

xx
xx

x
AU

bk ##GGGGGGGGG AV

bl{{wwwwwwwww

M A

These inclusions induce, by inverse image, the following cochain maps:

i∗ : Ω∗(AU ;U) −→ Ω∗(AU∩V ;U ∩ V ) j∗ : Ω∗(AV ;V ) −→ Ω∗(AU∩V ;U ∩ V )

k∗ : Ω∗(A;M) −→ Ω∗(AU ;U) l∗ : Ω∗(A;M) −→ Ω∗(AV ;V )

which are defined by i∗(ω) = ω/U∩V , j∗(ω) = ω/U∩V , k∗(ω) = ω/U and l∗(ω) = ω/V . We de-

note by Ω∗(AU ;U)×Ω∗(AV ;V ) the cochain complex product of Ω∗(AU ;U) and Ω∗(AV ;V )

made from the cartesian product Ωp(AU ;U)×Ωp(AV ;V ). Under these conditions, we have

an short exact succession of cochain complexes

0 −→ Ω∗(A;M)
λ∗−→ Ω∗(AU ;U)× Ω∗(AV ;V )

δ∗−→ Ω∗(AU∩V ;U ∩ V ) −→ 0
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in which the maps

λp : Ωp(A;M) −→ Ωp(AU ;U)× Ωp(AV ; )

δ : Ωp(AU ;U)× Ωp(AV ;V ) −→ Ωp(AU∩V ;U ∩ V )

are defined by λp(ω) = (k∗ω, l∗ω) = (ω/U , ω/V ) and δp(α, β) = j∗β−i∗α = = β/U∩V−α/U∩V .

Therefore, for the short exact succession mentioned above, it corresponds the long exact

succession in cohomology

· · · −→ Hp−1(A/U∩V ;U ∩ V )
∂p−1

−→ Hp(A;M)

Hp(A;M)
Hp(λ∗)−→ Hp(Ω∗(A/U ;U)× Ω∗(A/V ;V ))

Hp(Ω∗(A/U ;U)× Ω∗(A/V ;V ))
Hp(δ∗)−→ Hp(A/U∩V ;U ∩ V )

Hp(A/U∩V ;U ∩ V )
∂p

−→ Hp+1(A;M) −→ · · ·

in which ∂∗ is the connecting homomorphism. We recall that the cohomology space

Hp(Ω∗(A/U ;U)×Ω∗(A/V ;V )) is a product of Hp(A/U ;U) and Hp(A/V ;V ), with the projec-

tions naturally defined, and hence the space Hp(Ω∗(A/U ;U)×Ω∗(A/V ;V )) is isomorphic to

the cartesian product Hp(A/U ;U)×Hp(A/V ;V ) by the isomorphism ([ξ], [η]) −→ [(ξ, η)].

1.3 Trivial Lie algebroids

The aim of this section is to state a result concerning the triviality of transitive Lie

algebroids over contractible manifolds. This result is a direct consequence of a deep result

on actions of certain cohomology space on the set of operators extensions of Lie algebroids

by Lie algebra bundles. This deep result is due to Mackenzie (see [10]). In view of the
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statement of this result, some definitions and examples of Lie algebroids used in the study

of this topic are given below. A complete description of these definitions and results can be

found in Mackenzie’s book ”General Theory of Lie Groupoids and Lie Algebroids”. The

paper ”Comparison of categorical characteristic classes of transitive Lie algebroid with

Chern-Weil homomorphism” by Mishchenko and Xiaoyu contains an interesting summary

of this study.

Example 1 (Lie algebroid of covariant derivatives). Let M be a smooth manifold

and π : E −→ M a vector bundle on M . Denote by Φ(E) the Lie groupoid on M made

by all linear isomorphism ξ : Ex −→ Ey for each x, y ∈ M (see [10]). For each n ≥ 1, let

πL : Ln(E;E) −→M be the vector bundle whose fibre at z ∈M is the vector space of all

p-linear maps from Ez × · · · × Ez to Ez. The canonical action

Φ(E) ∗ Ln(E;E) −→ Ln(E;E)

of the Lie groupoid Φ(E) on the vector bundle πL : Ln(E;E) −→M is defined by

ξ · ϕ = ξ ◦ ϕ ◦ (ξ−1 × · · · × ξ−1) ∈ Ln(Ey;Ey)

where x, y ∈ M , ξ : Ex −→ Ey is a linear isomorphism and ϕ ∈ Ln(Ex;Ex). A section

η ∈ Γ(Ln(E;E)) is stable for this action if, for all x, y ∈M , there is a linear isomorphism

ξ : Ex −→ Ey such that ξ · ηx = ηy. For a stable section η ∈ Γ(Ln(E;E)), the stabilizer

subgroupoid of Φ(E) at η is defined by

{ξ ∈ Φ(E) : ξ · η(α(ξ)) = η(β(ξ))}

in which α : Φ(E) −→ M and β : Φ(E) −→ M are the source and target projections of

the Lie groupoid Φ(E). We notice that a section η ∈ Γ(Ln(E;E)) need not be stable.

Nevertheless, for a Lie algebra bundle π′ : K −→ M on M with bracket [·, ·] ∈
∧2(K,K),

the bracket [·, ·] is a stable section for the action above restricted to the vector bundle∧2(K;K). Hence, the stabilizer subgroupoid of Φ(K) at [·, ·] is well defined and denoted

by ΦAut(K) (see [10]). The Lie algebroid of ΦAut(K) is denoted by DDer(K) and its
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elements are called covariant derivatives of K. The Lie algebroid DDer(K) is transitive

(see [10], [18]).

Example 2 (Adjoint Lie algebra bundle). Let M be a smooth manifold and

π : K −→ M a Lie algebra bundle with fibre type g. Consider the Lie subalgebra Der(g)

of gl(g) made by the derivations of g. In [10], it can be seen that the Lie subalgebra Der(g)

corresponds to a unique Lie algebra subbundle of the Lie algebra bundle End(K). This Lie

algebra subbundle is denoted by Der(K) and its elements are called derivations ofK. Thus,

the image ad(K) of K, by the Lie algebra bundle morphism ad : K −→ Der(K) defined

by adx : Kx −→ Der(Kx) for each x ∈M , is a Lie algebra subbundle of Der(K), in which

the fibre ad(K)x is an ideal of Der(Kx) (see [10]). Consequently, the Lie algebra bundle

quotient Der(K)/ad(K) is well defined. The Lie algebra subbundle ad(K) is called the

adjoint Lie algebra bundle of K. The Lie algebra bundle quotient Der(K)/ad(K) usually

is denoted by Out (K).

Example 3 (Lie algebroid quotient). Let M be a smooth manifold and A a Lie

algebroid over M , with anchor γ : A −→ TM and Lie bracket [·, ·]A on Γ(A). Consider

the Lie algebra bundle Ker γ. An ideal of A is a Lie algebra subbundle K of Ker γ such

that, for all sections ξ ∈ Γ(A) and η ∈ ΓK, [ξ, η]A is a section of K. In these conditions,

one defines the Lie algebroid quotient of A by K as follows. Let A be the vector bundle

quotient A/K and γ : A −→ TM the map induced by γ. The Lie bracket in the space of

the sections of A is defined by

[ξ + ΓK, η + ΓK]A = [ξ, η]A + ΓK

for each ξ, η ∈ Γ(A). The Lie algebroid A is transitive and usually denoted by A/K (see

[10] or [11]).

A particular case of Lie algebroid quotient is the following. Let π : K −→ M be

a Lie algebra bundle on a smooth manifold M and consider the transitive Lie algebroid

DDer(K) of all covariant derivatives of a Lie algebra bundle K. The adjoint Lie algebra
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bundle ad(K) is an ideal of DDer(K). Hence, we can consider the transitive Lie algebroid

quotient DDer(K)/ad(K), which is denoted by Out D(K). The sections of Out D(K) are

called outer derivations of K.

The Lie algebroid Out D(K) of a Lie algebra bundle K plays a fundamental role in the

development of cohomology theory of Lie algebroids. It is used to define couplings associ-

ated to extensions of Lie algebroids and consequently to define the affine space of operator

extensions. The heart of this theory is that the additive group of the cohomology space

in degree two of special representation induced by a coupling acts freely and transitively

on the affine space of operator extensions (see proposition 1.3.1 below or [10], [11]). We

briefly summary some definitions concerning couplings and representations, following [18].

A detailed study on those topics can be found in [10] or [11].

Representations. Let A be a Lie algebroid on a smooth manifold M , E a vector

bundle on M and D(E) the Lie algebroid of covariant differential operators on Γ(E). A

representation of A on E is a Lie algebroid morphism ρ : A −→ D(E).

On the graded algebra Ω∗(A;M), an exterior derivative can be defined, in the same

way as we have done in the second section, but taking ρ(Xj) instead γ ◦Xj (in our case,

we used the trivial representation ρ′ defined by ρ′(X) = γ ◦ X, where γ is the anchor of

A). The cohomology space of this cochain algebra is denoted by H(A, ρ, E).

Couplings. Let A be a Lie algebroid on a smooth manifold M and K a Lie algebra

bundle on M . A coupling of A with K is a morphism of Lie algebroids Ξ : A −→

Out D(K). In [10] or [11], it can be seen that a coupling induces a representation of

A, denoted by ρΞ, on the Lie algebra bundle Out D(ZK), in which ZK denotes the Lie

algebra subbundle centre of K. The representation ρΞ is called central representation of

the coupling Ξ. A Lie derivation law covering the coupling Ξ is a vector bundle morphism

∇ : A −→ DDer(K) that preserves the anchor maps and satisfies the equality \ ◦ ∇ = Ξ,

in which \ : DDer(K) −→ Out D(K) = DDer(K)/ad(K) is the quotient map. Since the
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map \ is a surjective submersion, any coupling Ξ admits Lie derivation laws covering it.

For transitive Lie algebroids, a Lie derivation law covering a couple Ξ can be obtained by

taking the covariant derivative of a connection λ : TM −→ A.

Obstruction. Let A be a Lie algebroid on a smooth manifold M , K a Lie algebra

bundle on M and Ξ : A −→ Out D(K) a coupling of A with K. For any Lie derivation

law ∇ : A −→ DDer(K) covering the coupling Ξ, one defines the curvature R∇ : Γ(A) ×

Γ(A) −→ Γ(DDer(K)) of ∇ which is defined by

R∇(ξ, η) = [∇(ξ),∇(η)]−∇([ξ, η])

for ξ, η ∈ Γ(A). Let Λ :
∧2(A) −→ K be a lifting of R∇ (see [18]). Then, the cyclic sum

of

∇ξ(Λ(η, θ))− Λ([ξ, η], θ)

defines an element of Z3(A, ρΞ, ZK). The notable fact is that, the cohomology class of this

element is independent of the choice of ∇ and Λ, depending only on the coupling Ξ. The

cohomology class of this element is called the obstruction class of the coupling Ξ, and is

denoted by Obs(Ξ) (see [10] or [18]).

Extensions of Lie algebroids. In view of the definition of set of equivalence classes

of operator extensions, we recall that an exact sequence of Lie algebroids on a smooth

manifold M is a sequence

{0} // A′
j // A λ // A′′ // {0}

in which A′, A and A′′ are Lie algebroids on M , j and λ are morphisms of Lie algebroids

and the sequence is exact as a sequence of vector bundles. We are interested in sequences

in which A′ is a Lie algebra bundle. Given a Lie algebra bundle K, an extension of A by

K is an exact sequence

{0} // K
j // A′ λ // A // {0}
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of Lie algebroids over M . The most important extension for our work is the sequence

{0} // Ker γ
j // A

γ // TM // {0}

of a transitive Lie algebroid A.

Equivalent extensions. Let M be a smooth manifold, A a Lie algebroid on M and

K a Lie algebra bundle on M . Two extensions

{0} // K
j1 // A1

λ1 // A // {0}

and

{0} // K
j2 // A2

λ2 // A // {0}

are equivalent if there is a Lie algebroid morphism ϕ : A1 −→ A2 such that ϕ ◦ j1 = j2

and λ2 ◦ ϕ = λ1. In these conditions, ϕ is an isomorphism of Lie algebroids.

Transversals. Let M be a smooth manifold, A a Lie algebroid on M and K a Lie

algebra bundle on M . Let

{0} // K
j // A′ λ // A // {0}

be an extension of A by K. A transversal in the extension is a vector bundle morphism

χ : A −→ A′ such that λ ◦ χ = idA. Since λ is a surjective submersion and a morphism of

vector bundles, transversals always exist and they are anchor-preserving morphisms. Fix

now any transversal χ : A −→ A′ in the extension above. We can define a coupling of A

with K as follows. Define the map ∇χ : A −→ DDer(K) such that

j(∇χ(ξ)(Y )) = [χ(ξ), j(Y )]

for each ξ ∈ Γ(A) and Y ∈ Γ(K). The map ∇χ is a morphism of vector bundles preserving

the anchor maps. The composition \ ◦ ∇χ : A −→ Out D(K) is a coupling (see [10]). If

ζ : A −→ A′ is other transversal of the extension, then we obtain the same coupling since

the equality \ ◦ ∇χ = \ ◦ ∇ζ holds. The coupling of A with K constructed in this way
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for any transversal is called the coupling induced by the extension. The map ∇χ is a Lie

derivation law covering this coupling. Thus, in [10], it can be seen that, for any transversal

in the extension and any Lie derivation law ∇ covering the coupling of A with K induced

by the extension, there is other transversal ζ : A −→ A′ such that ∇ = ∇ζ .

Operator extensions. Let M be a smooth manifold, A a Lie algebroid on M and K

a Lie algebra bundle on M . Let Ξ : A −→ Out D(K) be a coupling of A with K such

that Obs(Ξ) = 0 ∈ H3(A, ρΞ, ZK), in which ρΞ denotes the central representation of the

coupling. An operator extension of A with K is an extension

{0} // K
j // A′ λ // A // {0}

such that the coupling induced by this extension coincide with the coupling Ξ. The set of

equivalence classes of operator extensions of A by K is denoted by O(A,Ξ, K).

The result, due to Mackenzie ([10]), is that H2(A, ρΞ, ZK) acts freely and transitively

on the set O(A,Ξ, K). We begin by defining this action.

Action on operation extensions. Let M be a smooth manifold, A a Lie algebroid

on M and K a Lie algebra bundle on M . Let Ξ : A −→ Out D(K) be a coupling of A with

K such that Obs(Ξ) = 0 ∈ H3(A, ρΞ, ZK), in which ρΞ denotes the central representation

of the coupling. Consider an operator extension

{0} // K
j // A′ λ // A // {0}

Let g ∈ Z2(A;ZK). Then, the action of g on the extension yields the extension

{0} // K
j // A′g λ // A // {0}

in which A′g = A′ as vector bundles, the maps j and λ are the same in both extensions,

the anchors γ′ : A′ −→ TM and γ′g : A′g −→ TM are the same too and the Lie bracket

[·, ·]g on Γ(A′g) is given by

[ξ, η]g = [ξ, η] + (j ◦ i ◦ g)(λ(ξ), λ(η)
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in which i : ZK −→ K denotes the inclusion.

We can now state the main result concerning actions of operators extensions. All details

of the (long) proof can be found in Mackenzie’s book ”General Theory of Lie Groupoids

and Lie Algebroids” ([10]).

Proposition 1.3.1 (Mackenzie). Let A be a Lie algebroid on a smooth manifold M ,

K a Lie algebra bundle on M and Ξ : A −→ Out D(K) a coupling of A with K. Denote

by ρΞ the central representation corresponding to the coupling Ξ. Suppose that the class

obstruction of Ξ is the zero of H3(A, ρΞ, ZK). Then, the additive group of H2(A, ρΞ, ZK)

acts freely and transitively on O(A,Ξ, K).

There are several consequences from the previous result. For this work, the most impor-

tant consequence is the triviality of a transitive Lie algebroid on a contractible manifold.

This result is going to be applied in the proof of Mishchenko’s theorem.

Proposition 1.3.2. Let A be a transitive Lie algebroid on a contractible smooth

manifold M and γ : A −→ TM its anchor. Consider the Lie algebra bundle K = Ker γ

and denote by g its fibre type. Then, A is isomorphic to the trivial Lie algebroid TM × g,

by a strong isomorphism of Lie algebroids.

Proof. Since A is transitive, we can fix a flat connection a : TM −→ A (see [11]). Let

Ξ : A −→ Out D(K) be the coupling defined by Ξ = \ ◦ ∇a : A −→ Out D(K), in which

\ is the quotient map \ : DDerg −→ Out D(K). Consider the extensions

{0} // K
j // A

γ // TM // {0}

and

{0} // K
j // TM × g

γ // TM // {0}

Since M is contractible then H3(TM, ρΞ, ZK) = {0} and, by transitivity of the action of

the previous proposition, there exists [g] ∈ H2(TM, ρΞ, ZK) such that the extensions

{0} // g
j // Ag

γ // TM // {0}
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and

{0} // g
j // TM × g

γ // TM // {0}

are equivalent. Since M is contractible, we can take h ∈ Ω1(TM, ρΞ, ZK) such that dh = g.

We know that the extensions

{0} // g
j // Adh

γ // TM // {0}

and

{0} // g
j // Ag

γ // TM // {0}

are equivalent (see ([10]). The conclusion follows by transitivity. �

We finalize this section with other interesting proof of the proposition 1.3.2 made by A.

Weinstein. Suppose that A is a transitive Lie algebroid on a contractible smooth manifold

M . In the paper [3], they proved that every transitive Lie algebroid A over a 2-connected

base M is integrable. Since M is contractible, by [10], we conclude that A is the Lie

algebroid of the gauge groupoid of a principal bundle. This principal vector bundle is

trivial because the base is contractible. Now, it is not difficult to see the Lie bracket in the

set of sections of A is given by the derivative of functions by vector fields.
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Chapter 2

Piecewise smooth cohomology

In this chapter, we deal with transitive Lie algebroids defined over simplices of a simpli-

cial complex. We briefly discus a class of spaces for which the piecewise smooth cohomology

spaces is defined, precisely the class of all complexes of Lie algebroids. Some facts con-

cerning extension of piecewise smooth forms are presented. In what follows, all simplicial

complexes considered are geometric and finite. Simplex means always closed simplex and

each simplex can be represented as a convex body generated by its vertices. We shall

denote the boundary of the simplex ∆ by bd ∆. We shall write s ≺ ∆, if s is a face of the

simplex ∆. The notation ϕ : s ↪→ ∆, where ϕ is the inclusion, will also be used when s is

a face of ∆. Many of the definitions and properties stated through the entire chapter can

be found, on level of cell spaces, in [1], [9], [22], [24] and [26].

2.1 Complex of Lie algebroids

Consider a simplicial complex K and two simplices ∆ and ∆′ of K such that ∆′ is a face

of ∆. Let A∆ be a transitive Lie algebroid on ∆ and denote respectively by ϕ∆,∆′ : ∆′ ↪→ ∆

39



and (ϕ∆,∆′)
!! : (A∆)!!

∆′ −→ A∆ the inclusion and the induced maps. We recall that the

Lie algebroid (A∆)!!
∆′ denotes the restriction of A∆ to ∆′, which is, by definition, the Lie

algebroid (ϕ∆,∆′)
!!A∆, inverse image of A∆ by ϕ∆,∆′ . Since ∆′ is a compact embedded

submanifold of ∆, by proposition 1.1.10, the Lie algebroid (A∆)!!
∆′ can be identified to the

Lie algebroid Im (ϕ∆,∆′)
!!. Hence, for each x ∈ ∆′, the fibre (A∆′)x is a vector subspace of

the fibre (A∆)x.

Definition (Complex of Lie algebroids). Let K be a simplicial complex. A complex

of Lie algebroids on K is a family A = {A∆}∆∈K such that, for each ∆ ∈ K, A∆ is a

transitive Lie algebroid on ∆ and A∆′ = (A∆)!!
∆′ for each face ∆′ of ∆, that is, the Lie

algebroid restriction of A∆ to ∆′ is the Lie algebroid A∆′ .

Alternatively, a complex of Lie algebroids on K means a family of transitive Lie alge-

broids defined on the simplices of K such that the structures of Lie algebroids induced on

each intersection of two simplices coincide. We give now some examples of complexes of

Lie algebroids.

Example 1 (Tangent complex). Let K be a simplicial complex. For each simplex

∆ ∈ K, consider the tangent Lie algebroid T∆ defined over ∆. If ∆′ is a face of ∆ then,

by the proposition 1.1.7, (T∆)!!
∆′ = T∆′ and consequently we obtain a complex of Lie

algebroids {T∆}∆∈K , which is called the corresponding tangent complex on K.

Example 2 (Trivial complex). Let K be a simplicial complex and g a real finite

dimensional Lie algebra. For each simplex ∆ ∈ K consider the transitive Lie algebroid

T∆⊕ (∆× g). If ∆′ is a face of ∆ then (T∆⊕ (∆× g))!!
∆′ = T∆′⊕ (∆′× g) by proposition

1.1.8. We conclude that the family {T∆ ⊕ (∆ × g)}∆∈K is a complex of Lie algebroids.

This complex is called the trivial complex on K.

Example 3 (Restriction of complexes of Lie algebroids). Let K be a simplicial

complex and A = {A∆}∆∈K a complex of Lie algebroids on K. Let L be a simplicial
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subcomplex of K. We can consider a new complex of Lie algebroids, defined over L and

denoted by AL, given by restriction of A to the simplices of L, that is, AL = {A∆}∆∈L.

Example 4 (Complex corresponding a combinatorial manifold). Let M be a

smooth manifold, smoothly triangulated by a simplicial complex K, and A a transitive Lie

algebroid on M . Each simplex ∆ of K is a compact embedded submanifold of M . We can

consider the Lie algebroid restriction A!!
∆ on the compact submanifold ∆. By proposition

1.1.7, if ∆′ is a face of ∆, then (A!!
∆)!!

∆′ = A!!
∆′ and so we obtain a complex of Lie algebroids

on K which will be called the corresponding complex of A over the simplicial complex K

and denoted by {A!!
∆}∆∈K .

Notation. Let K, L be two simplicial complexes and f : K −→ L a simplicial map.

For each simplex ∆ of K generated by the vertices a0, a1, . . . , ap, we denote by f(∆) the

simplex of L generated by f(a0), f(a1), . . . , f(ap) with redundances removed.

Definition (Morphism of complexes of Lie algebroids). Let K, L be two sim-

plicial complexes and A = {A∆}∆∈K and B = {B∆′}∆′∈L two complexes of Lie algebroids

on K and L respectively. Let f : K −→ L be a simplicial map and suppose that, for each

∆ ∈ K, a morphism of Lie algebroids F∆ : A∆ −→ Bf(∆) over f/∆ : ∆ −→ f(∆) is given.

The family λ =
(
(F∆)∆∈K , f

)
is called a morphism of complex of Lie algebroids from A to

B if this family is compatible with the restrictions, that is, if ∆ and ∆′ are two simplices

of K, with ∆′ face of ∆, the restriction F∆/∆′
: A∆′ −→ Bf(∆′) coincides with the Lie

algebroid morphism F∆′ . This is equivalent to say that the diagram

A∆′
F∆′ //

i∆′,∆
��

Bf(∆′)

if(∆′),f(∆)

��
A∆

F∆ // Bf(∆)

is commutative, where i∆′,∆ and if(∆′),f(∆) are the inclusions maps. Suppose that T is other

simplicial complex and g : L −→ T a simplicial map. Let C = {C∆′′}∆′′∈T be a complex

of Lie algebroids on T . For each ∆′ ∈ L, let G∆′ : B∆′ −→ Cg(∆′) be a morphism of Lie
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algebroids over g/∆′ : ∆′ −→ g(∆′) such that the family δ =
(
(G∆′)∆′∈L, g

)
is a morphism

of complex of Lie algebroids from B to C. Then, we define the composition δ ◦ λ to be the

family δ ◦ λ =
(
(Gf(∆) ◦ F∆)∆∈K , g ◦ f

)
. It is routine to verify that the family δ ◦ λ is a

morphism of complexes of Lie algebroids from A to C.

Example 1 (Identity morphism). Let K be a simplicial complex andA = {A∆}∆∈K

a complex of Lie algebroids on K. For each ∆ ∈ K, let id∆ : A∆ −→ A∆ be the Lie

algebroid morphism identity. Then, the family λ =
(
(id∆)∆∈K , idK

)
, where idK : K −→ K

is the simplicial morphism identity, is a morphism of complex of Lie algebroids.

Example 2 (Inclusion morphism). Let K be a simplicial complex and suppose that

A = {A∆}∆∈K is a complex of Lie algebroids on K. Let L be a simplicial subcomplex of

K and consider the complex of Lie algebroids AL = {A∆}∆∈L given by restriction of A

to L (example 3, after the definition of complex of Lie algebroids). Consider the family

λ =
(
(id∆)∆∈L, iL,K)

)
, where iL,K : L −→ K is the simplicial inclusion and id∆ : Aα −→ Aα

is the Lie algebroid morphism identity. Then, the family λ is a morphism of complexes of

Lie algebroids from AL to A.

Next proposition is obvious.

Proposition 2.1.1. The class of all complexes Lie algebroids and morphisms of com-

plexes of Lie algebroids with the composition indicated as above is a category. This category

is called the category of complexes of Lie algebroids.

2.2 Algebra of piecewise smooth forms

Let A = {A∆}∆∈K be a complex of Lie algebroids on a simplicial complex K. For each

simplex ∆ of K, we denote, as done on previous sections, by
(
Ω∗(A∆; ∆), d∗∆

)
the cochain
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algebra of all smooth forms on A∆. Let ∆ and ∆′ be two simplices of K, with ∆′ face

of ∆, and ϕ∆,∆′ : ∆′ ↪→ ∆ the inclusion map. By definition of complex of Lie algebroids,

we have that (A∆)!!
∆′ = A∆′ . The homomorphism of cochain algebras generated by the

inclusion ϕ∆,∆′ is denoted by

ϕA∆

∆,∆′ : Ω∗(A∆; ∆) −→ Ω∗(A∆′ ; ∆′)

We give now the definition of piecewise smooth form. The idea of this definition is based

in the Whitney book’s [26] or in the Sullivan’s paper [22].

Definition (Piecewise smooth form). Let K be a simplicial complex and suppose

that A = {A∆}∆∈K a complex of Lie algebroids on K. A piecewise smooth form of degree

p (p ≥ 0) on the complex of Lie algebroids A is a family ω = (ω∆)∆∈K such that the

following conditions are satisfied.

• For each ∆ ∈ K, ω∆ ∈ Ωp(A∆; ∆) is a smooth form of degree p on A∆.

• For each ∆, ∆′ ∈ K, with ∆′ face of ∆,

ϕA∆

∆,∆′(ω∆) = ω∆′

Let (ϕ∆,∆′)
!! : A∆′ −→ A∆ be the map induced by ϕ∆,∆′ . We recall that the spaces

Ω∗(A∆′ ; ∆′) and Ω∗(Im (ϕ∆,∆′)
!!; ∆′) are identified and that the fibre (A∆′)x is a vector

subspace of the fibre (A∆)x. Hence, the second condition of the definition given above can

be stated in the following form: for each x ∈ ∆′ and vectors u1, . . . , up ∈ (A∆′)x

ω∆′(x)(u1, · · ·, up) = ω∆(x)(u1, · · ·, up)

Thus, a piecewise smooth form is a collection of smooth forms, each one defined on a

transitive Lie algebroid over a simplex of K, which are compatible under restriction to

faces. The set of all piecewise smooth forms of degree p on the complex of Lie algebroids

A will be denoted by Ωp
ps(A;K) or simply Ωp(A;K) . We have then

Ωp
ps(A;K) = {(ω∆)∆∈K : ω∆ ∈ Ωp(A∆), ∆′ ≺ ∆ =⇒ (ω∆)!!

∆′ = ω∆′}
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Remark. When p = 0, a piecewise smooth form on A of degree zero is a family

(ϕ∆)∆∈K ∈ Ω0
ps(A;K) ⊂

∏
∆∈K C

∞(∆) such that ϕ∆ : ∆ −→ R is smooth and the

equality ϕ∆′ = ϕ∆/∆′
holds for each face ∆′ of ∆. The compatibility condition of restrictions

to faces gives a map ϕ : |K| −→ R which is continuous. The map ϕ may not be a

differentiable map but it is a piecewise smooth function. The set of all maps ϕ ∈ C(|K|; R)

which are compatible with restrictions to the faces of |K| and with smooth restrictions to

the faces of |K| is denoted by Cps(|K|; R). Obviously, Ω0
ps(A;K) has a natural structure

of algebra over R and is naturally identified to Cps(|K|; R).

Let A = {A∆}∆∈K be a complex of Lie algebroids on a simplicial complex K. Since

restrictions of smooth forms are compatible with sums and products, various operations on

Ωp
ps(A;K) can be defined by the corresponding operations on each simplex of K. Namely,

if ω = (ω∆)∆∈K , η = (η∆)∆∈K ∈ Ωp
ps(A;K) are two piecewise smooth forms of degree p

on the complex of Lie algebroids A and f : |K| −→ R a continuous map, we may define

ω + η, fω and ω ∧ η to be

ω + η = (ω∆ + η∆)∆∈K

fω = (f/∆ω∆)∆∈K

ω ∧ η = (ω∆ ∧ η∆)∆∈K

The set Ωp
ps(A;K), equipped with these operations, becomes a real vector subspace of∏

∆∈K Ωp(A∆; ∆), for each natural p ≥ 0. Thus, Ωp
ps(A;K) is a module over the alge-

bra Cps(|K|; R). When p = 0, Ω0
ps(A;K) = Cps(|K|; R) has a structure of an unitary

associative algebra over R. Moreover, the direct sum

Ω∗ps(A;K) =
⊕
p≥0

Ωp
ps(A;K)

equipped with the exterior product defined by the corresponding exterior product on each

algebra Ω∗ps(A∆; ∆) =
⊕

p≥0 Ωp(A∆; ∆), is a commutative graded algebra over R.

In this section, we shall also include some basic functorial properties. We begin first

with the definition of inverse image of a piecewise smooth form.
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Definition (Inverse image of piecewise smooth forms). Let K, L be simplicial

complexes and A = {A∆}∆∈K and B = {B∆′}∆′∈L complexes of Lie algebroids on K and

L respectively. Let f : K −→ L be a simplicial map and suppose that, for each ∆ ∈ K, a

morphism of Lie algebroids F∆ : A∆ −→ Bf(∆) over f/∆ : ∆ −→ f(∆) is given such that

the family λ =
(
(F∆)∆∈K , f

)
is a complex of Lie algebroids morphism. For each ∆ ∈ K,

we have the commutative diagram

A∆
F∆ //

π∆

��

Bf(∆)

πf(∆)

��
∆

f/∆ // f(∆)

If ω = (ω∆′)∆′∈L ∈ Ωp
ps(B;L) is a piecewise smooth form, then, for each ∆ ∈ K, we can

consider the smooth form (F∆, f/∆)∗(ωf(∆)) ∈ Ωp(A∆; ∆). We define λ∗ω to be

λ∗ω =
(
(F∆, f/∆)∗(ωf(∆))

)
∆∈K

Proposition 2.2.1. On the same conditions above, the form λ∗ω is a piecewise smooth

form of degree p defined on the complex of Lie algebroids A.

Proof. It remains to check the compatibility condition of the restriction to the faces. Let

s be a face of ∆. Then f(s) is also a face of the simplex f(∆) and hence (ωf(∆))/f(s) = ωf(s).

We also have that the equality

(F∆, f/∆)∗
(
ωf(∆)/f(s)

)
=
(
(F∆, f/∆)∗(ωf(∆)

)
/s

holds, and therefore

(
(λ∗ω)∆

)
/s

=
(
(F∆, f/∆)∗(ωf(∆))

)
/s

= (F∆, f/∆)∗
(
ωf(∆)/f(s)

)
= (F∆, f/∆)∗(ωf(s))

Now, by the compatibility of (F∆, f/∆) to the restrictions, we have

(F∆, f/∆)∗(ωf(s)) = (Fs, f/s)
∗(ωf(s)) = (λ∗ω)/s

and so
(
(λ∗ω)∆

)
/s

= (λ∗ω)/s. �
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Proposition 2.2.2. Let A = {A∆}∆∈K , B = {B∆′}∆′∈L and C = {C∆′′}∆′′∈T three

complexes of Lie algebroids on the simplicial complexes K, L and T respectively. Let

f : K −→ L and g : L −→ T simplicial maps and suppose that, for each ∆ ∈ K and

∆′ ∈ L, morphisms of Lie algebroids F∆ : A∆ −→ Bf(∆) over f/∆ : ∆ −→ f(∆) and

G∆′ : B∆′ −→ Cg(∆′) over g/∆′ : ∆′ −→ g(∆′) are given such that the families

λ =
(
(F∆)∆∈K , f

)
: A −→ B

and

λ̂ =
(
(G∆′)∆′∈L, g

)
: B −→ C

are morphisms of complexes of Lie algebroids. Then, the following properties hold:

a) (λ̂ ◦ λ)∗ω = λ∗(λ̂∗ω).

b) (idA)∗ζ = ζ.

c) λ∗(ξ + η) = λ∗ξ + λ∗η and λ∗(ϕω) = (ϕ ◦ f)λ∗ω.

d) λ∗(ξ ∧ η) = λ∗ξ ∧ λ∗η.

for each ζ ∈ Ωp
ps(A;K), ω ∈ Ωp

ps(C;T ), ξ, η ∈ Ωp
ps(B;L) and ϕ : |L| −→ R continuous.

In order to obtain a complex of cochains, especially important is the analogues of

exterior derivative. This operator also is obtained by the corresponding exterior derivative

on each simplex. Namely, if A = {A∆}∆∈K is a complex of Lie algebroids on a simplicial

complex K, we can define the mapping

dp : Ωp
ps(A;K) −→ Ωp+1

ps (A;K)

setting

dp((ω∆)∆∈K) = (dp∆ω∆)∆∈K

for each ω = (ω∆)∆∈K ∈ Ωp
ps(A;K). For p = 0, the algebra Ω0

ps(A;K) is the vector

space of all families (ϕ∆)∆∈K ∈
∏

∆∈K C
∞(∆) such that (ϕ∆)∆∈K is compatible with the
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restrictions to faces. So, the exterior derivative in degree zero is the usual derivative. We

list below the main properties of the exterior derivative.

Proposition 2.2.3. Let A = {A∆}∆∈K be a complex of Lie algebroids on a simplicial

complex K and ω = (ω∆)∆∈K ∈ Ωp
ps(A;K). Then, the followings properties hold:

• dp is linear for any p ≥ 0.

• dp+1 ◦ dp = 0 for any p ≥ 0.

• For each ξ = (ξ∆)∆∈K ∈ Ωp
ps(A;K) and η = (η∆)∆∈K ∈ Ωq

ps(A;K),

dp+q(ξ ∧ η) = (dpξ) ∧ η + (−1)pξ ∧ (dqη)

Such as in the case of smooth forms on a Lie algebroid, the space Ω∗ps(A;K), with the

operations and differentiation above, becomes a commutative differential graded algebra,

which is defined over R.

Definition (Piecewise smooth cohomology). Keeping the same hypothesis and

notation as above, the piecewise smooth cohomology space of A is the cohomology space

of the algebra Ωp
∗(A;K) equipped with the structures defined above. Its cohomology,

H(Ω∗ps(A;K)), will be denoted by H∗ps(A;K) or simply by H∗(A;K).

Proposition 2.2.4. Let A = {A∆}∆∈K , B = {B∆′}∆′∈L two complexes of Lie alge-

broids on the simplicial complexes K e L respectively. Let f : K −→ L be a simplicial

map and suppose that, for each ∆ ∈ K, a morphism of Lie algebroids F∆ : A∆ −→ Bf(∆)

over f/∆ : ∆ −→ f(∆) is given such that the family λ =
(
(F∆)∆∈K , f

)
is a complex of Lie

algebroids morphism. Then, for each piecewise smooth form ω = (ω∆)∆∈K ∈ Ωp
ps(A;K),

the equality d(λ∗ω) = λ∗(dω) hold.

Proof. For each simplex ∆ ∈ K, the equality d(λ∗ω∆) = λ∗(dω∆) and so, the result

follows. �
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A particular case of inverse image of forms in the one in which considers the inclusion

morphism of complex of Lie algebroids, given in example 2 following the definition of

complex of Lie algebroids morphism. In this case, the inverse image of piecewise smooth

forms is called restriction of piecewise smooth forms. We shall notice some basic results

concerning restrictions of piecewise smooth forms.

Definition (Restriction of piecewise smooth forms). Let K be a simplicial com-

plex and A = {A∆}∆∈K a complex of Lie algebroids on K. Let L be a simplicial sub-

complex of K and AL = {A∆}∆∈L the complex of Lie algebroids given by restriction of

A to L. Consider the morphism of complexes of Lie algebroids λ =
(
(id∆)∆∈L, iL,K)

)
,

where iL,K : L −→ K is the simplicial inclusion and id∆ : A∆ −→ A∆ is the identity.

If ω = (ω∆)∆∈K ∈ Ωp
ps(A;K) is a piecewise smooth form of degree p, we can define the

restriction of ω to the subcomplex L, denoted by ω/L, to be

ω/L = λ∗ω

Proposition 2.2.5. In the conditions of this definition, the form ω/L is a piecewise

smooth form on the complex of Lie algebroids AL. Moreover, the equality

d(ω/L) = (dω)/L

holds.

Proof. It is a consequence of propositions 2.2.1 and 2.2.4.

Let K be a simplicial complex and A = {A∆}∆∈K a complex of Lie algebroids on

K. Let L be a simplicial subcomplex of K and consider the complex of Lie algebroids

AL = {A∆}∆∈L, restriction of A to L. We obtain a new cochain complex, the cochain

complex Ω∗ps(AL;L). For each p ≥ 0, denote by

rp
K

L
: Ωp

ps

(
A;K

)
−→ Ωp

ps

(
AL;L

)
the map induced by restriction, that is, for each ω ∈ Ωp

ps(A;K),

rp
K

L
(ω) = ω/L
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In next proposition, we establish the main properties of this restriction map.

Proposition 2.2.6. Keeping the same hypothesis and notations as above, the following

properties hold.

• For p = 0, r0K

L
: Cps(|K|) −→ Cps(|L|) is a homomorphism of algebras.

• For each p ≥ 0, rp
K

K
= idΩp

ps(A;K).

• The map r∗
K

L
: Ω∗ps(A;K) −→ Ωp

ps(AL;L) is a morphism of cochain algebras.

• If T is a simplicial subcomplex of L and AT = (Aα)α∈T then, for each p ≥ 0,

rp
K

T
= rp

L

T
◦ rpK

L
and so the diagram

Ω∗ps(A;K)

r∗
K

T
&&NNNNNNNNNNN

r∗
K

L // Ωp
ps(AL;L)

r∗
L

T
wwppppppppppp

Ωp
ps(AT ;T )

is a commutative diagram of cochain algebras.

Proof. It is an immediate consequence of proposition 2.2.2. �

After proposition 2.3.4, we will see that the map rp
K

L
is surjective.

2.3 Mayer-Vietoris sequence for piecewise smooth forms

Our propose now is to answer to the following question: let K0 and K1 be two simplicial

subcomplexes of a simplicial complex K and A = {A∆}∆∈K a complex of Lie algebroids

on K. We can consider the complexes of Lie algebroids A0 = {A∆}∆∈K0 , A1 = {A∆}∆∈K1

and A0,1 = {A∆}∆∈K0∩K1 . Naturally, our question is to know which relations hold between
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the cohomology of the complexes of cochains Ω∗ps(A;K), Ω∗ps(A0;K0), Ω∗ps(A1;K1) and

Ω∗ps(A0,1;K0 ∩K1). This question is answered by the Mayer-Vietoris sequence. We start

by stating the extension lemma for piecewise smooth forms (see [19], [22]). Once this is

done, we establish the result concerned to the Mayer-Vietoris sequence.

Proposition 2.3.1 (Extension lemma for piecewise smooth forms - particular

case). Let ∆k denote the canonical k-simplex in R∞ having the vertices

e0 = (0, 0, . . . , 0, . . . )

e1 = (1, 0, . . . , 0, . . . )

. . .

ek = (0, 0, . . . , 1, . . . )

(ej is the vector with 1 in the jth coordinate and zeros elsewhere). Let A be a transitive

Lie algebroid on ∆k and consider the complexes of Lie algebroids A∆k = {A!!
α}α∈∆k

and

Abd∆k = {A!!
α}α∈bd ∆k

given by restriction of A to the correspondent simplicial complexes

∆k and bd ∆k respectively. Let ξ ∈ Ωp
ps

(
Abd∆k ; bd ∆k

)
be a piecewise smooth form of

degree p defined on bd ∆k. Then, there is a piecewise smooth form ω ∈ Ωp
ps

(
A∆k ; ∆k

)
of

degree p defined on ∆k such that ω/bd ∆k
= ξ.

Proof. We are going to divide the proof in three parts.

Part 1. Let α be a face of dimension k − 1 of ∆k, say us, α is the face spanned by the

vertices e0, . . . , ej−1, ej+1, . . . , ek. The face α consists of all points x ∈ R∞ such that

x = t0e0 + · · ·+ tj−1ej−1 + 0ej + tj+1ej+1 + · · ·+ tkek

with
∑

i ti = 1 and ti ≥ 0. Let ej be the opposite vertex to the face α and U the complement

of this vertex. U is an open subset in ∆k. For each

x = t0e0 + · · ·+ tj−1ej−1 + tjej + tj+1ej+1 + · · ·+ tkek ∈ U
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we have that tj 6= 1 and the element t0
1−tj e0 + · · ·+ tj−1

1−tj ej−1 +
tj+1

1−tj ej+1 · · ·+ tk
1−tj ek belongs

to α. So, we may define a map

ϕ : U −→ α

by

ϕ(t0e0 + · · ·+ tj−1ej−1 + tjej + tj+1ej+1 + · · ·+ tkek) =

=
t0

1− tj
e0 + · · ·+ tj−1

1− tj
ej−1 +

tj+1

1− tj
ej+1 · · ·+

tk
1− tj

ek

Obviously ϕ is smooth map. Thus, ϕ is a retraction. Since ∆k is contractible, A is a

trivial Lie algebroid and then we can find a map ψ : AU −→ Aα such that λ = (ψ, ϕ) is

a morphism of Lie algebroids and, for each x ∈ α, ψx : Ax −→ Ax is the identity map.

Consider now a smooth form ω ∈ Ωp(A!!
α;α). Take the form λ∗ω. This form is smooth

and belongs to Ωp(AU ;U). By extension lemmas, the form λ∗ω damps out smoothly to a

smooth form ω̃ ∈ Ωp(A; ∆k). By taking the restriction of ω̃ to each face of the simplex

∆k, we obtain a piecewise smooth form ω̃ ∈ Ωp
ps(A∆k ; ∆k

)
, which is a piecewise smooth

extension of ω.

Part 2. The piecewise smooth form ω̃ obtained in the first part has the following

property: for each face β of α,

ω/β = 0 =⇒ ω̃/β∗ej
= 0

where β ∗ ej is the join of β and the vertex ej. This happens because ω̃ej
is obviously equal

to zero and, for each x ∈ β ∗ ej with x 6= ej, ϕ(x) lives in β.

Part 3. Let α0, . . . , αk be the k + 1 faces of dimension k − 1 of ∆k and let

ξ = (ξα)α∈ bd∆k
= (ξα0 , ξα1 , . . . , ξαk

) ∈ Ωp
ps(Abd∆k ; bd ∆k)

be a piecewise smooth form of degree p defined over bd∆k. By the part 1, the smooth

form ξα0 ∈ Ωp(A!!
α0

;α0) can be extended to a smooth form ξ̃0 ∈ Ωp(A; ∆k) defined on

∆k and the form ξ̃0 defines, by restriction to each face of ∆k, a piecewise smooth form

ξ̂0 ∈ Ωp
ps

(
A∆k ; ∆k

)
defined on ∆k. Let ξ1 = ξ −

(
ξ̂0
/

bd∆k

)
∈ Ωp

ps

(
Abd∆k ; bd ∆k

)
. The

form ξ1 vanishes on α0. Repeating the same process for the face α1 by using the form ξ1,
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the smooth form ξ1/α1
∈ Ωp(A!!

α1
;α1) extends to a smooth form ξ̃1 ∈ Ωp(A; ∆k) defined

on ∆k, and then we obtain a piecewise smooth form ξ̂1 ∈ Ωp
ps

(
A∆k ; ∆k

)
defined on ∆k by

restrictions to its faces. Since the faces α0 and α1 have a common vertex, we have that

ξ̂1/α0
= 0 by the part 2 above. Let ξ2 = ξ− (ξ̂0 + ξ̂1)/

bd∆k
∈ Ωp

ps

(
Abd∆k ; bd ∆k

)
. Then, ξ2

is a piecewise smooth form defined on bd∆k, ξ2/α0
= 0 and ξ2/α1

= ξ1/α1
− ξ̃1/α1

= 0. Hence

ξ2/α0∪α1
= 0. Therefore, we construct inductively a finite sequence ξj ∈ Ωp

ps

(
Abd∆k ; bd ∆k

)
and ξ̂j ∈ Ωp

ps

(
A∆k ; ∆k

)
, with j = 1, . . . , k + 1, such that

ξj = ξ − (ξ̂0 + ξ̂1 + · · ·+ ξ̂j−1)/
∂∆

and

ξj/α0∪α1∪···∪αj−1
= 0

for each j ∈ {1, . . . , k + 1}. Then, setting

ω = ξ̂0 + ξ̂1 + · · ·+ ξ̂l

we have that ω ∈ Ωp
ps

(
A∆k ; ∆k

)
is a piecewise smooth form defined on ∆k such that

ω/bd∆k
= ξ and so the result is proved. �

Proposition 2.3.2 (Extension lemma for piecewise smooth forms - general

case). Let ∆ be any simplex of dimension k. Let A be a transitive Lie algebroid on ∆ and

consider the complexes of Lie algebroidsA∆k = {A!!
α}α∈∆k

andAbd∆k = {A!!
α}α∈bd ∆k

given

by restriction of A to the correspondent simplicial complexes ∆k and bd ∆k respectively.

Let ξ ∈ Ωp
ps

(
Abd∆k ; bd ∆k

)
be a piecewise smooth form of degree p defined on bd ∆k.

Then, there is a piecewise smooth form ω ∈ Ωp
ps

(
A∆k ; ∆k

)
of degree p defined on ∆k such

that ω/bd ∆k
= ξ.

Proof. There is an affine isomorphism ϕ from the simplex ∆k onto the simplex ∆ which

maps the boundary bd ∆k onto the boundary bd ∆. Consider the transitive Lie algebroid

ϕ!!(A) on ∆k. Then, ϕ!!(A) is isomorphic (non strong isomorphism of Lie algebroids) to

the Lie algebroid A. Take the inverse image of the form ξ, apply the previous proposition,

take the direct image and we have the required extension. �

52



On last propositions, we began with a piecewise smooth form defined on whole bound-

ary. However, we can improve slightly last propositions and establish a result concerning ex-

tension of piecewise smooth forms when the form is defined, not on all (k−1)−dimensional

faces, but just on some (k−1)−dimensional faces of ∆. We note this improvement on next

proposition.

Proposition 2.3.3. Let ∆ be any simplex of dimension k and A a transitive Lie

algebroid on the simplex ∆. Consider the complex of Lie algebroids A∆ = {A!!
α}α∈∆

given by restriction of A to the correspondent simplicial complex ∆. Suppose that α0,

. . . , αk are the k + 1 faces of dimension k − 1 of simplex ∆ and that we have r smooth

forms ξj1 ∈ Ωp(A!!
αj1

;αj1), . . . , ξjr ∈ Ωp(A!!
αjr

;αjr) with {j1, . . . , jr} ⊂ {1, . . . , k} such that,

for each ji, je with αji ∩ αje non empty, the forms ξji and ξje agree on the intersection

αji ∩ αje . Then, there is a piecewise smooth form ω ∈ Ωp
ps

(
A∆; ∆

)
such that ω/αji

= ξji

for i = 1, . . . , r.

Proof. For each vertex which doesn’t belong to any face αj1 , . . . , αjr , we take the smooth

form zero on this vertex and then we have a family of smooth forms, each one defined on

each vertex of ∆. Now, for each two vertices defining a face of ∆ of dimension 1 different

of any 1−dimensional face of αji , with i = 1, . . . , r, we apply the previous proposition and

we obtain a piecewise smooth form defined on the skeleton of ∆ of dimension 1. This

piecewise smooth form is an extension of each smooth forms given on the 1−dimensional

faces of αji (i = 1, . . . , r) by restriction of the forms ξjr . We repeat the same argument for

dimension 2. This process will end on dimension k and the form obtained is a piecewise

smooth form defined on ∆, which is an extension of the forms ξji (i = 1, . . . , r). �

From last propositions, we easily obtain the next general lemma on extensions.

Proposition 2.3.4 (Extension lemma). Let K be a simplicial complex and

A = {Aα}α∈K a complex of Lie algebroids on K. Let L be a simplicial subcomplex

of K and consider the subcomplex of Lie algebroids {Aα}α∈L defined on L. Then, any
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piecewise smooth form of degree p defined on L can be piecewise smoothly extended to a

piecewise smooth form of degree p defined on the whole K.

We conclude from this proposition that the map rp
K

L
: Ωp

ps

(
A;K

)
−→ Ωp

ps

(
AL;L

)
from

proposition 2.2.6 is surjective.

Proposition 2.3.5. Let K be a simplicial complex and A = {Aα}α∈K a complex

of Lie algebroids on K. Let K0 and K1 be two simplicial subcomplexes of K such that

K = K0 ∪ K1 and set L = K0 ∩ K1. Consider the complexes of Lie algebroids

A0 = {Aα}α∈K0 , A1 = {Aα}α∈K1 and A0,1 = {Aα}α∈L given by restriction of A to the

simplicial subcomplexes K0, K1 and L. Then, it holds a exact short sequence of cochain

complexes

{0} −→ Ω∗ps(A;K)
λ∗−→Ω∗ps(A0;K0)⊕ Ω∗ps(A1;K1)

µ∗−→Ω∗ps(A0,1;L) −→ {0}

in which the linear maps

λp : Ω∗ps(A;K) −→ Ω∗ps(A0;K0)⊕ Ω∗ps(A1;K1)

µp : Ω∗ps(A0;K0)⊕ Ω∗ps(A1;K1) −→ Ω∗ps(A0,1;L)

are defined by λp(ω) = (ω/K0 , ω/K1) and µp(ξ, η) = η/L − ξ/L.

Proof. As in the case of smooth forms on a transitive Lie algebroid over a smooth man-

ifold, the exterior derivative commutes with the restrictions to a simplicial subcomplexes

(proposition 2.2.5) and, since dp(ξ, η) = (dp(ξ), dp(η)), one deduces immediately that λ∗

and µ∗ are effectively cochain complex morphisms. Obviously, the linear map λp is injec-

tive. Since, for each piecewise smooth form ω ∈ Ωp
ps(A;K), the forms ω/K0 and ω/K1 have

the same restriction ωL to L, we conclude that µp ◦ λp = 0, and hence the image of the

linear map λp is contained in the kernel of the linear map µp. Reciprocally, if µp(ξ, η) = 0,

we have ξα = ηα, for each α ∈ L, and this equality allows to define a piecewise smooth

form ω ∈ Ωp
ps(A;K) by the condition ωα = ξα, for each α ∈ K0, and ωα = ηα, for each

α ∈ K1. We have then λp(ω) = µp(ξ, η). We want now to prove that µp is surjective.
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Let γ ∈ Ωp
ps(A0,1;L) be a piecewise smooth form and consider the piecewise smooth form

−1
2
γ ∈ Ωp

ps(A0,1;L). By the extension lemma, we can consider a piecewise smooth form

α ∈ Ωp
ps(A0;K0) such that α/L = −1

2
γ. Analogously, we can consider a piecewise smooth

form β ∈ Ωp
ps(A1;K1) such that β/L = 1

2
γ. We have then that µp(α, β) = γ. �

By applying the zig-zag lemma to the sequence above, we obtain the long exact sequence

in cohomology

Hp−1
ps (A0,1;L) ∂p−1

// Hp
ps(A;K)

Hp(λ∗)// Hp
ps(A0;K0)⊕Hp

ps(A1;K1)

Hp
ps(A0;K0)⊕Hp

ps(A1;K1)
Hp(µ∗) // Hp

ps(A0,1;L) ∂p
// Hp+1

ps (A;K)

which is the Mayer-Vietoris sequence for piecewise smooth cohomology.

2.4 Generalization of piecewise smooth context

It should be remarked that, in previous sections, specific properties of the simplices

were not required neither in the formulation of the piecewise smooth context nor in the

statement of some properties. Indeed, these notions and properties can be extended to

more general spaces. Moreover, for the proof of the Mishchenko’s theorem given in next

section, we are going to need a slightly modification of the concept of piecewise smooth

cohomology given in the previous section. We shall notice, in this section, a general notion

of piecewise smooth cohomology to other spaces which may not be simplicial complexes. A

sheaf of the piecewise smooth forms on a complex of Lie algebroids will be constructed. As

remarked in previous section, all simplicial complexes considered are geometric and finite

and simplex means always closed simplex.

Definition. Let K = {N1, . . . , Ns} be a finite collection of submanifolds in an ambient
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space such that, for any j1, . . . , je ∈ {1, . . . , s}, the intersection Nj1 ∩ · · · ∩ Nje is a

submanifold. A complex of Lie algebroids on K is a family A = {Aj}j∈J such that the

following conditions hold.

• For each j ∈ {1, . . . , s}, Aj is a transitive Lie algebroid on Nj.

• For each i, j ∈ {1, . . . , s}, one has (Aj)!!
Nj∩Ni

= (Ai)!!
Nj∩Ni

.

It is obvious that, by transitivity of restrictions of Lie algebroids, for each subset J̃ of

{1, . . . , s} and any partition {{j1, . . . , jr}, {i1, . . . , it}} of J̃ , we have (A!!
Nr

)!!
Nt

= (A!!
Nt

)!!
Nr

,

where Nr = Nj1 ∩ · · · ∩Njr and Nt = Ni1 ∩ · · · ∩Nit

Definition. Let K = {N1, . . . , Ns} be a finite collection of submanifolds in an ambient

space such that, for any j1, . . . , je ∈ {1, . . . , s}, the intersection Nj1 ∩ · · · ∩ Nje is a

submanifolds. Assume that a complex of Lie algebroids A = {Aj}j∈J on K is given. A

piecewise smooth form of degree p (p ≥ 0) on A is a family ω = (ω1 . . . , ωs) such that, for

each j ∈ {1, . . . , s},

• For each j ∈ {1, . . . , s}, ωj ∈ Ωp(Aj;Nj) is a smooth form on Aj.

• For each i, j ∈ {1, . . . , s}, one has

ϕ
Aj

Nj∩Ni,Nj
(ωj) = ϕAi

Nj∩Ni,Ni
(ωi)

where

ϕ
Aj

Nj∩Ni,Nj
: Ω∗(Aj;Nj) −→ Ω∗((Aj)!!

Ni∩Nj
;Ni ∩Nj)

ϕAi
Nj∩Ni,Ni

: Ω∗(Ai;Ni) −→ Ω∗((Ai)!!
Ni∩Nj

;Ni ∩Nj)

denote the homomorphisms of cochain algebras generated by the inclusions maps

ϕNj∩Ni,Nj
: Ni ∩Nj −→ Nj and ϕNj∩Ni,Ni

: Ni ∩Nj −→ Ni respectively.

The family of all such forms obtained in this way will be denoted by Ωp
ps(A;K). This

set is a real vector subspace of the product vector space Ωp(A1;N1)× · · · ×Ωp(As;Ns). A
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wedge product and an exterior derivative can be defined on Ω∗ps(A;K) =
⊕

p≥0 Ωp
ps(A;K)

by the corresponding operations on each algebra Ω∗ps(Aj;Nj) =
⊕

p≥0 Ωp(Aj;Nj), giving

to Ωp
∗(A;K) a structure of cochain algebra defined over R. The cohomology space of this

algebra will be denoted by H∗ps(A;K).

We notice that piecewise smooth cohomology of a complex of Lie algebroids defined

on a simplicial complex is a particular case of this generalization. The reason for this

generalization is that, as mentioned at the introduction of this section, we are going to

deal with a complex of piecewise smooth forms that may not be defined over the family

of all closed simplices of a simplicial complex. To illustrate this idea, let us briefly look at

some cases of this construction. A first example of this generalization is take a simplicial

complex and to fix our attention on an open star of one its vertex. In this case, we

have the open star smoothly triangulated by a non-complete simplicial complex since each

simplex of this triangulation does not contain the face opposite to the vertex. The family of

submanifolds made by those simplices without the faces opposite to the vertex satisfies the

conditions required in our definition of complex of Lie algebroids given at the beginning of

this section. Any transitive Lie algebroid over the open star gives, by restriction, a complex

of Lie algebroids. Another illustrative example consists of taking the family defined by

intersections of open stars with any open subset of the polytope of a simplicial complex.

The first example is obviously a particular example of this second case. The construction

of a complex of Lie algebroids can be done in similar way. These two examples will be used

in the proof of the main theorem of next section. Our third example extends the second

one and and consists of taking intersections of generalized stars with open subsets of the

polytope. This third example is not quite different of previous examples. Nevertheless, it

enhances the construction of the sheaf of the piecewise smooth forms on a complex of Lie

algebroids. We provide, in next section, a description of this third example as well of the

corresponding sheaf of piecewise smooth forms.
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2.5 Sheaves of piecewise smooth forms

In this section, we describe a corresponding sheaf of piecewise smooth forms, which we

can define on a special complex of Lie algebroids defined by using regular open subsets.

Definitions and main properties of regular open subsets can be seen in [24]. The idea of

construction of the sheaf of the piecewise smooth forms on a complex of Lie algebroids

comes from [9] or [1].

Definition (Generalized star). Let K be a simplicial complex and a a point of

the polyhedron |K|. The generalized star of a, denoted also by St a, is the union of the

interiors of all simplices of K such that a belongs to those simplices.

Remark. When the point a is a vertex of K, it is obvious that the generalized star of

a is the same as the star of a.

Remark 2. For each a ∈ K, there is a unique simplex ∆a of K such that a belongs to

the interior of ∆a (see [24]).

Proposition 2.5.1. Let K be a simplicial complex and a a point of the polytope |K|.

Denote by ∆a the unique simplex of K such that a belongs to the interior of ∆a. Then,

the generalized star of a coincide with the star St ∆a. Consequently, the generalized star

of a is an open subset of the polyhedron |K|.

Proof. If a is one of the vertices of K, then ∆a = {a} and the result is proved. Suppose

now that a is different of any vertex of K. Then a belongs to the interior of ∆a. We shall

see first that St a ⊂ St ∆a. Let ∆ be a simplex of K such that a ∈ ∆. Since a is different

of any vertex of K, it follows that a ∈◦s, for some face s of ∆. But a ∈
◦

∆a and so
◦
s=

◦
∆a.

Hence s = ∆a and therefore ∆a is a face of ∆. We conclude then
◦
∆⊂ St ∆a. Now, let ∆̃

be a simplex of K such that ∆a is a face of ∆̃. Then, a ∈ ∆̃ and so
◦

∆̃⊂ St ∆a. The other

inclusion is obvious. The second part of the proposition is immediate. �
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The collection of the stars of all vertices of a simplicial complex K form an open covering

of its polytope |K| and the base obtained from this covering is a contractible base for the

topology of |K|. Below, we are going to deal with other coverings which are not obtained

from its stars of its vertices, but from regular open subsets. We recall that a regular open

subset of |K| is a star of some simplex of K (see [24]). Next definition is to generalize this

notion in order to obtain other coverings of |K| which fit better for the sheaf of piecewise

smooth forms on a complex of Lie algebroids.

Definition (Regular open subset). Let K be a simplicial complex and |K| its

polytope. Let a ∈ |K| and U an open subset of |K| with a ∈ U . The open subset U is

called regular open neighborhood of a if U is the intersection of an open neighborhood of

a in |K| with the generalized star of a. Given any open subset V of |K|, V is called a

regular open subset of |K|, if there exists a point a ∈ |K| such that V is a regular open

neighborhood of the point a.

Remark. Obviously, a star of some simplex of a simplicial complex is a regular open

subset of its polytope.

Proposition 2.5.2. Let K be a simplicial complex and |K| its polytope. For each

a ∈ |K|, the set of all regular open neighborhoods of a is a fundamental system of neigh-

borhoods of a and the set of all regular open subsets of |K| is a base for the topology of

the space |K|.

Proof. Standard arguments.

The proposition 2.2.6 still remains true in the piecewise context obtained by using the

set of all generalized regular open subsets of the polytope of a simplicial complex. We

notice those facts below, beginning first to describe a special construction of a complex of

Lie algebroids based in regular open subsets.

Derived complex corresponding to regular open subsets. Let K be a simplicial
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complex and A = {A∆}∆∈K a complex of Lie algebroids on K. Let U be a regular open

subset of |K| and consider a ∈ |K| such that U = Z ∩ St a, in which Z is an open

neighborhood of a in |K|. Consider the unique simplex ∆a of K such that a belongs to the

interior of ∆a. For each simplex ∆ ∈ K such that ∆a is a face of ∆, denote by ∆U the set

∆U = U ∩∆. We have that ∆U is an open submanifold of ∆. If ∆′ is other simplex of K

such that ∆a is a face of ∆′, then ∆a is a face of ∆ ∩∆′ and the intersection U ∩ (∆ ∩∆)

is a submanifold. The collection KU , made by the manifolds ∆U = U ∩∆ such that ∆a is

a face of ∆, satisfies the conditions required for the definition of complex of Lie algebroids

given at the beginning of this section. The Lie algebroid A∆ is transitive and so we can

take the Lie algebroid restriction (A∆)!!
∆U

to ∆U . Therefore, we can consider the family

AU = {(A∆)!!
∆U

: ∆ ∈ K, ∆a ≺ ∆}

We claim that the family AU is a complex of Lie algebroids defined over the set of

manifolds KU .

Before proving this statement, we are going to check that the triangulation obtained in

U does not depend on the point a chosen, that is, if Z ∩St a = Z̃ ∩St b, then St a = St b.

To see this, denote by ∆a and ∆b the unique simplices of K which contain a and b in its

interior respectively. Then, St a = St ∆a and St b = St ∆b. Since b ∈ V ∩ St a, there

exists a simplex ∆′ ∈ K such that ∆a is a face of ∆′ and b belongs to the interior of ∆′.

Hence, ∆b = ∆′ by uniqueness of ∆b, and so ∆a is a face of ∆b. Analogously, we conclude

can that ∆b is a face of ∆a and so it holds that ∆b = ∆a.

It remains to check that the family AU is indeed a complex of Lie algebroids. For

that, fix two simplices ∆ and ∆′ of K such that ∆a is a common face of ∆ and ∆′. Let

s = ∆ ∩∆′. We have(
(A∆)!!

∆U

)!!

U∩s = (A∆)!!
U∩s =

(
(A∆)!!

s

)!!

U∩s = (As)!!
U∩s

and analogously (
(A∆′)

!!
∆′U

)!!

U∩s = (As)!!
U∩s
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Hence, the family AU is a complex of Lie algebroids over the set of manifolds

KU = {U ∩∆ : ∆ ∈ K,∆a ≺ ∆}

The complex AU is called the derived complex of the complex A corresponding to the

regular open subset U .

The cochain algebra of the piecewise smooth forms on the derived complex of a complex

of Lie algebroids will be denoted simply by Ω∗ps(AU), dropping the letter that represents

the family of submanifolds which the derived complex of Lie algebroids is defined on.

Keeping the same hypothesis and notations as above, let U and V two regular open

subsets of |K| such that V ⊂ U . Let a and b ∈ |K| such that U and V are regular open

neighborhoods of a and b respectively. Denote by ∆a and ∆b the unique simplices of K

which contain a and b in its interior respectively. Since b ∈ U , there exists a simplex ∆ ∈ K

such that ∆a is a face of ∆ and the point b belongs to the interior of ∆. Hence, ∆b = ∆ and

so ∆a is a face of ∆b. If ∆′ is a simplex of K such that ∆b is a face ∆′, then ∆a is a face of

∆′ and, consequently, every element of KV = {∆V : ∆ ∈ K,∆b ≺ ∆} is a submanifold of

the respective element of KU = {∆U : ∆ ∈ K,∆a ≺ ∆}. Let ω = (ω∆U
)∆U∈KU ∈ Ω∗ps(AU)

be a piecewise sooth form on the complex of Lie algebroids AU . For each simplex ∆ ∈ K

such that ∆b is a face of ∆, we have that
(
(A∆)!!

∆U

)!!

∆V
= (A∆)!!

∆V
and we can restrict

the smooth form ω∆U
∈ Ω∗

(
(A∆)!!

∆U
; ∆U

)
to the submanifold ∆V , obtaining the smooth

form ω∆V
= (ω∆U

)!!
∆V
∈ Ω∗

(
(A∆)!!

∆V
; ∆V

)
. Therefore, we obtain the differential form

(ω∆V
)∆V ∈KV . Similar arguments given in the proof of the proposition 3.2 can be used to

show that the form (ω∆V
)∆V ∈KV is a piecewise smooth form and so it belongs to ∈ Ω∗ps(AV ).

As done in the definition following proposition 3.4, the piecewise smooth form (ω∆V
)∆V ∈KV

is denoted by ω/V or simply by ωV .

Proposition 2.5.3. Let K be a simplicial complex and A = {A∆}∆∈K a complex of

Lie algebroids on K. Let U and V be two regular open subsets of |K| such that U ⊂ V

and consider the derived complexes of Lie algebroids AU and AV corresponding to U and
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V respectively. For each p ≥ 0, denote by

rp
K

L
: Ωp

ps(AU) −→ Ωp
ps(AV )

the map induced by restriction, that is, for each ω ∈ Ωp
ps(AU),

rp
U

V
(ω) = ω/V

• For each p ≥ 0, rp
U

U
= idΩp

ps(AU ).

• r∗U
V

: Ω∗ps(AU) −→ Ω∗ps(AV ) is a morphism of graded algebras.

• If W is other generalized regular open subset of |K| with W ⊂ V and AW is the

derived complex of Lie algebroids corresponding to W , then the diagram below is a

commutative diagram of cochain complexes

Ω∗ps(AU)

r∗
U

W
&&LLLLLLLLLL

r∗
U

V // Ω∗ps(AV )

r∗
V

W
xxrrrrrrrrrr

Ω∗ps(AW )

Consequently, for each p ≥ 0, the correspondence which associates, to each regular open

subset U of |K| the real vector space Ωp
ps(AU) of the piecewise smooth forms defined on U

and, to each pair of regular open subsets U and V of |K| with V ⊂ U the homomorphism

rp
U

V
, is a presheaf, which is called the presheaf of the piecewise smooth forms of degree p

of the complex A.

Proof. Standard arguments.

The last proposition leads us to the following definition (see [9]).

Definition. Let K be a simplicial complex and A = (Aα)α∈K a sheaf of Lie algebroids

on K. For each p ≥ 0, the sheaf of the piecewise smooth forms of degree p on the sheaf

of Lie algebroids A is the sheaf constructed canonically from the presheaf of the piecewise

smooth forms of degree p on (Aα)α∈K .
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Proposition 2.5.4. Let K be a simplicial complex and A = (Aα)α∈K a sheaf of Lie

algebroids on K. Then the sheaf S of the piecewise smooth forms of degree p on the sheaf

of Lie algebroids A is fine.

Proof. Let U = {Uj}j∈J be a locally finite open covering of |K| by regular open subsets

of |K|. Since the set of all regular open subsets of |K| is a base for the topology of

|K|, we can assume that each open subset U ∈ U is a regular open subset. If {ϕj}j∈J is

piecewise smooth partition of unity subordinated to the covering U, the homomorphisms

of presheaves hj : Ωp
ps(AU) −→ Ωp

ps(AU) defined by hj(ω) = ϕj/U
ω for each ω ∈ Ωp

ps(AU)

induce homomorphisms from Ap to Ap satisfying the conditions which characterize the

definition of fine sheaf. Therefore, the result is proved if we find a piecewise smooth

partition of unity subordinated to the covering U. By lemma shrinking, there is an open

covering V = {Vj}j∈J such that, for each j ∈ J , Vj ⊂ Uj. Let U ∈ U and V ∈ V such

that V ⊂ U . Consider a ∈ |K| such that U is a regular open neighborhood of a in |K|.

For each simplex ∆ ∈ K such that ∆a is a face of ∆, consider the closed subset V ∩ ∆

of ∆. Take the union of all V ∩∆ such that ∆a is a face of ∆ and denote that union by

W . Since |K| is compact, the topology of |K| coincide with the topology induced from the

Euclidian space. We have that W a closed subset of the Euclidian space. The open star

St ∆a is open in |K| and so there is an open subset Z of the Euclidian space such that

St ∆a = Z ∩ |K|. The closed subset is contained in the open subset Z. Hence, we can

fix a smooth function ϕ : Z −→ R such that ϕ does not vanish on W . By restriction to

each submanifold ∆U = U ∩∆, we have a piecewise smooth function on U which does not

vanish on each V ∩∆. Take the sum of these functions and consider the quotient of each

function by the sum. This defines a partition of unity made by piecewise smooth functions.
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Chapter 3

Main theorems

In this chapter, we state the main results of our work. The chapter is divided in

three sections. The first section is devoted to the proof of Mishchenko’s conjecture, which

sates that Lie algebroid cohomology and piecewise smooth cohomology of a transitive Lie

algebroid over a combinatorial manifold are isomorphic. The remaining sections outline two

applications of Mishchenko’s theorem to invariant cohomology of transitive Lie algebroids

and to piecewise de Rham cohomology of locally trivial Lie groupoids. In this chapter, all

simplicial complexes are finite and consequently all smooth manifolds considered in this

chapter are compact manifolds.

3.1 Mishchenko’s theorem

The central purpose of this section is to give a relationship between de Lie algebroid

cohomology and piecewise smooth cohomology of transitive Lie algebroids. Mishchenko

conjectured that the Lie algebroid cohomology and the piecewise smooth cohomology of

a transitive Lie algebroid over a combinatorial compact manifold are isomorphic and this

isomorphism is induced by restriction of smooth forms to the simplices. We prove that this
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conjecture holds for any transitive Lie algebroid over a combinatorial compact manifold

and this theorem will be called Mishchenko’s theorem.

Let M be a smooth manifold, smoothly triangulated by a simplicial complex K. Sup-

pose that A is a transitive Lie algebroid on M . We can consider the corresponding complex

of Lie algebroids A = {A!!
∆}∆∈K obtained by restriction of A to the simplices of K (ex-

ample 4 given after the definition of complex of Lie algebroids, section 2.1 of the second

chapter). We recall that Ω∗(A;M) denotes the cochain algebra of all smooth forms on the

Lie algebroid A. The cochain algebra of all piecewise smooth forms on the corresponding

complex {A∆}∆∈K is denoted by Ω∗ps(A;M) or Ω∗ps(A;K). Given a simplex ∆ of K, con-

sider the canonical Lie algebroid morphism λ = (ϕM,∆, ϕ
!!
M,∆) in which ϕM,∆ : ∆ −→ M

and ϕ!!
M,∆ : A!!

∆ −→ A are respectively the inclusion map and the corresponding induced

map. The morphism of cochain algebras generated by the map ϕM,∆ is

ϕAM,∆ : Ω∗(A;M) −→ Ω∗(A!!
∆; ∆)

which is defined by ϕAM,∆(ω) = λ∗(ω). The form ϕAM,∆(ω) is simply denote by ω∆ (definition

given in the section 1.2 of the first chapter). Moreover, any smooth form ω ∈ Ωp(A;M)

of degree p determines, on the corresponding complex A = {A!!
∆}∆∈K , a piecewise smooth

form of degree p defined by the restriction of ω to each simplex of K, that is,

Ωp(A;M) 3 ω −→ (ω∆)∆∈K ∈ Ωp
ps(A;K)

Hence, we have a linear map

Ψp : Ωp(A;M) −→ Ωp
ps(A;K)

defined by

ω −→ (ω∆)∆∈K

Since the exterior derivative commutes with restrictions to any submanifold of M , the

family Ψ = (Ψp)p≥0 defines a cochain algebra morphism from Ω∗(A;M) to Ω∗ps(A;K).

66



Mishchenko conjectured that the map Ψ induces an isomorphism in cohomology. The

rest of this section is devoted to prove his conjecture, which we have called Mishchenko’s

theorem.

Main theorem - Mishchenko’s theorem. Ψ induces an isomorphism in cohomology.

The connection between Lie algebroid and piecewise smooth cohomology of a transitive

Lie algebroid on a combinatorial compact manifold will be made through the main theorem

above. There are some facts we will need for the proof of this theorem. We will need the

Mayer-Vietoris sequences for regular open subsets in the smooth and piecewise smooth

cases, the triviality of Lie algebroids over contractible manifolds and a few background on

simplicial manifolds as well the de Rham-Sullivan theorem for combinatorial manifolds.

We emphasize that, in the second chapter, it was given an example in which piecewise

smooth forms may not be defined over a collection of closed simplices, but over a collection

of submanifolds obtained by the intersection of closed simplices with a regular open subset.

We restrict now our attention to this generalization of the piecewise smooth setting and

note some notations. Once these ideas are established, we shall then turn towards to the

statement and the proof of the Mishchenko’s theorem.

Definitions. Let M be a smooth manifold, smoothly triangulated by a simplicial

complex K, and suppose that A is a transitive Lie algebroid on M . As done before,

for each two submanifolds X and Z of M such that ϕZ,X : X ↪→ Z is an embedded

submanifold, the map

ϕ
A!!

Z
Z,X : Ω∗(A!!

Z ;Z) −→ Ω∗(A!!
X ;X)

ϕ
A!!

Z
Z,X(ω) = λ∗(ω)

denotes the cochain algebra morphism generated by the inclusion ϕZ,X : X ↪→ Z, in

which λ = (ϕZ,X , ϕ
!!
Z,X) is the canonical Lie algebroid morphism defined by the inclusion

ϕZ,X : X ↪→ Z and the induced smooth map ϕ!!
Z,X : A!!

X −→ A!!
Z .
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• Definition 1. Let s be a simplex of K and consider the regular open subset

U = St (s) of M . For each simplex ∆ ∈ K such that s a face of ∆, we denote

by ∆U the intersection ∆U = ∆ ∩ U . The set ∆U is an embedded submanifold of M

and it holds the equality

U =
⋃

∆∈K, s≺∆

∆ ∩ U

We can consider the family KU of all submanifolds ∆U = ∆ ∩ U such that ∆ is a

simplex of K provide that s is a face of ∆, that is,

KU = {U ∩∆ : ∆ ∈ K, s ≺ ∆}

It is obvious that, for any simplices ∆1, · · · , ∆q of K such that s is face of each ∆j

(j = 1, · · · , q) the intersection ∆1
U ∩ · · · ∩ ∆q

U is a submanifold and belongs to KU .

For each ∆U ∈ KU , the Lie algebroid restriction A!!
∆U

exists, since ∆U is an open

subset in the compact submanifold ∆. Thus, by transitivity of restrictions, one has

(A!!
∆U

)!!
∆∩∆′∩U = (A!!

∆′U
)!!
∆∩∆′∩U

for each simplices ∆ and ∆′ of K such that s is a face of both ∆ and ∆′. Hence,

the family {A!!
∆U
}∆U∈KU is a complex of Lie algebroids on KU . We can apply the

construction made in the section 2.4 of the second chapter to obtain a graded vector

space of piecewise smooth forms over the complex of Lie algebroids {A!!
∆U
}∆U∈KU .

This graded vector space of piecewise smooth forms will be denoted by Ω∗ps(A!!
U ;U).

We have then that a piecewise smooth form ω ∈ Ωp
ps(A!!

U ;U) of degree p is a family

ω = (ω∆)∆U∈KU ∈
∏

∆U∈KU

Ωp(A!!
∆U

; ∆U)

such that, if ∆ and ∆′ are simplices of K with s ≺ ∆′ ≺ ∆, one has

ϕ
A∆U

∆,∆′(ω∆) = ω∆′

or simply (ω∆)/∆′ = ω∆′ .
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• Definition 2. More generally, suppose that s1, . . . , se are simplices of K and set

U1 = St (s1), . . . , Ue = St (se) and U = U1 ∪ · · · ∪ Ue. As done on the previous

definition, we denote by ∆U the intersection ∆ ∩ U , for each simplex ∆ of K such

that sj is a face of ∆ for some j ∈ {1, . . . , e}. Let KU be the family of all submanifolds

∆U = ∆ ∩ U such that ∆ is a simplex of K provide that sj is a face of ∆ for some

j ∈ {1, . . . , e}. Similar arguments given in the previous definition lead us to consider

the complex of Lie algebroids {A!!
∆U
}∆U∈KU defined on KU . A piecewise smooth form

of degree p over the complex of Lie algebroids {A!!
∆U
}∆U∈KU is a family

ω = (ω∆)∆U∈KU ∈
∏

∆U∈KU

Ωp(A!!
∆U

; ∆U)

such that, if ∆ and ∆′ are simplices of K with sj ≺ ∆′ ≺ ∆ for some j ∈ {1, . . . , e},

one has

ϕ
A∆U

∆,∆′(ω∆) = ω∆′

The graded vector space of all piecewise smooth forms over the complex of Lie alge-

broids {A!!
∆U
}∆U∈KU will be denoted by Ω∗ps(A!!

U ;U).

We notice that, for each simplex ∆ ∈ K with s ≺ ∆, the smooth form ω∆ on the

definition above is a smooth form defined on the submanifold ∆U = U ∩∆ and it is neither

a smooth form defined on the smooth submanifold ∆ nor a restriction of a smooth form

defined on ∆.

Keeping the same hypothesis and notations of the previous definitions, a wedge product

and a differential can be defined on Ω∗ps(A!!
U ;U) by the corresponding operations on each

cochain algebra Ω∗(A!!
∆U

; ∆U), giving to Ω∗ps(A!!
U ;U) a structure of cochain algebra defined

over R. The cohomology space of this complex is denoted by H∗ps(A!!
∆U

;U).

We establish and prove the main results for the proof of the Mishchenko’s theorem. We

begin by checking that the map Ψ is natural.
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Proposition 3.1.1. Let M be a smooth manifold, smoothly triangulated by a simpli-

cial complex K and A a transitive Lie algebroid on M . Then, the map

Ψ∗ : Ω∗(A;M) −→ Ω∗ps(A;K)

given by Ψ(ω) = (ω∆)∆∈K is natural.

Proof. Let M and N be two smooth manifolds, smoothly triangulated the the simplicial

complexes K and L respectively. Let A and B be transitive Lie algebroids on M and on

N respectively and (F, f) a morphism of Lie algebroids from A into B. We shall see that

the following diagram

Hp(B;N)
(F,f)∗−→ Hp(A;M)yΨ

yΨ

Hp
ps(B;L)

(F,f)∗−→ Hp
ps(A;K)

commutes. Let ω ∈ Ωp(B;N) a smooth form. For each simplex ∆ ∈ K, the equality

(F ∗ω)/∆ = F ∗(ω/f(∆)) holds, and therefore, Ψ(F ∗ω) = F ∗(ω/f(∆))∆∈K . On the other side,

Ψ(ω) = (ω∆′)∆′∈L and so, by definition of inverse image of differential form for the piecewise

case, we have

F ∗(Ψ(ω)) = F ∗
(
(ω∆′)∆′∈L

)
= (F ∗ω/f(∆))∆∈K

From here, the commutativity of the diagram above can be readily derived. �

Next proposition is concerning the Mishchenko’s theorem for trivial Lie algebroids. Let

M be a smooth manifold, smoothly triangulated by a simplicial complex K, and A a

transitive Lie algebroid on M . Take a simplex s of K and let U = St(s). Assume that g

is a real Lie algebra and consider the trivial Lie algebroid A = TU ⊕ (M × g) on U , which

is identified to the Lie algebroid A = TU × g by a strong homomorphism of Lie algebroids

over U . For each p ≥ 0, one has Ωp(g) =
∧p

g. Consider the Lie algebroids morphisms

γ : TU × g −→ TU
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and

π : TU × g −→ g

For each simplex ∆ ∈ K such that s is a face of ∆, we denote ∆U = U ∩∆ as done before.

Consider the Lie algebroids morphisms

γ∆U
: T∆U × g −→ T∆U

and

π∆U
: T∆U × g −→ g

given by the projections on the first and second factors respectively.

Proposition 3.1.2. Keeping the same hypothesis and notations as above, the mor-

phism

Ψ : Ω∗(A;U) −→ Ω∗ps(A;U)

ω −→ (ω∆)∆U⊂U

induces an isomorphism in cohomology.

Proof. By the Künneth theorem [6], we have that

H(A;U) ' HdR(U)⊗ H(g)

Next, we wish to check that

Hps(A;U) ' Hps(U)⊗ H(g)

For that, we are going to divide the proof in three parts.

Part 1. We are going to check that

Ω∗ps(U)⊗ Ω∗(g) ' Ω∗ps(A;U)

Let ξ = (ξ∆)∆U⊂U ∈ Ω∗ps(U) and η ∈ Ω∗(g). If ∆′ and ∆ are two simplices of K such

that s ≺ ∆′ ≺ ∆, denote by (ϕT∆U×g
∆,∆′ )!! and (ϕT∆U

∆,∆′)
!! the canonical map induced from the

diagrams
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T∆U × g T∆Uyγ yγ
∆′U

ϕ∆,∆′−→ ∆U ∆′U
ϕ∆,∆′−→ ∆U

It is obvious that

γ∆U
◦ (ϕT∆U×g

∆,∆′ )!! = (ϕT∆U

∆,∆′)
!! ◦ γ∆′U

and π∆U
◦ (ϕT∆U×g

∆,∆′ )!! = π∆′U

so the equalities

(γ∗∆U
ξ∆)∆′U

= γ∗∆′U ξ∆′

and

(π∗∆U
η)∆′U

= π∗∆′Uη

hold. These equalities show that the differential form

(γ∗∆U
ξ∆ ∧ π∗∆U

η)∆U⊂U

belongs to Ω∗ps(A;U). Hence, we can consider a map

k : Ω∗ps(U)⊗ Ω∗(g) −→ Ω∗ps(A;U)

such that

k(ξ ⊗ η) = (γ∗∆U
ξ∆ ∧ π∗∆U

η)∆U⊂U

where ξ = (ξ∆)∆U⊂U . This map is well defined. Now, we will see that the map k is an

isomorphism of differential graded algebras. Obviously, the map k is a morphism of graded

algebras. For each ∆ ∈ K such that s ≺ ∆, let

k∆ : Ω∗(∆U)⊗ Ω(g) −→ Ω∗(T∆U × g)

be the Künneth isomorphism (see theorem [6]?. We have that,

(k(ξ ⊗ η))∆U
= γ∗∆U

ξ∆ ∧ π∗∆U
η = k∆(ξ∆ ⊗ η)
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Therefore, if ω =
∑
ξ ⊗ η ∈ Ω∗ps(U)⊗ Ω∗(g) and k(ω) = 0, then k(ω)∆U

= 0 and so

0 =
(
k(
∑

ξ ⊗ η)
)

∆U
= k∆(

∑
(ξ∆ ⊗ η))

Hence ω =
∑

(ξ∆ ⊗ η) = 0 and, with this, we have checked that k is injective. Take now

λ = (λ∆)∆U⊂U ∈ Ω∗ps(A;U). We want to find ω ∈ Ω∗ps(U) ⊗ Ω∗(g) such that k(ω) = λ.

Since k∆ is surjective, we can consider smooth forms ξj∆ ∈ Ω∗(∆U) and η ∈ Ω∗(g) such

that

k∆(
∑
j

(ξj∆ ⊗ η)) = λ∆U

Take then the form ω∆ =
∑

j(ξj∆ ⊗ η). If ∆′ and ∆ are simplices of K with s ≺ ∆′ ≺ ∆,

we have the equalities

k∆′
(∑

j

(ξj∆)∆′U
⊗ η
)

=
∑
j

k∆′((ξj∆)∆′U
⊗ η
)

=
∑
j

(
γ∗∆′U (ξj∆)∆′U

∧ π∗∆′η
)

= (∗)

and

k∆′
(∑

j

(ξj∆′ ⊗ η)
)

= λ∆′ = (λ∆)/∆′U =
(
k∆(
∑
j

(ξj∆ ⊗ η)
)
/∆′U

=

=
(∑

j

(γ∗∆U
(ξj∆) ∧ π∗∆η)

)
/∆′U

=
∑
j

(γ∗∆U
(ξj∆) ∧ π∗∆η)

)
/∆′U

=

=
∑
j

(γ∗∆U
(ξj∆

/∆′
U

) ∧ π∗∆′η)) =
∑
j

(
γ∗∆′U (ξj∆)∆′U

∧ π∗∆′η
)

= (∗)

Hence,

k∆′
(∑

j

(ξj∆)∆′U
⊗ η
)

= k∆′
(∑

j

(ξj∆′ ⊗ η)
)

and, since k∆′ is bijective,
∑

j(ξj∆)∆′U
⊗ η =

∑
j(ξj∆′ ⊗ η). Therefore, we can conclude that

ξj∆/∆′U
= ξj∆′ . Then, the form ω = (ω∆)∆U⊂U where, for each ∆U ⊂ U , ω∆ =

∑
j(ξj∆ ⊗ η)

belongs to Ω∗ps(U) ⊗ Ω∗(g). Obviously k(ω) = λ and then it is checked that k is an

isomorphism of graded algebras.

Part 2. In next part we are going to check that k commutes with differential, being

then proved that k is an isomorphism of differential graded algebras. For each ∆ ∈ K such

73



that s ≺ ∆, denoting the differentials on the complexes Ω∗ps(A;U) and Ω∗ps(U) by dAps and

dUps respectively, we have

(dAps ◦ k)(ξ ⊗ η) = dAps(γ
∗ξ ∧ π∗η) =

= dAps(γ
∗ξ) ∧ π∗η + (−1)degξγ∗ξ ∧ dAps(π∗η) =

= γ∗(dUpsξ) ∧ π∗η + (−1)degωγ∗ξ ∧ π∗(dgη) =

= k((dUpsξ)⊗ η) + (−1)degξk(ξ ⊗ dgη) = k ◦ δ(ξ ⊗ η)

Part 3. The isomorphism k above induces an isomorphism in cohomology. By applying

the Künneth theorem, we obtain

H∗ps(A;U) ' H∗(Ω∗ps(U)⊗ Ω∗(g)) ' H∗ps(U)⊗H∗(g)

Now, we shall see that Ψ induces an isomorphism in cohomology. Take the diagram

Ω∗(U)⊗ Ω∗(g)

k
��

λ // Ω∗ps(U)⊗ Ω∗(g)

kps

��
Ω∗(A;U) Ψ // Ω∗ps(A;U)

where kps = k : Ω∗ps(U) ⊗ Ω∗(g) −→ Ω∗ps(A;U) is the isomorphism defined above, k is the

Künneth isomorphism ([6]) and λ = Φ ⊗ Id in which Φ is the restriction map given on

the Rham-Sullivan theorem for smooth manifolds. Obviously, the diagram is commutative

and, by the de Rham-Sullivan theorem, Φ is an isomorphism in cohomology. Therefore, in

cohomology, we have the commutative diagram

H∗dR(U)⊗H∗(g)

'
��

H(λ) // H∗ps(U)⊗H∗(g)

'
��

H∗(A;U)
H(Ψ) // H∗ps(A;U)

Hence, H(Ψ) is an isomorphism and the result is proved. �
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Next, we want to show that Ψ induces an isomorphism in cohomology, not only for the

trivial Lie algebroid defined over a regular open subset but for any arbitrary transitive Lie

algebroid over a regular open subset. For that, we state first a basic result needed for the

statement. This result is a basic consequence of the functor homology.

Proposition 3.1.3. Let M be a smooth manifold, smoothly triangulated by a sim-

plicial complex K, s a simplex of K and U = St (s). Let A and B be two transitive Lie

algebroids on M and suppose there is an isomorphism of Lie algebroids between them.

Then, the cohomology spaces Hps(A;U) and Hps(B;U) are isomorphic.

Proposition 3.1.4. Let M be a smooth manifold, smoothly triangulated by a simpli-

cial complex K, s a simplex of K and U = St (s). Let A be a transitive Lie algebroid on

U . Then, the morphism

Ψ : Ω∗(A;U) −→ Ω∗ps(A;U)

ω −→ (ω∆)∆U⊂U

induces an isomorphism in cohomology.

Proof. Since U is contractible, A is isomorphic to the trivial Lie algebroid B = TU×g on

U , in which g is the fibre type of K = Ker γ. We conclude the result by the commutativity

of the diagram

Ωp(A;U) −→ Ωp
ps(A;U)y y

Ωp(TU × g)
Ψ−→ Ωp

ps(TU × g)

and applying the propositions 3.1.2 and 3.1.3. �

Proposition 3.1.5. Let M be a smooth manifold, smoothly triangulated by a simpli-

cial complex K, and A a transitive Lie algebroid on M . Let s1, . . . , sk be simplices of the

simplicial complex K and consider the regular open subsets Uj = St (sj). For l ∈ {1, . . . , k}

fixed, consider the open subsets U = U1∪· · ·∪Ul and V = Ul+1∪· · ·∪Uk of M and assume
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that M = U ∪V . Denote by KU the set of all submanifolds ∆U = U ∩∆ such that ∆ ∈ K

and sj is a face of ∆ for some j ∈ {1, . . . , l}, KV the set of all submanifolds ∆V = V ∩∆

such that ∆ ∈ K and si is a face of ∆ for some i ∈ {l+ 1, . . . , k}, and KU∩V the set of all

submanifolds ∆U∩V = (U ∩ V )∩∆ such that ∆ ∈ K and sj and si are faces of ∆ for some

j ∈ {1, . . . , l} and i ∈ {l+ 1, . . . , k}. Then, we have a commutative diagram of short exact

sequences

{0} // Ωp(A;M)

Ψ
��

λ // Ωp(AU ;U)⊕ Ωp(AV ;V )

Ψ
��

µ // Ωp(AU∩V ;U ∩ V )

Ψ
��

// {0}

{0} // Ωp
ps(A;K) δ // Ωp

ps(AU ;U)⊕ Ωp
ps(AV ;V ) π // Ωp

ps(AU∩V ;U ∩ V ) // {0}

in which the maps λ and µ are the canonical maps given by the restriction and the difference

and the maps

δ : Ωp
ps(A;K) −→ Ωp

ps(AU ;U)× Ωp
ps(AV ;V )

π : Ωp
ps(AU ;U)× Ωp

ps(AV ;V ) −→ Ωp
ps(AU∩V ;U ∩ V )

are defined by

δ
(
(ω∆)∆∈K

)
=
(
(ω∆U

)∆U∈KU , (ω∆V
)∆V ∈KV )

and

π
(
(ξ∆U

)∆U∈KU , (η∆V
)∆V ∈KV

)
=
(
(η∆U∩V

− ξ∆U∩V
)∆U∩V ∈KU∩V

)
Proof. In the section 1.2 of the first chapter, it was stated that the first arrow is exact.

Regarding the second arrow, the proof is similar to the proof of proposition 2.3.5, section

2.3 of the second chapter. We shall only check that the map π is surjective. Since the set

{U, V } is an open covering of M we can fix two smooth maps ϕ, ψ : M −→ [0, 1] such that

supp ϕ ⊂ U , supp ψ ⊂ V and ϕ(x) + ψ(x) = 1 ∀ x ∈M . Let

(γ∆U∩V
)∆U∩V ∈KU∩V ∈ Ωp

ps(AU∩V ;U ∩ V )

be a piecewise smooth form. We shall define a differential form

(ξ∆U
)∆U∈KU ∈ Ωp

ps(AU ;U)
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as follows. For each ∆U ∈ KU , set

ξ∆U
(x) =


−ψ(x) γ∆U

(x) if x ∈ ∆U ∩ V

0x ∈ (A∆U
)x if x ∈ ∆U ∩ (M \ supp ψ)

The sets ∆U ∩ V and ∆U ∩ (M \ supp ψ) are open in ∆U with union equal to ∆U .

Obviously, the restrictions of ξ∆U
to ∆U ∩ V and to ∆U ∩ (M \ supp ψ) are smooth.

Therefore, we conclude that ξ∆U
∈ Ωp(A∆U

). In order to obtain a piecewise smooth form

belonging to Ωp
ps(AU) it remains to check that (ξ∆U

)∆U⊂U is compatible with restrictions to

faces. Let ∆ and ∆′ be two simplices of K such that sj ≺ ∆ ≺ ∆′ for some j ∈ {1, . . . , e}.

Then, one has ∆U ∩ V ⊂ ∆′U ∩ V ⊂ U ∩ V and, since γ is piecewise smooth, we have

γ∆U
(x) = (γ∆′U

)/∆U
(x) for each x ∈ ∆U . Hence, if x ∈ ∆U ∩ V ,

ξ∆U
(x) = −ψ(x) γ∆U

(x) = −ψ(x)(γ∆′U
)/∆U

(x) = (ξ∆′U
)/∆U

(x)

If x ∈ ∆U ∩ (M \ supp ψ) we have that ξ∆U
(x) = (ξ∆′U

)∆U
(x) = 0. Hence, the differential

form (ξ∆U
)∆U∈KU is a piecewise smooth form belonging to Ωp

ps(AU ;U). Analogously, we

define a piecewise smooth form (η∆V
)∆V ∈KV ∈ Ωp

ps(AV ;V ) by

η∆V
(x) =


−ϕ(x) γ∆V

(x) if x ∈ ∆V ∩ U

0x ∈ (A∆V
)x if x ∈ ∆V ∩ (M \ supp ϕ)

and we have that, for each x ∈ ∆U∩V ∈ KU∩V ,

η∆U∩V
(x)− ξ∆U∩V

(x) = γ∆U∩V
(x)

and so

(η∆U∩V
− ξ∆U∩V

)∆U∩V ∈KU∩V = (γ∆U∩V
)∆U∩V ∈KU∩V

Hence, the result is proved. �
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Proof of the Mishchenko’s theorem. We will prove the result by induction on

the number of vertices of the simplicial complex K. Suppose then that v0, . . . , vN is the

family of all vertices of K. If K has only one vertex, the result is trivial. Suppose we have

established the result for all l < N . We know that M =
⋃j=N
j=0 St vj. Taking the open

subsets U =
⋃N−1
j=0 St vj and V = St vN of M , we have that

U ∩ V =
(N−1⋃
j=0

St (vj)
)
∩ St (vN) =

N−1⋃
j=0

(
St (vj) ∩ St (vN)

)
=

N−1⋃
j=0

St [vj, vN ]

where
[
vj, vN

]
denotes the closed simplex generated by the vertices vj and vN . By last

proposition, we have a commutative diagram of short exact sequences

{0} // Ωp(A;M)

Ψ
��

λ // Ωp(AU ;U)⊕ Ωp(AV ;V )

Ψ
��

µ // Ωp(AU∩V ;U ∩ V )

Ψ
��

// {0}

{0} // Ωp
ps(A;K) δ // Ωp

ps(AU ;U)⊕ Ωp
ps(AV ;V ) π // Ωp

ps(AU∩V ;U ∩ V ) // {0}

The map Ψ on the right side is quasi-isomorphism by induction. The map Ψ on the middle

is quasi-isomorphism by induction and the proposition 3.1.4. By the Steenrod lemma, the

map Ψ on the left side is also a quasi-isomorphism. �

From Mishchenko’s theorem we easily conclude that the piecewise smooth cohomology

of a combinatorial compact manifold does not depend on the triangulation used, that is, for

any simplicial division of the simplicial complex, the piecewise smooth cohomology spaces

of both combinatorial manifolds remains isomorphic. Precisely, this statement is our next

proposition.

Proposition 3.1.6. Let M be a smooth manifold smoothly triangulated by a simplicial

complex K and A a transitive Lie algebroid on M . Let L be other simplicial complex

and assume that L a subdivision of K. Then, the piecewise smooth cohomology of the

complex {A!!
∆}∆∈K is isomorphic to the one of the complex {A!!

∆}∆∈L. Thus, the morphism

from Ωp
ps(A;K) to Ωp

ps(A;L) which induces that isomorphism in cohomology is given by

restriction of forms.
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Proof. The result follows from the commutativity of the following diagram

Ωp(A;M)

Ψ

wwppppppppppp
Ψ

&&NNNNNNNNNNN

Ωp
ps(A;K) Φ // Ωp

ps(A;L)

where Φ is also given by restriction. �

3.2 Piecewise invariant cohomology

In this section, we shall note a consequence of the Mishchenko’s theorem in piecewise

invariant cohomology of transitive Lie algebroids equipped with an action of a Lie group.

We recall basic definitions and the main result regarding invariant cohomology, following

the paper [4] by Kubarski. As in the previous section all simplicial complexes are finite.

We begin by stating a general result concerning natural transformations between functors.

For next proposition, consider the category C of all transitive Lie algebroids over com-

binatorial compact manifolds and the category D of all cochain algebras. Suppose that F

and G are two functors from C to D. Let t be a natural transformation between the func-

tors F and G. For each transitive Lie algebroid A over a combinatorial compact manifold,

denote by tA : F (A) −→ G(A) the corresponding cochain algebra morphism. Our next

proposition is the following.

Proposition 3.2.1. Keeping the same hypothesis and notations as above, suppose yet

that the following conditions hold.

• For each finite dimensional real Lie algebra g and each contractible combinatorial

compact manifold M ,

H(F (TM × g)) ' H(G(TM × g))
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• For each transitive Lie algebroid A on a combinatorial compact manifold M , if U

and V are regular open subsets in M and tAU
, tAV

and tAU∩V
induce isomorphism in

cohomology, then tAU∪V
also induces isomorphism in cohomology.

Then, under these conditions, tA induces an isomorphism in cohomology for all transitive

Lie algebroids A over a combinatorial compact manifold M .

Proof. The proof is essentially the same as the proof of Mishchenko’s theorem. Let M

be a smooth manifold, smoothly triangulated by a simplicial complex K, and A a transitive

Lie algebroid on M . Let U = St ∆, for some simplex ∆ ∈ K. As done in the proof of

the proposition 3.1.4, AU is isomorphic, by a Lie algebroid isomorphism, to the trivial Lie

algebroid TU × g on U , in which g is the fibre type of K = Ker γ. Hence, by the first

hypothesis and properties of the functor homology, we have

H(F (AU)) ' H(F (TU × g)) '

' H(G(TU × g)) ' H(G(AU))

and so tAU
induces an isomorphism in cohomology. By using the open covering of M made

of the stars of all vertices of K, the arguments given in the proof of the Mishchenko’s

theorem are valid mutatis-mutandis in this case and therefore tA : F (A) −→ G(A) is a

quasi-isomorphism. �

We shall now introduce the notion of invariant cohomology of Lie algebroids over com-

binatorial manifolds. Let M be a smooth manifold, smoothly triangulated by a simplicial

complex K, and A a transitive Lie algebroid on M . Denote by γ : A −→ TM the anchor

of A and by π : A −→ M the projection of the underlying vector bundle of A. Assume

that G is a Lie group. A left action of G on A is a pair (T, t) of maps

T : G×A −→ A t : G×M −→M

satisfying the followings conditions.

• The maps T and t are smooth actions.
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• π is an equivariant map.

• For each g ∈ G, the left translation Tg : A −→ A is a morphism of Lie algebroids.

• For each g ∈ G, the diagram

A
γ

��

Tg // A
γ

��
TM

T (tg) //

πN

��

TM

πM

��
M

tg // M

commutes.

• For each ∆ of K, the simplex ∆ is stable for the action t.

Keeping the same hypothesis and notations as above, for each ∆ ∈ K and g ∈ G, we

also have that the following diagram is commutative.

A!!
∆

γ

��

Tg∆ // A!!
∆

γ

��
T∆

T (tg∆
)
//

��

T∆

��
∆

tg∆ // ∆

Moreover, if A = {A!!
∆}∆∈K is the corresponding complex obtained by restriction of A to

all simplices of K, then, for each g ∈ G, the family λg = ((Tg∆
)∆∈K , idK) is a morphism of

complexes of Lie algebroids from A to A.

Definition (Piecewise invariant form). Let M be a smooth manifold, smoothly

triangulated by a simplicial complex K, and A a transitive Lie algebroid on M . Assume

that G is a Lie group and (T, t) is a left action of G on A. Consider the corresponding

complex A = {A!!
∆}∆∈K obtained by restriction of A to all simplices of K and the complex
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of Lie algebroids morphism λg = ((Tg∆
)∆∈K , idK). Let ω = (ω∆)∆∈K ∈ Ω∗ps(A;K) be a

piecewise smooth form. The form ω is called piecewise invariant if, for each g ∈ G,

λ∗g(ω) = ω

Keeping the same hypothesis and notations from the definition above, the space of all

piecewise invariant forms on A is denoted by Ω∗Ips
(A;K) or Ω∗Ips

(A;M). Since d(λ∗gω) =

λ∗g(dω) (by proposition 2.2.4), the space Ω∗Ips
(A;K) is stable under the exterior differential

and so it is a complex in which the differential is the restriction of the exterior derivative

to each simplex of K. The cohomology space of the differential complex Ω∗Ips
(A;K) will

be denoted by HIps(A;K).

We shall see that the restriction map induces an isomorphism is cohomology.

Proposition 3.2.2. Let M be a smooth manifold, smoothly triangulated by a simpli-

cial complex K, and A a transitive Lie algebroid on M . Assume that G is a compact Lie

group and (T, t) is a left action of G on A. Consider the map

Φ : ΩI(A;M) −→ ΩIps(A;K)

Φ(ω) = (ω∆)∆∈K

Then, the map Φ induces an isomorphism in cohomology.

Proof. Let d and dps denote the differential of the complexes Ω∗(A;M) and Ω∗Ips
(A;K)

respectively and Ψ the restriction map given on the Mishchenko’s theorem. We are going to

apply the proposition 3.2.1. Let g be a finite dimensional real Lie algebra, M a contractible

smooth manifold, smoothly triangulated by a simplicial complex K, and A = TM × g the

trivial Lie algebroid on M . We want to check that

H∗I (A;M) ' H∗Ips
(A;K)

The steps used in the proof of the proposition 3.1.2 are valid here provide we check that,

if ξ = (ξ∆)∆∈K ∈ Ω∗Ips
(A;M) is a piecewise invariant form, then (γ∗∆ξ∆)∆∈K is a piecewise
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invariant form, which is true since γ commutes with Tg∗ . For the second condition of the

proposition 3.2.1, we cam mimic the proof of the proposition 3.1.5, provided that we fix a

partition unity made by invariant functions to prove the sequence

{0} // Ωp
Ips(A;K) δ // Ωp

Ips(AU ;U)⊕ Ωp
Ips(AV ;V ) π // Ωp

Ips(AU∩V ;U ∩ V ) // {0}

is exact. Since G is compact, for each f ∈ C∞(M), the function fI ∈ C∞(M) given by

fI(x) =
∫
G
f ◦ tg(x) is invariant. Hence, the result is proved. �

For next proposition, suppose we have we a transitive Lie algebroid A over a smooth

manifold M and an action (T, t) of a compact Lie group G on A. Suppose that there is a

Lie algebroid morphism T̂ : TG×A −→ A such that T̂/G×A = T . Let

i : Ω∗I(A;M) −→ Ω∗(A;M)

be the inclusion map. We recall that Kubarski showed that, if the inclusion i induces

a monomorphism in cohomology and, if G is also connected, the inclusion i induces an

isomorphism in cohomology (see [4]). Assume now that the manifold M is smoothly

triangulated by a simplicial complex K and consider the inclusion map

ips : Ω∗Ips(A;M) −→ Ω∗ps(A;M)

Next result is the following.

Proposition 3.2.3. Keeping the same hypothesis and notations as above, the inclusion

ips induces a monomorphism in cohomology. If G is compact and connected, then the

inclusion ips induces an isomorphism in cohomology.

Proof. It is clear that the following diagram

Ω∗I(A;M)

Φ
��

i // Ω∗(A;M)

Ψ
��

Ω∗Ips
(A;M)

ips // Ω∗ps(A;M)
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is commutative, in which Φ is the restriction map given in the proposition 3.2.2 and Ψ

is the restriction map given in the Mishchenko’s theorem. So, it is also commutative the

following diagram

H∗I (A;M)

H(Φ)
��

H(i) // H∗(A;M)

H(Ψ)

��
H∗Ips

(A;M)
H(ips) // H∗(A;M)

The maps H(i) and H(Ψ) are isomorphisms by Kubarski’s and Mishchenko’s theorems

respectively and so H(ips) is an isomorphism. �

3.3 Piecewise de Rham cohomology of Lie groupoids

In this section, we establish a basic relationship between de Rham cohomology of left

invariants forms on a Lie groupoid and Lie algebroid cohomology of its Lie algebroid. Con-

structions involving differential forms in Lie groupoids are quite analogous to constructions

in Lie groups. An illustrative example of this analogy, is the algebra of all invariant forms

on a Lie groupoid. As in the case of Lie groups, the algebra of all invariant forms on a Lie

groupoid is isomorphic to the algebra of all smooth forms on its Lie algebroid. We shall

state this property below. Since we are working in a piecewise smooth context, we begin

by summarizing some considerations on restrictions of Lie groupoids.

We recall the construction of the Lie algebroid of a Lie groupoid. Let M be a smooth

manifold and G a Lie groupoid on M with source projection α : G −→ M and target

projection β : G −→ M . Denote by 1 : M −→ G the object inclusion map of G and

Gx = α−1(x) the α-fibre of G in x, for each x ∈M . The Lie algebroid of G is

(A(G), [·, ·], γ)

in which
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• A(G) =
⊔
x∈M T1xGx (disjoint union).

• The anchor γ : A(G) −→ TM is defined by γ(a) = Dβ1x(a).

• For each ξ and η ∈ Γ(A(G)), the Lie bracket is defined by

[ξ, η] = [ξ′, η′]G

in which ξ′ and η′ denote the unique α-right-invariant vector fields on G such that

ξ′1x
= ξx and η′1x

= ηx, ∀x ∈M .

Definition (Locally trivial Lie groupoid). Let M be a smooth manifold and G a

Lie groupoid on M with source projection α : G −→M and target projection β : G −→M .

The anchor of G is the map (β, α) : G −→ M ×M . The Lie groupoid G is called locally

trivial if its anchor (β, α) : G −→M ×M is a surjective submersion.

In [10], it can be seen the following proposition.

Proposition 3.3.1. Let M be a smooth manifold and G a Lie groupoid on M . Let

A(G) be the Lie algebroid of G. Then, if G is locally trivial, A(G) is transitive Lie

algebroid.

Definition (Submanifold transversal to a Lie groupoid). Let M be a smooth

manifold and G a Lie groupoid on M with source projection α : G −→ M and target

projection β : G −→ M . A submanifold ϕ : N ↪→ M is called transversal to G if the

anchor (β, α) : G −→ M × M and the smooth map ϕ × ϕ : N × N −→ M × M are

transversal.

In [10], it can be seen the following proposition.

Proposition 3.3.2 (Restrictions of Lie groupoids). Let M be a smooth manifold

and G a Lie groupoid on M with source projection α : G −→ M and target projection
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β : G −→M . Let ϕ : N ↪→M be a submanifold. Denote by GN
N the set α−1(N)∩β−1(N).

Then, if N is transversal to G, the set GN
N is a Lie subgroupoid of G with base N and GN

N

is called the Lie groupoid restriction of G to N .

The main proposition for our piecewise context is the following. The proof is a direct

consequence of the definition of Lie algebroid of a Lie groupoid.

Proposition 3.3.2 (Restrictions of Lie groupoids to simplices). Let M be a

smooth manifold, smoothly triangulated by a simplicial complex K, and G a Lie groupoid

on M . For each simplex ∆ of K, one has

A(G∆
∆) = A(G)!!

∆

We recall now the definition of de Rham cohomology of left invariants forms of a Lie

groupoid. Let M be a smooth manifold and G a Lie groupoid on M with source projection

α and target projection β. For each p ≥ 0, let Ωp
α(G;M) be the C∞(G)-module of the

smooth sections of the vector bundle of all alternating p-linear maps from the vector bundle⊔
g∈G TGα(g) (disjoint union) to the trivial vector bundle RM . A smooth α-form of degree

p on the Lie groupoid G is, by definition, an element of Ωp
α(G;M). Thus, a smooth α-form

ω ∈ Ωp
α(G;M) is a family defined on G such that, for each g ∈ G, one has

ωg ∈ Λp
( ⊔
g∈G

T ∗gGα(g); R
)

The usual exterior derivative along the α-fibres is defined by

(dpαω)(X1, X2, · · ·, Xp+1) =

p+1∑
j=1

(−1)j+1Xj · (ω(X1, · · ·, X̂j, · · ·, Xp+1)) +

+
∑
i<k

(−1)i+kω([Xi, Xk], X1, · · ·, X̂i, · · ·, X̂k, · · ·, Xp+1)

in which ω ∈ Ωp
α(G;M) and X1, X2, · · ·, Xp+1 are smooth vector α-fields on G. The com-

plex (Ω∗α(G;M), d∗α) is a commutative cochain algebra defined on R. The set Ωp
α,L(G;M)
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consisting of all α-forms on G which are invariant under the groupoid left translations is a

subcomplex of (Ω∗α(G;M), d∗α). Its cohomology is denoted by H∗α,L(G;M).

Denote by 1 : M −→ G the object inclusion map of G. There is an isomorphism

ψ : Ω∗α,L(G : M) −→ Ω∗(A(G);M)

of cochain algebras defined by ψ(ω)x = ω1x . Consequently, we have the following proposi-

tion.

Proposition 3.3.3. Keeping the same hypothesis and notations as above, we have

H∗α,L(G;M) ' H∗(A(G);M)

Let us to introduce the notion of piecewise smooth cohomology of Lie groupoids. Let

M be a smooth manifold, smoothly triangulated by a simplicial complex K, and G a

locally trivial Lie groupoid on M with source projection α and target projection β. For

each simplex ∆ ∈ K, let G∆
∆ be the Lie groupoid restriction of G to ∆ and A(G∆

∆) its Lie

algebroid. Since G is locally trivial its Lie algebroid A(G) is transitive and we know that

A(G∆
∆) ' A!!

∆. Similarly to piecewise smooth forms on Lie algebroids, we give now the

notion of piecewise smooth form on G.

Definition (Piecewise smooth form). Keeping the same hypothesis and notations

as above, a piecewise smooth α-form of degree p (p ≥ 0) on G is a family ω = (ω∆)∆∈K

such that the following conditions are satisfied.

• For each ∆ ∈ K, ω∆ ∈ Ωp
α,L(G∆

∆; ∆) is a α-smooth form of degree p on G∆
∆.

• If ∆ and ∆′ are two simplices of K such that ∆′ ≺ ∆, one has (ω∆)/∆′ = ω∆′ .

The C∞(G)-module of all piecewise α-smooth forms of degree p on G is denoted by

Ωp
α,L,ps(G;M) or Ωp

α,L,ps(G;K). As done in previous sections, a wedge product and an
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exterior derivative can be defined on Ω∗α,L,ps(G;K) by the corresponding operations on

each submanifold G∆
∆, giving to Ω∗α,L,ps(G;K) a structure of cochain algebra defined over

R. The cohomology space of this complex is denoted by H∗α,L,ps(G;M) or H∗α,L,ps(G;K).

Our aim is to relate the cohomology space H∗α,L,ps(G;K) of G to the cohomology space

H∗ps(A(G);K) of its Lie algebroid A(G). For that, we have to consider a map φ from the

complex Ω∗α,L,ps(G;K) to the complex Ω∗ps(A(G);K). In order to obtain such map φ, we

recall that, for each simplex ∆ of K, we have an isomorphism

ψ∆ : Ωp
α,L(G∆

∆; ∆) −→ Ωp(A(G∆
∆); ∆)

given by ψ(ω)x = ω1x . Consider now a piecewise smooth α-form

ω = (ω∆)∆∈K ∈ Ωp
α,L,ps(G;K)

For each simplex ∆ ∈ K, take the smooth form ξ∆ = ψ∆(ω∆) ∈ Ωp(A(G∆
∆); ∆). Next

proposition says that this process gives a piecewise smooth form on A(G).

Proposition 3.3.4. Keeping the same hypothesis and notations as above, if ∆ and ∆′

are two simplices of K such that ∆′ is a face of ∆, then (ξ∆)!!
∆′ = ξ∆′ and so ξ = (ξ∆)∆∈K

is a piecewise smooth on A(G). Consequently, the map

Φ : Ω∗α,L,ps(G;K) −→ Ω∗ps(A(G);K)

defined by Φ((ω∆)∆∈K) = (ψ∆(ω∆))∆∈K is an isomorphism of cochain algebras.

We can state now the main proposition of this section. Let rG be the restriction map

rG : Ω∗α,L(G;M) −→ Ω∗α,L,ps(G;K)

defined rG(ω) = (ω/∆)∆∈K . Our proposition is the following.

Proposition 3.3.5. Let M be a smooth manifold, smoothly triangulated by a sim-

plicial complex K, and G a locally trivial Lie groupoid on M with source projection α
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and target projection β. Then, the map rG : Ω∗α,L(G;M) −→ Ω∗α,L,ps(G;K) induces an

isomorphism in cohomology. Consequently, the Rham cohomology of G is isomorphic to

the piecewise Rham cohomology of G.

Proof. The diagram

Ω∗α,L(G;M)

rG
��

iso // Ω∗(A;M)

rA
��

Ω∗α,L,ps(G;K) iso // Ω∗ps(A;K)

is commutative, where rA is the restriction map given at the Mishchenko’s theorem. We

apply the Mishchenko’s theorem in cohomology and the proof is done. �

Our last proposition says that the piecewise de Rham cohomology of a locally trivial

Lie groupoid over a combinatorial manifold doesn’t depend on the triangulation.

Proposition 3.3.6. Let M be a smooth manifold smoothly triangulated by a simplicial

complex K and L other simplicial complex which a subdivision of K. Let G be a locally

trivial Lie groupoid on M . Then, the piecewise de Rham cohomology of G obtained by

the triangulation corresponding K is isomorphic to the the piecewise de Rham cohomology

of G obtained by the y the triangulation corresponding to L. Thus, this isomorphism is

induced by the restriction map.

Proof. Denote by φ : Ω∗α,L,ps(G;K) −→ Ω∗α,L,ps(G;L) the map given by restriction. The

diagram

Ωp
α,L(G;M)

wwnnnnnnnnnnnn

''PPPPPPPPPPPP

Ω∗α,L,ps(G;K)
φ //

��

Ω∗α,L,ps(G;L)

��
Ωp
ps(A;K) // Ωp

ps(A;L)
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is commutative. By propositions 3.1.6, 3.3.4 and 3.3.5, the maps non labeled are isomor-

phisms in cohomology and so the map φ also is isomorphism in cohomology. �
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Conclusion

H. Whitney started the study of cohomologies of cell-like spaces by taking different

notions of differential form. Roughly speaking, Whitney used notions of forms such as

piecewise smooth forms, elementary forms, polyhedral forms and flat forms. The rela-

tionship of these constructions is described in the Whitney’s book “Geometric Integration

theory” and it is the genesis of the use of differential forms to solve the commutative

cochain problem. Similar constructions were found out by Sullivan in the study of the ra-

tional homotopy type of a space. Namely, Sullivan considered the algebra of the polynomial

forms on a cell space and proved that this algebra is quasi-isomorphic to the classic algebra

of smooth forms. The algebra of the polynomial forms originated the theory of models,

which has revealed crucial in the development of homotopy and formality theories for cell

spaces. Our work was written in the effort to understand those constructions for transitive

Lie algebroids over combinatorial manifolds. Our first aim was to study piecewise smooth

cohomology of Lie algebroids on combinatorial manifolds. Some methods used in the study

of those constructions on cell-like spaces had to be changed in order to be applied to Lie

algebroids, especially because we do not have the notion of cell in Lie algebroids. The no-

tion of cell structure was changed to obtain what we called complex of Lie algebroids and

to define a complex of piecewise differential forms and consequently the notion of piece-

wise smooth cohomology of Lie algebroids. We have seen that the restriction map induces

an isomorphism in cohomology between piecewise smooth and Lie algebroid cohomology.

This result is based in the Rham-Sullivan theorem well as in some results on non-abelian

extensions of Lie algebroids, which lead us to the triviality of transitive Lie algebroids over
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contractible manifolds. It is not known whether other cell constructions can be developed

for Lie algebroids. For transitive Lie algebroids with commutative kernel, the transition

functions are flat and this is a nice hypothesis for developing other kind of forms in Lie

algebroids, especially polynomial forms in Lie algebroids, giving us an alternative way to

study formality of Lie algebroids.
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Resumen

El teorema de de Rham es un resultado de gran importancia, ya que ha sido el prin-

cipal v́ınculo de unión entre el análisis en variedades y la propiedades topológicas de las

variedades. En breves palabras, la homoloǵıa espacios mide el número de agujeros de una

variedad y su nivel de complejidad. El teorema de de Rham garantiza que los espacios

de homoloǵıa de variedades se pueden expresar mediante el uso de formas diferenciales y

sus métodos anaĺıticos. El estudio de los espacios de homoloǵıa en términos de formas

diferenciales abrió un camino para el estudio de la estructura más profunda de variedades.

Sullivan, en su art́ıculo “ Cálculos infinitesimales en topoloǵıa ”, dice que dentro del mundo

de la topoloǵıa hay más información topológica en el álgebra de Rham de formas difer-

enciales que simplemente la cohomoloǵıa real. La teoŕıa de Rham rápidamente originó

un profundo desarrollo de la topoloǵıa de variedades. Hay también una gran cantidad

de situaciones matemáticas en las que el conocimiento de formas diferenciales tiene conse-

cuencias importantes y por consiguiente otras teoŕıas matemáticas se desarrollaron a partir

del teorema de de Rham. El invariante de Hopf, el producto de Massey, el grado de una

aplicación y la cohomoloǵıa de grupos de Lie compactos son algunos ejemplos de la impor-

tancia del teorema de de Rham. Sullivan y otros matemáticos han implementado varias

estrategias en el estudio del álgebra de Rham de todas las formas diferenciables. Entre

ellos, está la teoŕıa de modelos. Esta teoŕıa consiste en encontrar otras álgebras graduadas,

dentro del álgebra de de Rham de todas las formas defirenciables, de tal manera que la in-

clusión canónica induce un isomorfismo en cohomoloǵıa. A partir de estos desarrollos, una

conclusión importante surgió, que puede expresarse en el siguiente diagrama conmutativo:

H∗p.C∞(M)

R

��

H∗PL(M)⊗Q R

66mmmmmmmmmmmm

R
∼= ((QQQQQQQQQQQQ

H∗dR(M)

ffMMMMMMMMMMM

∼=

R
xxppppppppppp

H∗(M,R)
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Este esquema incorpora una gran cantidad de construcciones y enunciados. El presente

trabajo surge de los esfuerzos por extender esas construcciones a algebroides de Lie transi-

tivos. Entre esas construcciones, estamos particularmente interesados en la que dice que la

cohomoloǵıa de de Rham de una variedad diferenciable, triangulada diferenciablemente por

un complejo simplicial, es isomorfo a la cohomoloǵıa diferenciable por partes del complejo

simplicial. Este isomorfismo viene dado por la restricción de formas diferenciables a todos

los śımplices. El estudio de esta construcción o de otras construcciones de Sullivan en var-

iedades simpliciales se basa en el teorema de de Rham para células, aśı como extensiones

de las formas diferenciables. Algunas dificultades surgen de la utilización de la teoŕıa de

de Rham en el estudio de la cohomoloǵıa de algebroide de Lie. Sin embargo, a pesar de

todas las dificultades que surgen de la teoŕıa de de Rham de algebroides de Lie, durante

los últimos años, la teoŕıa de cohomoloǵıa de algebroides de Lie se ha desarrollado a partir

de una colección de grandes resultados con fuertes conexiones con muchas otras partes de

las matemáticas, en particular, con la teoŕıa de Chern-Weil. Estas mejoras han reducido

varios obstáculos en el desarrollo de nuestro trabajo.

Las ideas clave relativas a la clase de obstrucción derivada de las extensiones no

abelianas de algebroides de Lie han inspirado Mishchenko y le llevó a conjeturar que,

dado un algebroide de Lie transitivo en una variedad combinatórica, el morfismo dado por

la restricción, que lleva formas diferenciables del algebroide de Lie en formas diferenciables

a trozos en el mismo algebroide de Lie, sigue siendo un isomorfismo en cohomoloǵıa.

El objetivo del presente trabajo es demostrar la conjetura de Mishchenko. Para este

propósito, se ha utilizado una estructura llamada complejo de algebroides de Lie. Esta

estructura se inicia fijando una triangulación diferenciable de la base de un algebroide de

Lie transitivo por un complejo simplicial y tomando la restricción del algebroide de Lie a

todos los śımplices de la triangulación. Como el algebroide de Lie es transitivo, siempre

existe la restricción del algebroide de Lie a cada śımplice. Dado un complejo de algebroides

de Lie, se define la noción de forma diferenciable a trozos de manera similar a las formas

de Whitney en un complejo simplicial y el conjunto de todas las formas diferenciables a
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trozos definidas en un complejo de algebroides de Lie es, naturalmente, equipado con una

diferencial, produciendo un álgebra diferencial graduada conmutativa. Su cohomoloǵıa es,

por definición, la cohomoloǵıa diferenciable a trozos del algebroide de Lie. Cada forma

diferenciable definida en el algebroide Lie da una forma diferenciable a trozos definida en

el correspondiente complejo de algebroides de Lie tomando la restricción de la forma a cada

śımplice. Esta correspondencia es una aplicación natural del álgebra usual de las formas

suaves del algebroide Lie al álgebra de las formas diferenciables a trozos del complejo

correspondiente de algebroides de Lie. Basándose en tres resultados importantes, a saber,

la trivialidad de un algebroide de Lie transitivo sobre una variadad diferenciable contráctil

(Mackenzie, Weinstein), el teorema de Künneth para algebroides de Lie (Kubarski) y el

teorema de Rham-Sullivan para variedades diferenciables, mostramos que esta aplicación

es un isomorfismo en cohomoloǵıa.
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