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Summary

Context of the Study

In the year 2010, people in Europe and America were confronted with two large
scale catastrophic events, both being controlled by the process of chaotic advec-
tion in the large scale atmospheric and oceanic context. First, the eruption of the
Icelandic volcano Eyjafjallajökull in April 2010 produced a cloud of volcanic ashes
that spread over Europe and caused severe problems in air traffic. Since a high
concentration of volcanic ashes is harmful to jet engines, hundreds of flights were
canceled and thousands of passengers were affected. During a second disaster,
which was man-made, an oil spill caused by an accident on the Deep Horizon
oil rig in the Gulf of Mexico spread over huge areas of the sea surface. The oil
spill had and still has a devastating impact on the marine wildlife, on the fish-
ing industry and on tourism in the region. In both cases, transport simulations
based on large scale atmospheric and oceanic flow models helped to estimate the
current distribution of contaminants and to predict the future spreading. In an-
imations of these simulations, one could see the typical irregular patterns in the
spatial distribution of the contaminants that appear in chaotic flows. Filaments
of high concentration are a common feature in these distributions. A very promi-
nent filament in the Deep Horizon oil spill was known as the tigertail [150]. As
a consequence of the filamentous distribution, geographically close regions can
exhibit completely different concentrations. While one zone might not at all be
affected by the plume, another nearby zone can be highly contaminated. It is the
transport in the chaotic flow on short time scales that makes the difference.

Irregular tracer patterns are typical for time-dependent flows and are not lim-
ited to the large length scales in the examples. They also appear at scales of
some kilometers in coastal flows, or at the centimeter scale in laboratory flows.
These patterns are generated by coherent flow structures like vortices or jets that
have a similar size as the tracer cloud. If there was no large scale structure in the
flow, and instead movements would be limited to length scales much smaller than
the patch of contamination, the tracer would spread isotropically in all directions.
With increasing distance from the source, it would be diluted by mixing with un-
contaminated fluid and the tracer concentration would be a simple function of the
distance to the source. Mathematically, a simple diffusion approach could account
for this kind of behaviour. However, in the considered examples, the patterns are
highly intermittent, i.e., at two different points at the same distance from the
source of the contamination, totally different concentrations can occur.

xi



xii Summary

Concepts from dynamical systems theory have shown to be very useful to
study the fluid transport in flows with coherent structures. Dynamical system
theory deals with the analysis of all kind of systems that evolve in time. The state
of a system can be represented in the phase space given by the dynamic variables
of the system. For the two-dimensional flows that we analyze in this work, the
phase space is equivalent to the two-dimensional real space, i.e., the dynamical
variables are the spatial coordinates (x, y) denoting the position of a small fluid
parcel in the flow. Hence, we follow the trajectories of small fluid parcels which
corresponds to an analysis in the Lagrangian frame. We seek to characterize the
transport in a time-dependent flow by identifying coherent structures in phase
space, in particular, hyperbolic points and the associated unstable and stable
manifolds, that control the motion of the fluid during certain time scales. The
extracted flow structures are termed Lagrangian Coherent Structures (LCS). They
act as transport barriers in the fluid motion and order the flow into different
regions corresponding to different dynamical behavior of the trajectories. We are
interested in the deterministic evolution of the flow on short time scales, where
due to the intermittency of the transport process a statistical description is not
meaningful.

In order to extract the geometry of the mixing patterns in a flow, we need
the complete spatio-temporal velocity fields that define the flow as a dynamical
system. In the oceanic context, measurement systems, such as high-frequency
radars at the coast and satellite altimetry for global data, as well as numerical
models, provide valuable velocity data for the Lagrangian transport analysis. In
the laboratory, we can use Particle Image Velocimetry (PIV) to measure two-
dimensional velocity fields at a high spatial and temporal resolution. Using these
velocity fields, the extracted advective transport patterns are strictly only valid for
a conservative passive tracer, i.e., a tracer without sinks and sources that does not
alter the fluid flow. Hence, the purely advective transport patterns give valuable
information about possible pathways of discrete objects and the locations where
fluid separates and merges. Beyond that, we examine interesting applications
to the evolution of fields of reactive tracers, that have sources and sinks due to
chemical or biological reactions. By definition, the concentration fields of these
reactive tracers are not solely modified by advection, but nevertheless, advection
can be dominant in shaping the spatial distribution of the reactive tracer. If
we extract the geometry of mixing due to pure advection, we can compare the
mixing patterns to the real distribution of the reactive tracers. Here, we do this
comparison for a plankton bloom in the Indian Ocean and for an excitable chemical
reaction in a two-dimensional turbulent flow in the laboratory. It turns out that
the advective transport patterns agree well with the borders of the reactive tracer
concentration.

Objective of the Study

In this thesis we study several spatio-temporal transport problems in two-dimensional
time-dependent velocity fields that generate chaotic advection. We aim to clarify
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the role of advective transport for the dispersion of passive and also for reactive
tracers. Therefore, we want to characterize transport in these flows in the very
detail with Lagrangian coherent structures that reveal the geometry of the irreg-
ular fluid motion, and especially emphasize the lines of separation and merging
of fluid patches. We further want to examine the relevance of LCS for reactive
tracers.

Summary

The studies presented in this document all deal with transport in chaotic flows
and seek to clarify the role of Lagrangian coherent structures in ordering and
controlling the fluid motion, and consequently, also the spatio-temporal patterns
in continuous tracer fields. The four chapters, 4 to 7, presenting the results, are
connected by a similar setting of the problem, while time and length scales of
the flows differ largely. We give a general introduction to the main concepts and
methods used in all chapters, while more specific introductory information on the
respective characteristics of each study is given at the beginning of each result
chapter. Hence, the result chapters can be read as independent studies as well,
unified by similar Lagrangian methods.

In Chapter 1, we give a short introduction to the concept of mixing. The
fundamental property of a mixing process in a liquid is the fact that close parts
are separated and distant parts are brought together. In a discrete mapping, this
process is realized by consecutive cutting, reorientating, and merging of the ma-
terial. In unsteady flows, hyperbolic points are crucial for the mixing process,
as their stable and unstable manifolds are the lines where fluid is separated and
merged. In the following part, we recall the two basic transport processes in
fluids, diffusion and advection. While diffusion is generated by small scale ran-
dom motion and can therefore be described by a statistic approach, advection is
deterministic and given by a velocity field. Since molecular diffusive transport is
most often a slow process, the transport in many flows is dominated by advection.
For chaotic advection in time-dependent velocity fields, methods from dynamical
systems theory have been successfully applied to extract Lagrangian Coherent
Structures that control the mixing dynamics. We review some of the work using
Lagrangian coherent structures in the oceanic context.

In Chapter 2, we introduce the methods used to localize Lagrangian coherent
structures (LCS) in unsteady flows. In particular, we identify LCS as ridges in fields
of the finite-time version of the Lyapunov exponent (FTLE) of tracer particles in
the time-dependent flow. In forward (backward) time direction tracer particles
separate most rapidly close to stable repelling (unstable attracting) manifolds of
hyperbolic points. Since the FTLE is a finite-time average of the exponential
separation rate of initially close particles, lines of high FTLE values (ridges) turn
out to be good estimates of the location of the finite-time stable and unstable
manifolds. The time scale on which the estimated LCS are relevant for mixing is
given by the integration time that is chosen for the tracer particles. Several other
Lagrangian methods have been proposed to extract LCS from unsteady flows. We
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present them in a short paragraph. Finally, we use another Lagrangian method
called Synoptic Lagrangian Maps (SLM) that is introduced at the end of this
chapter. SLM visualize the origin and fate of trajectories that cross a limited
flow domain, e.g., a coastal flow bounded by the coast and a mouth to the open
ocean. Furthermore, residence times of trajectories in the flow domain can be
directly derived from the SLM.

In Chapter 3, we shortly describe the measurement systems and principles
used to obtain the unsteady two-dimensional velocity fields which are analyzed
in the following chapters. First, we explain how oceanic mesoscale currents are
derived from satellite based altimetry measurements. Under the assumption of
geostrophic balance, i.e., a balance in the Navier-Stokes equation of the Coriolis
force and the pressure gradient force due to the elevation of the sea surface, ocean
currents at the scale of ∼ 100 km are proportional to the inclination of the sea
surface. The elevation of the sea surface can be measured at a very high precision
of ∼ 2 cm from satellite altimeters. Altimeters measure the time of flight of a
radar signal between the satellite on a known orbit and the sea surface. Second,
we describe the high-frequency radar system that provides the surface currents in
the outer parts of the estuary Ria de Vigo in NW Spain. In this system, radial
velocities of the surface flow are estimated from a Doppler shift of a radar signal,
taking into account the propagation velocity of the surface waves that scatter
the emitted radar wave via Bragg reflection. With two radar systems covering
the same surface area, time-dependent fields of both velocity components can be
obtained. Third, a turbulent quasi two-dimensional fluid flow induced by Faraday
waves in the laboratory is measured by Particle Image Velocimetry (PIV). For
that purpose, images of a large numbers of floating particles on the fluid surface
are taken and the velocity field is derived from the finite position differences of
particles in subsequent images.

In Chapter 4, we consider a numerical reaction-diffusion-advection plankton
model that is able to represent simple dynamics of plankton blooms in the ocean.
It consists of three concentrations, an anorganic nutrient N , the phytoplankton
concentration P , and the zooplankton concentration Z. In this NPZ model a basic
food chain with three trophic levels is represented by three coupled differential
equations. We study the growth of a single plankton patch emerging around a
localized nutrient source that is active for a limited period of time. Due to the
advective flow in the model, the plankton patch is distorted and can spread into
regions around the nutrient source. We are interested in the dependence of the
growth on length and time scales of the advective flow. For the advection term,
we use first, a Gaussian correlated flow, and second, a more realistic mesoscale
flow from satellite altimetry measurements of the North Atlantic Ocean. We find
that the growth of a locally initialized plankton patch depends on the time and
length scales of the underlying advective flow. A resonance appears, when the flow
has time scales similar to the typical time scales in the biological model, leading
to maximum growth of the plankton patch. Additionally, we study a selected
region in the altimetry flow, where in apparently similar eddies the developed
plankton patch is significantly larger in one of the eddies. We argue that the
different topology of the steady flow in the eddies accounts for this finding. In
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particular, the hyperbolic points around the eddies define the pathways on which
the plankton patch can spread. This chapter is a slightly extended version of the
study published in [165].

In Chapter 5, we analyze a specific plankton bloom, the Madagascar plankton
bloom, with respect to the transport by geostrophic ocean currents. The Mada-
gascar plankton bloom is a large bloom event east of Madagascar that appears
irregularly, i.e., in some years the event is very strong and in others it fails to ap-
pear. The bloom typically starts south of Madagascar and propagates rapidly into
the Indian Ocean, reaching its largest zonal extent of up to 2000 km in February or
March. Different mechanisms for the initiation of the bloom have been proposed,
but due to the lack of extensive in-situ data, that would be needed to represent
the variability of the bloom, a rigorous explanation for the bloom is still miss-
ing. We concentrate here on the impact of chaotic advection by ocean currents
on the propagation of the plankton bloom. We derive the ocean currents from
satellite altimetry data assuming geostrophic balance for the flow dynamics. The
surface chlorophyll concentration is obtained from satellite measurements. In the
mesoscale ocean currents we seek for flow structures that can be related to the
strong eastward propagation of the bloom. We find that the recently discovered
South Indian Ocean Countercurrent (SICC) is most probably responsable for the
eastward propagation of the bloom. In earlier studies, an eastward directed flow
has not been considered as an explanation for the large extent of the bloom, and
thus is a novel approach. A passive continuous tracer, released at the south tip
of Madagascar, is transported eastward by the SICC and covers a similar area as
the Madagascar plankton bloom. This supports the hypothesis that the origin of
the plankton bloom is located south of Madagascar where upwelling could deliver
the necessary nutrients. However, it is important to note that the front of the
plankton bloom propagates faster than the purely advective velocity, suggesting
that the biological reaction also plays a crucial role. We characterize the temporal
variability of the jet to check if it is correlated with the occurrence of the bloom.
We find that this is not the case. The jet is neither especially strong in bloom
years nor especially weak in non-bloom years. We also extract the locations of
possible transport barriers in the chaotic flow from fields of finite-time Lyapunov
exponents (FTLE), and find that they largely coincide with the boundaries of the
plankton bloom. This indicates that the flow shapes the boundaries of the bloom
while it develops. The chapter is an extended version of the study published in
[91].

In Chapter 6, we apply methods from dynamical systems theory to the chaotic
transport in the tidal estuary Ria de Vigo in Spain. In this estuary, the oscillating
tidal flow interacts with the longterm flow on the shelf and with quickly changing
flows induced by wind, giving rise to complex flow patterns. We determine these
flow patterns at the surface by computing Lagrangian coherent structures (LCS)
in the surface layer of a three-dimensional hydrodynamic model of the Ria de Vigo.
Our results are validated by comparing the LCS to surface drifter trajectories from
four field experiments in the Ria de Vigo. The drifter trajectories agree with the
flow patterns found in the model. Moreover, LCS for typical wind conditions
are extracted that can help to better predict the pathway of drifting objects or
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contaminations in the estuary during stable weather conditions. The LCS visualize
the dynamics of the water exchange between the bay and the shelf. Additionally,
the method of Synoptic Lagrangian Maps (SLM) is applied to currents fields
measured with a high-frequency (HF) radar system. In SLM, trajectories are
classified by their origin and fate. We quantify the transport across a limited
flow domain in the outer part of the Ria de Vigo and relate the appearing flow
patterns to the wind conditions. Residence times of fluid parcels in the flow domain
turn out to vary from one to ten days. Spatial patterns of the residence times
show intermittent patterns, where close fluid patches exhibit significantly different
residence times. An exemplary comparison between a SLM computed from the
HF radar flow and another SLM computed from the model flow demonstrate that
SLM are useful to compare different velocity data sets in terms of global transport
patterns. This chapter is an extended version of the study published in [90].

In Chapter 7, we study transport in an experimental quasi two-dimensional
turbulent laboratory flow induced by the Faraday experiment. A thin fluid layer
is vibrated vertically and the capillary waves appearing on the surface generate
a horizontal flow, which we measure with Particle Image Velocimetry (PIV). We
first examine the patterns of the vortices in the horizontal flow and find that
they are correlated with the pattern of the Faraday waves on the surface. If we
increase the vibrational forcing of the flow, the autocorrelation time of the vorticity
decreases with the decreasing autocorrelation time of the Faraday waves, i.e., the
persistence time of the vortices is limited by the time during which the Faraday
wave pattern remains stable. Again, we are interested in persisting Lagrangian
flow structures, LCS, that control the chaotic mixing in the Faraday flow on small
to intermediate time scales. Similarly as in the studies of patterns of biological
reactions (plankton) in chapter 4 and 5, we analyze the patterns in excitable active
media, namely the chemical Belousov-Zhabotinsky (BZ) reaction. For certain
flow conditions we observe a traveling chemical front whose boundaries have an
irregular filamentous shape. We can simultaneously measure the Faraday flow
quantitatively and the concentration of the BZ reaction qualitatively. This allows
for a direct comparison of the LCS with the filamentous front. The LCS that
we extract from the measured velocity fields align with the chemical front and
indicate that its shape is dominated by advection.

In Chapter 8, we summarize the results of the different chapters.
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Contexto del Trabajo

En el año 2010, el atento lector de las noticias diarias se enfrentó a dos grandes
eventos catastróficos relacionados con la advección caótica a gran escala en la
atmósfera y en el océano. Por un lado, la erupción del volcán islandés Eyjafjal-
lajökull en abril de 2010 produjo una nube de cenizas volcánicas que se esparció
por Europa, causando graves problemas en el tráfico aéreo. Dado que una alta
concentración de cenizas volcánicas es peligrosa para los turborreactores de los
aviones, cientos de vuelos fueron cancelados y miles de pasajeros se vieron afecta-
dos. En un segundo desastre, provocado por la actividad humana, un derrame de
petróleo causado por un accidente en la plataforma petroĺıfera Deep Horizon, en el
Golfo de México, se extendió por grandes áreas de la superficie del mar y tuvo un
impacto devastador sobre la fauna marina, la industria pesquera y el turismo en la
región. En ambos casos, la realización de simulaciones de transporte basadas en
modelos de flujo atmosférico y oceánico a gran escala contribuyó a diagnosticar la
distribución de dichos contaminantes y predecir su futura dispersión. Los medios
de comunicación presentaron los patrones irregulares t́ıpicos en la distribución es-
pacial de los contaminantes que aparecen en los flujos caóticos. Los filamentos
de alta concentración son una caracteŕıstica t́ıpica de estas distribuciones. Un
filamento famoso en el derrame de petróleo procedente del Deep Horizon era
conocido como el tigertail [150]. Como consecuencia de la distribución filamen-
tosa, regiones cercanas pueden exhibir concentraciones totalmente diferentes; aśı,
mientras una zona no se ve afectada por la contaminación, otra área cercana
puede estar altamente contaminada. El responsable de dichas diferencias es el
transporte en el flujo caótico a escalas de tiempo cortas.

Los patrones irregulares de trazadores son t́ıpicos de flujos dependientes del
tiempo y no se limitan a las grandes escalas de longitud de los ejemplos anteriores.
Aparecen también a escalas de unos pocos kilómetros en los flujos costeros, o a
escalas de cent́ımetros en los flujos de laboratorio. Estos patrones son generados
por estructuras de flujo coherentes, como vórtices o chorros (jets), que tienen un
tamaño similar a la nube de trazador. Si no hubiese ninguna estructura de larga
escala en el flujo y, en lugar de eso, los movimientos se limitasen a escalas de
longitud mucho más pequeña que la mancha de contaminación, el trazador se
extendeŕıa isotrópicamente en todas las direcciones. Al aumentar la distancia a
la fuente, se diluiŕıa en el ĺıquido no contaminado y la concentración del trazador
seŕıa una simple función de la distancia a la fuente. Sin embargo, en los ejemplos
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considerados, los patrones son notablemente intermitentes; esto es, en dos puntos
diferentes situados a la misma distancia de la fuente de contaminación pueden
registrarse concentraciones totalmente diferentes.

Los conceptos de teoŕıa de los sistemas dinámicos han demostrado ser muy
útiles para estudiar el transporte de fluidos en flujos con estructuras coherentes.
La teoŕıa de sistemas dinámicos aborda el análisis de todo tipo de sistemas que
evolucionan en el tiempo. El estado de un sistema puede representarse en el es-
pacio de fase, definido por las variables dinámicas del sistema. Para los flujos
bidimensionales que se analizan en este trabajo, el espacio de fase es equivalente
al espacio real bidimensional, pues las variables dinámicas coinciden con las coor-
denadas espaciales (x, y) que representan la posición de una pequeña parcela de
fluido en el flujo. De este modo, se han seguido las trayectorias de las part́ıculas
del fluido, lo que se corresponde con un análisis de tipo lagrangiano. Se ha bus-
cado caracterizar el transporte en un flujo dependiente del tiempo mediante la
identificación de estructuras coherentes en su espacio de fase y, en particular, de
los puntos hiperbólicos y las variedades estables e inestables asociadas que con-
trolan el movimiento del fluido. Las estructuras de flujo extráıdas se denominan
Estructuras Coherentes Lagrangianas (LCS). Estas estructuras actúan como bar-
reras de transporte en el movimiento del fluido y ordenan el flujo en diferentes
regiones correspondientes al diferente comportamiento dinámico de las trayecto-
rias en dichas regiones.

Estamos interesados en la evolución determinista del flujo a escalas de tiempo
cortas, donde a causa de la intermitencia del proceso de transporte una descripción
estad́ıstica no es significativa. Con el fin de extraer la geometŕıa de los patrones de
mezcla en un flujo, necesitamos los campos de velocidad espacio-temporales com-
pletos que definen el flujo como un sistema dinámico. En el contexto oceánico,
sistemas de medición como los radares de alta frecuencia en la costa y la altimetŕıa
por satélite para datos globales, aśı como los modelos numéricos, proporcionan
datos valiosos para el análisis de transporte. En el laboratorio, se puede utilizar la
técnica denominada Particle Image Velocimetry (Velocimetŕıa de Part́ıculas por
Imagen, PIV) para medir campos de velocidad bidimensionales con una alta res-
olución espacial y temporal. Usando estos campos de velocidad, los patrones de
transporte advectivo extráıdos son estrictamente solo válidos para un trazador
conservativo pasivo; esto es, un trazador sin sumideros ni fuentes que no altera el
flujo. Los propios patrones de transporte proporcionan información valiosa sobre
las posibles trayectorias seguidas por objetos discretos en el flujo y sobre los puntos
donde el fluido se separa y converge. Además, se han examinado algunas aplica-
ciones interesantes a la evolución de los campos de trazadores reactivos, que tienen
fuentes y sumideros como consecuencia de reacciones qúımicas o biológicas. Por
definición, la distribución espacial de la concentración de estos trazadores reactivos
no está únicamente modificada por la advección; sin embargo, la advección puede
ser el mecanismo dominante que determine la distribución espacial del trazador
reactivo. Si se extrae la geometŕıa de mezcla debida a advección pura, pode-
mos comparar los patrones de mezcla con la distribución real de los trazadores
reactivos. Aqúı realizamos esta comparación para una floración de plancton en
el Océano Índico y para una reacción qúımica excitable en un flujo bidimensional
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turbulento en el laboratorio, resultando que los patrones de transporte advectivo
concuerdan bien con las fronteras de la concentración de trazador reactivo.

Objetivo del Trabajo

En esta Tesis, se han estudiado varios problemas espacio-temporales de transporte
en campos de velocidad bidimensionales dependientes del tiempo que generan
advección caótica. Nuestro objetivo es aclarar el papel del transporte advectivo
en la dispersión de trazadores pasivos y también de trazadores reactivos. Aśı,
queremos caracterizar el transporte de estos flujos con gran precisión mediante
Estructuras Coherentes Lagrangianas, que revelan la geometŕıa del movimiento
irregular del fluido y, en particular, remarcan las ĺıneas de separación y confluencia
de los elementos del mismo. Además, queremos examinar la relevancia de las LCS
para trazadores reactivos.

Resumen

Los estudios presentados en este trabajo se ocupan del transporte en flujos caóticos
y tratan de aclarar el papel de las Estructuras Coherentes Lagrangianas en el orde-
namiento y control del movimiento de los fluidos, y en consecuencia, también los
patrones espacio-temporales en campos de trazadores continuos. Los caṕıtulos 4
a 7, donde se presentan los resultados, están conectados por el uso de métodos
similares, si bien las escalas de tiempo y longitud de los flujos difieren en gran
medida. Presentamos una introducción general a los conceptos y métodos utiliza-
dos de forma general en los diferentes caṕıtulos, dejándose aquellas informaciones
introductorias más espećıficas, relacionadas con cada estudio, para el principio de
cada caṕıtulo. Por lo tanto, los caṕıtulos de resultados son, en realidad, estudios
independientes unificados por los similares métodos lagrangianos utilizados, antes
que una serie consecutiva en la cual un caṕıtulo está directamente basado en el
anterior.

En el caṕıtulo 1, presentamos una breve introducción al concepto de mezcla.
La propiedad fundamental de un proceso de mezcla en un material es el hecho de
que partes cercanas se separan y partes distantes se unen. En un mapeo discreto,
este proceso se realiza cortando, reorientando y uniendo el material de forma
consecutiva. En los flujos inestables, los puntos hiperbólicos son cruciales para
el proceso de mezcla, ya que sus variedades estables e inestables son las ĺıneas
donde el fluido se separa y converge. En la siguiente parte, recordamos los dos
procesos básicos de transporte de fluidos: la difusión y la advección. Mientras que
la difusión es generada por un movimiento aleatorio a pequeña escala, y por lo
tanto puede ser descrita mediante una aproximación estad́ıstica, la advección es
determinista y viene dada por un campo de velocidades. Puesto que el transporte
difusivo es un proceso lento, el transporte en muchos flujos está dominado por la
advección. Para la advección caótica en campos de velocidades dependientes del
tiempo, los métodos de la teoŕıa de los sistemas dinámicos se han aplicado con
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éxito para extraer Estructuras Coherentes Lagrangianas, que controlan la dinámica
de mezcla. Reseñamos algunos de los trabajos en el contexto oceánico.

En el caṕıtulo 2, introducimos los métodos utilizados para localizar Estruc-
turas Coherentes Lagrangianas (LCS) en los flujos inestables. En particular, se
identifican las LCS como crestas en los campos del exponente de Lyapunov a
tiempo finito (FTLE) de part́ıculas trazadoras en el flujo caótico. Hacia adelante
(atrás) en el tiempo, las part́ıculas trazadoras se separan más rápidamente en las
proximidades de las variedades estables (inestables) de puntos hiperbólicos.

Puesto que el FTLE es un promedio de tiempo finito de la tasa de separación
exponencial de part́ıculas inicialmente cercanas, ĺıneas con elevados valores de
FTLE (crestas) resultan ser buenas estimaciones de la ubicación de las variedades
estables e inestables de tiempo finito. La escala de tiempo en la cual las LCS
estimadas son relevantes para la mezcla viene dada por el tiempo de integración
que se elige para las part́ıculas trazadoras. Otros métodos lagrangianos, que
presentamos en un breve párrafo, se han propuesto para extraer LCS de flujos
inestables. Por último, se utiliza un método lagrangiano adicional denominado
Mapas Sinópticos Lagrangianos (SLM), que se introduce al final de este caṕıtulo.
Los SLM visualizan el origen y el destino de las trayectorias que cruzan un dominio
de flujo limitado, como por ejemplo un flujo costero delimitado por la costa y una
boca abierta al océano. Además, los tiempos de residencia de las trayectorias en
el dominio de flujo pueden derivarse directamente a partir de los SLM.

En el caṕıtulo 3, se describen brevemente los sistemas de medición y los
principios utilizados para obtener los campos de velocidad bidimensionales que
se analizan en los caṕıtulos posteriores. En primer lugar, se explica cómo las
corrientes oceánicas de mesoescala se derivan de mediciones basadas en altimetŕıa
desde satélite. Bajo la hipótesis de balance geostrófico, es decir, un equilibrio en
la ecuación de Navier-Stokes entre la fuerza de Coriolis y la fuerza del gradiente
de presión debida a la elevación de la superficie del mar, las corrientes oceánicas
en la escala de ∼ 100 km son proporcionales a la inclinación de la superficie del
mar. La elevación de la superficie del mar se puede medir con una precisión
muy alta de ∼ 2 cm mediante alt́ımetros que miden el tiempo de vuelo de una
señal de radar entre el satélite en una órbita conocida y la superficie del mar. En
segundo lugar, se describe el sistema de radar de alta frecuencia que proporciona
las corrientes superficiales en la parte exterior de la Ŕıa de Vigo, situada en el
noroeste de España. En este sistema, las velocidades radiales del flujo superficial
se calculan a partir del desplazamiento Doppler de la señal de radar, teniendo en
cuenta la velocidad de propagación de las ondas superficiales, que reflejan la onda
emitida mediante reflexión de Bragg. Con dos sistemas de radar que cubren la
misma superficie, los campos dependientes del tiempo de las dos componentes de
la velocidad pueden obtenerse.

En tercer lugar, en el laboratorio, el flujo turbulento cuasi bidimensional in-
ducido por las ondas de Faraday se determina mediante Particle Image Velocimetry
(PIV). Aśı, se toman las imágenes de un gran número de part́ıculas flotantes en la
superficie del fluido y se deriva el campo de velocidades a partir de las diferencias
finitas de posición entre las part́ıculas en imágenes consecutivas.

En el caṕıtulo 4 consideramos un modelo numérico sencillo de reacción-difusión-
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advección que representa la dinámica de las floraciones de plancton en el océano.
Se compone de tres concentraciones: la concentración de nutrientes inorgánicos
N , la concentración de fitoplancton P y la concentración de zooplancton Z. Este
modelo NPZ representa una cadena alimentaria básica con tres niveles tróficos
mediante tres ecuaciones diferenciales acopladas. Se estudia el crecimiento de
una sola mancha de plancton surgiendo alrededor de una fuente de nutriente lo-
calizada que es activa durante un periodo limitado. Debido a un flujo advectivo
en el modelo, la mancha del plancton se distorsiona y se puede propagar hacia
regiones alrededor de la fuente de nutrientes. Estamos interesados en cómo el
crecimiento depende de las escalas de longitud y tiempo del flujo advectivo. Para
el término de advección se utiliza, en primer lugar, un flujo con correlaciones
gaussianas y, en segundo lugar, un flujo de mesoescala más realista procedente
de mediciones de altimetŕıa en el Océano Atlántico Norte. El crecimiento de una
mancha de plancton depende en gran medida de las escalas de tiempo y longi-
tud del flujo advectivo subyacente. Una resonancia aparece entre las escalas de
tiempo t́ıpicas en el modelo y en el flujo, lo que lleva a un crecimiento máximo de
la mancha de plancton. En el flujo de altimetŕıa, se estudia además una región
de flujo seleccionada en la cual, para dos remolinos aparentemente similares, se
observa que el crecimiento de la mancha de plancton es significativamente mayor
en uno de ellos. Entendemos que la topoloǵıa diferente del flujo estacionario en
los dos casos es la responsable de este comportamiento. En particular, el número
de puntos hiperbólicos alrededor de los remolinos define las trayectorias por las
cuales la mancha de plancton se puede propagar. Este caṕıtulo es una versión
ligeramente ampliada del estudio publicado en [165].

En el caṕıtulo 5 se analiza una floración de plancton espećıfica -la floración de
plancton de Madagascar- con respecto al transporte de las corrientes oceánicas
geostróficas. La floración de plancton de Madagascar es un gran evento de flo-
ración al este de Madagascar que se produce irregularmente; aśı, en algunos
años el evento es muy intenso mientras que en otros no se produce. La flo-
ración comienza t́ıpicamente al sur de Madagascar y se propaga rápidamente por
el Océano Índico, alcanzando su mayor extensión zonal, de hasta 2000 km, en
febrero o marzo. Diferentes mecanismos para la iniciación de la floración han
sido propuestos, pero debido a la falta de grandes conjuntos de datos in situ, que
seŕıan necesarios para representar la variabilidad de la floración, no existe todav́ıa
una explicación rigurosa para este fenómeno. Nos centraremos en el impacto de
la advección caótica a través de las corrientes oceánicas en la propagación de la
floración de plancton. Las corrientes se derivan a partir de datos de altimetŕıa,
suponiendo un balance geostrófico en la dinámica del flujo. La concentración de
clorofila superficial se obtiene a partir de mediciones de satélite. En las corrientes
oceánicas de mesoescala, investigamos las estructuras de flujo que pueden estar
relacionadas con la intensa propagación de la floración hacia el este. Encontramos
que la recientemente descubierta South Indian Ocean Countercurrent (Contracor-
riente del Océano ndico Sur, SICC) es con toda probabilidad la responsable de la
propagación hacia el este de la floración; en cambio, en estudios anteriores, un
flujo dirigido hacia el este no hab́ıa sido considerado como una explicación de la
gran extensión de la floración. Un trazador pasivo continuo soltado en la punta
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sur de Madagascar es transportado hacia el este por la SICC, cubriendo un área
similar a la floración de plancton de Madagascar. Esto apoya la hipótesis de que
el origen de la floración de plancton se encuentra al sur de Madagascar, donde el
afloramiento podŕıa aportar los nutrientes necesarios. Sin embargo, es importante
señalar que el frente de la floración de plancton se propaga más rápido que la
velocidad pura advectiva, lo que sugiere que la reacción biológica también juega
un papel crucial. Caracterizamos la variabilidad temporal de la SICC para com-
probar si está correlacionada con la aparición de la floración. No es este el caso:
el chorro no es ni especialmente fuerte en años de floración ni especialmente débil
en años sin floración. También se ha extráıdo la ubicación de posibles barreras de
transporte en el flujo caótico a partir de los campos de exponentes de Lyapunov a
tiempo finito (FTLE), encontrándose que las barreras de transporte coinciden en
gran medida con los bordes de la floración de plancton. Esto indica que el flujo
da forma a los bordes de la floración mientras se desarrolla. Este caṕıtulo es una
versión ampliada del estudio publicado en [91].

En el caṕıtulo 6, se aplican los métodos de la teoŕıa de los sistemas dinámicos
al transporte caótico en la Ŕıa de Vigo. En este estuario, el flujo de la marea
oscilante interactúa con el flujo a largo plazo en la plataforma continental y con
los flujos inducidos por el viento, los cuales cambian rápidamente dando lugar a
patrones de flujo complejos. Se determinan los patrones de flujo en la superficie
calculando Estructuras Coherentes Lagrangianas (LCS) en la capa superficial de un
modelo hidrodinámico tridimensional de la Ŕıa de Vigo. Nuestros resultados son
validados mediante la comparación de las LCS con trayectorias de boyas de deriva
procedentes de cuatro experimentos de campo en la Ŕıa de Vigo. Las trayectorias
de las boyas de deriva coinciden con los patrones de flujo que se encuentran
en el modelo. Por otra parte, se propone que las LCS para las condiciones de
viento t́ıpicas pueden ayudar a predecir mejor la trayectoria de deriva de objetos o
contaminantes en el estuario. Las LCS visualizan la dinámica del intercambio de
agua entre la bah́ıa y la plataforma continental. Además, se aplica el método de
los Mapas Sinópticos Lagrangianos (SLM) a los campos de corrientes medidas con
un sistema de radar de alta frecuencia (HF). Para obtener un SLM, las trayectorias
se clasifican según su origen y su destino. Se cuantifica el transporte a través de
un dominio de flujo limitado en la parte externa de la Ŕıa de Vigo y se relacionan
los patrones de flujo que aparecen con las condiciones del viento. Los tiempos
de residencia de las parcelas de fluido en el dominio de flujo resultan variar entre
uno y diez d́ıas. Los patrones espaciales de los tiempos de residencia muestran
patrones intermitentes, donde elementos de fluido muy próximos entre śı exhiben
tiempos de residencia significativamente diferentes. Una comparación entre un
SLM calculado a partir del flujo de radar HF y otro SLM calculado a partir del
modelo demuestra que los SLM son útiles para comparar los diferentes datos de
velocidad en términos de los patrones generales de transporte. Este caṕıtulo es
una versión ampliada del estudio publicado en [90].

En el caṕıtulo 7 se estudia el transporte en un flujo turbulento cuasi bidi-
mensional inducido por el experimento de Faraday. Una capa delgada de fluido
se hace vibrar verticalmente, de forma que las ondas capilares que aparecen en
la superficie generan un flujo horizontal que se mide mediante Particle Image
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Velocimetry (PIV). En primer lugar, examinamos los patrones de los vórtices en
el flujo horizontal y encontramos que éstos parecen estar correlacionados con el
patrón de las ondas de Faraday en la superficie. Si se aumenta el forzamiento
del flujo, la auto-correlación temporal de la vorticidad disminuye con la auto-
correlación temporal de las ondas de Faraday; esto es: el tiempo de persistencia
de los vórtices está limitado por el tiempo en el que el patrón de ondas de Fara-
day se mantiene estable. Nuevamente, estamos interesados en estructuras de
flujo persistentes, LCS, que controlan la mezcla caótica en el flujo de Faraday.
Del mismo modo que en los estudios de los patrones de reacciones biológicas
(plancton), en los caṕıtulos 4 y 5, se analizan aqúı los patrones en medios activos
excitables y, en particular, la reacción qúımica de Belousov-Zhabotinsky (BZ).
Para ciertas condiciones de flujo se observa un frente qúımico desplazándose en
el recipiente, y cuyas fronteras tienen una forma filamentosa irregular. Podemos
medir, simultáneamente, el flujo de Faraday cuantitativamente y la concentración
de la reacción BZ cualitativamente. Ello permite una comparación directa de las
LCS con el frente filamentoso. Las LCS que extraemos de los campos de veloci-
dad medidos se alinean con el frente qúımico e indican que su estructura está
dominada por la advección.

En el caṕıtulo 8 se resumen los resultados de los diferentes caṕıtulos.





Chapter 1

Introduction

Abstract

In this chapter we motivate the importance of transport in fluids in many
natural systems and introduce the fundamental mechanism of mixing. We
recall the basic transport processes diffusion and advection, and give a short
review of studies that apply dynamical systems methods to advection in an
oceanic context. Finally, we formulate the objectives of this work.

1.1 Transport and Mixing

Fluid flows are ubiquitous in nature and technology on all length scales. In na-
ture, atmospheric and oceanic flows, for example, play a key role on the global
scale transporting heat from the tropics towards the poles. This determines the
local climate in many regions of the world. In general, most transport processes
in geoscience are linked to moving fluids, as e.g., the erosion of solid material
by rain and rivers, the dispersion of dust, moisture, and volcanic ashes [84] in
the atmosphere, or the transport of nutrients, marine wildlife, dissolved gases or
contaminations [150] in the ocean. In life sciences, the blood flow in animals and
humans is crucial to supply cells with all necessary substances, while a similar flow
in plants transports water and nutrients from the ground into the leaves. In tech-
nology, the engineering industries develop solutions to the problems of propulsion
through air and water by cars, planes and ships, that are largely affected by the
surrounding flow. The development of motors also includes flows of combustion
processes in engines. In the contrary approach, renewable energy is extracted
from geophysical flows as wind, ocean currents or rivers. Flows in pipes and tubes
transport reactive substances in the chemical industry, allow for a transport of gas
and oil over large distances, and they provide whole cities with fresh water and
dispose of the waste water.

Fluids tend to become unstable for increasing velocity. This fundamental
property of fluid motion is responsable for most of the aforementioned flows being
time-dependent. In contrast to steady flows, time-dependent flows efficiently mix
the fluid, i.e., the properties of the fluid, as impurities, the concentration of a
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Figure 1.1: Sketch of the two steps of the (a) baker’s map and the (b) horse shoe map, both
being building blocks of mixing motion. Reproduced from [159].

physical or chemical quantity or also discrete solid particles, are transported by
the fluid in a highly irregular way.

1.1.1 Basic Mixing Process

In order to understand mixing let us first consider a simple example of discrete
mixing taken from [159]. The process of mixing is directly linked to a very basic
condition that the mixing motion must fulfill. To mix a set of points or a continu-
ous field, the motion has to separate close elements and displace them to distinct
regions of the domain. At the same time, we expect that close elements originate
from distinct regions, i.e., the motion has brought them together from a large
distance. The most simple and intuitive example for such a motion is the baker’s
map in accordance to the natural mixing process, when a baker cuts and fuses
dough [159]. Figure 1.1a shows the two discrete steps of the baker’s map. Starting
from a square domain of material, in the first step the domain is stretched by a
factor a1 = 2 in one direction. To conserve the area of the material, the domain is
compressed in the orthogonal direction by a factor a2 = 1/2, such that a1a2 = 1.
This condition defines a large class of maps, namely area-preserving maps. The
corresponding condition for a two-dimensional continuous flow is the conservation
of fluid, i.e., the velocity field is incompressible and satisfies ∇ · v = 0. In the
second step, the stretched domain is cut, and the two parts are joined together
to form a square again. The material deformed by successive application of the
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baker’s map is efficiently mixed in the following sense. Assume two regions A and
B in the square domain, while only the material in A is transported by the baker’s
map to positions A′ by multiple application of the map. Let N be a number
of mappings such that for n > N mappings some material of A is in region B,
i.e., A′ ∩ B 6= ∅. If this is true for almost all regions A,B except some regions
of measure zero, then the map is strongly measure-theoretic mixing the material
[159].

In continuous deformation of material, or fluid in particular, no discrete cutting
and joining is possible. If the second step of the baker’s map is substituted by
folding the two parts together, we obtain the famous horse shoe map, which is a
building block of chaotic mixing (Fig. 1.1b). The horse shoe map looses material
and other material entrains from the outside into the square domain, so it models
an open flow. It is interesting to note that a invariant set of points never leaves
the domain [158]. A typical characteristics of fluid mixing is that the constant
stretching and folding of material leads to a fast reduction of length scales of any
structure in the initial domain, as every initial region is stretched to a increasingly
thin filament.

1.1.2 Steady Two-Dimensional Flow

As we have seen, mixing is basically an irregular rearrangement of material. We
shortly argue here that mixing does not happen in a steady two-dimensional flow,
following [142]. An incompressible two-dimensional velocity field v(x) can be
written as derivatives of a scalar stream function Ψ(x, y),

vx(x, y) = −∂Ψ

∂y
vy(x, y) =

∂Ψ

∂x
, (1.1)

such that the incompressibility condition is automatically satisfied. This formula-
tion is equivalent to an autonomous dynamical system with one degree of freedom,
where Ψ is the Hamiltonian. One can think of a mechanical system with a single
point mass with constant energy. Such systems are integrable, and in such flows
trajectories move along streamlines which are lines of constant level of the stream
function. Trajectories cannot cross the streamlines that are either closed or end
at two points on the border of the flow domain. Each streamline is a transport
barrier and separates the flow domain into two regions which cannot exchange
fluid. Therefore, no mixing can occur. In the elliptic regions, where trajectories
move on closed orbits, a small perturbation of an initial condition grows linearly
in time, and so does the length of a material line. In hyperbolic regions, close to
saddle points of the stream function, a perturbation indeed grows exponentially
fast, and fluid is separated and merged. However, this only happens at isolated
points and does not lead to global mixing of the fluid [142].

1.1.3 Unsteady Two-Dimensional Flow

In the baker’s map and in the horseshoe map in Sec. 1.1.1, we have seen that
discrete stretching and folding generates an effective mixing process. The main
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P1

P2

Figure 1.2: Sketch of a heteroclinic tangle of the stable and unstable manifolds of adjacent
hyperbolic points P1 and P2 in a time-dependent flow. Modified from [226].

question is how this mechanism is realized in continuous flows. A time-dependent
two-dimensional flow can still be written with a stream function as in (1.1), but
instantaneous streamlines are not longer transport barriers. Now, instead, stable
and unstable manifolds of hyperbolic points play a decisive role in organizing the
fluid transport. Stable manifolds are the set of points that get infinitesimal close
to a hyperbolic point in forward time t → ∞, and unstable manifolds are the
set of points that get infinitesimal close to a hyperbolic point in backward time
t → −∞ [e.g., 8, 226]. These lines are transport barriers, since they consist
of fluid particles that move with the flow. The stable and unstable manifolds
of nearby hyperbolic points can intersect, forming a heteroclinic tangle, which is
shown in Fig. 1.2. In this tangle between the two hyperbolic points the merging,
stretching, folding and separating of fluid happens, that leads to efficient mixing.
If we first look at point P1, two fluid patches on either sides of the unstable
manifold merge. Due to the time dependence of the flow, the unstable manifold
of P1 intersects with the stable manifold of P2 such that lobes are formed that
enclose fluid. These lobes are crucial for the exchange of fluid between different
regions in the time-dependent flow. Their dynamics is described by lobe dynamics
theory [226]. Due to the lobes, the fluid coming from P1 finds its way to both
sides of the stable manifold of P2 that defines the line of future separation at
point P2. In other words, in the heteroclinic tangle, fluid that has merged at
P1 is chopped in to different patches. These patches will separate at the next
hyperbolic point P2. This basically is the process that merges initially distant
parts of the fluid and separates initially close parts of the fluid. In the course of
this work we will be especially interested in the location of the stable and unstable
manifolds that can be estimated with methods presented in Chap. 2.
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1.2 Transport Processes

In principle, the motion of a fluid could be described by the time-dependent
velocities, or equally, by the trajectories of each individual molecule. However, this
is not feasible and most fluid flows of interest are macroscopic and have length
scales much larger than the molecular scale. Therefore, the fluid is described as
a continuum. In this continuum, two conceptually different basic processes are
practical to describe transport. In the following, we give a short definition of the
basic two transport mechanisms, diffusion and advection. An overview over the
topic of transport and mixing in fluids is given in the references [43, 142, 159,
224, 227].

1.2.1 Diffusion

Diffusion is a transport process that is induced by random motion, or more specif-
ically, motion that can be described by statistical means. Molecular diffusion is
the typical case, where the thermal Brownian motion of molecules or atoms is in
principle deterministic, but due to the large number of collisions involved it can
be described as a stochastic random walk. The direction and magnitude of dis-
placements of molecules are then stochastic variables and obey certain probability
distributions. In absence of a concentration gradient in the medium there is no
net flux, as diffusive transport in one direction is exactly balanced by transport
in the opposite direction. This changes if a concentration is not homogeneously
distributed. The diffusive flux JD from regions of high concentrations to low
concentrations driven by random movements is described by Fick’s first law

JD = −D∇C, (1.2)

where ∇C is the concentration gradient and D is the molecular diffusion coeffi-
cient that depends linearly on temperature. Assuming a continuity equation for
the concentration without source terms on the right hand side

∂C

∂t
+∇ · JD = 0 (1.3)

and a constant, isotropic, homogeneous diffusion coefficient D, we get Fick’s
second law, the diffusion equation

∂C

∂t
= D∇2C. (1.4)

It simply states that under a diffusive process the concentration increases at pos-
itive curvature of the concentration field (valleys) and decreases at negative cur-
vature of the concentration field (mountains). Thus, the diffusion tends to equi-
librate concentration differences and finally leads to a constant concentration,
which is the most probable state of distribution. Transport by molecular diffu-
sion is very slow for ambient temperature. The diffusion coefficient in water has
a magnitude of D ≈ 10−9m2s−1, which means that diffusive transport over a
length of 1 mm takes about 103 s.
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Diffusion is directly related to an uncorrelated random walk model, where
subsequent steps of a particle are random in direction. As a consequence of the
central limit theorem the variance of the displacement of a particle carrying out
such a random walk grows as

〈x2〉 ∝ 2dDt (1.5)

where d is the dimension of the random walk. When the variance grows linearly
with time, these stochastic transport processes are referred to as normal diffusion.
Anomalous diffusion is characterized by 〈x2〉 ∝ tγ , with γ 6= 1. Superdiffusion
with 1 < γ < 2 occurs in flows with long range correlations, e.g., jets and vortices,
and subdiffusion with γ < 1 occurs in flows including regions where fluid can be
trapped for very long times.

Instead of microscopic molecular Brownian motion, we can also think of macro-
scopic small scale irregular fluid motion that induces stochastic displacements of
fluid parcels. These fluid parcels consist of a large number of fluid molecules.
Although this motion is smooth and continuous in principle, it can be described
by a random walk on time scales where the motion of fluid parcels become un-
correlated, t� TL. Thus, for long times, the motion of a particle in a sufficiently
irregular flow can be statistically described by the variance of the displacement
satisfying

〈x2〉 ' 〈v2〉TLt. (1.6)

〈v2〉 is the variance of the velocity in the flow. This diffusive transport is named
turbulent diffusion [70, 97, 205]. Fick’s laws (Eq. 1.2, 1.4) can be applied, where
the molecular diffusion coefficient D must be replaced by an effective turbu-
lent diffusivity, Dt, that is typically many orders of magnitude higher than the
molecular diffusion. As stated above, typical molecular diffusion coefficients
are D ≈ 10−9 m2s−1 whereas turbulent diffusion coefficients obtained from La-
grangian experiments in the ocean can be as high as Dt ≈ 102 m2s−1 at length
scales of 100 km [149]. Turbulent diffusion is also referred to as eddy diffusion,
corresponding to the image of turbulence as a conglomerate of interacting vortices
or eddies that lead to random-walk-like trajectories in the fluid.

1.2.2 Advection

While diffusion is a statistical description of irregular motion, advection is the
deterministic motion given by a velocity field. Let C(x, t) be the concentration
field of a passive conservative tracer, i.e., a tracer which does not change the
fluid flow (passive), does not have sinks nor sources, and does not react or decay
(conservative). Then, the concentration field evolves under a flow as

∂

∂t
C(x, t) = −v∇C(x, t) (1.7)

The motion of fluid can be described in two different reference systems: the
Lagrangian frame and the Eulerian frame. In the Lagrangian frame we fix our
coordinate system to the moving fluid parcels and evaluate the processes that act
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on a infinitesimal fluid parcel to obtain differential equations for its behavior. The
term Lagrangian is also often used more generally to refer to methods that are
explicitly based on trajectories. In the Eulerian frame, we use a Cartesian coor-
dinate system fixed in space, which is more convenient for the representation of
fields. Differential equations in both frames are related by the material derivative

D

Dt
=

∂

∂t
+ v∇. (1.8)

It states that a rate of change of a property in the Lagrangian frame D/Dt
translates to two terms in the Eulerian frame. At a fixed point in space, a field
changes due to inherent rates of change ∂/∂t, and because the field is advected
over the fixed point, represented by the term v∇. In the Lagrangian frame the
advection equation (1.7) for a conserved tracer is simply

D

Dt
C = 0 (1.9)

expressing that the concentration in a fluid parcel is constant in time.
Flow measurements are possible in both, the Eulerian and Lagrangian frame.

At first, the flow measurement at fixed points seems more natural, since mea-
surement devices can be installed in one place and deliver velocity data at a well
defined position (e.g., a mooring fixed at the seas floor with an Acoustic Doppler
Current Profiler (ADCP), in the oceanographic context). However, this is often a
very sparse sampling of the velocity field and only a good estimate of transport, if
the flow is uniform over a large area or volume. If this is not the case, and instead
the flow is highly irregular, Lagrangian measurements with drifting particles can
give a much better insight into transport. Of course, Lagrangian measurements
rely on an accurate positioning system for the Lagrangian particles. For this pur-
pose, drifters on the sea surface can use the Global Positioning System (GPS). In
the laboratory, the position of particles can be obtained using imaging techniques.

1.2.3 Advection and Diffusion

In all real fluid flows both processes, advection and diffusion, are present, and the
interaction of both can lead to very efficient mixing. Eckart’s [55] three phases of
the homogenization of milk and coffee in a cup under stirring is a graphic example
for this process [230]. In the first phase, only few circular patches of milk exist.
The concentration gradient across the contact surface of milk and coffee is high,
but the surface itself is small. In large parts of the fluid, the concentration is
homogeneous and the gradient is zero. In the second phase, stirring by chaotic
advection stretches and folds the initial patches of milk, which leads to an expo-
nential increase of contact surface with very high gradients. Finally, in the third
phase, molecular diffusion acts on the high gradients that are distributed over the
whole fluid and homogenizes the mixture.

In the flows that we consider in this work, molecular diffusion plays a neglegible
role for transport. This can be quantified by the Péclet number, the ratio of a
diffusive time scale and an advective time scale of the flow on a length scale L.
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Figure 1.3: Lagrangian transport patterns. (left) Plankton bloom in the ocean off the Shetland
Islands [2]. (right) Oil spill emerging from the oil tanker Prestige off the coast of Galicia, NW
Spain, 2002 [1].

The Péclet number Pe = UL/D, with the velocity U and the diffusion constant
D, is typically very large (remember: D ∼ 10−9 m2s−1), indicating that diffusion
at ambient temperature is a very slow process. However, turbulent diffusion can
be an important contribution to transport.

For a continuous tracer, turbulent diffusion can be described with Eq. 1.4.
However, for discrete particles, a different description is used. Lagrangian Stochas-
tic Models (LSM) generate trajectories in a given advective flow, where the subgrid
motion that is not resolved in the velocity field is modeled as a stochastic process.
These models reproduce the statistical properties of real trajectories. LSM are
widely used in the oceanographic community to study transport in ocean cur-
rents, and in particular to model drifter trajectories of ocean drifters [57, 75].
The particles are advected with a velocity that has a deterministic and a stochas-
tic component. The simplest realization of such a model is a LSM of order 0,
where the stochastic component is totally uncorrelated and no correlation time is
involved [178]. A particle trajectory is then given by

d

dt
x(t) = v(x, t) +

√
2Dt

dw

dt
(1.10)

where dw is a random increment from a normal distribution with zero mean and
a variance 2 dt. At each time step a random displacement is added to the position
of the particle, such that the particles diffuse with a diffusion coefficient Dt.

1.3 Advective Transport in the Ocean

The description of dispersion of particles or continuous tracers, in terms of tur-
bulent diffusion, as well as the Lagrangian stochastic models are statistical ap-
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proaches that do not contain information about single specific trajectories. How-
ever, advection is deterministic and determines the motion of the fluid, and in
many applications the specific trajectories do matter. In this work, we want to
focus on the deterministic motion of water masses in the very detail, and ask
how they separate and merge, how they are stretched and folded. Many practical
transport problems of interest are affected by this chaotic motion of fluid and have
short time scales of the order of some eddy turnover times. For example, in the
case of an oil spill we are interested in its exact evolution for the following days
and weeks rather than its overall mean advance as determined by the stochastic
approach. If a container is lost from a ship, we want to know where it has drifted
to over the last hours. Advection is the dominant process in these cases. It is
therefore an appropriate approach to address the deterministic motion of objects
or tracers in the ocean. Fig. 1.3 shows typical Lagrangian patterns in continuous
tracers generated by advection in irregular ocean currents. The emerging patterns
can be understood and predicted by analyzing the irregular advective transport as
we will see in the following chapters.

Such studies have become more feasible nowadays, since numerical ocean
models, satellite measurements, and high-frequency radar systems provide com-
plete spatio-temporal velocity data sets that cover wide areas of the ocean. This
allows for a detailed analysis of advective transport in these velocity fields. Even
if the unresolved part of the flow is neglected, the obtained flow patterns are most
relevant for transport. In particular, methods from dynamical systems theory have
proved to be very useful to address finite time transport in such flows. In this
approach the advective flow is regarded as a dynamical system, and transport
is studied with tools that were originally developed to analyze the phase space
of dynamical systems [227]. These methods are closely related to the notion of
Lagrangian coherent structures (LCS), a term widely used in literature for those
flow structures that control mixing [83]. We define LCS in the next chapter in
more detail.

LCS have been used extensively to understand the Lagrangian transport in a
variety of applications in geophysical flows ranging from the study of plankton
dynamics to waste water treatment. We shortly review some of these studies,
where LCS define the patterns of short time non-asymptotic mixing. The most
direct way to verify the location of LCS derived from a modeled or measured flow
field is to compare the LCS with trajectories of real surface drifters. Haza et al.
[86] compute LCS from a model flow in the Adriatic Sea and demonstrate that
drifters launched into a hyperbolic region are guided by the hyperbolic manifolds
represented by the LCS. In a similar setting, but with flow data from a HF radar
system, they also find a good agreement between the trajectories of surface drifters
and the LCS in the flow [87]. Also Shadden et al. [191] perform drifter experiments
in Monterey Bay, California, where surface drifter trajectories are in agreement
with LCS from HF radar data.

A plankton bloom is an event where phytoplankton rapidly grows in limited
regions of the ocean. The chlorophyll concentration is not strictly a passive tracer,
since a biological reaction is involved (Chap. 4), but it turns out that advection
often dominates the patterns appearing in these plankton blooms (cf. Fig.1.3).
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Olascoaga et al. [153] hypothesized that a transport barrier on the West Florida
Shelf, characterized as an LCS, provide favorable conditions for Harmful Algae
Blooms (HAB) and they employ simulated LCS to trace back possible early lo-
cations of these blooms. Toner et al. [208] showed that plankton blooms in the
Gulf of Mexico propagate in directions that agree with the LCS computed from
a data-assimilating hydrodynamic model. Lehahn et al. [100] reported that pat-
terns in plankton blooms in satellite sea color images are dominated by horizontal
mesoscale stirring. They showed statistical evidence that LCS align with the con-
tour lines of chlorophyll concentration. Coulliette et al. [41] and Lekien et al.
[103] use LCS calculated from high-frequency radar velocity data in coastal areas
to develop release strategies for waste water, in order to prevent damage to the
sensitive coastal ecosystems. In this work we will extensively make use of the LCS
approach to analyze transport in ocean currents on different scales.

1.4 Objective of the Study

In this thesis we study several spatio-temporal transport problems in two-dimensional
time-dependent fluid flows that generate chaotic advection. We aim to clarify the
role of advective transport for passive and also for reactive tracers. Therefore, we
want to characterize transport in these flows in the very detail with the concept of
Lagrangian coherent structures (LCS) that reveal the geometry of irregular fluid
motion, and especially emphasize lines of separation and merging of fluid patches.
We further want to examine the relevance of LCS to reactive tracers. The focus
is set on the application of the LCS concept to several experimental or numeri-
cal flow fields where we unveil the geometry of fluid mixing to gain insight into
dynamics of spatio-temporal tracer patterns.



Chapter 2

Chaotic Transport and Coherent
Structures in Unsteady Flows

Abstract

The terms chaotic advection or Lagrangian chaos generally refer to the
phenomenon that particle trajectories or tracer patterns being transported
in an unsteady flow exhibit strong irregularities in time and space. In these
flows, adjacent regions of the flow can have totally different fluid properties
and the permanent separating and merging of different parts of the fluid
leads to strong mixing. In this chapter, we introduce the phenomenon of
chaotic advection and show methods from dynamical systems theory that al-
low to determine the geometry of mixing in chaotic flows, namely Lagrangian
Coherent Structures (LCS) and Synoptic Lagrangian Maps (SLM).

2.1 Chaotic Advection

The term chaotic advection was introduced in a seminal paper by Aref [10] where
he numerically studies the mixing of particles in a flow induced by two point vor-
tices. The flow is very regular, as it consists solely of a rotational motion, and
transport seems to be predictable. However, when the action of the vortices is
alternately switched on and off (blinking vortex), particles in the flow undergo
chaotic trajectories and mixing is significantly enhanced. Generally, chaotic ad-
vection refers to irregular motion of particle trajectories in a simple (even laminar)
deterministic time-dependent flow that is given by an advective velocity field. In
two dimensions, a simple time dependence can lead to chaotic mixing of the fluid.
In three dimensions, even steady flows can be chaotic. Since the paper by Aref,
a large number of studies has applied ideas from dynamical systems to the prob-
lem of mixing in fluids [11, 12, 159, 168]. Here, we are especially interested in
the geometry of mixing, i.e., the spatial distribution of fluid volumes that are
continuously merged and separated by the flow.

In order to unveil the geometry of mixing in time-dependent fluid flows we take
the Lagrangian approach and analyze trajectories of infinitesimal fluid parcels. We
represent these fluid parcels by point particles in the fluid. Their trajectories are

11
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Figure 2.1: Typical pattern of a patch of fluid particles after advection in a chaotic flow for
a finite time τ . Particle positions at a time t = t0 + τ (black) depend critically on the initial
position (gray) at t = t0. The instantaneous velocity field v(x, t = t0) plotted in the background
is given by geostrophic ocean currents in the South Indian Ocean.

solutions of the dynamical system

ẋ(t) = v(x, t). (2.1)

We assume that the velocity field v(x, t) is known, obtained from experimen-
tal measurements, from a numerical hydrodynamic model solving the governing
equations for fluid motion, or from an analytical kinematic model flow. Thus,
the velocity field is given as a data set in a fixed Eulerian frame and we obtain
particle trajectories by integrating Eq. (2.1). The dynamical system is numerically
solved using a simple 4th order Runge-Kutta scheme and a cubic interpolation in
time and space. A trajectory that starts from the initial condition x0 at time t0
and evolves to its position at time t is denoted by x(x0, t0, t). In this work, we
focus on two-dimensional flows, although most concepts can equally be applied
to three-dimensional flows.

In a chaotic flow the trajectories of fluid parcels depend highly on the initial
conditions (x0, t0), i.e., the time and location where they are released. Therefore,
initially close trajectories may rapidly diverge. Typically, the distance between
both trajectories grows exponentially in chaotic flows and small patches of fluid
are stretched to long filaments that are rolled up around vortices. Fig. 2.1 shows
a typical pattern of a patch of particles in a chaotic time-dependent velocity field.
We can observe that the positions of the particles at time t = t0 + τ depend
critically on the initial position of the trajectories.

The mixing patterns appearing in chaotic flows are solely determined by the
dynamical system (2.1) that governs the advection. The patterns can be extracted
from the trajectories that solve (2.1) by applying methods of dynamical systems
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theory. In particular, dynamical system theory deals with the analysis of the phase
space which is the space of the dynamic variables of the system. Here, the phase
space is the real space in two dimensions (x, y). The topology of the phase space
determines the dynamics of the trajectories, i.e., it controls in which direction
fluid can flow. We seek to separate regions of different dynamics in the fluid by
analyzing the portrait of the phase space of the flow.

In the following, we shortly mention the Okubo-Weiss parameter, a quantity
often used to identify flow structures in Eulerian instantaneous velocity fields.
Then, we choose a simple steady flow to introduce the basic dynamical systems
concept of a hyperbolic fix point and its stable and unstable manifolds. We shortly
present how these manifolds can be estimated also in unsteady flows for a finite
time, and we give the definition of the finite-time Lyapunov exponent which is used
throughout this work to extract the manifolds. We present the similar finite-size
Lyapunov exponent in a short paragraph and give an outlook on the very recent
development of a new theory to extract transport barriers from time-dependent
flows. Finally, we introduce the Lagrangian method of Synoptic Lagrangian Maps
(SLM).

2.2 Eulerian coherent structures

Looking at velocity data of a flow from measurements or a numeric simulation, it
is tempting to draw quick conclusions about transport based on the instantaneous
velocity field. In the best-case scenario, the time dependence of the flow is weak,
and the topology of the velocity field is indicative of the geometry of transport.
In this case, quantities derived from Eulerian velocity fields may give a rough
sketch of how the fluid moves in space. However, in general, in particular for a
strong time dependence of the flow, the conclusions drawn from the analysis of
instantaneous velocity fields are incorrect and do not represent the trajectories of
fluid parcels in the flow. For the sake of completeness, here we shortly present
the Okubo-Weiss parameter, a quantity that is often used to separate rotational
flow regions from flow regions where stretching dominates.

2.2.1 Okubo-Weiss parameter

The Okubo-Weiss parameter [24, 148, 223] is based on the gradient tensor of the
velocity field

∇v(x) =

(
∂xvx ∂yvx
∂xvy ∂yvy

)
. (2.2)

with its eigenvalues

λ± =
1

2
(∂xvx + ∂yvy)±

[
1

4
(∂xvx − ∂yvy)2 + (∂xvy)(∂yvx)

] 1
2

. (2.3)
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Introducing the differential properties of the velocity field

divergence ∇ · v = ∂xvx + ∂yvy (2.4)

normal strain rate sn = ∂xvx − ∂yvy (2.5)

shear strain rate ss = ∂xvy + ∂yvx (2.6)

vorticity ω = ∂xvy − ∂yvx (2.7)

the eigenvalues can be written as

2λ± = ∇ · v ±
[
s2n + s2s − ω2

] 1
2 . (2.8)

For an incompressible flow, i.e. ∇ · v = 0, we get

2λ± = ±
[
s2n + s2s − ω2

] 1
2 . (2.9)

The sign of the Okubo-Weiss parameter OW = s2n + s2s −ω2 determines whether
the eigenvalues are real or imaginary. For OW > 0 we have real eigenvalues
corresponding to exponential stretching in a hyperbolic region of the flow. For
OW < 0 the eigenvalues are imaginary, corresponding to a rotational movement in
an elliptic region of the flow. Although being only a vague indicator for structures
in time-dependent flows, the Okubo-Weiss parameter is widely used in oceanog-
raphy to separate strain-dominated regions from vorticity-dominated regions, in
particular, to identify mesoscale eddies [20, 37].

2.3 Lagrangian Coherent Structures (LCS)

We seek to extract flow structures that order fluid trajectories in a time-dependent
flow. In the (geophysical) fluid dynamics community these structures are referred
to as Lagrangian coherent structures or LCS [163]. According to Haller [80], La-
grangian coherent structures are: (1) Organizing centers for Lagrangian patterns,
(2) they are material lines, implying that they are transport barriers, and (3) they
locally exhibit the strongest attraction, repulsion or shearing in the flow. LCS
associated with hyperbolic trajectories are directly related to the concept of sta-
ble and unstable manifolds of hyperbolic fix points. We therefore introduce this
concept and explain in the following, how LCS can be estimated from finite-time
stretching fields of the fluid.

2.3.1 Stable and Unstable Manifolds in a Steady Linear Strain
Flow

Here we illustrate the basic concept of hyperbolic fix points and stable and unstable
manifolds and their role in structuring the phase space of a simple two-dimensional
dynamical system [8, 115, 158, 225]. We consider a simple linear strain flow
(Fig, 2.2) that defines a time-independent or autonomous dynamical system [28,
185]

ẋ(t) = v(x) = a

(
−x
y

)
(2.10)
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Figure 2.2: Linear strain flow defining a dynamical system with a hyperbolic fixed point xf =
(0, 0). The x-axis and y-axis are the stable and unstable invariant manifolds of the hyperbolic fix
point. Fluid parcels in each quadrant are confined to the respective quadrant by the hyperbolic
manifolds.

where a is the strain amplitude. This flow field has a hyperbolic fix point xf =
(0, 0) satisfying v(xf ) = 0. A small perturbation δx(t) to this fix point evolves
as

˙δx(t) = v(xf + δx)− v(xf ) (2.11)

≈ v(xf ) +∇v(xf )δx− v(xf ) (2.12)

= ∇v(xf )δx. (2.13)

where the gradient matrix of the velocity field is

∇v(xf ) =

(
∂xvx ∂yvx
∂xvy ∂yvy

)
= a

(
−1 0
0 1

)
. (2.14)

Hence, the perturbation is stretched exponentially in time as given by the eigen-
values of ∇v as (

δx(t)
δy(t)

)
=

(
e−atδx0
e+atδy0

)
. (2.15)

The stable and unstable directions of the hyperbolic fix point are aligned with the
x-direction and y-direction respectively. All points on the x-axis asymptotically
converge to the fix point while they always stay on the x-axis. Therefore, the
x-axis is the stable invariant manifold of the hyperbolic point xf . In contrast,
all points on the y-axis asymptotically diverge away from the fix point while they
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always stay on the y-axis. This characterizes the y-axis as the unstable invariant
manifold. These stable and unstable manifolds separate regions in the phase
space with different dynamics. As they are material lines, i.e., they consist of
fluid particles, they cannot be crossed by fluid and act as transport barrier. In this
case of an autonomous system, they completely separate the fluid into four regions
that do not exchange fluid. However, we will see that in a time dependent flow,
fluid exchange between separated regions is possible. The stable and unstable
manifolds determine the geometry of this exchange and are therefore of high
interest to obtain the geometry of mixing in the fluid.

2.3.2 LCS in Unsteady Flows

As seen in the previous section, stable and unstable manifolds of hyperbolic fix
points are asymptotic concepts, i.e., they are defined for infinite time for a steady
or a periodic flow. However, in many flows, e.g., in geophysical flows in the
atmosphere or in the ocean, or in technical flows in chemical engineering, we are
interested in chaotic transport on relatively short time scales, while the asymptotic
mixing is irrelevant. Therefore, in the last two decades many theoretical and
applied studies presented different definitions of stable and unstable manifolds
for a finite time [83, 99, 115, 190, 227]. The analysis of finite-time stable and
unstable manifolds is a powerful tool to extract mixing patterns in these flows.

It turns out that in many practical applications the manifolds can be estimated
as lines of maximal stretching in the flow. Two trajectories on either side of a
stable manifold separate much faster than two trajectories on the same side. If
we compute the exponential separation rate of nearby trajectories in the flow we
therefore expect the stable manifold to appear as a line of high stretching values.
Similarly, on unstable manifolds, nearby trajectories separate exponentially fast if
the flow is integrated backward in time. Hence, the stretching of a small fluid
blob, or equally the separation rate of nearby trajectories, can be used to estimate
the positions of stable and unstable manifolds in unsteady flows. Here, in order
to quantify the stretching, we use a finite-time version of the Lyapunov exponent
(FTLE) and identify Lagrangian coherent structures as ridges in the FTLE field,
as in other studies [163, 189].

2.3.3 Finite-Time Lyapunov Exponent (FTLE)

The Lyapunov exponent is a classical measure to quantify the sensibility of a
dynamical system to initial conditions [8, 16, 158]. A simple definition is

λ = lim
t→∞

lim
d(0)→0

1

t
ln
d(t)

d(0)
. (2.16)

where d(0) is the initial perturbation to a trajectory and d(t) is the grown pertur-
bation at time t. The orientation of the initial perturbation rapidly aligns with the
direction of maximum stretching. In chaotic flows initially close trajectories sepa-
rate exponentially fast, such that a positive Lyapunov exponent indicates chaotic
behavior, while in regular flows the Lyapunov exponent is zero.
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The Lyapunov exponent (2.16) is an asymptotic measure. In order to quantify
the stretching of fluid parcels during a finite time, the Lyapunov exponent is
modified to a finite-time version, the finite-time Lyapunov exponent (FTLE)

λ(t0, τ) =
1

τ
ln
d(t0 + τ)

d(t0)
. (2.17)

It measures the average exponential separation rate of trajectories with an initial
distance d(t0) over a time period τ , assuming that the distance grows as

d(t) = d(t0) e
λt (2.18)

Equation (2.17) is a rather intuitive definition of the FTLE, in the following para-
graph we give a definition related to the deformation of the fluid which is useful
to compute fields of the FTLE in a flow [189].

FTLE computation from flow map As the FTLE is sensitive to initial con-
ditions, we integrate trajectories in a velocity field starting from a grid of initial
positions x0(t0) at time t0. After the finite-time τ the trajectories reach the po-
sitions x(t0 + τ). The initial positions x0 can be mapped to the final positions
x(t+ τ) by the operator Φt0+τ

t0
, called the flow map, such that

x(t0 + τ) = Φt0+τ
t0

(x0(t0)) . (2.19)

In linear approximation, an infinitesimal perturbation vector δx0(t) to a trajectory
starting at x0 is deformed by the flow as

δx(t0 + τ) ≈ ∇
[
Φt0+τ
t0

(x0)
]
δx0(t0) (2.20)

= ∇ [x(t0 + τ)] δx0(t0) (2.21)

= F (x0) δx0(t0) (2.22)

Hence, we have to differentiate the final positions x(t0 + τ) with respect to x0

to obtain the deformation tensor (see Sec. B.2 for a simple numerical scheme)

F (x0) = ∇Φt0+τ
t0

(x0) = ∇ [x(t0 + τ)] =

[
∂x
∂x0

∂x
∂y0

∂y
∂x0

∂y
∂y0

]
(2.23)

We are interested in the stretching of the perturbation vector. Its norm is given
by the inner product

‖δx(t0 + τ)‖ =
〈
δx0, F (x0)TF (x0) δx0

〉 1
2 (2.24)

= 〈δx0,C(x0) δx0〉
1
2 (2.25)

with the right Cauchy-Green deformation tensor C(x0). By definition C(x0) is
a symmetric tensor and has real eigenvalues. The factor of maximal stretching
S(x0) of the length of the perturbation δx0(t) under the flow map Φt0+τ

t0
is given

by

S(x0) =

[
max
i=1,N

λi(C(x0))

] 1
2

(2.26)
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where λi are the eigenvalues of C(x0). Finally, the field of finite-time Lyapunov
exponents (FTLE) depending on initial conditions (x0, t0) and on the finite inte-
gration time τ is then

Λ(x0, t0, τ) =
1

τ
lnS(x0). (2.27)

We obtain the forward FTLE field by taking τ > 0 and integrating the velocity
forward in time, while for the backward FTLE field the negative velocity field is
integrated backward in time with τ < 0. The backward FTLE field is denoted by
Λ−(x0, t0, τ) and the forward FTLE field is denoted by Λ+(x0, t0, τ). The forward
FTLE field reveals the strong stretching along stable hyperbolic manifolds and
the backward FTLE field reveals the unstable manifolds, where fluid converges in
forward time.

Choice of the Finite Integration Time For the computation of FTLE fields the
integration time τ must be predefined. Basically, the time τ has to be long enough
to allow trajectories to explore the Lagrangian coherent structures present in the
flow (see also discussion in Sec. 6.3). A typical time scale in the flow is the eddy
turnover time, defined as τε = L/v. L is a typical length scale in the flow, e.g., the
diameter of the dominant vortices, and v is a typical magnitude of the velocity,
which can be estimated as the root-mean-square velocity vrms =

√
|v2| (cf.

Sec. 7.2.2). If we use a multiple of the eddy turnover time as an integration time,
clear linear structures should appear in the FTLE field. Generally, a small increase
of the integration time above typical time scales in the flow would generate new
detailed structures in the FTLE field, but nevertheless the main structures in the
FTLE field remain the same (cf. Fig. 7.6). However, for very long integration
times, the FTLE field completely looses its spatial structure.

LCS as Ridges in the FTLE Field We extract LCS as ridges of high values in
the FTLE fields as proposed by Shadden [189]. We therefore use a criterion based
on the gradient and the curvature of the FTLE field which is described in Sec. B.1.
High FTLE values indicate a strong separation of initially close particles. These
high values are ordered on linear structures being estimates of finite-time stable
and unstable manifolds of hyperbolic points. Fig. 2.3 shows an exemplary FTLE
field for an oceanic mesoscale flow. To present backward and forward FTLE field
in one image, we plot the forward FTLE field as positive values and the backward
FTLE field as negative values [51]. In Fig. 2.3 we numerically demonstrate the
significance of the stable and unstable manifolds for transport by releasing parti-
cles on either side of a ridge in the FTLE field. The particles separate rapidly, in
backward time direction at the unstable manifold (Fig. 2.3a) and in forward time
direction at the stable manifold (Fig. 2.3b). This means that the unstable mani-
folds mark the lines where different fluid bodies merge in forward time. Therefore,
we expect tracer patterns in the flow to be bounded by the unstable manifolds
(compare the mixing pattern of the chlorophyll concentration with respect to
backward FTLE ridges in Fig.5.7a and the pattern of the chemical concentration
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Figure 2.3: Flow region with finite-time hyperbolic point at about (90, 50) and the instantaneous
velocity field at t = t0. The background field is the backward FTLE field subtracted from the
forward FTLE field, Λ±(x0, to, τ) = Λ+ − Λ−. (a) Ridges in dark tones mark the approximate
position of unstable finite-time hyperbolic invariant manifolds in the flow. Particles positioned
on different sides of a ridge at t = t0 separate rapidly in backward time. Their final positions
are plotted at t = t0 − τ . (b) Ridges in light tones approximate the stable finite-time hyperbolic
invariant manifolds. Two groups of particles on either side of a ridge at t = t0 separate in
forward time. Their final positions are plotted at t = t0 + τ . The approximate stable and
unstable manifolds intersect at the position of the finite-time hyperbolic point. Especially for the
green particles in panel (b) it is evident that a prediction of transport based on the instantaneous
velocity field is misleading.
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in Fig. 7.10). The stable manifolds, instead, mark the lines where a compact fluid
body is separated by the flow.

Limitations A critical question is if ridges of the FTLE field are material lines,
i.e., if the flux across the ridge is zero. Shadden [189] derives an expression to
quantify the flux and shows that it is small for many practical applications with
a smooth flow. This means that FTLE ridges are almost Lagrangian and move
with the flow very close to material lines, such that they are good estimates for
transport barriers and fluid can barely cross them. However, it is important to
note that this approach is only an approximation, and not an exact theory. There
are simple analytic examples where either LCS cannot be identified as ridges in the
FTLE field, or apparent ridges in the FTLE fields are not LCS or transport barriers
[28, 79]. Indeed, the steady strain flow in Fig. 2.2 is an example for the first case.
Obviously, there exist stable and unstable manifolds of the hyperbolic point, but
the FTLE value is the same in the whole domain, such that the manifolds cannot
be obtained from ridges in the FTLE field [28]. Furthermore, a common problem
in FTLE fields are ridges induced by strong shear that are not manifolds associated
to hyperbolic regions. Mathur et al. [123] propose a criterion to filter out these
shear ridges.

2.3.4 Finite-size Lyapunov exponents (FSLE)

A similar definition of a non-asymptotic Lyapunov exponent is the finite-size Lya-
punov exponent (FSLE). It is also used to extract mixing patterns in unsteady
flows [14, 51, 87], but instead of fixing a finite time and evaluating the deforma-
tion of the fluid after that time, a finite length scale of typical flow structures df is
predefined. In order to find LCS induced by mesoscale eddies, d’Ovidio et al. [51],
for example, define df = 110 km, the typical diameter of a mesoscale eddy. The
trajectories in the velocity field are integrated, and when initially close trajectories
have reached the predefined separation df , the time τ is measured. The FSLE is
then computed as

λ(t0, df ) =
1

τ
ln

(
df
d(t0)

)
. (2.28)

Typically, when the integration is stopped after a reasonable time, only a small
part of the trajectory pairs have reached the predefined separation. The initial
positions of the trajectories with the strongest separation rate are located on lines
being estimates for the stable manifolds of the unsteady flow. The structure of
these lines resembles the structure of ridges of the FTLE field. However, while for
the FTLE a theory exists that measures the flux across the ridges and evaluates
how close FTLE ridges are to material lines [189], such a theory is missing for the
FSLE.

The FSLE was also proposed as a scale dependent dispersion measure [23].
The exponential separation rate λ of particle pairs in the flow is measured at the
current length scale δ given by the actual distance between particles. The FSLE
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is given by

λ(δ) =
1

〈τ(δ)〉
ln r. (2.29)

For the computation a small factor r close to unity is chosen, such that λ(δ) is
independent of r. Although r is smaller than 2, it is often called the doubling
factor. Many studies make the choice r =

√
2. For a particle pair with a distance

δ the doubling time τ(δ) is measured until the separation has grown by the factor
r. Then, the average over a large number of particle pairs is taken. The slope
of the function λ(δ) indicates different regimes of dispersion. If L is a typical
correlation length of the flow, then

λ(δ) =

{
λ δ � L

Dδ−2 δ � L
(2.30)

For very small separations the dispersion is exponential since the velocities of both
particles are correlated, while for very large separations the velocities are not cor-
related and the dispersion is diffusive. Thus, the transition in the slope of λ(δ)
tells us about the length scale of the largest structures in a flow. The FSLE is
especially suitable to apply it to drifter data in the ocean to obtain information
about the length scales present in the flow [97, 98, 169]. A particularly impor-
tant question is if (small) submesoscale flow structures in the ocean significantly
contribute to dispersion in the ocean [85] as suggested by measurements [110].

2.3.5 Other Approaches for LCS Detection

In order to characterize regions of different finite-time dynamics in a flow, several
methods have been proposed that compute scalar quantities from properties of
trajectories. The scalar fields change abruptly across stable or unstable manifolds
which can be visualized by these methods. Rypina et al. [180] use two measures
that quantify the complexity of trajectories, where the most complex trajectory is
one that fills the whole domain, and the least complex trajectory is a stationary
point. These measures are directly linked to the fractal dimension of the trajec-
tory and are computed by a box-counting approach. Mendoza and Mancho [128]
propose the arc length of finite-time trajectories as a scalar Lagrangian property
that reveals the geometry of transport. In these fields, stable and unstable mani-
folds appear as thin lines of small values. Since this measure can be interpreted as
the Lagrangian velocity averaged along the trajectory, it also serves to distinguish
regions of fast trajectories (e.g., in jet cores) and slow trajectories (e.g., in eddy
cores).

Very recently, Haller and Beron-Vera [81] published a new approach to find
transport barriers in aperiodic two-dimensional flows. With this theory the trans-
port barriers are obtained as tangential lines in a vector field derived from the
Cauchy-Green deformation tensor (2.25). This is a big advantage over methods
like the FTLE, where the approximate transport barriers have to be extracted as
trenches or ridges in a scalar field. With the new theory it seems to be possible
to extract very accurately hyperbolic transport barriers associated with hyperbolic
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Figure 2.4: Synoptic Lagrangian Maps (SLM). Two different classes of boundaries (continuous
and dashed line) define the rectangular flow domain. The entry time T− and exit time T+ is
recorded for each trajectory with initial conditions (x0, t0) in the closed flow domain. B− and
B+ denote the sections of the boundary where the trajectory enters and leaves the domain. The
residence time is TR = T+ + T−.

stable and unstable manifolds and elliptic transport barriers associated with lines
of minimal stretching [82].

2.4 Synoptic Lagrangian Maps (SLM)

The approach of Synoptic Lagrangian Maps (SLM) was proposed by Lipphardt
et al. [107]. It is closely related to the concept of exit times or escape times,
that is widely used in the analysis of chaotic advection [142, 159]. SLM is a
Lagrangian approach characterizing trajectories in chaotic coastal flows by their
origin and fate, and by their residence time in a limited flow domain. The domain
is predefined by a closed boundary line, which in parts typically corresponds to
natural coastal boundaries. The boundaries can be open for the flow, e.g., at the
mouth of an estuary to the shelf, or closed, e.g., at a beach, where fluid parcels
simply run aground. Each trajectories has a point on the boundary where it enters
the flow domain, and a point where it leaves the flow domain (Fig. 2.4). By
dividing the boundary in a few meaningful classes, a trajectory can be associated
to the class of border where it enters and leaves the domain. In the original paper,
Lipphardt et al. [107] simply use the two boundary classes ’ocean’ and ’coast’ for
their flow domain in Monterrey Bay, California.

The procedure to obtain a SLM is the following: The flow (2.1) is integrated
forward and backward in time with initial conditions on a regular grid inside the
flow domain. We chose a very long integration time until all particles have left the
domain. For each trajectory two parameters are recorded: (1) the point on the
boundary where the trajectory leaves the domain (these points are associated to a
boundary class), and (2) the time period until the trajectory reaches the boundary.
We allocate these values to the initial condition of the trajectory x0 and obtain
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fields specifying the entry boundary B−(x0, t0, t), the exit boundary B+(x0, t0, t),
the time since entry T−(x0, t0, t), and the time until exit T+(x0, t0, t) (see
Fig. 2.4). The superscripts + and − correspond to forward and backward in-
tegration, respectively. We also denote these times as forward exit time and
backward exit time. The residence time of fluid parcels is an important parameter
for ecological studies, since it quantifies a typical time for water exchange. We
obtain the residence time as TR(x0, t0, t) = T+(x0, t0, t) + T−(x0, t0, t).





Chapter 3

Two-dimensional Flow Data

Abstract

The use of Lagrangian methods to analyze transport in a chaotic fluid
flow requires the availability of the complete time-dependent velocity data of
the flow. In this chapter, we recall and describe the methods and measure-
ment techniques used to obtain the analyzed velocity fields. We consider
geostrophic currents derived from satellite altimetry, a coastal tidal flow
from high-frequency radar measurements, and a turbulent laboratory flow
obtained by Particle Image Velocity (PIV) technique.

3.1 Oceanic Mesoscale Flow from Altimetry
Measurements

Mesoscale currents in the ocean on length scales larger than 50 km and on time
scales longer than a week are well represented by geostrophic currents. We can
compute the velocity fields of these currents from altimetric satellite data under
the assumption of geostrophic balance, i.e., the balance between the Coriolis
force and the horizontal pressure force in the moving fluid. The pressure field is
directly related to the elevation of the sea surface, which can be measured to a
high precision with altimetry. Altimetry is a remote sensing technique that has
developed rapidly in the last 15 years and has extensively been used to study
mesoscale ocean currents [140]. Basically, the ocean surface forms a landscape
of wide and very flat mountains and valleys. The surface elevation varies in the
order of 1 m over a horizontal distance of several 100 km giving rise to geostrophic
ocean currents of up to 1 m/s. We use geostrophic currents derived from altimetry
data as a valuable data set to investigate the transport and coherent structures
in large scale ocean currents.

3.1.1 Geostrophic Balance

We recall here the assumptions for a flow in geostrophic balance and derive the
geostrophic equations, following [201]. Therefore, we analyze the different terms

25
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in the momentum equations to decide which terms are dominant. The momentum
equation of a fluid parcel has the following form

∂v

∂t
+ v · ∇v = −1

ρ
∇p− 2Ω× v + g + Fr (3.1)

with the fluid density ρ, the pressure p, the Earth’s rotational frequency Ω, the
gravitational acceleration g and the internal friction force Fr. The first and second
term on the right hand side are the pressure force and the Coriolis force. Separated
into the three components we have

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂p

∂x
+ 2Ωv sinϕ+ Fx (3.2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ

∂p

∂y
+ 2Ωv sinϕ+ Fy (3.3)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂u

∂z
= −1

ρ

∂p

∂z
+ 2Ωv cosϕ+ Fz − g (3.4)

For large scale currents we estimate the typical magnitudes of the horizontal
length scale L, depth H, horizontal velocity U , vertical velocity W , time T ,
Coriolis parameter f = 2Ω sinϕ, gravity g, surface elevation S and density ρ as

L ≈ 106 m (3.5)

H ≈ 103 m

U ≈ 10−1 m/s

W ≈ 10−4 m/s

T ≈ 107 s

f ≈ 10−4 s−1

g ≈ 10 m/s2

S ≈ 1 m

ρ ≈ 103 kg/m3.

Using these values to estimate the magnitude of the different terms in the equation
for vertical momentum (3.4), the equation reduces to the two dominant terms

∂p

∂z
= −ρg. (3.6)

This is the hydrostatic equilibrium, i.e., gravity is balanced by the vertical pressure
gradient and the vertical velocity is zero. With the same values and the horizontal
pressure gradient ∂p/∂x = ∂p/∂y = ρgS/L in the horizontal momentum equa-
tions (3.2) and (3.3), all terms on the left hand side are small compared to the
right hand side. Neglecting of the friction term leads to the geostrophic equations

1

ρ

∂p

∂x
= fv (3.7)

1

ρ

∂p

∂y
= −fu. (3.8)
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Figure 3.1: Quantities and reference surfaces involved in altimetry measurements of the sea
surface. The altimeter measures the sea surface height h(x, y, t) with respect to a reference
ellipsoid. However, sea surface measurement have to be referenced to the geoid Φ(x, y), a
surface of constant geopotential, and the geoid is not known at a sufficiently high resolution
to resolve mesoscale features. Therefore, the mean dynamic topography (MDT), representing
the steady ocean currents, is constructed from long-time current data sets from ship cruises,
models and drifters. The time-dependent part of the measurement signal, the sea level anomaly
SLA(x, y, t) (3.15) is added to the MDT to obtain the total dynamic topography of the ocean’s
surface.

Now, we define a reference surface of constant geopotential, the geoid Φ(x, y).
One level surface of the geopotential is the ocean’s surface when the whole ocean
is at rest. Fluid moves along the surface Φ(x, y) without a change of potential
energy. However, with respect to a reference ellipsoid the geoid is deformed due to
an inhomogeneous gravity field [188]. Deformations can be as high as 50−100 m.
If we choose a geoid surface Φ(x, y) under the water surface, the water column
over the geoid surface is

η(x, y, t) = h(x, y, t)− Φ(x, y), (3.9)

with the sea surface height h(x, y, t), and the pressure is given by

p(x, y, z = Φ) = ρg η(x, y, t). (3.10)

Finally, the geostrophic velocities are

u(x, y, t) = − 1

ρf

∂p

∂y
= − g

f

∂η(x, y, t)

∂y
(3.11)

v(x, y, t) =
1

ρf

∂p

∂x
=
g

f

∂η(x, y, t)

∂x
, (3.12)

or in short form

v(x, y, t) = ∇×Ψ(x, y, t), (3.13)

Ψ(x, y, t) = −
(

0, 0,
g

f
η(x, y, t)

)
(3.14)

where Ψ is the stream function. We see that the velocities are proportional to the
inclination of the water surface with respect to the geoid and the flow is parallel
to contour lines of the pressure field.
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The surface elevation η(x, y) that accounts for the subsurface pressure is
defined relative to the geoid (3.9). However, the geoid of the Earth is only
known at a coarse resolution, not sufficient to resolve mesoscale features [67, 201].
Therefore, the geoid cannot be used as a reference for altimetry measurements.
Instead, the time dependent part of the measured sea surface height, the sea level
anomaly (SLA)

SLA(x, y, t) = h(x, y, t)− 〈h(x, y, t)〉 (3.15)

is determined from altimetry data and added to the constant mean dynamic to-
pography (MDT). The MDT represents the steady ocean currents and is derived
from huge long-time data sets of oceanographic currents including climatological
data sets, model output or drifters. The currently used mean dynamic topography
is the Rio05 MDT [176]. The sum gives the surface elevation

η(x, y, t) = MDT(x, y) + SLA(x, y, t) (3.16)

from which the geostrophic velocities can be computed.

3.1.2 Satellite Altimetry

Altimeters use the simple measurement principle of time-of-flight of a microwave
pulse. The microwave radiation is emitted from the satellite, is reflected by the
sea surface, and the reflected part is registered by an antenna at the satellite.
The time-of-flight ∆t is recorded. In first order, the range from the satellite to
the ground is simply [36]

r = r̂ −
∑
j

∆rj (3.17)

where r̂ = c∆t/2 with the speed of light c. However, several corrections are
necessary, denoted here with ∆rj , e.g., due to water vapor in the atmosphere
that delays the signal. Finally, with all corrections the error of the distance mea-
surement can be reduced to only a few centimeters. This accuracy is necessary,
because if we assume, for example, a sea surface height variation of 5 cm over
a horizontal distance of 100 km at a latitude of ϕ = 30◦, this translates to a
variation of the geostrophic velocity of roughly ∆v = 4 cm/s, being an error of
about 10% for typical ocean currents. Although based on a simple measurement
principle, altimetry is a highly complex method of remote sensing. An excellent
introduction and overview over satellite altimetry is given by Fu and Cazenave
[66].

3.2 Coastal Currents and High Frequency Radar

High frequency radar systems have been used to measure surface submesoscale
ocean currents for more than 30 years [18, 77]. The measurement principle is
based on the Doppler shift of a radar signal that is backscattered by the rough
sea surface. The Doppler shift is due to the relative motion of the dominant
scattering gravity surface waves (Bragg scattering) with respect to the fixed radar
station. This relative motion has two contributions: the velocity of the gravity
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surface waves and the velocity of the underlying currents. As the wavelength of
the dominant scattering surface waves is known from the Bragg condition and the
radar frequency, the wave velocity can be obtained from the dispersion relation
of gravity surface waves. Then, from the measured Doppler shift the current
velocity in radial direction with respect to the radar station can be estimated.
Since the radial velocities are one-dimensional, two radar stations are necessary
to determine the two components of the horizontal surface velocity. Depending
on the radar frequency the radar has a range of several hundreds of kilometers
with a spatial resolution of the velocity field of some kilometers. For higher radar
frequencies (very-high frequency radar VHF) the resolution can be increased to
some hundreds of meters, while the range then decreases to about ten kilometers.
Today, hundreds of HF radar systems have been installed worldwide and it has
become a widely used measurement technique to study the ocean circulation near
the coast [e.g., 35, 161, 177].

The VHF radar system installed at the Ria de Vigo and used in this study,
is operated by the University of Vigo. In order to cover the whole region of
the outer bay the two radar stations are located on either side of the bay (cf.
Fig. 6.16). This results in a footprint on the water surface that reaches from
the inner bay to the south mouth and the north mouth. A drawback of this
configuration of the radar stations is the fact that on the baseline connecting
the two stations both radial velocity components are parallel. Therefore, only
unidirectional velocities can be measured and the second component has to be
interpolated using Open boundary Modal Analysis (OMA) [102]. This can lead to
high uncertainties in the zone along the baseline which might influence the results
of our transport analysis. With a frequency of 46 MHz the VHF radar system at
the Ria de Vigo has a spatial resolution of 375 m and a range of roughly 15 km.
The radial velocity data of both stations is combined to a grid of 400 m. Velocity
fields have a temporal resolution of 30 min and the data represent the velocity of
a surface layer with the effective depth of ∼ 25 cm [3]. Thus, the system provides
a complete data set of time-dependent, two-dimensional horizontal velocity fields
of the sea surface with a sufficient spatial and temporal resolution to study the
complex flow in the Ria de Vigo on the submesoscale (1 − 10 km). Since the
complete spatio-temporal velocity data is available, we can integrate the velocity
fields and address transport by using Lagrangian techniques based on trajectories,
as e.g., LCS and SLM (Sec. 6.4).

3.3 Faraday Flow

The Faraday instability on a vertically vibrated fluid surface is a well known phe-
nomenon [59, 134]. Capillary waves form on the surface that can be ordered in
a variety of patterns. Many experimental and numerical studies focus on these
surface waves, their properties and their transitions [50, 166, 211, and references
therein]. For this study, it is more important that the surface waves induce a hor-
izontal flow in the fluid [130]. Only recently the flow has been measured in detail
and characterized as turbulent [217]. We can vary the intensity of this horizontal



30 Chapter 3. Two-dimensional Flow Data

flow by increasing the acceleration amplitude of the vibrational forcing, while the
frequency is left constant at f = 50 Hz. For a Lagrangian analysis of transport
in the Faraday flow the highly time-dependent two-dimensional velocity field is
measured with Particle Image Velocimetry (PIV).

3.3.1 Particle Image Velocimetry (PIV)

Particle Image Velocimetry is an optical measurement technique primarily for
two-dimensional, time-dependent velocity fields [see 7, and references therein].
Basically, the fluid is seeded with small tracer particles and the velocity information
is gained from the finite position difference of the particles between two subsequent
images. The tracers are chosen such that they follow the fluid motion as exactly
as possible. Therefore, the particles have to be small and need to have a similar
density as the fluid. The volume fraction of tracers in the fluid should generally
be very low to not modify the fluid flow. In the classical PIV setup, the tracer
particles are often illuminated by a light sheet that cuts a plane out of the 3D
flow, while a camera looks perpendicular onto the light sheet to record the particle
motion.

In our setup [218, supplementary data], we already have a two-dimensional
setting. Hence, we use floating tracer particles on the free surface of the Faraday
flow and a backlight for illumination. Using this shadowing technique, particles
appear as dark spots in the image. Our images simultaneously show the particles
and the chemical reaction (Fig. 7.1). Since the particles are very small and they
have a high spatial wavelength, the smoother grayvalue variations in the image
due to the chemical reaction can be filtered out by a high-pass spatial filter, such
that the PIV velocity field represents only the motion of the particles. For the PIV
analysis we employ the open source MPIV Matlab toolbox [139] with a minimum
quadratic differences (MQD) method. Subsequent images with a time difference
of ∆t = 1/50 s are analyzed. In order to obtain a velocity vector at position
(Xk, Yl) of the image, a small window of width 2d + 1 is taken from the first
image I1 and compared with windows of the same size in the second image I2
that are shifted by a displacement (∆x,∆y). The cost function

Ckl(∆x,∆y) =

d∑
i=−d

d∑
j=−d

|I1(Xk+i, Yl+j)− I2(Xk+i + ∆x, Yl+j + ∆y)| (3.18)

measures the difference in grayscale values between the shifted windows. Its
minimum is determined and the shift (∆xmin,∆ymin) at the minimum is taken
as an estimation for the displacement of the fluid between the two images. Hence,
the velocity is estimated as

v(Xk, Yl) =
1

∆t
(∆xmin,∆ymin) . (3.19)

Missing velocity vectors at positions where the cost function Ckl does not have a
clear minimum are interpolated.



Chapter 4

A Phytoplankton Patch under
Unsteady Flow Conditions

In collaboration with V. Pérez-Muñuzuri, published in Nonlin. Processes
Geophys. 17, 177–186 (2010) [165].

Abstract

Fields of phytoplankton concentration in the oceans exhibit a high spa-
tiotemporal variability, often referred to as plankton patchiness. This patch-
iness occurs when the biological dynamical system describing a plankton
population is extended spatially and additionally stirred by a chaotic advec-
tive flow that generates highly irregular spatial patterns.

In this chapter, we consider the case of a single phytoplankton patch
emerging from a localized nutrient source, and we study numerically how
time and length scales of the advective flow affect the growth of the patch.
To that end, we use a coupled reaction-diffusion-advection model, consisting
of a standard three component ecological NPZ model and two different flow
models able to mimic the mesoscale circulation observed in the ocean. We
find optimal time and length scales in the flow models that favor the spread-
ing of the plankton patch, and discuss the findings in terms of the time scale
of the NPZ model and the interaction of the flow with the reaction front.
Moreover, the spatial distribution of the patch is dominated by Lagrangian
structures in the flow. We extract these structures and show that they reveal
pathways where the plankton patch can spread, and transport barriers where
the expansion of the patch is blocked.

4.1 Introduction

Spatial heterogeneity or ”patchiness” in phytoplankton distributions is an old
oceanographic observation that dates back to the 12th century [15, 76] and is
still a field of current research. Phytoplankton forms the base of the food chain
and is responsible for a large amount of the biological primary production in the
oceans. Therefore it plays an important role for the entire marine ecosystem.
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Furthermore, it acts on the ocean’s CO2 uptake, as a part of the carbon ab-
sorbed in phytoplankton by photosynthesis is transported to deep water, when
dead organic matter sinks down. A striking feature associated with the dynamics
of phytoplankton populations is the occurrence of rapid and extensive bloom for-
mations after the injection of nutrients. Such events are characterized by a sharp
rise in algae concentration of up to several orders of magnitude [19] followed by
a sudden collapse, whereby the phytoplankton population returns to its original
low level. An example for this behavior is the Madagascar plankton bloom that is
discussed in chapter 5 of this work. Given the impact of phytoplankton blooms,
it is of interest to understand the dynamics of plankton growth and the optimal
conditions for a rapid and wide spread of a plankton patch.

A plankton population in the ocean can be seen as a biological system with
predator-prey dynamics in a mobile environment that alters its spatial distribution.
As the well-lit surface layer of the ocean is normally nutrient poor, a nutrient
source is necessary to start a rise of the phytoplankton concentration above a low
stationary level. Apart from occasional aeolian dust deposition [162], upwelling
of nutrient rich water from deeper water layers or vertical mixing is assumed to
be the main nutrient source [104, 113, 156]. A variety of hydrodynamical effects
leading to vertical transport have been reported [104, 120], many of which may
be highly localized in space. They represent an important cause for plankton
patchiness. Pasquero et al. [162] showed that not only the mean value of the
nutrient flux but especially its temporal and spatial variability influence the primary
production, demonstrating the non-linear character of the system. Martin et al.
[121] and Pasquero et al. [162] found a lower primary production for nutrient
sources correlated with eddy cores than for uncorrelated source positions.

Assuming the presence of a nutrient source, horizontal transport in the time-
dependent mesoscale and sub-mesoscale flow (∼ 1−500 km) modifies the patterns
in the plankton distribution and influences the temporal evolution of plankton
patches [5, 105, 119, 125]. Lehahn et al. [100] found that the gradients in chloro-
phyll concentration fields from satellite images align with unstable manifolds of
the geostrophic velocity field, which suggests that horizontal transport controls
the chlorophyll patterns. As the ocean is a multiscale system, a single plankton
patch is advected and mixed by flow structures of very different time and length
scales. The interaction of these scales with the parameters of the plankton system
affects the spatio-temporal development of a plankton patch. One example for
this interaction is the existence of a minimum width for phytoplankton filaments,
which is determined by few parameters describing the flow and the growth of the
plankton system [118, 126]. Another example are localized plankton blooms in
vortices in the wake of an island. These appear when the long residence time of
water masses in the vortices is comparable to the plankton growth time [186]. An
extensive review of the topic can be found in [119].

Hence, we see that plankton patchiness emerges from non-linear interactions of
the biological plankton system and the physical unsteady flow. In the following, we
particularly focus on the interplay of length and time scales of a two-dimensional
horizontal flow with the plankton dynamical system. We investigate the response
of a plankton model to a well-defined hydrodynamical forcing and address the
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Figure 4.1: Stream function (a) for the Gaussian model and (b) for the altimetry data. Parame-
ters: (a) time scale τ/T = 1, length scale λ/L = 10, and domain size Nx = Ny = 128; (b) the
area of simulation spans from 25◦N to 49◦N , and from 7◦W to 50◦W (Nx = 130, Ny = 90).
The marked area in the altimetry data is analyzed in detail later. The visible land structure in
the lower right corner is the coast of Spain and Morocco.

question under which flow conditions a plankton patch, evolving from a single
localized nutrient source, spreads optimally. We therefore choose a simple model
flow defined by an autocorrelation length and time, and we analyze the final size
of the plankton patch. The results are compared to a similar analysis of plankton
patches in a multiscale altimetry flow. We include an example of two plankton
patches, where the effect of different length and time scales can be seen. In
the ocean, upwelling regions with a vertical flow are often linked to horizontal
flow structures. In our model, we do not correlate nutrient upwelling regions to
flow structures, since we investigate the response of the plankton system to basic
spatio-temporal properties of a model flow.

4.2 Models

The role of mesoscale flow structures for the evolution of a phytoplankton patch
is studied considering a two dimensional (2D) incompressible flow such that the
velocity field is given by V = ez×∇ψ, where ψ(x, y, t) is a time-dependent stream
function. An ecological model, coupled to the flow, models the phytoplankton
production.

4.2.1 The Flow Models

To study the effects of length and time scales of a flow on a phytoplankton patch,
we use two flow models, an analytic and another more realistic one. Fig. 4.1 shows
the two stream functions corresponding to the two depicted flows. The analytic
Gaussian correlated flow is especially appropriate to investigate the influence of
time and length scales on plankton production, because its time and spatial scales
are independent and can be adjusted a priori. The obtained results for this artificial
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flow are compared to a similar analysis for a flow derived from satellite altimetry
measurements.

Gaussian Correlated Flow

The Gaussian correlated flow is defined in terms of a stream function whose
dynamics is represented by a Gaussian spatiotemporal distributed noise. The
noise has zero mean and the spatio-temporal autocorrelation function G(ρ, s) is
given by

〈ψ(r, t)ψ(r′, t′)〉 = G
(∣∣r− r′

∣∣ , ∣∣t− t′∣∣) =

Υ
(∣∣r− r′

∣∣ /λ)Θ
(∣∣t− t′∣∣ /τ) , (4.1)

with r = (x, y). The temporal correlation function, Θ(s/τ), describes an Ornstein-
Uhlenbeck (OU) process given by

Θ(s/τ) =
1

τ
exp (−s/τ) (4.2)

where τ corresponds to the correlation time for the OU process and s = |t− t′|.
The spatial correlation is given by

Υ (ρ/λ) =
σ2

2πλ2
exp

(
−ρ2/2λ2

)
, (4.3)

where σ2 is the noise intensity, λ is the correlation length and ρ = |r− r′|. In
order to study the effects of noise, the noise dispersion G(0, 0) is kept constant

G(0, 0) =
σ2

2πτλ2
= const (4.4)

while varying τ or λ. Thus, an artificial flow is defined with specific typical
length and times scales for the velocity. Details on the numerical generation of a
spatiotemporal correlated noise, Eqs. (4.2-4.4), are given in Alonso et al. [9] and
Sagués et al. [183].

Altimetry Flow

For the more realistic flow case, we consider geostrophic surface currents derived
from satellite altimetry data (Sec. 3.1) provided by AVISO. The Ssalto/Duacs
system processes data from all altimeter missions (Jason-1&2, TOPEX/Poseidon,
Envisat, GFO, ERS-1&2 and Geosat) and merges data from all available satellites.
We use global maps of Sea Level Anomaly (SLA). This is the time-dependent
flow component of the mesoscale currents without the steady mean flow. It has a
spatial resolution of 1/3◦ on a Mercator grid and a temporal resolution of 1 day.
For this data set geostrophic velocities are estimated as

Vx = − g

fRT

∂ψSLA
∂φ

Vy =
g

fRT cosφ

∂ψSLA
∂`

(4.5)
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where ψSLA is the SLA, g is the gravity, f the Coriolis parameter, RT the Earth
radius, φ the latitude and ` the longitude, and the derivatives were calculated with
finite differences. The data analyzed here is from 12th November 2008. We chose
the area to include a wide range of velocity absolute values and different local
length scales, always keeping in mind that geostrophic velocities from altimetry
data are only an estimate of the ocean currents and that altimetry data only
resolves mesoscale structures.

4.2.2 NPZ Model

We use a well-established NPZ ocean ecosystem model representing the plankton
dynamics [60, 65, 121, 157, 162]. It is a three component model describing the
interaction of three species of the trophic chain: nutrients N , phytoplankton
P , and zooplankton Z. Their concentrations evolve according to the following
equations [162, 186, 187],

Ṅ = FN = ΦN − f(N,P )

+µN
(
(1− γ)g(P,Z) + µPP + µZZ

2
)

Ṗ = FP = f(N,P )− g(P,Z)− µPP (4.6)

Ż = FZ = γg(P,Z)− µZZ2

and

f(N,P ) = β
N

kN +N
P

g(P,Z) =
αηP 2

α+ ηP 2
Z. (4.7)

In this paragraph, we explain the single terms [157, 162]. The sinks and sources
in the nutrient equation are expressed in three terms: the vertical nutrient flux
into the nutrient-depleted surface layer ΦN , the consumption of nutrient by phy-
toplankton f(N,P ), and the regeneration of nutrient from dead organic matter.
The regeneration term includes excrements from zooplankton (1−γ)g(P,Z), and
fluxes from dead organic matter that equal the mortality rates of phytoplankton
µPP and zooplankton µZZ

2. Only the fraction µN of dead organic matter is avail-
able for this process, while the fraction (1− µN ) sinks down to deeper water and
is lost. The phytoplankton equation contains the growth term f(N,P ) and sink
terms g(P,Z) and µPP , where g(P,Z) is the grazing of phytoplankton by zoo-
plankton and µPP is the phytoplankton mortality. In the growth term, f(N,P ),
nutrient uptake by phytoplankton is modeled with a Holling type II functional
response N/(kN +N) [142, 195]. With this function the nutrient uptake first in-
creases with increasing nutrient concentration and finally saturates at a constant
value, which basically means that phytoplankton consumes ”as much nutrient as
it can”. Zooplankton is modeled with the growth term γg(P,Z) and the mortal-
ity µZZ

2. γ represents the assimilation efficiency of the zooplankton, i.e. only
the fraction γ of the consumed phytoplankton is transformed into zooplankton
matter, while the excrements (1 − γ) enter into the nutrient regeneration. The
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Table 4.1: List of parameters used in the NPZ model, Eqs. (4.6-4.8)

parameter value dimensionless value

β 0.66 d−1 19.8
η 1 (mmol N m−3)−2 d−1 0.12288
γ 0.75 0.75
α 2 d−1 60
Sl 0.00648 d−1 0.1944
Sh 0.648 d−1 19.44
kN 0.5 mmol N m−3 7.8125
µN 0.2 0.2
µP 0.03 d−1 0.9
µZ 0.2 (mmol N m−3)−1 d−1 0.384
N0 8 mmol N m−3 125

Holling type III functional response of the phytoplankton uptake αηP 2/(α+ηP 2)
accounts for an initially accelerating uptake and a final saturation, similar as for
the Holling type II functional response.

Since we assume a two-dimensional flow, vertical mixing, which is a determi-
nant factor for phytoplankton formation, must be parameterized. We consider a
constant high nutrient concentration N0 below the mixed layer [121, 162]. The
upward nutrient flux then is

ΦN = S(x, y)(N0 −N), (4.8)

where the function S(x, y) determines the strength of the upwelling by turbulent
diffusion depending on the location in the flow. Eq. (4.8) can be seen as a for-
mulation of Fick’s second law (1.4), where N0 −N represents the concentration
difference, and S = Dv/L

2 includes the vertical turbulent diffusivity Dv and a typ-
ical vertical length scale L [121]. 1/S(x, y) is the corresponding relaxation time.
The parameters used are taken from [162, 186, 187] and are shown in Table 4.1.
For this set of parameters the NPZ model has only one nontrivial stable fix point
and exhibits stationary behavior in the long-term limit. To obtain dimensionless
values, all quantities and parameters in the model are measured in units of length
L = 25 km, time T = 30 days and nitrogen mass M = 1012 mmol N following
Sandulescu et al. [186].

4.2.3 Numerical Methods and Initial Conditions

The coupling of the hydrodynamic and NPZ models yields a reaction-diffusion-
advection system described by the following set of partial differential equations:

∂C

∂ t
+ (V · ∇) C = F(C) +D∇2C. (4.9)

Here, C = [N,P,Z] and F = [FN , FP , FZ ] is given by Eqs. (4.6-4.8). For 2D
incompressible flows, the velocity V = [Vx, Vy] of an advected particle is given
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by V = ez×∇ψ. The corresponding stream functions ψ(x, y, t) for the different
flows are described in subsection 4.2.1. Following [186] we use a constant value for
the diffusion of all the biological fields D = 10 m2/s which is given by the Okubo
estimation [149]. The dimensionless value used was D = 0.04147. Nevertheless,
for the scales considered here, diffusion of biological tracers plays a limited role
and the dominant effect is the explicit spatial advection (see also Bracco et al.
[26]). The reaction-diffusion-advection problem was integrated numerically on a
Nx × Ny square lattice using a semi-Lagrangian algorithm [162, 186, 197, 199]
with spatial step size ∆x = 1.0 and time step ∆t = 10−3. The algorithm induces
a numerical diffusion that is smaller than the real diffusion for the biological tracers
[186] and the spatial advection.

As initial condition, all biological concentrations were set to their steady value,
N0 = 0.185, P0 = 0.355 and Z0 = 0.444 mmol N m−3 for a low nutrient flux with
S = Sl = 0.00648 d−1, simulating a nutrient poor domain (Pp0 = 0.0633 mmol
N m−3 d−1). In order to start the evolution of a plankton patch, we consider
the effect of local upwelling and assume local strong vertical mixing leading to a
nutrient rich spot in the mixed layer. This is numerically simulated by imposing
a hundred times larger value of the nutrient transfer rate S = Sh = 0.648 d−1

on a small region of 3 × 3 grid points (75 km × 75 km). For each run the
stream function for the flow is randomly chosen, so the position of the nutrient
source, always in the middle of the domain, is uncorrelated with the flow. The
upwelling is switched on for an active time Tf after which S is set to its low
value again. Throughout this study we keep the active period of Tf/T = 3
(Tf = 90 days) constant. The influence of a periodic active time Tf on the
primary production was analyzed by Pasquero et al. [162]. Periodic boundary
conditions were imposed for the concentrations and velocity gradients for the
Gaussian flow model. To quantify the phytoplankton population as a function of
the time and length scales of the flow, we compute the plankton patch area Bs
as the area, where the phytoplankton concentration P is clearly larger than the
steady state concentration P0

Bs =

∫
P>1.1P0

dA (4.10)

Maximal plankton concentrations in the patch are approximately P/P0 ≈ 1.5, so
the criterion of P > 1.1P0 is adequate to separate the patch from the background
concentration.

4.3 Results and Discussion

4.3.1 Gaussian Flow - Optimal Time and Length Scales

The effect of how time and length scales of the flow act on the development of
a phytoplankton patch is shown in Fig. 4.2 for the Gaussian flow model. The
nutrient source with a high transfer rate S = Sh and a size of 3 × 3 grid points
was set at the center of the 128 × 128 domain and initiated the development of
a plankton patch. The advective flow is obtained from the Gaussian correlated
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Figure 4.2: Phytoplankton patches observed for different pairs of time and length scales (τ, λ)
for the Gaussian flow, Eqs. (4.2-4.4). Length scale increases from bottom to top, and the
temporal correlation scale from left to right. Note the larger patch size for intermediate val-
ues of τ and λ. Set of parameters: G(0, 0) = 225, Nx = Ny = 128. Length and time
scales (log10(τ/T ), log10(λ/L)): (a) (−0.5, 1.5), (b) (−1.25, 1), (c) (−0.5, 1), (d) (1.5, 1), (e)
(−0.5,−0.5).

stream function defined by length scale λ and time scale τ . During the whole
simulation of 30 days the nutrient source was switched on. Note that especially
for intermediate values of the time and length scales (c) the advective velocity
field interacts with the expanding reaction front which results in a folded structure
of the front and a larger patch size than in the other cases. In the vertical
triple of images with different length scales (a,c,e) it is apparent that for small
length correlations (e) the patch grows mostly as a circular wave with small scale
perturbations of the front, whereas for large length scales (a) the patch is just
advected to the right. The horizontal triple of images with different time scales
(b,c,d) shows that for intermediate values of the time correlation the patch is
most deformed and has areas of still low but increasing plankton concentrations
(green). This behavior indicates a resonant behavior between the flow time scale
and the time scale of the NPZ model and will be analyzed in detail later.

In order to qualitatively understand, why optimal Eulerian time and length
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Figure 4.3: Time evolution of the phytoplankton patch size Bs (a) and the phytoplank-
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line (−0.5, 1.5). Set of parameters: G(0, 0) = 225, Nx = Ny = 128 and active upwelling time
Tf/T = 3 (gray shade).
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Figure 4.4: Mean phytoplankton patch size 〈Bs〉 × 10−5 km2 as a function of time and length
scales (τ, λ) of the Gaussian flow, Eqs. (4.2-4.4). Optimal Eulerian time and length scales are
approximately (log10 τc, log10 λc) = (−0.5, 0.875). Each data point shown in the figure has been
calculated as an average over 30 different initial conditions for the flow. Set of parameters as in
Fig. 4.3.

scales for the growth of the phytoplankton patch in the Gaussian flow can be
expected, we consider the two limit cases of τ → 0 and τ →∞ for a constant λ.
For τ → 0 and finite dispersion, Eq. (4.4), the intensity of the flow σ2 tends to
zero and the stream function vanishes. In this case, the diffusive non-advective
case is recovered. For τ → ∞ a steady unidirectional flow is obtained. In this
case, relevant fluctuations of the flow are absent and their effects on the system
are small [109, 183]. For a constant value of the time correlation τ , an analogous
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reasoning as the previous one leads to the limit cases for λ. For λ → 0 the
totally uncorrelated diffusive case is reached and for λ → ∞ the unidirectional
flow cannot fold and distort the reaction front.

The temporal evolution of the phytoplankton patch size for different Eulerian
time and length scales is shown in Fig. 4.3(a). Note that independently of τ and λ,
a steady patch size is rapidly attained after an initial time T1 ≈ 0.3T ≈ 9 days. It
decays to zero after the nutrient source is switched off for times t/T > Tf/T . The
size of the plankton patch is largest for intermediate values of τ and λ (red dashed
line in panel (a)) as explained above. For an Eulerian flow time scale τ of the same
order of magnitude as the initial time T1, the patch size is maximal. This suggests
a kind of resonant behavior between the flow and the plankton dynamical system.
At an exemplary grid point close to the nutrient source, initially, the plankton
concentration rapidly increases due to a high nutrient flux which is caused by the
short relaxation time S−1h and the large nutrient difference (N0−N) (Fig. 4.3(b)).
During the active period Tf , flow fluctuations give rise to fluctuations in the
phytoplankton concentration, when different fluid parcels are advected over the
chosen grid point. Note that these fluctuations are larger and more frequent for
intermediate values of τ and λ corresponding to a distorted reaction front that
curls and folds continuously. Finally, the plankton concentration relaxes towards
the stationary value as expected for the stable plankton dynamics.

The results for the Gaussian flow are summarized in Fig. 4.4, where the mean
plankton patch size is represented as a function of Eulerian time and length scales
of the flow, λ and τ . Both are varied independently over more than two orders
of magnitude (2.5 km< λ < 790 km and 0.3 days< τ < 950 days), exploring
typical ocean mesoscales and beyond. For a fixed parameter pair (τ, λ), the
mean patch size is calculated as the average of the value 〈Bs〉T1<t<Tf over 30
runs. A global maximum of the patch size is obtained for intermediate values of
τ = τc ≈ 9− 17 days and λ = λc ≈ 140− 250 km.

In order to study the influence of the mixing properties of the fluid flow on
the phytoplankton growth, we measure the mixing efficiency ς(τ, λ, t) in terms
of finite-time Lyapunov exponents Λ(r, t) (FTLE, see Sec. 2.3.3). For a certain
Gaussian flow with a constant time scale τ and length scale λ the mean mixing
efficiency is defined as the mean of the FTLE values over the 3 × 3 area of the
nutrient source

ς(τ, λ, t) = 〈Λ(r, t)〉3×3 , (4.11)

to quantify the relevant mixing for the plankton patch. Fig. 4.5 shows the mean
mixing efficiency ς(t = 30 days) as a function of the parameters (τ, λ). The
parameter space is the same as in Fig. 4.4. Note that the maximum value of the
mixing efficiency ς(τ, λ) is obtained for different values of (τ, λ) as the maximum
patch size in Fig. 4.4. A flow with a maximum mixing efficiency provides optimal
mixing for a passive tracer. A comparison between Fig. 4.4 and Fig. 4.5 suggests
that reactive plankton does not spread optimally under the same conditions, as
both maxima do not coincide.

The mixing efficiency calculated from FTLE values can also be interpreted as a
Lagrangian time scale 1/ς of the flow, representing the typical time for the tracer
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Figure 4.5: Mean mixing efficiency ς(τ, λ) [days−1] in terms of FTLE values at the nutrient
source Eq. (4.11) as a function of Eulerian time and length scales (τ, λ) for the Gaussian flow,
Eqs. (4.2-4.4). Set of parameters as in Fig. 4.3.

separation along a trajectory of the patch. It is obvious from Fig. 4.5 that for
the Gaussian flow this Lagrangian time scale depends on both the Eulerian time
and length scale. For optimal Eulerian values (τc, λc) concerning patch size, the
Lagrangian time scale is τL = 1/ς(τc, λc) ≈ 10 days. This value is approximately
the typical reaction time T1 ≈ 9 days the plankton needs to grow after the switch-
on of the nutrient source. Faster mixing seems unfavorable for the spread of the
plankton patch, because the patch is diluted before having grown, slower mixing
reduces the patch size due to a lack of transport.

For the academic Gaussian flow model we found that there exist optimal time
and length scales favoring phytoplankton growth in the NPZ model. For these
optimal scales, the front becomes much more distorted than for other scales and
the final patch area is maximized. Observations of the dynamics of the modeled
phytoplankton patch show that flow regions of low velocity values (approximate
constant stream function) trap and confine the plankton in ”optimal conditions”
while the bloom occurs. The surrounding filaments with larger velocity values
tend to transport the plankton while not allowing it to grow laterally to the
transport direction. This indicates that optimal time and length scales are needed
to promote these optimal conditions.

4.3.2 Altimetry Flow

In this section we analyze the development of phytoplankton patches for a more
realistic flow model derived from satellite altimetry data, Eq. (4.5). We choose a
multiscale region of the North Atlantic, where eddies with different length scales
are clearly visible (Fig. 4.1(b)). Although the real altimetry flow is time-dependent
and changes over the integration time of 30 days, we use a simplified stationary
flow. This allows for a better local definition of time and length scales and reveals
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Figure 4.6: Phytoplankton patch size Bs × 10−5 km2 after 30 days depending on the position of
the nutrient source in the stationary altimetry flow. Especially in the black box (also marked in
Fig. 4.1(b)) strong differences in patch size are obvious.

well-defined Lagrangian flow structures that dominate the plankton spreading.
As in the Gaussian flow, a 3 × 3 constant nutrient source is set with its center
positioned at each grid point of the 130×90 domain to initiate a plankton patch.
Then the phytoplankton patch evolving from each of this nutrient sources is again
modeled with the NPZ model. After 30 days, the final patch size Bs is calculated
as in Eq. (4.10). Figure 4.6 shows the patch size as a function of the position of
the nutrient source in the altimetry flow. It is obvious that the position of the
nutrient source in the flow strongly affects the evolution and therefore the final
size of the plankton bloom.

In order to compare the phytoplankton growth in the altimetry flow to that in
the Gaussian flow, we compute time and length scales for each point in the con-
stant altimetry velocity field. As Lagrangian time scale τL we use again the local
reciprocal Finite-Time Lyapunov Exponent τL = 1/Λ at the nutrient source. The
local length scale λ(x) for the altimetry flow is derived from the autocorrelation
function Φ(x, r, λ) of the velocity field assuming an exponential decay,

φ(x, r) =

〈
v(x)v(x + r)

|v(x)||v(x + r)|

〉
r=|r|=const

(4.12)

= exp

(
− r

λ(x)

)
.

Although the spatial autocorrelation of the altimetry velocity field does not neces-
sarily decay exponentially, we obtain a good estimate for the Eulerian length scale
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Figure 4.7: Phytoplankton patch size Bs × 10−5 km2 as a function of Eulerian length scale
(Eq. 4.12) and Lagrangian time scale τL = 1/Λ for the Gaussian flow (a) and the altimetry flow
(b).

of the altimetry flow, similar to the a priori Eulerian length scale of the Gaussian
flow model. The patch size data for both flow models is binned to these time
and length scales, whereby we discarded data with few configurations for (τL, λ)
values and therefore high errors. Fig. 4.7 shows the phytoplankton patch size as
a function of Lagrangian time and Eulerian length scales for the Gaussian model
flow (a) and the altimetry flow (b). In both figures, a clear maximum cannot
be observed, as not the whole parameter space is covered by the altimetry flow.
Nevertheless, both show a very similar dependence of the patch size on time and
length scales. Fig. 4.7 suggests that for the covered parameters both flows provide
optimal conditions for plankton spread at length scales λc ≈ 140 − 250 km and
τc ≈ 5− 15 days.

Apart from the statistical analysis concerning time and length scales it is
worthwhile to have a closer look on a selected region of the flow, to analyze the
interplay of the different parameters on the plankton spreading. The selected
region is marked in the stream function image (Fig. 4.1) and in the patch size
image (Fig. 4.6). Note, that in the boxed area the overall patch size in the lower
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Figure 4.8: Phytoplankton concentration P/P0 for two different patches in the North Atlantic
ocean after 30 days of simulation initiated at the white dot. Letters A and B mark the centers
of eddies of similar size.

eddy is significantly larger than in the upper one, although both eddies have similar
velocities and diameters.

Fig. 4.8 shows a close-up of the region with two eddies, marked with letters A
and B. In order to understand the different dynamics in both eddies that lead to
the variation in plankton patch size, we exemplary choose two points, one in each
eddy, with a strong difference in patch size. Both sources are positioned in the
rotating eddy with a similar distance to the center. Figures 4.8(a,b) show the two
phytoplankton distributions that developed from the chosen points after 30 days.
For graph (a) the patch size is clearly larger than for graph (b). Fig. 4.9 serves
to understand these differences. It shows the plankton patch size in the region
of interest (panel a), the local Eulerian length scales (panel b), Lagrangian time
scales (panel c), and the Lagrangian flow structure with hyperbolic points (panel
d) obtained from an analysis of fields of the Finite-Time Lyapunov Exponent. The
plankton patch in eddy A is advected around the eddy in optimal time and length
scales while it passes successively four hyperbolic points that spread the plankton
to neighboring regions with favorable conditions. Therefore, four filamentary arms
are formed. In contrast to this, the patch initiated in eddy B is indeed also spread
by one hyperbolic point, but into a western region of small length scales and into
an eastern region with long time scales, so the patch development is hindered. As
a result, we find here that not only the local time and length scales of the flow
influence the growth of the plankton patch, but also the connectivity between
regions with favorable conditions for plankton growth. In time-dependent flows
the geometry of transport can only be seen in maps of Lagrangian quantities
like the FTLE. Stable and unstable manifolds in the flow govern the transport of
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Figure 4.9: Discrepancy in plankton growth in two apparently similar eddies. (a) Size of plankton
patch for a selected region in the North Atlantic Ocean after 30 days of simulation. For each
grid point, color indicates the patch size Bs × 10−5 km2 after a nutrient upwelling took place
at that location. In eddy A plankton growth is favored. (b,c) The representations of Eulerian
length scales and Lagrangian time of the flow show that both long length scales (λ > 120km)
and short time scales (τL < 15days) are necessary for a large plankton patch size. Black boxes
at the color bars show the optimal time and length scales found for the Gaussian correlated flow.
(d) Finite-Time Lyapunov Exponents calculated from forward (positive values) and backward
(negative values) integration in time. The plotted field is Λ+ − |Λ−|. Mesoscale structures with
jets and vortices can clearly be observed. The black dots indicate the hyperbolic points that
are located at the intersections of the stable (red) and unstable (blue) manifolds. White dots
correspond to the positions of the exemplary nutrient sources in Fig. 4.8

tracers [100], while hyperbolic points mark the positions where these manifolds
cross and the direction of the velocity changes abruptly.

It is important to note here, that the pathways of transport could also be
obtained from streamlines, i.e., lines tangent to the velocity field. In our case of a
steady (time-independent) non-divergent flow the streamlines are closed and act
as transport barriers (Fig. 4.10). Thus, they determine the directions of trans-
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Figure 4.10: (a) Added forward and backward finite-time Lyapunov exponents [1/day] with
estimated locations of hyperbolic points (white dots). (b) Contour lines of the streamfunction
[m] from altimetry are identical with streamlines of the flow. The streamlines are closed and act
as transport barrier to advective transport. The hyperbolic points (black dots) can be identified
with saddle points of the stream function.

port of the plankton patch while transport across the barriers can only happen by
diffusion. In the following chapters we will show that methods from dynamical sys-
tems theory, as for example the extraction of Lagrangian coherent structures from
FTLE fields, are especially powerful for time-dependent flows, when instantaneous
streamlines are not longer transport barriers.

4.4 Conclusions

We analyzed the effect of time scales and length scales, and the transport geometry
of two different fluid flows on the growth of a single plankton patch.

• For both flow models we obtain that growth is enhanced for a critical time
scale comparable to the one associated with the biological dynamical system,
as it was also pointed out in previous studies [127, 186, 187]. We find an
optimal Eulerian time scale for the Gaussian flow of τc ≈ 9 − 17 days and
similar optimal Lagrangian time scales of τc ≈ 5− 15 days for the Gaussian
and the altimetry flow. The Lagrangian time scale is the more relevant time
scale for the advected plankton system.

• We observe that for a critical Eulerian length scale of the order of 140 −
250 km the patch size attains a clear maximum for the Gaussian flow. For
this length scale the front becomes more distorted than for other scales and
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the final patch area is the largest. A similar result is found for the altimetry
flow.

• Spatial Lagrangian measures, as the FTLE field, allow to estimate stable and
unstable manifolds that act as transport barriers and reveal the geometry
of transport in the flow. A certain length scale between these barriers
is needed to balance two unfavorable conditions: on the one hand, for
shorter length scales, the flow rapidly mixes the plankton and does not
allow transport over long distances, and on the other hand, for longer length
scales, few hyperbolic points are present in the medium and due to the lack
of separatrices (stable manifolds) the flow does not favor the spreading of
the initial patch in different directions. Thus, length scales in the FTLE
field of a flow can indicate regions where a large plankton bloom size can
be expected.

• When these results are applied to real plankton systems the limitations
of this study have to be considered. The model does not take into ac-
count many physical and biological processes that aditionally affect plankton
growth, as vertical upwelling, sea temperature, or the depth of the mixed
layer and it does not resolve explicitly 3-dimensional effects.





Chapter 5

Mesoscale transport and zonal
jets in the Madagascar plankton
bloom

In collaboration with A. von Kameke, V. Pérez-Muñuzuri, M.J. Olascoaga,
and F.J. Beron-Vera, published in parts in Geophys. Res. Lett. 39, L06602
(2012) [91].

Abstract

The spatial distribution of many phytoplankton blooms is determined by
horizontal stirring due to ocean currents on the mesoscale (50 − 500 km).
In this chapter, we take a closer look at an especially pronounced bloom,
the Madagascar plankton bloom, that occurs intermittently and exhibits an
exceptionally fast propagation from the coast of Madagascar to the east.
Although the entire bloom is a complex phenomenon including biogeochem-
ical processes, passive advection of nutrients and plankton by mesoscale
ocean currents might be a key process to explain its fast expansion. There-
fore, we apply Lagrangian techniques and methods from dynamical systems
theory to analyze the Lagrangian transport patterns in geostrophic ocean
currents derived from altimetry data, and compare them to the patterns
of the plankton bloom. We find that the recently discovered Southern In-
dian Ocean Countercurrent (SICC) can account for an important part of
the eastward propagation of the plankton bloom. Additionally, meandering
zonal jets act as transport barriers that shape the borders of the plankton
bloom and limit its growth especially in northern direction.

5.1 Introduction

In this chapter, we focus on the role that advection by unsteady ocean currents
may play in shaping the Madagascar plankton bloom. Chaotic advection is known
to be a key process for shaping patterns observed in plankton bloom distribu-
tions, as it has been noted by many authors [53, 100, 119, 142, 153, 165, 208].
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In particular, zonal jets, which have been observed in many parts of the world
oceans [124, 174], can behave as meridional transport barriers [21, 22, 193] and
thus contribute to the shaping of plankton bloom distributions. In the study re-
gion, the South Indian Ocean east of Madagascar, altimetry measurements and
hydrographic data have revealed a narrow and shallow eastward propagating zonal
jet, known as the Southern Indian Ocean Countercurrent (SICC) [141, 160, 194].
Eventhough it runs along ∼25◦S, the latitude where the Madagascar plankton
bloom typically develops, so far, to our knowledge, the SICC has not been linked
to the Madagascar plankton bloom.

Here, we investigate the relation between the SICC and the remarkable east-
ward extension of the Madagascar plankton bloom of up to 2000 km. While many
oceanographic studies analyze mesoscale transport by focusing on Eulerian as-
pects of the currents, we address transport using Lagrangian methods that take
into account the temporal evolution of the flow. We present the first Lagrangian
description of the SICC jet based on Lagrangian Coherent Structures (LCS) that
determine the global mixing patterns in the flow. We show that the SICC gener-
ates a fast coherent eastward transport and acts as a weakly-deforming LCS that
widely inhibits meridional transport, both processes that control the spreading of
the plankton bloom.

5.1.1 Madagascar Plankton Bloom

The Madagascar plankton bloom is one of the largest dendroid blooms in the
world oceans. It develops in summer at ∼25◦S south east of Madagascar in zonal
direction, reaching from the coast of Madagascar at ∼47◦E up to ∼70◦E into
the South Indian Ocean. The largest extent is reached in February or March in
most bloom years, but a strong interannual variability exists. For an overview over
bloom years see [173] and [228, Fig. 10]. A complete sequence of the evolution
of the Madagascar plankton bloom in 1999 can be seen in Fig. 5.1.

Several studies have addressed the mechanisms controlling the initiation and
the propagation of the Madagascar plankton bloom. In the first description of the
bloom, Longhurst [108] proposes mixed layer deepening as the nutrient provid-
ing process and finds some agreement between central (peripheral) upwelling in
cyclonic (anticyclonic) eddies and the chlorophyll pattern in the bloom in 1999.
Srokosz et al. [198] focus on the eastward propagation of the plankton bloom and
report its assumedly direction against the mean flow, obtained by tracking Eule-
rian features in the Sea Surface Height (SSH) field. To justify the expansion of the
bloom to the east despite a supposed lack of obvious eastward transport, Srokosz
et al. [198] consider a simple reaction-diffusion-advection system as a model for
the front propagation. According to their calculations, and assuming a high eddy
diffusivity and the Fisher-Kolmogorov-Petrovskii-Piskunov (FKPP) relation for the
biological plankton front [142], they find that a plankton wave could propagate
fast enough to compensate the supposed western mean flow. Uz [215] contradicts
the theory of Longhurst [108] that local upwelling is the main nutrient source, as
the bloom occurs in a shallow and stably stratified surface layer. He introduces
the hypothesis of remote nutrient supply by river runoff at the Madagascar coast.
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Figure 5.1: Temporal evolution of the Madagascar plankton bloom in austral summer from 17
January 1999 to 22 April 1999. The plankton bloom starts south-east of Madagascar and propa-
gates eastward, more than 2000 km into the South Indian Ocean. Color indicates the chlorophyll
concentration from 0 mg/m3 (blue) to 0.4 mg/m3 (yellow) on a linear scale as measured by the
SeaWiFS sensor. Each frame shows a composite of the data of 8 days, provided by AVISO. In
black regions no data is available due to cloud cover. Axes are Longitude East (horizontal) and
Latitude South (vertical) in degrees.

Similarly, Lévy et al. [106] propose the upwelling of nutrients in a well-known
upwelling region south of Madagascar [48, 89, 112] followed by eastward trans-
port by a possible retroflection of the South East Madagascar Current [172] as
an explanation for the bloom. However, the details of this transport mechanisms
are not well understood. Raj et al. [173] explore a variety of longtime data sets
and find upwelling along the south Madagascar coast, precipitation along east
Madagascar, and mesoscale eddies as likely key factors influencing the bloom. All
studies agree that the plankton bloom is somehow related to the high mesoscale
eddy activity in the region. However, it remains unclear, how the currents act on
the bloom, i.e., if they modify, favor or maybe even generate it.
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5.1.2 South Indian Ocean Countercurrent (SICC)

The circulation in the South Indian Ocean near Madagascar is characterized by
a complex network of strong interacting currents giving rise to a highly variable
mesoscale eddy field. The East Madagascar Current (EMC), the most prominent
current in the region, is considered a small western boundary current and flows
polewards (south) along the eastern coast of Madagascar [172]. Its pathway and
exact destination south of Madagascar is still an open question and a field of ongo-
ing research [45, 111, 141, 172]. In this current system, a less pronounced current
with special importance for this study is the South Indian Ocean Countercurrent
(SICC). Only recently, it has been described in detail as a narrow and shallow
eastward current, embedded in a planetary wave and eddy flow pattern [194]. It
meanders eastward between 22◦S and 26◦S from the coast of Madagascar up to
80◦E and has a width of the order of 100 km. High velocities in the jet are limited
to the upper 200 m, although the eastward currents partly reach down to 800m
[194]. Since plankton blooms are confined to the upper 50–100 m due to light lim-
itation in deeper water, especially the surface currents are relevant for our study.
Several studies note that the SICC could be explained as a near-surface frontal
jet along a meridional density front [141, 160, 194]. They also suggest that the
upper layers of the EMC possibly retroflect and connect to the eastward flowing
SICC, but more comprehensive observations and modeling studies are necessary
to better understand the variability of these currents and their connection.

5.1.3 Transport Barriers in Jets

Jets in the ocean are fast directed currents that persist over a long time. Over
certain finite times and depending strongly on the flow geometry, these jets can
act as transport barriers such that fluid on both sides of the jet barely mix. A
well-known example for a very large jet in the ocean is the Gulf Stream, the
western boundary current of the North Atlantic. When the stream leaves the
coast and flows into the open ocean it starts to meander, i.e. the jet begins to
undulate around eddies that are generated next to it [185]. The propagation of
meanders, their growth, and the possible pinch-off of eddies, is a complex fluid
instability that can be due to barotropic and baroclinic instability [44]. It is a
typical phenomenon for fast currents in rotating reference systems. Apart from
the western boundary currents, many other currents meander, e.g. the different
tropical countercurrents or the Antarctic Circumpolar Current. Moreover, zonal
jets have been found all over the world’s oceans [124, 174].

The spatio-temporal structure of the jet, in particular the dynamics of the
meanders, determine the transport across the jet. In 1991 Bower [25] proposed
a kinematic jet model for the Gulf stream. The study was motivated by obser-
vations with floats, and the model was used to investigate the main pathways of
trajectories to be able to interpret the field experiments. This model consists of
a stream function representing the basic geometry of a meandering jet and was
extended with a time dependent term that accounts for periodic fluctuations of
the meanders [184]. One example for this class of meandering jet flows is the
following stream function (Fig. 5.2a) in a reference frame moving with the mean
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Figure 5.2: (a) Streamfunction of the meandering jet model, Eq. (5.2), with B = 1.2, k = 2π/8,
c = 0.2. (b) FTLE field from a kinematic Bickley-jet model. The transport barrier at the core
of the jet is characterized by small FTLE values in the added forward and backward FTLE field.
From [22]. (c) FSLE field for the jet model, Eq. 5.2. The central black line can be identified as
a transport barrier, where particles do not reach the finite-size separation. From [24]

velocity of the meanders [24]

Ψ(x, y, t) = − tanh

[
y −B(t) cos kx√

1 + k2B(t)2 sin2 kx

]
+ cy (5.1)

B(t) = B0 + ε cos (ωt+ φ), (5.2)

where B(t) is the amplitude of the meanders, here periodically perturbed, k is the
wave length of the meanders, and c is the uniform retrograde velocity far from
the jet. It has been studied extensively, how transport and fluid exchange in this
and similar jet models depend on the perturbation parameters ε, ω and φ [22, 29,
54, 184, 213, 219]. Without a temporal perturbation the flow is steady and the
streamlines define three closed flow regimes: the core of the jet, the recirculation
zones, and the exterior retrograde flow. Trajectories of floats or particles cannot
leave these regimes and the borders of the regimes are impermeable transport
barriers. Under temporal perturbation of the flow structure these borders break
up, and different regions of the flow mix and exchange fluid.

Regarding the Madagascar plankton bloom, we are especially interested in the
transport barrier property of the core of the jet. For a weak perturbation of the
jet, this central barrier persists. Beron-Vera et al. [22] demonstrated that in the
Bickley-jet model, that is similar to the model (5.2), a line of small FTLE values
defines a weakly deforming Lagrangian coherent structure in the center of the jet
that serves as a good estimate for a transport barrier (Fig. 5.2b). In numerical
experiments, Lagrangian particles released on both sides of the jet do not cross
this line, and thus, do not mix. Likewise, Boffetta et al. [24] find that particles
barely separate close to the central transport barrier in the model flow described
above, such that the barrier can be estimated from FSLE maps (Fig. 5.2c). In
the following, we use these results from model flows to analyze the mesoscale
currents in the region of the Madagascar plankton bloom and detect possible
transport barriers that confine the transport of nutrients and plankton.
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5.2 Data and Methods

Ocean Color We analyze the Madagascar plankton bloom based on standard
global maps of chlorophyll concentration observed by the Sea-viewing Wide Field-
of-view Sensor (SeaWiFS) and provided by NASA’s ocean color data site (http:
//oceancolor.gsfc.nasa.gov). We use the 8-day composite level 3 product
with a spatial resolution of (1/12)◦ ≈ 9 km and temporal resolution of 8 days. The
measurement principles of the SeaWiFS sensor are shortly explained in Sec. A.1.

Geostrophic Velocities We consider advection by ocean currents derived geostroph-
ically from altimetric SSH maps. AVISO provides weekly SSH anomalies at a spa-
tial resolution of (1/4)◦ with respect to a 7-year (1993–1999) mean. These are
added to the mean dynamic topography of the ocean surface based on altimetry,
in-situ measurements, and a geoid model [176]. In a longitude–latitude spherical
coordinate system (λ, θ) the position of a fluid particle on the ocean’s surface is
thus assumed to evolve according to

λ̇ = − g

R2f(θ) cos θ
∂θη(λ, θ, t), (5.3)

θ̇ = +
g

R2f(θ) cos θ
∂λη(λ, θ, t). (5.4)

where η(λ, θ, t) is SSH, R the Earth’s mean radius, g gravity and f(θ) := 2Ω sin θ
the Coriolis parameter with Ω the Earth’s mean angular velocity. Here, particle
trajectories are computed by integrating (5.3)–(5.4) using a Runge–Kutta scheme
and a tricubic interpolation in time and space. A fine grid of particles with an initial
separation of (1/16)◦ is advected to obtain fields of the Lagrangian quantities
introduced below. The finite integration time is chosen to be τ = 12 weeks, a
typical time scale for the development of the bloom and the propagation of the
jet.

Lagrangian Quantities: FTLE and FTZD Finite-Time Lyapunov Exponents
(FTLE), a measure of stretching about fluid trajectories, are used here to estimate
LCS as in many previous works [163, and references therein]. FTLE are computed
in forward and backward time direction as suggested by Beron-Vera et al. [22].
Weakly deforming LCS, indicating meridional transport barriers, are unveiled by
identifying regions where ridges of the forward and backward FTLE field do not
excessively transversely intersect one another and FTLE values are relatively small
[22, 24]. These weakly deforming LCS are associated with the cores of long
meandering jets and thus will be referred to as jet-like LCS, in contrast to more
entangled hyperbolic LCS, the locally strongest attracting or repelling material
curves. Both types of LCS inhibit cross transport, so that a plankton bloom
evolving on one side of such a LCS cannot be spread to the other side. More
precisely, the strict barrier property of a jet-like LCS is limited by the coherence
of the jet, i.e., the stability of its spatial structure under perturbations of the
adjacent eddies. Real zonal jets are not always necessarily as coherent as ideal
jets in model flows [22]. Thus, real zonal jets, while indeed providing a fast zonal

http://oceancolor.gsfc.nasa.gov
http://oceancolor.gsfc.nasa.gov
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transport, might behave as strong though imperfect barriers with part of the water
entraining and detraining along their path, leading to partial cross-mixing.

To further quantify the eastward transport, we introduce the Finite-Time Zonal
Drift (FTZD) defined as the zonal distance between the final and initial position
(λ0, θ0) of a backward advected particle

δtt0(λ0, θ0) := λ(t; t0, λ0, θ0)− λ0 (5.5)

with t = t0 + τ and τ < 0. It simply denotes the eastward directed zonal distance
the particle has covered in the time τ .

5.3 Results and Discussion

5.3.1 Jet-like Lagrangian Coherent Structures

We search for Lagrangian coherent structures, especially jet-like LCS, in the
mesoscale circulation east of Madagascar. The results of Beron-Vera et al. [21]
suggest that these jet-like LCS at the center of coherent jets can be extracted
from added fields of the forward and backward FTLE field. In Fig. 5.3 an ex-
emplary forward and backward FTLE field on 31 March 1999 reveals a variety
of Lagrangian structures with a typical size of 100 km. These Lagrangian struc-
tures determine the geometry of mixing by unsteady ocean currents. Most of
the dynamics is dominated by mesoscale eddies. The circular regions with very
low FTLE values close to zero are associated to eddy cores with elliptic dynamics,
where water circulates and neighbor water parcels stay close together, i.e. stretch-
ing is small. In contrast, the highest separation rates on the ridges of the FTLE
field reach values of 1/2 weeks−1, corresponding to typical mixing time scales of
2 weeks or more. While we can already see a signature of the zonal SICC jet in
the separated forward and backward FTLE fields, the added FTLE field in Fig, 5.4
reveals a much clearer meandering structure of small FTLE values bounded by
parallel FTLE ridges along a latitude of ∼ 25◦S that mark the position of the
SICC. This structure is a candidate for a jet-like LCS that acts as a barrier to
meridional transport. It is important to note that the structure of the jet-like LCS
in the flow given by real oceanic altimetry velocity fields is much less pronounced
and more difficult to extract, if compared to the explicit numerical examples in
Fig. 5.2. This is most probably due to the strong temporal variability of the SICC
that considerably changes its position during the period of 24 weeks. Although it
would be desirable to extract the jet-like LCS with an automatic procedure based
on well-defined mathematical properties of the FTLE fields (c.f., Sec. B.1), we
take here the simple approach to estimate the jet-like LCS by hand and compare
its geometry to the Lagrangian patterns of the Madagascar plankton bloom.

In Figure 5.5 we exemplary choose a date during the extensive plankton bloom
in 1999 to demonstrate the impact of the SICC on the spatial distribution of the
chlorophyll concentration. Therefore, we extract the location of jet-like LCS and
quantify the zonal transport of the SICC. We estimate two jet-like LCS (high-
lighted with a red line) on 17 February 1999 from the map of the added forward
and backward FTLE fields (Fig. 5.5a). Along these potential transport barriers
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Figure 5.3: (a) Forward FTLE fields [1/weeks] on 31 March 1999. (b) Backward FTLE fields
[1/weeks] on 31 March 1999. In both fields the ridges of high FTLE values mark a zonal
meandering structure at ∼ 25◦S: the South Indian Ocean Countercurrent.

high gradients of tracers can be expected, and indeed, they coincide with large
parts of the boundaries of the plankton bloom when compared to the spatial
distribution of chlorophyll concentration in Fig. 5.5c. In some regions chlorophyll
patches can be found across the jet-like LCS where the jets are leaking. This leak-
age can be identified with hyperbolic LCS of eddies adjacent to the jet (Fig. 5.5a),
and thus can also be explained by advective transport. This is not further studied
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Figure 5.4: The sum of forward and backward FTLE fields [1/weeks] from Fig. 5.3. Along
a meandering feature at ∼ 25◦S (arrow) the values of both FTLE fields are small compared
to adjacent regions, and ridges of high FTLE values are predominantly parallel and do barely
intersect each other. This feature associated to the zonal SICC jet is a candidate for a jet-like
LCS that acts as a transport barrier.

here.

Additionally to the geometric information of transport barriers revealed by the
jet-like LCS, the new simple Lagrangian metric FTZD (5.5) in Fig. 5.5b allows
for a spatially resolved quantification of the zonal transport east of Madagas-
car. This quantity is especially useful to address a possible mechanism for the
fast eastward propagation of the Madagascar plankton bloom. As expected, the
elongated regions (in red) with the highest eastward zonal transport match the
jet’s core lines represented by the jet-like LCS. Both bands of high zonal drift are
bounded piecewise by backward FTLE ridges, indicating that the transport bands
are well separated from adjacent water masses, and also revealing that the jets
are composed of several parts rather than being one uninterrupted structure of
2000 km length. Eastward excursions of particles along these jets can be as long
as ∼1200 km in 12 weeks, a distance comparable to a typical zonal extent of the
Madagascar plankton bloom. With the underlying advection time of 12 weeks the
jets are persistent transport bands at this time scale.

The origin of the eastward spreading Madagascar plankton bloom was pro-
posed to be located south of Madagascar [106, 173, 215]. In order to demonstrate
the ability of the SICC to transport water masses to the east from potential nu-
trient sources at the coast of Madagascar, we advect a passive continuous tracer
concentration. The tracer is initialized as a Gaussian blob with a standard devi-
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Figure 5.5: a) Instantaneous map on 17 February 1999 of added forward and backward FTLE
[weeks−1] with highlighted jet-like LCS inhibiting meridional transport. In black regions, trac-
ers left the domain. b) Instantaneous map on the same date of FTZD (5.5) in units of
1◦ Lon ≈ 100 km. c) SeaWiFS chlorophyll concentration [mg/m3] with marked position of
the jet-like LCS. The image corresponds to an 8-day composite centered around 21 February
1999. d) Distribution of a passive tracer [arb.u.] released as a Gaussian blob at the south tip of
Madagascar. Instantaneous SSH contours are plotted in the background.

ation of ∼150 km at the south east tip of Madagascar where upwelling has been
reported to take place [48, 89, 112] (Fig. 5.5d). A full sequence of the evolution
of the continuous tracer can be seen in Fig. 5.6. With this numerical experiment
we can verify if the ocean currents, in particular the SICC, are able to transport
a passive tracer (simulating nutrient) to the east, and if the spatial distribution
of passive tracer released at the south coast of Madagascar resembles the spatial
distribution of the plankton bloom. This would be a clear hint that horizontal
advection plays a major role for the spreading of the plankton bloom. In Fig. 5.5d
two filaments of high tracer concentration extend to the east corresponding to
the two present jets, while the associated jet-like LCS shape the boundaries of
the passive tracer. In the background, contours of the instantaneous SSH field
are plotted for comparison. Although eddies, defined as regions enclosed by SSH
contours [38], drift westwards in this domain, the jets meander around them in
eastward direction. This is clear evidence for a distinct eastward transport, sup-
porting the above mentioned hypothesis that nutrient could be upwelled at the
coast and be transported to the east. However, in order to obtain a maximum
similarity in extent and form between the tracer pattern and the real widespread
plankton bloom on 17 February 1999 (Fig. 5.7c), the tracer has to be released on
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Figure 5.6: Temporal evolution of a passive tracer released as a Gaussian blob south-east of
Madagascar on 11 November 1998. The tracer spreads progressively over the area that is typically
covered by the Madagascar plankton bloom (cf. Fig. 5.1). Compared to the plankton bloom
the pure advective eastward propagation of the passive tracer is slower. Color indicates the
tracer concentration in arbitrary units, from low (blue) to high concentration (yellow). Axes are
Longitude East (horizontal) and Latitude South (vertical) in degrees.

a date close to 4 November 1998, about two months before first traces of the
bloom can be seen in the SeaWiFS data. On the one hand, this early release of
the passive tracer may be justified with the seasonality of possible nutrient sources
close to the release point, being river runoff at the beginning of the rain season
or upwelling [173, 215]. On the other hand, the question arises if the velocity of
the eastward transport is high enough to explain the fast eastward expansion of
the plankton bloom. This question is addressed in Sec. 5.3.2.

As the first result, based on the above Lagrangian analysis of the flow condi-
tions for the plankton bloom of 1999, we suggest two ways of impact of the zonal
jets on the plankton bloom. First, a zonal jet represents a fast transport band
that favors the eastward propagation of the plankton bloom. Second, a jet-like
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Figure 5.7: Spatial chlorophyll distributions in bloom years and jet-like LCS (red lines). a) 9
March 2000, the additionally plotted backward FTLE ridges (white lines), estimates for LCS,
show that the bloom’s boundaries are in large parts determined by horizontal transport. b) 10
April 2002, c) 18 April 2004, d) 13 February 2006.

LCS, sufficiently coherent over a long time, prevents meridional transport. In the
following, we study both effects of a zonal jet in detail and for all bloom years.

In order to ensure that the impact of the SICC on the Madagascar plankton
bloom in 1999 is not an individual case, we check other years with important
plankton blooms for the same relation. Figure 5.7 shows the spatial chlorophyll
distribution of the Madagascar plankton bloom with nearly maximal extent in the
bloom years 2000, 2002, 2004 and 2006 respectively, overlaid with the jet-like LCS
extracted as in Fig. 5.5a. In four out of five bloom years (1999, 2000, 2004, and
2006) persistent coherent jets are present along ∼25◦S and the corresponding jet-
like LCS largely mark the northern boundary of the plankton bloom. The jet-like
LCS are embedded in a tangle of attracting hyperbolic LCS, estimated as ridges in
the backward FTLE field (Fig. 5.7a). In 2002, an important part of the plankton
bloom is located north of the jet-like LCS. As can be observed in sequences of the
time-dependent flow, this is due to a strong perturbation of the jet at the time of
the bloom, so that mixing across the jet occurs. In 2006, we observe the special
case of a second jet-like LCS in the south, as also observed in 1999 (Fig. 5.5c).
In both years, the jet-like LCS roughly coincides with the southern boundary of
the chlorophyll data and likely represents an additional spatial confinement of
the plankton bloom. Generally, in the other bloom years apart from 1999 and
2006, the southern boundaries of the plankton bloom are also shaped by LCS,
but rather by more entangled attracting hyperbolic LCS (white lines in Fig. 5.7a)
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Velocity [m/s]

Plankton ∼ 0.25
Particles ∼ 0.14
Tracer ∼ 0.14

Table 5.1: Mean propagation velocity of the chlorophyll front (plankton) estimated from SeaWiFS
chlorophyll data in Fig. 5.8. Mean Lagrangian advective velocity of passive particles and the
passive tracer in the SICC jet using the geostrophic flow derived from altimetry data.

than by jet-like LCS of the SICC.

5.3.2 Velocity of Plankton Front

As a result of numerical experiments with a passive tracer (Fig. 5.5d, Fig. 5.6), we
found that the tracer must be released very early to resemble the spatial distribu-
tion of the plankton bloom, i.e., the plankton bloom seems to propagate faster.
Therefore, in Fig. 5.8 we quantify the velocity of the eastward propagation of the
plankton bloom and the velocity of the eastward transport of a passive tracer by
plotting the corresponding space-time Hovmöller diagrams for several bloom years.
SeaWiFS chlorophyll concentration data and the passive tracer are both averaged
meridionally in the same narrow band along the principal axis of the bloom (box
in inset in Fig. 5.8b) leading to a one-dimensional, time-dependent zonal concen-
tration signal. In Fig. 5.8a, Hovmöller diagrams of the bloom in the years 1999,
2002, and 2004 show a clear eastward propagation with a similar front velocity
of about vpl ≈ 25◦/17 weeks ≈ 2500 km/17 weeks ≈ 0.25 m/s, in contrast to
the westward velocity of SSH features of typically 0.05 m/s. Srokosz et al. [198]
measure the front velocity of the bloom in 1999 as ∼0.12 m/s in a Hovmöller
diagram, which we find underestimates the velocity by a factor of 2. In 2000 (not
shown) the bloom expands similarly as in 2002. Only in 2006 a clear propagation
of the bloom cannot be observed, as it appears rather instantaneously in the whole
domain. The passive tracer (Fig. 5.8b) expands to the east along the jet in all
years with a front velocity of about vtr ≈ 0.14 m/s. This is consistent with the
integrated jet velocity of vpa ≈ 10◦/12 weeks ≈ 1000 km/12 weeks ≈ 0.14 m/s
estimated from the zonal transport of particles in Fig. 5.5b, as can be expected
due to the same underlying geostrophic velocity data. Note the formation of
tracer filaments along the jet in the insets of Fig. 5.8b that reveal a fast eastward
expansion.

The analysis of the passive advected tracer in Fig. 5.8b shows that in all bloom
years the jet provides a significant constant transport to the east, the direction
of propagation of the Madagascar plankton bloom (Fig. 5.8a). However, we find
that the magnitudes of the front velocities of the tracer and the bloom deviate
(Tab. 5.1). This basically indicates that the spreading of the bloom cannot be
understood as a purely passive advective process. We hypothesize that nutrients
are most likely transported by the jet first, and then the biological reaction is
triggered by another still unknown, possibly seasonal mechanism. Both processes
are not necessarily well separated in time, i.e., the nutrient might be transported
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Figure 5.8: Hovmöller diagrams of plankton concentration and the passive tracer, averaged
meridionally in the region shown in the insets (white rectangle). a) SeaWiFS chlorophyll data
[mg/m3] with a fast expansion of the bloom to the east with ∼0.25 m/s (white line). For
comparison the westward velocity of SSH features is marked (red line). In 2006, the plankton
bloom occurs at once in the whole domain, and no propagation can be observed. b) An advected
passive tracer [arb.u.] expands eastwards along the jet with a velocity of ∼0.14 m/s (white line)
in all bloom years.
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while the trigger mechanism acts. It is also important to note that possible local
vertical upwelling of nutrients along the jet [39] can also accelerate the front
velocity and would further explain plankton growth in regions across the jet.

5.3.3 Temporal Variability of the SICC

Finally, we address the temporal variability of the eastward transport in the SICC.
Since we have observed that a passive tracer is transported eastward by the jet
in all bloom years, the following question arises: Is the interannual variability of
the Madagascar plankton bloom related to the occurrence of the jet? It might
be possible that a large intense plankton bloom preferentially coincides with a
strong jet. In order to test this hypothesis, we quantify the ability of the SICC to
transport water to the east using a simple measure. To this end, a large number of
particles is released at time t0 in a square region close to the coast of Madagascar
and after τ = t− t0 = 12 weeks the easternmost final longitudinal position λmax
of the stretched filaments is recorded (Fig. 5.9, top)

λmax(t0) = max
λ0,θ0

λ(t; t0, λ0, θ0), (5.6)

λ0 < 53◦E.

For a fast coherent jet we expect the filament to reach far to the east, while
for a weak or even absent jet no straight filaments would be observed and particles
would stay closer to their origin. Figure 5.9 (middle, bottom) shows the time series
of the easternmost position of the filament over ten years together with the time
series of the chlorophyll concentration. No clear correlation between the intense
bloom events at the beginning of years 1999, 2000, 2002, 2004 and 2006, and the
eastward transport of the jet can be seen in this data. Although the length of the
eastward filament fluctuates, the jet rather provides a relatively constant transport
of about 8◦/12 weeks ≈ 800 km/12 weeks and never breaks down completely. In
particular, the jet is also present and not especially weak at the beginning of no-
bloom years when a bloom could be expected. These observations agree with the
maps of FTZD. In these maps a band of high eastward transport, the footprint
of the jet, is always present over the whole period of ten years. Hence, a strong
SICC jet is most likely necessary, but not sufficient to cause an extensive plankton
bloom in the region east of Madagascar.

5.4 Conclusions and Outlook

We studied the mesoscale circulation east of Madagascar based on geostrophic
velocities derived from altimetry data, in order to investigate the impact of La-
grangian coherent structures in the flow on the shape and the evolution of the
Madagascar plankton bloom. Two fundamental characteristics of the Madagascar
plankton bloom, its eastward propagation from the south tip of Madagascar and
its confinement within a narrow zonal band with low chlorophyll values in adjacent
regions, can be linked to the presence of zonal jets in the South Indian Ocean
Countercurrent (SICC). We focused here on the role of horizontal advection in
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Figure 5.9: Variability of the eastward transport. (top) Particles start at the initial position
(λ0, θ0) (green) on 31 March 1999 and are transported by the SICC jet to the final positions
(λ, θ) 12 weeks later (red). The white dashed line marks the easternmost longitudinal position
λmax of particles belonging to the filament. (middle) Time series of easternmost longitudinal
position λmax of filamentous pattern. The occurrence of strong plankton blooms is marked (�).
(bottom) Hovmöller diagram of chlorophyll concentration [mg m−3] along a narrow longitudinal
band in the main axis of the bloom. Bloom events in February/March of bloom years can clearly
be seen.
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Figure 5.10: (a) Large bands of high chlorophyll concentration [mg m−3] along the Atlantic
North Equatorial Countercurrent off Brazil on 3 October 2000. Nutrients for the plankton bloom
are provided by the Amazon plume [203]. To the south, the plankton bloom is limited by a sharp
meandering boundary, most probably caused by a jet-like transport barrier. (b) Similar plankton
bloom [mg m−3 chlorophyll] in the meanders of the Pacific North Equatorial Countercurrent on
March 1998. From [39].

these jets, and, therefore, did not take into account any biochemical reaction
dynamics nor diffusive subgrid motion. We suggest two basic mechanisms for the
impact of the SICC jet on the Madagascar plankton bloom and draw the following
conclusions:

• First, the jet provides a fast and persistent eastward transport that signifi-
cantly contributes to the large extent of the plankton bloom.

• Second, zonal jet-like LCS associated with the SICC represent a transport
barrier in meridional direction shaping the boundary of the bloom.

• We find that the jet alone cannot be the only reason for the plankton
bloom, as the eastward jet persists throughout the years not matching the
seasonality and interanual variability of the bloom.

• Additionally, we observe that the plankton front propagates with a higher
velocity than the pure transport velocity of the jet.

• However, the resulting persistent eastward transport caused by the jet yield
support for the hypothesis that the main nutrient source is located at the
south tip of Madagascar and marks the origin of the plankton bloom [106,
173, 215].

Finally, we conclude that the recently discovered SICC causes a to date over-
looked, significant rapid transport to the east at the exact location of the Mada-
gascar plankton bloom and should not be ignored in future studies of this phe-
nomenon. Similar plankton patterns with sharp zonal meandering boundaries can
also be observed in ocean color data in the Atlantic North Equatorial Countercur-
rent off Brazil and in the Pacific North Equatorial Countercurrent off Indonesia
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[39], see Fig. 5.10. This suggests that the results presented here may be impor-
tant in other regions of the ocean where plankton blooms are stirred and possibly
shaped by prominent zonal jets. It would be very interesting to apply the methods
used for the Madagascar plankton bloom in those regions. However, the ocean
currents for such a study could not be derived from altimetry data, since the both
regions are too close to the equator, where the assumption of geostrophic balance
does not hold.
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Flow Patterns in a Tidal Estuary
- Ria de Vigo

In collaboration with A. von Kameke, S. Allen-Perkins, P. Montero, A.
Venancio, and V. Pérez-Muñuzuri, published in parts in Cont. Shelf Res.
39-40, 1-13 (2012) [90].

Abstract

While in open ocean flows on the mesoscale (50− 500 km) strong vor-
tices, the mesoscale eddies, dominate the horizontal transport and mixing,
in coastal flows on the submesoscale (1−10 km) coherent persistent vortices
are rarely observed. Instead, the interaction of the oscillating tidal flow and
intermittent wind-driven flows with the complex coastal boundary can lead
to chaotic dynamics and pathways of drifting objects that are difficult to
predict.

In this chapter, we study horizontal surface transport in the Ria de Vigo,
an estuary in NW Spain with tidal and wind-driven dynamics. Experiments
with surface drifters and the surface flow from a high-resolution 3-D hydro-
dynamic model are compared to each other. From the model velocity fields,
we extract Lagrangian Coherent Structures (LCS) that are found to mark
transport barriers for the drifters. The LCS computed for two typical me-
teorological situations reveal in detail the separation of the time-dependent
in- and outflow at the surface of the estuary. Further, as a complimentary
approach to separate the water masses flowing in and out of our region of
interest, we use Synoptic Lagrangian Maps (SLM) based on high-frequency
radar flow fields. SLM visualize the patches of fluid that are exchanged
between different open boundaries of the flow domain.

6.1 Introduction

Chaotic horizontal transport in highly time-dependent aperiodic velocity fields
occurs in many oceanic flows, e.g., in tidal-driven systems at the coast [175], or
at much larger scales in the open ocean [6]. In order to analyze transport in these

67
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Figure 6.1: Study region: Ria de Vigo, NW Spain. An exemplary surface velocity field from the
model is shown for incoming tide where each 3rd vector is plotted. Contour lines and colors
correspond to the model bathymetry in meters [m]. Important topographic sites: San Martino
Island (A), Monteagudo Island (B), and Cape ’Cabo Home’ (C).

flows, concepts from dynamical systems theory have successfully been applied
[227]. As in the previous chapter, we focus on Lagrangian Coherent Structures
(LCS) here, geometrical structures that order transport in the flow [78, 93, 99],
and use this Lagrangian method to examine the surface flow in the estuary Ŕıa de
Vigo in northwestern Spain. LCS are identified as the locally strongest repelling
or attracting material lines and represent the core lines of Lagrangian patterns.
Being material lines, i.e., a line of fluid particles, they cannot be crossed by ideal
tracers. Therefore, they are transport barriers separating the flow into different
water masses. As an integrated quantity, LCS are stable against errors in the
velocity field [79, 88] and we demonstrate that they can still provide a sketch of the
main circulation in a coastal region, when Lagrangian chaos impedes a meaningful
direct comparison of single tracer trajectories. They reveal integrated Lagrangian
information not directly obtainable from steady Eulerian velocity fields [24, 52, 69].
The applications of LCS to oceanic flows range from observations of the general
ocean circulation [20, 51] to very specific exchange processes across jets [129]
or fronts [116]. The LCS method has been used to understand the spreading of
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plankton blooms (Chap. 5) [91, 100, 151, 152, 165] and to manage and predict
the transport of contaminants and pollution in coastal waters [41, 103, 202], as
well as to diagnose the mixing during oil spills [132].

LCS in Coastal Flows Only recently, coastal flows have been in the focus
of studies using LCS. In the Gulf of Eilat, Israel, Gildor et al. [72] observe a
clear temporary transport barrier between two water masses in high-frequency
radar data. Two other studies are located in the Gulf of La Spezia, Italy [87],
and in Monterey Bay, California, USA [191]. Both compare LCS from high-
frequency radar velocity fields to surface drifters and find that the LCS determine
the trajectories of the drifters. Coastal flows are especially challenging due to their
complex 3-dimensional boundaries, a lack of isotropy of the underlying velocity
fields, and a large variety of intermittent forcings and physical processes, such as
unsteady wind influenced by the coastal topography. Yet, coastal regions are of
great ecological and economical interest, they are often densely populated, and
thus, the intensified investigation of transport in the coastal currents as a key
process is necessary.

6.1.1 The Ria de Vigo - A Tidal Estuary

Our study region, the Ria de Vigo, is the southernmost of the four estuaries
Rias Baixas in Galicia at the NW coast of Spain which is shown in Fig. 6.1.
It has a typical V-shape and gradually deepens and widens towards its mouth.
The Cies islands divide the mouth into a smaller northern mouth and a larger
southern mouth [47, 73]. Being situated in the Iberian coastal upwelling system,
the longterm circulation pattern with a time scale of several days to some weeks is
determined by periods of northerly winds causing upwelling (typically in summer)
and periods of southerly/westerly winds causing downwelling (typically in winter)
[62, 145, 229]. The circulation and the resulting transport have been studied
experimentally (deCastro et al. [47], Piedracoba et al. [167] and references therein)
and by means of models [71, 73, 133, 138, 196, 204, 209]. In case of upwelling,
the cold, nutrient-rich upwelled water generates a high biological production and
gives rise to an intense human use of the estuary in terms of aquiculture of fish and
shellfish [61]. However, contaminations and harmful algae blooms can threaten
the productivity and the balance of the ecological system [64, 206]. Therefore, a
better knowledge of transport patterns in the Ria de Vigo is desirable.

In this study, we concentrate on the outer region of the estuary, where the
interaction of the tidal flow with the wind-driven longterm flow along the coast
leads to interesting chaotic dynamics. We investigate the horizontal surface trans-
port at the submesoscale (1− 10 km) based on the high resolution hydrodynamic
model MOHID and experiments with surface drifters. In particular, we compare
experimental Lagrangian drifter data to the transport predicted by this hydrody-
namic model. For our artificial tracers we concentrate here on the most important
forcing: the water current. This might lead to discrepancies to the real drifters,
which are subject to further forcings, such as wind. Indeed, the accuracy of
modeled drifter trajectories can be improved by taking into account a variety
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of proposed forcings, e.g., wind, waves or parametrized diffusion-like small scale
transport [4, 56, 68, 144, 146, 147, 171]. We show that LCS in velocity fields from
a coastal model are an extremely useful way to interpret the predicted transport.
Coastal hydrodynamic models might not be as accurate as direct measurements
of the surface currents via High Frequency (HF) Radar [87, 137, 191, 214], but
they can be available in coastal regions where HF Radar systems have not (yet)
been installed and provide the possibility of a prediction of several days. While
classical numerical tracer particle studies of contaminants, sediments or biological
tracers are common, e.g. [32, 33, 42, 49, 138], only recently, flows of coastal
models have been analyzed using the LCS concept [27, 86]. We stress that we
concentrate on the surface flow here, while decisive dynamics at the coast also
involve the vertical dimension.

6.2 Data

6.2.1 MOHID - The Hydrodynamic Model

For our analysis we use the hourly output of the high resolution, 3-dimensional
baroclinic hydrodynamic model MOHID (www.mohid.com) that is run opera-
tionally by MeteoGalicia (www.meteogalicia.es), the official Galician meteorolog-
ical service. The MOHID model was developed at MARETEC at the Technical
University of Lisbon and has shown its ability to simulate complex coastal and
estuarine flows [40, 122]. It solves the three-dimensional incompressible primitive
equations assuming hydrostatic equilibrium and the Boussinesq approximation
[136]. The turbulent vertical mixing coefficient is determined using the General
Ocean Turbulence Model (GOTM) [30].

Implementation and Boundary Conditions The model is implemented with
three nested grids of increasing resolution. The largest grid has an extend of about
330×390 km2 covering the entire Galician coast and parts of the Portuguese and
Cantabrian coast with a resolution of 0.06◦ ≈ 6.7 km. It receives boundary condi-
tions from the POLCOMS model of the Spanish Operational Oceanographic Sys-
tem (www.eseoo.org). The POLCOMS model itself is forced by data of UK Met
Office’s data assimilating FOAM oceanographic model and the Spanish AEMET’s
HIRLAM atmospheric model. Tidal data enters from Aviso’s data assimilating
FES2004 product via a barotropic grid of Western Iberia. Atmospherical forcing
is provided by a WRF (Weather Research and Forecasting) Model at 12 km res-
olution with boundary conditions from NOAA’s GFS (Global Forecast System)
model. The second grid has a resolution of 0.02◦ ≈ 2.2 km and comprises the
four estuaries Rias Baixas, the southernmost of which is the Ria de Vigo. The
finest model grid for the Ria de Vigo that we use in this study (Fig. 6.1) has a
resolution of 300 m (156 × 153 grid points) and is integrated with a time step
of 30 s. It receives boundary conditions from the second grid and is forced by
WRF wind data at a resolution of 4 km. The operative scheme is composed by a
preliminary spin-up of five days hindcast followed by a three day forecast. For the
next prediction the new initial condition is generated by running the previous day,
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Table 6.1: Drifter experiments

# Date Drifter type Drogue Drogue Number of Duration
dd/mm/yyyy shape length [m] drifters [h]

1 15/06/2009 Marexi TRBUOY nylon tube 1 2 27
2 14/07/2009 Albatros MD02 nylon cone 1 2 25
3 04/08/2010 Albatros MD02 nylon cone 2 3 24
4 14/09/2010 Albatros MD02 nylon cone 2 4 24

starting with the hindcast output and using assimilated local meteorological data
during the integration. Freshwater river outflow into the Ria de Vigo is predicted
by the SWAT (Soil and Water Assessment Tool, http://swatmodel.tamu.edu).
An accurate bathymetry is crucial for the model. Here, it was constructed based
on data from the Spanish Hydrographic Institute. The bathymetry is widely reli-
able, however it must be mentioned that even at the high resolution of 300 m the
accuracy might be limited at some extreme locations, e.g. details of the flow in
the channel between the Cies Islands cannot be resolved.

Vertical Structure The vertical dimension of the model grid is structured in 16
Cartesian z-level layers with an increasing resolution towards the surface boundary
layer. We use the uppermost surface layer of the 3D velocity output of the model
to advect artificial tracers in two-dimensional space. The depth of this layer
varies between 1 m and 3 m as the tidal elevation adds to this layer, but generally
corresponds to the typical length of the drogues of the drifters. For the artificial
tracers we assume that the vertical velocities close to the surface are negligible
compared to the horizontal velocities, since the water surface imposes a boundary
condition of zero vertical flow [27]. This is especially justified for floating tracers.
We tested the positions of the resulting LCS computed from the upper three layers
and obtained only small differences. For these reasons, in the following we choose
the uppermost water layer only. For the further Lagrangian analysis the hourly
velocity fields from the model are used.

The model was designed as an operational model that captures the general
circulation in the Ria de Vigo, i.e., the propagation of the tidal wave in the
complex bathymetry and the response of the flow to changing wind forcing, which
drives the important longterm flow on the shelf with typical time scales of days
to weeks [167]. Due to its hydrostatic approximation that neglects the vertical
acceleration of fluid parcels [117] it might not accurately represent some physical
processes as e.g. non-linear internal waves, Kelvin-Helmholtz instabilities under a
fast spreading freshwater plume [192] or upwelling filaments [34]. However, these
processes do not dominate the dynamics in the Ria de Vigo and hardly influence
the drift of surface drifters. Internal waves have been reported to form on the
shelf [63], but there is no clear evidence that they enter the Ria de Vigo and alter
the horizontal circulation.
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Figure 6.2: (left) Albatros MD02 drifter with a cone-shaped nylon drogue at 1 m depth. (middle)
Marexi TRBUOY drifter with tube-shaped nylon drogue at 1 m depth. (right) Estimated wind
slip of the MD02 drifter drogued with a nylon cone at 1 m depth at a wind speed of ∼ 2 m/s.
Dashed lines show the distance ∆x [m] between four drifters and a dye patch in the water that
served as a reference point. The wind slip velocity can be estimated as ∼ 4 cm/s as indicated
by the black line.

6.2.2 Drifter Experiments and Data Processing

Drifter experiments in the Ria de Vigo were carried out by the Technological Insti-
tute for the Monitoring of the Maritime Environment (INTECMAR) in Vilagarćıa
de Arousa, Galicia, Spain, in the framework of the AMPERA funded DRIFTER
project ’HNS, oil and inert pollution: Trajectory modeling and monitoring’. Data
were collected for the project during 17 experiments over a period of 22 months
from December 2008 till September 2010 in two Galician estuaries, the Ria de
Arousa and the Ria de Vigo. The subset of data in the Ria de Vigo comprises 55
drifter trajectories. Drifters were deployed in clusters inside the Ria de Vigo, left
in the water over night, and recovered the following day. Therefore, the mean
duration of the trajectories is 19 h with a duration of 4 h for the shortest and 32 h
for the longest drifter run. The total drifter time is 1077 drifter hours.

Characteristics of Drifters The original experiments were designed to compare
different types of drifters and drogues for the management of contaminations and
oil spills. For our study, we selected four drifter runs out of the entire data set
fulfilling two criteria (Tab. 6.1): the drifters must have sufficient current following
properties (equipped with an effective drogue) and trajectories must be in the
vicinity of LCS computed from the model flow. In Tab. 6.1 we show the four se-
lected drifter runs with two types of drifters fulfilling these requirements (Fig. 6.2):
the MD02 drifter of Albatros Marine Technologies in three drifter launches, and
the TRBUOY drifter of Marexi Marine Technology in one drifter launch. The
MD02 drifter is a small coastal drifter that is robust due to its foam protection
and therefore suitable for applications close to rocky coasts. Both drifters transmit
their GPS position by sending SMS via the GSM system to a modem connected
to a PC. GSM net coverage is limited to coastal areas impeeding offshore use of
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Figure 6.3: Signal to noise ratio of drifter trajectories from Experiment 4. The signal of the
drifter position (solid line) is compared to the noise signal (dashed line) of a stationary positioning
test. For frequencies f < 10−3s−1 ≈ 1/16 min−1 the signal to noise ratio is larger than 10, i.e.
the signal represents real drifter displacements. In contrast, above this frequency, the signal of
the drifter position is of the same order as the noise due to uncertainties of the GPS position.
Hence, the high-frequency signal is dominated by noise and is therefore filtered out.

these drifters. Wind slip could be estimated from a single experiment with mod-
erate wind of ∼ 2 m/s where a dye patch was present as a reference point [171].
It turned out to be less than 4 cm/s for the MD02 drifter analyzed here (Fig. 6.2).
For the MD02 drifter the standard deviation of the GPS position was estimated
to be approximately 13 m by means of an experiment where 3 drifters were fixed
at a constant position for 3 h. This error is in the upper range of typical values
reported by other studies [146, 200]. For the TRBUOY drifters the characteristics
are expected to be likewise due to a similar construction as the MD02 drifter,
although no systematic analysis of the uncertainties was made.

Processing of Drifter Data Drifter position data were recorded at a period of
10-15 min for most experiments and the period was decreased to 5 min for the
last two experiments. All data were interpolated linearly to a time series with a
2 min time step and then lowpass filtered with a cutoff frequency of 1/15 min−1.
Johnson and Pattiaratchi [94] give a valuable criterion for the cutoff frequency.
They compare the frequency power spectrum of drifter trajectories to the spectrum
of a stationary test (noise) and filter out high frequencies with a signal to noise
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ratio smaller than 10. For our data, the frequency spectra of the drifter trajectories
and of the noise due to GPS uncertainties are plotted in Fig. 6.3. The frequency
threshold below which the signal to noise ratio is larger than 10 is around f =
1/16 min−1 corresponding to the cutoff frequency of the filter used. In order to
compare the velocity of the drifters to the velocity from the model, a further low
pass filtering of the drifter trajectories up to the Nyquist frequency of the model
of 1/2 h−1 would be appropriate. However, this does not change the drifter
trajectories significantly. Drifter positions at full hours and Lagrangian velocities,
derived by finite differencing, are then compared to the FTLE fields and Eulerian
velocities obtained from the hydrodynamic model.

6.3 Methods - Lagrangian Coherent Structures from
Model Velocity Field

In order to extract Lagrangian Coherent Structures we compute fields of the Finite-
Time Lyapunov Exponent (FTLE) from the discrete hourly velocity data set of the
hydrodynamic model as described in Sec. 2.3.3. Artificial tracers have an initial
separation of 60 m corresponding to 5 × 5 tracer particles per model grid cell
(300 m). Tracers are advected forward and backward in time in order to obtain
estimates of repelling (stable, divergent) and attracting (unstable, convergent)
hyperbolic manifolds. We present the combined FTLE fields Λ±(x, t, τ) computed
as [51]

Λ±(x0, t0, τ) = Λ+(x0, t0, τ)− Λ−(x0, t0, τ) (6.1)

where Λ+(x, t, τ) is the forward FTLE field with τ > 0 and Λ−(x, t, τ) is the
backward FTLE field with τ < 0.

Generally, the resolution of the FTLE fields is significantly higher than the
velocity fields from the model due to the 5×5 tracer particles per model grid cell.
The subgrid information in the FTLE field is contained in the time-dependent
velocity field and can be considered real [88]. It stems from the integration of the
velocity field along the trajectories of artificial tracers that have a length much
longer than a grid cell. Moreover, subgrid flow structures can be contained in the
temporal dependence of the velocity field.

Integration time In order to obtain meaningful FTLE fields, the finite advection
time τ has to be chosen carefully. It defines the time scale of the Lagrangian
processes that will be mapped in the FTLE fields. For small times τ , the probability
distribution function (pdf) of the FTLE values is dominated by the distribution of
the local instantaneous strain rate [6] and spatial FTLE fields do not show linear
structures. For large times τ , the pdf converges very slowly to its asymptotic
form, which in the case of a delta function denotes a uniform FTLE field without
any spatial information. Figure 6.4 shows this evolution for the pdfs of FTLE
fields in the Ria de Vigo. We use the pdfs of FTLE values here to investigate the
influence of the tidal flow. Obviously, in Fig. 6.4b the curves of the pdf’s mean and
standard deviation carry the imprint of the tidal semi-diurnal (and quarter-diurnal)
frequency. This reflects that the separation of tracers in the flow does not evolve
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Figure 6.4: Tidal influence on particle separation. a) Typical probability distribution functions of
a coastal FTLE field Λ+(τ,x). Distributions become narrower and more peaked for increasing
advection time τ . b) The evolution of the pdfs with increasing advection time τ shows an imprint
of the tidal time scales, i.e. the pdf parameters mean and standard deviation show semi-diurnal
and quarter-diurnal periods.

gradually, but intermittently with the tidal oscillations in the flow. Similarly, Orre
et al. [155] reports that relative and absolute dispersion in a tidal model in a
Norwegian fjord depend strongly on the tidal cycles and mixing predominantly
happens during times of high velocities between high and low tide. However, the
evolution of the pdfs in Fig. 6.4 does not indicate a strong oscillating behavior.
Meaningful LCS can thus be obtained with τ close to a typical time scale of the
flow. We choose τ = 24 h for the FTLE fields shown. This time can be extended
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Figure 6.5: Experiment 1. a) Trajectories of drifters and artificial tracers. b) Comparison of
the Lagrangian velocity of the drifters with the Eulerian velocity of the model interpolated to
hourly drifter positions. c) Scatter plot of Eulerian model velocity and Lagrangian drifter velocity
components shown in b) revealing the degree of correlation between both.

for calm meteorological situations, when the mean flow in the Ria de Vigo is small
and sharp FTLE ridges do not appear until τ reaches several days. Finally, it must
be mentioned that the studied coastal flow can be subject to several transitions,
especially coupled with the wind forcing, so the choice of the advection time
remains a subtle task [28]. Once reliable FTLE fields are obtained, estimates of
the manifolds, representing the LCS, are extracted as ridges in the forward and
backward FTLE field separately [181, 190] as described in Sec. B.1.

6.4 Results and Discussion

6.4.1 Comparison of Trajectories: Drifters - Model

We compare trajectories of the real drifters to trajectories of artificial tracers that
are advected with the model velocity data. Apart from the wind forcing entering
the hydrodynamic model, we do not use any additional direct wind forcing on
the artificial tracers. We are aware that the drifters could be modeled in a more
sophisticated way, taking into account its vertical extension at the boundary of the
wind and water flow. Possible effects are drifter displacement due to wind, wave-
induced Stokes drift and sub-scale dynamics not resolved by the hydrodynamic
model. Including these additional forcings can lead to a better agreement between
the trajectories of modeled tracers and real drifters when appropriate data of the
forcings are available [68, 171]. Such a detailed model of drifting objects is
especially desirable for search and rescue missions or for operational pollution
management. Here however, the objective is to study the surface transport as
predicted by the operational model and therefore we use the same ideal point-like
tracers for the direct comparison of trajectories as for computing the FTLE fields.
The uppermost layer of model velocity data is the most appropriate to compare
to our Lagrangian data of real drifters. In the following, the term ’tracer’ is used
shortly for ’artificial tracer’ in contrast to ’drifter’ for the real drifters.

Figures 6.5 to 6.8 show the four drifter experiments considered due to the
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Figure 6.6: Experiment 2. Corresponding diagrams as in Fig. 6.5.
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Figure 6.7: Experiment 3. Corresponding diagrams as in Fig. 6.5.
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Figure 6.8: Experiment 4. Corresponding diagrams as in Fig. 6.5.

presence of LCS that interact with the drifter trajectories. The first panel (a)
respectively shows the trajectories of real drifters and artificial tracers starting at
the same release point. The other two panels (b) and (c) compare the Lagrangian
velocity of the drifters with the Eulerian velocities of the model interpolated at the
actual drifter position, in order to interpret the separation of trajectories. Drifter
velocities are estimated from finite differencing of the hourly position data and
the Eulerian velocity of the model is a linear interpolation of the two-dimensional
model velocity field at the surface to the drifter position. Note that the latter is not
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Table 6.2: Comparison of real drifters with artificial tracers.

# d/D Separation rate Form of RMS(∆v) Rcorr
[km/h] trajectories [cm/s]

1 0.3 4/12 directional 5.2 0.78
2 1.0 3/24 oscillating 4.5 0.68
3 0.5 5/12 directional 7.2 0.83
4 1.0 3/24 oscillating 6.9 0.64

the Lagrangian velocity of the artificial tracers, but velocities are compared along
the trajectories of the real drifters. Panels (b) show that the modeled velocities
are in a reasonable agreement with the measured drifter velocities. A strong
tidal signal with a semi-diurnal period can always be seen in both data sets that
identifies the tide as the main forcing for both. In panels (c) correlation coefficients
Rcorr are around 0.8 for experiments 1 and 3, while in experiments 2 and 4 the
agreement is lower with correlation coefficients of 0.68 and 0.64 respectively.
An overview can be found in Tab. 6.2. We also quantify the deviation between
drifter and model velocity components as ∆vi = vdrifteri − vmodeli , i = x, y. The
root-mean-square deviation RMS(∆v) = 〈∆v2〉1/2 is a measure of the typical
deviation between model and drifter velocities. It is in the order of 5 cm/s for
our experiments (Tab. 6.2), similar to other studies where coastal drifters are
compared to current data from High Frequency (HF) Radar [137, 147].

Despite the reasonable agreement of the velocity data, the real and artificial
trajectories in experiments 2 and 4 separate drastically. The drifter trajectories of
these two experiments show how slight velocity differences between the artificial
and real tracers at the beginning of the experiment (here mainly in the x-direction,
Fig. 6.6b and 6.7b) lead to strongly diverging trajectories in the following 24 hours.
This divergence is partly due to the inherent behavior of Lagrangian chaos where
small initial separations grow exponentially in time.

In order to quantify the accuracy of trajectory prediction (with velocity data
from High Frequency (HF) Radar), Molcard et al. [137] and Ullman et al. [214]
set the separation of drifters and artificial tracers

d(t) = 〈|r(t)drifter − r(t)tracer|〉 (6.2)

in relation to the total traveled distance of the drifters

D(t) = 〈|r(t)drifter − r(0)drifter|〉. (6.3)

The ratio d(t)/D(t) denotes a relative error of the trajectory prediction and for
identical trajectories it is zero. Similar Lagrangian error metrics have also been
introduced by Toner et al. [207].

We use this measure to further distinguish qualitatively the flows in experi-
ments 1 and 3 from those in experiments 2 and 4 (Tab. 6.2). For experiments 2
and 4 the ratio d(t)/D(t) has relatively high values of the order of one, as the
drifters are located in an oscillating chaotic tidal flow with several return points
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in the trajectories resulting in a small traveled distance D(t). In contrast, in the
unidirectional (wind-driven) less chaotic flow in experiments 1 and 3 the trav-
eled distance of the drifters D(t) is large, leading to small ratios d(t)/D(t) of
0.3 and 0.5. The total separation rate between modeled and real trajectories is
almost a factor 2 higher for the directional flows with 4 km/12 h compared to the
oscillating flows with 3 km/24 h, but is overcompensated in the ratio d(t)/D(t)
by the large traveled distance D(t). Our separation rates are at the lower part
of the typical range of 4 − 25 km/day found in open ocean studies as reported
in Huntley et al. [92]. Velocities and especially velocity gradients in our strong
tidal flow can be expected to be as high as or higher than in the open ocean,
so it is meaningful to compare our results to separation rates in the open ocean.
An important difference, however, is the presence of the strong constraint that
the coastline imposes on our model flow and the well-defined forcing of the tides
that in large parts determine the coastal model flow. This probably leads to the
relatively low separation rates between drifters and modeled tracers that we find.

Based on the above comparison of drifter and model velocity data, we can
consider a basic validation of the model and assume that the hydrodynamic model
serves to approximately represent the flow in the Ria de Vigo. However, especially
in two out of four experiments, we see that the flow is highly irregular and not
unidirectional, so a small initial deviation between the drifter velocity and the
model velocity can lead to a strong separation of the artificial tracers from the
drifters. This strong dependence on initial conditions is an inherent property
of chaotical systems. Therefore, instead of directly comparing trajectories, we
concentrate on LCS as a more suitable approach to compare the drifter data set
to the hydrodynamic model.

6.4.2 LCS in the Ria de Vigo

As described in Sec. 6.3, LCS are obtained from tracers advected with the Eulerian
velocity field given by the hydrodynamic model. Fig. 6.1 shows an example of the
model surface velocity field with a relatively unidirectional tidal in and outflow,
that interacts in the outer parts of the estuary with the north-south flow on the
shelf and with the Cies Islands off the coast. Fully developed eddies are absent,
but some rotational structures appear as recirculations behind sharp capes. These
have very short lifetimes of few hours, mostly less than a turnover time. Thus, in
the investigated flow hyperbolic separation points are predominantly situated at
the coast and are rarely found in the calmer center of the bay. Artificial tracers
mostly separate due to a drift towards a coastal boundary or an island. Therefore,
most LCS are connected to the coast with one end and extend a distance into the
flow that depends on the advection time τ [101, 103, 191].

Figure 6.9 shows a case of pronounced repelling LCS in the Ria de Vigo with the
above mentioned characteristics for a long advection time of τ = 60 h. Such long
advection times are feasible for a slow mean flow when artificial tracers stay inside
the area of interest. We plot a square of artificial tracers at their initial positions
consisting of three regimes separated by repelling LCS that mark three different
water bodies. The distinct final positions of the three tracer regimes demonstrate
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Figure 6.9: Prominent transport barriers in the Ria de Vigo during a period with south wind,
05/02/2010. The FTLE field from forward advected tracers Λ+(x) shows sharp ridges connected
to capes and islands that are identified with LCS. The Cies Islands (A,B) and the Cape ’Cabo
Home’ (C) are decisive coastal boundaries for directing the flow and are attaching points for
repelling LCS. Three regimes of colored artificial tracers released in a square (1,2,3) demonstrate
the distinct final positions of the tracers after the advection time τ = 60h.

the predicting character of the LCS: the green tracer regime (1) leaves the estuary
northwards and enters the Ria de Aldan Bay, while the cyan regime (2) is caught
at the north coast of the Ria de Vigo close to Cape ’Cabo Home’, and the blue
regime (3) is drifted eastwards into the estuary. Note the lobe defined by a strong
ridge that encloses the water body that will be exchanged through the north
mouth. These semi-circular structures in context with the exchange of water
through a narrow channel have also been observed in FTLE fields of a tidal flow
in a Norwegian fjord [155] and are probably due to strong shear. The enclosed
area might even serve to estimate the exchange flux. Maximal FTLE values are
around 0.08 h−1 corresponding to an exponential separation at a time scale of
12 h, i.e., one tidal period.

In the following we perform a detailed comparison of the drifter trajectories
to ridges in the FTLE field on the basis of Figures 6.11 to 6.14. The LCS are
estimates of transport barriers for the model flow and we expect those LCS to be
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 

Figure 6.10: Idealized sketch of typical obtained LCS patterns. The flow separates and converges
due to coastal boundaries (black area), hence LCS are tied to the coast. Repelling (stable/red)
LCS are extracted from the forward FTLE field Λ+ and attracting (unstable/blue) LCS are
extracted from the backward FTLE field Λ−. The principal directions of transport are indicated
with arrows.

relevant for the trajectories of the real drifters as well, in the sense that drifters
do not cross the LCS and follow the water bodies that are defined by the LCS. In
Fig. 6.10 an idealized sketch of LCS observed in the model flow is completed with
the principal transport directions in order to help to interpret the following maps
of extracted LCS.

Experiment 1 The main feature in Figure 6.11 is an attracting (unstable/blue)
LCS (L1) connected to Cape ’Cabo Home’ (C) that marks the line of convergence
between water entering the north mouth and water from inside the Ria de Vigo.
Both drifters deployed inside the Ria de Vigo stay essentially east of this LCS along
the entire experiment while being advected to the south. The drifter trajectories
are also consistent with another attracting (unstable/blue) LCS (L2) emerging
from the eastern most cape at the north coast. This LCS marks the abrupt
movement in the drifter trajectories 4 h after the release stemming from the change
of direction of the tidal flow at low tide, see Fig. 6.11a. The repelling (stable/red)
LCS (L3) connected to San Martino Island (A) separating the outflow through
the south mouth from the flow towards the island is crossed by one drifter. The
crossing suggests a slight shift between the location of this LCS in the model and
in the real flow. The other drifter follows the prediction by the model.

Experiment 2 Figure 6.12 shows experiment 2 at the north coast of the Ria de
Vigo. LCS appear due to recirculations behind capes, but are less pronounced,
since the tidal flow is basically oscillating parallel to the coastal boundary. Drifters
stay between an attracting (blue/unstable) LCS (L1) and a repelling (red/stable)
LCS (L2). The observed LCS turn out to be typical for tidal dynamics in the inner
parts of the Ria de Vigo.

Experiment 3 Figure 6.13 shows experiment 3, a closeup of the separation
of drifters in the tidal channel between San Martino Island (A) and Monteagudo
Island (B). Wind and flow direction are similar to experiment 1 (Fig. 6.11). Drifters
were deployed in the channel during falling tide in order to check the LCS of the
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outflow. We want to highlight that even at the small scale of the order of 1 km
the initial LCS are principally consistent with drifter trajectories. This agreement
might be explained by the well defined flow in the small zone of interest due to a
strong constraint imposed by the surrounding coastal boundaries. The repelling
LCS (L1 and L2) between the initial positions of the drifters correctly predict that
one drifter passes the channel, the second runs aground on San Martino Island
(A) and the third drifts south, passing the island on the eastern side. Only later,
the westernmost drifter crosses an attracting (unstable/blue) LCS (L3) twice,
indicating a deviation of the model flow from the real flow.

Experiment 4 Figure 6.14 shows experiment 4 in calm conditions, i.e., without
a directed longterm flow on the shelf outside the estuary. Mixing of neighbor-
ing water bodies and the resulting LCS are mainly due to an oscillating tidal
flow around the Cies Islands. Drifter trajectories are consistent with a repelling
(red/stable) LCS (L1) separating water inside the Ria de Vigo from water that
moves westwards around the eastern cape of San Martino Island. In the sec-
ond half of the experiment, drifters move to the center of the basin without the
influence of any further pronounced FTLE ridges.

We compared drifter trajectories of four experiments to estimated transport
barriers (LCS) from the model flow, and we find that overall LCS serve to predict
and visualize the transport at the surface in the real flow in a global way. The
used methods to estimate transport barriers (LCS) from FTLE fields turn out
to be appropriate for the analyzed flow. Uncertainties of the positions of the
transport barriers can be observed in at least two cases when a drifter crosses
a pronounced transport barrier. Shadden et al. [191] estimates an error for the
position of the transport barrier based on crossing events. Here, the error would
be in the order of 1 km, corresponding to approximately 3 grid cells of the model
flow. In general, the model cannot be expected to represent the real flow exactly,
as the bathymetry is complex and the wind forcing included in the hydrodynamic
model does not respect local effects like shadowing of the mountains with a
height up to 500 m surrounding the estuary. However, temporal sequences of
drifter positions plotted over the LCS positions allow for a visual comparison of
drifter trajectories to integral geometrical structures of the model flow. As a
principal result, the subdivision of the flow into dynamically different water bodies
can be roughly predicted by the model. In contrast, the direct comparison of
trajectories of drifters to simple artificial tracers reveals high discrepancies, as
velocity differences between model and real flow accumulate in the integration.
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Figure 6.11: Drifters and LCS in experiment 1. Current positions of the two drifters are shown
as green circles, starting at the release point (black square) and moving along the trajectories
with hourly resolution (green line with black dots). The background field is the combined FTLE
field Λ±(x, t, τ) in units 1/h. Advection time is τ = 24 h. Extracted repelling (attracting) FTLE
ridges are drawn in red (blue). The failure of one of the drifters for some hours is indicated by
a black line.
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Figure 6.12: Drifters and LCS in experiment 2. Legend as in Fig. 6.11. Drifters move in a zone
with small dispersion between two FTLE ridges that are connected to a cape at the north coast.
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Figure 6.13: Drifters and LCS in experiment 3. Legend as in Fig. 6.11. Initial LCS correctly indi-
cate that one drifter goes offshore through the channel, the second runs aground at San Martino
Island (A) and the third is drifted south around the eastern cape of San Martino Island. Later,
the westernmost drifter crosses an attracting (unstable/blue) LCS twice. The noisy structure
at the bottom of the FTLE field appears because forward advected tracers leave the region of
available velocity data.



86 Chapter 6. Flow Patterns in a Tidal Estuary - Ria de Vigo

 

 

 56’  54’    8oW 
 52.00’ 

 50’  48’   9’ 

 10’ 

 11’ 

  42oN 
 12.00’ 

 13’ 

 14’ 

 15’ 

1km

L1

Λ± [h−1]  t = 4h

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

 

 

 56’  54’    8oW 
 52.00’ 

 50’  48’   9’ 

 10’ 

 11’ 

  42oN 
 12.00’ 

 13’ 

 14’ 

 15’ 

1km

Λ± [h−1]  t = 9h

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

 

 

 56’  54’    8oW 
 52.00’ 

 50’  48’   9’ 

 10’ 

 11’ 

  42oN 
 12.00’ 

 13’ 

 14’ 

 15’ 

1km

Λ± [h−1]  t = 15h

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Figure 6.14: Drifters and LCS in experiment 4. Legend as in Fig. 6.11. Even though the
trajectories of drifters and artificial tracers deviate strongly in this experiment (Fig. 6.8), the
repelling (stable/red) LCS close to San Martino Island computed from the model is consistent
with the drifter trajectories.
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6.4.3 LCS during North and South Wind Conditions

The results demonstrate the relevance of the extracted LCS for the real flow.
However, LCS are highly dynamic and intermittent, especially in transient mete-
orological conditions [28]. It is thus desirable to obtain more general information
about the Lagrangian transport at the surface beyond the special cases of the four
experiments. Wind forcing and the induced flow on the shelf play an important
role for the circulation in the outer parts of the Galician Rias [46]. At the west-
ern Galicia coast, two wind directions are dominant that can also be related to
upwelling and downwelling processes: northerly winds (often during summer) and
southerly/westerly winds (often during winter). Here we extract LCS in these two
meteorological conditions and show a Lagrangian sketch of the short-time surface
circulation in the Ria de Vigo. Figure 6.15 shows LCS of the two typical flow
patterns selected as examples for its pronounced north-south mean flow on the
shelf indicated by white arrows. The LCS are time dependent and oscillate with
the tide but they are computed for a time τ = 24 h, twice the tidal period, and
can be considered to represent the Lagrangian pattern of the short-time residual
flow. Their persistence time is in the order of days, comparable to the persistence
time of the flow pattern due to the wind forcing. In contrast to Eulerian mea-
sures, the LCS reveal the spatial information where surface water masses from
the shelf and from the estuary converge or separate. The Cies Islands (A and B,
Fig. 6.1) and Cape ’Cabo Home’ (C, Fig. 6.1) play a key role for this circulation,
since pronounced LCS are attached to these coastal boundaries. The inner and
outer parts of the Ria de Vigo are not strictly separated, but surface water enters
(leaves) the inner parts of the estuary during south wind (north wind).

South wind During south wind conditions (Fig. 6.15a), the most important
repelling (stable/red) LCS mark the flow separation at the Cies Islands (L1) and
at Cape ’Cabo Home’ (L2). Only the water body in-between the LCS (L1) and the
coast enters the Ria de Vigo at the south and most of the water leaves the estuary
through the north mouth again. Attracting (unstable/blue) LCS connected to the
Cies Islands in the north (L3) show that the outflow stays attached to the coast,
drifting north into the Ria de Pontevedra.

North wind During north wind conditions (Fig. 6.15b), the flow is almost inverse
to the flow during south wind conditions. A prominent attracting (unstable/blue)
LCS (L4) impedes surface water to enter into the inner estuary from the north.
The water body between Cies Islands and Cape ’Cabo Home’ passes on both sides
of San Martino Island and is drifted offshore.

Under both wind conditions, a transport barrier extending in north-south di-
rection and connected to the Cies Islands clearly separates the flow that interacts
with the inner part of the Ria de Vigo from the flow that passes by on the shelf.
Note the two bays Ria de Aldán and Ria de Baiona which are almost cut off from
the rest of the surface water exchange by LCS in both cases. These zones of
retention can be of special importance for ecological studies as high concentra-
tions of contaminants or biological tracers can persist in these areas. Even though
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the discussed LCS under north wind and south wind conditions are subject to a
certain variability, they correspond to typical flow patterns in the model appearing
under similar meteorological conditions. Their relevance for the trajectories of real
surface drifters has been demonstrated for the four experiments (Sec. 6.4.2).

Figure 6.15: Examples of LCS in the Ria de Vigo for two typical meteorological situations:
a) south wind in winter and b) north wind in summer. White arrows denote the approximate
direction of the mean flow on the shelf. LCS (denoted L1 to L4) allow to distinguish the water
entering, leaving and passing by the Ria de Vigo.
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6.4.4 Synoptic Lagrangian Maps (SLM)

In the previous part we have seen that the surface currents in the Ria de Vigo
generate chaotic trajectories. The geometry of transport is dominated by the
complex coastal boundaries as revealed by hyperbolic LCS attached to capes and
islands. We apply here the method of Synoptic Lagrangian Maps (SLM) (see also
Sec. 2.4), another Lagrangian method, to analyze surface flow data of the same
region obtained from HF radar measurements (Sec. 3.2).
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Figure 6.16: Boundaries of the flow domain in the Ria de Vigo that is covered by the HF radar.
The open boundary sections marked by colored lines are the north mouth (N, blue), the south
mouth (S, green) and the inner Ria (I, red). The position of the two HF radar stations is indicated
as ⊕, as well as the oceanographic buoy close to the Cies Islands (⊗) that measures the wind
speed and direction.

We first define the boundaries of the flow domain as shown in Fig. 6.16. The
two radar stations are located on either side of the bay to cover the basin in the
outer part of the Ria de Vigo, which is bounded towards the open sea by the
Cies Islands. Hence, the covered area naturally defines a flow domain with six
boundary sections: Starting in the lower left corner, the first section defines the
open boundary at the south mouth (green), followed by a closed section at the
Cies Islands, where the possible flow through the channel between both islands
is neglected. Further sections are the open section at the north mouth (blue), a
closed section at the north coast, the open section towards the inner bay (red),
and finally the closed south coast section. These boundaries coincide largely
with the boundary definition for the Open boundary Modal Analysis (OMA) [102]
used to decompose the measured velocity fields for an interpolation of missing or
erroneous values.
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Figure 6.17: SLMs showing the fluid entering (left column) and leaving (right column) the
domain through open boundaries. Trajectories are integrated forward and backward in time for
τ = 6 days. Colors indicate that particles passed through one of the open boundaries: North
mouth (N), South mouth (S), and Inner bay (I). The time since entrance (until exit) is coded
with the color intensity. (a,b) SLM on 13 December 2011, 9:00h. South-westerly winds induce
a coherent directed surface transport north-eastwards into the bay. Water enters through the
south mouth, leaving the domain towards the inner bay or though the north mouth. (c,d) SLM
on 20 December 2011, 6:00h. North-easterly winds induce surface transport that is reversed if
compared to (a,b). (e,f) SLM on 29 December 2011, 6:00h, without a directed flow. Instead,
particles that entered through different boundaries mix and reveal typical irregular patterns of
chaotic fluid advection.



6.4. Results and Discussion 91

However, it is important to note that the chosen boundaries in the Ria de Vigo
are not only of practical concern for the modal analysis, but they naturally mark
the entrances and exits of the bay which are of high importance for the exchange
of water with the shelf. We are especially interested in this fluid exchange with the
shelf, since possible biological or chemical contaminations, as e.g., harmful algae
blooms or oil spills, would enter into the bay through the north mouth or through
the south mouth. Apart from these undesirable impurities, the water exchange
and the surface transport as a part of the three-dimensional circulation are crucial
processes for the marine ecological system. With the SLM approach we address
this transport with typical time scales of few days using a Lagrangian method,
which is more direct and possibly more accurate than considering for example the
residual flow derived as a temporal mean of Eulerian velocity fields [222].

The original work about SLM by Lipphardt et al. [107] was concerned with
transport between the coast as a closed boundary and the ocean as an open
boundary. However, since we are interested in the flow exchange in a domain
with three entrance and exit sections, we focus here on the particles that enter
and leave the domain through these open boundaries. Fig. 6.17 shows fields of
initial particle positions classified by their origin and fate and coded with the color
of the respective open section of the boundary (N, S, or I). In the first two rows
steady wind conditions induce a directional flow along the main axis of the bay
in southwest-northeast direction. In panel (a) we can observe a straight (green)
plume of particles that entered the domain through the south mouth. A similar
straight (red) area of particles in panel (b) marks the water body that flows
towards the inner bay. In panels (c and d) the SLM reveal similar structures, but
in reverse direction due to north-easterly winds. The third row shows a situation
without a clear wind-induced directed flow. Fluid enters the domain through all
three open boundary sections. In this case we can observe that the different water
bodies mix and form the typical irregular mixing patterns with filaments.

Residence Time The examination of exit times of fluid particles is a common
concept for chaotic advection in open flows [74, 131, 142, 143, 159] which has
also been applied to oceanic flows [17, 170]. The exit time is the time a trajectory
needs from its initial condition to a predefined boundary of the flow domain. In
Fig. 6.17 the intensity of colors denotes the forward or backward exit time, T+

and T−, until a particle crosses the open boundary. The intersection of sets of
particles with certain origins and fates defines a pathway through the domain
from one open boundary section to another one. While trajectories cross the
domain, we can measure their residence times (also called transit times) as the
sum of the forward and backward exit time TR(x0) = T+ +T−. In a chaotic flow
the residence time sensitively depends on the initial condition of the trajectory.
Fig. 6.18 shows an instantaneous map of the residence times of particles in the
flow domain. Adjacent fluid patches exhibit drastically different residence times
from less than one day up to about 8 days. This can be explained by the stable and
unstable manifolds of hyperbolic points that separate fluid patches with different
dynamic properties. Some fluid patches are quickly advected to the boundaries,
while others stay in the domain for a long time.
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Figure 6.18: (a) Spatial distribution of the residence time of particles TR(x0) [days] on 24
December 2011. (b) Number of particles remaining inside the domain vs. residence time. The
curve follows an exponential with a constant exit rate of ≈ 1/2.1 days (solid line). The inset
shows the distribution of the residence time TR.

If we assume that the fluid is well mixed in the flow domain and that a constant
fluid volume per time escapes from the domain, the exit times T+ and T− have
an exponential distribution [142]

p(T ) ∝ e−κT (6.4)

where κ is the escape rate. For a given flow domain, 1/κ defines a time scale of
the chaotic flow. The fraction of particles that have not escaped from the domain
after a certain time t is given by

N(t)/N0 = 1−
∫ t

0
p(T )dT =

∫ ∞
t

p(T )dT = e−κt. (6.5)

Fig. 6.18b shows the process of particles escaping the flow domain in terms of
the fraction N(t)/N0. The distribution is the average of month of flow data and
is well approximated by an exponential function. Fluid particles escape with an
average rate of κ ≈ 0.5 d−1 corresponding to a e-folding exit time of about 2 days.
The inset shows the distribution of the residence times TR over the same period
of time. We observe that on average most particles transit the domain in less than
5 days, but for small fluid patches the residence time can be as high as 10 days.
It is important to note that these distributions are only valid on average, while
in single cases large deviations may occur. In particular, the escape of particles
depends strongly on the character of the flow, and we have already noted that
strong wind forcing can generate a directional rather than a chaotic flow in the
Ria de Vigo. In order to demonstrate this dependence of the exit times on the
flow character, we choose two different two-day periods with a directional flow in
one case and an oscillating flow dominated by the tidal motion in the other case.
For the directional flow we obtain an escape rate, which is about 5 times higher
than for the oscillating flow (Fig. 6.19a). Hence, as expected, a directional wind
induced surface flow rather than the pure oscillating tidal flow rapidly renews the
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Figure 6.19: (a) The fraction of particles N(t)/N0 inside the domain decreases exponentially
with time. However, the escape rates κ vary significantly for two two-day periods with qual-
itatively different flow regimes: a directional wind-induced flow on 13 December 2011 (red),
κ ≈ 2 d−1, and an oscillating tidal flow on 28 December 2011 (blue), κ ≈ 0.4 d−1. Points (·)
denote forward-time escape statistics and crosses (+) backward time. The black curve is the
long time averaged data for the period of one month in December 2011. (b) Spatially averaged
residence time 〈TR〉 of particles during December 2011. Note the high standard deviation of
values (dashed line) due to intermittent spatial patterns (see Fig. 6.18a).

water mass in the domain. The time series of the mean residence time (Fig. 6.19b)
reveals important variations over time scales of several days that are most probably
related to changes in the wind forcing. The very high standard deviation of the
residence time values of different fluid particles is again a sign of the intermittent
character of chaotic transport.

Comparison with Wind Data Here, we exemplarily relate the fluid transport
through our domain more directly with the wind forcing that drives a significant
part of the surface flow in the Ria de Vigo [167]. Therefore, we use the number of
particles crossing the domain from one open boundary to another open boundary
to quantify the through flow. Having three open boundaries (N,S,I), at each
instant of time we count the trajectories making one of the possible transects
through the domain N→S, S→N, N→I, I→N, S→I or I→S. In Fig. 6.20 we choose
a period of 15 days in December 2011 and correlate the through flow with in-situ
wind data measured at the Cies oceanographic buoy located at the south mouth
(see Fig. 6.16). During the first five days, the through flow is totally dominated
by the S→I direction, with a very small number of particles drifting from the
south mouth to the north mouth (S→N). A strong southwesterly wind pushes the
surface water through the south mouth into the Ria de Vigo where it continues
towards the inner part. After five days, the wind weakens and changes to north-
easterly directions. This reverses the surface flow such that particles transit the
domain from the inner bay to the north mouth and south mouth, i.e., I→N and
I→S flow directions dominate. This circulation pattern favors the positive estuary
circulation, where fresher water drifts out of the bay on the surface, and denser
saltier water flows in at the bottom.



94 Chapter 6. Flow Patterns in a Tidal Estuary - Ria de Vigo

10 15 20 25
−15

−10

−5

0

5

10

15

Days of Dec 2011

v 
[m

/s
]

a

Wind − Cies Buoy

 

 
wx
wy

10 15 20 25

Wind − Cies Buoy

Days of Dec 2011

b

10 15 20 25
0

1000

2000

3000

4000

5000

6000

Days of Dec 2011

c

Particle flow through domain

 

 
SN
SI
IN
IS

Figure 6.20: (a,b) Wind data measured at the Cies oceanographic buoy at the south mouth of
the Ria de Vigo. The reference vector corresponds to 10 m/s. (c) Number of trajectories that
transit the domain from one open boundary to another, e.g., SI (S→I) denotes the transport
from south mouth (S) into the inner bay (I).
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Figure 6.21: Forward SLMs on 16 July 2011, 12:00h, for particles escaping the domain. (a) Flow
data from HF radar measurements. (b) Surface flow of the hydrodynamic model.

Comparison of Radar and Model Flow Data SLM are maps of transport from
the interior of the flow domain to other regions outside the flow domain. The
information about the fate or origin of trajectories is obtained by averaging the
Eulerian flow field along trajectories, i.e., in a Lagrangian frame. In only slightly
different flow data sets, single trajectories would typically diverge strongly from
their counterpart in the other flow, even if the flow represents the same overall
transport pattern. However, since the SLM approach does not consider the exact
position of trajectories, but is instead concerned with the more general information
whether or not a trajectory ends in a certain region, SLM are especially useful to
compare the overall transport patterns in different flow data sets of the same
domain. In Fig. 6.21 we show an example of a forward SLM based on flow data
from HF radar measurements and a forward SLM on the same date based on
the surface flow in the hydrodynamic model of the Ria de Vigo. Even though
the predefined domains are not exactly the same, we observe a very similar flow
pattern for both data sets. In both flows the particles in the left half of the flow
domain escape through the south mouth (green), and a much smaller patch (red)
escapes from the domain into the inner bay. Hence, if we consider the HF radar
measurements as ground truth data, the SLM can be used as one method to
validate the transport patterns in the model surface flow.

6.5 Conclusions and Outlook

In this chapter, we studied the surface transport at the submesoscale (1− 10 km)
in a tidal estuary. We compared trajectories of surface drifters to Lagrangian
Coherent Structures (LCS) computed from the surface velocity fields of a coastal
hydrodynamic model. We also used surface flow data from a HF radar system
and Synoptic Lagrangian Maps (SLM) to visualize the flow exchange between
different open boundaries of the flow domain. Regarding the three dimensionality
of the flow at the coast, some limitations of the study of the horizontal surface
flow have to be taken into account. Most often, vertical flow cannot be neglected
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as upwelling and downwelling processes or the typical vertical estuary circulation
imply. These vertical flows lead to divergence in the two-dimensional surface ve-
locity fields, which modifies the FTLE field [87]. We also observe the occurrence
of negative FTLE values (see Fig. 6.4a) corresponding to zones of convergence
in the horizontal plane. Furthermore, Branicki and Malek-Madani [27] have sus-
pected that a part of LCS extracted from estuary model flows can be artifacts due
to coarse boundary conditions and imprecise forcings. In our case, the relatively
accurate tidal forcing determines a large part of the flow dynamics, but coarse
wind data and unresolved coastal topography, as well as the approximations for
the hydrodynamic equations can certainly limit the reliability of the model output.
Despite these limitations, the LCS and SLM represent a surface footprint of the
complete 3-dimensional transport as given by the model, and we can draw the
following conclusions:

• LCS, extracted from the surface flow in a hydrodynamic model, reveal the
fundamental structure of Lagrangian transport in the Ria de Vigo imposed
by the prominent coastal boundaries, as islands or capes. LCS connected to
the Cies Islands and Cape ’Cabo Home’ play a key role directing the in-and
outflow of the estuary and controlling the water exchange with the shelf for
the typical meteorological conditions of north wind and south wind.

• Water exchange in and out of the small bays Ria de Aldán and Ria de
Baiona is prevented by LCS for both wind directions.

• SLM complete the picture of flow exchange and visualize the fluid patches
that transit the flow domain from one open boundary to another. Wind
forcing is found to correlate with the changing directions of surface transport
as measured by HF radar.

• LCS computed from the model velocity fields are found to mark largely
transport barriers for real drifters. This implies that the model output rep-
resents the general circulation in the estuary under different meteorological
conditions and the surface transport has been validated with drifters.

• Similar to recently reported results [191], we find that drifter paths are bet-
ter characterized by LCS than by single artificial tracers. Due to Lagrangian
chaos, the trajectories of single artificial tracers in the model flow can sig-
nificantly deviate from the drifter trajectories, although the main geometry
of the circulation is captured correctly by the model.

• Based on the drifter experiments, we can estimate an uncertainty of the
LCS positions of about 1 km. This can partly be due to the tendency of the
model to underestimate the dynamics.

Our results demonstrate the importance of the Lagrangian view on the output of
coastal models and the power of the LCS method for the analysis of these flows.
The LCS analysis applied to model data is especially interesting in coastal regions
where direct high resolution measurements of the velocity field (e.g. HF Radar)
are not available.



6.5. Conclusions and Outlook 97

In relation with the intense fishery and seafood production in the Ria de Vigo,
many biological and ecological studies are carried out in which the transport
of nutrients, plankton, fish eggs, larvae, etc., plays a crucial role. Visualized
surface transport patterns can be a useful hint for such studies. They can help to
take horizontal transport processes into account as an explanation for biological
observations [100, 165]. Future work could deal with a closer look at the position
error of the LCS which can be determined by lines of drifters deployed across a
predicted LCS. Moreover, the challenging task of 3-dimensional LCS in coastal
models has been addressed by Branicki and Malek-Madani [27] and reliable results
would be valuable for many ecological transport problems.





Chapter 7

Transport in a Quasi
Two-dimensional Turbulent
Flow with Application to a
Chemical Reactive Front

Abstract

In this chapter we investigate the transport in a turbulent quasi two-
dimensional laboratory flow induced by capillary Faraday waves on a thin
fluid layer. In experiments with an excitable autocatalytic chemical reac-
tion in this flow, propagating chemical waves with a highly wrinkled front
have been observed. These observations demand for a detailed study of the
underlying advective transport. We first characterize the vortex patterns in
the flow in the Eulerian frame and relate them to the geometric pattern
of the Faraday waves. In a second part, we compute Lagrangian coherent
structures (LCS) that determine the spatiotemporal mixing patterns. Simul-
taneous experimental measurement of the velocity fields and the chemical
concentration allow for a superposition of the LCS onto the concentration
field. This reveals that the LCS shape the advancing reaction fronts.

7.1 Introduction

Mixing in time-dependent flows is generated by stretching and folding of fluid
parcels. Especially in the last ten years, stretching rates experienced by the fluid
parcels, e.g., quantified by Finite-time Lyapunov exponents (FTLE), have been
used to measure the global mixing efficiency, but also to characterize local mixing
processes in fluids. Many studies focus on the question how the spatial distribution
of high stretching rates determines the patterns in the fields of passive tracers
[99, 212, 221, 231]. It is now widely accepted that lines of high backward-in-
time stretching act as transport barriers and align with the gradients of passive
tracers [220]. These transport barriers have also been extracted from experimental
turbulent flows [123]. In fields of reactive tracers, e.g., stirred chemical reactions,

99
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Figure 7.1: Detail of the chemical wave front that propagates from left to right. Grayscale
values indicate light intensity which is a monotonically increasing function of ferrin concentration
in the Belousov-Zhabotinsky reaction. The small-scale structures in the image are caused by
the shadowing of floating particles for the PIV measurement. The velocity field extracted from
subsequent images by PIV is overlayed (every 2nd vector plotted). The flow has a typical velocity
of vrms = 21.9 mm/s and the Reynolds number based on the Faraday wavelength λF ≈ 9 mm
is Re ≈ 140.

the transport barriers separate the reactants from each other, or divide the fluid
into regions with inhibited and excited chemicals. The stretching of the fluid
increases the contact area of reactants, and therefore, the stretching rates of the
fluid are closely linked to the spatial structure of chemical waves [164] and to
the temporal evolution of chemical reactions [13, 95, 210]. In a similar approach,
Mahoney et al. [114] propose active ’burning’ invariant manifolds (BIMs) that
mark the front of a chemical reaction in a laminar flow. BIMs can be seen as LCS
of the extended dynamical system including advection and the reactive dynamics,
where the latter is represented by a constant front velocity.

Motivation This study of local flow structures is motivated by experiments with
an excitable chemical reaction (Belousov-Zhabotinsky reaction [96], BZ reaction
hereafter) in a turbulent quasi-twodimensional flow induced by capillary Faraday
waves (Sec. 3.3). A chemical wave with a propagating front can be observed in
this experimental realization of a reaction-diffusion-advection system [216]. A
closeup of the chemical wave front is shown in Fig. 7.1. The coherent global wave
only exists for a certain range of parameters of the vertical vibration forcing, i.e.,
the advective transport in the flow is a key process for the chemical wave that can
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favor or destroy it. In order to quantify the flow properties, we carried out detailed
measurements of the horizontal surface velocity field of the flow via Particle Image
Velocimetry (PIV), see Sec. 3.3.1. The obtained velocity data reveals typical
characteristics of two-dimensional turbulence, forced at the wave length of the
Faraday waves [217]. Moreover, based on the measured velocity data, we could
demonstrate that the velocity of the chemical wave front depends on the intensity
of asymptotic mixing induced by the fluid motion. Asymptotic mixing takes the
statistical approach that turbulent fluid motion, on length scales comparable to
or larger than the reaction front width, can be treated as a stochastic process.
In particular, we found that when the asymptotic mixing is parametrized with a
turbulent diffusion coefficient, the front velocity follows the Fisher-Kolmogorov-
Petrovskii-Piskunov (FKPP) relation [218].

Here, instead of considering stochastic transport and the chemical wave as
a global object, we focus on the local mixing of the leading edge of the wave
by stretching and folding that shape the geometry on relatively small time and
length scales. In the experiments we observe that the chemical wave front is not
smooth, but exhibits a distinct filamentous structure (Fig. 7.1) which is indicative
for advection-dominated transport. Indeed, the Peclét number is of the order of
Pe ∼ 500, i.e., diffusion is neglectable as a transport process. However, diffusion
is certainly necessary to enable the chemical reaction. The Damköhler number,
comparing advection and reaction time scales Da = τadvection/τreaction, is of the
order of unity. This indicates that both processes evolve on the same time scales,
i.e., the chemical concentrations change while they are stirred by the flow. In the
case of a large Da number, the spreading of the wrinkled front would be limited
by advection and the chemical concentration could be treated as a passive tracer.
This is not the case here. However, the filamentous structure of the front suggests
that coherent structures in the flow, in particular Lagrangian coherent structures
(LCS), must play an important role in shaping the chemically active front. The
objective here is to extract and characterize these LCS in the experimental flow
and to compare it with the concentration field at the front.

In the following, we analyze the experimentally measured turbulent velocity
fields of the Faraday flow searching for coherent structures and examining their
impact on the reaction front. First, in the Eulerian frame, the flow is characterized
in terms of vorticity fields that are compared to the pattern of the capillary Faraday
waves. In a second part, in the Lagrangian frame which is more relevant to
transport, we discuss the distribution of finite-time Lyapunov exponents (FTLE) in
the flow and relate the associated Lagrangian coherent structures to the geometry
of the chemical wave front.

7.2 Results

7.2.1 Vortices and Faraday Waves

Since the capillary surface waves, which cause the Faraday flow, exhibit a transient
regular rectangular pattern, it seems natural to assume that this wave pattern has
an influence on the configuration of vortices in the flow. Persistent vortices can
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Figure 7.2: Vorticity and divergence fields [s−1] of the Faraday flow at low forcing (top, Re ≈ 60)
and high forcing (bottom, Re ≈ 210). (a,e) Vorticity fields. (b,f) Space-time plot of vorticity
along the dashed line in (a,f). (c,g) Divergence fields. (d,h) Space-time plot of divergence along
the dashed line in (c,g). Divergence in the Faraday flow is small and localized in space and time.

order the transport in fluids. When vortices in time-dependent velocity fields are
diagnosed in the Eulerian frame, their role as coherent structures in transport
cannot ultimately be ascertained, but their spatial distribution determines the
overall geometry of Lagrangian coherent structures. Here, we therefore first an-
alyze flow structures in the Eulerian velocity fields in terms of vorticity, estimate
their persistence time and relate them to the widely regular pattern of the Faraday
waves.
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Figure 7.3: (a) Temporal autocorrelation function of the vorticity. (b) The correlation time τcorr
(+), an estimate of the persistence time of vortices, decreases rapidly with increasing Reynolds
number. For the fast flow the vortices still persist for about 10 periods of the Faraday waves.
The eddy turnover time τε (◦) is of the same magnitude as the correlation time, i.e., the vortices
are persistent enough to affect the trajectories in the flow.

Vorticity Patterns The vorticity of the two-dimensional velocity field, defined
as ω = ∇ × v = ∂xvy − ∂yvx, is a local measure for the infinitesimal rotation
of an infinitesimal fluid parcel, and it is useful to identify rotating structures in
velocity fields. Vortices are characterized by high positive or negative vorticity
depending on their orientation, i.e., in a right-handed coordinate system vortices
with positive (negative) vorticity turn anti-clockwise (clockwise). Figure 7.2 shows
exemplary vorticity fields of the Faraday flow at two different Reynolds numbers,
Re ≈ 60 and Re ≈ 210. In two-dimensional flows a Reynolds number of the
order of ∼ 100 already indicates the onset of turbulence with a developed inverse
energy cascade [217]. Generally, we observe that for the lower Reynolds number
vortices are arranged on a grid (panel a) and persist for several seconds, as the
space-time plot reveals (panel b). In contrast, for the higher Reynolds number,
the grid-like vortex pattern is distorted (panel e) and vortices do not persist (panel
f). Overall vorticity values are higher for the higher Reynolds number (note the
different color bar).

We also show the divergence field for both flows. Theoretically, in a two-
dimensional incompressible flow with zero vertical velocity, vz = 0, the continuity
equation reduces to ∇ ·v = ∂xvx + ∂yvy = 0. We expect small divergence in our
quasi two-dimensional experimental Faraday flow since any non-zero divergence
in the xy-plane would indicate a vertical flow. In the measured velocity fields,
zones of non-zero divergence occur very locally in time and space (Fig. 7.2c and
g). This is a typical characteristic of a stochastic signal, most probably pointing
to measurement errors. Divergence values are higher and more frequent for the
higher Reynolds number (panel g). Three possible effects can account for the
measured non-zero divergence: (1) Since the Faraday flow is forced vertically by
the capillary surface waves there is periodic vertical fluid motion inherent in the
system. Although we take the images at the phase of the vertical oscillation when
the water surface is as flat as possible, locally a divergence or convergence of
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the surface is quite possible. (2) Persistent vertical flows might be a reason for
divergence, but in this case, particles would cluster at zones of negative diver-
gence and downward vertical flow, which is not observed. (3) The most probable
cause for divergence in the measured velocity fields are uncertainties of the PIV
method. Especially when the particle density is too high or too low in a small
region, erroneous velocity vectors are the result and they cannot always be filtered
out. With our measurement system we cannot separate the different effects con-
tributing to divergence, but we assume the divergence to be neglectable for the
analysis of Lagrangian transport below. In particular, the scalar vorticity fields
serve to represent the entire flow while the divergent component of the flow does
not pay a significant role.

We quantify the persistence time of the vortices in the Faraday flow by com-
puting the autocorrelation time of the scalar vorticity field. The temporal autocor-
relation functions R(τ) =

∫∞
0 ω(t)ω(t+ τ)dt for different Re numbers (Fig. 7.3a)

are fit with an exponential function to obtain the correlation time τcorr. With
increasing forcing of the Faraday flow the correlation time decreases rapidly from
τcorr = 1.3 s for the slowest flow with Re ≈ 60 to τcorr = 0.2 s for the fastest
measured flow with Re ≈ 210 (cf. Fig. 7.2b and f). When we consider the vortices
in the Faraday flow to persist during this correlation time of the vorticity field,
this time scale has to be regarded with respect to a typical time scale in the flow,
the eddy turnover time. We define it as

τε =
λF
vrms

(7.1)

where a typical length scale in the flow is given by λF = 9.1 mm, the Faraday
wavelength in our experiment for a forcing at 50 Hz, and vrms is the root-mean-
square velocity of the flow. τε is of the order of the time a particle needs to cross
a vortex with diameter λF . Both time scales, τcorr and τe, are similar, as is shown
in Fig. 7.3b. This can be interpreted in the sense that vortices in the Faraday flow
persist for times that are long enough to significantly affect the trajectories of
particles in the vortex. A slight tendency is visible that with increasing Reynolds
number the persistence time of vortices becomes smaller with respect to the eddy
turnover time, i.e., for higher Reynolds numbers vortices in the Faraday flow
deform and vanish faster compared to the time during which a trajectory stays in
the vortex. The ratio τcorr/τε decreases. In the two limits, for τcorr/τε →∞ the
vortices would exist forever and would be completely isolated from each other in
the time-independent flow, while trajectories would circle around one vortex many
times. For τcorr/τε → 0, no coherent vortices could persist and the trajectories
would move stochastically, as in a random walk. In our case, the ratio is of
order one, τcorr/τε ∼ 1, and we expect the vortices to considerably direct the
trajectories in the flow.

Patterns of Faraday waves The exact process of energy transfer from the ver-
tical Faraday waves to the horizontal flow is still unclear. [58] showed for Faraday
waves on liquid mercury that their statistics significantly change when a Lorentz-
force induced horizontal vortex flow is present in the liquid. The energy transfer
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Figure 7.4: Coupling of Faraday waves and vortices in the horizontal flow for a flow with
Re ≈ 60. (a) Rectangular pattern in the Faraday waves, Eq. (7.2). Low values (blue) indicate
nodes and high values (red) indicate antinodes. (b) Contours of the same wave pattern overlaid
over the vorticity field. The grid of vortices aligns with the wave pattern such that vortices are
located on nodes of the waves.

must be closely linked to these wave-vortex interactions. From the observational
point of view, we see a direct coupling between the spatial pattern of the vortices
and the spatial wave pattern. Fig. 7.4a shows the pattern of Faraday waves that
force a flow of Reynolds number Re ≈ 90. In experiments with the chemical BZ
reaction in the inhibited state, the red ferroine dye allows for a simple detection of
the surface elevation. The image appears brighter where the fluid layer is thinner,
and darker where the fluid layer is thicker. If we substract the grayvalues of two
images, I1 and I2, taken at the moment of maximal Faraday wave amplitude with
a phase difference of π

I = |I1(ϕ = 1/2π)− I2(ϕ = 3/2π)| (7.2)

we obtain the image I shown in Fig. 7.4a in grayvalue units. The nodes of the
Faraday waves have the same surface elevation for both phases and the small
difference appears in blue, while the anti-nodes have the highest difference in
amplitude appearing in red. We observe this rectangular pattern of the Faraday
waves in the entire flow region, but as time evolves the pattern deforms and
imperfections travel through the grid, as can be seen at the top of Fig. 7.4a. In
panel (b) of the same figure, we overlay the contours of the Faraday wave pattern
onto the vorticity field. Especially in the lower part of the figure, where the wave
pattern is most regular, vortices align with the wave pattern. Counter-rotating
vortices (depicted by blue and red color) are located on the nodes of the wave
pattern, while the hyperbolic regions in-between vortices coincide with the anti-
nodes of the wave pattern. This coupled flow pattern is relatively unstable, as it
exists only for transient times in parts of the flow field. It would be interesting
to check if it was more stable in a steady rectangular Faraday wave field, e.g., in
a square container. The congruence of the vortex pattern and the wave pattern
is a clear hint that the position where a vortex is generated is at least partly
determined by the pattern of the Faraday waves.

In order to estimate the time during which the Faraday wave pattern is stable
without irregular translations and deformations, we analyze the time dependence
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Figure 7.5: Patterns of Faraday waves in flows for Reynolds numbers (a) Re ≈ 60 and (c)
Re ≈ 210. Nodes appear in dark tones and antinodes in bright tones. (b,d) Space-time plots
of the wave pattern along the dashed line showing the stability of the wave pattern in time.
Time scales of deformation and translation are estimated from the autocorrelation time to be
(b) τcorr ≈ 0.7 s and (d) τcorr ≈ 4.5 s.

of the wave pattern for the fastest and slowest experimental flows with Reynolds
numbers Re ≈ 60 and Re ≈ 210. Fig. 7.2.1 shows nodes and antinodes in the
wave patterns of both flows (panel a and c) and the corresponding space-time
plots (panel b and d). Nodes and antinodes deform and translate much faster for
the intenser flow. The corresponding autocorrelation times for the wave patterns
are τcorr ≈ 0.7 s for the slow and τcorr ≈ 4.5 s for the fast flow. When we assume
that the vortices observed in the Faraday flow are coupled to the regular wave
pattern as suggested in Fig. 7.4, the typical time during which the wave pattern
stays stationary could be the limiting time for the vortices to exist. Hence, the
instability in the wave pattern that itself might be due to wave-vortex interactions
could be the limiting factor for stable rotating structures in the flow.

In this part, we analyzed vortices, or Eulerian coherent structures, in the
Faraday flow from the observational point of view. The persistence time of the
vortices is similar to the eddy turnover time and vortices should therefore consid-
erably influence the trajectories of fluid parcels. With increasing Reynolds number
the persistence time of vortices significantly decreases, as diagnosed by the au-
tocorrelation time of the vorticity field. This decrease might be related to the
increasing irregular movements of the Faraday wave pattern, as the position of
vortices appears to be coupled to the rectangular pattern of the Faraday waves.
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7.2.2 Lagrangian Coherent Structures

As we have seen in the previous section (7.2.1), the analysis of vortices, defined as
small circular domains of high positive or negative vorticity, gives a first overview
over the spatial structure and the time dependence of the velocity fields. How-
ever, transport is inherently Lagrangian and no final conclusion about the spatial
structure of transport can be drawn from the Eulerian measures. Instead, the
structures that are relevant for shaping the chemical front are of Lagrangian na-
ture. In this section, we therefore characterize the transport in the Faraday flow
with Lagrangian coherent structures (LCS) in fields of the finite-time Lyapunov
exponent (FTLE), computed as described in Sec. 2.3. We focus on the FTLE
fields resulting from a backward integration in time. Ridges of high values in
these fields approximate unstable manifolds that are expected to align with lines
of high tracer gradients of advected substances. We use velocity fields of exper-
iments where the fluid is deionized water instead of the solution of the chemical
reaction. This optimizes the contrast of tracer particles in the images such that
the PIV analysis results in velocity fields with minimized uncertainties.

In Fig. 7.6 we examine the optimal finite integration time τ of particle trajec-
tories to obtain a FTLE field that reveals most clearly the underlying transport
structures. The three figures show the backward FTLE field for integration times
τ = 1.5 τε, 3 τε and 6 τε, where τε is the eddy turnover time, Eq. (7.1). For
τ = 3 τε we obtain the best result, shown in panel (b). Elongated lines of high
FTLE values trace the locations of unstable manifolds in a grid of counter-rotating
vortices in the Faraday flow. The unstable manifolds have a perpendicular ori-
entation to each other, since the vortices are collocated on a grid, given by the
wave pattern of the Faraday waves. With increasing integration time, the trajec-
tories pass different parts of the flow and the FTLE value represents a mean over
stretching rates of variable magnitude. Therefore, the FTLE field in panel (c)
becomes more uniform, while the fundamental Lagrangian structure can still be
seen. In this case, the integration time is about six times the autocorrelation time
of the vortices τcorr (Fig. 7.3). Thus, the time-dependent velocity field totally
changes its spatial structure during this time period leading to an efficient mixing
and a similar value for a large part of the particles [99].

With the choice of τ = 3 τε we also obtain clearly defined LCS for Faraday
flows with a higher forcing, shown in Fig. 7.7. The complexity of the structures
is very similar to the complexity of previously reported LCS in a turbulent flow
[123]. An important difference is that their quasi-twodimensional flow in a rotating
tank, forced by 3D turbulence, is probably scale-free, such that the largest LCS
are associated to vortices whose size is limited only by the system size [179]. In
contrast, we have a sharply defined forcing wave length given by the Faraday
waves that seems to determine the length scale of the largest LCS in our flow.

The probability distributions of the FTLE values are plotted in Fig. 7.8. For
each flow, a narrowing of the pdf can be observed which corresponds to the effect
that trajectories pass regions with different stretching rates and the Lyapunov
exponent becomes similar for all trajectories (cf. Fig. 7.6). For the longest inte-
gration time τ = 6 τε (blue curves) the pdfs are biased, as the maximal attainable
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Figure 7.6: FTLE fields for an integration backward in time in a Faraday flow with Re ≈ 60.
Integration times τ are multiples of the eddy turnover time τε, Eq. (7.1). (a) τ = 1.5 τε. (b)
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Figure 7.7: FTLE fields for three Faraday flows with increasing intensity: (a) Re ≈ 60, (b)
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Lyapunov exponent is limited by the domain size. The squares indicate this limit
value. It is given by the fact that two initially close particles cannot separate fur-
ther than the domain size during the integration time τ . Particles that separate
faster automatically reach the boundary and are discarded for the computation of
FTLE values.

The mean Lyapunov exponent is an important measure for the mixing intensity
in fluids. Fig 7.9a shows the mean FTLE values averaged over the entire domain
for the Faraday flows with different intensity. The values decrease rapidly with the
integration time. However, they have not reached an asymptotic value when the
domain size starts to limit an unbiased evaluation of the pdf. Generally, the mean
FTLE value increases with the flow intensity. It is interesting to have a closer look
at the pdfs of the FTLE values. In Fig. 7.9b we plot the pdf of the logarithmic
stretching p(Λτ). The curves for the different flow intensities collapse when τ is
a multiple of the eddy turnover time representing a typical time scale in the flow.
This basically means that in the Faraday flows with different Reynolds numbers
(statistically) the same deformation of the fluid is reached if time is scaled with
the eddy turnover time.
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Figure 7.9: (a) Mean FTLE values for Faraday flows with Re ≈ 60 (solid), Re ≈ 130 (dashed),
Re ≈ 210 (dash-dot). Note that the round data points (◦) are biased due to the limited size of
the domain (cf. Fig. 7.8) (b) The pdfs of the logarithmic stretching Λτ collapse for flows with
different forcing intensity when τ is chosen as a multiple of the eddy turnover time τε = λF /vrms.
Colors indicate the integration time of 1.5 τε (black, dashed), 3 τε (red, solid), and 6 τε (blue,
dash-dotted).

7.2.3 Simultaneous LCS and Chemical Front

In the previous part, we examined LCS in velocity fields of the Faraday flow that
were measured in deionized water. For this part, we use an aqueous solution
of the BZ chemical reaction, such that a wrinkled chemical front propagates
through the reactor. We simultaneously measure the flow by means of PIV and we
determine qualitatively the concentration of the BZ reaction. The flow information
is estimated from small PIV particles in the image and the concentration of the
BZ reaction is given by the gray value in the image (Fig. 7.10a). The gray value
in the images is a monotonically increasing function of the concentration of ferriin
that represents the activator in the BZ reaction. Since the PIV particles are small
compared to the structures in the concentration field, the flow information and the
concentration field can be reasonably separated by smoothing. A spatial low-pass
filter removes the particles, and a spatial high-pass filter removes the background
concentration field. Certainly, this methods is not suitable to determine exact
concentration fields and concentration gradient fields, but it is a relatively simple
experiment without the need for two cameras that separately record the PIV
particles and the chemical concentration.

The LCS were extracted from the backward FTLE field (Sec. B.1) based on the
PIV measurements. Strictly, they are only valid for pure advection, while diffusion
and especially the reaction also significantly contribute to the propagation of the
chemical BZ front. However, as we argued above, the filamentous structure of
the front suggests a strong influence of advection in shaping the front. Therefore,
we compare the spatial structure of the front with LCS extracted from the PIV
flow. Fig. 7.10b shows the smoothed image, where bright colors indicate a high
activator concentration. The overlaid LCS are located along the boundaries of
zones with a high activator concentration. Since they are estimates of the unstable
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a

b

c

Figure 7.10: Propagating chemical front of the BZ reaction in the Faraday flow with Re ≈ 60.
(a) Original image in gray scale units. (b) Smoothed image and superimposed ridges of the
backward FTLE field. (c) Gradient field of smoothed image with ridges of the backward FTLE
field.
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hyperbolic manifolds in the flow, they mark the lines where fluid patches merge.
Consequently, high gradients occur along these lines. In Fig. 7.10c we show the
gradient field of the smoothed image. High gradients at the boundary of the
activated region align with the attracting LCS. The agreement of the concentra-
tion and gradient fields with the FTLE ridges is not perfect. This can mainly
be attributed to the fact that the FTLE ridges are only estimates of transport
barriers to advection, and the concentration field is only qualitatively measured
here. Moreover, the LCS only take into account the advection, while the chemical
concentration is not a passive tracer and diffusion and reaction make the front
propagate as well. We also have to mention that the concentration fields show
some indications for a vertical shear in the thin fluid layer, such that the chemical
front has also a vertical structure.

7.3 Conclusions and Outlook

We studied transport in a quasi-twodimensional turbulent Faraday flow with the
focus on a chemical wave front that propagates through the stirred fluid. From our
Eulerian and Lagrangian analysis of the flow we can draw the following conclusions.

• Vorticity patterns in the moderately forced Faraday flow are directly cor-
related with the regular patterns of the Faraday capillary waves. In flow
regions with a stable wave pattern, the vortices are ordered on a rectan-
gular grid and persist for several seconds. For higher forcings, the vorticity
pattern becomes less regular and less persistent.

• Lagrangian coherent structures (LCS) in the Faraday flow are most pro-
nounced for integration times of about three eddy turnover times. For a
weak forcing, LCS reflect the transport in the rectangular grid of eddies.
For stronger forcings, this structure is observed less frequently, but still the
wave length of the Faraday waves seem to be the dominate length scale in
the transport patterns.

• Faraday flows with different Reynolds numbers reveal the same statistics of
logarithmic stretching λτ , if the time τ is rescaled with the eddy turnover
time, a typical time scale in the flow.

• In the moderately forced Faraday flow, attracting LCS from the backward
FTLE fields align with the contours of the simultaneously measured concen-
tration of the BZ chemical reaction. This demonstrates that the spreading
of the reaction front is locally controlled by LCS. Chaotic advection gener-
ates the filamentous structure of the chemical wave wave front.

It would be very interesting to improve the experimental techniques towards
a higher accuracy of a simultaneous flow and concentration measurement. Addi-
tionally, a reduction of the vertical shear would be desirable. This might possibly
be achieved with a two-layer fluid, where the bottom layer consists of a dense
immiscible fluid with a low viscosity (Fluorinert R©). Test will have to show if a
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horizontal Faraday flow is generated equally in such a two-layer fluid under similar
forcings as for a single layer. Finally, the experiment could be a testbed for the
promising approach of BIMs [114, 135] that until now have only been applied to
laminar flows.



Chapter 8

Conclusions

In this thesis, we have studied fluid transport in several time-dependent two-
dimensional flows given by discrete data sets of the velocity fields. The fluid
flows exhibit chaotic advection, and consequently, the Lagrangian patterns of
passive and reactive tracers have a highly irregular shape. We used the concept
of Lagrangian coherent structures (LCS) that are computed from trajectories of
fluid parcels in the chaotic flows. In the two-dimensional case, LCS are lines
that separate fluid regions with dynamically different trajectories. They unveil
the geometric structure of the stretching and folding process inherent to chaotic
mixing. The LCS completely control and determine the chaotic advection in the
flow. Therefore, they are extremely useful to analyze the spatial distribution of
passive or reactive tracers subject to the flow.

In chapter 4, we studied the spreading of a single phytoplankton patch sim-
ulated with a simple NPZ model. The patch emerges from a localized nutrient
source and is subject to advection in two different flow models, a random flow
with Gaussian spatio-temporal correlation, and mesoscale oceanic flow. On aver-
age, over many realizations of the plankton patch, we find optimal Eulerian time
and length scales that favor the plankton growth in the Gaussian correlated flow.
When the advective flow changes on time scales similar to the typical time scale
of the biological reaction, the growth of phytoplankton is maximal. On average,
the Eulerian parameters of the flow can give a rough indication about the interac-
tion of reaction and advection. However, to understand the shape of a plankton
patch in a concrete case, we have to take into account the flow topology and the
fluid trajectories, i.e., the Lagrangian view. Analyzing the flow topology in the
vicinity of two eddies in the steady mesoscale flow, we can see that the positions
of hyperbolic points control the pathways of the fluid motion.

In chapter 5, we examined the explosive spreading of the Madagascar plankton
bloom and asked how advection by mesoscale ocean currents affects the bloom. It
turns out that the recently discovered South Indian Ocean Countercurrent (SICC),
a fast eastward jet, flows at the exact location where the bloom typically occurs.
Here, LCS are an ideal method to compare the irregular patterns of the chlorophyll
distribution with the mixing patterns hidden in the advective flow field. Using La-
grangian methods we found two basic mechanisms how the SICC can influence
the Madagascar plankton bloom. First, it provides a fast and persistent eastward
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transport that significantly contributes to the large extent of the plankton bloom.
Second, zonal jet-like LCS associated with the SICC often represent a transport
barrier in meridional direction, shaping the boundary of the bloom. Taking into
account that we neglected the vertical circulation that may influence the plank-
ton growth, e.g., by upwelling of nutrients, and also taking into account that we
use only large scale ocean currents neglecting all subgrid motion, the agreement
between the spatio-temporal patterns in the chlorophyll concentration and the
advection patterns as revealed by LCS is notable. Moreover, our numerical ex-
periments with a passive tracer concentration have shown that the tracer spreads
to a similar final shape as the plankton bloom. This support the hypothesis that
the main nutrient source of the Madagascar plankton bloom is located at the
south tip of Madagascar. The results show that is it very important to address
transport in the ocean with Lagrangian methods. Since the SICC is hidden in a
field of counter-rotating eddies, we are only able to unveil the complex entangled
structure of fluid transport in different directions, if we integrate the velocity field
and analyze the trajectories.

In chapter 6, we analyzed the surface flow in the Ria de Vigo, an estuary in
NW Spain. The main component of the flow is given by the tidal oscillating flow,
which interacts with a longterm directional northward or southward flow on the
shelf, and with the flow induced by high-frequency local winds. This leads to
chaotic transport. Pronounced vortices are absent in the model flow that we use.
Transport is rather directed by the complex coastal boundary. LCS are attached to
capes or islands, where the flow separates or merges. As integrated and relatively
stable structures, the LCS define coherent water masses and are ideal to compare
transport in the model flow with the trajectories of real surface drifters. We find
that the trajectories of surface drifters largely agree with the LCS dynamics in the
model flow. In some cases the uncertainties of the position of the LCS lead to a
crossing of the surface drifters over the LCS, where the fluid dynamics close to
the coast is not sufficiently resolved in the model flow. Synoptic Lagrangian Maps
(SLM) are a second method that we use to obtain transport patterns in the Ria
de Vigo. In this case we also use velocity fields measured by a HF radar system.
The SLM reveal the fluid transport through the outer part of the Ria de Vigo,
from one open boundary to another. The transport is correlated with the wind
direction. Residence times of single fluid patches in the flow domain vary largely
from one day to up to ten days. Since, in the SLM, trajectories are classified by
their origin and fate at one of the open boundaries, the resulting maps of global
transport patterns are relatively independent of details of the flow field. SLM are
therefore useful to validate the global transport patterns in the Ria de Vigo as
given by the model flow with flow data from the HF radar system. For exemplary
dates we find a good agreement between the SLM, while it would desirable to
carry out a systematic analysis for a long period of flow data.

In chapter 7, we examined the advection in a turbulent quasi two-dimensional
flow in the laboratory induced by capillary surface waves, Faraday waves, in a
thin fluid layer. In a persistent rectangular pattern of Faraday waves the gener-
ated vortices are coupled to the locations of nodes and anti-nodes of the waves.
For increased forcing, the Faraday waves become more and more disordered and
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direct correlation of the pattern of vortices and the pattern of Faraday waves is
less pronounced. The front of a chemical reaction propagating through the con-
tainer exhibits a filamentous structure which is caused by the stirring of the fluid.
We are able to simultaneously measure the velocity fields quantitatively and the
concentration of the chemical reaction qualitatively. A superposition of the LCS
extracted from the velocity fields onto the qualitative concentration field of the
chemical reaction shows that the filaments at the front are shaped by advective
stirring. As expected, high gradients appear along the attracting LCS where fluid
with activated and inhibited chemical reaction merges.

In summary, we saw that the irregular fluid motion in time-dependent flows
generates mixing patterns that affect passive and reactive fields in the flow. For
many applications, we can extract the geometry of chaotic mixing from the flow
thanks to the availability of complete spatio-temporal velocity data sets. Es-
pecially in the oceanic context, the access to such complete data sets was not
possible until some years ago, and the data becomes increasingly accurate as the
technology advances. HF radar systems and satellite altimetry provide measured
velocity fields, while a vast amount of flow data is also produced by hydrodynamic
numeric models on all length scales. In a controlled environment in the laboratory,
velocity fields in scientific experiments can be obtained by PIV measurements.
This completeness of the velocity data allows to obtain realistic trajectories of
fluid parcels, so that we can examine transport with Lagrangian methods. For
transport processes on finite times where persistent flow structures, such as vor-
tices and jets, govern the transport, Lagrangian coherent structures reveal the
decisive mixing patterns in the flow. It is a promising method to reduce the large
velocity data sets to the transport information relevant for concrete applications.
The improvement of the techniques to extract LCS even more accurately is an
active field of research.
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Poje, R. Barbanti, J. W. Book, P. M. Poulain, M. Rixen, and P. Zanasca.
Model-based directed drifter launches in the Adriatic Sea: Results from the
DART experiment. Geohphys. Res. Lett., 134:L10605, 2007. doi: 10.1029/
2007GL029634.
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activity in the wake of an island close to a coastal upwelling. Ecol. Complex.,
5:228–237, 2008.

[188] D. Sandwell and W. Smith. Marine gravity anomaly from Geosat and ERS
1 satellite altimetry. J. Geophys. Res., 102(B5):10,039–10,054, 1997.

[189] S. C. Shadden. A dynamical systems approach to unsteady systems. PhD
thesis, California Institute of Technology, Pasadena, California, 2006.

[190] S. C. Shadden, F. Lekien, and J. E. Marsden. Definition and properties of
Langrangian Coherent Structures from finite-time Lyapunov exponents in
two-dimensional aperiodic flows. Physica D, 212:271–304, 2005.

[191] S. C. Shadden, F. Lekien, J. D. Paduan, F. P. Chavez, and J. E. Marsden.
The correlation between surface drifters and coherent structures basedon
high-frequency radar data in Monterey Bay. Deep-Sea Research II, 56:161–
172, 2009.

[192] P. Shaw and S. Chao. A nonhydrostatic primitive-equation model for study-
ing small-scale processes: An object-oriented approach. Cont. Shelf Res.,
26:1416–1432, 2006.

[193] E. Shuckburgh, H. Jones, J. Marshall, and C. Hill. Understanding the
regional variability of eddy diffusivity in the Pacific sector of the Southern
Ocean. J. Phys. Oceanogr., 39:2011–2023, 2009.

[194] G. Siedler, M. Rouault, and J. R. E. Lutjeharms. Structure and origin of
the subtropical South Indian Ocean Countercurrent. Geophys. Res. Lett.,
33:L24609, 2006.

[195] J. Smith. Models in Ecology. Cambridge University Press, 1974.

[196] C. Souto, M. Gilcoto, L. Fariña Busto, and F. F. Pérez. Modeling the resid-
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Appendix A

Data

A.1 Ocean Color Remote Sensing - SeaWiFS

The chlorophyll data we used to analyze the Lagrangian patterns of the Madagas-
car plankton bloom are provided by the SeaWiFS project of the NASA Goddard
Space Flight Center. The data have been downloaded from (http://oceandata.
sci.gsfc.nasa.gov/SeaWiFS/Mapped/8Day/9km/chlor/). We present here
some basic characteristics of the SeaWiFS sensor and its measurement princi-
ples based on the description on the webpage of the SeaWiFS project (http:
//oceancolor.gsfc.nasa.gov/SeaWiFS/).

Sensor description SeaWiFS (Sea-viewing Wide Field-of-view Sensor) is the
name of the optical sensor on board of the SeaStar satellite that provides ocean
color measurements. The satellite was launched on 1 August 1997 and flies on
an orbit at a height of 705 km. One orbit has a period of 99 min and the revisit
time is 1 day, i.e., after one day the satellite passes again the same area on earth.
In principle, daily data is available, but merged composite data of several days, in
our case 8 days, have a better coverage, as data gaps exists, caused for example by
cloud cover. The sensor measures optical radiation in the visible range on 8 bands
with the corresponding central wavelength, see Tab. A.1. The relevant bands for
the estimation of chlorophyll concentration are the blue and green bands 2 − 5.
The measurement principle is relatively simple. With an increasing concentration
of phytoplankton in the ocean, chlorophyll a, the primary photosynthetic pigment,
absorbs relatively more red and blue light, shifting the spectrum of backscattered
sunlight from blue to green [154]. An ocean color chlorophyll algorithm is used to
compute chlorophyll concentrations from the light intensities of different bands.
The current SeaWiFS algorithm is OC4v4 and the empirical parametrization reads
[31, 154]

log10[Chl] = a0 + a1X + a2X
2 + a3X

3 + a4X
4, (A.1)

X = log10

[
max(R443

rs , R
490
rs , R

510
rs )

R555
rs

]
. (A.2)
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Band Color Central wavelength [nm] Bandwidth [nm]

1 violet 412 402-422
2 blue 443 433-453
3 blue-green 490 480-500
4 blue-green 510 500-520
5 green 555 545-565
6 red 670 660-680
7 near IR 765 745-785
8 near IR 865 845-885

Table A.1: Bands of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS).

Rλrs is the remote sensing reflectance at the optical wavelength λ. The variable X
basically denotes the logarithmic ratio of the maximum green reflectance and the
blue reflectance. In very simple words, the parametrization expresses the relation
’the greener the ocean- the more chlorophyll’. The coefficients ai are determined
by extensive calibration studies with in-situ chlorophyll measurements at the sea
surface, see e.g. [31].



Appendix B

Numerical Schemes

B.1 Extraction and Filtering of FTLE Ridges

Ridges of the FTLE field λ(x0, t0, τ) are estimates of stable and unstable manifolds
of the time-dependent flow. They can easily be identified by eye in the FTLE fields,
but a criterion is desirable to extract them as a line from the two-dimensional field.
A ridge is a line of local maxima of the FTLE field and a criterion can be formulated
using the Hessian matrix and the gradient of λ(x0, t0, τ) [181, 182, 190]. A sharp
ridge is characterized by a high negative curvature, i.e. high negative eigenvalues
ε of the Hessian matrix. For points on the ridge, the gradient ∇λ(x0, t0, τ) is
tangent to the ridge line and perpendicular to the eigenvector εmin corresponding
to the smallest eigenvalues εmin of the Hessian, which leads to the condition

Ψ = εmin · ∇λ(x0, t0, τ) = 0 (B.1)

with a negative minimal eigenvector εmin < 0. Computing the gradient and
Hessian for the FTLE field, ridges can be extracted as zero contour lines of the
field Ψ. The use of differential properties of the FTLE field, like the gradient and
the Hessian, demands for a smooth FTLE fields which can only be ensured for
the cubic spline interpolation. Linear interpolation leads to discontinuities in the
spatial derivatives and prevents an exact ridge extraction.

As a second step, filtering is preferable to extract only important Lagrangian
structures. Two straight forward criteria are a lower threshold for the FTLE field
λ(x) > λmin, to discard weak ridges in the background FTLE field, and a high
negative curvature of the ridge εmin(x0, t0, τ) to choose only sharp ridges. Using
these criteria a spatial mask M(x0) is defined, and ridges outside of the mask are
neglected.

B.2 Gradient of the Flow Map

In Sec. 2.3.3 we consider the growth of a small perturbation δx0 to a trajectory.
In linear approximation, the gradient of the flow map determines the deformation
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this perturbation under the flow

δx(t0 + τ) = F (x0) δx0(t0) (B.2)

F (x0) = ∇Φt0+τ
t0

(x0) = ∇ [x(t0 + τ)] =

[
∂x
∂x0

∂x
∂y0

∂y
∂x0

∂y
∂y0

]
(B.3)

Numerically, the gradient of the flow map can be computed using central differ-
encing [189]

F (x0) = ∇ϕt+τt (x0(i, j), y0(i, j)) =

[
x(i+1,j)−x(i−1,j)
x0(i+1,j)−x0(i−1,j)

x(i,j+1)−x(i,j−1)
y0(i,j+1)−y0(i,j−1)

y(i+1,j)−y(i−1,j)
x0(i+1,j)−x0(i−1,j)

y(i,j+1)−y(i,j−1)
y0(i,j+1)−y0(i,j−1)

]
(B.4)

where the indices i, j correspond to the direction x, y respectively. x0(i, j) is the
initial position of the particle (i, j) and x(i, j) is the position of particle (i, j) after
time τ . For a regular grid of initial particle positions x0 with a distance between
particles ∆x this simplifies to

F (x0) =
1

2∆x

[
x(i+ 1, j)− x(i− 1, j) x(i, j + 1)− x(i, j − 1)
y(i+ 1, j)− y(i− 1, j) y(i, j + 1)− y(i, j − 1)

]
(B.5)
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