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Abstract

Preterm birth (PTB) presents a complex challenge in pregnancy, often leading to significant

perinatal and long-term morbidities. “While machine learning (ML) algorithms have shown

promise in PTB prediction, the lack of interpretability in existing models hinders their clinical

utility. This study aimed to predict PTB in a pregnant population using ML models, identify the

key risk factors associated with PTB through the SHapley Additive exPlanations (SHAP) algo-

rithm, and provide comprehensive explanations for these predictions to assist clinicians in pro-

viding appropriate care. This study analyzed a dataset of 3509 pregnant women in the United

Arab Emirates and selected 35 risk factors associated with PTB based on the existing medical

and artificial intelligence literature. Six ML algorithms were tested, wherein the XGBoost

model exhibited the best performance, with an area under the operator receiving curves of

0.735 and 0.723 for parous and nulliparous women, respectively. The SHAP feature attribu-

tion framework was employed to identify the most significant risk factors linked to PTB. Addi-

tionally, individual patient analysis was performed using the SHAP and the local interpretable

model-agnostic explanation algorithms (LIME). The overall incidence of PTB was 11.23% (11

and 12.1% in parous and nulliparous women, respectively). The main risk factors associated

with PTB in parous women are previous PTB, previous cesarean section, preeclampsia dur-

ing pregnancy, and maternal age. In nulliparous women, body mass index at delivery, mater-

nal age, and the presence of amniotic infection were the most relevant risk factors. The

trained ML prediction model developed in this study holds promise as a valuable screening

tool for predicting PTB within this specific population. Furthermore, SHAP and LIME analyses

can assist clinicians in understanding the individualized impact of each risk factor on their

patients and provide appropriate care to reduce morbidity and mortality related to PTB.
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Introduction

The World Health Organization reports that, every year, approximately one in ten babies is

born prematurely, before completing 37 weeks of gestation [1]. Preterm birth (PTB) complica-

tions rank as a leading cause of death among children under the age of five, with an estimated

75% of the one million PTB-related deaths being preventable [1]. The incidence of PTB varies

across 184 countries, ranging from 5 to 18% [2]. In 2019, the United States (US) reported a

PTB prevalence of roughly 10.2% in 2019, while the United Arab Emirates (UAE) estimated a

prevalence of around 6.3% in the same year, considering both Emirati and expatriate popula-

tions [3]. PTB is a complex condition with multifactorial causes [1]. Among the widely studied

risk factors are maternal demographics and characteristics (such as advanced maternal age

and adolescent pregnancy, social determinants (including smoking and substance use), eco-

nomic factors, medical complications, obstetric history (as short interpretation interval and

previous PTB), and conditions specific to the current pregnancy [1–3]. However, from the

extensive list of risk factors, predicting the occurrence of PTB is challenging because the signs

and symptoms of preterm labor are common and can be nonspecific. Thus, the current assess-

ment methods for predicting individual PTB risk are problematic, particularly for nulliparous

women with no obstetric history. Traditionally, these statistical models rely on single factors,

such as demographic history, obstetric history, and clinical characteristics. Machine learning

(ML)-based models have successfully predicted the risks of numerous medical conditions [4].

Several studies have employed ML models to predict PTB. However, despite their mathemati-

cal sophistication, these models are “black-boxes,” lacking both interpretability and explana-

tion. Therefore, for clinical utility, the predictions made by ML models must be interpretable

by clinicians, enabling them to assess PTB risk for each patient and understand the contribu-

tion of individual risk factors to these predictions [5, 6]. Explainable ML models, such as the

SHapley Additive explanations (SHAP) and local interpretable model-agnostic explanations

(LIME), can be used to achieve this goal. Once clinicians understand the ML model results,

they gain confidence in the ML model prediction of impending PTB risk [7–11]. This

informed clinical risk stratification can substantially improve the health outcomes of preterm

infants and their mothers. Consequently, this study aimed to predict PTB in nulliparous and

parous women using ML models, identify important predictors associated with PTB, and pro-

vide explanations for the contribution of each risk factor to PTB prediction using SHAP and

LIME.

Materials and methods

Data and population

The dataset utilized in this analysis was obtained from an ongoing prospective maternal and

child cohort study, the Mutaba’ ah Study, conducted in Al Ain, UAE [12]. Eligible participants

included all pregnant women aged 18 y and above from the Emirati population residing in Al

Ain City, who provided informed consent for themselves and their newborns. This study

received approval from the Abu Dhabi Health Research and Technology Ethics Committee

(DOH/CVDC/2022/72) and was conducted in strict accordance with the Declaration of Hel-

sinki. Prior to data collection, written informed consent was obtained from all participants.

This analysis encompassed 3509 women with singleton pregnancies recruited between May

2017 and February 2021.

As certain risk factors did not apply to nulliparous women, such as previous PTB, previous

cesarean section (CS), and parity, the sample was separated into nulliparous mothers (n = 801)

and parous mothers (n = 2708).
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Participants were followed up during pregnancy, with data collection conducted

through self-administered questionnaires and medical records. PTB was categorized based

on gestational age at birth, provided in weeks. Any birth occurring before 37 weeks of ges-

tation was classified as PTB. Clinicians performed a scoping review of the literature on PTB

risk factors. Simultaneously, a review of the features employed in existing PTB prediction

studies utilizing ML models was carried out, as shown in S1 Table. A set of risk factors was

derived from the common factors present in both current ML-based studies and medical

literature. This combined list was then filtered using data from the electronic medical rec-

ords (applying ICD 10 coding) and relevant information from the questionnaire (S2

Table). Notably, 35 relevant features were identified in this study (S2 Table) related to

ICD10 codes.

Study population characteristics

Descriptive statistics were employed to illustrate and compare the distribution of the charac-

teristics of the study population based on PTB status. Continuous variables were represented

by means and standard deviations, discrete quantitative variables by medians and ranges, and

categorical variables by counts and percentages. Student’s t-test was used to determine the dif-

ferences between group means for continuous variables, while categorical variables were com-

pared using Pearson’s Chi-square test or Fisher’s exact test. Statistical analyses were performed

using Stata 16.1 (Stata Corp, College Station, TX, USA). A p-value less than or equal to 0.05

was considered statistically significant.

Machine learning models

We used a combination of domain knowledge and empirical evaluations to select the models.

Specifically, we chose models that have been widely employed in the literature with demon-

strated good performance in similar studies (Table 1).

Literature review. In this study, the performances of six ML classifiers were evaluated to

select the most accurate method for predicting PTB in the population. These ML models

include the support vector machine (SVM) [32], random forest (RF) [33], logistic regression

(LR) [34, 35], multilayer perceptron (MLP) [36], gradient boosting machine (GBM) [37], and

XGBoost [38]. While XGBoost outputs variable importance, it does not measure the direction

and level of impact of the variables on the outcomes.

SHapley Additive exPlanations (SHAP). SHAP values were introduced to better explain

the contribution of features or risk factors to the outcome, specifically PTB [39–41]. The

SHAP Shapley values are an attribution method that fairly assigns predictions to individual

features. SHAP is a computational method for calculating Shapley values, which also suggests

global interpretation methods based on combinations of Shapley values across the dataset. A

higher SHAP value indicates that a feature increases the likelihood of PTB, while a lower

SHAP value suggests that a feature reduces the outcome likelihood. Thus, the SHAP method

can rank the importance of features and reveal the relationship between these features and the

outcome. Further details regarding SHAP [5, 19–22] are provided in the S1 File. We obtained

a list of the ten most important risk factors and their SHAP values (refer to the Results

section).

Local interpretable model-agnostic explanations (LIME). LIMEs offer explanations for

predictions by replacing a complex model with a locally interpretable surrogate model [42].

Therefore, we performed a risk factor-based analysis of individual patients using LIME. Fur-

ther details regarding the LIME are included in the S1 File.
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Table 1. Related research on PTB prediction using machine learning models.

Reference Problem and approach Methods used Performance

Mercer et al.

[13]

PTB prediction using

statistical analysis

LR The authors performed univariate and multivariate LR to identify the

risk factors and odds ratios for PTBs.

Lee et al. [14] PTB Classification ANN, LR, DT, NB, RF, and SVM. ANN, LR, DT, NB, RF, and SVM achieved accuracies of 0.911, 0.918,

0.832, 0.111, 0.891, and 0.914, respectively. BMI and hypertension were

the most important features.

Tran et al. [15] PTB Classification SSLR and RGB classifier. SSLR achieved AUC of 0.85 and 0.79 for predicting PTB in the 34th and

37th week of gestation, respectively.

RGB achieved AUC of 0.86 and 0.81 for predicting PTB in the 34th and

37th week, respectively.

Taha et al. [3] LBW and PTB analysis Association between PTB and LBW was found in the UAE population.

Sun et al. [16] PTB Classification RF, SVM, ANN, k-means, and NB. PTB prediction at different gestational periods, including 20th, 22nd, 24th,

and 26th weeks. RF achieved better performance with AUC, sensitivity,

and specificity of 0.89, 0.75, and 0.88, respectively in the 26th week of

gestation. Twenty variables were considered important.

Koivu et al. [17] PTB Classification Only complete samples, correlation analysis,

ANN, LR, and LightGBM.

An AUC of 0.67 was achieved for CDC data, whereas a maximum AUC

of 0.64 was achieved for the NYC dataset via ANN and Light GBM.

Raja et al. [18] PTB Classification Feature selection, SVM, RF, DT, and LR. SVM achieved an accuracy, sensitivity, and specificity of 0.90, 0.89, and

0.78, respectively.

Belaghi et al.

[19]

PTB Classification PTB in nulliparous women during the first

and second trimester, RF, LR, DT, and ANN.

Sensitivity and specificity of LR were 0.50 and 0.64 in the first trimester,

respectively, whereas they were 0.29 and 0.84 for RF, respectively.

Similarly, in the second trimester, the sensitivity and specificity of RF

were 0.45 and 0.94, respectively, and those of ANN were 0.62 and 0.84,

respectively.

Belaghi et al.

[20]

PTB prediction AUC of LR in the first trimester were 0.68 and 0.73 for nulliparous and

multiparous women, respectively, whereas in the second trimester, they

were 0.72 and 0.78, respectively.

Diaz et al. [21] PTB Classification Missing data imputation using KNN, noise

reduction techniques. DT, C5.0, NNet, KNN

and RF.

C5.0 classifier with robust noise filter achieved sensitivity, specificity and

F-score of 0.86, 0.78, and 0.85, respectively.

Lee et al. [22] PTB prediction LR, ANN, and RF. AUC within the range of 0.52–0.58 was achieved for a highly imbalanced

dataset.

Guang et al.

[23]

PTB Classification SVM, RF, ANN, and LR. AUC, specificity, and sensitivity of 0.92, 0.94, and 0.78, respectively were

achieved.

Cately et al. [24] PTB Classification Data resampling and ANN. AUC of 0.71 was achieved with sensitivity of 0.33.

Khatibi et al.

[25]

PTB Classification using

MapReduce

MapReduce of feature selection, missing data

imputation, DT, RF, SVM and ensemble

AUC of 0.68 with important risk factors identification.

Li et al. [26] PTB and PM 2.5

relationship

statistical analysis to identify relationship

between PM of 2.5 and PTB.

PTB mother had exposure to PM of 2.5

Rittenhouse

et al. [27]

PTB prediction Super learner model, RF, and LR. AUC of 0.97 whereas Positive Predictive Value was only 0.53.

Chen et al. [28] PTB prediction DT and NN. 15 crucial risk factors were identified.

Prema et al.

[29]

PTB classification in

diabetic mothers

SMOTE for data balancing, SVM, and LR. Maximum F-score of 0.80 using SVM.

Moreira et al.

[30]

PTB and APGAR score

prediction using SVM

SVM with smooth linear kernel. ROC of 0.78 and FR rate of 0.26.

Aung et al. [31] Biomarkers for PTB

prediction

LR, RF, and elastic net. AUC of 0.84 using RF classifier.

PTB: Preterm birth; LR: logistic regression; ANN: artificial neural network; DT: decision tree; NB: naïve Bayes; RF: random forest; SVM: support vector machine; BMI:

body mass index; SSLR: stabilized sparse logistic regression; RGB: randomized gradient boosting; AUC: area under the ROC curve; LBW: low birth weight; UAE: United

Arab Emirates; CDC: Center for Disease Control and Prevention; Light GBM: light gradient boosting machine; NN: neural network, PM: particular matter; ROC:

receiver operating characteristic, SMOTE: synthetic minority oversampling technique, APGAR: appearance pulse grimace activity and respiration; and FR: fertility rate.

https://doi.org/10.1371/journal.pone.0293925.t001
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Experimental settings

The experiments were conducted as follows: First, the missing values in the dataset are

replaced with a missed-forest imputation algorithm [43].

The algorithm, known as Miss Forest, was used to handle the missing values in the data-

sets. It utilizes the RF algorithm, which is an ML technique. Miss Forest treats missing values

as a distinct category and predicts them using other variables in the dataset. It iteratively

imputes missing values by creating an RF model and refining the predictions in subsequent

iterations. This approach allows the algorithm to capture the complex relationships within

the data. Subsequently, a tenfold cross-validation was conducted on the dataset to evaluate

the average performance. We divided the data into two sets: a training set, which contained

80% of the data, and a test set, encompassing the remaining 20%. This partition ensured that

both the training and testing sets included the same proportion of preterm samples. The six

most commonly used ML classifiers were employed to identify the best classifier for the task.

The evaluation criterion of the area under the Receiver Operating Characteristic (ROC)

curve (AUC) was used. The AUC represents the performance of a classifier in distinguishing

between positive and negative instances. A higher AUC value indicates a superior classifica-

tion performance. The ROC curve with a good predictive performance exhibited an AUC

close to 1. Thereafter, the global behavior of the best ML model was explained to identify the

risk factors using SHAP. A higher SHAP value signifies that the feature increases the likeli-

hood of PTB, while a lower SHAP value suggests that the feature reduces this likelihood.

Finally, individual SHAP patient analyses were conducted to identify the underlying risk fac-

tors associated with each patient. For comparison, the LIME was used for individual patient

analyses. All experiments were conducted using Python 3.8 on a personal computer with an

Intel (R) Core i9-9900 CPU@ 3.10 GHz and 8 GB RAM. Fig 1 illustrates the entire methodol-

ogy, from data collection and preprocessing, the application of different ML algorithms to

select the best-performing ML model, identification of the important risk factors and their

relative risk scores for PTB, and finally, the individual patient analyses and clinical

recommendations.

Results

Study population characteristics

The distribution of risk factors and descriptive characteristics of the parous (n = 2708) and

nulliparous (n = 801) mothers are presented in Table 2 and S1 Table, respectively. The overall

incidence of PTB in this study was 11.23% (11% in parous women and 12.1% in nulliparous

women).

In parous mothers (Table 2), low levels of education, exposure to passive smoking, and his-

tory of infertility treatment were more frequent among women with PTB than among those

without PTB. Parous women with PTB exhibited substantial differences from those without

PTB in terms of maternal age, gravidity, preexisting hypertension, preexisting diabetes melli-

tus, previous PTB, previous cesarean delivery, or previous pregnancy loss. During pregnancy,

a considerable proportion of parous mothers with PTB suffer from conditions such as pre-

eclampsia, antepartum hemorrhage, oligohydramnios, infection of the amniotic sac, placenta

previa and placental disorders, Streptococcus carrier B, or genitourinary infection. The most

significant characteristics for women with PTB were higher maternal age, higher gravidity,

and a low level of education. Exposure to passive smoking, history of infertility treatment, pre-

existing hypertension, preexisting diabetes mellitus, and history of PTB were more frequent in

women with PTB (Table 2).
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Among nulliparous mothers (Table 3), significant differences were observed in the self-

reported planning status of pregnancy, physical activity before pregnancy, and history of infer-

tility treatment between those with and without PTB. For pregnancy and delivery characteris-

tics, preexisting diabetes mellitus, preeclampsia, antepartum hemorrhage, oligohydramnios,

infection of the amniotic sac, premature rupture of membranes, and placental abruption were

considerably more common in nulliparous mothers with PTB than in those without PTB.

Performance and interpretation of the ML model

Parous women. For parous women, the LR, SVM, MLP, GBM, RF, and XGBoost models

achieved an AUC of 0.720, 0.521, 0.706, 0.720, 0.726, and 0.735, respectively (Fig 2A). As

XGBoost exhibited the highest AUC, signifying the best predictive performance among these

models, we employed it for explainable analysis using SHAP and LIME.

The SHAP plot based on the weights of the risk factors is depicted in Fig 2B. This figure

showed that the most important risk factor was a history of PTB, followed by a history of CS,

and preeclampsia in the parous population. Other important risk factors include maternal age,

placenta previa, BMI at delivery, and interpregnancy interval. A summary graph of the ten

most important risk factors is illustrated in Fig 2C. The prediction of a set of patients using

SHAP is depicted in Fig 3. The first patient (parous mother), represented in Fig 3(a), was at an

exceptionally low risk of PTB delivery (0.0). This low risk is primarily attributed to factors

such as the absence of a history of PTB, a maternal age of 28 y, and long interpregnancy inter-

val (903 d). The data of the second patient presented in Fig 3(b) demonstrated a medium risk

Fig 1. Proposed methodology for predicting PTB using machine learning models.

https://doi.org/10.1371/journal.pone.0293925.g001
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Table 2. Descriptive characteristics of the parous pregnant women.

Risk Factors Total parous pregnant women PTB No PTB p-value

Total 2708 297 2411

Self-reported characteristics

Planned Pregnancy 1337 (52.5) 131 (9.8) 1206 (90.2) 0.056

Employment 824 (32.8) 101 (12.3) 723 (87.7) 0.149

Education >12 y 1187 (47.3) 115 (9.7) 1072 (90.3) 0.046

Consanguinity 643 (45.4) 65 (10.1) 578 (89.9) 0.736

Passive Smoking 825 (32.4) 106 (12.9) 719 (87.1) 0.031

Physical activity before pregnancy

Never 1317 153 (11.6) 1164 (88.4) 0.782

1–2 times/week 434 43 (9.9) 391 (90.1)

3–5 times/week 366 42 (11.5) 324 (88.5)

Daily 227 24 (10.6) 203 (89.4)

Physical activity during pregnancy

Never 1287 149 (11.6) 1138 (88.4) 0.643

1–2 times/week 543 53 (9.8) 490 (90.2)

3–5 times/week 209 26 (12.4) 183 (87.6)

Daily 340 37 (10.9) 303 (89.1)

House (rent/owned)

Owned 1963 (79.5) 212 (10.1) 1751 (89.2) 0.498

Worry about upcoming childbirth 1643 (66.2) 196 (11.9) 1447 (88.1) 0.077

Infertility treatment 249 (9.9) 41 (16.5) 208 (83.5) 0.004

Pregnancy and delivery characteristics

Age, years, mean (SD) 32.7 (5.57) 33.8 (5.49) 32.6 (5.57) <0.001

Gravida, median (interquartile range) 4 (3–6) 5 (3–7) 4 (3–6) 0.014

Parity, median (interquartile range) 3 (2–4) 3 (2–4) 3 (2–4) 0.031

Gestational age at delivery, mean (SD) 38.7 (2.01) 34.9 (2.49) 39.1 (1.35) <0.001

BMI at delivery, mean (SD) 31.8 (5.60) 32.4 (5.72) 31.8 (5.58) 0.063

Interpregnancy interval, days, mean (SD) 1014 (782) 1098 (884) 1004 (768) 0.053

Preexisting hypertension 56 (2.1) 21 (37.5) 35 (62.5) <0.001

Preexisting diabetes mellitus 127 (4.7) 29 (22.8) 98 (77.2) <0.001

Previous preterm birth 1011 (37.3) 171 (16.9) 840 (83.1) <0.001

Previous Caesarian delivery 876 (32.3) 158 (18.0) 718 (82.0) <0.001

Previous pregnancy loss 1068 (39.4) 148 (13.9) 920 (86.1) <0.001

Rh antibodies Positive 2472 (91.2) 273 (11.0) 2199 (89.0) 0.681

Preeclampsia 93 (3.4) 35 (37.6) 58 (62.4) <0.001

Gestational diabetes mellitus 889 (32.8) 105 (11.8) 784 (88.2) 0.326

Growth retardation 19 (0.7) 2 (10.5) 17 (89.5) 0.999*
Antepartum hemorrhage 8 (0.3) 5 (62.5) 3 (37.5) <0.001*
Polyhydramnios 62 (2.3) 8 (12.9) 54 (87.1) 0.622

Oligohydramnios 58 (2.1) 20 (34.5) 38 (65.5) <0.001

Infection of the amniotic sac 52 (1.9) 18 (34.6) 34 (65.4) <0.001

Premature rupture of membrane 378 (13.9) 55 (14.6) 323 (85.5) 0.016

Placental disorders 28 (1) 13 (46.4) 15 (53.6) <0.001

Placenta Previa 44 (1.6) 25 (56.8) 19 (43.2) <0.001

Abruption Placentae 57 (2.1) 22 (38.6) 35 (61.4) <0.001

Streptococcus B carrier 662 (24.4) 44 (6.7) 618 (93.3) <0.001

Genitourinary infection 29 (1.1) 8 (27.6) 21 (72.4) 0.004

(Continued)
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of PTB delivery (0.23). This patient exhibited several risk factors, including oligohydramnios,

exposure to passive smoking, a history of previous pregnancy loss, and lower level of educa-

tion. Notably, there was no history of PTB or CS. Finally, Fig 3(c) illustrates the data of the

third parous mother with a higher risk of PTB delivery (0.87) because she had preeclampsia, a

history of previous PTB, a history of CS, maternal age> 43 y, and preexisting diabetes. For

comparison, the data of the same set of patients were explained using LIME by selecting the

ten most important risk factors (S1 Fig).

Nulliparous women. We evaluated the performance of six ML classifiers in predicting

PTB in nulliparous women. The XGBoost algorithm achieved the highest performance, with

an AUC of 0.723 (Fig 4A). Important risk factors for PTB were identified, including maternal

BMI at delivery, maternal age, amniotic sac infection, preeclampsia, and history of infertility

treatment (Fig 4B and 4C). Other significant risk factors included oligohydramnios, physical

activity before pregnancy, and preexisting diabetes.

We further analyzed the individual risk factors associated with a set of nulliparous mothers

(Fig 5). For example, patient (a) in Fig 5 had a total risk score of 0.00 and was not diagnosed

with PTB. Her most preventive factor was maternal age of 22 y old, no infection of the amni-

otic sac, BMI at delivery at 28.8 kg/m2, and no premature rupture of membrane. Patient (b) in

Fig 5 had a median risk of 0.22 of PTB and was associated with infection of the amniotic sac or

membranes (intrauterine infection), preeclampsia, premature rupture of membranes, and a

history of infertility treatment. Finally, the nulliparous mother c in Fig 5 had a higher risk of

PTB delivery (0.85) owing to her low BMI at delivery (19.9 kg/m2), infection of the amniotic

sac, premature rupture of membrane, and no physical activity before pregnancy. SHAP depen-

dence plot for body mass index vs. PBT for nulliparous women showed in S2 Fig display that

low BMI had higher SHAP values clarifying the difference between patient (a) and patient (c)

in Fig 5. We have also provided LIME for these patients in S3 Fig.

Discussion

Principal findings

This study aimed to use ML to develop a prediction model for PTB and identify the key predic-

tors associated with PTB in pregnant women. We used the identified PTB predictors and risk-

stratified each patient to generate a risk score using SHAP values for parous and nulliparous

mothers. Out of the six most commonly used ML models for PTB prediction, XGBoost exhib-

ited the best performance. The top five most important risk factors in parous women were pre-

vious PTB, previous cesarean section, diagnosis of preeclampsia, maternal age, and placenta

previa. Among the nulliparous women, the important risk factors were BMI at delivery, mater-

nal age, amniotic fluid infection, premature rupture of membranes, and preeclampsia.

Table 2. (Continued)

Risk Factors Total parous pregnant women PTB No PTB p-value

Baby Gender

Male 1455 180 (12.4) 1275 (87.6) 0.012

Female 1252 117 (9.4) 1135 (90.6)

Data is number (%) unless otherwise specified.

* Fisher’s exact test

SD: standard deviation; PTB: Preterm birth; and BMI: body mass index.

https://doi.org/10.1371/journal.pone.0293925.t002
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Table 3. Descriptive characteristics of the nulliparous pregnant women.

Risk Factors Total nulliparous pregnant women PTB No PTB p-value

Total 801 97 704

Self-reported characteristics

Planned Pregnancy 416 (57.7) 59 (14.2) 357 (85.8) 0.029

Employment 197 (27.4) 29 (14.7) 168 (85.3) 0.212

Education >12 y 393 (54.6) 50 (12.7) 343(87.3) 0.664

Consanguinity 193 (4.9) 24 (12.4) 169 (87.6)

Passive Smoking 289 31 (10.7) 258 (89.3) 0.638

Physical activity before pregnancy

Never 366 45 (12.3) 321 (87.7) 0.014*
1–2 times/week 148 25 (16.9) 123 (83.1)

3–5 times/week 113 5 (4.4) 108 (95.6)

Daily 46 6 (13.0) 40 (87.0)

Physical activity during pregnancy

Never 367 50 (13.6) 317 (86.4) 0.278*
1–2 times/week 179 22 (12.3) 157 (87.7)

3–5 times/week 59 5 (8.5) 54 (91.5)

Daily 79 5 (6.3) 74 (93.7)

House (rent/owned)

Owned 582 (82.2) 70 (12.0) 512 (88.0) 0.834

Worry about upcoming childbirth 521 (73.5) 70 (13.4) 451 (86.6) 0.116

Infertility treatment 65 (9.2) 16 (24.6) 49 (75.4) 0.001

Pregnancy and delivery characteristics

Age, years, mean (SD) 27.6 (6.00) 28.5 (6.52) 27.5 (5.92) 0.119

Gestational age at delivery, mean (SD) 38.7 (2.41) 34.1 (3.29) 39.4 (1.31) <0.001

BMI at delivery, mean (SD) 30.8 (6.99) 30.6 (14.28) 30.9 (5.29) 0.739

Preexisting hypertension 13 (1.6) 4 (30.8) 9 (69.2) 0.061

Preexisting diabetes mellitus 12 (1.5) 5 (41.7) 7 (58.3) 0.009*
Rh antibodies Positive 734 (91.6) 91 (12.4) 643 (87.6) 0.408

Preeclampsia 50 (6.2) 16 (32.0) 34 (68.0) <0.001

Gestational diabetes mellitus 201(25.1) 23 (11.4) 178 (88.6) 0.738

Growth retardation 14 (1.7) 2 (14.3) 12 (85.7) 0.638*
Antepartum hemorrhage 3 (0.4) 2 (66.7) 1 (33.3) 0.040

Polyhydramnios 20 (2.5) 3 (15.0) 17 (85.0) 0.724*
Oligohydramnios 18 (2.2) 6 (33.3) 12 (66.7) 0.015*
Infection of the amniotic sac 34 (4.2) 14 (41.2) 20 (58.8) <0.001

Premature rupture of membrane 200 (24.9) 34 (17.0) 166 (83.0) 0.014

Placental disorders 4 (0.5) 1 (25.0) 3 (75.0) 0.404*
Placenta Previa 4 (0.5) 1 (25.0) 3 (75.0) 0.404*
Abruption Placentae 14 (1.7) 6 (42.9) 8 (57.1) <0.001

Streptococcus B carrier 227 (28.3) 23 (10.1) 204 (89.9) 0.281

Genitourinary infection 9 (1.1) 1 (11.1) 8 (88.9) 0.999*
Baby Gender

Male 423 49 (11.6) 374 (88.4) 0.701

Female 377 47 (12.5) 330 (87.5)

Data is number (%) unless otherwise specified.

* Fisher’s exact test

SD: standard deviation; BMI: body mass index; and PTB: Preterm birth.

https://doi.org/10.1371/journal.pone.0293925.t003
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Individual patient risk scores were calculated to determine the level of risk. These results were

internally validated. The results of both the SHAP and LIME algorithms aligned, except in a

few cases, mainly because LIME does not guarantee an accurate distribution of the effects [21,

42]. However, because SHAP focuses on local accuracy and consistency, it generates more

accurate model outcomes. Both the SHAP and LIME guide clinicians toward individual risk

categorization. This will prevent over investigation and undue economic burdens on health

systems.

Results in the context of what is known

PTB rates vary by region and country. The overall PTB rate in this study was 11.23%. North

America recorded a rate of 11.2%, with the highest rates in North Africa and Sub-Saharan

Africa at 13.4 and 12%, respectively [44]. The US ranked among the top ten countries for PTB

Fig 2. A. ROC curve for PTB prediction in parous women (n = 2708). B. SHAP-based feature importance plot for parous women. C. Summary plot for

top 10 SHAP-based risk factors in parous women. Each dot in the graph indicates a patient and her relative risk towards PTB prediction. Several

patients at the same point create a dense region. The colors indicate the feature values on the right side (vertically): blue indicates lower values while red

indicates higher values of a risk factor. For instance, for previous cesarean section (CS) delivery, when the number of CS deliveries increases then the

risk of PTB delivery increases while patients with lower (or no CS) deliveries are at a lower risk of PTB. We also observed negative interactions, such as

patients with higher BMI, are at a relatively lower risk of PTB, whereas those with lower BMI are at a higher risk.

https://doi.org/10.1371/journal.pone.0293925.g002
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in 2014 at 9.6%. Interestingly, the other nine countries are developing countries with strug-

gling economies and disparities in health services [44].

The strength of AI and ML is their ability to learn from new inputs and leverage those

insights to enhance health outcomes and patient experiences. This model, XGBoost, achieved

an AUC value of 0.735 and identified plausible and well-known risk factors for clinicians, such

as previous cesarean section, previous PTB, diagnosis of preeclampsia, maternal age, placenta

previa, and BMI [45]. Despite, Lee et al. [46] achieving an AUC of 0.54–0.83, the extensive list

of predictors described was inexplicable and unrelated to predictors for PTB (e.g., “upper gas-

trointestinal tract symptom, gastroesophageal reflux disease, Helicobacter pylori”; all entities

describing the same symptom) and particularly for practicing clinicians. Although Sun et al.

[16] achieved a maximum AUC of 0.885, they recognized risk factors, such as age, magnesium,

fundal height, serum inorganic phosphorus, mean platelet volume, waist size, total cholesterol,

triglycerides, globulins, and total bilirubin for their prediction model. Risk factors, such as fun-

dal height and waist size, were determined by healthcare professionals. Because these measure-

ments are skill-dependent, they may be inaccurate, resulting in misleading outcomes,

particularly in obese patients [47]. A study using retrospective medical data reported an AUC

of 0.739 [16]. The risk factors included blood pressure, blood glucose, lipids, and uric acid as

metabolic predictors of PTB. Performing uric acid tests is not routine in all pregnant women.

Although it is a significant risk factor, it has only been measured for pregnancy outcomes in

women with preeclampsia/eclampsia [48]. In a systematic review of traditional prediction

models for the risk of spontaneous PTB and based on routine clinical parameters, the AUC for

these models ranged from 0.54 to 0.67 with consequential outcomes that our ML predictions

are beginning to demonstrate potential [49]. Moreover, unlike LR, the XGBoost algorithm

uses a nonparametric assessment; therefore, the correlation of the independent variables has

no significant impact on the weighted ranking of each variable. Significantly, XGBoost demon-

strated highly promising performance in patients with diabetic retinopathy, with an AUC of

0.99 [50]. The difference in the AUC from our results may be explained by the sample size of

Fig 3. Individual patient set analysis for parous women using SHAP. The feature values in red indicate the risk

factors increasing the chances of PTB, whereas those in blue indicate factors reducing the chances of PTB. The size of

the risk factor indicates its degree of influence on that specific patient. Patient (a) is at lower risk, patient (b) median

risk, and patient (c) higher risk of PTB.

https://doi.org/10.1371/journal.pone.0293925.g003
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Fig 4. A. ROC curve for PTB prediction in the nulliparous women (n = 810). B. SHAP-based feature importance plot for nulliparous women. C.

Summary plot for top 10 SHAP-based risk factors in nulliparous women.

https://doi.org/10.1371/journal.pone.0293925.g004

Fig 5. Individual patient set analysis for nulliparous women using SHAP. Patient (a) is at lower risk, patient (b)

median risk, and patient (c) higher risk of PTB.

https://doi.org/10.1371/journal.pone.0293925.g005
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32 452 women [50]. This suggests that XGBoost can also be used as a predictive model for

other diseases [51]. Finally, our study progressed beyond the black-box approach (Table 1), in

which the results could be easily interpreted by clinicians, thereby enhancing the clinical

usability of this study.

Clinical implications

ML in healthcare increases the accuracy of prediction and diagnosis, thus helping clinicians

make informed decisions and personalize patient health care. Our study shaped the predictive

probabilities of PTB in asymptomatic, nulliparous, and at-risk mothers using real-world data.

Nulliparous women often present a dilemma for clinicians, even when traditional prediction

models are used. The results confirmed that traditional models discriminated poorly for nul-

liparous women (AUC 0.51–0.56) [49]. We produced individual risk categorizations for PTB

and, more importantly, for nulliparous women using SHAP values, where each risk factor was

assigned a weight by the algorithm. Once patients are deemed at-risk or high-risk, their treat-

ing physicians will then follow-up patients using serial endovaginal ultrasound measurements

of cervical length from 16 weeks of gestation to 24 weeks of gestation [52]. Thus, the SHAP

method is a stage closer to a reliable method for making the output of the XGBoost model clin-

ically interpretable.

Research implications

The set of risk factors used in this study to derive the ML model provides the first step, and

other indicators, such as ultrasound parameters, biomarkers, and fetal fibronectin, can be

incrementally added to test the performance of the XGBoost method for improved predictabil-

ity. Our results must be externally validated and verified in other populations, particularly

asymptomatic and nulliparous women. The development of a risk calculator from these pre-

dictors to stratify risk based on the scores obtained would make an immense contribution to

clinicians [50].

Strengths and limitations

In this study, risk factor selection to build the ML model for PTB prediction was based on the

medical literature. The major advantage of this study was personalized risk stratification with

SHAP values and easy clinical interpretability, fostering individual management recommenda-

tions. XGBoost outperformed the five other ML techniques with the highest AUC value

(0.735), which was the key guide for evaluating the function of the predictive model. In addi-

tion, this algorithm is less time-consuming than other ML algorithms.

This study has several limitations. One of the limitations of this study is the absence of

information regarding the etiology of PTB in our population, specifically whether it was indi-

cated or spontaneous. Consequently, we restricted our analysis to parous and nulliparous

women.

Second, the results are internally validated. We must be cautious about generalizability, as the

model needs to be tested on other datasets and evaluated in other centers. Although XGBoost

has considerable potential, the model performance can be improved by adding more indicators.

This study provides only a preliminary explanation of the interpretability of the ML model.

Conclusion

This study highlights the use of a novel technology (XGBoost) for risk stratification among

individual pregnant women, particularly asymptomatic, nulliparous, and at-risk patients with
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PTB, and uses the SHAP method to clinically interpret the model’s outputs, thus enhancing

the clinician’s ability to detect risks earlier. This model may be used as a screening tool to aid

clinicians in understanding the impact of each risk factor on each patient, thus guiding clini-

cians in administering appropriate care to reduce morbidity and mortality related to PTB.
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