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Abstract

In the first part, eigenfunction estimates and embedding results are proved for
the Dunkl harmonic oscillator on the line. These kind of results are generalized to
operators on R+ of the form P = − d2

dx2 + sx2 − 2f1
d
dx + f2, where s > 0, and f1

and f2 are functions satisfying f2 = σ(σ − 1)x−2 − f2
1 − f ′1 for some σ > −1/2.

The second part contains the main result, which is a version of Morse inequal-
ities for the minimum and maximum ideal boundary conditions of the de Rham
complex on strata endowed with adapted metrics, where compact Thom-Mather
stratifications are considered. An adaptation of the analytic method of Witten is
used in the proof. The local analysis is reduced to the study of the operator P of
the first part.
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Introduction

The main goal of this work is to use Witten’s perturbation method to prove a
version of Morse inequalities for the minimum and maximum ideal boundary con-
ditions of the de Rham complex on strata, endowed with adapted metrics, where
compact Thom-Mather stratifications are considered. For that purpose, we study
first eigenfunction estimates and embedding results for the Dunkl harmonic oscil-
lator on the line, which are generalized to other related operators on R+. The
study of these operators is the key ingredient in our local analysis of the Witten’s
perturbation.

Thus this thesis has two main parts, Parts 1 and 2. Part 1 is devoted to the
study of eigenfunction estimates and embedding results for the Dunkl harmonic
oscillator and related operators. Part 2 deals with the Witten’s perturbation on
strata, where the first part is used.

This work is published in the preprints [1, 2].
Let us introduce those chapters separately and state their main results.

Eigenfunction estimates and embedding theorems

The Dunkl operator Tσ on C∞(R), depending on some σ > −1/2, is the per-
turbation of the usual derivative that can be defined by setting Tσ = d

dx on even
functions and Tσ = d

dx + 2σ 1
x on odd functions. This kind of operator, more gen-

erally on Rn, was introduced by C.F. Dunkl [21, 22, 23, 24, 25]. It gave rise to
what is now called Dunkl theory (see the survey article [57]). This area had a big
development in the last years, mainly due to its applications in Quantum Calogero-
Moser-Sutherland models (see e.g. [10, 52, 37, 38, 61, 3, 4]). In particular, the
Dunkl harmonic oscillator [55, 26, 50, 49] is Lσ = −T 2

σ +sx2, depending on s > 0;
i.e., it is given by using Tσ instead of d/dx in the expression of the usual harmonic
oscillator H = − d2

dx2 + sx2.
On the other hand, let pk (k ∈ N, including zero1) is the sequence of orthog-

onal polynomials for the measure e−sx
2 |x|2σ dx, taken with norm one and posi-

tive leading coefficient. Up to normalization, these are the generalized Hermite
polynomials [59, p. 380, Problem 25]; see also [16, 20, 27, 17, 55, 56]. Let
xk,k < xk,k−1 < · · · < xk,1 denote the roots of each pk; in particular, xk,k/2 is the
smallest positive root if k is even. The corresponding generalized Hermite functions
are φk = pke

−sx2/2.
It is known that Lσ, with domain the Schwartz space S = S(R), is essentially

self-adjoint in L2(R, |x|2σ dx). Moreover the spectrum of its self-adjoint extension,
denoted by Lσ, consists of the eigenvalues (2k + 1 + 2σ)s, with corresponding
eigenfunctions φk.

1We adopt the convention 0 ∈ N.
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4 INTRODUCTION

We show asymptotic estimates of the functions φk as k → ∞, which are used
to prove embedding theorems, and these results are extended to other related per-
turbations of H. Even though we consider only the Dunkl harmonic oscillator on
the line to begin with, this work is more difficult than in the case of H, and has
some new features. It may also give a hint of how to proceed for higher dimension.

To get uniform estimates, we consider the functions ξk = |x|σφk instead of φk.
They satisfy the equation ξ′′k+qkξk = 0, where qk = (2k+1+2σ)s−s2x2−σ̄kx−2 with
σ̄k = σ(σ− (−1)k). Let Îk = q−1(R+) (the oscillation region), which is of the form:
(−bk,−ak) ∪ (ak, bk) if σ̄k > 0 (for k > 0), (−bk, bk) if σ̄k = 0, or (−bk, 0) ∪ (0, bk)
if σ̄k < 0, where bk > ak > 0 with bk ∈ O(k1/2) and ak ∈ O(k−1/2) as k → ∞.
If σ̄k ≥ 0, then set Ĵk = Îk. When σ̄k < 0 and k is large enough, the equation
qk(b) = 4π/b2 has two positive solutions, bk,+ < bk,−, with bk,+ ∈ O(k−1/2). Then
set Ĵk = (−bk,−bk,+] ∪ [bk,+, bk). The first important estimate proved in Part 1 is
the following.

Theorem A. There exist C,C ′, C ′′ > 0, depending on σ and s, such that, for
k ≥ 1:

(i) ξ2
k(x) ≤ C/

√
qk(x) for all x ∈ Ĵk ;

(ii) if k is odd or σ ≥ 0, then ξ2
k(x) ≤ C ′k−1/6 for all x ∈ R ; and

(iii) if k is even and σ < 0, then ξ2
k(x) ≤ C ′′k−1/6 if |x| ≥ xk,k/2.

In the case of Theorem A-(iii), the estimate of ξk cannot be extended to R\{0}
because these functions are unbounded near zero. Therefore some condition of the
type |x| ≥ xk,k/2 must be assumed; the meaning of this condition is clarified by
pointing out that xk,k/2 ∈ O(k−1/2) as k →∞. This weakness is complemented by
the following result.

Theorem B. Suppose that σ < 0. There exist C ′′′ > 0, depending on σ and s,
such that φ2

k(x) ≤ C ′′′ for all k even and all x ∈ R.

The following theorem asserts that the type of asymptotic estimates of Theo-
rem A-(ii),(iii) are optimal.

Theorem C. There exist C(IV ), C(V ) > 0, depending on σ and s, such that,
for k ≥ 1:

(i) maxx∈R ξ
2
k(x) ≥ C(IV )k−1/6; and,

(ii) if k is even and σ < 0, then max|x|≥xk,k/2 ξ
2
k(x) ≥ C(V )k−1/6.

To prove Theorems A–C, we apply the method that Bonan-Clark have used
with H [6]. The estimates are satisfied by the functions ξk instead of φk because
the method can be applied to the conjugation Kσ = |x|σLσ |x|−σ. This method has
two steps: first, it estimates the distance from any point x in an oscillation region to
some root xk,i, and, second, the value of ξ2

k(x) is estimated by using |x−xk,i|. These
computations for Kσ become much more involved than in [6]; indeed, several cases
are considered separately, some of them with significant differences; for instance,
some roots xk,i may not be in the oscillation region Îk, and the functions ξk may
not be bounded, as we said.

The asymptotic distribution of the roots xk,i as k →∞ also has a well known
measure theoretic interpretation [28, 62, 63]; specially, the generalized Hermite
polynomials are considered in [62, Section 4]. However the weak convergence of
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measures considered in those publications does not seem to give the asymptotic
approximation of the roots needed in the first step.

For each m ∈ N, let Sm be the Banach space of functions φ ∈ Cm(R) with
supx |xiφ(j)(x)| < ∞ for i + j ≤ m; thus S =

⋂
m Sm with the corresponding

Fréchet topology. On the other hand, for each real m ≥ 0, let Wm
σ be the version

of the Sobolev space obtained as Hilbert space completion of S with respect to the
scalar product defined by 〈φ, ψ〉Wm

σ
= 〈(1 + Lσ)mφ, ψ〉σ, where 〈 , 〉σ denotes the

scalar product of L2(R, |x|2σ dx). Let also W∞σ =
⋂
mW

m
σ with the corresponding

Fréchet topology. The subindex ev/odd is added to any space of functions on R to
indicate its subspace of even/odd functions. The following embedding theorems are
proved in Part 1; the second one is a version of the Sobolev embedding theorem.

Theorem D. For each m ≥ 0, SMm′,ev/odd

ev/odd ⊂ Wm
σ,ev/odd continuously2 if m′ ∈

N, m′ −m > 1/2, and

Mm′,ev/odd =

{
3m′

2 + m′

4 dσe(dσe+ 3) + dσe if σ ≥ 0 and m′ is even
5m′

2 if σ < 0 and m′ is even ,

Mm′,ev =

{
3m′−1

2 + m′−1
4 dσe(dσe+ 3) + dσe if σ ≥ 0 and m′ is odd

5m′+1
2 if σ < 0 and m′ is odd ,

Mm′,odd =

{
3m′+1

2 + m′+1
4 dσe(dσe+ 3) + dσe if σ ≥ 0 and m′ is odd

5m′+7
2 if σ < 0 and m′ is odd .

Theorem E. For all m ∈ N, Wm′

σ ⊂ Sm continuously if

m′ −m >

{
4 + 1

2dσe(dσe+ 1) if σ ≥ 0
4 if σ < 0 .

Moreover Wm′

σ,ev ⊂ S0
ev continuously if σ < 0 and m′ > 2.

Corollary F. S = W∞σ as Fréchet spaces.

In other words, Corollary F states that an element φ ∈ L2(R, |x|2σ dx) is in S
if and only if the “Fourier coefficients” 〈φ, φk〉σ are rapidly decreasing on k. This
also means that S =

⋂
mD(Lmσ ) (the smooth core3 D∞(Lmσ )) because the sequence

of eigenvalues of Lσ is in O(k) as k →∞.
We introduce a perturbed version Smσ of every Sm (Chapter 3), whose definition

involves Tσ instead of d
dx and is inspired by the estimates of Theorems A and B.

They satisfy much simpler embedding results (Chapter 4): Sm
′

σ ⊂Wm
σ if m′−m >

1/2, and Wm′

σ ⊂ Smσ if m′ −m > 1. The proof of the second embedding uses the
estimates of Theorems A and B. Even though S =

⋂
m Smσ , the inclusion relations

between the spaces Smσ and Sm′ are complicated, which motivates the complexity
of Theorems D and E.

2Let X and Y be topological vector spaces. It is said that X ⊂ Y continuously if X is a
linear subspace of Y and the inclusion map X ↪→ Y is continuous.

3Recall that a core of a closed densely defined operator T between Hilbert spaces is any

subspace of its domain D(T ) which is dense with the graph norm. If T is self-adjoint, then
D∞(T ) =

T
k≥1D(Tk) is a core for T , which is called its smooth core [11].
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Next, we consider other perturbations of H on R+ (Chapter 5). Let Sev,U

denote the space of restrictions of even Schwartz functions to some open set U , and
set φk,U = φk|U . The notation Sev,+ and φk,+ is used if U = R+.

Theorem G. Let

P = H − 2f1
d

dx
+ f2 (1)

where f1 ∈ C1(U) and f2 ∈ C(U) for some open subset U ⊂ R+ of full Lebesgue
measure. Assume that

f2 = σ(σ − 1)x−2 − f2
1 − f ′1 (2)

for some σ > −1/2. Let

h = xσe−F1 , (3)

where F1 ∈ C2(U) is a primitive of f1. Then the following properties hold:

(i) P , with domain hSev,U , is essentially self-adjoint in L2(R+, e
2F1 dx);

(ii) the spectrum of its self-adjoint extension, denoted by P, consists of the
eigenvalues (4k + 1 + 2σ)s (k ∈ N) with multiplicity one and normalized
eigenfunctions

√
2hφ2k,U ; and

(iii) the smooth core of P is hSev,U .

This theorem follows by showing that the stated condition on f1 and f2 charac-
terizes the cases where P can be obtained by the following process: first, restricting
Lσ to even functions, then restricting to U , and finally conjugating by h. The
term of P with d

dx can be removed by conjugation with the product of a positive
function, obtaining the operator H + σ(σ − 1)x−2.

Several examples of such type of operator P are given. For instance, we get
the following.

Corollary H. Let P = H − 2c1x−1 d
dx + c2x

−2 for some c1, c2 ∈ R. If there
is some a ∈ R such that

a2 + (2c1 − 1)a− c2 = 0 , (4)

σ := a+ c1 > −1/2 , (5)

then:

(i) P , with domain xa Sev,+, is essentially self-adjoint in L2(R+, x
2c1 dx);

(ii) the spectrum of its self-adjoint extension, denoted by P, consists of the
eigenvalues (4k + 1 + 2σ)s (k ∈ N) with multiplicity one and normalized
eigenfunctions

√
2xaφ2k,+; and

(iii) D∞(P) = xa Sev,+.

In Corollary H, for some c1, c2 ∈ R, there are two values of a satisfying the
stated condition, obtaining two different self-adjoint operators defined by P in
different Hilbert spaces. For instance, the Dunkl harmonic oscillator Lσ may define
self-adjoint operators even when σ ≤ −1/2.

Corollary H will be applied in Part 2 to prove our Morse inequalities on strata
of compact Thom-Mather stratifications with adapted metrics.
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Witten’s perturbation on strata

A Hilbert complex [11] is a differential complex given by a densely defined
closed operator d in a graded separable Hilbert space H. The corresponding Lapla-
cian ∆ = dd∗ + d∗d is a self-adjoint operator in H. It is said that d is discrete
when ∆ has a discrete spectrum4; in particular, its homology is of finite dimension
by a version of the Hodge decomposition.

Let (Ω0(M), d) be the compactly supported de Rham complex of a Riemannian
manifold M . Its Hilbert complex extensions in L2Ω(M) (the graded Hilbert space of
square integrable differential forms) are called its ideal boundary conditions (i.b.c.).
There is a minimum i.b.c., dmin = d, and a maximum i.b.c., dmax = δ∗, where δ is
de Rham coderivative acting on Ω0(M). The Laplacian defined by dmin/max is de-
noted by ∆min/max. It is well known that dmin = dmax if M is complete, but suppose
that M may not be complete. The i.b.c. dmin/max defines the min/max-cohomology
H•min/max(M), min/max-Betti numbers βrmin/max = βrmin/max(M), and min/max-
Euler characteristic χmin/max = χmin/max(M) (if the min/max-Betti numbers are
finite); these are quasi-isometric invariants of M . These concepts can indeed be
defined for arbitrary elliptic complexes [11].

From now on, assume that M is a stratum of a compact Thom-Mather stratifi-
cation A [60, 44, 45, 64]. Roughly speaking, around each x ∈M , there is a chart
of A with values in a product Rm × c(L), where:

• L is a compact Thom-Mather stratification of lower depth, and c(L) =
L× [0,∞)/L× {0} (the cone with link L);

• x corresponds to (0, ∗), where ∗ is the vertex of c(L); and,
• near x, M corresponds to Rm ×M ′ for some stratum M ′ of c(L).

We have, either M ′ = N × R+ for some stratum N of L, or M ′ = {∗}. Note that
x ∈ M just when M ′ = {∗}. Let ρ : c(L) → [0,∞) be the canonical function
induced by the second factor projection L× [0,∞)→ [0,∞). The sum of ρ and the
norm of Rm will be also called the canonical function of Rm × c(L).

Endow M with a Riemannian metric g, which is adapted in the following sense
defined by induction on the depth of M [13, 14]: there is a chart around each
x ∈ M \M as above such that g is quasi-isometric to a model metric of the form
g0 +ρ2g̃+(dρ)2 on Rm×N ×R+, where g0 is the Euclidean metric on Rm and g̃ an
adapted metric on N ; this g̃ is well defined since depthN < depthM . Note that g
may not be complete. More general adapted metrics are considered in [47, 48, 8].
The first main result of Part 2 is the following.

Theorem I. With the above notation, the following properties hold:
(i) dmin/max is discrete.

(ii) Let 0 ≤ λmin/max,0 ≤ λmin/max,1 ≤ · · · be the eigenvalues of ∆min/max,
repeated according to their multiplicities. Then there is some θ > 0 such
that lim infk λmin/max,k k

−θ > 0.

The discreteness of dmin is essentially due to J. Cheeger [13, 14]. Theorem I-(ii)
is a weak version of the Weyl’s assymptotic formula (see e.g. [54, Theorem 8.16]).
Elliptic theory for the case of conformally conic manifolds was studied in [12, 39],

4Recall that a self-adjoint operator has a discrete spectrum when there is no essential spec-

trum; i.e., the spectrum consists of eigenvalues with finite multiplicity without accumulation
points.
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and a non-commutative index theorem for the case of conical pseudo-manifolds is
given in [19].

A smooth function f on M is called relatively admissible (or rel-admissible)
when the functions |df | and |Hess f | are bounded. In this case, f may not have
any continuous extension to M , but it has a continuous extension to the (compo-
nentwise) metric completion M̂ of M . Then it makes sense to say that x ∈ M̂ is
a rel-critical point of f when there is a sequence (yk) in M such that limk yk = x

in M̂ and limk |df(yk)| = 0. To say that f is a rel-Morse function on M , it should
be also required that Hess f is “rel-non-degenerate” at each rel-critical point x, but
a “rel-Morse lemma” is missing. Thus, instead, we require the existence of a local
model of M̂ centered at x of the form Rm+ × Rm− × c(L+)× c(L−) so that:

• M corresponds to the stratum Rm+ × Rm− ×M+ ×M−, where M± is a
stratum of c(L±); and

• f corresponds to a constant plus the model function 1
2 (ρ2

+−ρ2
−) on Rm+×

Rm− ×M+ ×M−, where ρ± is the canonical function on Rm± × c(L±).

Either M± is the vertex stratum {∗±} of c(L±), or M± = N± × R+ for some
stratum N± of L±; in the second case, let n± = dimN±. This local model makes
sense because the product of two Thom-Mather stratifications can be endowed with
a Thom-Mather structure; in particular, the product of two cones becomes a cone.
There is no canonical choice of a product Thom-Mather structure, but all of them
have the same adapted metrics.

For each rel-critical point x of f as above and every r ∈ Z, define νrx,min/max in
the following way. If M+ = N+ × R+ and M− = N− × R+, then let

νrx,min/max =
∑
r+,r−

β
r+
min/max(N+)βr−min/max(N−) ,

where (r+, r−) runs in the subset of Z2 determined by the conditions:

r = m− + r+ + r− + 1 , (6)

r+ ≤


n+
2 − 1 if n+ is even
n+−3

2 if n+ is odd, in the minimum i.b.c. case
n+−1

2 if n+ is odd, in the maximum i.b.c. case ,
(7)

r− ≥


n−
2 if n− is even
n+−1

2 if n− is odd, in the minimum i.b.c. case
n−+1

2 if n− is odd, in the maximum i.b.c. case ,
(8)

If M+ = {∗+} and M− = N− ×R+, let νrx,min/max =
∑
r+
β
r+
min/max(N+), where r+

runs in the the set of integers satisfying r = m− + r+ and (7). If M+ = N+ × R+

and M− = {∗−}, let νrx,min/max =
∑
r−
β
r−
min/max(N−), where r− runs in the the set

of integers satisfying r = m− + r− + 1 and (8). If M+ = {∗+} and M− = {∗−},
let5 νrx,min/max = δr,m− . Finally, let νrmin/max =

∑
x ν

r
x,min/max, where x runs in the

rel-critical point set of f . The second main result of Part 2 is the following.

5Kronecker’s delta is used.
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Theorem J. With the above notation, we have the inequalities

β0
min/max ≤ ν

0
min/max ,

β1
min/max − β

0
min/max ≤ ν

1
min/max − ν

0
min/max ,

β2
min/max − β

1
min/max + β0

min/max ≤ ν
2
min/max − ν

1
min/max + ν0

min/max ,

etc., and the equality
χmin/max =

∑
r

(−1)r νrmin/max .

We also show that the existence of rel-Morse functions. For instance, for any
smooth action of a compact Lie group G on a closed manifold M , any invariant
Morse-Bott function on M whose critical manifolds are orbits induces a rel-Morse
function on G\M ; this provides a rich family of examples where Theorem J can be
applied.

To prove Theorem I, it is first shown that the stated properties are “rel-local”
(Chapter 10), and it is well known that they are invariant by quasi-isometries.
Then the spectrum is studied for the local models Rm × N × R+ with the model
metrics g0 + ρ2g̃+ (dρ)2, assuming that the result holds for N with g̃ by induction.
In fact, by the min-max principle, it is enough to make this argument for the
minimum/maximum i.b.c. ds,min/max of the Witten’s perturbation ds (s > 0) of
d defined by any rel-Morse function [68]; the Laplacian defined by ds,min/max is
denoted by ∆s,min/max. In this way, the proof of Theorem I becomes a step in the
proof of Theorem J by using the analytic method of E. Witten; specially, as it is
described in [54, Chapters 9 and 14].

A part of that method is a local analysis around the rel-critical points; more
explicitly, the spectral analysis of the perturbed Laplacian ∆s,min/max defined with
the model functions 1

2 (ρ2
+ − ρ2

−) on Rm+ × Rm− × M+ × M−. By the version
of the Künneth formula for Hilbert complexes [11], this study can be reduced to
the case of the functions ± 1

2ρ
2 on N × R+, where ρ is the canonical function of

c(L). Then the discrete spectral decomposition for N with g̃ is used to split the
Witten’s perturbation of the de Rham complex of N×R+ into direct sum of simple
elliptic complexes of two types (Chapters 11, 14 and 15), whose Laplacians are given
by the perturbation of the harmonic oscillator on R+ studied in Part 1, which is
related to the Dunkl harmonic oscillator. We end up with the spectral properties of
∆s,min/max needed to describe the “cohomological contribution” from the rel-critical
points (Chapter 19, Section 3).

Another part of the adaptation of Witten’s method is the proof of the “null
cohomological contribution” away from the rel-critical points. In this part, some
arguments of [54, Chapter 14] cannot be used because there is no version of the
Sobolev embedding theorem with the Sobolev spaces Wm(∆min/max) defined with
∆min/max; such a result may be true, but the usual way to prove it does not work
since Wm(∆min/max) may depend on the choice of the adapted metric (Chapter 21).
Therefore a new method is applied in that part of the proof (Chapter 19, Section 2),
which uses strongly Theorem I-(ii).

By extending f to M̂ , Theorem J can be considered as Morse inequalities on the
Thom-Mather stratification M̂ . In this sense, it would be interesting to compare it
with the Morse inequalities of Goresky-MacPherson [30, Chapter 6, Section 6.12],
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where they consider intersection homology with lower middle perversity of complex
analytic varieties with Whitney stratifications. Another analytic proof of Morse
inequalities was made by U. Luwig in [41, 42, 43] for the special case of conformally
conic manifolds, but her admissible and Morse functions are different from ours:
the norm of their differential is bounded away from zero around the frontier of the
stratum, and the norm of their Hessian may be unbounded.

In the future, we hope to extend this work to the case of other types of adapted
metrics (those considered in [47, 48, 8], or even more general ones); in the case of
dmin with the adapted metrics of [47, 48, 8], it would give Morse inequalities for
the intersection homology with arbitrary perversity. This will require the study of
a perturbation of the harmonic oscillator on R+ more general than in Part 1.

It is also natural to try to extend this work to the case of “rel-Morse-Bott
functions”, where the rel-critical point set consists of “rel-non-degenerate rel-critical
Thom-Mather substratifications”.

Acknowledgment. We thank F. Alcalde for pointing out a mistake in a
different previous version of the thesis, dealing with Morse inequalities for orbit
spaces, which led us to study the version of this work. We thank Y.A. Kordyukov
and M. Saralegui for helpful conversations on topics of this work. We also thank
MathOverflow user R. Israel for answering a question concerning a part of this
work. Finally, we thank R. Sjamaar for indirectly helping us (via M. Saralegui).
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CHAPTER 1

Preliminaries on the Dunkl harmonic oscillator

Most of the contents of this section are taken or adapted from [55].

1. Dunkl operator

Recall that, for any φ ∈ C∞ = C∞(R), there is some ψ ∈ C∞ such that
φ(x)− φ(0) = xψ(x), which also satisfies

ψ(m)(x) =
∫ 1

0

tmφ(m+1)(tx) dt (9)

for all m ∈ N (see e.g. [36, Theorem 1.1.9]). The notation ψ = x−1φ is used.
The Dunkl operator, in the case of dimension one, is the differential-difference

operator Tσ on C∞, depending on a parameter σ ∈ R, defined by

(Tσφ)(x) = φ′(x) + 2σ
φ(x)− φ(−x)

x
.

It can be considered as a perturbation of the derivative operator d
dx .

Consider the decomposition C∞ = C∞ev ⊕ C∞odd, as direct sum of subspaces
of even and odd functions. The matrix expressions of operators on C∞ will be
considered with respect to this decomposition. The operator of multiplication by a
function h will be denoted also by h. We can write

d

dx
=
(

0 d
dx

d
dx 0

)
, x =

(
0 x
x 0

)
,

Tσ =
(

0 d
dx + 2σx−1

d
dx 0

)
=

d

dx
+ 2σ

(
0 x−1

0 0

)
on C∞. With

Σ =
(
σ 0
0 −σ

)
,

we have

[Tσ, x] = 1 + 2Σ , (10)

TσΣ + ΣTσ = xΣ + Σx = 0 . (11)

Consider the perturbed factorial m!σ of each m ∈ N, which is inductively defined
by setting 0!σ = 1, and

m!σ =

{
(m− 1)!σm if m is even
(m− 1)!σ(m+ 2σ) if m is odd

for m > 0. Observe that m!σ > 0 if σ > −1/2, which will be the case of our interest;
otherwise, m!σ may be ≤ 0. For k ≤ m, even when k!σ = 0, the quotient m!σ/k!σ

13
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can be understood as the product of the factors from the definition of m!σ which
are not included in the definition of k!σ. For any φ ∈ C∞ and m ∈ N, we have

(Tmσ φ)(0) =
m!σ
m!

φ(m)(0) . (12)

This equality follows by (9) and induction on m.

2. Dunkl harmonic oscillator

Recall that, for dimension one, the harmonic oscillator, and the annihilation
and creation operators are

H = − d2

dx2
+ s2x2 , A = sx+

d

dx
, A′ = sx− d

dx

on C∞. By using Tσ instead of d/dx, we get a perturbations of H, A and A′ called
Dunkl harmonic oscillator, and Dunkl annihilation and creation operators:

L = −T 2
σ + s2x2 = H − 2σ

(
x−1 d

dx 0
0 d

dx x
−1

)
,

B = sx+ Tσ = A+ 2σ
(

0 x−1

0 0

)
,

B′ = sx− Tσ = A′ − 2σ
(

0 x−1

0 0

)
.

By (10) and (11),

L = BB′ − (1 + 2Σ)s = B′B + (1 + 2Σ)s =
1
2

(BB′ +B′B) , (13)

[L,B] = −2sB , [L,B′] = 2sB′ , (14)

[B,B′] = 2s(1 + 2Σ) , (15)

[L,Σ] = BΣ + ΣB = B′Σ + ΣB′ = 0 . (16)

Recall also that the Schwartz space S = S(R) is the space of functions φ ∈ C∞
such that

‖φ‖Sm =
∑

i+j≤m

sup
x
|xiφ(j)(x)|

is finite for all m ∈ N. This defines a sequence of norms ‖ ‖Sm on S, which is
endowed with the corresponding Fréchet topology. The Banach space completion
of S with respect to each norm ‖ ‖Sm will be denoted by Sm. We have Sm+1 ⊂ Sm
continuously, and S =

⋂
m Sm. Let us remark that ‖φ′‖Sm ≤ ‖φ‖Sm+1 for all m.

The above decomposition of C∞ can be restricted to each Sm and S, giving
Sm = Smev ⊕ Smodd and S = Sev ⊕ Sodd. The matrix expressions of operators on S
will be considered with respect to this decomposition. For φ ∈ C∞ev , ψ = x−1ψ and
i, j ∈ N, it follows from (9) that

|xiψ(j)(x)| ≤
∫ 1

0

tj−i|(tx)iφ(j+1)(tx)| dt ≤ sup
y∈R
|yiφ(j+1)(y)|

for all x ∈ R. Thus ‖ψ‖Sm ≤ ‖φ‖Sm+1 for all m ∈ N, obtaining that Sodd = xSev

and x−1 : C∞odd → C∞ev restricts to a continuous operator x−1 : Sodd → Sev.
Therefore x : Sev → Sodd is an isomorphism of Fréchet spaces, and Tσ, B, B′ and
L define continuous operators on S.
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Let 〈 , 〉σ and ‖ ‖σ denote the scalar product and norm of L2(R, |x|2σ dx). As-
sume from now on that σ > −1/2, and therefore S is a dense subset of L2(R, |x|2σ dx).
In L2(R, |x|2σ dx), with domain S, −Tσ is adjoint of Tσ, B′ is adjoint of B, and
L is essentially self-adjoint. The self-adjoint extension of L, with domain S, will
be denoted by L, or Lσ. Its spectrum consists of the eigenvalues (2k + 1 + 2σ)s
(k ∈ N). The corresponding normalized eigenfunctions φk are inductively defined
by

φ0 = s(2σ+1)/4Γ(σ + 1/2)−1/2e−sx
2/2 , (17)

φk =

{
(2ks)−1/2B′φk−1 if k is even
(2(k + 2σ)s)−1/2B′φk−1 if k is odd

(18)

for k ≥ 1. We also have

Bφ0 = 0 , (19)

Bφk =

{
(2ks)1/2φk−1 if k is even
(2(k + 2σ)s)1/2φk−1 if k is odd

(20)

for k ≥ 1. These assertions follow from (13)–(16) like in the case of H.

3. Generalized Hermite polynomials

From (17), (18) and the definition of B′, it follows that the functions φk are
the generalized Hermite functions φk = pke

−sx2/2, where pk is the sequence of
polynomials inductively defined by

p0 = s(2σ+1)/4Γ(σ + 1/2)−1/2 , (21)

pk =

{
(2ks)−1/2(2sxpk−1 − Tσpk−1) if k is even
(2(k + 2σ)s)−1/2(2sxpk−1 − Tσpk−1) if k is odd ,

(22)

for k ≥ 1. Up to normalization, these are the generalized Hermite polynomials; i.e.,
the orthogonal polynomials associated with the measure |x|2σe−sx2

dx [59, p. 380,
Problem 25]. Each pk is of precise degree k, even/odd if k is even/odd, and with
positive leading coefficient, denoted by γk. By (22),

γk =

{
k−1/2(2s)1/2γk−1 if k is even
(k + 2σ)−1/2(2s)1/2γk−1 if k is odd .

(23)

We also have

Tσp0 = 0 , (24)

Tσpk =

{
(2ks)1/2pk−1 if k is even
(2(k + 2σ)s)1/2pk−1 if k is odd .

(25)

The following recursion formula follows directly from (22) and (25):

pk =

{
k−1/2

(
(2s)1/2xpk−1 − (k − 1 + 2σ)1/2pk−2

)
if k is even

(k + 2σ)−1/2
(
(2s)1/2xpk−1 − (k − 1)1/2pk−2

)
if k is odd .

(26)
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We have pk(0) = 0 if and only if k is odd, and p′k(0) = 0 if and only if k is even.
By (26) and induction on k,

pk(0) = (−1)k/2
√

(k − 1 + 2σ)(k − 3 + 2σ) · · · (1 + 2σ)
k(k − 2) · · · 2

p0 (27)

if k is even. When k is odd, by (25) and (27),

(Tσpk)(0) = (−1)(k−1)/2

√
(k + 2σ)(k − 2 + 2σ) · · · (1 + 2σ)2s

(k − 1)(k − 3) · · · 2
p0 ,

obtaining

p′k(0) =
(−1)(k−1)/2

1 + 2σ

√
(k + 2σ)(k − 2 + 2σ) · · · (1 + 2σ)2s

(k − 1)(k − 3) · · · 2
p0 (28)

by (12). From (26) and by induction on k, we also get

x−1pk =
∑

`∈{0,2,...,k−1}

(−1)
k−`−1

2

√
(k − 1)(k − 3) · · · (`+ 2)2s

(k + 2σ)(k − 2 + 2σ) · · · (`+ 1 + 2σ)
p` (29)

if k is odd1.
The following assertions come from the general theory of orthogonal polynomi-

als [59, Chapter III]. All zeros of each polynomial pk are real and of multiplicity
one. Each open interval between consecutive zeros of pk contains exactly one zero
of pk+1, and at least one zero of every p` with ` > k. Moreover pk has exactly
bk/2c positive zeros and bk/2c negative zeros. The zeros of each pk will be denoted
xk,1 > xk,2 > · · · > xk,k. On each interval (xk,i+1, xk,i), the function pk+1/pk is
strictly increasing, and satisfies

lim
x→x±k,i

pk+1(x)
pk(x)

= ∓∞ .

For every polynomial p of degree ≤ k − 1, we have

p2(x) ≤
∫ ∞
−∞

p2(t) |t|2σe−st
2
dt ·

k∑
`=0

p2
`(x) (30)

for all x ∈ R. The Gauss-Jacobi formula states that there are λk,1, λk,2, . . . , λk,k ∈ R
such that, for any polynomial p of degree ≤ 2k − 1,∫ ∞

−∞
p(x) |x|2σe−sx

2
dx =

k∑
i=1

p(xk,i)λk,i . (31)

Lemma 1.1. We have

p′k
2(xk,i)λk,i =

{
2s if k is even
2s/(1 + 2σ) if k is odd .

1As a convention, the product of an empty set of factors is 1. Thus (k−1)(k−3) · · · (`+2) = 1
for ` = k − 1 in (29). Similarly, (27) and (28) also hold for k = 0 and k = 1, respectively.
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Proof. This is a direct adaptation of the proof of [6, Corollary 3]. With

p =
pkpk−1

x− xk,i
,

the formula (31) becomes
γk
γk−1

= p′k(xk,i)pk−1(xk,i)λk,i ,

and the result follows from (23)–(25). �

4. Proofs of the properties of the Dunkl harmonic oscillator

For the reader’s convenience, we include in this part the formal statements and
proofs of the spectral properties of L indicated in Section 2. The polynomials pk of
Section 3 are also used. The reader familiar with this type of arguments can skip
this part; there will not be any further reference to it.

Lemma 1.2. With S as domain, −Tσ is adjoint of Tσ in L2(R, |x|2σ dx).

Proof. For φ ∈ Seven and ψ ∈ Sodd,〈
d

dx
φ, ψ

〉
σ

=
∫ ∞
−∞

φ′ψ |x|2σ dx

= 2
∫ ∞

0

φ′ψx2σ dx

= −2
∫ ∞

0

φ(ψ′x2σ + ψ2σx2σ−1) dx

= −2
∫ ∞

0

φ(ψ′ + 2σx−1ψ)x2σ dx

= −
∫ ∞
−∞

φ(ψ′ + 2σx−1ψ) |x|2σ dx

= −
〈
φ,

(
d

dx
+ 2σx−1

)
ψ

〉
σ

. �

Corollary 1.3. With S as domain, B′ is adjoint of B in L2(R, |x|2σ dx), and
L is symmetric in L2(R, |x|2σ dx).

Proof of (19) and (20). By (17),

Bφ0 = s(2σ+1)/4 Γ((2σ + 1)/2)−1/2

(
sx+

d

dx

)
e−sx

2/2 = 0 .

Next, we proceed by induction on k ≥ 1. By (13) and (18),

Bφ1 = (2(1 + 2σ)s)−1/2BB′φ0

= (2(1 + 2σ)s)−1/2 (B′B + 2(1 + 2Σ)s)φ0

= (2(1 + 2σ)s)−1/2 2(1 + 2σ)sφ0)

= (2(1 + 2σ)s)1/2 φ0 .

Now, let k ≥ 2 and suppose that the statement holds for φk−1. To simplify the
notation, let νk = 1− (−1)k. Observe that νk = νk−1 + 2 (−1)k−1. Then, by (13)
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and (18) again,

Bφk = (2(k + νkσ)s)−1/2BB′φk−1

= (2(k + νkσ)s)−1/2 (B′B + 2(1 + 2Σ)s)φk−1

= (2(k + νkσ)s)−1/2 ((2(k − 1 + νk−12σ)s)1/2B′φk−2

+ 2(1 + (−1)k−12σ)sφk−1)

= (2(k + νkσ)s)−1/2 (2(k − 1 + νk−12σ)s+ 2(1 + (−1)k−12σ)s)φk−1

= (2(k + νkσ)s)1/2 φk−1 . �

Proposition 1.4. For each k ∈ N, φk is an eigenfunction of L, normalized in
L2(R, |x|2σ dx), with corresponding eigenvalue (2k + 1 + 2σ)s.

Proof. This follows by induction on k. For k = 0,

Lφ0 = ‖ψ0‖−1
σ Lψ0 = ‖ψ0‖−1

σ (Hψ0 − 2σx−1 ψ′0)

= ‖ψ0‖−1
σ (1 + 2σ)sψ0 = (1 + 2σ)s φ0 ,

and ‖φ0‖σ = 1 because∫ ∞
−∞

e−sx
2
|x|2σ dx = 2

∫ ∞
0

e−sx
2
x2σ dx = s−(2σ+1)/2 Γ((2σ + 1)/2) .

Now suppose that k ≥ 1 and the result holds for φk−1. Let νk = 1− (−1)k, like in
the proof of (19) and (20). By (13), (14), (18) and Corollary 1.3,

Lφk = (2(k + νkσ)s)−1/2 LB′φk−1

= (2(k + νkσ)s)−1/2 (B′L+ 2sB′)φk−1

= (2(k + νkσ)s)−1/2 ((2(k − 1) + 1 + 2σ)s+ 2s)B′φk−1

= (2k + 1 + 2σ)s φk ,

‖φk‖2σ = (2(k + νkσ)s)−1 〈BB′φk−1, φk−1〉σ
= (2(k + νkσ)s)−1 〈(L+ (1 + 2Σ)s)φk−1, φk−1〉σ
= (2(k + νkσ)s)−1 2(k + σ + (−1)k−1σ)s ‖φk−1‖2σ
= 1 . �

The functions φk form a base of the linear subspace

P =
{
p e−sx

2/2 | p is a polynomial
}
⊂ S .

The density of P in L2(R, |x|2σ dx) does not follow from the general theory of
orthogonal polynomials [59, Section 3.1], and therefore a particular proof must be
given like in the case of the Hermite polynomials [59, Theorem 5.7.1].

Proposition 1.5. P is dense in L2(R, |x|2σ dx).
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Proof. For each integer j ≥ 0, let fj(x) = xj e−sx
2/2. We have

‖fj‖2σ =
∫ ∞
∞

x2j e−sx
2
|x|2σ dx

= 2
∫ ∞

0

x2(j+σ) e−sx
2
dx

= s−1/2

∫ ∞
0

yj+
2σ−1

2 e−y dy

= s−1/2 Γ
(
j +

2σ + 1
2

)
≤ s−1/2 (j + bσc)! ,

where we have used the substitution y = sx2. Hence

‖(iλ)j(j!)−1/2 fj‖σ ≤ s−1/4(bσc! 2bσc)1/2(21/2|λ|)j(j!)−1/2

for each λ ∈ R because
(j + bσc)!

j!
= bσc!

(
j + bσc

j

)
≤ bσc! 2j+bσc .

It follows that the series

eiλx−sx
2/2 =

∞∑
j=0

(iλ)j

j!
fj

is convergent in L2(R, |x|2σ dx); indeed, it belongs to P because fj ∈ P. Therefore
any f orthogonal to P in L2(R, |x|2σ dx) satisfies∫ ∞

−∞
f(x) eiλx−sx

2/2 |x|2σ dx = 0

for all λ ∈ R, obtaining f(x) e−sx
2/2 |x|2σ = 0 almost everywhere with respect to dx

by Plancherel’s theorem. So f = 0 almost everywhere with respect to |x|2σ dx. �

The following result is a direct consequence of Propositions 1.4 and 1.5, and
Corollary 1.3.

Corollary 1.6. With domain S, the operator L is essentially self-adjoint
in L2(R, |x|2σ dx), and its spectrum consists of the eigenvalues and eigenfunctions
stated in Proposition 1.4.





CHAPTER 2

Estimates of the generalized Hermite functions

To get uniform estimates of the functions φk, they are multiplied by |x|σ,
obtaining eigenfunctions of another perturbation of H.

1. Second perturbation of H

Now, consider the perturbed derivative,

Eσ = |x|σTσ|x|−σ =
(

0 d
dx + σx−1

d
dx − σx

−1 0

)
,

and the perturbed harmonic oscillator,

K = |x|σL|x|−σ = −E2
σ + s2x2 =

(
H + σ(σ − 1)x−2 0

0 H + σ(σ + 1)x−2

)
,

defined on

|x|σ S = |x|σ Sev ⊕ |x|σ Sodd .

According to Sections 2 and 3 of Chapter 1, and since |x|σ : L2(R, |x|2σ dx) →
L2(R, dx) is a unitary isomorphism, K is essentially self-adjoint in L2(R, dx), and
the spectrum of its self-adjoint extension, denoted by K, or Kσ, consists of the
eigenvalues (2k+1+2σ)s (k ∈ N) of multiplicity one, and corresponding normalized
eigenfunctions

ξk = |x|σφk = pk|x|σe−sx
2/2 .

Each ξk is C∞ on R \ {0}, and it is C∞ on R if and only if σ ∈ N. If σ > 0 or
k is odd, then ξk is defined and continuous on R, and ξk(0) = 0. If σ < 0 and k is
even, then ξk is only defined on R \ {0}; in fact, by (27),

lim
x→0

ξk(x) = (−1)k/2∞ .

By (25) and (26),

ξ′k =
(
p′k +

(σ
x
− sx

)
pk

)
|x|σe−sx

2/2 (32)

=

{
(
√

2ks pk−1 + (σx − sx)pk) |x|σe−sx2/2 if k is even
(
√

2(k + 2σ)s pk−1 − (σx + sx)pk) |x|σe−sx2/2 if k is odd

=

{
((sx+ σ

x )pk −
√

2(k + 1 + 2σ)s pk+1) |x|σe−sx2/2 if k is even
((sx− σ

x )pk −
√

2(k + 1)s pk+1) |x|σe−sx2/2 if k is odd .
(33)

21
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By (32), (27) and (28),

lim
x→0±

ξ′k(x) =


0 if σ > 1 or σ = 0
±pk(0) if σ = 1
±(−1)k/2∞ if 0 < σ < 1
∓(−1)k/2∞ if −1/2 < σ < 0

if k is even,

lim
x→0

ξ′k(x) =


0 if σ > 0
p′k(0) if σ = 0
(−1)(k−1)/2∞ if −1/2 < σ < 0

if k is odd, and

lim
x→0±

(ξkξ′k)(x) =


0 if k is odd or σ = 0 or σ > 1/2
±p2

k(0)/2 if k is even and σ = 1/2
±∞ if k is even and 0 < σ < 1/2
∓∞ if k is even and −1/2 < σ < 0 .

(34)

By (33),

ξ′k
ξk

=

{
sx+ σ

x −
√

2(k + 1 + 2σ)s pk+1
pk

if k is even
sx− σ

x −
√

2(k + 1)s pk+1
pk

if k is odd ,
(35)

which generalizes a formula of [31] for the Hermite functions.
For the sake of simplicity, let

σ̄k = σ(σ − (−1)k) .

Each ξk satisfies
ξ′′k + qkξk = 0 , (36)

where
qk = (2k + 1 + 2σ)s− s2x2 − σ̄kx−2 .

2. Description of qk

The following elementary analysis of the functions qk will be used in Sections 3
and 4. If k is even, then σ̄k = 0 if σ ∈ {0, 1}, and σ̄k < 0 if 0 < σ < 1, and σ̄k > 0
otherwise. When k is odd, we have σ̄k = 0 if σ = 0, and σσ̄k > 0 if σ 6= 0. Each qk
is defined and smooth on R just when σ̄k = 0, otherwise it is defined and smooth
only on R \ {0}. Moreover qk is even and

q′k = −2s2x+ 2σ̄kx−3 .

Observe that

lim
x→±∞

qk(x) = −∞ , lim
x→0

qk(x) =

{
−∞ if σ̄k > 0
∞ if σ̄k < 0 ,

lim
x→±∞

q′k(x) = ∓∞ , lim
x→0±

q′k(x) =

{
±∞ if σ̄k > 0
∓∞ if σ̄k < 0 .

We have the following cases for the zeros of q′k:
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• If σ̄k > 0, then q′k has two zeros, which are

±xmax = ±
√√

σ̄k/s ,

At these points, qk reaches its maximum, which equals cmaxs for

cmax = 2k + 1 + 2σ − 2
√
σ̄k .

Notice that, in this case, cmax = 0 if k = 0 and σ = −1/8, cmax < 0 if
k = 0 and −1/2 < σ < −1/8, and cmax > 0 otherwise.

• If σ̄k = 0, then q′k has one zero, which is 0, where qk reaches its maximum
cmaxs as above with cmax = 2k + 1 + 2σ > 0.

• If σ̄k < 0, then q′k > 0 on R− and q′k < 0 on R+.
We have the following possibilities for the zeros of qk:

• If σ̄k > 0 and cmax > 0, then qk has four zeros, which are

±ak = ±

√
2k + 1 + 2σ −

√
(2k + 1 + 2σ)2 − 4σ̄k
2s

,

±bk = ±

√
2k + 1 + 2σ +

√
(2k + 1 + 2σ)2 − 4σ̄k
2s

. (37)

• If σ̄k > 0 and cmax = 0, or σ̄k ≤ 0, then qk has two zeros, ±bk, defined
by (37).

• If σ̄k > 0 and cmax < 0, then qk < 0.
If qk has four zeros, ±ak and ±bk, then

s(bk − ak)2 = cmax , (38)

and
2sa2

k =
4σ̄k

2k + 1 + 2σ +
√

(2k + 1 + 2σ)2 − 4σ̄k
,

obtaining
ak ∈ O(k−1/2) (39)

as k →∞.
If qk has at least two zeros, ±bk, then

2s(b2k − b2`) = 2 + 4
k2 − `2 + (1 + 2σ)(k − `) + σ̄` − σ̄k√

(2k + 1 + 2σ)2 − 4σ̄k +
√

(2`+ 1 + 2σ)2 − 4σ̄`
for ` ≤ k, obtaining

bk+1 − bk ∈ O(k−1/2) (40)
as k →∞, and

bk − b` ≥ C(k − `)k−1/2 (41)
for some C > 0 if k and ` are large enough. If σ̄k = 0, then sb2k = cmax.

Like in [6], the maximal open intervals where qk is defined and > 0 (respectively,
< 0) will be called oscillation (respectively, non-oscillation) intervals of ξk; this
terminology is justified by Lemma 2.1 bellow. We have the following possibilities
for the oscillation intervals:

• If σ̄k > 0 and cmax > 0, then ξk has two oscillation intervals, (ak, bk) and
(−bk,−ak), containing xmax and −xmax, respectively.

• If σ̄k > 0 and cmax ≤ 0, then ξk has no oscillation intervals.
• If σ̄k < 0, then ξk has two oscillation intervals, (−bk, 0) and (0, bk).
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• If σ̄k = 0, then ξk has one oscillation interval, (−bk, bk).

3. Location of the zeros of ξk and ξ′k

In R \ {0}, the functions ξk and pk have the same zeros. Then ξk and ξ′k have
no common zeros by (32). The functions ξ0 and ξ1 have no zeros in R \ {0}, and
the two zeros ±x2,1 of ξ2 are in R \ {0}.

Lemma 2.1. On R \ {0}:
(i) the zeros of ξ′k belong to the oscillation intervals of ξk;

(ii) if k is odd or σ ≥ 0, the zeros of ξk belong to the oscillation intervals of
ξk; and

(iii) if k is even and σ < 0, the zeros of ξk, possibly except ±xk,k/2, belong to
the oscillation intervals of ξk.

Proof. It is enough to consider the zeros in R+ because ξk is either even or
odd. We can also assume that ξkξ′k has zeros on R+, otherwise there is nothing to
prove.

Let x∗ and x∗ denote the minimum and maximum of the zeros of ξkξ′k in R+.
By (36),

(ξkξ′k)′ = ξ′k
2 − qkξ2

k > 0

on the non-oscillation intervals, and therefore ξkξ′k is strictly increasing on those
intervals. In particular, since ξkξ′k is strictly increasing on (bk,∞) and (ξkξ′k)(x)→
0 as x → ∞, it follows that x∗ < bk. This shows the statement when there is
one oscillation interval of the form (−bk, bk). So it remains to consider the case
where there is an oscillation interval of ξk in R+ of the form (ak, bk). This holds
when k is odd and σ > 0, k = 0 and σ ∈ (−1/8, 0) ∪ (1,∞), or k ∈ 2Z+ and
σ ∈ (−1/2, 0) ∪ (1,∞).

If k is odd and σ > 0, or k is even and σ ∈ (1,∞), then x∗ > ak because ξkξ′k
is strictly increasing on (0, ak) and (ξkξ′k)(x)→ 0 as x→ 0+ by (34).

Finally, assume that k ∈ 2Z+ and σ ∈ (−1/2, 0). Then the above arguments
do not work because (ξkξ′k)(x)→ −∞ as x→ 0+ by (34). Let f be the function on
R+ defined by f(x) = sx+ σ

x . We have f(x)→ −∞ as x→ 0+, and f ′ = s− σ
x2 > 0

on R+. Moreover
√
−σ/s is the unique zero of f in R+.

If x∗ is a zero of ξ′k, then ξk (and pk as well) has no zeros in [−x∗, x∗]. Therefore
0 is the unique zero of pk+1 in this interval. So pk+1/pk > 0 on (0, x∗]. Since

0 = f(x∗)−
√

2(k + 1 + 2σ)s
pk+1(x∗)
pk(x∗)

by (35), it follows that f(x∗) > 0, obtaining x∗ >
√
−σ/s. But

a2
k =

2k + 1 + 2σ −
√

(2k + 1)2 + 8(k + 1)σ
2s

< −σ
s

because k > 1, obtaining x∗ > ak.
If x∗ is a zero of ξk (i.e., x∗ = xk,k/2), then the other positive zeros of ξkξ′k are

> ak because this function is strictly increasing on (0, ak). �

In the case of Lemma 2.1-(iii), the zero ±xk,k/2 of ξk may be in an oscillation
interval, in a non-oscilation intervals or in their common boundary point. For



3. LOCATION OF THE ZEROS OF ξk AND ξ′k 25

instance, for k = 2,

p2 =

(√
2

1 + 2σ
sx2 −

√
1 + 2σ

2

)
p0

by (22), obtaining

x2
2,1 =

1 + 2σ
2s

.

Moreover

a2
2 =

5 + 2σ −
√

25 + 24σ
2s

.

So

x2,1 − a2 =
−4 +

√
25 + 24σ
2s

,

and therefore σ > −3/8 if and only if x2,1 > a2. So (a2, b2) contains no zero of ξ2
when σ ∈ (−1/2,−3/8]. For k > 2, every oscillation interval of ξk contains some
zero of ξk by Lemma 2.1.

Lemma 2.2. There exist C0, C1, C2 > 0, depending on σ, such that, if k ≥ C0

and I is any oscillation interval of ξk, then there is some subinterval J ⊂ I so that:
(i) for every x ∈ J , there exists some zero xk,i of ξk in I such that

|x− xk,i| ≤
C1√
qk(x)

;

(ii) each connected component of I \ J is of length ≤ C2k
−1/2.

Proof. According to Section 2, for any c > 0 with cs ∈ qk(I), the set Ic =
I ∩ q−1

k ([cs,∞)) is a subinterval of I, whose boundary in I is I ∩ q−1
k (cs).

Claim 1. If length(Ic) ≥ 2π/
√
cs, then each boundary point of Ic in I satisfies

the condition of (i) with xk,i ∈ Ic and C1 = 2π.

Let fc be the function on R defined by fc(x) = sin(
√
cs x), whose zeros are

`π/
√
cs for ` ∈ Z. Since f ′′c +csfc = 0 and cs ≤ qk on Ic, the zeros of ξk in Ic separate

the zeros of fc in Ic by Sturm’s comparison theorem. If length(Ic) ≥ 2π/
√
cs, then

each boundary point x of Ic is at a distance ≤ 2π/
√
cs of two consecutive zeros of

fc in Ic, and there is some zero of ξk between them, which shows Claim 1 because
qk(x) = cs.

Now we have to analyze each type of oscillation interval separately, correspond-
ing to the possibilities for σ̄k and cmax. When there are two oscillation intervals of
ξk, it is enough to consider only the oscillation interval contained in R+ because
the function ξk is either even or odd.

The first type of oscillation interval is of the form I = (ak, bk), which cor-
responds to the conditions σ̄k > 0 and cmax > 0. We have cs ∈ qk(I) when
0 < c ≤ cmax. Then q−1

k (cs) consists of the points

±ak,c = ±

√
2k + 1 + 2σ − c−

√
(2k + 1 + 2σ − c)2 − 4σ̄k
2s

,

±bk,c = ±

√
2k + 1 + 2σ − c+

√
(2k + 1 + 2σ − c)2 − 4σ̄k
2s

, (42)
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and we get Ic = [ak,c, bk,c]. Since

s(bk,c − ak,c)2 = cmax − c , (43)

we have length(Ic) ≥ 2π/
√
cs if and only if c(cmax − c) ≥ 4π2, which means that

cmax ≥ 4π and c− ≤ c ≤ c+ for

c± =
cmax ±

√
c2max − 16π2

2
.

Since cmax ∈ O(k) as k → ∞, there is some C0 > 0, depending on σ, such that
cmax ≥ 4π for all k ≥ C0. Assuming k ≥ C0, let ak,± = ak,c± and bk,± = bk,c± ,
which satisfy

ak < ak,− < ak,+ < bk,+ < bk,− < bk .

Fix any x ∈ I and let qk(x) = cs. First, x ∈ [ak,−, ak,+] ∪ [bk,+, bk,−] if and
only if length(Ic) ≥ 2π/

√
cs, and in this case x satisfies the condition of (i) with

xk,i ∈ Ic and C1 = 2π by Claim 1. Second, if x ∈ (ak, ak,−) ∪ (bk,−, bk), then
length(Ic) < 2π/

√
cs, Ic ⊃ Ic− , and we already know that Ic− contains some zero

of ξk. Hence x also satisfies the condition of (i) with C1 = 2π. And third, if
x ∈ (ak,+, bk,+), then

s(bk,+ − ak,+)2 = cmax − c+ = c− =
16π2

c+
≤ 32π2

cmax
≤ 32π2

c

by (43), obtaining

length(Ic+) ≤ 4
√

2π√
cs

.

Since Ic ⊂ Ic+ and it is already proved that Ic+ contains some zero of ξk, it follows
that x also satisfies the condition of (i) with C1 = 4

√
2π. Summarizing, (i) holds

in this case with J = I and C1 = 4
√

2π if cmax ≥ 4π. In this case, (ii) is obvious
because J = I.

The second type of oscillation interval is of the form I = (0, bk), which corre-
sponds to the condition σ̄k < 0. Now, cs ∈ qk(I) for any c > 0, the set q−1

k (cs)
consists of the points ±bk,c, defined like in (42), and we have Ic = (0, bk,c]. The
equality cs = qk(2π/

√
cs) holds when

(2k + 1 + 2σ)2 − 4σ̄k − 16π2 > 0 (44)

and c is

c± = 2π2 2k + 1 + 2σ ±
√

(2k + 1 + 2σ)2 − 4σ̄k − 16π2

σ̄k − 4π2
.

Assuming (44), we have length(Ic) ≥ 2π/
√
cs if and only if c− ≤ c ≤ c+. Let

bk,± = bk,c± , satisfying 0 < bk,+ < bk,− < bk.
Fix any x ∈ I and let qk(x) = cs. First, x ∈ [bk,+, bk,−] if and only if

length(Ic) ≥ 2π/
√
cs; in this case, x satisfies the condition of (i) with xk,i ∈ Ic

and C1 = 2π by Claim 1. And second, if x ∈ (bk,−, bk), then length(Ic) < 2π/
√
cs,

Ic ⊃ Ic− , and we already know that Ic− contains some zero of ξk. Hence x also
satisfies the condition of (i) with C1 = 2π. So, when (44) is true, (i) holds with
J = [bk,+, bk) and C1 = 2π.

Notice that c+ ∈ O(k) as k → ∞. Then there are some C0, C2 > 0, depend-
ing on σ, such that, if k ≥ C0, then (44) holds and sb2k,+ = 4π2/c+ ≤ C2k

−1,
showing (ii) in this case.
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The third and final type of oscillation interval is I = (−bk, bk), which corre-
sponds to the condition σ̄k = 0. We have cs ∈ qk(I) when 0 < c ≤ cmax. Then
q−1
k (cs) consists of the points ±bk,c, defined like in (42), and we get Ic = [−bk,c, bk,c].

Since
sb2k,c = cmax − c , (45)

we have length(Ic) ≥ 2π/
√
cs if and only if c(cmax − c) ≥ π2, which means that

cmax ≥ π and c− ≤ c ≤ c+ for

c± =
cmax ±

√
c2max − 4π2

2
.

Since cmax ∈ O(k) as k → ∞, there is some C0 > 0, depending on σ, such that
cmax ≥ 4π for all k ≥ C0. Assuming k ≥ C0, let bk,± = bk,c± , which satisfy
0 < bk,+ < bk,− < bk.

Fix any x ∈ I and let qk(x) = cs. First, bk,+ ≤ |x| ≤ bk,− if and only if
length(Ic) ≥ 2π/

√
cs; in this case, x satisfies the condition of (i) with xk,i ∈ Ic and

C1 = 2π by Claim 1. Second, if |x| > bk,−, then length(Ic) < 2π/
√
cs, Ic ⊃ Ic− ,

and we already know that Ic− contains some zero of ξk. Hence x also satisfies the
condition of (i) with C1 = 2π. And third, if |x| < bk,+, then

sb2k,+ = cmax − c+ = c− =
4π2

c+
≤ 8π2

cmax
≤ 8π2

c

by (45), obtaining

length(Ic+) ≤
√

2π√
cs

.

Since Ic ⊂ Ic+ and it is already proved that Ic+ contains some zero of ξk, it follows
that x also satisfies the condition of (i) with C1 =

√
2π. Summarizing, (i) holds

in this case with J = I and C1 = 2π. In this case, (ii) is also obvious because
J = I. �

Lemma 2.3. There exist C ′0, C
′
1, C

′
2 > 0, depending on σ and s, such that, if

k ≥ C ′0 and I is any oscillation interval of ξk, then there is some subinterval J ′ ⊂ I
so that:

(i) qk ≥ C ′1k1/3 on J ′; and
(ii) each connected component of I \ J ′ is of length ≤ C ′2k−1/6.

Proof. We use the notation of the proof of Lemma 2.2. The same type of
argument can be used for all types of oscillation intervals. Thus, e.g., suppose that
I is of the type (0, bk). Since bk ∈ O(k1/2) as k →∞, we have b′k = bk − k−1/6 ∈ I
for k large enough, and

qk(b′k) = −s2(k−1/3 − 2bkk−1/6)− 4σ̄k((bk − k−1/6)−2 − b−2
k ) ∈ O(k1/3)

as k → ∞. So there are C ′0, C
′
1 > 0, depending on σ and s, such that b′k ∈ I and

c′ = qk(b′k) ≥ C ′1k1/3 for k ≥ C ′0. Then (i) and (ii) hold with J ′ = Ic′ = (0, b′k]. �

Corollary 2.4. There exist C ′′0 , C
′′
1 > 0, depending on σ and s, such that, if

k ≥ C ′′0 and I is any oscillation interval of ξk, then, for each x ∈ I, there exists
some zero xk,i of ξk in I so that

|x− xk,i| ≤ C ′′1 k−1/6 .
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Proof. With the notation of Lemmas 2.2 and 2.3, let C ′′0 = max{C0, C
′
0} and

C ′′2 = max{C2, C
′
2}. Assume k ≥ C ′′0 and consider the subinterval J ′′ = J ∩ J ′ ⊂ I.

By Lemmas 2.2-(ii) and 2.3-(ii), each connected component of I \ J ′′ is of length
≤ C ′′2 k

−1/6. Then, for each x ∈ I, there is some x′′ ∈ J ′′ such that |x − x′′| ≤
C ′′2 k

−1/6. By Lemmas 2.2-(i) and 2.3-(i), there is some zero xk,i of ξk in I such that

|x′′ − xk,i| =
C1√
qk(x′′)

≤ C1√
C ′1

k−1/6 .

Hence
|x− xk,i| ≤

(
C ′′2 + C1/

√
C ′1
)
k−1/6 . �

4. Estimates of ξk

Lemma 2.5. Let I be an oscillation interval of ξk, let x ∈ I and let xk,i be a
zero of ξk in I. Then

ξ2
k(x) ≤

{
8s
3 |x− xk,i| if k is even

8s
3(1+2σ) |x− xk,i| if k is odd .

Proof. We can assume that there are no zeros of ξk between x and xk,i. For
the sake of simplicity, suppose also that xk,i < x and ξk > 0 on (xk,i, x); the other
cases are analogous. The key observation of [6] is that then the graph of ξk on
[xk,i, x] is concave down, and therefore

1
2
ξk(x)(x− xk,i) ≤

∫ x

xk,i

ξk(t) dt .

By Schwartz’s inequality and (31), it follows that(
1
2
ξk(x)(x− xk,i)

)2

≤

(∫ ∞
−∞

p2
k(t) |t|2σe−st2

(t− xk,i)2
dt

)(∫ x

xk,i

(t− xk,i)2 dt

)

= p′k
2(xk,i)λk,i

(x− xk,i)3

3
,

and the result follows by Lemma 1.1. �

With the notation of Lemma 2.2, for each k ≥ C0, let Îk denote the union of
the oscillation intervals of ξk, and let Ĵk ⊂ Îk denote the union of the corresponding
subintervals J defined in the proof of Lemma 2.2. More precisely:

• if σ̄k > 0 and cmax > 0, then Ĵk = Îk = (−ak,−bk) ∪ (ak, bk);
• if σ̄k < 0, then Îk = (−bk, 0) ∪ (0, bk) and Ĵk = (−bk,−bk,+] ∪ [bk,+, bk);

and
• if σ̄k = 0, then Ĵk = Îk = (−bk, bk).

If k < C0, we also use the notation Ĵk = Îk for the union of the oscillation intervals,
which may be empty if there are no oscillation intervals.

Proof of Theorem A. Part (i) follows from Lemmas 2.2 and 2.5.
In any case, ξk(x) → 0 as x → ∞. If moreover k is odd or σ ≥ 0, then ξk

is continuous on R. Thus ξ2
k is bounded and reaches its maximum at some point

x̄ ∈ R. Since ξk(0) = 0 (if σ̄k 6= 0) or 0 ∈ Îk (if σ̄k = 0), it follows from Lemma 2.1
that x̄ ∈ Îk. Then (ii) follows by Corollary 2.4 and Lemma 2.5.
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If k is even and σ < 0, then ξk is not defined at 0 and ξ2
k(x) → ∞ as x → 0.

So we can only conclude as above that the restriction of ξ2
k to the set defined by

|x| ≥ xk,k/2 is bounded, and reaches its maximum at some point x̄ of this set. Then
x̄ ∈ Îk by Lemma 2.1, and therefore (iii) holds by Corollary 2.4 and Lemma 2.5. �

Consider the case σ < 0 and k even, when Theorem A does not provide any
estimate of ξ2

k around zero. According to Section 3 of Chapter 1, the function p2
k(x)

on the region |x| ≤ xk,k/2 reaches its maximum at x = 0, and moreover p2
k(0) < p2

0

by (27). Hence φ2
k(x) < p2

0 for |x| ≤ xk,k/2, which complements Theorem A-(iii).
On the other hand, φ2

k(x) ≤ ξ2
k(x) for |x| ≤ 1. Moreover xk,k/2 ≤ 1 for k large

enough by Corollary 2.4 since ak → 0 as k → ∞. So Theorem B follows from
Theorem A-(iii).

The following lemmas will be used in the proof of Theorem C.

Lemma 2.6. There is some F > 0 such that, for k ≥ 1 and x ≥ bk+1,

ξk(x) ≤ Fk−5/12

(x− bk)2
.

Proof. Let x0 ∈ (xk,1, bk) such that ξ′k(x0) = 0. Since

ξ′k(x) =
∫ x

x0

ξ′′k (t) dt

and ξ′k(x) < 0 for x > bk, we get

∫ x

x0

qk(t)ξk(t) dt > 0

for x > bk. Because ξk(x) > 0 for x > x0, qk(x) > 0 for x0 < x < bk and qk(x) < 0
for x > bk, it follows that

∫ bk

x0

qk(t)ξk(t) dt > −
∫ x

bk

qk(t)ξk(t) dt . (46)
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According to Corollary 2.4 and Theorem A-(ii),(iii), for k ≥ C ′′0 and with
C̄ = max{C ′, C ′′}, we get∫ bk

x0

qk(t)ξk(t) dt ≤ C̄1/2k−1/12

∫ bk

x0

qk(t) dt

= C̄1/2k−1/12

(
(2k + 1 + 2σ)s(bk − x0)

− s2

3
(b3k − x3

0) + σ̄k(b−1
k − x

−1
0 )
)

≤ C̄1/2k−1/12

(
(2k + 1 + 2σ)sC ′′1 k

−1/6

− s2

3
(b3k − (bk − C ′′1 k−1/6)3) +

|σ̄k|C ′′1 k−1/6

bk(bk − C ′′1 k−1/6)

)
≤ C̄1/2k−1/12

(
(2k + 1 + 2σ)sC ′′1 k

−1/6

− s2

(
C ′′1 b

2
kk
−1/6 − C ′′1

2
bkk
−1/3 − C ′′1

3
k−1/2

3

)
+

|σ̄k|C ′′1 k−1/6

bk(bk − C ′′1 k−1/6)

)
.

Since

2k + 1 + 2σ − sb2k =
σ̄k
sb2k

,

there is some F0 > 0 such that∫ bk

x0

qk(t)ξk(t) dt ≤ F0k
1/12 (47)

for all k ∈ N.
On the other hand,

−
∫ x

bk

qk(t)ξk(t) dt ≥ −ξk(x)
∫ x

bk

qk(t) dt .

With the substitution u = t− bk, we get

qk(t) = −s2u(u+ 2bk) +
σ̄k
b2k
− σ̄k(u+ bk)−2 ,

giving

−ξk(x)
∫ x

bk

qk(t) dt = ξk(x)
(
s2

(
1
3

(x− bk)3 + bk(x− bk)2

)
− σ̄k
b2k

(x− bk)− σ̄k(x−1 − b−1
k )
)

≥ ξk(x)
(
s2bk(x− bk)2 − |σ̄k|

b2k
(x− bk)− |σ̄k| b−1

k

)
≥ ξk(x)

((
s2bk −

|σ̄k|
b2k(bk+1 − bk)

)
(x− bk)2 − |σ̄k| b−1

k

)
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for x ≥ bk+1. By (40), it follows that there is some F1 > 0 such that

−
∫ x

bk

qk(t)ξk(t) dt ≥ F1ξk(x)k1/2(x− bk)2 (48)

for all k and x ≥ bk+1. Now the result follows from (46)–(48). �

Lemma 2.7. For each ε > 0, there is some G > 0 such that, for all k ∈ N,

max
|x−xk,1|≤εk−1/6

k−1∑
`=0

ξ2
` (x) ≤ Gk1/6 .

Proof. Take any x ∈ R such that |x− xk,1| ≤ εk−1/6. By Corollary 2.4,

|x− bk| ≤ |x− xk,1|+ |xk,1 − bk| ≤ (ε+ C ′′1 )k−1/6 (49)

for k ≥ C ′′0 . In particular, bk < x if k is large enough. With this assumption, let
`0, `1, `2 ∈ N satisfying 0 < `0 < `1 < `2 − 1, where `0 and `1 will be determined
later, and `2 is the maximum of the naturals ` < k with b`′ ≤ x for all `′ ≤ `. Let

f±(t) =
√

2t+ 1 + 2σ ± 1

for t ≥ 1. We have

f±(`)−
√
sb` = 2

±(2`+ 1 + 2σ) + 1 + σ̄`(
2`+ 1 + 2σ ± 2−

√
(2`+ 1 + 2σ)2 − 4σ̄`

)(
f±(`) +

√
sb`
)

for ` ∈ Z+. So, assuming that k is large enough, we can fix `0, independently of k
and x, so that

f−(`) <
√
sb` < f+(`)

for all ` ≥ `0. We have f+(`1) < f−(`2) because `1 < `2−1. Moreover observe that

f ′+(t) = (2(t+ 1 + σ))−1/2 > 0 ,

f ′′+(t) = −(2(t+ 1 + σ))−3/2 < 0

for all t ≥ 1. Then, by Lemma 2.6,

`1−1∑
`=`0

ξ2
` (x) ≤

`1−1∑
`=`0

F 2`−5/6

(x− b`)4
≤ F 2

`1−1∑
`=`0

`−5/6

(b`2 − b`)4

≤ F 2
√
s

`1−1∑
`=`0

`−5/6

(f−(`2)− f+(`))4
≤ F 2

√
s

∫ `1

`0

t−5/6 dt

(f−(`2)− f+(t))4
.

After integrating by parts four times, we get∫ `1

`0

t−5/6 dt

(f−(`2)− f+(t))4
≤

`
−5/6
1 f ′+

−1(`1)
3(f−(`2)− f+(`1))3

+
5`−11/6

1 f ′+
−2(`1)

36 (f−(`2)− f+(`1))2

+
55 `−17/6

1 f ′+
−3(`1)

216 (f−(`2)− f+(`1))
+

935
1296

`
−23/6
1 f ′+

−4(`1) ln(f−(`2))

+
21505
7776

ln(f−(`2))
∫ `1

`0

t−29/6f ′+
−4(t) dt .
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Therefore, since f ′+(t) ∈ O(t−1/2) as t→∞, there exists some G1 > 0, independent
of k and x, such that

`1−1∑
`=`0

ξ2
` (x) ≤ G1

(
`
−1/3
1

(f−(`2)− f+(`1))3
+

`
−5/6
1

(f−(`2)− f+(`1))2

+
`
−4/3
1

f−(`2)− f+(`1)
+ `
−11/6
1 ln(f−(`2)) + ln(f−(`2))

)
.

We have
`
−11/6
1 ln(f−(`2)) + ln(f−(`2)) ≤ `1/62

for k large enough. Then
∑`0−1
`=1 ξ2

` (x) has an upper bound of the type of the
statement if `1 satisfies

max
{

`
−1/3
1

(f−(`2)− f+(`1))3
,

`
−5/6
1

(f−(`2)− f+(`1))2
,

`
−4/3
1

f−(`2)− f+(`1)

}
≤ `1/62 . (50)

On the other hand, according to Theorem A-(ii),(iii),
`2∑
`1

ξ2
` (x) ≤ C̄

`2∑
`1

`−1/6 ≤ C̄
∫ `2

`1

y−1/6 dy =
6C̄
5

(`5/62 − `5/61 ) ,

where C̄ = max{C ′, C ′′}. Then
∑`2
`=`1

ξ2
` (x) has an upper bound of the type of the

statement if
`
5/6
2 − `5/61 ≤ G2`

1/6
2

for some G2 > 0, independent of k and x, which is equivalent to

`1 ≥ `2
(
1−G2`

−2/3
2

)6/5
. (51)

Thus we must check the compatibility of (50) with (51) for some `1 and G2. By (51)

and since, for each G2, δ > 0, we have G2`
−2/3
2 ≤ `−

2
3 +δ

2 for k large enough, we can
replace (50) with

max
{
`
−1/3
2

(
1− `−

2
3 +δ

2

)−2/5

(f−(`2)− f+(`1))3
,
`
−5/6
2

(
1− `−

2
3 +δ

2

)−1

(f−(`2)− f+(`1))2
,

`
−4/3
2

(
1− `−

2
3 +δ

2

)−8/5

f−(`2)− f+(`1)

}
≤ `1/62

for some δ > 0, which is equivalent to

`1 ≤
1
2

(√
2(`2 + σ)− `a2

(
1− `−

2
3 +δ

2

)b)2

− 1− σ

for
(a, b) ∈ {(−1/6,−2/15), (−1/2,−1/2), (−3/2,−8/5)} .

Thus the compatibility of (50) with (51) holds if there is some G2, δ > 0 such that

`2
(
1−G2`

−2/3
2

)6/5 ≤ 1
2

(√
2(`2 + σ)− `a2

(
1− `−

2
3 +δ

2

)b)2

− 2− σ ,

which is equivalent to

G2 ≥ `2/32

(
1−

(
1
2

(√
2(1 + σ`−1

2 )− `a−
1
2

2

(
1− `−

2
3 +δ

2

)b)2

− (2 + σ)`−1
2

)5/6)
.
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There is some G2 > 0 satisfying this condition because the l’Hôspital rule shows
that, for δ small enough, each function

t2/3
(

1−
(

1
2

(√
2(1 + σt−1)− ta− 1

2
(
1− t− 2

3 +δ
)b)2

− (2 + σ)t−1

)5/6)
is convergent in R as t→∞.

Now, if `2 < k − 1, let `3 denote the minimum integer ` < k such that b`′ > x
for all `′ ≥ `. Also, let σ̄min/max denote the minimum/maximum values of σ̄` for
` ∈ N. Then√

2(`3 − 1) + 1 + 2σ +
√

(2(`3 − 1) + 1 + 2σ)2 + 4σ̄min

2s
≤ x

<

√
2(`2 + 1) + 1 + 2σ +

√
(2(`2 + 1) + 1 + 2σ)2 + 4σ̄max

2s
,

obtaining

2(`3 − `2)− 4

<
√

(2(`2 + 1) + 1 + 2σ)2 + 4σ̄max −
√

(2(`3 − 1) + 1 + 2σ)2 + 4σ̄min .

If `3 > `2 + 1, it follows that

(2(`2 + 1) + 1 + 2σ)2 + 4σ̄max > (2(`3 − 1) + 1 + 2σ)2 + 4σ̄min ,

giving

2
√
σ̄max − σ̄min >

√
(2(`2 + 1) + 1 + 2σ)2 − (2(`3 − 1) + 1 + 2σ)2

≥ 2(`3 − `2)− 4 .

Therefore
∑`3
`=`2+1 ξ

2(x) has an upper bound of the type of the statement by The-
orem A-(ii),(iii).

Let
h(t) = (2t+ 1 + 2σ)s− s2x2 − σ̄maxx

−2

for t ≥ 0. According to Theorem A-(i), if `3 < k − 1, then

k−1∑
`=`3+1

ξ2
` (x) ≤ C

k−1∑
`=`3+1

1√
q`(x)

≤ C
k−1∑

`=`3+1

1√
h(`)

≤ C
∫ k−1

`3

dt√
h(t)

=
C

2s
(√

h(k − 1)−
√
h(`3)

)
≤ C

2s

√
2(k − 1− `3) .

Hence
∑k−1
`=`3+1 ξ

2
` (x) also has an upper bound like in the statement because, by (41), (40)

and (49), there is some G3, G4 > 0 such that

G3(k − 1− `3)k−1/2 ≤ bk−1 − b`3 ≤ bk−1 − x ≤ G4k
−1/6 . �

Proof of Theorem C. By (31),

1 =
∫ ∞
−∞

(
pk(x)
x− xk,1

)2 |x|2σe−sx2

p′k
2(xk,1)λk,1

dx .
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Thus, by (30) and Lemma 2.7,∫
|x−xk,1|≤εk−1/6

(
pk(x)
x− xk,1

)2 |x|2σe−sx2

p′k
2(xk,1)λk,1

dx

≤
∫
|x−xk,1|≤εk−1/6

k−1∑
`=0

ξ2
` (x) dx ≤ 2εk−1/6 max

|x−xk,1|≤εk−1/6

k−1∑
`=0

ξ2
` (x) ≤ 2εG

for any ε > 0. It follows that∫
|x−xk,1|≥εk−1/6

(
pk(x)
x− xk,1

)2 |x|2σe−sx2

p′k
2(xk,1)λk,1

dx ≥ 1
2

(52)

when ε ≤ 1
4G , which implies part (i) by Lemma 1.1.

When k is even and σ < 0, either 0 < xk,k/2 < ak or |xk,k/2 − ak| ≤ C ′′1 k
−1/6

for k large enough according to Corollary 2.4. Moreover |xk,1 − bk| ≤ C ′′1 k
−1/6

for k large enough by Corollary 2.4 as well. So, by (39) and (38), there are some
C0, C1 > 0, independent of k, such that

xk,k/2 ≤ ak + C ′′1 k
−1/6 ≤ C0k

−1/2 ,

xk,1 − xk,k/2 ≥ bk − ak − 2C ′′1 k
−1/6 =

√
cmax

s
− 2C ′′1 k

−1/6 ≥ C1k
1/2

On the other hand, by (27), there is some C2 > 0, independent of k, such that
ξ2
k(x) ≤ C2 |x|2σ for |x| ≤ xk,k/2. Therefore∫
|x|≤xk,k/2

ξ2
k(x) dx

(x− xk,1)2
≤ C2

(xk,1 − xk,k/2)2

∫
|x|≤xk,k/2

|x|2σ dx

=
2C2x

2σ+1
k,k/2

(2σ + 1)(xk,1 − xk,k/2)2
≤ 2C2C

2σ+1
0

(2σ + 1)C2
1

k−
2σ+3

2 <
2C2C

2σ+1
0

(2σ + 1)C2
1

k−1 .

This inequality and (52) imply part (ii). �



CHAPTER 3

Perturbed Schwartz space

We introduce a perturbed version Sσ of S. It will be shown that Sσ = S after
all, but the relevance of this new definition to study L will become clear in the
next section; in particular, the norms used to define Sσ will be appropriate to show
embedding results, like a version of the Sobolev embedding theorem. Since Sσ must
contain the functions φk, Theorems A and B indicate that different definitions must
be given for σ ≥ 0 and σ < 0.

When σ ≥ 0, for any φ ∈ C∞ and m ∈ N, let

‖φ‖Smσ =
∑

i+j≤m

sup
x
|x|σ |xiT jσφ(x)| . (53)

This defines a norm ‖ ‖Smσ on the linear space of functions φ ∈ C∞ with ‖φ‖Smσ <∞,
and let Smσ denote the corresponding Banach space completion. There is a canonical
inclusion Sm+1

σ ⊂ Smσ , and the perturbed Schwartz space is defined as Sσ =
⋂
m Smσ ,

endowed with the corresponding Fréchet topology. In particular, S0 is the usual
Schwartz space S. Like in the case of S, there are direct sum decompositions into
subspaces of even and odd functions, Smσ = Smσ,ev ⊕ Smσ,odd for each m ∈ N, and
Sσ = Sσ,ev ⊕ Sσ,odd.

When σ < 0, the spaces of even and odd functions are considered separately.
Let

‖φ‖Smσ =
∑

i+j≤m, i+j even

sup
x
|xi(T jσφ)(x)|

+
∑

i+j≤m, i+j odd

sup
x 6=0
|x|σ |xi(T jσφ)(x)| (54)

for φ ∈ C∞ev , and let

‖φ‖Smσ =
∑

i+j≤m, i+j even

sup
x 6=0
|x|σ |xi(T jσφ)(x)|

+
∑

i+j≤m, i+j odd

sup
x
|xi (T jσφ)(x)| (55)

for φ ∈ C∞odd. These expressions define a norm ‖ ‖Smσ on the linear spaces of
functions φ in C∞odd and C∞ev with ‖φ‖Smσ < ∞. The corresponding Banach space
completions will be denoted by Smσ,odd and Smσ,ev. Let Smσ = Smσ,ev⊕Smσ,odd, which is
also a Banach space by considering e.g. the norm, also denoted by ‖ ‖Smσ , defined
by the maximum of the norms on both components. There are canonical inclusions
Sm+1
σ ⊂ Smσ , and let Sσ =

⋂
m Smσ , endowed with the corresponding Fréchet topol-

ogy. We have Sσ = Sσ,ev ⊕ Sσ,odd for Sσ,ev =
⋂
m Smσ,ev and Sσ,odd =

⋂
m Smσ,odd.

35
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From these definitions, it easily follows that Sσ consists of functions which are
C∞ on R\{0} but a priori possibly not even defined at zero, and Smσ ∩C∞ is dense
in Smσ for all m; thus Sσ ∩ C∞ is dense in Sσ.

Obviously, Σ defines a bounded operator on each Smσ . It is also easy to see that
Tσ defines a bounded operator Sm+1

σ → Smσ for any m; notice that, when σ < 0,
the role played by the parity of i + j fits well to prove this property. Similarly, x
defines a bounded operator Sm+1

σ → Smσ for any m because

[T jσ , x] =

{
jT j−1
σ if j is even

(j + 2Σ)T j−1
σ if j is odd

by (10) and (11). So B and B′ define bounded operators Sm+1
σ → Smσ too, and L

defines a bounded operator Sm+2
σ → Smσ . Therefore Tσ, x, Σ, B, B′ and L define

continuous operators on Sσ.
In order to prove Theorems D and E, we introduce an intermediate weakly

perturbed Schwartz space Sw,σ. Like Sσ, it is defined as a Fréchet space of the
form Sw,σ =

⋂
m Smw,σ, where each Smw,σ is the Banach space defined like Smσ by

using d
dx instead of Tσ in the right hand sides of (53)–(55); in particular, S0

w,σ = S0
σ

as Banach spaces. The notation ‖ ‖Smw,σ will be used for the norm of Smw,σ. As before,
Sw,σ consists of functions which are C∞ on R \ {0} but a priori possibly not even
defined at zero, Sw,σ ∩ C∞ is dense in Sw,σ, there is a canonical decomposition
Sw,σ = Sw,σ,ev⊕Sw,σ,odd given by the subspaces of even and odd functions, and d

dx

and x define bounded operators on Sm+1
w,σ → Smw,σ. Thus d

dx and x define continuous
operators on Sw,σ.

Lemma 3.1. If σ ≥ 0, then Sm+dσe ⊂ Smw,σ continuously for all m.

Proof. Let φ ∈ S. For all i and j, we have

|x|σ
∣∣∣xiφ(j)(x)

∣∣∣ ≤ ∣∣∣xi+dσeφ(j)(x)
∣∣∣

for |x| ≥ 1, and

|x|σ
∣∣∣xiφ(j)(x)

∣∣∣ ≤ ∣∣∣xiφ(j)(x)
∣∣∣

for |x| ≤ 1. So

‖φ‖Smw,σ ≤ ‖φ‖Sm+dσe

for all m. �

Lemma 3.2. If σ ≥ 0, then Sm′w,σ ⊂ Sm continuously for all m, where

m′ = m+ 1 +
1
2
dσe(dσe+ 1)

Proof. Let φ ∈ Sw,σ. For all i and j,∣∣∣xiφ(j)(x)
∣∣∣ ≤ |x|σ ∣∣∣xiφ(j)(x)

∣∣∣ (56)

for |x| ≥ 1. It remains to prove an inequality of this type for |x| ≤ 1, which is the
only difficult part of the proof. It will be a consequence of the following assertion.
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Claim 2. For each n ∈ N, there are finite families of real numbers, cna,b, d
n
k,`

and enu,v, where the indices a, b, k, `, u and v run in finite subsets of N with
b, `, v ≤Mn = 1 + n(n+1)

2 and k ≥ n, such that

φ(x) =
∑
a,b

cna,bx
aφ(b)(1) +

∑
k,`

dnk,`x
kφ(`)(x) +

∑
u,v

enu,vx
u

∫ 1

x

tnφ(v)(t) dt

for all φ ∈ C∞.

Assuming that Claim 2 is true, the proof can be completed as follows. Let
φ ∈ Sw,σ and set n = dσe. For |x| ≤ 1, according to Claim 2,

|φ(x)| ≤
∑
a,b

|cna,b|
∣∣∣φ(b)(1)

∣∣∣+
∑
k,`

|dnk,`|
∣∣∣xkφ(`)(x)

∣∣∣
+
∑
u,v

|enu,v| 2 max
|t|≤1

∣∣∣tnφ(v)(t)
∣∣∣

≤
∑
i,j

|cna,b|
∣∣∣φ(b)(1)

∣∣∣+
∑
k,`

|dnk,`| |x|σ
∣∣∣φ(`)(x)

∣∣∣
+
∑
u,v

|enu,v| 2 max
|t|≤1
|t|σ

∣∣∣φ(v)(t)
∣∣∣ .

Let m, i, j ∈ N with i + j ≤ m. By applying the above inequality to the function
xiφ(j), and expressing each derivative (xiφ(j))(r) as a linear combination of functions
of the form xpφ(q) with p+q ≤ i+j+r, it follows that there is some C ≥ 1, depending
only on σ and m, such that∣∣∣xiφ(j)(x)

∣∣∣ ≤ C ‖φ‖Si+j+Mnw,σ
(57)

for |x| ≤ 1. By (56) and (57),

‖φ‖Sm ≤ C ‖φ‖Sm′w,σ
with m′ = m+Mn.

Now, let us prove Claim 2. By induction on n and using integration by parts,
it is easy to prove that∫ 1

x

tnφ(n+1)(t) dt =
n∑
r=0

(−1)n−r
n!
r!
(
φ(r)(1)− xrφ(r)(x)

)
. (58)

This shows directly Claim 2 for n ∈ {0, 1}. Proceeding by induction, let n > 1
and assume that Claim 2 holds for n− 1. By (58), it is enough to find appropriate
expressions of xrφ(r)(x) for 0 < r < n. For that purpose, apply Claim 2 for n − 1
to each function φ(r), and multiply the resulting equality by xr to get

xrφ(r)(x) =
∑
a,b

cn−1
a,b x

r+aφ(r+b)(1) +
∑
k,`

dn−1
k,` x

r+kφ(r+`)(x)

+
∑
u,v

en−1
u,v x

r+u

∫ 1

x

tn−1φ(r+v)(t) dt ,

where a, b, k, `, u and v run in finite subsets of N with b, `, v ≤Mn−1 and k ≥ n−1;
thus r + k ≥ n and

r + b, r + `, r + v ≤ n− 1 +Mn−1 = Mn − 1 .
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Therefore it only remains to rise the exponent of t by a unit in the integrals of the
last sum. Once more, integration by parts makes the job:∫ 1

x

tnφ(r+v+1)(t) dt = φ(r+v)(1)− xnφ(r+v)(x)− n
∫ 1

x

tn−1φ(r+v) dt . �

Lemma 3.3. If σ < 0, then Sm+1
w,σ ⊂ Sm continuously for all m.

Proof. Let i, j ∈ N such that i+ j ≤ m. Since∣∣∣xiφ(j)(x)
∣∣∣ ≤ {|x|σ ∣∣xiφ(j)(x)

∣∣ if 0 < |x| ≤ 1
|x|σ

∣∣xi+1φ(j)(x)
∣∣ if |x| ≥ 1 .

for any φ ∈ C∞, we get ‖φ‖Sm ≤ ‖φ‖Sm+1
w,σ

. �

Lemma 3.4. If σ < 0, then Sm+2 ⊂ Smw,σ continuously for all m.

Proof. This is proved by induction on m. We have ‖ ‖S0
w,σ

= ‖ ‖S0 on C∞ev .
On the other hand, for φ ∈ C∞odd and ψ = x−1φ ∈ C∞ev , we get

|x|σ|φ(x)| ≤

{
|ψ(x)| if 0 < |x| ≤ 1
|φ(x)| if |x| ≥ 1 .

So, by (9),
‖φ‖S0

w,σ
≤ max{‖φ‖S0 , ‖ψ‖S0} ≤ ‖φ‖S1 .

Now, assume that m > 0 and the result holds for m− 1. Let i, j ∈ N such that
i + j ≤ m, and let φ ∈ Sev. If i = 0 and j is odd, then φ(j) ∈ Sodd. Thus there is
some ψ ∈ Sev such that φ(j) = xψ, obtaining

|x|σ
∣∣∣φ(j)(x)

∣∣∣ ≤ {|ψ(x)| if 0 < |x| ≤ 1∣∣φ(j)(x)
∣∣ if |x| ≥ 1 .

If i+ j is odd and i > 0, then

|x|σ
∣∣∣xiφ(j)(x)

∣∣∣ ≤ {∣∣xi−1φ(j)(x)
∣∣ if 0 < |x| ≤ 1∣∣xiφ(j)(x)

∣∣ if |x| ≥ 1 .

Hence, by (9), there is some C > 0, independent of φ, such that

‖φ‖Smw,σ ≤ C max{‖φ‖Sm , ‖ψ‖S0} ≤ C max
{
‖φ‖Sm , ‖φ(j)‖S1

}
≤ C ‖φ‖Sm+1 .

Finally, let φ ∈ Sodd. There is some ψ ∈ Sev such that φ = xψ. If i is even and
j = 0, then

|x|σ |xiφ(x)| ≤

{
|xiψ(x)| if 0 < |x| ≤ 1
|xiφ(x)| if |x| ≥ 1 .

If i+ j is even and j > 0, then

|x|σ
∣∣∣xiφ(j)(x)

∣∣∣ ≤ {∣∣xiψ(j)(x)
∣∣+ j |x|σ

∣∣xiψ(j−1)(x)
∣∣ if 0 < |x| ≤ 1∣∣xi+1ψ(j)(x)

∣∣+ j |x|σ
∣∣xiψ(j−1)(x)

∣∣ if |x| ≥ 1

because [
dj

dxj
, x

]
= j

dj−1

dxj−1
.
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Therefore, by (9) and the induction hypothesis, there are some C ′, C ′′ > 0, inde-
pendent of φ, such that

‖φ‖Smw,σ ≤ C
′max

{
‖φ‖Sm , ‖ψ‖Sm+1 + ‖ψ‖Sm−1

w,σ

}
≤ C ′′ ‖φ‖Sm+2 . �

Corollary 3.5. S = Sw,σ as Fréchet spaces.

Corollary 3.6. x−1 defines a bounded operator Sm′w,σ,odd → Smw,σ,ev, where

m′ =

{
m+ 2 + 1

2dσe(dσe+ 3) if σ ≥ 0
m+ 4 if σ < 0 .

Proof. If σ ≥ 0, the composite

Sm+2+ 1
2 dσe(dσe+3)

w,σ,odd ↪→ Sm+dσe+1
odd

x−1

−−−−→ Sm+dσe
ev ↪→ Smw,σ,ev

is bounded by Lemmas 3.3 and 3.4. If σ < 0, the composite

Sm+4
w,σ,odd ↪→ S

m+3
odd

x−1

−−−−→ Sm+2
ev ↪→ Smw,σ,ev ,

is bounded by Lemmas 3.1 and 3.2. �

Corollary 3.7. x−1 defines a continuous operator Sw,σ,odd → Sw,σ,ev.

Lemma 3.8. SMm,ev/odd

w,σ,ev/odd ⊂ S
m
σ,ev/odd continuously for all m, where

Mm,ev/odd =

{
3m
2 + m

4 dσe(dσe+ 3) if σ ≥ 0 and m is even
5m
2 if σ < 0 and m is even ,

Mm,ev =

{
3m−1

2 + m−1
4 dσe(dσe+ 3) if σ ≥ 0 and m is odd

5m−3
2 if σ < 0 and m is odd ,

Mm,odd =

{
3m+1

2 + m+1
4 dσe(dσe+ 3) if σ ≥ 0 and m is odd

5m+3
2 if σ < 0 and m is odd .

Proof. The result follows by induction on m. The statement is true for m = 0
because S0

w,σ = S0
σ as Banach spaces. Now, take any m > 0, and assume that the

result holds for m− 1.
For φ ∈ C∞ev , i+ j ≤ m with j > 0 and x ∈ R, we have∣∣xiT jσφ(x)

∣∣ =
∣∣xiT j−1

σ φ′(x)
∣∣ ,

obtaining
‖φ‖Smσ ≤ ‖φ

′‖Sm−1
σ

+ ‖φ‖Smw,σ .
But, by the induction hypothesis and since Mm,ev = Mm−1,odd + 1, there are some
C,C ′ > 0, independent of φ, such that

‖φ′‖Sm−1
σ
≤ C ‖φ′‖

S
Mm−1,odd
w,σ

≤ C ′ ‖φ‖SMm,evw,σ
.

For φ ∈ C∞odd, and i, j and x as above, we have∣∣xiT jσφ(x)
∣∣ ≤ ∣∣xiT j−1

σ φ′(x)
∣∣+ 2 |σ|

∣∣xiT j−1
σ x−1φ(x)

∣∣ ,
obtaining

‖φ‖Smσ ≤ ‖φ
′‖Sm−1

σ
+ 2 |σ| ‖x−1φ‖Sm−1

σ
+ ‖φ‖Smw,σ .
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But, by the induction hypothesis, Corollary 3.6, and since

Mm,odd =

{
Mm−1,ev + 2 + 1

2dσe(dσe+ 3) if σ ≥ 0
Mm−1,ev + 4 if σ < 0 ,

there are some C,C > 0, independent of φ, such that

‖φ′‖Sm−1
σ

+ 2 |σ| ‖x−1φ‖Sm−1
σ
≤ C

(
‖φ′‖

S
Mm−1,ev
w,σ

+ ‖x−1φ‖
S
Mm−1,ev
w,σ

)
≤ C ′ ‖φ‖

S
Mm,odd
w,σ

. �

Corollary 3.9. Sw,σ ⊂ Sσ continuously.



CHAPTER 4

Perturbed Sobolev spaces

Observe that Sσ ⊂ L2(R, |x|2σ dx). Like in the case where S is considered as
domain, it is easy to check that, in L2(R, |x|2σ dx), with domain Sσ, B is adjoint
of B′ and L is symmetric.

Lemma 4.1. Sσ is a core1 of L.

Proof. Let R denote the restriction of L to Sσ. Then L ⊂ R ⊂ R∗ ⊂ L∗ = L
in L2(R, |x|2σ dx) because S ⊂ Sσ by Corollaries 3.5 and 3.9. �

For each m ∈ N, let Wm
σ be the Hilbert space completion of S with respect to

the scalar product 〈 , 〉Wm
σ

defined by

〈φ, ψ〉Wm
σ

= 〈(1 + L)mφ, ψ〉σ .

The corresponding norm will be denoted by ‖ ‖Wm
σ

, whose equivalence class is inde-
pendent of the parameter s used to define L. In particular, W 0

σ = L2(R, |x|2σ dx).
As usual, Wm′

σ ⊂ Wm
σ when m′ > m, and let W∞σ =

⋂
mW

m
σ , which is endowed

with the induced Fréchet topology. Once more, there are direct sum decompositions
into subspaces of even and odd (generalized) functions, Wm

σ = Wm
σ,ev ⊕Wm

σ,odd and
W∞σ = W∞σ,ev ⊕W∞σ,odd.

According to Lemma 4.1, the space Wm
σ can be defined for any real number m

by using (1 + L)m, and moreover Sσ can be used instead of S in its definition.
Obviously, L defines a bounded operator Wm+2

σ → Wm
σ for each m ≥ 0, and

therefore a continuous operator on W∞σ . Moreover, by (16), Σ defines a bounded
operator on each Wm

σ , and therefore a continuous operators on W∞σ .

Lemma 4.2. B and B′ define bounded operators Wm+1
σ →Wm

σ for each m.

Proof. This follows by induction on m. For m = 0, by (13), for each φ ∈ S,

‖Bφ‖2σ = ‖B′φ‖2σ = 〈B′Bφ, φ〉σ = 〈(L− (1 + 2Σ)s)φ, φ〉σ ≤ C0 ‖φ‖2W 1
σ

for some C0 > 0 independent of φ. It follows that B and B′ define bounded
operators W 1

σ → L2(R, |x|2σ dx).
Now take m > 0 and assume that there are some Cm−1, C

′
m−1 > 0 so that

‖Bφ‖2
Wm−1
σ
≤ Cm−1 ‖φ‖2Wm

σ
, ‖B′φ‖2

Wm−1
σ
≤ C ′m−1 ‖φ‖2Wm

σ

1Recall that a core of a closed densely defined operator T between Hilbert spaces is any
subspace of its domain D(T ) which is dense with the graph norm.

41
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for all φ ∈ S. Then, by (14),

‖Bφ‖2Wm
σ

= 〈(1 + L)Bφ,Bφ〉Wm−1
σ

= ‖Bφ‖2
Wm−1
σ

+ 〈LBφ,Bφ〉Wm−1
σ

= (1− 2s) ‖Bφ‖2
Wm−1
σ

+ 〈BLφ,Bφ〉Wm−1
σ

≤ (1− 2s) ‖Bφ‖2
Wm−1
σ

+ ‖BLφ‖Wm−1
σ
‖Bφ‖Wm−1

σ

≤ Cm−1((1− 2s) ‖φ‖2
Wm−1
σ

+ ‖Lφ‖Wm
σ
‖φ‖Wm

σ
)

≤ Cm ‖φ‖2Wm+1
σ

for some Cm > 0 independent of φ. Similarly,

‖B′φ‖2Wm
σ
≤ C ′m ‖φ‖2Wm+1

σ

for some C ′m > 0 independent of φ. �

Remark 1. B′ is not adjoint of B in Wm
σ for m > 0.

L and Σ preserve Wm
σ,ev and Wm

σ,odd for each m, whilst B and B′ interchange
these subspaces.

The motivation of our tour through perturbed Schwartz spaces is the following
embedding results; the second one is a version of the Sobolev embedding theorem.

Proposition 4.3. Sm′σ ⊂Wm
σ continuously if m′ −m > 1/2.

Proposition 4.4. Wm′

σ ⊂ Smσ continuously if m′ −m > 1.

Corollary 4.5. Sσ = W∞σ as Fréchet spaces.

For each non-commutative polynomial p (of two variables, X and Y ), let p′

denote the non-commutative polynomial obtained by reversing the order of the
variables in p; e.g., if p(X,Y ) = X2Y 3X, then p′(X,Y ) = XY 3X2. It will be
said that p is symmetric if p(X,Y ) = p′(Y,X). Notice that any non-commutative
polynomial of the form p′(Y,X)p(X,Y ) is symmetric. Given any non-commutative
polynomial p, the continuous operators p(B,B′) and p′(B′, B) on Sσ are adjoint
from each other in L2(R, |x|2σ dx); thus p(B,B′) is a symmetric operator if p is
symmetric. The following lemma will be used in the proof of Proposition 4.3

Lemma 4.6. For each non-negative integer m, we have

(1 + L)m =
∑
a

q′a(B′, B)qa(B,B′)

for some finite family of homogeneous non-commutative polynomials qa of degree
≤ m.

Proof. The result follows easily from the following assertions.

Claim 3. Ifm is even, then Lm = gm(B,B′)2 for some symmetric homogeneous
non-commutative polynomial gm of degree m.

Claim 4. If m is odd, then

Lm = g′m,1(B′, B)gm,1(B,B′) + g′m,2(B′, B)gm,2(B,B′)

for some homogeneous non-commutative polynomials gm,1 and gm,2 of degree m.
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If m is even, then Lm/2 = gm(B,B′) for some symmetric homogeneous non-
commutative polynomial gm of degree ≤ m by (13). So Lm = gm(B,B′)2, showing
Claim 3.

If m is odd, then write Lbm/2c = fm(B,B′) as above for some symmetric
homogeneous non-commutative polynomial fm of degree ≤ m− 1. Then, by (13),

Lm =
1
2
fm(B,B′)(BB′ +B′B)fm(B,B′) .

Thus Claim 4 follows with

gm,1(B,B′) =
1√
2
B′fm(B,B′) , gm,2(B,B′) =

1√
2
Bfm(B,B′) . �

Proof of Proposition 4.3 when σ ≥ 0. By the definitions of B and B′, for
each non-commutative polynomial p of degree ≤ m′ (of three variables), there exists
some Cp > 0 such that |x|σ |p(x,B,B′)φ| is uniformly bounded by Cp ‖φ‖Sm′σ for
all φ ∈ Sσ. Write

(1 + L)m =
∑
a

q′a(B′, B)qa(B,B′)

according to Lemma 4.6, and let

q̄a(x,B,B′) = xm
′−mqa(B,B′) .

Then, for each φ ∈ Sσ,

‖φ‖2Wm
σ

=
∑
a

‖qa(B,B′)φ‖2σ

=
∑
a

∫ ∞
−∞
|(qa(B,B′)φ)(x)|2 |x|2σ dx

≤ 2
∑
a

(
C2
qa + C2

q̄a

∫ ∞
1

x−2(m′−m) dx

)
‖φ‖2Sm′σ ,

where the integral is finite because −2(m′ −m) < −1. �

Proof of Proposition 4.3 when σ < 0. Now, for each homogeneous non-
commutative polynomial p of degree d ≤ m′, there is some Cp > 0 such that:

• |p(x,B,B′)φ| is uniformly bounded by Cp ‖φ‖Sm′σ,ev for all φ ∈ Sσ,ev if d is
even, and by Cp ‖φ‖Sm′σ,odd

for all φ ∈ Sσ,odd if d is odd; and
• |x|σ |p(x,B,B′)φ| is uniformly bounded by Cp ‖φ‖Sm′σ,odd

for all φ ∈ Sσ,odd

if d is even, and by Cp ‖φ‖Sm′σ,ev for all φ ∈ Sσ,ev if d is odd.

With the notation of Lemma 4.6, let da denote the degree of each homogenous
non-commutative polynomial qa, and let q̄a(x,B,B′) be defined like in the previous
case. Then, as above,

‖φ‖2Wm
σ
≤ 2

∑
a with da even

(
C2
qa

∫ 1

0

x2σ dx+ C2
q̄a

∫ ∞
1

x−2(m′−m)+2σ dx

)
‖φ‖2Sm′σ,ev

+ 2
∑

a with da odd

(
C2
qa + C2

q̄a

∫ ∞
1

x−2(m′−m) dx

)
‖φ‖2Sm′σ,ev
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for φ ∈ Sσ,ev, and

‖φ‖2Wm
σ
≤ 2

∑
a with da even

(
C2
qa + C2

q̄a

∫ ∞
1

x−2(m′−m) dx

)
‖φ‖2Sm′σ,odd

+ 2
∑

a with da odd

(
C2
qa

∫ 1

0

x2σ dx+ C2
q̄a

∫ ∞
1

x−2(m′−m)+2σ dx

)
‖φ‖2Sm′σ,odd

for φ ∈ Sσ,ev, where the integrals are finite because −1/2 < σ < 0 and −2(m′−m) <
−1. �

Let C denote the space of rapidly decreasing sequences of real numbers. Recall
that a sequence c = (ck) ∈ RN is rapidly decreasing if

‖c‖Cm = sup
k
|ck|(1 + k)m

is finite for all m ≥ 0. These expressions define norms ‖ ‖Cm on C. Let Cm denote
the completion of C with respect to ‖ ‖Cm , which consists of the sequences c ∈ RN

with ‖c‖Cm <∞. So C =
⋂
m Cm with the induced Fréchet topology. Also, for each

m ≥ 0, let `2m denote the Hilbert space completion of C with respect to the scalar
product 〈 , 〉`2m defined by

〈c, c′〉`2m =
∑
k

ckc
′
k(1 + k)m

for c = (ck) and c′ = (c′k). The corresponding norm will be denoted by ‖ ‖`2m . Thus
`2m is a weighted version of `2; in particular, `20 = `2. Let `2∞ =

⋂
m `

2
m with the

corresponding Fréchet topology.
A sequence c = (ck) will be called even/odd if ck = 0 for all odd/even k. We get

the following direct sum decompositions into subspaces of even and odd sequences:

Cm = Cm,ev ⊕ Cm,odd , C = Cev ⊕ Codd ,

`2m = `2m,ev ⊕ `2m,odd , `2∞ = `2∞,ev ⊕ `2∞,odd .

Lemma 4.7. `22m ⊂ Cm and Cm′ ⊂ `2m continuously for all m if 2m′ −m > 1.

Proof. It is easy to see that

‖c‖Cm ≤ ‖c‖`22m , ‖c‖`2m ≤ ‖c‖Cm′
(∑

k

(1 + k)m−2m′
)1/2

for any c ∈ C, where the last series is convergent because m− 2m′ < −1. �

Corollary 4.8. `2∞ = C as Fréchet spaces.

According to Section 2 of Chapter 1, the “Fourier coefficients” mapping φ 7→
(〈φk, φ〉σ) defines a quasi-isometry Wm

σ → `2m for all m, and therefore an isomor-
phism W∞σ → C of Fréchet espaces. Notice that the “Fourier coefficients” mapping
can be restricted to the even and odd subspaces.

Corollary 4.9. Any φ ∈ L2(R, |x|2σ dx) is in Sσ if and only if its “Fourier
coefficients” 〈φk, φ〉σ are rapidly degreasing on k.

Proof. By Corollary 4.5, the “Fourier coefficients” mapping defines an iso-
morphism Sσ → C of Fréchet spaces. �

There is also a version of the Rellich theorem stated as follows.
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Proposition 4.10. The operator Wm′

σ ↪→Wm
σ is compact for m′ > m.

By using the “Fourier coefficients” mapping, Proposition 4.10 follows from the
following lemma (see e.g. [54, Theorem 5.8]).

Lemma 4.11. The operator `2m′ ↪→ `2m is compact for m′ > m.

Proof of Proposition 4.4. For φ ∈ Sσ, its “Fourier coefficients” ck = 〈φk, φ〉σ
form a sequence c = (ck) in C, and∑

k

|ck| (1 + k)m/2 ≤ ‖c‖`2
m′

(∑
k

(1 + k)m−m
′
)1/2

by Cauchy-Schwartz inequality, where the last series is convergent since m−m′ <
−1. Therefore ∑

k

|ck| (1 + k)m/2 ≤ C ‖φ‖Wm′
σ

(59)

for some C > 0 independent of φ.
On the other hand, for all i, j ∈ N with i + j ≤ m, there is some homogeneus

non-commutative polynomial pi,j of degree i+j such that xiT jσ = pi,j(B,B′). Then,
by (18)–(20),

|〈φk, xiT jσφ〉σ| ≤ Ci,j(1 + k)m/2
∑

|`−k|≤m

|c`| (60)

for some Ci,j > 0 independent of φ.
Now suppose that σ ≥ 0. By (59), (60) and Theorem A-(ii), there is some

C ′i,j > 0 independent of φ and x so that

|x|σ |xiT jσφ(x)| ≤ |x|σ
∑
k

|〈φk, xiT jσφ〉σ| |φk(x)|

=
∑
k

|〈φk, xiT jσφ〉σ| |ξk(x)| ≤ C ′i,j ‖φ‖Wm′
σ

(61)

for all x. Hence ‖φ‖Smσ ≤ C
′‖φ‖Wm′

σ
for some C ′ > 0 independent of φ.

Finally assume that σ < 0. By (59), (60) and Theorem B, there is some
C ′i,j > 0, independent of φ and x, so that

|xiT jσφ(x)| ≤
∑
k

|〈φk, xiT jσφ〉σ| |φk(x)| ≤ C ′i,j ‖φ‖Wm′
σ

for all x if φ ∈ Sσ,ev and i+ j is even, or φ ∈ Sσ,odd and i+ j is odd. On the other
hand, by (59), (60) and Theorem A-(ii), there is some C ′′i,j > 0, independent of φ
and x, such that, like in (61),

|x|σ |xiT jσφ(x)| ≤ C ′′i,j ‖φ‖Wm′
σ

for all x 6= 0 if φ ∈ Sσ,odd and i + j is even, or φ ∈ Sσ,ev and i + j is odd.
Therefore there is some C ′ > 0 such that ‖φ‖Smσ,ev ≤ C ′‖φ‖Wm′

σ
for all φ ∈ Sσ,ev,

and ‖φ‖Smσ,odd
≤ C ′‖φ‖Wm′

σ
for all φ ∈ Sσ,odd. �

As suggested by (29), consider the mapping c = (ck) 7→ Ξ(c) = (d`), where c is
odd and Ξ(c) is even with

d` =
∑

k∈{`+1,`+3,... }

(−1)
k−`−1

2

√
(k − 1)(k − 3) · · · (`+ 2)2s

(k + 2σ)(k − 2 + 2σ) · · · (`+ 1 + 2σ)
ck
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for ` even, assuming that this series is convergent.

Lemma 4.12. Ξ defines a bounded map `2m′,odd → Cm,ev if m′ −m > 1.

Proof. By the Cauchy-Schwartz inequality,

‖d‖Cm = sup
`

∑
k∈{`+1,`+3,... }

√
(k − 1)(k − 3) · · · (`+ 2)2s

(k + 2σ)(k − 2 + 2σ) · · · (`+ 1 + 2σ)
|ck| (1 + `)m

≤
√

2s sup
`

∑
k∈{`+1,`+3,... }

|ck| (1 + `)m

≤
√

2s ‖c‖`2
m′

sup
`

( ∑
k∈{`+1,`+3,... }

(1 + k)−m
′
(1 + `)m

)1/2

≤
√

2s ‖c‖`2
m′

(∑
k

(1 + k)m−m
′
)1/2

,

where the last series is convergent since m−m′ < −1. �

Corollary 4.13. x−1 defines a bounded operator Sm′σ,odd → Smσ,ev if 2m′ >
m+ 5.

Proof. Since 2m′ > m+ 5, there are m1,m2,m3 ≥ 0 such that

m′ −m3 > 1/2 , m3 −m2 > 1 , 2m2 −m1 > 1 , m1 −m > 1 .

Then, by Propositions 4.3 and 4.4, Lemmas 4.7 and 4.12, and using the “Fourier
coefficients” mapping, we get the following composition of bounded maps:

Sm
′

σ,odd ↪→Wm3
σ,odd → `2m3,odd

Ξ−→ Cm2,ev ↪→ `2m1,ev →Wm1
σ,ev ↪→ Smσ,ev .

By (29), this composite is an extension of the map x−1 : Sodd → Sev. �

Question 4.14. The proof of Corollary 4.13 is very indirect. Is it possible to
prove it without using (29) and the perturbed Sobolev spaces?

Corollary 4.15. x−1 defines a continuous operator Sσ,odd → Sσ,ev.

Lemma 4.16. S1
σ,ev ⊂ S1

w,σ,ev and Sm+2
σ ⊂ Smw,σ continuously for m ≥ 1.

Proof. Let us construct a sequence of naturalsMm,ev/odd such that SMm,ev/odd

σ,ev/odd ⊂
Smw,σ,ev/odd continuously for all m. Like in the proof of Lemma 3.8, we proceed by
induction onm, with M0,ev/odd = 0. Form > 0, assume that the termsMm−1,ev/odd

are constructed.
For φ ∈ C∞ev , i+ j ≤ m with j > 0 and x ∈ R, we have∣∣∣xiφ(j)(x)

∣∣∣ =
∣∣∣xi(Tσφ)(j−1)(x)

∣∣∣ ,
obtaining

‖φ‖Smw,σ ≤ ‖Tσφ‖Sm−1
w,σ

+ ‖φ‖Smσ .

But there are some C,C ′ > 0, independent of φ, such that

‖Tσφ‖Sm−1
w,σ
≤ C ‖Tσφ‖SMm−1,odd

σ
≤ C ′ ‖φ‖SMm,evσ

with
Mm,ev = Mm−1,odd + 1 . (62)
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For φ ∈ C∞odd, and i, j and x as above, we have∣∣∣xiφ(j)(x)
∣∣∣ ≤ ∣∣∣xi(Tσφ)(j−1)(x)

∣∣∣+ 2σ
∣∣∣xi(x−1φ)(j−1)(x)

∣∣∣ ,
obtaining

‖φ‖Smw,σ ≤ ‖Tσφ‖Sm−1
w,σ

+ 2 |σ| ‖x−1φ‖Sm−1
w,σ

+ ‖φ‖Smσ ,

But, by Corollary 4.13, there are some C,C ′ > 0, independent of φ, such that

‖Tσφ‖Sm−1
w,σ

+ 2 |σ| ‖x−1φ‖Sm−1
w,σ
≤ C

(
‖φ′‖

S
Mm−1,ev
σ

+ ‖x−1φ‖
S
Mm−1,ev
σ

)
≤ C ′ ‖φ‖

S
Mm,odd
σ

if
Mm,odd ≥Mm−1,ev + 1 , 2Mm,odd > Mm−1,ev + 5 . (63)

The conditions (62) and (63) are satisfied with M1,ev = 1, M1,odd = 3 and
Mm,ev/odd = m+ 2 for m ≥ 2. �

Corollary 4.17. SMm,ev/odd

ev/odd ⊂ Smσ,ev/odd continuously for all m, where

Mm,ev/odd =

{
3m
2 + m

4 dσe(dσe+ 3) + dσe if σ ≥ 0 and m is even
5m
2 + 2 if σ < 0 and m is even ,

Mm,ev =

{
3m−1

2 + m−1
4 dσe(dσe+ 3) + dσe if σ ≥ 0 and m is odd

5m+1
2 if σ < 0 and m is odd ,

Mm,odd =

{
3m+1

2 + m+1
4 dσe(dσe+ 3) + dσe if σ ≥ 0 and m is odd

5m+7
2 if σ < 0 and m is odd .

Proof. This follows from Lemmas 3.1, 3.3 and 3.8. �

Corollary 4.18. Sm′σ ⊂ Sm continuously for all m, where

m′ = m+ 3 +
dσe(dσe+ 1)

2
.

Moreover S1
σ,ev ⊂ S0

ev continuously.

Proof. This follows from Lemmas 3.2, 3.4 and 4.16. �

Corollary 4.19. Sσ = S as Fréchet spaces.

Proof. This is a consequence of Corollaries 4.17 and 4.18 �

Now, Theorems D and E follow from Corollaries 4.17 and 4.18 and Proposi-
tions 4.3 and 4.4.





CHAPTER 5

Perturbation of H on R+

More general perturbations of H can be obtained with conjugation of L by
the operator of multiplication by functions which are defined and positive almost
everywhere (with respect to the Lebesgue measure), like we did in Section 1 of
Chapter 2 with the function |x|σ. We will only consider conjugations of the even
and odd components of L separately, and acting on spaces of functions on R+. This
will be also enough for the application in Part 2.

Let Lev/odd, or Lσ,ev/odd, denote the restriction of L to Sev/odd. Since the
function |x|2σ is even, there is an orthogonal decomposition L2(R, |x|2σ dx) =
L2

ev(R, |x|2σ dx) ⊕ L2
odd(R, |x|2σ dx) as direct sum of subspaces of even and odd

functions. Then Lev/odd is essentially self-adjoint in L2
ev/odd(R, |x|2σ dx), and its

self-adjoint extension Lev/odd, or Lσ,ev/odd, is obtained by restriction of L. We also
get an obvious version of Corollary F for Lev/odd.

Fix open subset U ⊂ R+ of full Lebesgue measure. Let Sev/odd,U denote the
linear subspace of C∞(R+) consisting of the restrictions to U of the functions in
Sev/odd. The restriction to U defines a linear isomorphism

Sev/odd
∼= Sev/odd,U , (64)

and a unitary isomorphism

L2
ev/odd(R, |x|2σ dx) ∼= L2(R+, 2x2σ dx) . (65)

Let Lev/odd,U , or Lσ,ev/odd,U , denote the operator defined by Lev/odd on Sev/odd,U

via (64). Let also φk,U = φk|U , whose norm in L2(R+, x
2σ dx) is 1/

√
2 since (65) is

unitary. When U = R+, the notation Sev/odd,+, Lev/odd,+, or Lσ,ev/odd,+, and φk,+
will be used. Moreover let Lev/odd,+, or Lσ,ev/odd,+, be the self-adjoint operator in
L2(R+, x

2σ dx) that corresponds to Lev/odd via (65).
Going one step further, for any positive function h ∈ C2(U), the operator (of

multiplication by) h defines a unitary isomorphism

h : L2(R+, x
2σ dx)

∼=−→ L2(R+, x
2σh−2 dx) . (66)

We get that hLev/odd,Uh
−1, with domain hSev/odd,U , is essentially self-adjoint

in L2(R+, x
2σh−2 dx), and its self-adjoint extension is hLev/odd,+h

−1. Via (65)
and (66), we obtain an obvious version of Corollary F for hLev/odd,+h

−1. By using[
d

dx
, h

]
= h′ ,

[
d2

dx2
, h

]
= 2h′

d

dx
+ h′′ , (67)

it easily follows that hLev/odd,Uh
−1 is of the form (1) with f1 ∈ C1(U) and f2 ∈

C(U). Then Theorem G is a consequence of the following.

Lemma 5.1. For σ > −1/2, a positive function h ∈ C2(U), and an operator
P of the form (1) with f1 ∈ C1(U) and f2 ∈ C(U), we have P = hLσ,ev,Uh

−1 on

49



50 5. PERTURBATION OF H ON R+

hSev,U if and only if (2) and (3) are satisfied with some primitive F1 ∈ C2(U) of
f1.

Proof. By (67),

h−1Ph = −h−1 d
2

dx2
h+ sx2 − 2h−1f1

d

dx
h+ f2

= − d2

dx2
− h−1

(
2h′

d

dx
+ h′′

)
+ sx2

− 2f1
d

dx
− 2h−1f1h

′ + f2

= H − 2(h−1h′ + f1)
d

dx
− h−1h′′ − 2h−1f1h

′ + f2 .

So P = hLσ,ev,Uh
−1 if and only if

h−1h′ = σx−1 − f1 , (68)

f2 = h−1h′′ + 2h−1h′f1 . (69)

The equality (68) is equivalent to (3), and gives

h−1h′′ = (σx−1 − f1)2 − σx−2 + f ′1 .

So, by (69),

f2 = (σx−1 − f1)2 − σx−2 + f ′1 + 2(σx−1 − f1)f1

= σ(σ − 1)x−2 − f2
1 − f ′1 .

It follows that (68) and (69) are equivalent to (3) and (2). �

Remark 2. By (67), we get an operator of the same type if h and d
dx is

interchanged in (1).

Remark 3. By using (67) with h = x−1 on R+, it is easy to check that
Lσ,odd,+ = xL1+σ,ev,+x

−1 on Sodd,+ = xSev,+ for all σ > −1/2. So no new
operators are obtained with the conjugation Lσ,odd,U by h.

Remark 4. If f1 is a rational function, then the function f2, given by (2), is
also rational.

Remark 5. The term of P with d
dx can be removed by conjugation, obtaining

the operator H + σ(σ − 1)x−2, given by restricting Kσ, first to even functions and
second to R+. In this way, we get all operators of the form H+cx−2 with c > −1/4.



CHAPTER 6

Examples

1. Case where f1 is a multiple of x−1

A particular class of (1) is given by the operators of the form

P = H − 2c1x−1 d

dx
+ c2x

−2 (70)

for c1, c2 ∈ R. In this case, we can take F1 = c1 log x. Then eF1 = xc1 , (3) gives
h = xa with a = σ − c1, and (2) becomes c2x−2 = (a2 + a(2c1 − 1))x−2. Therefore
Corollary H follows from Theorem G.

Remark 6. According to Remark 2, we get an operator of the same type if
x−1 and d

dx is interchanged in (70). We may also use that, with the function xa

(a ∈ R), (67) becomes[
d

dx
, xa
]

= axa−1 ,

[
d2

dx2
, xa
]

= 2axa−1 d

dx
+ a(a− 1)xa−2 . (71)

Remark 7. By Corollary H-(iii), we have hD∞(P) ⊂ D∞(P) for all h ∈
C∞(R+) such that h′ ∈ C∞0 (R+).

The existence of a ∈ R satisfying (4) is characterized by the condition

(2c1 − 1)2 + 4c2 ≥ 0 . (72)

Observe that (72) is satisfied if c2 ≥ min{0, 2c1}. In particular, we have the follow-
ing special cases.

Example 6.1. Suppose that c2 = 0; i.e., P = H−2c1x−1 d
dx . Thus P = Lc1,ev,+

if c1 > −1/2; however, this inequality is not required a priori . Then (4) means
that a ∈ {0, 1− 2c1}, and (5) gives

σ =

{
c1 if a = 0
1− c1 if a = 1− 2c1 .

In the case a = 0 and σ = c1, the condition c1 > −1/2 is needed to apply Corol-
lary H. In this case, Corollary H holds for P = Lc1,ev,+ on Sev,+, which is a
direct consequence of the known properties of Lc1 (Section 2 of Chapter 1 and
Corollary F).

Nevertheless, Corollary H gives new information in the case a = 1 − 2c1 and
σ = 1− c1: we have σ > −1/2 just when c1 < 3/2 (c1 ≤ −1/2 is allowed!). When
this inequality is satisfied, Corollary H states that P , with domain x1−2c1 Sev,+,
is also essentially self-adjoint in L2(R+, x

2c1 dx); the spectrum of its self-adjoint
extension P consists of the eigenvalues (4k+3−2c1)s (k ∈ N) with multiplicity one;
the corresponding normalized eigenfunctions are

√
2x1+2c1φ2k,+; and D∞(P) =

x1−2c1 Sev,+.
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Thus, when −1/2 < c1 < 3/2, we have got two essentially self-adjoint operators
in L2(R+, x

2c1 dx) defined by P , with domains Sev,+ and x1−2c1 Sev,+, which are
equal just when c1 = 1/2. In particular, if c1 = 0, these operators are defined by
H with domains Sev,+ and xSev,+ = Sodd,+.

Example 6.2. Suppose that c2 = 2c1; i.e., P = H − 2c1x−1 d
dx + 2c1x−2.

Then (4) means that a ∈ {1,−2c1}, and (5) gives

σ =

{
1 + c1 if a = 1
−c1 if a = −2c1 .

In the case a = 1 and σ = 1 + c1, we have σ > −1/2 if and only if c1 > −3/2.
When this inequality is satisfied, Corollary H states that P , with domain xSev,+, is
essentially self-adjoint in L2(R+, x

2c1 dx); the spectrum of its self-adjoint extension
P consists of the eigenvalues (4k + 3 + 2c1)s (k ∈ N) with multiplicity one; the
corresponding normalized eigenfunctions are

√
2xφ2k,+; and D∞(P) = xSev,+.

In the case a = −2c1 and σ = −c1, we have σ > −1/2 just when c1 <
1/2. When this inequality is satisfied, Corollary H states that P , with domain
x−2c1 Sev,+, is essentially self-adjoint in L2(R+, x

2c1 dx); the spectrum of its self-
adjoint extension P consists of the eigenvalues (4k + 1 − 2c1)s (k ∈ N) with mul-
tiplicity one; the corresponding normalized eigenfunctions are

√
2x−2c1φ2k,+; and

D∞(P) = x−2c1 Sev,+.
Thus, when −3/2 < c1 < 1/2, we have got two essentially self-adjoint operators

in L2(R+, x
2c1 dx) defined by P , with domains xSev,+ and x−2c1 Sev,+, which are

equal just when c1 = −1/2. In particular, if c1 = 0, we get again that these
operators are defined by H with domains xSev,+ = Sodd,+ and Sev,+.

In this case, we will use the notation χs,a,σ,k =
√

2xaφ2k,+ (or simply χk) for
the eigenfunctions. The following property of χs,a,σ,0 will be also used.

Lemma 6.3. If h is a bounded measurable function on R+ with h(ρ) → 1 as
ρ→ 0, then 〈hχs,a,σ,0, χs,a,σ,0〉c1 → 1 as s→∞.

Proof. Given any ε > 0, take some x0 > 0 such that |h(x) − 1| ≤ ε/2 for
x ≤ x0. For s large enough, we have∫ ∞

x0

e−sx
2
x2σ dx ≤ ε

4p2
0 max |h− 1|

Hence, for s large enough,

|〈(1− h)χs,a,σ,0, χs,a,σ,0〉c1 | ≤ 2p2
0

∫ ∞
0

|1− h(x)| e−sx
2
x2σ dx

= p2
0ε

∫ x0

0

e−sx
2
x2σ dx+ 2p2

0 (max |1− h|)
∫ ∞
x0

e−sx
2
x2σ dx

< p2
0ε

∫ ∞
0

e−sx
2
x2σ dx+

ε

2
=
ε

2
‖χs,a,σ,0‖2c1 +

ε

2
= ε . �

2. Case where f1 is a multiple of other potential functions

Suppose that f1 = cxr for c, r ∈ R with r 6= −1. Given any σ > −1/2, now (2)
becomes

f2 = σ(σ − 1)x−2 + c2x2r − crxr−1 .
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Moreover we can take F1 = cxr+1

r+1 , obtaining

h = xσ exp
(
−cx

r+1

r + 1

)
according to (3). Then Theorem G asserts that the operator

P = H − 2cxr
d

dx
+ σ(σ − 1)x−2 − c2x2r − crxr−1 ,

with domain hSev,+, is essentially self-adjoint in L2(R+, e
2F1 dx); the spectrum of

its self-adjoint extension P consists of the eigenvalues (4k + 1 + 2σ)s (k ∈ N) with
multiplicity one and normalized eigenfunctions

√
2hφ2k,+; and the smooth core of

P is hSev,+.

3. Case where f1 is a multiple of g′/g for some function g

The operators of Section 1 can be generalized as follows. For an open subset
U ⊂ R+ of full Lebesgue measure, take f1 = cg′/g for c ∈ R and some non-vanishing
function g ∈ C2(U). Given any σ > −1/2, the equality (2) gives

f2 = σ(σ − 1)x−2 − c(c− 1)
g′

2

g2
− c g

′′

g
.

In this case, we can take F1 = c log |g|, obtaining h = xσ |g|−c by (3). Then
Theorem G states that the operator

P = H − 2c
g′

g

d

dx
+ σ(σ − 1)x−2 + c(c− 1)

g′
2

g2
− c g

′′

g
,

with domain xσ |g|−c Sev,U , is essentially self-adjoint in L2(R+, |g|2c dx); the spec-
trum of its self-adjoint extension P consists of the eigenvalues (4k + 1 + 2σ)s
(k ∈ N) with multiplicity one and normalized eigenfunctions

√
2xσ |g|−cφ2k,U ; and

the smooth core of P is xσ |g|−c Sev,U . This agrees with Corollary H when g = x.

Example 6.4. If we take g = cosx, which does not vanish on U = R+ \ (2N +
1)π2 , we get that, for any σ > −1/2, the operator

P = H − 2c tanx
d

dx
+ σ(σ − 1)x−2 + c(c− 1) tan2 x− c ,

with domain xσ | cosx|−c/2 Sev,U , is essentially self-adjoint in L2(R+, | cosx|2c dx);
the spectrum of its self-adjoint extension P consists of the eigenvalues (4k+1+2σ)s
(k ∈ N) with multiplicity one and normalized eigenfunctions

√
2xσ| cosx|−cφ2k,U ;

and the smooth core of P is xσ | cosx|−c/2 Sev,U .

Similar examples can be given with other trigonometric and hyperbolic func-
tions.

Example 6.5. For g = ex, it follows that, for any σ > −1/2, the operator

P = H − 2c
d

dx
+ σ(σ − 1)x−2 − c2 ,

with domain xσe−cx Sev,+, is essentially self-adjoint in L2(R+, e
2cx dx); the spec-

trum of its self-adjoint extension P consists of the eigenvalues (4k+1+2σ)s (k ∈ N)
with multiplicity one and normalized eigenfunctions

√
2xσe−cx/2φ2k,+; and the

smooth core of P is xσe−cx Sev,+.
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Example 6.6. With more generality, for g = ex
n

(0 6= n ∈ Z) and any σ >
−1/2, the operator

P = H − 2cnxn−1 d

dx
+ σ(σ − 1)x−2 − c(c− 1)n2x2(n−1)

− c
(
n(n− 1)xn−2 + n2x2(n−1)

)
,

with domain xσe−cx
n Sev,+, is essentially self-adjoint in L2(R+, e

2cxn dx); the spec-
trum of its self-adjoint extension P consists of the eigenvalues (4k + 1 + 2σ)s
(k ∈ N) with multiplicity one and normalized eigenfunctions

√
2xσe−cx

n

φ2k,+;
and the smooth core of P is xσe−cx

n Sev,+.

4. Transformation of P by changes of variables

We can use arbitrary changes of variables to provide a larger family of essentially
self-adjoint operators whose spectrum can be described. For instance, the operator
P on R+, given in Chapter 5, can be transformed into a differential operator on R
with the change of variable x = log y, where now y denotes the standard coordinate
of R+. Since dx/dy = 1/y = e−x, we get

d

dy
= e−y

d

dx
,

d2

dy2
= e−2y

(
d2

dx2
− d

dx

)
.

So this change of variables transforms the operator P of (1) (on functions of y) into
the operator

P1 = −e−2x d
2

dx2
+ s2e2x − 2

(
f1(ex)e−x − e−2x

) d

dx
+ f2(ex)

(on functions of x), and transforms L2(R+, e
2F1(y) dy) into L2(R+, e

2F1(ex)ex dx).
Suppose that f1 and f2 satisfy (2) for some σ > −1/2, and let h ∈ C2(U) be defined
by (3) for some primitive F1 ∈ C2(U) of f1. Let also V = {x ∈ R | ex ∈ U }. Then
P1, with domain

{h(ex)φ(ex) | φ ∈ Sev,U } ⊂ C2(V ) , (73)
is essentially self-adjoint in L2(R, e2F1(ex)ex dx); the spectrum of its self-adjoint
extension P1 consists of the eigenvalues (4k + 1 + 2σ)s (k ∈ N) with multiplicity
one and normalized eigenfunctions

√
2h(ex)φ2k,U (ex); and the smooth core of P1

is (73).
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CHAPTER 7

Preliminaries on Thom-Mather stratifications

1. Thom-Mather stratifications

Here, we recall the needed concepts introduced by R. Thom [60] and J. Mather
[44]. We mainly follow [64], and some new remarks are also made, specially con-
cerning products.

1.1. Thom-Mather stratifications and their morphisms. LetA be Haus-
dorff, locally compact and second countable topological space. Let X ⊂ A be a
locally closed subset. Two subsets Y,Z ⊂ A are said to be equal near X (or Y = Z
near X) if Y ∩ U = Z ∩ U for some neighborhood U of X in A. It is also said
that two maps, f : Y → B and g : Z → B, are equal near X (or f = g near X)
when there is some neighborhood U of X in A such that Y ∩ U = Z ∩ U , and the
restrictions of f and g to Y ∩ U are equal.

Consider triples (T, π, ρ), where T is an open neighborhood of X in A, π : T →
X is a continuous retraction, and ρ : X → [0,∞) is a continuous function such that
ρ−1(0) = X. Two such triples, (T, π, ρ) and (T ′, π′, ρ′), are said to be equal near
X when T = T ′, π = π′ and ρ = ρ′ near X. This defines an equivalence relation
whose equivalence classes are called tubes of X in A. The notation [T, π, ρ] is used
for the tube represented by (T, π, ρ). If X is open in A, then [X, idX , 0] is its unique
tube (the trivial tube).

Definition 7.1. A Thom-Mather stratification1 (or Thom-Mather stratified
space) is a triple (A,S, τ), where:

(i) A is a Hausdorff, locally compact and second countable space,
(ii) S is a partition of A into locally closed subspaces with the additional

structure of smooth (C∞) manifolds, called strata, and
(iii) τ is the assignment of a tube τX of each X ∈ S in A,

such that the following conditions are satisfied with some choice of (TX , πX , ρX) ∈
τX for each X ∈ S:

(iv) For all X,Y ∈ S, if X ∩ Y 6= ∅, then X ⊂ Y . The notation X ≤ Y is
used in this case, and this defines a partial order relation on S. As usual,
X < Y means that X ≤ Y but X 6= Y .

(v) If Y 6= X in S and TX ∩ Y 6= ∅, then X < Y and (πX , ρX) : TX ∩ Y →
X × R+ is a smooth submersion; in particular, dimX < dimY .

(vi) If X < Y in S, then πY (TX∩TY ) ⊂ TX , and πX πY = πX and ρX πY = ρX
on TX ∩ TY .

It may be also said that (S, τ) is a Thom-Mather stratification of A.

Remark 8. (i) A is paracompact and normal.

1This is called abstract prestratification in [44] and abstract stratification in [64].
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58 7. PRELIMINARIES ON THOM-MATHER STRATIFICATIONS

(ii) By the normality of A, we can also assume that, if X,Y ∈ S and TX∩TY 6=
∅, then X ≤ Y or Y ≤ X.

(iii) The frontier of a stratum X equals the union of the strata Y < X.
(iv) The connected components of each stratum may have different dimensions.
(v) The connected components of the strata, with the corresponding restric-

tions of the tubes, define an induced Thom-Mather stratification Acon ≡
(A,Scon, τcon); in this way, we can assume that the strata are connected
if desirable.

Remark 9. The following are some variants of the concept “stratification” and
related notions:

(i) A weak Thom-Mather stratification is defined by removing the condition
ρX πY = ρX from Definition 7.1-(vi).

(ii) A stratification is a pair (A,S) satisfying Definition 7.1-(i),(ii),(iv); it
is also said that S is a stratification of A. Definition 7.1-(iv) is called
the frontier condition. If moreover τ satisfies the other conditions of
Definition 7.1, then it is called Thom-Mather structure on (A,S).

(iii) If A is a subspace of a smooth manifold M , then a stratification S of
A is usually required to consist of regular submanifolds of M ; the term
stratified subspace of M is used in this case. In [29], a weaker version
of this notion is defined by requiring local finiteness of S instead of the
frontier condition.

(iv) For a stratified subspace (A,S) of a smooth manifold M , the condi-
tion (B), introduced by H. Whitney [66, 67], is defined as follows2. In
the case M = Rm, it requires that, for all X 6= Y in S, if (xi) and (yi)
are sequences in X and Y , respectively, both of them converging in A to
some x ∈ X, if the sequence of tangent spaces TyiY converges3 to a linear
subspace T ⊂ Rn, and if the sequence of lines R(xi−yi) converges to a line
L ⊂ Rm, then L ⊂ T . This property is preserved by local diffeomorphisms
of Rm, and therefore generalizes to arbitrary smooth manifolds. This con-
dition gives rise to the concept of Whitney stratification of a subspace (or
Whitney stratified subspace) of M .

Example 7.2. (i) Any smooth manifold is a Thom-Mather stratification
with one stratum and the trivial tube.

(ii) Any smooth manifold with boundary is a stratification with two strata,
the interior and the boundary. It can be endowed with a Thom-Mather
structure by using a collar of the boundary.

(iii) Any subanalytic subset of Rm has a primary and secondary stratifications;
the secondary one satisfies condition (B) [40, 45, 33, 32, 34].

(iv) J. Mather [44] has proved that any Whitney stratified subspace of a
smooth manifold admits a Thom-Mather structure (see also [29, Propo-
sition 2.6 and Corollary 2.7]).

For a stratification A ≡ (A,S), the depth of any X ∈ S, denoted by depthX,
is the supremum of the naturals n such that there exist strata X0, . . . , Xn with
X0 < X1 < · · · < Xn = X. Notice that depthX ≤ dimX. Moreover depthX = 0

2Certain condition (A) was also introduced by H. Whitney in [66, 67], but J. Mather [44]

has observed that it follows from condition (B).
3The convergence of linear subspaces of Rm is considered in the appropriate Grassmannians.
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(X is minimal in S) if and only if X is closed in A. The depth and dimension of
A are the supremum of the depths and dimensions of its strata, respectively. The
dimension of A equals its topological dimension, which may be infinite. The depth
of A is zero if and only if all strata are open and closed.

Let A ≡ (A,S, τ) be a Thom-Mather stratification. Let B ⊂ A be a locally
closed subset. Suppose that, for all X ∈ S, X ∩ B is a smooth submanifold of
X, and B ∩ π−1

X (X ∩ B), endowed with the restrictions of πX and ρX , defines a
tube τX∩B of X ∩ B in B. Then let S|B = {X ∩ B | X ∈ S }, and let τ |B be
defined by the assignment of τX∩B to each X ∩ B ∈ S|B . If (B,S|B , τ |B) satisfies
the conditions of a stratification, it is said that the stratification A (or (S, τ)) can
be restricted to B, and B ≡ (B,S|B , τ |B) is called a restriction of A (or (S|B , τ |B)
is called the restriction of (S, τ)); it may be also said that B is a Thom-Mather
substratification of A. For instance, A can be restricted to any open subset and to
any locally closed union of strata. A restriction of a restriction of A is a restriction
of A.

For a stratum X of A, we can consider the restriction of A to X. In this way,
to study X, we can assume that X is dense in A and dimX = dimA if desirable.

A locally closed subset B ⊂ A is said to be saturated if the stratification A can
be restricted to B and, for every X ∈ S, there is a representative (TX , πX , ρX) of
τX such that π−1

X (X ∩B) = TX ∩B.
Let A′ ≡ (A′,S ′, τ ′) be another Thom-Mather stratification. A continuous

map f : A → A′ is called a morphism if, for any X ∈ S, there is some X ′ ∈
S ′ such that f(X) ⊂ X ′, the restriction f : X → X ′ is smooth, and there are
(TX , πX , ρX) ∈ τX and (T ′X′ , π

′
X′ , ρ

′
X′) ∈ τ ′X′ such that f(TX) ⊂ T ′X′ , fπX = π′X′f

and fρX = ρ′X′ . Notice that the continuity of a morphism follows from the other
conditions. Morphisms between stratifications form a category with the operation
of composition; in particular, we have the corresponding concepts of isomorphism
and automorphism. The set of morphisms A → A′ is denoted by Mor(A,A′), and
the group of automorphisms of A is denoted by Aut(A). The other variants of the
concept “stratification” given in Remark 9 also have obvious corresponding versions
of morphisms, isomorphisms and automorphisms; in particular, we get the concept
of weak morphism between weak Thom-Mather stratifications. A (weak) morphism
is called submersive when it restricts to smooth submersions between the strata.

Example 7.3. Let G be a compact Lie group G acting smoothly on a closed
manifold M . Consider the orbit type stratifications of M and G\M [9]. It is
well known that G\M admits a Thom-Mather structure [64, Introduction], which
can be seen as follows. G\M is locally isomorphic to a semi-algebraic subset of
an Euclidean space whose primary and secondary stratifications are equal [5]. By
using an invariant smooth partition of unity of M , like in the Whitney’s embedding
theorem, it follows that G\M is isomorphic to a Whitney stratified subspace of
some Euclidean space, and therefore it admits a Thom-Mather structure. This
can also be seen by observing that the stratification of M satisfies condition (B),
and the proof of [29, Proposition 2.6] can be adapted to produce an invariant4

Thom-Mather structure on M , which induces a Thom-Mather structure on G\M .

The following two lemmas are easy to prove.

4G acts by automorphisms.
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Lemma 7.4. Let A be a Hausdorff, locally compact and second countable space,
{Ui} an open covering of A, and (Si, τi) a Thom-Mather stratification of each Ui.

(i) If (Si, τi) and (Sj , τj) have the same restrictions to Uij := Ui ∩ Uj for all
i and j, then there is a unique Thom-Mather stratification (S, τ) on A
whose restriction to each Ui is (Si, τi).

(ii) If ((Si|Uij )con, (τi|Uij )con) = ((Sj |Uij )con, (τj |Uij )con) for all i and j, then
there is a unique Thom-Mather stratification (S, τ) on A with connected
strata such that ((S|Ui)con, (τ |Ui)con) = (Si,con, τi,con).

Lemma 7.5. Let (A′,S ′, τ ′) be another Thom-Mather stratification.

(i) With the notation of Lemma 7.4-(i), let fi : (Ui,Si, τi)→ (A′,S ′, τ ′) be a
morphism for each i. If fi|Uij = fj |Uij for all i and j, then the combination
of the maps fi is a morphism f : (A,S, τ)→ (A′,S ′, τ ′).

(ii) With the notation of Lemma 7.4-(ii), let fi : (Ui,Si,con, τi,con)→ (A′,S ′, τ ′)
be a morphism for each i. If fi|Uij = fj |Uij for all i and j, then the com-
bination of the maps fi is a morphism f : (A,S, τ)→ (A′,S ′, τ ′).

Remark 10. As a particular case of Lemma 7.4, given a countable family of
Thom-Mather stratifications, {Ai ≡ (Ai,Si, τi)}, there is a unique Thom-Mather
stratification (S, τ) on the topological sum

⊔
iAi whose restriction to each Ai is

(Si, τi); this (S, τ) will be called the sum of the Thom-Mather stratifications (Si, τi).

1.2. Products. The product of two weak Thom-Mather stratifications, A and
A′, has a weak Thom-Mather stratification A × A′ ≡ (A × A′,S ′′, τ ′′) with S ′′ =
{X×X ′ | X ∈ S, X ′ ∈ S ′ } and τ ′′X×X′ = [T ′′X×X′ , π

′′
X×X′ , ρ

′′
X×X′ ], where T ′′X×X′ =

TX × T ′X′ , π′′X×X′ = πX × π′X′ and ρ′′X×X′(x, x
′) = ρX(x) + ρ′X′(x

′).
If A and A′ are Thom-Mather stratifications and the depth of at least one of

them is zero, then A × A′ is a Thom-Mather stratification, but this is not true
when the depths of A and A′ are positive [64, Section 1.2.9, pp. 5–6]. Another
choice of ρX×X′ is needed to get the second equality of Definition 7.1-(vi). For
instance, ρ′′X×X′ = max{ρX , ρ′X′} satisfies that condition, but it is not smooth on
the intersection of the strata with T ′′X×X′ . To solve this problem, pick up a function
h : [0,∞)2 → [0,∞) that is continuous, homogeneous of degree one, smooth on R2

+,
with h−1(0) = {(0, 0)}, and such that, for some C > 1, we have h(r, s) = max{r, s}
if C min{r, s} < max{r, s}. Then A×A′ becomes a Thom-Mather stratification by
setting ρ′′X×X′(x, x

′) = h(ρX(x), ρ′X′(x
′)); it will be called a product of A and A′.

1.3. Cones. Recall that the cone with link a non-empty topological space
L is the quotient space c(L) = L × [0,∞)/L × {0}. The class ∗ = L × {0} is
called the vertex or summit of c(L). The element of c(L) represented by each
(x, ρ) ∈ L× [0,∞) will be denoted by [x, ρ]. The function on c(L) induced by the
second factor projection L × [0,∞) → [0,∞) will be called its canonical function,
and will be usually denoted by ρ. Notice that c(L) is locally compact if and only if
L is compact. It is also declared that c(∅) is the singleton space {∗}, and the above
terminology can be obviously adapted to this case.

Now, suppose that L is a compact Thom-Mather stratification. Then c(L) has
a canonical Thom-Mather stratification so that {∗} is a stratum, its restriction to
c(L)\{∗} = L×R+ is the product Thom-Mather stratification, and the tube of {∗}
is [c(L), π, ρ], where ρ is the canonical function and π is the unique map c(L)→ {∗}.
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If L 6= ∅, then depth c(L) = depthL+ 1 and dim c(L) = dimL+ 1. For any ε > 0,
let cε(L) = ρ−1([0, ε)).

Let L′ be another compact Thom-Mather stratification, and let ∗′ denote the
vertex of c(L′). If L 6= ∅, the cone of any morphism f : L → L′ is the morphism
c(f) : c(L)→ c(L′) induced by f × id : L× [0,∞)→ L′ × [0,∞). If L = ∅, c(f) is
defined by mapping ∗ to ∗′. Reciprocally, it is easy to check that, for any morphism
h : c(L)→ c(L′), there is some morphism f : L→ L′ such that h = c(f) near ∗; in
particular, h(∗) = ∗′. Let c(Aut(L)) = { c(f) | f ∈ Aut(L) } ⊂ Aut(c(L)).

Example 7.6. For each integer m ≥ 1, there is a canonical homeomorphism
can : c(Sm−1)→ Rm defined by can([x, ρ]) = ρx. Of course, this is not an isomor-
phism of Thom-Mather stratifications, but it restricts to a diffeomorphism of the
stratum Sm−1×R+ of c(Sm−1) to Rm\{0}. Via can : c(Sm−1)→ Rm, the canonical
function of c(Sm−1) corresponds to the function ρ0(x) = |x| on Rm, which will be
also called the canonical function on Rm for the scope of this work. If ρ1 is the
canonical function on c(L) for some compact Thom-Mather stratification L, then
the function ρ =

√
ρ2

0 + ρ2
1 will be called the canonical function on Rm × c(L).

The following argument shows that a product of two cones is isomorphic to a
cone. With the above notation, let ρ : c(L)→ [0,∞) and ρ′ : c(L′)→ [0,∞) be the
canonical functions, and let ρ′′ = h(ρ× ρ′) : c(L)× c(L′)→ [0,∞) for a function h
like in Section 1.2. Since the restrictions ρ : L× R+ → R+ and ρ′ : L′ × R+ → R+

are submersive weak morphisms, and h : R2
+ → R+ is non-singular, it follows

that ρ′′ : c(L) × c(L′) \ {(∗, ∗′)} → R+ is a submersive weak morphism. Hence
L′′ = ρ′′

−1(1) is saturated in c(L) × c(L′) [64, Lemma 2.9, p. 17]. Let ∗′′ denote
the vertex of c(L′′). Since h is homogeneous of degree one, the mapping

[([x, r], [x′, r′]), s] 7→ ([x, rs], [x′, r′s])

defines an isomorphism c(L′′)→ c(L)×c(L′), whose inverse is given by (∗, ∗′) 7→ ∗′′,
and

([x, r], [x′, r′]) 7→
[([

x,
r

h(r, r′)

]
,

[
x′,

r′

h(r, r′)

])
, h(r, r′)

]
if (r, r′) 6= (0, 0).

1.4. Conic bundles. Let X be a smooth manifold, L a compact Thom-
Mather stratification, and π : T → X a fiber bundle whose typical fiber is c(L)
and whose structural group can be reduced to c(Aut(L)). Thus there is a fam-
ily of local trivializations of π, {(Ui, φi)}, such that the corresponding transition
functions define a cocycle with values in c(Aut(L)); i.e., for all i and j, there is
a map hij : Uij := Ui ∩ Uj → c(Aut(L)) such that φjφ−1

i (x, y) = (x, hij(x)(y))
for every x ∈ Uij and y ∈ c(L). Thus we get another cocycle consisting of maps
gij : Uij → Aut(L) so that hij(x) = c(gij(x)) for all x ∈ Uij . Consider the Thom-
Mather stratification on each open subset π−1(Ui) ⊂ T that corresponds by φi to the
product Thom-Mather stratification on Ui×c(L). For each connected open V ⊂ Uij
and every stratum N0 of L, there is an stratum N1 of L such that gij(x)(N0) = N1

for all x ∈ V , and suppose also that, in this case, the map V × N0 → N1,
(x, y) 7→ gij(x)(y), is smooth. Then each mapping (x, y) 7→ (x, gij(x)(y)) defines an
automorphism of Uij×L. This means that the induced Thom-Mather stratifications
on π−1(Ui) and π−1(Uj) have the same restriction to π−1(Uij). By Lemma 7.4-(i),
it follows that there is a unique Thom-Mather stratification on T whose restriction
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to each π−1(Ui) is the above Thom-Mather stratification. Furthermore there is a
canonical section of π, called the vertex (or summit) section, which is well defined
by x 7→ ∗x = φ−1

i (x, ∗) if x ∈ Ui, where ∗ denotes the vertex of c(L); each ∗x can be
called the vertex of the fiber over x. The image of the vertex section is a stratum
of T , called the vertex (or summit) stratum, which is diffeomorphic to X.

If π : T → X is endowed with a maximal family Φ of trivializations satisfying
the above conditions, it will be called a conic bundle, and the corresponding Thom-
Mather stratification on T is called its conic bundle Thom-Mather stratification. It
will be also said that Φ is the conic bundle structure of π.

Let ρ : c(L)→ [0,∞) be the canonical function. Its lift to each Ui×c(L) is also
denoted by ρ. The functions φ∗ρ on the sets π−1

X (Ui) can be combined to define
a function ρ : T → [0,∞). The tubular neighborhood of X in T is [T, π, ρ], and
(T, π, ρ) is called its canonical representative.

Let π′ : T ′ → X ′ be another conic bundle, whose structure is given by a
family Φ′ of trivializations as above. Let F : T → T ′ be a fiber bundle morphism
over a map f : X → X ′. Then we can choose {(Ui, φi)} as above and a family
{(U ′i , φ′i)} ⊂ Φ′ such that f(Ui) ⊂ U ′i for all i, and therefore F (π−1(Ui)) ⊂ π′−1(U ′i).
Let h′ij = c(g′ij) : U ′ij := U ′i∩U ′j → c(Aut(L′)) be the maps defined by the transition
maps φ′j φ

′
i
−1 as above. Suppose that there are maps κi : Ui → Mor(L,L′) such

that κj(x) gij(x) = g′ij(f(x))κj(x) for all x ∈ Uij . For each connected open V ⊂ Ui
and every stratum N of L, there is an stratum N ′ of L′ such that κi(x)(N) ⊂
N ′ for all x ∈ V , and assume also that, in this case, the map V × N → N ′,
(x, y) 7→ κi(x)(y), is smooth. Then F is called a morphism of conic bundles. In
this case, each mapping (x, y) 7→ (f(x), κi(x)(y)) defines a morphism Ui × c(L)→
U ′i × c(L′). So each restriction F : π−1(Ui) → π′

−1(U ′i) is a morphism of Thom-
Mather stratifications, and therefore F : T → T ′ is a morphism of Thom-Mather
stratifications by Lemma 7.5-(i). According to Section 1.3, any morphism of Thom-
Mather stratifications between conic bundles, preserving the vertex stratum, equals
a conic bundle morphism near the vertex stratum.

The case of conic bundles is specially important because, as pointed out in [7,
Chapitre A, Remarque 3], the proof of [64, Theorem 2.6, pp. 16–17] can be easily
adapted to get the following.

Proposition 7.7. Let A ≡ (A,S, τ) be a Thom-Mather stratification with
connected strata. Then, for any X ∈ S, there is some (T, π, ρ) ∈ τX such that
π : T → X admits a structure Φ of conic bundle such that the corresponding conic
bundle Thom-Mather stratification is (S|T , τ |T ).

Remark 11. (i) The notation TX , πX , ρX , LX and ΦX will be used
when a reference to the stratum X is desired.

(ii) The connectedness of the strata is assumed for the sake of simplicity.
In the general case, the description of Proposition 7.7 holds around the
connected components of the strata.

(iii) We can choose ρ so that (T, π, ρ) is the canonical representative of the
tube around X in T with its conic bundle Thom-Mather stratification.

Definition 7.8. A chart or distinguished neighborhood of A is a pair (O, ξ),
where O is open in A and, for some X ∈ S and ε > 0, with the notation and
conditions of Proposition 7.7, ξ is an isomorphism O → B × cε(L) defined by some
(U, φ) ∈ Φ and some chart (U, ζ) of X with ζ(U) = B, where B is an open subset
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of Rm for m = dimX. It is said that (O, ξ) is said to be centered at x ∈ X if B
is an open ball centered at 0 and ξ(x) = (0, ∗), where ∗ is the vertex of c(L). A
collection of charts that cover A is called an atlas of A.

Remark 12. Definition 7.8 also includes the case where any factor of the
product Rm × c(L) is missing by taking m = 0 or L = ∅.

Remark 13. The following two assertions follow by using charts and induction
on the depth of the strata:

(i) In any Thom-Mather stratification, there is at most one dense stratum,
which is open.

(ii) Any stratum with compact closure has a finite number of connected com-
ponents.

1.5. Uniqueness of Thom-Mather stratifications.

Lemma 7.9. Let A be a Hausdorff, locally compact and second countable space,
let (A′,S ′, τ ′) be a Thom-Mather stratification with connected strata, and let f :
A→ A′ be a continuous map. Then there is at most one Thom-Mather stratification
(S, τ) on A with connected strata so that f : (A,S, τ)→ (A′,S ′, τ ′) is a morphism
that restricts to local diffeomorphism between corresponding strata.

Proof. Let (S, τ) be a Thom-Mather stratification on A satisfying the con-
ditions of the statement. Then the elements of S are the connected components
X of the sets f−1(X ′) for X ′ ∈ S, endowed with the differential structure so that
f : X → X ′ is a local diffeomorphism. Thus the elements of S are determined by
f and the elements of S ′.

Let X ∈ S and X ′ ∈ S ′ with f(X) ⊂ X ′, and let (T, π, ρ) ∈ τX and (T ′, π′, ρ′) ∈
τ ′X′ with f(T ) ⊂ T ′, π′ f = f π and ρ′ f = ρ; in particular, ρ is determined by f
and ρ′. Let x ∈ T and x′ = f(x) ∈ T ′, and let Y ∈ S such that x ∈ Y . Then
f π(x) = π′(x′), obtaining that π(x) is the unique point of X ∩ f−1(π′(x′)) that is
contained in the connected component of x in f−1π′

−1(π′(x′)). It follows that π is
also determined by f and π′, and therefore τX is determined by f and τ ′X′ . �

1.6. Relatively local properties on strata. The following kind of termi-
nology will be used for a subspace X of an arbitrary topological space A. Let P be
a property that may hold on open subsets U ⊂ X; for the sake of simplicity, let us
say that “U is P” when P holds on U . It is is said that X is relatively locally (or
simply, rel-locally) P at some x ∈ X if there is a base U of open neighborhoods of
x in A such that U ∩X is P for all U ∈ U ; if X is rel-locally P at all points of X,
then X is said to be relatively locally (or simply, rel-locally) P. Similarly, P is said
to be a relatively local (or simply, rel-local) property when X is P if and only if it
is rel-locally P.

We will apply this terminology to the case where A is a Thom-Mather strat-
ification and X is a stratum of A. For instance, on X, we will consider functions
that are rel-locally bounded or rel-locally bounded away from zero, rel-locally fi-
nite open coverings, and rel-local connectedness at points of X. Any locally finite
covering of X by open subsets of A restricts to a rel-locally finite open covering of
X; thus there exist rel-locally finite open coverings of X by the paracompactness
of A. Observe that X is compact if and only if any rel-locally finite open covering
of X is finite.
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2. Adapted metrics on strata

The definition of adapted metrics was given for the regular stratum of any
Thom-Mather stratification that is a pseudomanifold [13, 14, 47, 48]. But its
definition has an obvious version for any stratum of a Thom-Mather stratification.
In this work, we will consider only the simplest type of adapted metrics, whose
definition is recalled. The corresponding (componentwise) metric completion of
strata will be specially studied.

2.1. Adapted metrics on strata and local quasi-isometries between
Thom-Mather stratifications. Let A be a Thom-Mather stratification. The
adapted metrics on its strata are combinations of the adapted metrics on their con-
nected components with respect to the Thom-Mather stratification defined by those
connected components. Thus we can assume that the strata of A are connected to
define adapted metrics. This definition is given by induction on the depth of the
strata.

Definition 7.10. Let M be a stratum of A. If depthM = 0, then M is a closed
manifold, and any Riemannian metric on M is called adapted . If depthM > 0 and
adapted metrics are defined for strata of lower depth, then an adapted metric on M
is a Riemannian metric g such that, for any point x ∈M \M , there is some chart
(O, ξ) of A centered at x, with ξ(O) = B × cε(L) and ξ(O ∩M) = B ×N × (0, ε)
for some stratum N of L, so that g is quasi-isometric to ξ∗(g0 + ρ2g̃+ (dρ)2) on O,
where g0 is the standard Riemannian metric on Rm, ρ is the standard coordinate
of R+, and g̃ is some adapted metric on N , which is defined because the depth of
N in L is smaller than the depth of M in A.

Remark 14. Since all Riemannian metrics on a smooth manifold are locally
quasi-isometric, any metric on Rm could be used in Definition 7.10 instead of g0.

Remark 15. The following properties follow by taking charts and using induc-
tion on the depth of the strata:

(i) Any pair of adapted metrics on M , g and g′, are rel-locally quasi-isometric;
in particular, if M is compact, then any pair of adapted metrics on M are
quasi-isometric.

(ii) Any point in M has a countable base {Om | m ∈ N } of open neighbor-
hoods such that, with respect to any adapted metric, vol(M ∩ Om) → 0
and max{ diamP | P ∈ π0(M ∩Om) } → 0 as m→∞; in particular, if M
is compact, then, with respect to any adapted metric, we have volM <∞
and diamP <∞ for all P ∈ π0(M).

(iii) Any morphism of Thom-Mather stratifications restricts to rel-locally uni-
formly continuous maps between corresponding strata with respect to ar-
bitrary adapted metrics.

(iv) If g and g′ are adapted metrics on strata M and M ′ of Thom-Mather
stratifications A and A′, respectively, then g⊕ g′ is an adapted metric on
the stratum M×M ′ of any product Thom-Mather stratification on A×A′
(Section 1.2).

In [8, Appendix], it was proved that there exist adapted metrics on the regular
stratum of any Thom-Mather stratification that is a pseudomanifold. It can be
easily checked that the same argument proves the existence of adapted metrics on
any stratum M of every Thom-Mather stratification A.
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Example 7.11. The proof in [8, Appendix] also shows the following:
(i) With the notation of Definition 7.10, the metric g = g0 + ρ2g̃ + (dρ)2 is

adapted on the stratum M = Rm × N × R+ of c(L); it will be called a
model adapted metric.

(ii) Given a rel-locally finite atlas {(Oa, ξa)} of M , a smooth partition of unity
{λa} subordinated to the open covering {M ∩Oa} of M , and an adapted
metric ga on each M ∩Oa, then the metric

∑
a λaga on M is adapted.

Example 7.12. For an integer m ≥ 1, let g̃0 be the restriction to Sm−1 of
the standard metric g0 of Rm. Then, via can : c(Sm−1) → Rm (Example 7.6), the
model adapted metric g1 = ρ2g̃0 + (dρ)2 on the stratum Sm−1 × R+ of c(Sm−1)
corresponds to g0 on Rm \ {0}.

Example 7.13. With the notation of Example 7.3, for any invariant Riemann-
ian metric g on M , consider the Riemannian metric ḡ on the strata of G\M so that
the canonical projection of the strata of M to the strata of G\M is a Riemannian
submersion. The proof of [29, Proposition 2.6] can be easily adapted to produce an
invariant Thom-Mather structure on M so that the restriction of g to any stratum
is adapted. Hence ḡ is adapted for the induced Thom-Mather structure of G\M .

A weak isomorphism between Thom-Mather stratifications is called a local
quasi-isometry if it restricts to rel-local quasi-isometries between their strata with
respect to adapted metrics; this is independent of the choice of adapted metrics
by Remark 15-(i). In particular, a local quasi-isometry between compact Thom-
Mather stratifications restricts to quasi-isometries between their strata; thus a local
quasi-isometry between compact Thom-Mather stratifications will be called a quasi-
isometry . The condition of being locally quasi-isometric defines an equivalence
relation on the family of Thom-Mather stratifications on any Hausdorff, locally
compact and second countable space; each equivalence class will be called a quasi-
isometry type of Thom-Mather stratifications. By Remark 15-(iv), the product of
Thom-Mather stratifications is unique up to local quasi-isometries.

Definition 7.14. Consider an adapted metric on a connected stratum M of a
Thom-Mather stratification A, and let d denote the corresponding distance function
on M . For each x ∈ M and ρ > 0, the relative ball (or rel-ball) of radius ρ and
center x is the set consisting of the points y ∈ M such that there is a sequence
(zk) in M with limk zk = x in M and lim supk d(y, zk) < ρ. The term ρ-relative
neighborhood (or ρ-rel-neighborhood) of x will be also used for this concept.

Example 7.15. (i) The rel-balls centered at points of M are the usual
balls.

(ii) In the case of a model adapted metric on the stratum M = N × R+ of
c(L), the ρ-rel-neighborhood of the vertex ∗ is N × (0, ρ).

2.2. Relatively local completion. Let M be a stratum of a Thom-Mather
stratification A, and fix an adapted metric g on M .

Definition 7.16. Assume first that M is connected, and consider the distance
function d on M induced by g. The relatively local completion (or simply, rel-local
completion) is the subspace M̂ of the metric completion of M whose points can be
represented by Cauchy sequences in M that converge in A; the limits in M of those
sequences define a canonical continuous map lim : M̂ → M . The canonical dense
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injection of M into its metric completion restricts to a canonical dense injection
ι : M → M̂ satisfying lim ι = idM . The more specific notation limM and ιM may
be also used.

If M is not connected, then M̂ is defined as the disjoint union of the rel-local
completions of its connected components.

Remark 16. (i) If M is compact, then M̂ is independent of the choice
of the adapted metric by Remark 15-(i).

(ii) For any open O ⊂ A, M̂ ∩O can be canonically identified to the open
subspace lim−1(M ∩O) ⊂ M̂ .

Example 7.17 (Relatively local completion of the strata of cones). Let L be a
compact Thom-Mather stratification andM a stratum of c(L). With the notation of
Section 1.3, if M = {∗}, then M̂ = M , obviously. Now, suppose that M = N ×R+

for some stratum N of L. Consider the model adapted metric g = ρ2g̃ + (dρ)2

for some adapted metric g̃ on N , and the corresponding rel-local completion M̂ .
π0(N) is finite by Remark 13-(ii). For each P ∈ π0(N), let P̂ denote the rel-local
completion of P with respect to Lcon, which is independent of the choice of g̃. Then
it is easy to check that

M ≡
⊔
P P × R+

F
P ιP×id

−−−−−−→
⊔
P P̂ × R+ ↪→

⊔
P c(P̂ )

extends to a homeomorphism M̂ →
⊔
P∈π0(N) c(P̂ ).

Remark 17. The following properties follow easily by using charts, induction
on the depth of the strata, Example 7.17 and Remark 15-(ii):

(i) lim : M̂ →M is surjective with finite fibers.
(ii) M is rel-locally connected with respect to M̂ .
(iii) If M is compact, then M̂ is compact, and therefore its connected compo-

nents are the metric completions of the connected components of M .

Proposition 7.18. (i) M̂ has a unique Thom-Mather stratification with
connected strata such that lim : M̂ → M is a morphism that restricts
to local diffeomorphisms between corresponding strata. In particular, the
connected components of M can be considered as strata of M̂ via ιM .

(ii) The restriction of g to the connected components of M are adapted metrics
with respect to M̂ .

(iii) Let M ′ be a connected stratum of another Thom-Mather stratification A′

endowed with an adapted metric. Then, for any morphism f : A → A′

with f(M) ⊂ M ′, the restriction f : M → M ′ extends to a morphism
f̂ : M̂ → M̂ ′. Moreover f̂ is an isomorphism if f is an isomorphism.

Proof. This is proved by induction on depthM . If depthM = 0, then M̂ ≡
M = M , and there is nothing to prove.

Suppose that depthM > 0 and the statement holds for strata of lower depth.
We can assume that the strata of M is connected. For each stratum X of M ,
let (TX , πX , ρX) be a representative of the tube around X in M satisfying the
conditions of Section 1.4 with a compact Thom-Mather stratification LX and a
family {(Ui, φi)} of local trivializations of πX . The corresponding cocycle with
values in c(Aut(LX)) consists of the maps hij : Ui ∩ Uj → c(Aut(LX)) defined by
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hij(x) = (φj φ−1
i )(x, ·). We have hij(x) = c(gij(x)) for a cocycle consisting of maps

gij : Ui ∩ Uj → Aut(Lx).
By the density of M in M and Remark 13-(i), there is a dense stratum N of LX

so that φi(M ∩π−1
X (Ui)) = Ui×N×R+ for all i. Consider triples (x, i, P ) such that

x ∈ Ui and P ∈ π0(N). Two triples of this type, (x, i, P ) and (y, j,Q), are declared
to be equivalent if x = y and gij(x)(P ) = Q. The equivalence class of each triple
(x, i, P ) is denoted by [x, i, P ], and let X ′ denote the corresponding quotient set.
There is a canonical map fX : X ′ → X, defined by fX([x, i, P ]) = x. Consider the
topology on X ′ determined by requiring that the sets U ′i,P = { [x, i, P ] | x ∈ Ui } are
open, and the restrictions fX : U ′i,P → Ui are homeomorphisms. Notice that fX is a
finite fold covering map; in particular, in the case X = M , fM is a homeomorphism.
Consider the differential structure on each X ′ so that fX is a local diffeomorphism.

By the induction hypothesis, for each P ∈ π0(N), P̂ satisfies the statement
of the proposition with some Thom-Mather stratification. Consider quadruples
(x, i, P, u) such that x ∈ Ui, P ∈ π0(N) and u ∈ c(P̂ ). Two such quadruples,
(x, i, P, u) and (y, j,Q, v), are said to be equivalent if x = y, gij(x)(P ) = Q and
c(ĝij(x))(u) = v. The equivalence class of each quadruple (x, i, P, u) is denoted by
[x, i, P, u], and let T ′X denote the corresponding quotient set. There are canonical
maps, π′X : T ′X → X ′, lim′X : T ′X → TX , ρ′X : T ′X → [0,∞) and ι′X : M ∩ TX →
T ′X defined by π′X([x, i, P, u]) = [x, i, P ], lim′X([x, i, P, u]) = φ−1

i (x, c(limP )(u)),
ρ′X([x, i, P, u]) = ρ(u), and ι′X(z) = [x, i, P, (ιP (v), r)] if z ∈ M ∩ π−1

X (Ui) and
φi(z) = (x, v, r) ∈ Ui × P × R+. Notice that fX π′X = πX lim′X and ρX π

′
X = ρ′X .

Let G ⊂ Aut(LX) be the subgroup generated by the above elements gij(x).
Since the canonical action of G on LX preserves N , we get an induced action of G
on π0(N). Since X is connected, there is a bijection between G\π0(N) and the set
π0(X ′) of connected components of X ′, where any orbit O ∈ G\π0(N) corresponds
to the connected component X ′O ∈ π0(X ′) consisting of the points [x, i, P ] ∈ X ′

with P ∈ O. Also, let T ′X,O = (π′X)−1(X ′O) ⊂ T ′X .
Given any O ∈ G\π0(N), fix some P0 ∈ O. For any other P ∈ O, there is

some gP ∈ G such that gP (P ) = P0. Thus the restriction gP : P → P0 induces
a map ĝP : P̂ → P̂0, and let φ′i,P : (π′X)−1(U ′i,P ) → U ′i,P × c(P̂0) be the bijection
defined by φ′i,P ([x, i, P, u]) = ([x, i, P ], c(ĝP )(u)). Consider the topology on T ′X,O
determined by requiring that the sets (π′X)−1(U ′i,P ) are open, and the maps φ′i,P
are homeomorphisms. Then the maps φ′i,P are local trivializations of the restriction
π′X,O : T ′X,O → X ′O of π′X , obtaining that π′X,O is a fiber bundle with typical fiber
c(P̂0). The associated cocycle has values in c(Aut(P̂0)); in fact, it consists of the
functions h′i,P ;j,Q : U ′i,P ∩ U ′j,Q → c(Aut(P̂0)) defined by

h′i,P ;j,Q([x, i, P ])(u) = c(g′i,P ;j,Q([x, i, P ]))(u) ,

where g′i,P ;j,Q : U ′i,P ∩ U ′j,Q → Aut(P̂0) is the cocycle given by

g′i,P ;j,Q([x, i, P ]) = ĝQ ĝij(x) ĝP
−1

.

The conditions of Section 1.4 are satisfied, obtaining that π′X,O is a conic bundle,
and therefore T ′X,O can be endowed with the corresponding conic bundle Thom-
Mather stratification.

Since NX,O :=
⋃
P∈O P is G-invariant, the set NX,O × R+ is invariant by

all transformations hij(x) for x ∈ Uij , and therefore it defines an open subspace
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MX,O ⊂ M ∩ TX . Let lim′X,O : T ′X,O → TX , ρ′X,O : T ′X,O → [0,∞) and ι′X,O :
MX,O → T ′X,O be defined by restricting lim′X , ρ′X and ι′X . Then (T ′X,O, π

′
X,O, ρ

′
X,O)

is the canonical representative of the tube of X ′ in T ′X,O, ι′X,O is a dense open
embedding, lim′X,O ι′X,O = id, and lim′X,O is the conic bundle morphism over fX :
X ′O → X induced by the maps κi,P : U ′i,P → Mor(P̂0, LX) given by κi,P ([x, i, P ]) =
limP ĝP

−1 (Section 1.4). By the induction hypothesis, κi,P ([x, i, P ]) restricts to
local diffeomorphisms between corresponding strata, and therefore lim′X,O restricts
to local diffeomorphisms between corresponding strata.

On T ′X ≡
⊔
O∈G\π0(N) T

′
X,O, consider the sum of the topologies and Thom-

Mather stratifications of the spaces T ′X,O (Remark 10). By Lemma 7.5-(i), lim′X :
T ′X → TX is a morphism that restricts to local diffeomorphisms between corre-
sponding strata. Observe that the strata of T ′X are connected.

By using the local trivializations of πX and each π′X,O, and Example 7.17,

it follows that ι′X,O : MX,O → T ′X,O extends to an isomorphism M̂X,O → T ′X,O
such that lim′X,O corresponds to limMX,O . Hence ι′X : M ∩ TX → T ′X extends to

an isomorphism M̂ ∩ TX → T ′X such that lim′X corresponds to limM∩TX . Then,
according to Remark 16-(ii), we can consider the spaces T ′X as open subspaces of M̂ ,
obtaining an open covering of M̂ as X runs in the family of strata of M . Moreover
each restriction limM : T ′X → M ∩ TX restricts to local diffeomorphisms between
the corresponding strata. Hence, by Lemma 7.9, for strata X and Y of M , the
restrictions of the Thom-Mather stratifications of T ′X and T ′Y to T ′X ∩ T ′Y induce
the same Thom-Mather stratification with connected strata. By Lemma 7.4-(ii),
it follows that there is a unique Thom-Mather stratification with connected strata
on M̂ whose restriction to each T ′X induces the above conic bundle Thom-Mather
stratification. By Lemma 7.5-(ii), limM is a morphism because its restriction to
each T ′X is a morphism. This completes the proof of (i).

In the above construction, consider every U ′i,P ×P0 as a stratum of each U ′i,P ×
c(P̂0) via id×ιP0 . Let g′i,P be any Riemannian metric on U ′i,P , and let g̃0 be an
adapted metric on P0 with respect to P0 ⊂ LX . Thus g′i,P + g̃0 is an adapted metric
on U ′i,P × P0, and therefore, by the induction hypothesis, it is also adapted with
respect to U ′i,P × c(P̂0). Hence, considering each MX,O as a stratum of T ′X,O via
ι′X,O, the restriction of g to each MX,O is adapted with respect to T ′X,O, and (ii)
follows.

Part (iii) follows from (i), (ii) and Remark 15-(iii). �



CHAPTER 8

Relatively Morse functions

Our version of Morse functions on strata is introduced and studied in this
section.

Let M be a stratum of a Thom-Mather stratification A, and fix an adapted
metric g on M . Identify M and its image by the canonical dense open embedding
ι : M → M̂ . Let f ∈ C∞(M).

Definition 8.1. (i) It is said that f is relatively admissible (or sim-
ply, rel-admissible) with respect to g if f , |df | and |∇df | are rel-locally
bounded.

(ii) A point x ∈ M̂ is called relatively critical (or simply, rel-critical) if

lim inf
y∈M, y→x

|df(y)| = 0

for some adapted metric. The set of rel-critical points of f is denoted by
Critrel(f).

(iii) A point x ∈ Critrel(f) is said to be relatively non-degenerate (or simply,
rel-non-degenerate) if there is some neighborhood O of x in M̂ and some
c > 0 such that |∇vdf | ≥ c |v| for all v ∈ T (M ∩O).

Remark 18. (i) Let O be any open subset of A. If f ∈ C∞(M) is rel-
admissible with respect to g, then f |M∩O is rel-admissible with respect to
g|M∩O.

(ii) The rel-local boundedness of |df | is invariant by rel-local quasi-isometries,
and therefore it is independent of g, but the rel-local boundedness of
|∇df | depends on the choice of g. However it follows from Lemma 8.4 and
Proposition 8.5 below that the existence of g so that f is rel-admissible
with respect to g is a rel-local property.

(iii) If depthM = 0, then any smooth function is admissible, and its (rel-non-
degenerate) rel-critical points are its (non-degenerate) critical points.

(iv) A rel-admissible function on M may not have any continuous extension to
M , but it has a continuous extension to M̂ by the rel-local boundedness
of |df |. Thus it becomes natural to define its rel-critical points in M̂ .

(v) The admissible functions on M form a unital subalgebra of C∞(M) be-
cause d is a derivation and, for f, h ∈ C∞(M),

∇d(fh) = df ⊗ dh+ f∇dh+ dh⊗ df + h∇df .

Example 8.2. With the notation of Example 7.11-(i), for any h ∈ C∞0 (R+),
the function h(ρ) is rel-admissible on the stratum Rm×N ×R+ of Rm× c(L) with
respect to any model adapted metric.

69
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Example 8.3. With the notation of Examples 7.3 and 7.13, for any G-invariant
smooth function f on M , let f̄ denote the induced function on G\M , whose re-
striction to each stratum is smooth, and df is the pull-back of df̄ on corresponding
strata of M and G\M . Fix any invariant metric on M and consider the induced
adapted metric on the strata of G\M . The restriction of Hess f to horizontal tan-
gent vectors on the strata of M corresponds via the canonical projection to Hess f̄
on the strata of G\M by [51, Lemma 1]. It easily follows that f̄ is rel-admissible
on the strata of G\M .

Lemma 8.4. For any rel-locally finite covering {Oa | a ∈ A} of M by open
subsets of A, there is a smooth partition of unity {λa} on M subordinated to the
open covering {M ∩ Oa} such that, for any adapted metric on M , each function
|dλa| is rel-locally bounded.

Proof. If depthM = 0, then the rel-locally bounded smooth functions on M
are the locally bounded ones, and therefore the statement holds in this case because
any continuous function is locally bounded. Thus suppose that depthM > 0. For
0 ≤ k ≤ depthM , let Fk denote the union of all strata X < M with depthX ≤ k.
The lemma is given by the case k = depthM in the following assertion.

Claim 5. For 0 ≤ k ≤ depthM , there is a family of smooth functions {λa,k}
on M such that:

(i) 0 ≤
∑
a λa,k ≤ 1 for all k;

(ii) λa,k is supported in M ∩Oa for all a ∈ A;
(iii) there is some open neighborhood Uk of Fk in A so that

∑
a λa,k = 1 on

Uk ∩M ; and,
(iv) for any adapted metric on M , each function |dλa,k| is rel-locally bounded.

This claim is proved by induction on k. To simplify its proof, observe that it
is also satisfied for k = −1 with F−1 = U−1 = ∅, and λa,−1 = 0 for all a ∈ A.

Now, assume that Claim 5 holds for some k ∈ {−1, 0, . . . ,depthM − 1}. Let
Vk be another open neighborhood of Fk in A such that Vk ⊂ Uk. We can assume
that the strata of A are connected by Remark 8-(v).

Fk+1 \ Fk is the union of the strata X that satisfy X \X ⊂ Fk, and therefore
the sets X \ Vk are closed in A \ Vk and disjoint from each other. For the strata
X ⊂ Fk+1 \ Fk, choose representatives (TX , πX , ρX) ∈ τX satisfying the properties
of Definition 7.1-(iv)–(vi), Proposition 7.7 and Remark 11-(iii). Let ΦX denote the
conic bundle structure of πX . Moreover, like in Remark 8-(ii), we can assume that
the sets TX \ Vk are disjoint one another.

By refining {Oa} if necessary, we can suppose that, for each stratum X ⊂
Fk+1\Fk, any point in X \Vk is in some set Oa such that there is a chart of A of the
form (Oa, ξa), obtained from a local trivialization in ΦX according to Definition 7.8;
in this case, let ξa(Oa) = Ba × cεa(LX) for some open subset Ba ⊂ RmX and some
εa > 0, where mX = dimX; let AX be the family the indices a ∈ A that satisfy this
condition. For each a ∈ AX , take a smooth function ha : [0,∞)→ [0, 1] supported
in [0, εa) and such that ha = 1 around 0. Let {µa | a ∈ AX } be a smooth partition
of unity on Fk+1 \ Vk subordinated to the open covering {Oa \ Vk | a ∈ AX }. Set
λk =

∑
a λa,k. Then define

λa,k+1 = λa,k + (1− λk) · ρ∗Xha · π∗Xµa
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if a ∈ AX for some stratum X ⊂ Fk+1 \ Fk, and λa,k+1 = λa,k otherwise. These
functions are smooth on M because λk is smooth and equals 1 on Uk. It is easy to
check that they also satisfy Claim 5-(i)–(iv). �

Proposition 8.5. Let {Oa | a ∈ A} be a rel-locally finite covering of M by
open subsets of A, let {λa} be a partition of unity on M subordinated to the open
covering {M ∩ Oa} satisfying the conditions of Lemma 8.4, and let f ∈ C∞(M)
such that each f |M∩Oa is rel-admissible with respect to some metric ga on M ∩Oa.
Then f is rel-admissible with respect to the adapted metric g =

∑
a λaga on M .

To prove Proposition 8.5, we will use the following lemma.

Lemma 8.6. Let X be a Riemannian manifold of dimension n, and let f ∈
C∞(X) and p ∈ X. If (df)(p) 6= 0, then there is a system of coordinates (x1, . . . , xn)
of X around p such that (∂1(p), . . . , ∂n(p)) is an orthonormal reference and ∂i∂jf =
0 for all i, j ∈ {1, . . . , n}, where ∂i = ∂/∂xi.

Proof. Because (df)(p) 6= 0, the 1-form df defines a codimension one foliation
around p (its tangent bundle is ker df). By using a foliation chart around p, it
follows that there is a system of coordinates (x1, . . . , xn) around p such that the
vectors ∂1(p), . . . , ∂n−1(p) are orthonormal, and xn = f/|(df)(p)|. It is easy to
check that these coordinates satisfy the stated properties. �

Proof of Proposition 8.5. Let | |a and ∇a denote the norm and Levi-
Civita connection of each ga, and let | | and ∇ denote the norm and Levi-Civita
connection of g. On every M ∩ Oa, the functions |df |a and |∇adf |a are rel-locally
bounded. Since g and ga are rel-locally quasi-isometric on M ∩Oa, we get that |df |
and |∇adf | are rel-locally bounded on M ∩Oa. By shrinking {Oa} if necessary, we
can assume that there are constants Ka ≥ 0 and Ca ≥ 1 such that

|df |, |∇adf |, |dλa| ≤ Ka on M ∩Oa , (74)
1
Ca
|X|a ≤ |X| ≤ Ca |X|a ∀X ∈ T (M ∩Oa) . (75)

For any fixed a0 ∈ A, it is enough to prove that |∇df | is bounded on M ∩Oa0 .
For each p ∈ M ∩ Oa0 , take any system of coordinates (x1, . . . , xn) on some open
neighborhood U of p in M such that (∂1(p), . . . , ∂n(p)) is an orthonormal reference
with respect to g. Let ga,ij and gij be the corresponding metric coefficients of
ga and g on Oa ∩ U and U , respectively; thus gij(p) = δij , and we can write
gij =

∑
a λa ga,ij on U . As usual, the inverses of the matrices (ga,ij) and (gij) are

denoted by (gija ) and (gij). By (75) and since gij(p) = δij , we have

1
C2
a

ga,ii(p) ≤ 1 ≤ C2
a ga,ii(p)

for all i ∈ {1, . . . , n} if p ∈ Oa, giving

|ga,ij(p)| =
1
2
| |∂i(p) + ∂j(p)|2a − ga,ii(p)− ga,jj(p) |

≤ 1
2

(|∂i(p) + ∂j(p)|2a + ga,ii(p) + ga,jj(p))

≤ C2
a

2
(|∂i(p) + ∂j(p)|2 + 2) = 2C2

a
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for all i, j ∈ {1, . . . , n}. Since Oa0 meets a finite number of sets Oa, it follows
that |ga,ij(p)| and |gija (p)| are bounded by some C ≥ 1, independent of the point
p ∈ Oa0 . Similarly, by (74), we get that |(df)(p)|, |(∇adf)(p)| and |(dλa)(p)| are
bounded by some K ≥ 0 independent of the point p ∈ Oa0 .

Let Γka,ij and Γkij be the Christoffel symbols of ga and g on Oa ∩ U and U ,
respectively, corresponding to (x1, . . . , xn). Since gij(p) = δij(p), we have1

Γkij(p) =
1
2

(∂igjk + ∂jgik − ∂kgij)(p)

=
1
2

∑
a

(ga,jk ∂iλa + λa ∂iga,jk + ga,ik ∂jλa + λa ∂jga,ik

− ga,ij ∂kλa − λa ∂kga,ij)(p)

=
1
2

∑
a

(ga,jk ∂iλa + ga,ik ∂jλa − ga,ij ∂kλa)(p)

+
∑
a

λa(p) Γ`a,ij(p) ga,`k(p) .

 (76)

On the other hand,

∇df = dxi ⊗∇i(∂kf dxk)

= ∂i∂kf dx
i ⊗ dxk − ∂kf Γkij dx

i ⊗ dxj

= (∂i∂jf − ∂kf Γkij) dx
i ⊗ dxj . (77)

Similarly,
∇adf = (∂i∂jf − ∂kf Γka,ij) dx

i ⊗ dxj . (78)

If (df)(p) = 0, then

(∇df)(p) = (∂i∂jf dxi ⊗ dxj)(p) = (∇adf)(p)

by (77) and (78), and therefore |(∇df)(p)| ≤ K.
If (df)(p) 6= 0, by Lemma 8.6, we can assume that the coordinates (x1, . . . , xn)

also satisfy (∂i∂jf)(p) = 0 for all i, j ∈ {1, . . . , n}. So, by (77) and (78),

(∇df)(p) = −(∂kf Γkij dx
i ⊗ dxj)(p) ,

(∇adf)(p) = −(∂kf Γka,ij dx
i ⊗ dxj)(p) .

Since gij(p) = δij , it follows that |(∂kf Γka,ij)(p)| ≤ K for all i, j ∈ {1, . . . , n}, and
it is enough to find a similar bound for each |(∂kf Γkij)(p)|. But, by (76),

|(∂kf Γkij)(p)| ≤
1
2
|(df)(p)|

∑
a

|(dλa)(p)| (|ga,jk(p)|+ |ga,ik(p)|+ |ga,ij(p)|)

+
∑
a

λa(p) |(∂kf Γ`a,ij)(p)| |ga,`k(p)|

≤
(

3
2
K2C +KC

)
·#{ a ∈ A | Oa ∩Oa0 6= ∅ } . �

1Einstein convention is used for the sums involving local coefficients.
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We would like to define relatively Morse functions on M as rel-admissible func-
tions whose rel-critical points are rel-non-degenerate. However an appropriate ver-
sion of the Morse lemma [46, Lemma 2.2] is missing (see Problem 8.9 below), and
therefore they are defined by giving their “rel-local models” around their rel-critical
points.

Definition 8.7. It is said that f ∈ C∞(M) is a relatively Morse function (or
rel-Morse function) if it is rel-admissible with respect to some adapted metric and,
for every x ∈ Critrel(f), there exists a chart (O, ξ) of M̂ centered at x, with ξ(O) =
B × cε(L), such that, for some m± ∈ N and compact Thom-Mather stratifications
L±, there exists a pointed diffeomorphism θ0 : (Rm, 0)→ (Rm+ ×Rm− , (0, 0)), and
a local quasi-isometry θ1 : c(L) → c(L+) × c(L−) so that fM∩O corresponds to a
constant plus 1

2 (ρ2
+ − ρ2

−) via (θ0 × θ1) ξ, where ρ± is the canonical function on
Rm± × c(L±) (Example 7.6).

Example 8.8. With the notation of Examples 7.2-(v), 7.13 and (8.3), the
invariant Morse-Bott functions on M whose critical submanifolds are orbits form
a dense subset of the space of invariant smooth functions [65, Lemma 4.8]. They
induce rel-Morse functions on every orbit type stratum of G\M .

Let f be a rel-Morse function on M . For each x ∈ Critrel(f), with the notation
of Definition 8.7, let M± be the strata of c(L±) so that (θ0 × θ1) ξ defines an
open embedding of M ∩ O into Rm+ × Rm− ×M+ ×M−, where either M± is the
vertex stratum of c(L±), or M± = N± × R+ for some stratum N± of L± with
n± = dimM±. Using this local data, for each r ∈ Z, the number νrx,min/max =
νrx,min/max(f) was defined in the Introduction, before Theorem J, page ??. Recall
also that νrmin/max = νrmin/max(f) was defined as the sum of the numbers νrx,min/max

for x ∈ Critrel(f).

Remark 19. (i) Every rel-Morse function on M is a Morse function,
and the rel-critical points in M are the usual critical points. For such a
critical point x ∈ M with index m−, we have νrx,min/max = δr,m− ; thus∑
x∈Crit(f) ν

r
x,min/max is the number of critical points with index r. If

depthM = 0, then any Morse function on M is a rel-Morse function by
the Morse lemma.

(ii) The rel-critical points of rel-Morse functions are isolated.
(iii) The function 1

2 (ρ2
+ − ρ2

−) on Rm+ × Rm− ×M+ ×M− is rel-Morse, and
will be called a model rel-Morse function.

Problem 8.9 (“Rel-Morse lemma”). Let x be a rel-non-degenerate rel-critical
point of a rel-admissible function f on M . Does there exist a chart (O, ξ) of
M̂ centered at x and maps θ0 and θ1 satisfying the conditions of Definition 8.7?
An affirmative answer may require a stronger condition in Definition 8.1-(i); for
instance, the rel-local boundedness of |∇kf | for all k ∈ N.

The existence, and indeed certain abundance, of rel-Morse functions is guaran-
teed by the following result.

Proposition 8.10. Let F ⊂ C∞(M) denote the subset of functions with con-
tinuous extensions to M that restrict to rel-Morse functions on all strata ≤ M .
Then F is dense in C∞(M) with the weak C∞ topology.
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Proof. If depthM = 0, then the statement holds by the density of the Morse
functions in C∞(M) with the strong C∞ topology [35, Theorem 6.1.2]. Thus
suppose that depthM > 0. Let the sets Fk be defined like in the proof of Lemma 8.4.

Claim 6. For 0 ≤ k ≤ depthM , there is an open neighborhood Uk of Fk in A
and some fk ∈ C(Uk ∩M) such that, for each stratum X ≤M ,

(i) fk restricts to a rel-Morse function on Uk ∩X; and,
(ii) if depthX > k, then:

(a) the restriction of fk to Uk ∩X has no critical points, and
(b) there is some (TX , πX , ρX) ∈ τX such that fk is constant on the fibers

of πX : Uk ∩M ∩ TX → X.

This assertion is proved by induction on k. To simplify its proof, observe that
it is also satisfied for k = −1 with F−1 = U−1 = ∅ and f−1 = ∅.

Now, assume that Claim 6 holds for some k ∈ {−1, 0, . . . ,depthM−1}. Let Vk
be another open neighborhood of Fk in A such that Vk ⊂ Uk. We can assume that
the strata of A are connected by Remark 8-(v). For the strata X ⊂ Fk+1\Fk, choose
representatives (TX , πX , ρX) ∈ τX satisfying the properties stated in the proof of
Claim 5. We can also suppose that these (TX , πX , ρX) satisfy Claim 6-(ii)-(b) with
fk. A fixed adapted metric g on M will be used.

Let X be a stratum contained in Fk+1 \ Fk. By the density of the Morse
functions in C∞(X) with the strong C∞ topology and since the restriction of fk
to Uk ∩ X has no critical points by Claim 6-(iii), it is easy to construct a Morse
function hX on X such that hX = fk on Vk ∩ X. Since (TX , πX , ρX) satisfies
Claim 6-(ii)-(b) with fk, we get π∗XhX = fk on Uk ∩M ∩ TX .

Let Uk+1 be the open neighborhood of Fk+1 given as the union of Vk and the
sets TX for strata X ⊂ Fk+1 \ Fk. The function fk on Vk ∩M and the functions
π∗XhX + ρ2

X on the sets TX ∩ M can be combined to define a function fk+1 ∈
C(Uk+1∩M). The function fk+1 satisfies Claim 6-(i) and Claim 6-(ii)-(a). Moreover
it satisfies Claim 6-(ii)-(b) by Definition 7.1-(vi).

Finally, let us complete the proof of Proposition 8.10. A basic neighborhood
N of any h ∈ C∞(M) with respect to the weak C∞ topology can be determined
by a finite family of charts (Ui, φi) of M , compact subsets Ki ⊂ Ui, some k ∈ N
and some ε > 0. Precisely, N consists of the functions h′ ∈ C∞(M) such that
|D`((h′ − h)φ−1

i )| < ε on φi(Ki) for all i and 0 ≤ ` ≤ k. By Claim 6, there is some
open neighborhood U of M \M in A and some f ∈ C(U ∩M) that restricts to
rel-Morse functions on U ∩X for all strata X ≤M , and whose restriction to U ∩M
has no critical points. By shrinking U if necessary, we can assume that U ∩Ki = ∅
for all i. Let V be another open neighborhood of M \M in A so that V ⊂ U . By
the density of the Morse functions in C∞(M) with the strong C∞ topology, it is
easy to check that there is a Morse function h′ ∈ N such that h′ = f on V ∩M .
Therefore h′ ∈ F ∩N . �

For rel-Morse functions, a much better density result should be true as sug-
gested by the following.

Problem 8.11. By using the ideas of this section, define and study a “rel-
strong C∞ topology” on the set of rel-admissible functions on M , and show that
the rel-Morse functions form a dense subset.
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An approach to Problems 8.9 and 8.11 would take us too far from the main
goals of the work.





CHAPTER 9

Preliminaries on Hilbert complexes

Here, we recall from [11] some basic definitions and needed results about Hilbert
and elliptic complexes. Some elementary observations are also made.

1. Hilbert complexes

For each r ∈ N, let Hr be a separable (real or complex) Hilbert space such
that, for some N ∈ N, we have Hr = 0 for all r > N . They give rise to the graded
Hilbert space H =

⊕
r Hr, where the terms Hr are mutually orthogonal. For each

degree r, let dr be a densely defined closed operator of Hr to Hr+1. Let Dr = D(dr)
and Rr = dr(Dr) for each r, and let D =

⊕
r Dr and d =

⊕
r dr. Assume that

Rr ⊂ Dr+1 and dr+1dr = 0 for all r. Then the complex

0 −−−−→ D0
d0−−−−→ D1

d1−−−−→ · · · dN−1−−−−→ DN −−−−→ 0

is called a Hilbert complex ; its notation is abbreviated as (D,d), or simply as d.
Assuming that D0 6= 0, the maximum N ∈ N such that DN 6= 0 will be called the
length of (D,d). We may also consider Hilbert complexes with spaces of negative
degree or with homogeneous operators of degree −1 without any essential change.

For the adjoint operator d∗r of each dr, let D∗r = D(d∗r) ⊂ Hr+1 and R∗r =
d∗r(D∗r) ⊂ Hr, and set D∗ =

⊕
r D∗r and d∗ =

⊕
r d∗r . Then we get a Hilbert

complex

0 ←−−−− D∗−1

d∗0←−−−− D∗0
d∗1←−−−− · · ·

d∗N−1←−−−− D∗N−1 ←−−−− 0 ,

denoted by (D∗,d∗) (or simply d∗), which is called dual or adjoint of (D,d).
If (D′,d′) is another Hilbert complex in the graded Hilbert space H′ =

⊕
r H′r,

a homomorphism of complexes, ζ =
⊕

r ζr : (D,d) → (D′,d′), is called a map
of Hilbert complexes if it is the restriction of a bounded map ζ : H → H′. If
moreover ζ is an isomorphism of complexes and ζ−1 is a Hilbert complex map,
then ζ is called an isomorphism of Hilbert complexes. If ζ : (D,d)→ (D̃′,d′) is an
isomorphism, where D̃′r = D′r+r0 for all r and some fixed r0 6= 0, then it will be
said that ζ : (D,d)→ (D′,d′) is an isomorphismm up to a shift of degree.

Let

Hev =
⊕
r

H2r , Hodd =
⊕
r

H2r+1 ,

Dev =
⊕
r

D2r , D∗odd =
⊕
r

D∗2r−1 ,

dev =
⊕
r

d2r , d∗odd =
⊕
r

d∗2r−1 .

77
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Note that D∗odd ⊂ Hev. The operator Dev = dev+d∗odd, with domain Dev∩D∗odd, is a
densely defined closed operator of Hev to Hodd, whose adjoint is Dodd = dodd +d∗ev.
Thus

D =
(

0 Dev

Dodd 0

)
= d + d∗

is a self-adjoint operator in H = Hev ⊕ Hodd with D(D) = D ∩D∗, and

∆ = D2 = DoddDev ⊕DevDodd = d∗d + dd∗

is a self-adjoint non-negative operator, which can be called the Laplacian of (D,d).
Observe that (D,d) and (D∗,d∗) define the same Laplacian. The Hilbert complex
(D,d) can be reconstructed from Dev [11, Lemma 2.3]. The restriction of ∆ to
each space Dr will be denoted by ∆r. Notice that ker ∆r = ker dr ∩ ker d∗r−1 for
all r. Moreover we have a weak Hodge decomposition [11, Lemma 2.1]

Hr = ker ∆r ⊕Rr−1 ⊕R∗r .

The smooth core D∞(∆), also denoted by D∞(d) or D∞, is a subcomplex of
(D,d), and (D∞,d) ↪→ (D,d) induces an isomorphism in homology [11, Theo-
rem 2.12]. It will be also said that D∞ (respectively, D∞r ) is the smooth core of d
(respectively, dr); notice that it is a core of d (respectively, dr). Let R∞r = dr(D∞r )
and R∗∞r = d∗r(D∞r ), which are dense subspaces of Rr and R∗r .

The following properties are equivalent [11, Theorem 2.4]:
• The homology of (D,d) is of finite dimension and R is closed in H.
• The homology of (D,d) is of finite dimension.
• Dev is a Fredholm operator.
• 0 6∈ specess(∆) (the essential spectrum of ∆).

In this case, (D,d) is called a Fredholm complex and satisfies the following proper-
ties:

• R andR∗ are closed in H [11, Corollary 2.5], obtaining the stronger Hodge
decompositions

Hr = ker ∆r ⊕Rr−1 ⊕R∗r , D∞ = ker ∆r ⊕R∞r−1 ⊕R∗∞r .

• dr : R∗∞r → R∞r and d∗r : R∞r → R∗∞r are isomorphisms.
• ker ∆r is isomorphic to the homology of degree r of (D,d).

It is said that (D,d) is discrete when ∆ has a discrete spectrum (specess(∆) =
∅). The following properties hold when (D,d) is discrete:

• For each λ ∈ spec(∆|R∞r ), we get isomorphisms

dr : Eλ(∆|R∗∞r )→ Eλ(∆|R∞r ) , d∗r : Eλ(∆|R∞r )→ Eλ(∆|R∗∞r )

between the corresponding eigenspaces. Thus spec(∆|R∞r ) = spec(∆|R∗∞r ).
• We have

spec(dr|R∗∞r ⊕ d∗r |R∞r ) = {±
√
λ | λ ∈ spec(∆|R∞r ) } ,

and, for each λ ∈ spec(∆|R∞r ), E±√λ(dr|R∞r ⊕ d∗r |R∗∞r ) consists of the
elements of the form u ± v with u ∈ Eλ(∆|R∞r ) and v ∈ Eλ(∆|R∗∞r )
satisfying d∗u =

√
λ v and dv =

√
λu. Moreover the mapping u + v 7→

u− v, for u and v as above, defines an isomorphism

E√λ(dr|R∗∞r ⊕ d∗r |R∞r )→ E−
√
λ(dr|R∗∞r ⊕ d∗r |R∞r ) .
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• Any Hilbert complex (D′,d′) isomorphic to (D,d) is also discrete, and,
if spec(∆r) and spec(∆′r) consist of the eigenvalues 0 ≤ λ0 ≤ λ1 ≤ · · ·
and 0 ≤ λ′0 ≤ λ′1 ≤ · · · , respectively, then there is some C ≥ 1 such that
C−1λk ≤ λ′k ≤ Cλk for all k ∈ N [11, Lemma 2.17].

Consider Hilbert complexes, (D′,d′) and (D′′,d′′), in respective graded Hilbert
spaces, H′ and H′′. The Hilbert space tensor product1, H = H′⊗̂H′′, has a canonical
grading (Hr =

⊕
p+q=r H′p⊗̂H′′q ), and

D̃ = (D′ ⊗ H′′) ∩ (H′ ⊗D′′) ⊂ H

is a dense graded subspace. Let d̃ = d′ ⊗ 1 + w ⊗ d′′ with domain D̃, where w
denotes the degree involution on H′, and let d = d̃, whose domain is denoted by
D. Then (D,d) is a Hilbert complex in H called the tensor product of (D′,d′) and
(D′′,d′′). If ∆′, ∆′′ and ∆ denote the Laplacians of (D′,d′), (D′′,d′′) and (D,d),
respectively, then ∆ = ∆′ ⊗ 1 + 1⊗∆′′ on D̃. The following result is elementary.

Lemma 9.1. If (D′,d′) and (D′′,d′′) are discrete, then (D,d) is discrete. More
precisely, given complete orthonormal systems of H′ and H′′ consisting of eigenvec-
tors e′k and e′′k (k ∈ N) of ∆′ and ∆′′, with corresponding eigenvalues λ′k and λ′′k,
respectively, we get a complete orthonormal system of H consisting of the eigenvec-
tors e′k ⊗ e′′` ∈ D̃ of ∆ with corresponding eigenvalues λ′k + λ′′` .

Let (E , d) be a densely defined complex in a graded separable Hilbert space
H (E is a dense graded linear subspace of H). Consider the family of Hilbert
complexes (D,d) in H extending (E , d) ((E , d) is a subcomplex of (D,d)) endowed
with the order relation defined by “being a subcomplex”. We will be interested in
its minimum/maximum elements. Notice that, if (E , d) has some Hilbert complex
extension, then d is a Hilbert complex; thus, in this case, d is the minimum Hilbert
complex extension of (E , d). Another complex of the form (E , δ), with δr : Er+1 → Er
for each degree r, will be called a formal adjoint of (E , d) if 〈du, v〉 = 〈u, δv〉 for
all u, v ∈ E ; there is at most one formal adjoint by the density of E in H. In this
case, if (E , δ) has some Hilbert complex extension, then the adjoint of the minimum
Hilbert complex extension of (E , δ) is the maximum Hilbert complex extension of
(E , d).

Now, consider a countable family of densely defined complexes (Ea, da) in sep-
arable graded Hilbert spaces Ha (a ∈ N), and let (Da,da) be a Hilbert complex
extension of each (Ea, da) in Ha. Suppose that the Hilbert complexes (Da,da) are
of uniformly finite length (there is some N ∈ N such that Dar = 0 for all r ≥ N
and all a). Let (E , d) be the complex defined by E =

⊕
a Ea and d =

⊕
a d

a. The
Hilbert space direct sum2, H =

⊕̂
aH

a, has an induced grading (Hr =
⊕̂

aH
a
r). Let

d =
⊕̂

ad
a (the graph of d is the Hilbert space direct sum of the graphs of the

maps da). The domain D of d consists of the points (ua) ∈ H such that ua ∈ Da
for all a and (daua) ∈ H. Moreover d is defined by (ua) 7→ (daua). Clearly, (D,d)

1Recall that this is the Hilbert space completion of the algebraic tensor product H′⊗H′′ with

respect to the scalar product defined by 〈u′ ⊗ u′′, v′ ⊗ v′′〉 = 〈u′, v′〉′ 〈u′′, v′′〉′′, where 〈 , 〉′ and
〈 , 〉′′ are the scalar products of H′ and H′′, respectively.

2Recall that this is the Hilbert space completion of the algebraic direct sum,
L

a Ha, with

respect to the scalar product 〈(ua), (va)〉 =
P

a〈ua, va〉a, where each 〈 , 〉a is the scalar product

of Ha. We have H =
L

a Ha if the number of terms Ha is finite.
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is a Hilbert complex extension of (E , d) in H with

D∞(d) =
⊕̂
a

D∞(da) , (79)

d∗ =
⊕̂
a

da∗ . (80)

Lemma 9.2. (i) If each (Da,da) is a minimum Hilbert complex extension
of (Ea,da) in Ha, then (D,d) is a minimum Hilbert complex extension of
(E ,d) in H.

(ii) If each (Ea, da) has a formal adjoint (Ea, δa) with some Hilbert complex
extension, and each (Da,da) is a maximum Hilbert complex extension of
(Ea,da) in Ha, then (D,d) is a maximum Hilbert complex extension of
(E ,d) in H.

Proof. Property (i) follows because d is dense in d if each da is dense in da.
Now, assume the conditions of (ii) and let δ =

⊕
a δ

a. Then each da∗ is a
minimum Hilbert complex extension of (Ea, δa). So, by (80) and (i), (D∗,d∗) is a
minimum Hilbert complex extension of (E , δ), and therefore (D,d) is a maximum
Hilbert complex extension of (E , d). �

2. Elliptic complexes

Let M be a possibly non-complete Riemannian manifold, and let E =
⊕

r Er be
a graded Riemannian (or Hermitean) vector bundle over M , with Er = 0 if r < 0 or
r > N for some N ∈ N. The space of smooth sections of each Er will be denoted by
C∞(Er), its subspace of compactly supported smooth sections will be denoted by
C∞0 (Er), and the Hilbert space of square integrable sections of Er will be denoted
by L2(Er); then C∞(E) =

⊕
r C
∞(Er), C∞0 (E) =

⊕
r C
∞
0 (Er) and L2(E) =⊕

r L
2(Er). For each r, let dr : C∞(Er) → C∞(Er+1) be a first order differential

operator, and set d =
⊕

r dr. Suppose that (C∞(E), d) is an elliptic complex3;
however, ellipticity is not needed for several elementary properties stated in this
section. The simpler notation (E, d) (or even d) will be preferred. Elliptic complexes
with non-zero terms of negative degrees or homogeneous differential operators of
degree −1 may be also considered without any essential change.

Consider the formal adjoint δr = tdr : C∞(Er+1) → C∞(Er) for each r, and
set δ =

⊕
r δr. Then (E, δ) is another elliptic complex that will be called the formal

adjoint of (E, d), and its subcomplex (C∞0 (E), δ) is formal adjoint of (C∞0 (E), d)
in L2(E) in the sense of Section 1. Let D = d + δ and ∆ = D2 = dδ + δd on
C∞(E); ∆ can be called the Laplacian defined by (E, d). The components of ∆
are ∆r = dr−1δr−1 + δrdr.

Any Hilbert complex extension of (C∞0 (E), d) in L2(E) is called an ideal bound-
ary condition (shortly, i.b.c.) of (E, d). There always exist a minimum and max-
imum i.b.c., dmin = d and dmax = δ∗min [11, Lemma 3.1]. The complex dmin/max

defines the operator Dmin/max = dmin/max+δmax/min and the Laplacian ∆min/max =
D2

min/max, which extend D and ∆ on C∞0 (E). The homogeneous components of
∆min/max are

∆min/max,r = δmax/min,r dmin/max,r + dmin/max,r−1 δmax/min,r−1 . (81)

3Recall that this means that it is a complex and the sequence of principal symbols of the
operators dr is exact in the fiber over each non-zero cotangent vector
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The notation dr,min/max and δr,max/min also makes sense for dmin/max,r and δmax/min,r

by considering dr and δr as differential complexes of length one (ellipticity is not
needed here); similarly, any first order differential operator can be considered as a
differential complex of length one and denote its minimum/maximum i.b.c. with
the the min/max subindex, regardless of ellipticity.

For any i.b.c. (D,d) of (E, d), the map of complexes, (D∩C∞(E), d) ↪→ (D,d),
induces an isomorphism in homology [11, Theorem 3.5]. We have D∞ ⊂ D∩C∞(E)
by elliptic regularity.

Let (E′, d′) be another elliptic complex over another Riemannian manifold M ′.
Consider a vector bundle isomorphism ζ : E → E′ over a quasi-isometric diffeomor-
phism ξ : M →M ′ such that the restrictions of ζ to the fibers are quasi-isometries.
It induces a map ζ : C∞(E) → C∞(E′) defined by (ζu)(x′) = ζ(u(ξ−1(x′)) for
u ∈ C∞(E) and x′ ∈ M ′. If moreover ζ : (C∞(E′), d′) → (C∞(E), d) is a ho-
momorphism of complexes, then it will be called a quasi-isometric isomorphism of
elliptic complexes, and the simpler notation ζ : (E′, d′)→ (E, d) will be preferred.
In this case, ζ induces a quasi-isometric isomorphism ζ : L2(E′)→ L2(E), which re-
stricts to an isomorphism of complexes, ζ : (C∞0 (E′), d′)→ (C∞0 (E), d). Moreover,
for any i.b.c. (D′,d′) of (E′, d′), there is a unique i.b.c. (D,d) of (E, d) so that ζ :
L2(E′) → L2(E) restricts to a Hilbert complex isomorphism ζ : (D′,d′) → (D,d).
In particular, ζ induces Hilbert complex isomorphisms between the corresponding
minimum/maximum i.b.c. If ξ is isometric and the restrictions to the fibers of ζ are
isometries, then ζ : (E′, d′) → (E, d) is called an isometric isomorphism of elliptic
complexes. For instance, for any quasi-isometric (respectively, isometric) diffeo-
morphism ξ : M → M ′, the induced isomorphism ξ∗ between the corresponding
de Rham complexes is quasi-isometric (respectively, isometric).

Now, let (E′, d′) and (E′′, d′′) be elliptic complexes on Riemannian manifolds
M ′ and M ′′, respectively, and consider the exterior tensor product E = E′ � E′′

on M = M ′ × M ′′ with its canonical grading (Er =
⊕

p+q=r E
′
p � E′′q ). With

the weak C∞ topology, C∞(E′) ⊗ C∞(E′′) can be canonically realized as a dense
subspace of C∞(E). Then d = d′⊗ 1 + w⊗ d′′ on C∞(E′)⊗C∞(E′′) has a unique
continuous extension to C∞(E), also denoted by d. It turns out that (E, d) is an
elliptic complex. Moreover the minimum/maximum i.b.c. of (E, d) is the tensor
product, in the sense of Section 1, of the minimum/maximum i.b.c. of (E′, d′) and
(E′′, d′′) [11, Lemma 3.6].

Example 9.3. A particular case of elliptic complex on M is its de Rham com-
plex (Ω(M), d). In this case, δ is the de Rham coderivative, the subcomplex of com-
pactly supported differential forms is denoted by Ω0(M), and the Hilbert space of L2

differential forms is denoted by L2Ω(M). Let Hmin/max(M) denote the cohomology
of the minimum/maximum i.b.c., dmin/max, of (Ω0(M), d), which is a quasi-isometric
invariant of M . Hmin(M) is canonically isomorphic to the L2-cohomology H(2)(M)
[13]; (a generalization to arbitrary elliptic complexes is given in [11, Theorem 3.5]).
The dimensions βrmin/max(M) = dimHr

min/max(M) can be called min/max-Betti
numbers; if they are finite, then χmin/max(M) =

∑
r(−1)r βrmin/max(M) is defined

and can be called min/max-Euler characteristic; the simpler notation βrmin/max and
χmin/max may be used. Is is known that dmin/max satisfies the following properties
for special classes of Riemannian manifolds:

• If M is complete, then dmin = dmax (a particular case of [11, Lemma 3.8]).
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• If M is the interior of a compact manifold with boundary, then dmin/max

is given by the relative/absolute boundary conditions [11, Theorem 4.1].
• Suppose that M = M̃ \ Σ, where M̃ is a closed Riemannian manifold

of dimension > 2 and Σ is a closed finite union of submanifolds with
codimension ≥ 2. Then dmin = dmax [11, Theorem 4.4].

• Let A be a compact Tham-Mather stratification that is a pseudomanifold.
If M is the regular stratum of A endowed with an adapted metric, then
H(2)(M) is isomorphic to the intersection homology of A with lower middle
perversity [15]. There is a more general isomorphism of this type involving
more general types of adapted metrics and intersection homologies with
other perversities [47, 48, 8].



CHAPTER 10

Sobolev spaces defined by an i.b.c.

Let T be a self-adjoint operator in a Hilbert space H. For each m ∈ N, the
Sobolev space of order k associated to T is the Hilbert space completion Wm =
Wm(T ) of D∞ = D∞(T ) with respect to the scalar product 〈 , 〉m on D∞ defined
by 〈u, v〉m = 〈u, (1 + T )mv〉. The notation ‖ ‖m and Clm (or ‖ ‖Wm and ClWm)
will be used for the norm and closure in Wm. There are continuous inclusions
Wm+1 ↪→ Wm, and we have D∞ =

⋂
mW

m. Moreover T defines a bounded
operator Wm+2 →Wm.

Now, let (D,d) be an i.b.c. of an elliptic complex (E, d) on a Riemannian
manifold M . Its adjoint (D∗,d∗) is an i.b.c. of the elliptic complex (E, δ), where
δ = td. We get the operators D = d+δ and D = d+d∗, and the Laplacians ∆ = D2

and ∆ = D2. Then Wm = Wm(∆) can be called the Sobolev space of order m
associated to (D,d), and may be also denoted by Wm(d); the notation Wm(dr)
will be also used when we consider its subspace of homogeneous elements of degree
r. Since (D,d) and (D∗,d∗) define the same Laplacian, we have Wm(d) = Wm(d∗)
for all m. For u ∈ D∞r , we have

‖u‖21 = ‖u‖2 + ‖Du‖2 = ‖u‖2 + ‖dru‖2 + ‖δr−1u‖2 .

So

W 1 = D(D) = D ∩D∗ , (82)

‖u‖21 = ‖u‖2 + ‖Du‖2 = ‖u‖2 + ‖dru‖2 + ‖d∗r−1u‖2 (83)

for u ∈W 1(dr).

Lemma 10.1. The following properties are equivalent:
(i) (D,d) is discrete.

(ii) W 1 ↪→W 0 = L2(E) is compact.
(iii) Wm+1 ↪→Wm is compact for all m.

Proof. The part “(i) ⇒ (iii)” follows with the arguments of the proof of the
Rellich’s theorem on a torus (see e.g. [54, Theorem 5.8]). The part “(ii) ⇒ (i)”
follows with the arguments to prove that any Dirac operator on a closed manifold
has a discrete spectrum (see e.g. [54, pp. 81–82]). �

The following refinement of Lemma 10.1 is obtained with a deeper analysis.

Lemma 10.2. Suppose that (D,d) is discrete, and let 0 ≤ λ1 ≤ λ2 ≤ · · · be the
eigenvalues of ∆, repeated according to their multiplicities. Let B1 be the standard
unit ball of W 1, and Br the standard ball of radius r > 0 in L2(E). Then the
following properties are equivalent for θ > 0:

(i) lim infk λkk−θ > 0.

83
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(ii) There are some C0, C1 > 0 such that, for all n ∈ Z+, there is a linear
subspace Zn ⊂ L2(E) so that:
(a) Zn is closed and of codimension ≤ C0 n

1/θ in L2(E);
(b) D(W 1 ∩ Zn) ⊂ Zn; and
(c) B1 ∩ Zn ⊂ BC1/n.

(iii) There are some C0, . . . , C4 > 0 and A ∈ Z+ such that, for all n ∈ Z+,
there is a linear map1 Rn = (R1

n, . . . , R
A
n ) : L2(E)→

⊕
A L

2(E) so that:
(a) dim kerRn ≤ C0 n

1/θ;
(b) ‖Rnu‖ ≤ C1 ‖u‖ for all u ∈ L2(E);
(c) ‖Rnu‖ ≥ C2 ‖u‖ for all u ∈ (kerRn)⊥;
(d) Ran(W 1) ⊂W 1 and ‖[D, Ran]u‖ ≤ C3 ‖u‖ for all u ∈W 1; and
(e) B1 ∩Ran(L2(E)) ⊂ BC4/n.

Proof. Let (ei) (i ∈ Z) be a complete orthonormal system of L2(E) such that
e±k is a ±

√
λk-eigenvector of D for each k ∈ N. The mapping u =

∑
i uiei 7→

(ui) defines a unitary isomorphism L2(E) ∼= `2(Z). Moreover W 1 consists of the
elements u ∈ L2(E) with

∑
k(1 + λk)u2

±k <∞, and ‖u‖21 =
∑
k(1 + λk)(u2

k + u2
−k)

for u ∈W 1.
Suppose that (i) holds. Then there is some C > 0 so that 1 + λk ≥ Ckθ for all

k. For each n ∈ Z+, the linear subspace

Zn =
{
u ∈ L2(E) | u±k = 0 if k ≤ (n/C)1/θ

}
of L2(E) satisfies (ii)-(a),(b) with C0 = 2/C1/θ. Furthermore, for every u ∈ B1∩Zn,

‖u‖2 =
∑

k>(n/C)1/θ

(u2
k + u2

−k) <
C

n

∑
k>(n/C)1/θ

kθ(u2
k + u2

−k)

≤ 1
n

∑
k>(n/C)1/θ

(1 + λk)(u2
k + u2

−k) =
‖u‖21
n

<
1
n
,

completing the proof of (ii)-(c) with C1 = 1.
Now, assume that (ii) is satisfied. By (ii)-(a),

L2(E) = Z⊥n ⊕ Zn (84)

as topological vector space [58, Chapter I, 3.5]. Furthermore, by (ii)-(a) and the
canonical linear isomorphism

W 1

W 1 ∩ Zn
∼=
W 1 + Zn

Zn
,

we also get that W 1 ∩ Zn is a closed linear subspace of finite codimension in W 1.
Hence

W 1 = Yn ⊕ (W 1 ∩ Zn) (85)

as topological vector spaces for any linear complement Yn of W 1 ∩ Zn in W 1 [58,
Chapter I, 3.5].

1For A ∈ Z+ and any topological vector space L, the notation
L

A L is used for the direct sum

of A copies of L. Similarlarly, for any linear map between topological vector spaces, T : L→ L′,
the notation

L
A T :

L
A L→

L
A L′ is used for the direct sum of A copies of T .
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On the other hand, for each u ∈ Z⊥n , the linear mapping v 7→ 〈u,Dv〉 is bounded
on Yn because Yn is of finite dimension, and 〈u,Dw〉 = 0 for all w ∈W 1∩Zn by (ii)-
(b). So v 7→ 〈u,Dv〉 is bounded on W 1 by (85), obtaining that u ∈ W 1 by (82)
since D is self-adjoint. Hence Z⊥n ⊂ W 1, and therefore we can take Yn = Z⊥n
in (85), obtaining

W 1 = Z⊥n ⊕ (W 1 ∩ Zn) (86)

as topological vector spaces. Note that W 1 ∩ Zn is dense in Zn by (84) and (86).
So, since D is self-adjoint, it follows from (ii)-(b) and (86) that D preserves Z⊥n .

To get (iii), take A = 1 and Rn equal to the orthogonal projection of L2(E)
to Zn. Then (iii)-(a) follows from (ii)-(a), and properties (iii)-(b),(c) hold with
C1 = C2 = 1 because Rn is an orthogonal projection. By (ii)-(b) and since D
preserves Z⊥n , we get Rn(W 1) ⊂ W 1 and DRn = RnD on W 1, showing (iii)-(d).
Property (iii)-(e) is a consequence of (ii)-(c).

Finally, assume that (iii) is true. The following general assertion will be used.

Claim 7. Let H be a (real or complex) Hilbert space, Π an orthogonal pro-
jection of H with finite rank p, and 0 < C < 1. Then the cardinality of any
orthonormal set contained in

UC = {u ∈ H | ‖Πu‖ > C ‖u‖ }

is ≤ p/C2.

Suppose v1, . . . , vp is an orthonormal basis of Π(H). Let u1, . . . , uk be orthonor-
mal vectors in UC , and Π′ the orthogonal projection of H to the linear subspace
generated by them. We have

kC2 ≤
k∑
j=1

‖Πuj‖2 =
k∑
j=1

p∑
i=1

|〈vi, uj〉|2 =
p∑
i=1

‖Π′vi‖2 ≤ p ,

showing Claim 7.
Let pn = bC0 n

1/θc and 0 < C < 1.

Claim 8. There is some I ⊂ Z with #I ≤ pn/C
2 and ‖Rnei‖ ≥ C2C for all

i ∈ Z \ I.

Let Πn and Π̃n be the orthogonal projections of L2(E) to kerRn and (kerRn)⊥,
respectively. By Claim 7, the cardinality of the set

I = { i ∈ Z | ‖Π̃nei‖ > C }

is ≤ pn/C2. For i ∈ Z \ I, we have

‖Rnei‖ = ‖RnΠnei‖ ≥ C2 ‖Πnei‖ ≥ C2C

by (iii)-(b), showing Claim 8.
From Claim 8, it follows that there is some in ∈ Z such that

|in| ≤
pn
C2

+ 1 , (87)

‖Rnein‖ ≥ C2C . (88)
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We have

‖Ranein‖21 = ‖Ranein‖2 + ‖DRanein‖2

≤ ‖Ranein‖2 + (‖RanDein‖+ ‖[D, Ran]ein‖)2

≤ C2
1 +

(
C1

√
λ|in| + C3

)2

.

Hence
uan,r =

r√
C2

1 +
(
C1

√
λ|in| + C3

)2 Ranein ∈ B1 ∩ Zn

for all r ∈ [0, 1), giving

rC2C√
C2

1 +
(
C1

√
λ|in| + C3

)2 ≤ r ‖Rnein‖√
C2

1 +
(
C1

√
λ|in| + C3

)2
≤

r
∑
a ‖Ranein‖√

C2
1 +

(
C1

√
λ|in| + C3

)2 =
∑
a

‖uan,r‖ <
AC4

n

for all r ∈ [0, 1) by (88) and (iii)-(e). So there is some C ′ > 0, independent of n,
such that

λ|in| ≥
1
C2

2

(√
C2

2C
2

AC2
4

n2 − C2
1 − C2

3

)2

≥ C ′n2 (89)

for n large enough. If |in−1| ≤ k < |in| for n large enough and k ∈ N, then

λk ≥ λ|in−1| ≥ C
′(n− 1)2 ≥ C ′n ≥ C ′

(
C2(|in| − 1)

C0

)θ
≥ C ′

(
C2k

C0

)θ
by (89) and (87). This shows (i) because, since |in| → ∞ as n→∞ by (89), there
is an increasing sequence (n`) in Z+ such that [|in0−1|,∞) =

⋃
`[|in`−1|, |in` |). �

For any fixed f ∈ C∞(M), let f also denote the operator of multiplication by
f on C∞(E) (or on L2(E) if f is bounded). Observe that [d, f ] is of order zero
because d is of first order; moreover [d, f ]∗ = −[δ, f ].

Lemma 10.3. If f and |[d, f ]| are bounded, then:
(i) f D(dmin/max) ⊂ D(dmin/max) and [dmin/max, f ] = [d, f ]; and

(ii) f W 1(dmin/max) ⊂W 1(dmin/max).

Proof. For each u ∈ D(dmin), there is a sequence (un) in C∞0 (E) such that
un → u and (dun) is convergent in L2(E); in fact, dminu = limn dun. Then fun →
fu and

d(fun) = f dun + [d, f ]un → f dminu+ [d, f ]u
in L2(E) because f and |[d, f ]| are bounded. So fu ∈ D(dmin) and dmin(fu) =
f dminu+ [d, f ]u.

Now, suppose that u ∈ D(dmax). Thus there is some v ∈ L2(E) such that
〈u, δw〉 = 〈v, w〉 for all w ∈ C∞0 (E); indeed, v = dmaxu. Then

〈fu, δw〉 = 〈u, fδw〉 = 〈u, δ(fw)− [δ, f ]w〉
= 〈v, fw〉 − 〈u, [δ, f ]w〉 = 〈fv + [d, f ]u,w〉

for all w ∈ C∞0 (E). So fu ∈ D(dmax) and dmax(fu) = f dmaxu + [d, f ]u. This
completes the proof of (i).
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Property (ii) follows from (82) by applying (i) to d and δ. �

Let (E′, d′) be another elliptic complex on a Riemannian manifold M ′. The
scalar product of L2(E′) will be denoted by 〈 , 〉′, and let δ′ = td′. Let U and U ′ be
open subsets of M and M ′, respectively, so that U ⊃ supp f , and let ζ : (E|U , d)→
(E′|U ′ , d′) be a quasi-isometric isomorphism of elliptic complexes whose underlying
quasi-isometric diffeomorphism is ξ : U → U ′. For each u ∈ L2(E), identify fu to
fu|U , and identify ζ(fu) ∈ L2(E′|U ′) with its extension by zero to the whole of M ′;
in this way, we get a subspace ζ(f D(dmin/max)) ⊂ L2(E′).

Lemma 10.4. If f and |[d, f ]| are bounded, then the following properties hold:

(i) We have ζ(f D(dmin/max)) ⊂ D(d′min/max) and d′min/maxζ = ζdmin/max on
f D(dmin/max)

(ii) If moreover ζ is isometric, then ζ(f W 1(dmin/max)) ⊂W 1(d′min/max).

Proof. Let u ∈ f D(dmin). Then u ∈ D(dmin) by Lemma 10.3-(i); in fact,
according to its proof, there is a sequence (un) in C∞0 (E) such that un → u and
dun → dminu in L2(E), and with suppun ⊂ supp f for all n. Then ζun ∈ C∞0 (E′),
ζun → ζu and d′ζun = ζdun → ζdminu in L2(E′). Hence ζu ∈ D(d′min) and
d′minζu = ζdminu.

To prove the case of dmax, since D(d′max) is invariant by quasi-isometric changes
of the metrics of M ′ and E′, after shrinking U and U ′ if necessary, we can assume
that ζ : (E|U , d) → (E′|U ′ , d′) is an isometric isomorphism of elliptic complexes.
Such a change of metrics can be achieved by taking an open subset V ′ ⊂ M ′ so
that ξ(supp f) ⊂ V ′ and V ′ ⊂ U ′, and using a smooth partition of unity of M ′

subordinated to {V ′,M ′ \ξ(supp f)} to combine metrics. Let u ∈ f D(dmax). Then
u ∈ D(dmax) by Lemma 10.3-(i); indeed, according to its proof, the support of
v := dmaxu is contained in supp f . Thus

〈ζu, δ′ζw〉′ = 〈ζu, ζδw〉′ = 〈u, δw〉 = 〈v, w〉 = 〈ζv, ζw〉′

for each u ∈ f D(dmax) and all w ∈ C∞0 (E|U ). So 〈ζu, δ′w′〉′ = 〈ζv, w′〉′ for all
w′ ∈ C∞0 (E′), giving ζu ∈ D(d′max) and dmax(ζu) = ζdmaxu. This completes the
proof of (i).

If ζ is isometric, then it is also an isometric isomorphism (E|U , δ)→ (E′|U ′ , δ′).
So (ii) follows from (82) by applying (i) to d and δ. �

Proposition 10.5. Let (E, d) be an elliptic complex on a Riemannian manifold
M . Let {Ua} be a finite open covering of M , and let {fa} be a smooth partition of
unity on M subordinated to {Ua} such that each |[d, fa]| is bounded. Assume also
that there is another family {f̃a} ⊂ C∞(M) such that f̃a and |[d, f̃a]| are bounded,
f̃a = 1 on supp fa, and supp f̃a ⊂ Ua. For each a, let (Ea, da) be an elliptic
complex on a Riemannian manifold Ma, let Va ⊂ Ma be an open subset, and let
ζa : (E|Ua , d)→ (Ea|Va , da) be a quasi-isometric isomorphism of elliptic complexes
over ξa : Ua → Va. Then the following properties hold:

(i) D(dmin/max) = {u ∈ L2(E) | ζa(fau) ∈ D(damin/max) ∀a }.
(ii) If damin/max is discrete for all a, then dmin/max is discrete.

Proof. The inclusion “⊂” of (i) follows from properties (i) of Lemmas 10.3
and 10.4.
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Now, take any u ∈ L2(E) such that ζa(fau) ∈ D(damin/max) for all a. Let ga
and g̃a be the smooth functions on each Ma, supported in Va, that correspond to
fa and f̃a via ξa. By Lemma 10.3-(i),

fau = ζ−1
a ζa(fau) = ζ−1

a (g̃a ζa(fau)) ∈ D(dmin/max) .

So u =
∑
a fau ∈ D(dmin/max), completing the proof of (i).

To prove (ii), we can make the following reduction. Since discreteness is in-
variant by quasi-isometric isomorphisms of elliptic complexes, like in the proof
of Lemma 10.4-(i), after shrinking {Ua} if necessary, we can assume that each
ζa : (E|Ua , d) → (Ea|Va , da) is isometric. If every damin/max is discrete, then each
W 1(damin/max) ↪→ L2(F a) is compact by Lemma 10.1. So

Cl1(gaW 1(damin/max)) ↪→ Cl0(ga L2(Ea))

is compact for all a by Lemma 10.3-(ii). Therefore

Cl1(faW 1(dmin/max)) ↪→ Cl0(fa L2(E))

is compact by Lemma 10.4-(ii). Since W 1(dmin/max) =
∑
a faW

1(dmin/max) by
Lemma 10.3-(ii), it follows thatW 1(dmin/max) ↪→ L2(E) is compact. Hence dmin/max

is discrete by Lemma 10.1. �

Proposition 10.6. With the notation of Proposition 10.5, suppose that every
damin/max is discrete, and therefore dmin/max is also discrete. Let

0 ≤ λamin/max,0 ≤ λ
a
min/max,1 ≤ · · · , 0 ≤ λmin/max,0 ≤ λmin/max,1 ≤ · · ·

denote the eigenvalues, repeated according to their multiplicities, of the Lapla-
cians ∆a

min/max and ∆min/max defined by damin/max and dmin/max, respectively. If
there exist some2 θa > 0 for all a such that lim infk λamin/max,kk

−θa > 0, then
lim infk λmin/max,k k

−θ > 0 with θ = mina θa.

Proof. According to Sections 1 and 2 of Chapter 9, lim infk λamin/max,kk
−θa >

0 is a condition invariant by quasi-isometric isomorphisms of elliptic complexes.
Therefore, like in the proof of Proposition 10.5-(ii), we can suppose that ζa :
(E|Ua , d) → (Ea|Va , da) is isometric. Set Da

min/max = damin/max + δamax/min and
W 1,a = W 1(damin/max). Let B1,a denote the standard unit ball in W 1,a, and Bar the
standard ball of radius r > 0 in L2(Ea). By Lemma 10.2, we get the following.

Claim 9. There are some Ca,0, Ca,1 > 0 for every a such that, for all n ∈ Z+,
there is a linear subspace Zan ⊂ L2(Ea) so that:

(a) Zan is closed and of codimension ≤ Ca,0 n1/θa in L2(Ea);
(b) Da

min/max(W 1,a ∩ Zan) ⊂ Zan; and
(c) B1,a ∩ Zan ⊂ BaCa,1/n.

For each a, fix an open subset Oa ⊂ M such that supp fa ⊂ Oa, Oa ⊂ Ua and
the frontier of Oa has zero Riemannian measure. Let Pa = ξa(Oa),

Pa =
{
v ∈ L2(Ea) | v is essentially supported in Pa

}
,

2The notation θa,min/max would be more correct, but, for the sake of simplicity, reference to

the maximum/minimum i.b.c. is omitted here and in most of the notation of the proof.
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and Za ′n = Zan ∩ Pa. Each Pa is a closed linear subspace of L2(Ea) satisfying

Da
min/max(W 1,a ∩ Pa) ⊂ Pa . (90)

Claim 10. (a) Za ′n is closed and of codimension ≤ Ca,0 n1/θa in Pa;
(b) Da

min/max(W 1,a ∩ Za ′n ) ⊂ Za ′n ; and
(c) B1,a ∩ Za ′n ⊂ BaCa,1/n ∩ P

a.

Claim 10-(a) follows from Claim 9-(a) and the canonical linear isomorphism

Pa

Za ′n
∼=
Pa + Zan
Zan

.

Claim 10-(b) is a consequence of Claim 9-(b) and (90), and Claim 10-(c) follows
from Claim 9-(c).

Now, consider the linear spaces

Oa =
{
u ∈ L2(E) | u is essentially supported in Oa

}
,

Za ′′n = {u ∈ Oa | ∃v ∈ Za ′n so that ζa(u|Ua) = v|Va } .

Each Oa is a closed linear subspace of L2(E), and we have L2(E) =
∑
aOa. Set

Dmin/max = dmin/max + δmax/min and W 1 = W 1(dmin/max). Let B1 denote the
standard unit ball in W 1, and Br the standard ball of radius r > 0 in L2(E). Since
ζa : (E|Ua , d)→ (Ea|Va , da) is isometric for all a, Claim 10 gives the following.

Claim 11. (a) Za ′′n is closed and of codimension ≤ Ca,0 n1/θa in Oa;
(b) Dmin/max(W 1 ∩ Za ′′n ) ⊂ Za ′′n ; and
(c) B1 ∩ Za ′′n ⊂ BCa,1/n ∩ Oa.

Let Y an be a linear complement of each Za ′′n in Oa. By Claim 11-(a), we have

Oa = Y an ⊕ Za ′′n (91)

as topological vector spaces [58, Chapter I, 3.5]. On the other hand, for any
m ∈ Z+, Wm ∩Oa is dense in Oa because it contains all sections u ∈ C∞0 (E) with
suppu ⊂ Oa. So we can choose Y an ⊂Wm by Claim 11-(a), obtaining

Wm ∩ Oa = Y an ⊕ (Wm ∩ Za ′′n ) (92)

as topological vector spaces with respect to the topology induced by ‖ ‖. The
following assertion follows from (91), (92) and the density of Wm ∩ Oa in Oa.

Claim 12. Wm ∩ Za ′′n is ‖ ‖-dense in Za ′′n .

For the case m = 1, observe that (92) is satisfied with

Y an = Oa ∩ (W 1 ∩ Za ′′n )⊥1 , (93)

where ⊥1 denotes 〈 , 〉1-orthogonality, and therefore (92) also holds with respect
to the topology induced by ‖ ‖1. From now on, consider the choice (93) for Y an .

Claim 13. Dmin/max(Y an ) ⊂W 1.

Since the Riemannian measure of the frontier of Oa is zero, Oa⊥ consists of
the sections u ∈ L2(E) whose essential support is contained in M \Oa. Hence the
set

(W 1 ∩ Oa⊥) + Y an + (W 1 ∩ Za ′′n )
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is dense in L2(E) by (92) for m = 1. It follows that, given any u ∈ Y an , to check
that Dmin/maxu ∈W 1, its enough to check that the mapping

v 7→ 〈Dmin/maxu,Dmin/maxv〉

is bounded on W 1∩Oa⊥, Y an and W 1∩Za ′′n . This mapping vanishes on W 1∩Oa⊥
because

Dmin/max(W 1 ∩ Oa) ⊂ Oa , Dmin/max(W 1 ∩ Oa⊥) ⊂ Oa⊥ .
Moreover it is bounded on Y an because this space is of finite dimension. Finally, for
v ∈W 1 ∩ Za ′′n , we have

〈Dmin/maxu,Dmin/maxv〉 = −〈u, v〉
because u ⊥1 v. Thus the above mapping is bounded on W 1∩Za ′′n , which completes
the proof of Claim 13.

Claim 14. Dmin/max(Y an ) ⊂ Y an .

For u ∈ Y an and v ∈W 2 ∩ Za ′′n , we have

〈Dmin/maxu, v〉1 = 〈Dmin/maxu, v〉+ 〈∆min/maxu,Dmin/maxv〉
= 〈u,Dmin/maxv〉+ 〈Dmin/maxu,∆min/maxv〉 = 〈u,Dmin/maxv〉1 = 0

by Claim 13 and because Dmin/max is self-adjoint. Then Claim 14 follows by
Claim 12.

Claim 15. Y an = Oa ∩ (Za ′′n )⊥.

Let u ∈ Y an and v ∈W 1∩Za ′′n . By Claim 14, ∆min/max is a self-adjoint operator
on Y an . Then u = (1 + ∆min/max)u0 for u0 = (1 + ∆min/max)−1u ∈ Y an , obtaining

〈u, v〉 = 〈(1 + ∆min/max)u0, v〉 = 〈u0, v〉1 = 0 .

This shows Claim 15 by Claim 12 and (91).
Let Πa

n : Oa → Za ′′n denote the orthogonal projection. The following claim
follows from (92) for m = 1, and Claims 11-(b), 14 and 15.

Claim 16. Πa
n(W 1 ∩ Oa) ⊂W 1 ∩ Oa, and [Dmin/max,Πa

n] = 0 on W 1 ∩ Oa.

Consider each function fa as the corresponding bounded multiplication oper-
ator on L2(E). Assuming that a runs in {1, . . . , A} for some A ∈ Z+, we get
the bounded operator T = (f1, . . . , fA) : L2(E) →

⊕
A L

2(E). Also, let Σ :⊕
A L

2(E) → L2(E) be the bounded operator defined by Σ(u1, . . . , uA) =
∑
a ua.

We have ΣT = 1 because {fa} is a partition of unity.

Claim 17. The image of T is closed.

Let (ui) be a sequence in L2(E) such that (Tui) converges to some v in⊕
A L

2(E). Then ui = ΣTui → Σv as i → ∞, obtaining Tui → TΣv as i → ∞.
Hence v = TΣv ∈ T (L2(E)), showing Claim 17.

By Claim 17 and the open mapping theorem (see e.g. [18, Chapter III, 12.1]
or [58, Chapter III, 2.1]), we get that T is a topological homomorphism3. So T :
L2(E)→ T (L2(E)) is a quasi-isometric isomorphism; its inverse is Σ : T (L2(E))→

3Recall that a bounded operator between topological vector spaces, T : H → G, is called a

topological homomorphism if the map T : H → T (H) is open, where T (H) is endowed with the
restriction of the topology of G.
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L2(E). Since Πn :=
⊕

a Πa
n is an orthogonal projection of

⊕
A L

2(E), it follows
that Rn := Πn T satisfies Lemma 10.2-(iii)-(b),(c). Moreover, by Claim 11-(a),

dim kerRn ≤ dim ker Πn =
∑
a

dim ker Πa
n ≤

∑
a

C0,a n
1/θa ≤ C0 n

1/θ

with C0 =
∑
a C0,a and θ = mina θa, which shows that Rn satisfies Lemma 10.2-

(iii)-(a).
We have Rn = (R1

n, . . . , R
A
n ) with Ran = Πa

n fa. Since each function |[d, fa]| is
uniformly bounded, it follows that faW 1 ⊂ W 1 and [Dmin/max, fa] : W 1 → L2(E)
extends to a bounded operator on L2(E). Therefore each Ran satisfies Lemma 10.2-
(iii)-(d) by Claim 16.

Finally, Ran satisfies Lemma 10.2-(iii)-(e) by Claim 11-(c). Now, the result
follows from Lemma 10.2. �





CHAPTER 11

Two simple types of elliptic complexes

Here, we study the two types of simple elliptic complexes. They will show
up in the direct sum splitting of the local model of Witten’s perturbation (Chap-
ter 15). We could describe better the spectra of the Laplacians associated to the
minimum/maximum i.b.c. of these simple elliptic complexes, but this will be done
with the local model of the Witten’s perturbation (Chapter 14).

1. Some more results on general elliptic complexes

Consider the notation of the beginning of Section 2 in Chapter 9.

Lemma 11.1. Let G ⊂ C∞(E) ∩ L2(E) be a graded linear subspace containing
C∞0 (E), preserved by d and δ, and such that 〈du, v〉 = 〈u, δv〉 for all u, v ∈ G.
Let dG, δG and ∆G denote the restrictions of d, δ and ∆ to G. Assume that ∆G
is essentially self-adjoint in L2(E), and G is the smooth core of ∆G. Then the
following properties hold:

(i) If Gr ⊂ D(dmin,r) and Gr−1 ⊂ D(dmin,r−1) for some degree r, then Gr is
the smooth core of dmin,r.

(ii) If Gr ⊂ D(δmin,r−1) and Gr+1 ⊂ D(δmin,r) for some degree r, then Gr is
the smooth core of dmax,r.

Proof. For each degree r, the restrictions dr : Gr → Gr+1, δr : Gr+1 → Gr
and ∆r : Gr → Gr will be denoted by dG,r, δG , r and ∆G,r, respectively. Suppose
that Gr ⊂ D(dmin,r) and Gr−1 ⊂ D(dmin,r−1), and therefore dG,r ⊂ dmin,r and
dG,r−1 ⊂ dmin,r−1. Since C∞0 (E) ⊂ G and 〈du, v〉 = 〈u, δv〉 for all u, v ∈ G, it
follows that Gr+1 ⊂ D(δmax,r) and Gr ⊂ D(δmax,r−1), and therefore δG,r ⊂ δmax,r

and δG,r−1 ⊂ δmax,r−1. By (81), we get ∆G,r ⊂ ∆min,r. So ∆G,r ⊂ ∆min,r, and
therefore ∆G,r = ∆min,r because these operators are self-adjoint in L2(Er). Then
Gr is the smooth core of dmin,r, completing the proof of (i).

Now, assume that Gr ⊂ D(δmin,r−1) and Gr+1 ⊂ D(δmin,r), and therefore
δG,r−1 ⊂ δmin,r−1 and δG,r ⊂ δmin,r. As above, it follows that dG,r−1 ⊂ dmax,r−1

and dG,r ⊂ dmax,r. By (81), we get ∆G,r ⊂ ∆max,r. So ∆G,r ⊂ ∆max,r, obtaining
∆G,r = ∆max,r as before. Thus Gr is the smooth core of dmax,r, completing the
proof of (ii). �

Now, suppose that there is an orthogonal decomposition Er+1 = Er+1,1⊕Er+1,2

for some degree r + 1. Thus

C∞(Er+1) ≡ C∞(Er+1,1)⊕ C∞(Er+1,2) ,

C∞0 (Er+1) ≡ C∞0 (Er+1,1)⊕ C∞0 (Er+1,2) ,

L2(Er+1) ≡ L2(Er+1,1)⊕ L2(Er+1,2) ,

93
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giving

dr =
(
dr,1
dr,2

)
, δr =

(
δr,1 δr,2

)
.

Lemma 11.2. We have:

D(dmax,r) = D(dr,1,max) ∩ D(dr,2,max) , dmax,r =
(
dr,1,max|D(dmax,r)

dr,2,max|D(dmax,r)

)
.

Proof. Let u ∈ L2(Er). We have u ∈ D(dmax,r) if and only if there is some
w ∈ L2(Er+1) such that 〈u, δv〉 = 〈w, v〉 for all v ∈ C∞0 (Er+1), and moreover
dmax,ru = w in this case. Writing w = w1 ⊕ w2 and v = v1 ⊕ v2, this condition on
u means that 〈u, δ0,ivi〉 = 〈wi, vi〉 for all vi ∈ C∞0 (Eir+1) and i ∈ {1, 2}. In turn,
this is equivalent to u ∈ D(dr,1,max) ∩ D(dr,2,max) with dr,i,maxu = wi. �

For i ∈ {1, 2}, let ∆r,i = δr,idr,i + dr−1δr−1 on C∞(Er).

Corollary 11.3. If a∆r = b∆r,i + c for some a, b, c ∈ R with a, b 6= 0, dmin,r

and dr,i,min have the same smooth core, and dr,i,min = dr,i,max for some i ∈ {0, 1},
then dmin,r = dmax,r.

Proof. By Lemma 11.2 and since dr,i,min = dr,i,max, we get D(dmax,r) ⊂
D(dr,i,min). Because a∆r = b∆r,i + c for some a, b, c ∈ R with a, b 6= 0, it follows
that

{u ∈ D(dmax,r) ∩ C∞(Er) | ∆k
ru ∈ L2(Er) ∀k ∈ N }

⊂ {u ∈ D(dr,i,min) ∩ C∞(Er) | ∆k
r,iu ∈ L2(Er) ∀k ∈ N } .

This means that the smooth core of dmax,r is contained in the smooth core of
dr,i,min, which equals the smooth core of dmin,r. Then dmax,r = dmin,r. �

2. An elliptic complex of length two

Consider the standard metric on R+. Let E be the graded Riemannian/Hermitian
vector bundle over R+ whose non-zero terms are E0 and E1, which are real/complex
trivial line bundles endowed with the standard Riemannian/Hemitian metrics.
Thus

C∞(E0) ≡ C∞(R+) ≡ C∞(E1) , L2(E0) ≡ L2(R+, dρ) ≡ L2(E1) ,

where real/complex valued functions are considered in C∞(R+) and L2(R+, dρ).
For any fixed s > 0 and κ ∈ R, let

C∞(E0) C∞(E1)
d

δ

-�

be the differential operators defined by

d =
d

dρ
− κρ−1 ± sρ , δ = − d

dρ
− κρ−1 ± sρ .
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It is easy to check that (E, d) is an elliptic complex, whose formal adjoint is (E, δ).
By (71), the homogeneous components of the corresponding Laplacian ∆ are:

∆0 = δd ≡ H + κ

[
d

dρ
, ρ−1

]
∓ s

[
d

dρ
, ρ

]
+ κ2ρ−2 ∓ 2sκ

= H + κ(κ− 1)ρ−2 ∓ s(1 + 2κ) , (94)

∆1 = dδ = H − κ
[
d

dρ
, ρ−1

]
± s

[
d

dρ
, ρ

]
+ κ2ρ−2 ∓ 2sκ

= H + κ(κ+ 1)ρ−2 ± s(1− 2κ) , (95)

where H is the harmonic oscillator on C∞(R+) defined with the constant s. Then
∆0 and ∆1 are of the form of P in (1) (with c1 = 0) plus a constant; in particular,
for κ = 0, they are equal to H plus a constant.

For ∆0, the condition (4) means that a ∈ {κ, 1 − κ}, and (5) gives σ = κ if
a = κ, and σ = 1− κ if a = 1− κ. By Corollary H, the following holds:

• If κ > −1/2, then ∆0, with domain ρκ Sev,+, is essentially self-adjoint in
L2(R+, dρ), the spectrum of its closure is discrete, and the smooth core
of its closure is ρκ Sev,+.

• If κ < 3/2, then ∆0, with domain ρ1−κ Sev,+, is essentially self-adjoint in
L2(R+, dρ), the spectrum of its closure is discrete, and the smooth core
of its closure is ρ1−κ Sev,+.

For ∆1, the condition (4) means that a ∈ {1+κ,−κ}, and (5) becomes σ = 1+κ
if a = 1 + κ, and σ = −κ if a = −κ. Now Corollary H states the following:

• If κ > −3/2, then ∆1, with domain ρ1+κ Sev,+, is essentially self-adjoint
in L2(R+, dρ), the spectrum of its closure is discrete, and the smooth core
of its closure is ρ1+κ Sev,+.

• If κ < 1/2, then ∆1, with domain ρ−κ Sev,+, is essentially self-adjoint in
L2(R+, dρ), the spectrum of its closure is discrete, and the smooth core
of its closure is ρ−κ Sev,+.

When κ > −1/2, let E1 ⊂ C∞(E)∩L2(E) be the dense graded linear subspace
with

E0
1 ≡ ρκ Sev,+ , E1

1 ≡ ρ1+κ Sev,+ .

When κ < 1/2, let E2 ⊂ C∞(E) ∩ L2(E) be the dense graded linear subspace with

E0
2 ≡ ρ1−κ Sev,+ , E1

2 ≡ ρ−κ Sev,+ .

Observe that, by restricting d and δ, we get complexes (E1, d) and (E1, δ) when
κ > −1/2, and complexes (E2, d) and (E2, δ) when κ < 1/2. Thus ∆ preserves E1
when κ > −1/2, and preserves E2 when κ < 1/2.

Proposition 11.4. (i) If |κ| < 1/2, then E1 and E2 are the smooth cores
of dmax and dmin, respectively.

(ii) If |κ| ≥ 1/2, then (E, d) has a unique i.b.c., whose smooth core is E1 when
κ ≥ 1/2, and E2 when κ ≤ −1/2.

The following lemma will be used in the proof of Proposition 11.4.

Lemma 11.5. Suppose that θ ≥ 1/2. Then, for each ξ ∈ ρθ Sev,+, considered
as subspace of C∞(E0) (respectively, C∞(E1)), there is a sequence (ξn) in C∞0 (E0)
(respectively, C∞0 (E1)), independent of κ, such that limn ξn = ξ and limn dξn =
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dξ in L2(E0) (respectively, limn δξn = δξ in L2(E1)). In particular, ρθ Sev,+ is
contained in D(dmin) (respectively, D(δmin)).

Remark 20. In Lemma 11.5, the independence of κ means that (ξn) depends
only on θ and ξ, whilst the convergences limn dξn = dξ and limn δξn = δξ hold with
d and δ defined by any κ.

Proof of Lemma 11.5. The proof is made for D(dmin); the case of D(δmin)
is analogous.

Let 0 < a < b and f ∈ C∞0 (R+) such that 0 ≤ f ≤ 1, f(ρ) = 1 for ρ ≤ a,
and f(ρ) = 0 for ρ ≥ b. For each n ∈ N, let gn, hn ∈ C∞(R+) be defined by
gn(ρ) = f(nρ) and hn(ρ) = f(ρ/n). It is clear that

χ[ bn ,na] ≤ (1− gn)hn ≤ χ[ an ,nb]
, (96)

where χS denotes the characteristic function of each subset S ⊂ R+.
Let φ ∈ Sev,+. From (96), we get (1−gn)hnρθφ ∈ C∞0 (E0) and (1−gn)hnρθφ→

ρθφ in L2(E0) as n→∞. Observe that

d((1− gn)hnρθφ) = −g′nhnρθφ+ (1− gn)h′nρ
θφ+ (1− gn)hn d(ρθφ) .

In right hand side of this equality, the last term converges to d(ρθφ) in L2(E1) as
n→∞ by (96). Moreover

‖(1− gn)h′nρ
θφ‖2 =

∫ ∞
0

(1− gn)2h′n
2(ρ)ρ2θφ2(ρ) dρ

≤ (max ρ2θφ2)n−2

∫ ∞
0

f ′
2(ρ/n) dρ = (max ρ2θφ2)n−1

∫ ∞
0

f ′
2(x) dx

= (max ρ2θφ2)n−1 ‖f ′‖2 ,

which converges to zero as n→∞, and

‖g′nhnρθφ‖2 =
∫ ∞

0

g′n
2(ρ)h2

n(ρ)ρ2θφ2(ρ) dρ ≤ (maxφ2)n2

∫ ∞
0

f ′
2(nρ)ρ2θ dρ

= (maxφ2)n1−2θ

∫ ∞
0

f ′
2(x)x2θ dx = (maxφ2)n1−2θ ‖f ′ρθ‖2 ,

which converges to zero as n→∞ if θ > 1/2.
In the case θ = 1/2, it is enough to prove that f can be chosen so that ‖f ′ρ1/2‖

is as small as desired. For m > 1 and 0 < ε < 1, observe that there is some f as
above such that:

• the support of f ′ is contained in [e−ε, em],
• − 1

mρ ≤ f
′ ≤ 0, and

• f ′(ρ) = − 1
mρ if 1 ≤ ρ ≤ em−ε.

Then

‖f ′ρ1/2‖2 =
∫ em

e−ε
f ′

2(ρ)ρ dρ ≤ 1
m2

∫ em

e−ε

dρ

ρ
=
m+ ε

m2
,

which converges to zero as m→∞. �

Proof of Proposition 11.4. Suppose that |κ| < 1/2. Since 1±κ > 1/2, by
Lemma 11.5, E0

2 ⊂ D(dmin) and E1
1 ⊂ D(δmin). The other conditions of Lemma 11.1

are satisfied by d with G = E2, and by δ with G = E1 by the discussion previous
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to Proposition 11.4. So E2 is the smooth core of dmin and E1 is the smooth core of
dmax by Lemma 11.1.

Now, assume that κ ≥ 1/2 (respectively, κ ≤ −1/2), giving also 1 + κ > 1/2
(respectively, 1−κ > 1/2). Then, by Lemma 11.5, E0

1 ⊂ D(dmin) and E1
1 ⊂ D(δmin)

(respectively, E0
2 ⊂ D(dmin) and E1

2 ⊂ D(δmin)). By the discussion previous to
Proposition 11.4, the other conditions of Lemma 11.1 are satisfied by d and δ with
G = E1 (respectively, G = E2). So, by Lemma 11.1, E1 (respectively, E2) is the
smooth core of dmin and dmax. �

Remark 21. In the proof of Lemma 11.5 and Proposition 11.4, we have bor-
rowed ideas from the proof of [11, Theorem 4.1]; in fact, in the case with κ = 0,
Proposition 11.4 could be proved exactly like [11, Theorem 4.1].

3. An elliptic complex of length three

Consider again the standard metric on R+. Let F be the graded Riemann-
ian/Hermitian vector bundle over R+ whose non-zero terms are F0, F1 and F2,
which are trivial real/complex vector bundles of ranks 1, 2 and 1, respectively,
endowed with the standard Riemannian/Hermitian metrics. Thus

C∞(F0) ≡ C∞(R+) ≡ C∞(F2) , C∞(F1) ≡ C∞(R+)⊕ C∞(R+) ,

L2(F0) ≡ L2(R+, dρ) ≡ L2(F2) , L2(F1) ≡ L2(R+, dρ)⊕ L2(R+, dρ) ,

where real/complex valued functions are considered in C∞(R+) and L2(R+, dρ).
Fix s, c > 0 and κ ∈ R, and let

C∞(F0) C∞(F1) C∞(F2)
d0

δ0

d1

δ1

-� -�

be the differential operators defined by

d0 =
(
d0,1

d0,2

)
, δ0 =

(
δ0,1 δ0,2

)
, d1 =

(
d1,1 d1,2

)
, δ1 =

(
δ1,1
δ1,2

)
,
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where

d0,1 =
c√

1 + c2

(
d

dρ
+ κρ−1 ± sρ

)
,

d0,2 =
1√

1 + c2

(
d

dρ
− (κ+ 1)ρ−1 ± sρ

)
,

δ0,1 =
c√

1 + c2

(
− d

dρ
+ κρ−1 ± sρ

)
,

δ0,2 =
1√

1 + c2

(
− d

dρ
− (κ+ 1)ρ−1 ± sρ

)
,

d1,1 =
1√

1 + c2

(
d

dρ
− κρ−1 ± sρ

)
,

d1,2 =
c√

1 + c2

(
− d

dρ
− (κ+ 1)ρ−1 ∓ sρ

)
,

δ1,1 =
1√

1 + c2

(
− d

dρ
− κρ−1 ± sρ

)
,

δ1,2 =
c√

1 + c2

(
d

dρ
− (κ+ 1)ρ−1 ∓ sρ

)
.

A direct computation shows that d0 and d1 define an elliptic complex (F, d) of
length three. Its formal adjoint is the complex (F, δ) given by δ0 and δ1. The
homogeneous components ∆0 and ∆2 of the corresponding Laplacian ∆ can be
computed as follows, where the notation of Section 1 is used. By (94) and (95),

∆0,1 = δ0,1d0,1 =
c2

1 + c2

(
− d

dρ
+ κρ−1 ± sρ

)(
d

dρ
+ κρ−1 ± sρ

)
=

c2

1 + c2
(
H + κ(κ+ 1)ρ−2 ∓ s(1− 2κ)

)
,

∆0,2 = δ0,2d0,2 =
1

1 + c2

(
− d

dρ
− (κ+ 1)ρ−1 ± sρ

)(
d

dρ
− (κ+ 1)ρ−1 ± sρ

)
=

1
1 + c2

(
H + (κ+ 1)κρ−2 ∓ s(1 + 2(κ+ 1))

)
,

∆2,1 = d1,1δ1,1 =
1

1 + c2

(
d

dρ
− κρ−1 ± sρ

)(
− d

dρ
− κρ−1 ± sρ

)
=

1
1 + c2

(
H + κ(κ+ 1)ρ−2 ± s(1− 2κ)

)
,

∆2,2 = d1,2δ1,2 =
c2

1 + c2

(
− d

dρ
− (κ+ 1)ρ−1 ∓ sρ

)(
d

dρ
− (κ+ 1)ρ−1 ∓ sρ

)
=

c2

1 + c2
(
H + (κ+ 1)κρ−2 ± s(1 + 2(κ+ 1))

)
,

∆0 = δ0d0 = ∆0,1 + ∆0,2 = H + κ(κ+ 1)ρ−2 ∓ s
(

2 +
1− c2

1 + c2
(1 + 2κ)

)
,

∆2 = d1δ1 = ∆2,1 + ∆2,2 = H + κ(κ+ 1)ρ−2 ± s
(

2 +
1− c2

1 + c2
(1 + 2κ)

)
.
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Thus ∆0 can be identified to ∆2, and they are of the form of P in (1) (with c1 = 0)
plus a constant.

For ∆0 and ∆2, the condition (4) means that a ∈ {1 + κ,−κ}, and (5) gives
σ = 1 +κ if a = 1 +κ, and σ = −κ if a = −κ. By Corollary H, the following holds:

• If κ > −3/2, then ∆0 and ∆2, with domain ρ1+κ Sev,+, are essentially
self-adjoint in L2(R+, dρ), the spectra of their closures are discrete, and
the smooth core of their closures is ρ1+κ Sev,+.

• If κ < 3/2, then ∆0 and ∆2, with domain ρ1−κ Sev,+, are essentially self-
adjoint in L2(R+, dρ), the spectra of their closures are discrete, and the
smooth core of their closures is ρ−κ Sev,+.

Write

∆1 = d0δ0 + δ1d1

=
(
d0,1δ0,1 + δ1,1d1,1 d0,1δ0,2 + δ1,1d1,2

d0,2δ0,1 + δ1,2d1,1 d0,2δ0,2 + δ1,2d1,2

)
=
(

∆1,1 A
B ∆1,2

)
.

By (94) and (95),

∆1,1 =
1

1 + c2

(
c2
(
d

dρ
+ κρ−1 ± sρ

)(
− d

dρ
+ κρ−1 ± sρ

)
+
(
− d

dρ
− κρ−1 ± sρ

)(
d

dρ
− κρ−1 ± sρ

))
=

1
1 + c2

(
c2
(
H + κ(κ− 1)ρ−2 ∓ s(1 + 2κ)

)
+H + κ(κ− 1)ρ−2 ∓ s(1 + 2κ)

)
= H + κ(κ− 1)ρ−2 ∓ s1− c2

1 + c2
(1 + 2κ) ,

∆1,2 =
1

1 + c2

((
d

dρ
− (κ+ 1)ρ−1 ± sρ

)(
− d

dρ
− (κ+ 1)ρ−1 ± sρ

)
+ c2

(
d

dρ
− (κ+ 1)ρ−1 ∓ sρ

)(
− d

dρ
− (κ+ 1)ρ−1 ∓ sρ

))
=

1
1 + c2

(
H + (κ+ 1)(κ+ 2)ρ−2 ± s(1− 2(κ+ 1))

+ c2
(
H + (κ+ 1)(κ+ 2)ρ−2 ∓ s(1− 2(κ+ 1))

))
= H + (κ+ 1)(κ+ 2)ρ−2 ∓ s1− c2

1 + c2
(1 + 2κ) .

So ∆1,1 and ∆1,2 also are of the form of P in (1) (with c1 = 0) plus a constant.
For ∆1,1, the condition (4) means that a ∈ {κ, 1 − κ}, and (5) gives σ = κ if

a = κ, and σ = 1− κ if a = 1− κ. By Corollary H, the following holds:
• If κ > −1/2, then ∆1,1, with domain ρκ Sev,+, is essentially self-adjoint in
L2(R+, dρ), the spectrum of its closure is discrete, and the smooth core
of its closure is ρκ Sev,+.

• If κ < 3/2, then ∆1,1, with domain ρ1−κ Sev,+, is essentially self-adjoint
in L2(R+, dρ), the spectrum of its closure is discrete, and the smooth core
of its closure is ρ1−κ Sev,+.
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For ∆1,2, the condition (4) means that a ∈ {2 + κ,−1 − κ}, and (5) becomes
σ = 2 + κ if a = 2 + κ, and σ = −1− κ if a = −1− κ. Then Corollary H states the
following:

• If κ > −5/2, then ∆1,2, with domain ρ2+κ Sev,+, is essentially self-adjoint
in L2(R+, dρ), the spectrum of its closure is discrete, and the smooth core
of its closure is ρ2+κ Sev,+.

• If κ < −1/2, then ∆1,2, with domain ρ−1−κ Sev,+, is essentially self-adjoint
in L2(R+, dρ), the spectrum of its closure is discrete, and the smooth core
of its closure is ρ−1−κ Sev,+.

Finally, by (71),

A =
c

1 + c2

((
d

dρ
+ κρ−1 ± sρ

)(
− d

dρ
− (κ+ 1)ρ−1 ± sρ

)
+
(
− d

dρ
− κρ−1 ± sρ

)(
− d

dρ
− (κ+ 1)ρ−1 ∓ sρ

))
= ± 2cs

1 + c2

([
d

dρ
, ρ

]
− 1
)

= 0 ,

B =
c

1 + c2

((
d

dρ
− (κ+ 1)ρ−1 ± sρ

)(
− d

dρ
+ κρ−1 ± sρ

)
+
(
d

dρ
− (κ+ 1)ρ−1 ∓ sρ

)(
d

dρ
− κρ−1 ± sρ

))
= ± 2cs

1 + c2

([
d

dρ
, ρ

]
− 1
)

= 0 .

When κ > −1/2, let F1 ⊂ C∞(F )∩L2(F ) be the dense graded linear subspace
with

F0
1 = ρ1+κ Sev,+ , F1

1 = ρκ Sev,+ ⊕ ρ2+κ Sev,+ , F2
1 = ρ1+κ Sev,+ .

When κ < −1/2, let F2 ⊂ C∞(F ) ∩ L2(F ) be the dense graded linear subspace
with

F0
2 = ρ−κ Sev,+ , F1

2 = ρ1−κ Sev,+ ⊕ ρ−1−κ Sev,+ , F2
2 = ρ1−κ Sev,+ .

By restricting d and δ, we get complexes (F1, d) and (F1, δ) when κ > −1/2, and
complexes (F2, d) and (F2, δ) when κ < 1/2. Thus ∆ preserves F1 when κ > −1/2,
and preserves F2 when κ < −1/2.

Proposition 11.6. Suppose that κ 6= −1/2. Then (F, d) has a unique i.b.c.,
whose smooth core is F1 if κ > −1/2, and F2 if κ < −1/2.

Proof. We prove only the case with κ > −1/2; the other case is analogous.
By Lemma 11.5 (using the independence of (ξn) on κ in its statement), we

get F0
1 ⊂ D(d0,min) and F2

1 ⊂ D(δ1,min). Then, by the discussion previous to this
proposition, the other conditions of Lemma 11.1 are satisfied by the complexes
defined by d and δ with G = F1, obtaining that F0

1 and F2
1 are the smooth cores

of d0,min and δ1,min, respectively. By Proposition 11.4 and since 1 + κ, 2 + κ >
1/2, we get d0,2,min = d0,2,max with smooth core F0

1 , and δ2,2,min = δ2,2,max with
smooth core F2

1 . So, according to the discussion previous to this proposition, the
conditions of Corollary 11.3 are satisfied with d and δ, obtaining d0,min = d0,max

and δ1,min = δ1,max, which also gives d1,min = d1,max. �
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4. Finite propagation speed of the wave equation

For the Hermitian bundle versions of E and F , consider the wave equation
dut
dt
− iDut = 0 (97)

on any open subset of R+, where D = d + δ and ut is in C∞(E) or C∞(F ),
depending smoothly on t ∈ R.

Proposition 11.7. For 0 < a < b, suppose that ut ∈ D∞(dmin/max), depending
smoothly on t ∈ R, satisfies (97) on (0, b). The following properties hold:

(i) If suppu0 ⊂ [a,∞), then supput ⊂ [a− |t|,∞) for 0 < |t| ≤ a.
(ii) If suppu0 ⊂ (0, a], then supput ⊂ (0, a+ |t|] for 0 < |t| ≤ b− a.

Proof. We prove Proposition 11.7 only for E; the proof is clearly analogous for
F , but with more cases because F is of length three. Let ut,0 ∈ C∞(E0) ≡ C∞(R+)
and ut,1 ∈ C∞(E1) ≡ C∞(R+) be the homogeneous components of ut. From the
description of the smooth core of dmin/max in Proposition 11.4, it follows that

lim
ρ↓0

(ut,0 ut,1)(ρ) = 0 . (98)

We have
d

dt

∫ a−t

0

|ut(ρ)|2 dρ =
∫ a−t

0

((iDut, ut) + (ut, iDut))(ρ) dρ− |ut(a− t)|2

= i

∫ a−t

0

((Dut, ut)− (ut, Dut))(ρ) dρ− |ut(a− t)|2 .

But, since d and δ are respectively equal to d/dρ and −d/dρ up to the sum of
multiplication operators by the same real valued functions,

(Dut, ut)− (ut, Dut) =
dut,0
dt
· ut,1 −

dut,1
dt
· ut,0 − ut,1 ·

dut,0
dt

+ ut,0 ·
dut,1
dt

= 2=
(
dut,0
dρ
· ut,1 + ut,0 ·

dut,1
dρ

)
= 2= d

dρ
(ut,0 ut,1) ,

giving∣∣∣∣∫ a−t

0

((Dut, ut)− (ut, Dut))(ρ) dρ
∣∣∣∣ ≤ 2

∣∣∣∣(ut,0 ut,1)(a− t)− lim
ρ↓0

(ut,0 ut,1)(ρ)
∣∣∣∣

= 2 |(ut,0 ut,1)(a− t)| ≤ |ut,0(a− t)|2 + |ut,1(a− t)|2 = |ut(a− t)|2

by (98). So
d

dt

∫ a−t

0

|ut(ρ)|2 dρ ≤ 0 ,

giving ∫ a−t

0

|ut(ρ)|2 dρ ≤
∫ a

0

|u0(ρ)|2 dρ = 0 ,

and (i) follows.
Property (ii) can be proved with the same kind of arguments, but using that

lim
ρ→∞

u(ρ) = 0 (99)

for all u ∈ D∞(dmin/max) instead of (98). �
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Remark 22. The proof of Proposition 11.7 is an adaptation of [54, Proposi-
tion 7.20], where (98) and (99) are used to settle the lack of compact support.



CHAPTER 12

Preliminaries on Witten’s perturbation of the
de Rham complex

Let M ≡ (M, g) be a Riemannian manifold of dimension n. For any x ∈ M
and any α ∈ TxM∗, let

αy = (−1)nr+n+1 ? α∧ ? on
r∧
TxM

∗ ,

involving the Hodge star operator ? on
∧
TxM

∗ defined by any choice of orientation
of TxM . Writing α = g(X, ·) for X ∈ TxM , we have αy = −ιX , where ιX denotes
the inner product by X. Moreover let

Rα = α∧ − αy , Lα = α∧ + αy

on
∧
TxM

∗. Recall that there is an isomorphism between the underlying linear
spaces of the exterior and Clifford algebras of TxM∗,∧

TxM
∗ → Cl(TxM∗) , ei1 ∧ · · · ∧ eir 7→ ei1 • · · · • eir ,

where (e1, . . . , en) is an orthonormal frame of TxM∗ and “•” denotes Clifford mul-
tiplication. By this linear isomorphism, Lα and Rαw correspond to left and right
Clifford multiplication by α. So Lα and Rβ anticommute for any α, β ∈ TxM

∗.
Any symmetric bilinear form H ∈ TxM∗ ⊗ TxM∗ induces an endomorphism H of∧
TxM

∗ defined by

H =
n∑

i,j=1

H(ei, ej)Lei Rej , (100)

by using an orthonormal frame (e1, . . . , en) of TxM∗. Observe that |H| = |H|.
On the graded algebra of differential forms, Ω(M), let d and δ be the derivative

and coderivative, let D = d+ δ (the de Rham operator), and let ∆ = D2 = dδ+ δd
(the Laplacian on differential forms). For any f ∈ C∞(M), E. Witten [68] has
introduced the following perturbations of the above operators, depending on a
parameter s ≥ 0:

ds = e−sf d esf = d+ s df∧ , (101)

δs = esf δ e−sf = δ − s dfy , (102)
Ds = ds + δs = D + sR ,

∆s = D2
s = dsδs + δsds = ∆ + s(RD +DR) + s2R2 , (103)

where R = Rdf . Notice that δs is the formal adjoint of ds, and therefore Ds and
∆s are formally self-adjoint.

The Hessian of f , with respect to g, is the smooth section of TM∗ ⊗ TM∗

defined by Hess f = ∇df , which is symmetric and induces an endomorphism Hessf

103
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of
∧
TM∗ according to (100). Then [54, Lemma 9.17]

RD +DR = Hessf , R2 = |df |2 ,
obtaining that (103) becomes

∆s = ∆ + sHessf + s2 |df |2 . (104)

The Witten’s perturbed operators also make sense with complex valued differ-
ential forms, and the above equalities hold as well.

Example 12.1. Let d±0,s, δ
±
0,s, D

±
0,s, ∆±0,s denote the Witten’s perturbed op-

erators on Ω(Rm) defined by the model Morse function ± 1
2 ρ

2
0 and the standard

metric g0. According to [54, Proposition 9.18 and the proof of Lemma 14.11], ∆±0,s,
with domain Ω0(Rm), is essentially self-adjoint in L2Ω(Rm, g0), and its self-adjoint
extension has a discrete spectrum of the following form:

• 0 is an eigenvalue of multiplicity one, and the corresponding eigenforms
are of degree zero in the case of ∆+

0,s, and of degree m in the case of ∆−0,s.
• Let e±s be a 0-eigenform of ∆±0,s with norm one, and let h be a bounded

measurable function on Rm such that h(x)→ 1 as x→ 0. Then 〈he±s , e±s 〉 →
1 as s→∞.

• All non-zero eigenvalues, as functions of s, are in O(s) as s→∞.
Therefore (

∧
TRm∗, d±0,s) has a unique i.b.c., which is discrete.



CHAPTER 13

Witten’s perturbation on a cone

For our version of Morse functions, the local analysis of the Witten’s perturbed
Laplacian will be reduced to the case of the functions ± 1

2ρ
2 on a stratum of a cone

with a model adapted metric, where ρ denotes the canonical function. That kind
of local analysis begins in this section.

1. Laplacian on a cone

Let L be a non-empty compact Thom-Mather stratification, let ρ be the canon-
ical function on c(L), let N be a stratum of L of dimension ñ, let M = N ×R+ be
the corresponding stratum of c(L) with dimension n = ñ + 1, and let π : M → N
denote the second factor projection. From

∧
TM∗ =

∧
TN∗ �

∧
TR∗+, we get a

canonical identity
r∧
TM∗ ≡ π∗

r∧
TN∗ ⊕ dρ ∧ π∗

r−1∧
TN∗ ≡ π∗

r∧
TN∗ ⊕ π∗

r−1∧
TN∗ (105)

for each degree r, obtaining

Ωr(M) ≡ C∞(R+,Ωr(N))⊕ dρ ∧ C∞(R+,Ωr−1(N)) (106)

≡ C∞(R+,Ωr(N))⊕ C∞(R+,Ωr−1(N)) . (107)

Here, smooth functions R+ → Ω(N) are defined by considering Ω(N) as Fréchet
space with the weak C∞ topology. Let d and d̃ denote the exterior derivatives on
Ω(M) and Ω(N), respectively. The following lemma is elementary.

Lemma 13.1. According to (107),

d ≡

(
d̃ 0
d
dρ −d̃

)
.

Fix an adapted metric g̃ on N , and let g = ρ2g̃ + (dρ)2 be the corresponding
adapted metric on M . The induced metrics on

∧
TM∗ and

∧
TN∗ are also denoted

by g and g̃, respectively. According to (105),

g = ρ−2r g̃ ⊕ ρ−2(r−1) g̃ (108)

on
∧r

TM∗.
Given an orientation on an open subset W ⊂ N , and denoting by ω̃ the corre-

sponding g̃-volume form on W , consider the orientation on W × R+ ⊂ M so that
the corresponding g-volume form is

ω = ρn−1 dρ ∧ ω̃ . (109)

The corresponding star operators on
∧
T (W × R+)∗ and

∧
TW ∗ will be denoted

by ? and ?̃, respectively.

105
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Lemma 13.2. According to (105),

? ≡
(

0 ρn−2r+1?̃
(−1)rρn−2r−1?̃ 0

)
on
∧r

T (W × R+)∗.

Proof. Let α, α′ ∈ π∗
∧
TN∗, at the same point (ρ, x) ∈ R+ ×W . If α and

α′ are of degree r, then

α′ ∧ ρn−2r−1 dρ ∧ ?̃α = (−1)rρn−2r−1 dρ ∧ α′ ∧ ?̃α
= (−1)rρn−2r−1g̃(α′, α) dρ ∧ ω̃ = (−1)rg(α′, α)ω

by (108) and (109), giving ?α = (−1)rρn−2r−1dρ∧ ?̃α. Similarly, if α and α′ are of
degree r − 1, then

dρ ∧ α′ ∧ ρn−2r+1?̃α = ρn−2r+1g̃(α′, α) dρ ∧ ω̃ = g(dρ ∧ α′, dρ ∧ α)ω ,

obtaining ?(dρ ∧ α) = ρn−2r+1?̃α. �

Let L2Ωr(M, g) and L2Ωr(N, g̃) be simply denoted by L2Ωr(M) and L2Ωr(N).
From (108) and (109), it follows that (107) induces a unitary isomorphism

L2Ωr(M) ∼= (L2(R+, ρ
n−2r−1 dρ) ⊗̂L2Ωr(N))

⊕ (L2(R+, ρ
n−2r+1 dρ) ⊗̂L2Ωr−1(N)) , (110)

which will be considered as an identity.
Let δ and δ̃ denote the exterior coderivatives on Ω(M) and Ω(N), respectively.

Lemma 13.3. According to (107),

δ ≡

(
ρ−2 δ̃ − d

dρ − (n− 2r + 1)ρ−1

0 −ρ−2 δ̃

)
on Ωr(M).

Proof. For an oriented open subset W ⊂ N , consider the orientation on
W ×R+ defined as above, and let ? and ?̃ denote the corresponding star operators
on
∧
T (W × R+)∗ and

∧
TW ∗. By Lemmas 13.1 and 13.2, on Ωr(W × R+),

δ = (−1)nr+n+1 ? d?

≡ (−1)nr+n+1

(
0 ρ−n+2r−1?̃

(−1)n−r+1ρ−n+2r−3?̃ 0

)(
d̃ 0
d
dρ −d̃

)

×
(

0 ρn−2r+1?̃
(−1)rρn−2r−1?̃ 0

)
= (−1)nr+n+1

(
−(−1)rρ−2?̃d̃?̃ ρ−n+2r−1 d

dρ ρ
n−2r+1?̃2

0 (−1)n−r+1ρ−2?̃d̃?̃

)

=

(
ρ−2δ̃ −ρ−n+2r−1 d

dρ ρ
n−2r+1

0 −ρ−2δ̃

)
,

which equals the matrix of the statement by (71). �

Let ∆ and ∆̃ denote the Laplacians on Ω(M) and Ω(N), respectively.
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Corollary 13.4. According to (107),

∆ ≡
(

P −2ρ−1 d̃

−2ρ−3 δ̃ Q

)
on Ωr(M), where

P = ρ−2 ∆̃− d2

dρ2
− (n− 2r − 1)ρ−1 d

dρ
,

Q = ρ−2 ∆̃− d2

dρ2
− (n− 2r + 1)

d

dρ
ρ−1 .

Proof. By Lemmas 13.1 and 13.3,

δd ≡

(
ρ−2 δ̃ − d

dρ − (n− 2r − 1)ρ−1

0 −ρ−2 δ̃

)(
d̃ 0
d
dρ −d̃

)

=

(
ρ−2 δ̃d̃− d2

dρ2 − (n− 2r − 1)ρ−1 d
dρ ( ddρ + (n− 2r − 1)ρ−1)d̃

−ρ−2δ̃ ddρ ρ−2 δ̃d̃

)
,

dδ ≡

(
d̃ 0
d
dρ −d̃

)(
ρ−2 δ̃ − d

dρ − (n− 2r + 1)ρ−1

0 −ρ−2 δ̃

)

=

(
ρ−2 d̃δ̃ −d̃( ddρ + (n− 2r + 1)ρ−1)
d
dρρ
−2δ̃ − d2

dρ2 − (n− 2r + 1) ddρρ
−1 + ρ−2 d̃δ̃

)

=

(
ρ−2 d̃δ̃ −d̃( ddρ + (n− 2r + 1)ρ−1)

ρ−2 d
dρ δ̃ − 2ρ−3δ̃ − d2

dρ2 − (n− 2r + 1) ddρρ
−1 + ρ−2 d̃δ̃

)
.

The sum of these matrices is the matrix of the statement. �

2. Witten’s perturbation on a cone

Let d±s , δ±s , D±s and ∆±s (s ≥ 0) denote the Witten’s perturbations of d, δ,
D and ∆ induced by the function f = ± 1

2ρ
2 on M . In this case, df = ±ρ dρ.

According to (107),

ρ dρ∧ ≡
(

0 0
ρ 0

)
, −ρ dρy ≡

(
0 ρ
0 0

)
.

So the following is a consequence of Lemmas 13.1 and 13.3, (101) and (102).

Corollary 13.5. According to (107),

d±s ≡

(
d̃ 0

d
dρ ± sρ −d̃

)
,

δ±s ≡

(
ρ−2 δ̃ − d

dρ − (n− 2r + 1)ρ−1 ± sρ
0 −ρ−2 δ̃

)
on Ωr(M).

With the notation of Chapter 12,

R = ±ρ(dρ∧ − dρy) ≡ ±
(

0 ρ
ρ 0

)
,
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and therefore

R2 ≡
(
ρ2 0
0 ρ2

)
≡ ρ2 . (111)

Lemma 13.6. RD +DR = ±(2r − n) on Ωr(M).

Proof. By Lemmas 13.1 and 13.3, and according to (107),

RD ≡ ±
(

0 ρ
ρ 0

)(
d̃+ ρ−2δ̃ − d

dρ − (n− 2r + 1)ρ−1

d
dρ −d̃− ρ−2δ̃

)

= ±

(
ρ d
dρ −ρd̃− ρ−1δ̃

ρ d̃+ ρ−1δ̃ −ρ d
dρ − n+ 2r − 1

)
,

DR ≡ ±

(
d̃+ ρ−2 δ̃ − d

dρ − (n− 2r − 1)ρ−1

d
dρ −d̃− ρ−2 δ̃

)(
0 ρ
ρ 0

)

= ±

(
− d
dρ ρ− n+ 2r + 1 ρ d̃+ ρ−1 δ̃

−ρ d̃− ρ−1δ̃ d
dρ ρ

)
.

So

RD +DR ≡ ±
(

2r − n 0
0 2r − n

)
≡ ±(2r − n)

by (71). �

Remark 23. The expression of RD +DR can be also obtained by computing
Hess f (Chapter 12).

The following is a consequence of (104), Corollary 13.4 and Lemma 13.6.

Corollary 13.7. According to (107),

∆±s ≡
(

P±s −2uρ−1d̃

−2ρ−3δ̃ Q±s

)
on Ωr(M), where

P±s = ρ−2∆̃ +H − (n− 2r − 1)ρ−1 d

dρ
∓ s(n− 2r) ,

Q±s = ρ−2∆̃ +H − (n− 2r + 1)ρ−1 d

dρ
+ (n− 2r + 1)ρ−2 ∓ s(n− 2r) .



CHAPTER 14

Domains of the Witten’s Laplacian on a cone

Theorem I is proved by induction on the dimension. Thus, with the notation
of Chapter 13, suppose that d̃min/max satisfies the statement of Theorem I. Let

H̃min/max = ker D̃min/max = ker ∆̃min/max ,

which is a graded subspace of Ω(N). For each degree r, let

R̃min/max,r−1, R̃∗min/max,r ⊂ L
2Ωr(N)

be the images of d̃min/max,r−1 and δ̃min/max,r, respectively, whose intersections with
D∞(∆̃) are denoted by R̃∞min/max,r−1 and R̃∗∞min/max,r. According to Section 1 of

Chapter 9, ∆̃ preserves R̃∞min/max,r−1 and R̃∗∞min/max,r, and its restrictions to these

spaces have the same eigenvalues. For any eigenvalue λ̃ of the restriction of ∆̃ to
R̃∞min/max,r−1, let

R̃min/max,r−1,λ̃ = Eλ̃(∆̃min/max) ∩ R̃∞min/max,r−1 ,

R̃∗
min/max,r,λ̃

= Eλ̃(∆̃min/max) ∩ R̃∗∞min/max,r .

Moreover

L2Ωr(N) = H̃rmin/max ⊕
⊕̂
λ̃

(
R̃min/max,r−1,λ̃ ⊕ R̃

∗
min/max,r,λ̃

)
, (112)

where λ̃ runs in the spectrum of ∆̃min/max on R̃∞min/max,r−1; i.e., the positive spec-

trum of ∆̃min/max,r.
Now, consider the Witten’s perturbed Laplacian ∆±s . In the following, suppose

that s > 0.

1. Domains of first type

For some degree r, let 0 6= γ ∈ H̃rmin/max. By Corollary 13.7,

∆±s ≡ H − (n− 2r − 1)ρ−1 d

dρ
∓ s(n− 2r)

on C∞(R+) ≡ C∞(R+) γ ⊂ Ωr(M). This operator is of the type of P in (1) with
c2 = 0. Thus (72) is satisfied, and (4) means that a ∈ {0,−n+ 2r + 2}.

For a = 0, we have 2σ = n − 2r − 1. When σ > −1/2, which means r ≤
n−1

2 , Corollary H asserts that ∆±s , with domain Sev,+, is essentially self-adjoint in
L2(R+, ρ

n−2r−1 dρ); the spectrum of its closure consists of the eigenvalues

(4k + (1∓ 1)(n− 2r))s (113)

109
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of multiplicity one, with corresponding normalized eigenfunctions χk; and the
smooth core of its closure is Sev,+. For ∆+

s , (113) becomes 4ks, which is ≥ 0
for all k and = 0 just for k = 0. For ∆−s , (113) becomes (4k + 2(n − 2r))s, which
is > 0 for all k.

For a = −n + 2r + 2, we have 2σ = −n + 2r + 3. When σ > −1/2, which
means r ≥ n−3

2 , Corollary H asserts that ∆±s , with domain ρ−n+2r+2 Sev,+, is
essentially self-adjoint in L2(R+, ρ

n−2r−1 dρ); the spectrum of its closure consists
of the eigenvalues

(4k + 4− (1± 1)(n− 2r))s (114)

of multiplicity one, with normalized eigenfunctions χk; and the smooth core of its
closure is ρ−n+2r+2 Sev,+. For ∆+

s , (114) becomes (4k + 4− 2(n− 2r))s, which is:
• > 0 for all k if r ≥ n−1

2 ,
• ≥ 0 for all k and = 0 just for k = 0 if r = n

2 − 1, and
• < 0 for k = 0 if r = n−3

2 .
For ∆−s , (114) becomes (4k + 4)s, which are > 0 for all k.

When n−3
2 ≤ r ≤ n−1

2 , we have got two essentially self-adjoint operators, with
a = 0 and a = −n+ 2r + 2. These two operators are equal just when r = n

2 − 1.
All of the above operators defined by ∆±s , as well as their domains, will be said

to be of first type.

2. Domains of second type

With the notation of Section 1,

∆±s ≡ H − (n− 2r − 1)ρ−1 d

dρ
+ (n− 2r − 1)ρ−2 ∓ s(n− 2r − 2)

on C∞(R+) ≡ C∞(R+) dρ ∧ γ ⊂ Ωr+1(M) by Corollary 13.7. This is an operator
of the type of P in (1) with c2 = c1. Thus (72) is also satisfied, and (4) becomes
a ∈ {1,−n+ 2r + 1}.

For a = 1, we have 2σ = n− 2r + 1 according to (5). When σ > −1/2, which
means r ≤ n+1

2 , Corollary H asserts that ∆±s , with domain ρSev,+ = Sodd,+, is
essentially self-adjoint in L2(R+, ρ

n−2r+1 dρ); the spectrum of its closure consists
of the eigenvalues

(4k + 4 + (1∓ 1)(n− 2r − 2))s (115)

of multiplicity one, with normalized eigenfunctions χk; and the smooth core of its
closure is ρSev,+. For ∆+

s , (115) is > 0 for all k. For ∆−s , (115) is:
• > 0 for all k if r ≤ n−1

2 ,
• ≥ 0 for all k and = 0 just for k = 0 if r = n

2 , and
• < 0 for k = 0 if r = n+1

2 .
For a = −n+2r+1, we have 2σ = −n+2r+1 according to (5). When σ > −1/2,

which means r ≥ n−1
2 , Corollary H asserts that ∆±s , with domain ρ−n+2r+1 Sev,+,

is essentially self-adjoint in L2(R+, ρ
n−2r−1 dρ); the spectrum of its closure consists

of the eigenvalues
(4k − (1± 1)(n− 2r − 2))s (116)

of multiplicity one, with normalized eigenfunctions χk; and the smooth core of its
closure is ρ−n+2r+1 Sev,+. For ∆+

s , (116) is > 0 for all k. For ∆−s , (116) is ≥ 0 for
all k and = 0 just for k = 0.
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For n−1
2 ≤ r ≤ n+1

2 , we have obtained two essentially self-adjoint operators,
with a = 1 and a = −n+ 2r + 1. These operators are equal just when r = n

2 .
All of the above operators defined by ∆±s , as well as their domains, will be said

to be of second type.

3. Domains of third type

Let µ =
√
λ̃ for an eigenvalue λ̃ of the restriction of ∆̃min/max to R̃∞min/max,r−1.

According to Section 1 of Chapter 9, there are non-zero differential forms,

α ∈ R̃min/max,r−1,λ ⊂ Ωr(N) , β ∈ R̃∗min/max,r−1,λ ⊂ Ωr−1(N) ,

such that d̃β = µα and δ̃α = µβ. By Corollary 13.7,

∆±s ≡ −
d2

dρ2
− (n− 2r + 1)ρ−1 d

dρ
+ µ2ρ−2 ∓ (n− 2r + 2)s

such that d̃β = µα and δ̃α = µβ. By Corollary 13.7,

∆±s ≡ −
d2

dρ2
− (n− 2r + 1)ρ−1 d

dρ
+ µ2ρ−2 ∓ (n− 2r + 2)s

on C∞(R+) ≡ C∞(R+)β ⊂ Ωr−1(M). This operator is of the type of P in (1) with
c2 = µ2 > 0. Thus (72) is satisfied, and (4) becomes

a =
−n+ 2r ±

√
(n− 2r)2 + 4µ2

2
. (117)

These two possibilities for a have different sign because µ > 0.
For the choice of positive square root in (117), we get

σ =
1 +

√
(n− 2r)2 + 4µ2

2
>

1
2

(118)

according to (5). Then Corollary H asserts that ∆±s , with domain ρa Sev,+, is
essentially self-adjoint in L2(R+, ρ

n−2r+1 dρ); the spectrum of its closure consists
of the eigenvalues(

4k + 2 +
√

(n− 2r)2 + 4µ2 ∓ (n− 2r + 2)
)
s , (119)

with multiplicity one and corresponding normalized eigenfunctions χk; and the
smooth core of its closure is ρa Sev,+. Notice that (119) is > 0 for all k.

For the choice of negative square root in (117), we get

σ =
1−

√
(n− 2r)2 + 4µ2

2
(120)

according to (5). Then σ > −1/2 if and only if

µ < 1 and |n− 2r| < 2
√

1− µ2 , (121)

which is equivalent to
√

3
2 ≤ µ < 1 and r = n

2 , or µ <
√

3
2 and n−1

2 ≤ r ≤ n+1
2 .

In this case, Corollary H asserts that ∆±s , with domain ρa Sev,+, is essentially self-
adjoint in L2(R+, ρ

n−2r+1 dρ); the spectrum of its closure consists of the eigenvalues(
4k + 2−

√
(n− 2r)2 + 4µ2 ∓ (n− 2r + 2)

)
s , (122)
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with multiplicity one and corresponding normalized eigenfunctions ρa φ2k,+; and
the smooth core of its closure is ρa Sev,+. For ∆+

s , (122) is < 0 for k = 0. For
∆−s , (122) is > 0 for all k.

When (121) is satisfied, we have got two different essentially self-adjoint oper-
ators defined by the two different choices of a in (117).

All of the above operators defined by ∆±s , as well as their domains, will be said
to be of third type.

4. Domains of fourth type

Let µ, α and β be like in Section 3. By Corollary 13.7,

∆±s ≡ −
d2

dρ2
+ s2ρ2 − (n− 2r − 1)ρ−1 d

dρ
+ (µ2 + n− 2r − 1)ρ−2

∓ (n− 2r − 2)s

on C∞(R+) ≡ C∞(R+) dρ∧α ⊂ Ωr+1(M). This is another operator of the type of
P in (1), which satisfies (72) because

(1− (n− 2r − 1))2 + 4(µ2 + n− 2r − 1) = (n− 2r)2 + 4µ2 > 0 .

Moreover (4) becomes

a =
−n+ 2r + 2±

√
(n− 2r)2 + 4µ2

2
. (123)

These two possibilities for a are different because µ > 0.
With the choice of positive square root in (123) and according to (5), σ is also

given by (118), which is > 1/2. Then Corollary H asserts that ∆±s , with domain
ρa Sev,+, is essentially self-adjoint in L2(R+, ρ

n−2r−1 dρ); the spectrum of its closure
consists of the eigenvalues(

4k + 2 +
√

(n− 2r)2 + 4µ2 ∓ (n− 2r − 2)
)
s , (124)

with multiplicity one and corresponding normalized eigenfunctions χk; and the
smooth core of its closure is ρa Sev,+. Observe that (124) is > 0 for all k.

With the choice of negative square root in (123) and according to (5), σ is
also given by (120), which is > −1/2 if and only if (121) is satisfied. In this case,
Corollary H asserts that ∆±s , with domain ρa Sev,+, is essentially self-adjoint in
L2(R+, ρ

n−2r−1 dρ); the spectrum of its closure consists of the eigenvalues(
4k + 2−

√
(n− 2r)2 + 4µ2 ∓ (n− 2r − 2)

)
s , (125)

with multiplicity one and corresponding normalized eigenfunctions χk; and the
smooth core of its closure is ρa Sev,+. For ∆+

s , (125) is > 0 for all k. For ∆−s , (125)
is < 0 for k = 0.

When (121) is satisfied, we have got two different essentially self-adjoint oper-
ators defined by the two different choices of a in (123).

All of the above operators defined by ∆±s , as well as their domains, will be said
to be of fourth type.
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5. Domains of fifth type

Let µ, α and β be like in Sections 3 and 4. By Corollary 13.7,

∆±s ≡
(

P±µ,s −2ρ−1µ
−2ρ−3µ Q±µ,s

)
on

C∞(R+)⊕ C∞(R+) ≡ C∞(R+)α+ C∞(R+) dρ ∧ β ⊂ Ωr(M) ,

where

P±µ,s = H − (n− 2r − 1)ρ−1 d

dρ
+ µ2ρ−2 ∓ (n− 2r)s ,

Q±µ,s = H − (n− 2r + 1)ρ−1 d

dρ
+ (µ2 + n− 2r + 1)ρ−2 ∓ (n− 2r)s .

We will conjugate this matrix expression of ∆±s by some non-singular matrix Θ,
whose entries are functions of ρ, to get a diagonal matrix whose diagonal entries
are operators of the type of P in (1). This matrix will be of the form Θ = BC with

B =
(

1 0
0 ρ−1

)
, C =

(
c11 c12

c21 c22

)
,

where cij are constants to be determined. Let P±µ,s and Q±µ,s be simply denoted by
P and Q. A key observation here is that, by (71),

Q− ρ−1 P ρ = − d2

dρ2
− (n− 2r + 1)ρ−1 d

dρ
+ (n− 2r + 1)ρ−2

+ ρ−1 d2

dρ2
ρ+ (n− 2r − 1)ρ−2 d

dρ
ρ

= − d2

dρ2
− (n− 2r + 1)ρ−1 d

dρ
+ (n− 2r + 1)ρ−2

+
d2

dρ2
+ 2

d

dρ
+ (n− 2r − 1)ρ−1 d

dρ
+ (n− 2r − 1)ρ−2

= 2(n− 2r)ρ−2 ,

obtaining

B−1 ∆±s B =
(

1 0
0 ρ

)(
P −2µρ−1

−2µρ−3 Q

)(
1 0
0 ρ−1

)
=
(

P −2µρ−2

−2µρ−2 ρQρ−1

)
=
(

P −2µρ−2

−2µρ−2 P + 2(n− 2r)ρ−2

)
.

On the other hand, C must be non-singular and

C−1 =
1

detC

(
c22 −c12

−c21 c11

)
.



114 14. DOMAINS OF THE WITTEN’S LAPLACIAN ON A CONE

Therefore Θ−1∆±s Θ = (Xij) with

X11 = P +
2

detC
(µ (−c22c21 + c12c11)− (n− 2r)c12c21) ρ−2 ,

X12 =
2

detC
(
µ (−c222 + c212)− (n− 2r)c12c22

)
ρ−2 ,

X21 =
2

detC
(
µ (c221 − c211) + (n− 2r)c11c21

)
ρ−2 ,

X22 = P +
2

detC
(µ(c21c22 − c11c12) + (n− 2r)c11c22) ρ−2 .

We want (Xij) to be diagonal, so we require

µ(c212 − c222)− (n− 2r)c12c22 = µ(c211 − c221)− (n− 2r)c11c21 = 0 .

Both of these equations are of the form

µ(x2 − y2)− (n− 2r)xy = 0 , (126)

with x = c12 and y = c22 in the first equation, and x = c11 and y = c21 in the
second one. There is some c ∈ R r {0} such that

x2 − y2 − n− 2r
µ

xy = (x+ cy)
(
x− y

c

)
. (127)

In fact, since

(x+ cy)
(
x− y

c

)
= x2 − y2 +

(
c− 1

c

)
xy ,

we need

c− 1
c

= −n− 2r
µ

,

giving
µc2 + (n− 2r)c− µ = 0 , (128)

whose solutions are

c± =
−n+ 2r ±

√
(n− 2r)2 + 4µ2

2µ
. (129)

Observe that c+c− = −1. Let c = c+ > 0, and therefore −1/c = c−. By (127), the
solutions of (126) are given by x+ cy = 0 and cx− y = 0. Then we can take

C =
(

1 −c
c 1

)
,

with detC = 1 + c2 > 0. So, for

Θ =
(

1 0
0 ρ−1

)(
1 −c
c 1

)
=
(

1 −c
cρ−1 ρ−1

)
,

we get X12 = X21 = 0, and

X11 = P +
2(−2µc+ (n− 2r)c2)

1 + c2
ρ−2 ,

X22 = P +
2(2µc+ n− 2r)

1 + c2
ρ−2 .
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The notation X = X11 and Y = X22 will be used; thus Θ−1∆±s Θ = X ⊕ Y . The
above expressions of X and Y can be simplified as follows. We have

1 + c2 = 2− n− 2r
µ

c =
2µ− (n− 2r)c

µ

by (128), obtaining

2(−2µc+ (n− 2r)c2)
1 + c2

=
2µc(−2µ+ (n− 2r)c)

2µ− (n− 2r)c
= −2µc ,

2(2µc+ n− 2r)
1 + c2

=
2µ(2µc+ n− 2r)
2µ− (n− 2r)c

.

Moreover
(2µc+ n− 2r)2 = (n− 2r)2 + 4µ2 > 0

by (129), and

(2µ− (n− 2r)c)(2µc+ n− 2r)

= 4µ2c+ 2µ(n− 2r)− (n− 2r)2µc2 − (n− 2r)2c

= 4µ2c+ 2µ(n− 2r)− (n− 2r)2µ(1− n− 2r
µ

c)− (n− 2r)2c

= c(4µ2c+ (n− 2r)2)

by (128). Therefore

2(2µc+ n− 2r)
1 + c2

=
2µ(2µc+ n− 2r)2

(2µ− (n− 2r)c)(2µc+ n− 2r)

=
2µ((n− 2r)2 + 4µ2)
c(4µ2c+ (n− 2r)2)

=
2µ
c
.

It follows that

X = P − 2µcρ−2

= H + s2ρ2 − (n− 2r − 1)ρ−1 d

dρ
+ (µ2 − 2µc)ρ−2 ∓ (n− 2r)s ,

Y = P +
2µ
c
ρ−2

= H + s2ρ2 − (n− 2r − 1)ρ−1 d

dρ
+ (µ2 +

2µ
c

)ρ−2 ∓ (n− 2r)s .

These operators are of the type of P in (1), and satisfy (72) because

(1− (n− 2r − 1))2 + 4(µ2 − 2µc)

= 4 + (n− 2r)2 + 4µ2 − 4
√

(n− 2r)2 + 4µ2

= (2−
√

(n− 2r)2 + 4µ2)2 ≥ 0

and

(1− (n− 2r − 1))2 + 4(µ2 +
2µ
c

)

= 4 + (n− 2r)2 + 4µ2 + 4
√

(n− 2r)2 + 4µ2)

= (2 +
√

(n− 2r)2 + 4µ2)2 > 0 .
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So, for X and Y , the constants (4) and (5) become

a =
2− n+ 2r ± (2−

√
(n− 2r)2 + 4µ2)

2
, (130)

b =
2− n+ 2r ± (2 +

√
(n− 2r)2 + 4µ2)

2
, (131)

σ =
1± (2−

√
(n− 2r)2 + 4µ2)

2
, (132)

τ =
1± (2 +

√
(n− 2r)2 + 4µ2)

2
. (133)

Suppose that σ, τ > −1/2. By Corollary H, X and Y , with respective domains
ρa Sev,+ and ρb Sev,+, are essentially self-adjoint in L2(R+, ρ

n−2r−1 dρ); the spectra
of their closures consist of the eigenvalues

(4k + 2a+ (1∓ 1)(n− 2r))s , (134)

(4k + 2 + 2b+ (1∓ 1)(n− 2r))s , (135)

with multiplicity one and corresponding normalized eigenfunctions χs,a,σ,k and
χs,b,τ,k, respectively, and the smooth cores of their closures are ρa Sev,+ and ρb Sev,+.

Since 1√
1+c2

C is an orthogonal matrix, it defines a unitary isomorphism

L2(R+, ρ
n−2r−1 dρ)⊕ L2(R+, ρ

n−2r−1 dρ)

→ L2(R+, ρ
n−2r−1 dρ)⊕ L2(R+, ρ

n−2r−1 dρ) ,

and we already know that

B = 1⊕ ρ−1 : L2(R+, ρ
n−2r−1 dρ)⊕ L2(R+, ρ

n−2r−1 dρ)

→ L2(R+, ρ
n−2r−1 dρ)⊕ L2(R+, ρ

n−2r+1 dρ)

is a unitary isomorphism too. So 1√
1+c2

Θ is a unitary isomorphism

L2(R+, ρ
n−2r−1 dρ)⊕ L2(R+, ρ

n−2r−1 dρ)

→ L2(R+, ρ
n−2r−1 dρ)⊕ L2(R+, ρ

n−2r+1 dρ) .

Therefore, when σ, τ > −1/2, the operator ∆±s , with domain

Θ(ρa Sev,+ ⊕ ρb Sev,+) = {(ρaφ− cρbψ, cρa−1φ+ ρb−1ψ) | φ, ψ ∈ Sev,+} , (136)

is essentially self-adjoint in

L2(R+, ρ
n−2r−1 dρ)⊕ L2(R+, ρ

n−2r+1 dρ)

≡ L2(R+, ρ
n−2r−1 dρ)α+ L2(R+, ρ

n−2r+1 dρ) dρ ∧ β , (137)

which is a Hilbert subspace of L2Ωr(M, g); the spectrum of its closure consists of the
eigenvalues (134) and (135), with multiplicity one and corresponding normalized
eigenvectors

1√
1 + c2

Θ(χs,a,σ,k, 0) ,
1√

1 + c2
Θ(0, χs,b,τ,k) ,

respectively; and the smooth cores of its closure is (136).
The condition τ > −1/2 only holds with the choice

τ =
3 +

√
(n− 2r)2 + 4µ2

2
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in (133), which corresponds to the choice

b =
4− n+ 2r +

√
(n− 2r)2 + 4µ2

2
(138)

in (131). With this choice, the eigenvalues (135) become(
4k + 6∓ (n− 2r) +

√
(n− 2r)2 + 4µ2

)
s , (139)

which are > 0 for all k.
Consider the choice

a =
−n+ 2r +

√
(n− 2r)2 + 4µ2

2
(140)

in (130), and, correspondingly,

σ =
−1 +

√
(n− 2r)2 + 4µ2

2
> −1

2
in (132). Then the eigenvalues (134) become(

4k ∓ (n− 2r) +
√

(n− 2r)2 + 4µ2
)
s , (141)

which are > 0 for all k.
Now, consider the choice

a =
4− n+ 2r −

√
(n− 2r)2 + 4µ2

2
(142)

in (130), and therefore

σ =
3−

√
(n− 2r)2 + 4µ2

2
in (132). In this case, the condition σ > −1/2 means that

µ < 2 and |n− 2r| < 2
√

4− µ2 . (143)

The eigenvalues (134) become(
4k + 4∓ (n− 2r)−

√
(n− 2r)2 + 4µ2

)
s . (144)

For ∆+
s , (144) is:

• ≥ 0 for all k if and only if n− 2r ≤ 2− µ2/2, and
• = 0 just when k = 0 and n− 2r = 2− µ2/2.

For ∆−s , (144) is:
• ≥ 0 for all k if and only if n− 2r ≥ µ2/2− 2, and
• = 0 just when k = 0 and n− 2r = µ2/2− 2.

All of the above operators defined by ∆±s , as well as their domains, will be said
to be of fifth type.





CHAPTER 15

Splitting of the Witten complex on a cone

1. Subcomplexes defined by domains of first and second types

Consider the notation of Sections 1 and 2 of Chapter 14. The following result
follows from Corollary 13.5.

Lemma 15.1. For s ≥ 0, d±s and δ±s define maps

0 C∞(R+) γ C∞(R+) dρ ∧ γ 0 ,
d±s,r−1

δ±s,r−1

d±s,r

δ±s,r

d±s,r+1

δ±s,r+1

-� -� -�

which are given by

d±s,r =
d

dρ
± sρ , δ±s,r = − d

dρ
− (n− 2r − 1)ρ−1 ± sρ ,

using to the canonical identities

C∞(R+) γ ≡ C∞(R+) dρ ∧ γ ≡ C∞(R+) .

According to Sections 1 and 2 of Chapter 14, γ can be used to define the
following domains of first and second type:

Erγ,1 = Sev,+ γ for r ≤ n− 1
2

,

Erγ,2 = ρ−n+2r+2 Sev,+ γ for r ≥ n− 3
2

,

Er+1
γ,1 = ρSev,+ dρ ∧ γ for r ≤ n+ 1

2
,

Er+1
γ,2 = ρ−n+2r+1 Sev,+ dρ ∧ γ for r ≥ n− 1

2
.

The following is a direct consequence of Lemma 15.1.

Lemma 15.2. For any s ≥ 0, d±s and δ±s define maps

0 Erγ,i Er+1
γ,i 0 ,

d±s,r−1

δ±s,r−1

d±s,r

δ±s,r

d±s,r+1

δ±s,r+1

-� -� -�

where i = 1 if r ≤ n−1
2 , and i = 2 if r ≥ n−1

2 .

Remark 24. If n is odd, by Lemma 15.1 and (110), and since Sev,+ is contained
in L2(R+, ρ

2σ dρ) if and only if σ > −1/2, we get

d±s (Erγ,2) 6⊂ L2Ωr(M) for r =
n− 3

2
,

δ±s (Er+1
γ,1 ) 6⊂ L2Ωr+1(M) for r =

n+ 1
2

.

119
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This is compatible with ∆+
s 6≥ 0 on Erγ,2 when r = n−3

2 (Section 1 of Chapter 14),
and ∆−s 6≥ 0 on Er+1

γ,1 when r = n+1
2 (Section 2 of Chapter 14).

Remark 25. If n is even, notice that

Erγ,1 = Erγ,2 = Sev,+ γ for r =
n

2
− 1 ,

Er+1
γ,1 = Er+1

γ,2 = ρSev,+ dρ ∧ γ for r =
n

2
.

By Lemma 15.2, Eγ,i = Erγ,i ⊕ E
r+1
γ,i is a subcomplex of length two of Ω(M)

with d±s and δ±s , even for s = 0, where i = 1 for r ≤ n−1
2 , and i = 2 for r ≥ n−1

2 .
Moreover let Eγ,0 denote the dense subcomplex of Eγ,i defined by

Erγ,0 = C∞0 (R+) γ ≡ C∞0 (R+) ,

Er+1
γ,0 = C∞0 (R+) dρ ∧ γ ≡ C∞0 (R+) .

The closure of Eγ,i (and Eγ,0) in L2Ω(M) is denoted by L2Eγ . We have

L2Erγ = L2(R+, ρ
n−2r−1 dρ) γ ≡ L2(R+, ρ

n−2r−1 dρ) ,

L2Er+1
γ = L2(R+, ρ

n−2r−1 dρ) dρ ∧ γ ≡ L2(R+, ρ
n−2r−1 dρ) .

Assume now that s > 0. With the notation of Section 2 of Chapter 11, consider
the real version of the elliptic complex (E, d) determined by the constants s and

κ =
n− 2r − 1

2
, (145)

and also its subcomplexes Ei, where i = 1 if κ > −1/2 (r ≤ n−1
2 ), and i = 2 if

κ < 1/2 (r ≥ n−1
2 ).

Proposition 15.3. There is a unitary isomorphism L2Eγ → L2(E), which re-
stricts to isomorphisms of complexes up to a shift of degree, (Eγ,0, d±s )→ (C∞0 (E), d)
and (Eγ,i, d±s )→ (Ei, d), where i = 1 if r ≤ n−1

2 , and i = 2 if r ≥ n−1
2 .

Proof. The unitary isomorphism

ρκ : L2(R+, ρ
n−2r−1 dρ)→ L2(R+, dρ)

induces a unitary isomorphism L2Eγ → L2(E), which restricts to an isomorphism
Eγ,0 → C∞0 (E). Furthermore

ρκErγ,1 = ρκSev,+ γ ≡ ρκSev,+ ≡ E0
1 ,

ρκEr+1
γ,1 = ρ1+κ Sev,+ dρ ∧ γ ≡ ρ1+κSev,+ ≡ E1

1

if r ≤ n−1
2 , and

ρκErγ,2 = ρκ−n+2r+2 Sev,+ γ ≡ ρ1−κ Sev,+ ≡ E0
2 ,

ρκEr+1
γ,2 = ρκ−n+2r+1 Sev,+ γ ≡ ρ−κ Sev,+ ≡ E1

2

if r ≥ n−1
2 . By Lemma 15.1 and (71), we also have

ρκ d±s,r ρ
−κ = ρκ

(
d

dρ
± sρ

)
ρ−κ =

d

dρ
− κρ−1 ± sρ ,

which is the operator d of Section 2 of Chapter 11. �
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Corollary 15.4. (i) If r 6= n−1
2 , then (Eγ,0, d±s ) has a unique Hilbert

complex extension in L2Eγ , whose smooth core is Eγ,i, where i = 1 if
r < n−1

2 , and i = 2 if r > n−1
2 .

(ii) If r = n−1
2 , then (Eγ,0, d±s ) has minimum and maximum Hilbert complex

extensions in L2Eγ , whose smooth cores are Eγ,2 and Eγ,1, respectively.

Proof. This follows from Propositions 11.4 and 15.3. �

For each degree r, we will choose one of the possible domains of first and second
type defined by γ, denoted by Erγ and Er+1

γ , so that Eγ = Erγ ⊕Er+1
γ is a subcomplex

of (Ω(U), d±s ) according to Lemma 15.2.
If n is even, there is only one choice of domains of first and second types by

Remark 25. Thus Erγ and Er+1
γ have only one possible definition in this case.

If n is odd, there are two possible choices of domains of first and second types
just for the following values of r:

Erγ,1 = Sev,+ γ

Erγ,2 = ρ−1 Sev,+ γ

}
for r =

n− 3
2

,

Erγ,1 = Sev,+ γ

Erγ,2 = ρSev,+ γ

Er+1
γ,1 = ρSev,+ dρ ∧ γ
Er+1
γ,2 = Sev,+ dρ ∧ γ

 for r =
n− 1

2
,

Er+1
γ,1 = ρSev,+ dρ ∧ γ
Er+1
γ,2 = ρ2 Sev,+ dρ ∧ γ

}
for r =

n+ 1
2

.

By Remark 24 and Corollary 15.4, we choose

Erγ = Erγ,1 for r =
n− 3

2
,

Er+1
γ = Er+1

γ,2 for r =
n+ 1

2
.

In order to get the minimum and maximum i.b.c. of (
∧
TM∗, d), according to

Corrollary 15.3, we choose

Erγ = Erγ,2
Er+1
γ = Er+1

γ,2

}
if γ ∈ H̃rmin

Erγ = Erγ,1
Er+1
γ = Er+1

γ,1

}
if γ ∈ H̃rmax

 for r =
n− 1

2
.

According to Corollary 15.4, the above choices of Eγ satisfy the following.

Corollary 15.5. (i) If r 6= n−1
2 , then (Eγ,0, d±s ) has a unique Hilbert

complex extension in L2Eγ , whose smooth core is Eγ .
(ii) If r = n−1

2 , then (Eγ,0, d±s ) has different minimum and maximum Hilbert
complex extensions in L2Eγ . If γ ∈ H̃min/max, then Eγ is the smooth core
of the minimum/maximum Hilbert complex extension of (Eγ,0, d±s ).

Let (Dγ ,d±s,γ) denote the Hilbert complex extension of (Eγ,0, d±s ) with core Eγ ,
let ∆±s,γ be the corresponding Laplacian, and let H±s,γ = H±,rs,γ ⊕H±,r+1

s,γ = ker ∆±s,γ .
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The following result follows from Sections 1 and 2 of Chapter 14, Lemma 6.3 and
the choices made to define Eγ .

Proposition 15.6. (i) (Dγ ,d±s,γ) is discrete.
(ii) H+,r+1

s,γ = 0, dimH+,r
s,γ = 1 if

r ≤


n
2 − 1 if n is even
n−3

2 if n is odd and γ ∈ H̃rmin
n−1

2 if n is odd and γ ∈ H̃rmax ,

and H+,r
s,γ = 0 otherwise.

(iii) H−,rs,γ = 0, dimH−,r+1
s,γ = 1 if

r ≥


n
2 if n is even
n−1

2 if n is odd and γ ∈ H̃rmin
n+1

2 if n is odd and γ ∈ H̃rmax ,

and H−,r+1
s,γ = 0 otherwise.

(iv) If e±s ∈ H±s,γ with norm one for each s, and h is a bounded measurable
function on R+ with h(ρ)→ 1 as ρ→ 0, then 〈he±s , e±s 〉 → 1 as s→∞.

(v) All non-zero eigenvalues of ∆±s,γ are in O(s) as s→∞.

2. Subomplexes defined by domains of third, fourth and fifth types

Consider the notation of Sections 3–5 of Chapter 14. The following result
follows from Corollary 13.5.

Lemma 15.7. For s ≥ 0, d±s and δ±s define maps

0 C∞(R+)β C∞(R+)α+ C∞(R+) dρ ∧ β

C∞(R+) dρ ∧ α 0 ,

d±s,r−2

δ±s,r−2

d±s,r−1

δ±s,r−1

d±s,r

δ±s,r

d±s,r+1

δ±s,r+1

-� -�

-� -�

which are given by

d±s,r−1 =
(

µ
d
dρ ± sρ

)
,

δ±s,r−1 =
(
µρ−2 − d

dρ − (n− 2r + 1)ρ−1 ± sρ
)
,

d±s,r =
(
d
dρ ± sρ −µ

)
,

δ±s,r =
(
− d
dρ − (n− 2r − 1)ρ−1 ± sρ

−µρ−2

)
,

according to the canonical identities

C∞(R+)β ≡ C∞(R+) dρ ∧ α ≡ C∞(R+) ,

C∞(R+)α+ C∞(R+) dρ ∧ β ≡ C∞(R+)⊕ C∞(R+) .
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Consider only the choices of a given by the positive square roots in (117)
and (123) for domains of third and fourth types, and (140) for domains of fifth
type; the other choices of a are rejected because they are very restrictive on µ and
r, and give rise to some negative eigenvalues. If these values of a are denoted by a3,
a4 and a5 according to the types of domains, then a5 = a3 = a4 − 1, and therefore
the notation a5 = a3 = a and a4 = a + 1 will be used. Recall also that we only
have the choice (138) for b, which equals a + 2. So we only consider the following
domains of third, fourth and fifth types defined by α and β:

Fr−1
α,β = ρa Sev,+ β ≡ ρa Sev,+ ,

Fr+1
α,β = ρa+1 Sev,+ dρ ∧ α ≡ ρa+1 Sev,+ ,

Frα,β = ρa
{

(φ− cρ2ψ)α+ (cρ−1φ+ ρψ) dρ ∧ β | φ, ψ ∈ Sev,+

}
≡ ρa

{
(φ− cρ2ψ, cρ−1φ+ ρψ) | φ, ψ ∈ Sev,+

}
.

Lemma 15.8. For any s ≥ 0, d±s and δ±s define maps

0 Fr−1
α,β Frα,β Fr+1

α,β 0
d±s,r−2

δ±s,r−2

d±s,r−1

δ±s,r−1

d±s,r

δ±s,r

d±s,r+1

δ±s,r+1

-� -� -� -�

Proof. Lemma 15.7 gives δ±s (Fr−1
α,β ) = d±s (Fr+1

α,β ) = 0.
Observe that

a = cµ , (146)

obtaining

c(a+ n− 2r) = µ (147)

by (128). By Lemma 15.7, (146) and (147), for h ∈ Sev,+,

d±s (ρahβ) = ρa
(
µhα+

(
d

dρ
+ cµρ−1 ± sρ

)
(h) dρ ∧ β

)
, (148)

δ±s (ρa+1h dρ ∧ α) = ρa
((
−ρ d

dρ
− µ

c
± sρ2

)
(h)α− µρ−1h dρ ∧ β

)
. (149)

The inclusion d±s (Fr−1
α,β ) ⊂ Frα,β follows from (148) if we can find φ, ψ ∈ Sev,+ such

that

φ− cρ2ψ = µh , (150)

cρ−1φ+ ρψ =
(
d

dρ
+ cµρ−1 ± sρ

)
(h) . (151)

Subtract cρ−2 times (150) from ρ−1 times (151) to get

ψ =
1

1 + c2

(
ρ−1 d

dρ
± s
)

(h) ,

which is well defined in Sev,+. Then

φ = µh+ cρ2ψ

by (150). These functions φ and ψ satisfy (150) and (151).
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The inclusion δ±s (Fr+1
α,β ) ⊂ Frα,β follows from (149) if we can find φ, ψ ∈ Sev,+

such that

φ− cρ2ψ =
(
−ρ d

dρ
− µ

c
± sρ2

)
(h) , (152)

cρ−1φ+ ρψ = −µρ−1h . (153)

The sum (152) and cρ times (153) gives

φ =
1

1 + c2

(
−ρ d

dρ
− 1 + c2

c
µ± sρ2

)
(h) ,

which belongs to Sev,+. The even extensions of h and φ to R, also denoted by h
and φ, satisfy cφ(0) = −µh(0), and therefore µh+ cφ ∈ ρ2 Sev. It follows that

ψ = ρ−2(µh+ cφ) ,

obtained from (153), is well defined in Sev,+. These functions φ and ψ satisfy (152)
and (153).

For arbitrary φ, ψ ∈ Sev,+, let

ζ = ρa
((
φ− cρ2ψ

)
α+

(
cρ−1φ+ ρψ

)
dρ ∧ β

)
. (154)

By Corollary 13.5, (146) and (147),

d±s (ζ) = ρa+1

((
ρ−1 d

dρ
± s
)

(φ)

+ c

(
−ρ−1 d

dρ
−
(
c2 + 1
c

µ+ 2
)
± sρ2

)
(ψ)
)
dρ ∧ α ,

δ±s (ζ) = ρa
(
c

(
−ρ−1 d

dρ
± s
)

(φ)

+
(
−ρ d

dρ
−
(
c2 + 1
c

µ+ 2
)
± sρ2

)
(ψ)
)
β ,

showing d±s (Frα,β) ⊂ Fr+1
α,β and δ±s (Frα,β) ⊂ Fr−1

α,β . �

By Lemma 15.8,
Fα,β = Fr−1

α,β ⊕F
r
α,β ⊕Fr+1

α,β

is a subcomplex of length three of Ω(M) with d±s and δ±s . Moreover let Fα,β,0
denote the dense subcomplex of Fα,β defined by

Fr−1
α,β,0 = C∞0 (R+)β ≡ C∞0 (R+) ,

Fr+1
α,β,0 = C∞0 (R+) dρ ∧ α ≡ C∞0 (R+) ,

Frα,β,0 = C∞0 (R+)α+ C∞0 (R+) dρ ∧ β ≡ C∞0 (R+)⊕ C∞0 (R+) .

The closure of Fα,β (and Fα,β,0) in L2Ω(M) is denoted by L2Fα,β . We have

L2Fr−1
α,β = L2(R+, ρ

n−2r+1 dρ)β ≡ L2(R+, ρ
n−2r+1 dρ) ,

L2Fr+1
α,β = L2(R+, ρ

n−2r−1 dρ) dρ ∧ α ≡ L2(R+, ρ
n−2r−1 dρ) ,

L2Frα,β = L2(R+, ρ
n−2r+1 dρ)α+ L2(R+, ρ

n−2r−1 dρ) dρ ∧ β
≡ L2(R+, ρ

n−2r+1 dρ)⊕ L2(R+, ρ
n−2r−1 dρ) .
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Assume now that s > 0. With the notation of Section 3 in Chapter 11, con-
sider the real version of the elliptic complex (F, d), as well as its subcomplex F1,
determined by the constants s, c and

κ =
−1 +

√
(n− 2r)2 + 4µ2

2
> −1

2
. (155)

By (129),

κ = cµ+
n− 2r − 1

2
=
µ

c
− n− 2r + 1

2
. (156)

Proposition 15.9. There is a unitary isomorphism L2Fα,β → L2(F ), which
restricts to isomorphisms of complexes up to a shift of degree, (Fα,β , d±s )→ (F1, d)
and (Fα,β,0, d±s )→ (C∞0 (F ), d).

Proof. As an intermediate step, let

F̂r−1
α,β = ρFr−1

α,β = ρa+1 Sev,+ , F̂r+1
α,β = Fr+1

α,β = ρa+1 Sev,+ ,

F̂rα,β = Θ−1(Frα,β) = ρa Sev,+ ⊕ ρa+2 Sev,+ ,

F̂α,β = F̂r−1
α,β ⊕ F̂

r
α,β ⊕ F̂r+1

α,β , F̂α,β,0 = Fα,β,0 ,

L2F̂r−1
α,β = L2F̂r+1

α,β = L2Fr+1
α,β = L2(R+, ρ

n−2r−1 dρ) ,

L2F̂rα,β ≡ L2(R+, ρ
n−2r−1 dρ)⊕ L2(R+, ρ

n−2r−1 dρ) ,

L2F̂α,β = L2F̂r−1
α,β ⊕ L

2F̂rα,β ⊕ L2F̂r+1
α,β .

Moreover let Ξ : L2Fα,β → L2F̂α,β be the unitary isomorphism defined by

ρ : L2Fr−1
α,β → L2F̂r−1

α,β ,
1√

1 + c2
Θ−1 : L2Frα,β → L2F̂rα,β

and the identity map L2Fr+1
α,β → L2F̂r+1

α,β . It restricts to isomorphisms Fα,β → F̂α,β
and Fα,β,0 → F̂α,β,0. Thus, by Lemma 15.8, (Fα,β , d±s ) induces via Ξ a complex

0 F̂r−1
α,β F̂rα,β F̂r+1

α,β 0 .
d̂±s,r−2 d̂±s,r−1 d̂±s,r d̂±s,r+2- - - -

By Lemma 15.7 and (71),

d̂±s,r−1 =
1√

1 + c2
Θ−1 d±s,r−1 ρ

−1

=
1√

1 + c2

(
1 cρ
−c ρ

)(
µ

d
dρ ± sρ

)
ρ−1

=
1√

1 + c2

(
c d
dρ + (µ− c)ρ−1 ± csρ
d
dρ + (cµ+ 1)ρ−1 ± sρ

)
, (157)

d̂±s,r =
1√

1 + c2
Θ d±s,r

=
1√

1 + c2

(
d
dρ ± sρ −µ

)( 1 −c
cρ−1 ρ−1

)
=

1√
1 + c2

(
d
dρ − cµρ

−1 ± sρ −c d
dρ − µρ

−1 ∓ csρ
)
. (158)
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Now, the unitary isomorphism

ρ
n−2r−1

2 : L2(R+, ρ
n−2r−1 dρ)→ L2(R+, dρ)

induces a unitary isomorphism L2F̂α,β → L2(F ), which restricts to isomorphisms
F̂α,β → F1 and F̂α,β,0 → C∞0 (F ). Moreover, by (157), (158), (71) and (156),

ρ
n−2r−1

2 d̂±s,r−1 ρ
−n−2r−1

2

=
1√

1 + c2
ρ
n−2r−1

2

(
c d
dρ + (µ− c)ρ−1 ± csρ
d
dρ + (cµ+ 1)ρ−1 ± sρ

)
ρ−

n−2r−1
2

=
1√

1 + c2

(
c
(
d
dρ + κρ−1 ± sρ

)
d
dρ − (κ+ 1)ρ−1 ± sρ

)
,

ρ
n−2r−1

2 d̂±s,r ρ
−n−2r−1

2

=
1√

1 + c2
ρ
n−2r−1

2

(
d
dρ − cµρ

−1 ± sρ −c d
dρ − µρ

−1 ∓ csρ
)
ρ−

n−2r−1
2

=
1√

1 + c2

(
d
dρ − κρ

−1 ± sρ c
(
− d
dρ − (κ+ 1)ρ−1 ∓ sρ

))
,

which are the operators d0 and d1 of Section 3 in Chapter 11. �

Corollary 15.10. (Fα,β,0, d±s ) has a unique Hilbert complex extension in
L2Fα,β, whose smooth core is Fα,β.

Proof. This follows from Propositions 11.6 and 15.9. �

Let (Dα,β ,d±s,α,β) denote the unique Hilbert complex extension of (Fα,β,0, d±s ),
according to Corollary 15.10, and let ∆±s,α,β denote the corresponding Laplacian.
The following result follows from Sections 3–5 of Chapter 14.

Proposition 15.11. (i) (Dα,β ,d±s,α,β) is discrete.
(ii) The eigenvalues of ∆±s,α,β are positive and in O(s) as s→∞.

3. Splitting into subcomplexes

Let Bmin/max,0 denote an orthonormal frame of H̃min/max consisting of homoge-
neous differential forms. For each positive eigenvalue µ of D̃min/max, let Bmin/max,µ

be an orthonormal frame of Eµ(D̃min/max) consisting of differential forms α+β like
in Section 2. Then let

d±s,min/max =
⊕
γ

d±s,γ ⊕
⊕̂
µ

⊕
α+β

d±s,α,β ,

where γ runs in Bmin/max,0, µ runs in the positive spectrum of D̃min/max, and α+β

runs in Bmin/max,µ. Observe that the domain of d±s,min/max is independent of s, and
therefore it is denoted by Dmin/max. Let also

Gmin/max =
⊕
γ

Eγ,0 ⊕
⊕
µ

⊕
α+β

Fα,β,0 .

Proposition 15.12. D(d±s,min/max) = Dmin/max and d±s,min/max = d±s,min/max.
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Proof. By Corollaries 15.5 and 15.10, Lemma 9.2 and (112), (Dmin/max,d
±
s,min/max)

is the minimum/maximum Hilbert complex extension of (Gmin/max, d
±
s ). Then the

result easily follows from the following assertions.

Claim 18. Gmin/max ⊂ D(d±s,min/max).

Claim 19. Ω0(M) ⊂ Dmin/max.

Let d̂±s,min/max denote the minimum/maximum Hilbert complex extension of
(Ω0(M), d±s ) with respect to the product metric ĝ = g̃+(dρ)2 onM = N×R+. With
the terminology of [11, p. 110], observe that (Ω(M), d±s ) is the product complex of
the de Rham complex of N , (Ω(N), d̃), and the Witten deformation of the de Rham
complex of R+, defined by the function 1

2ρ
2. Then, by [11, Lemma 3.6 and (2.38b)],

D(d̂±s,min/max) ⊃ C∞0 (R+)D(d̃min/max) + C∞0 (R+) dρ ∧ D(d̃min/max)

⊃ Gmin/max . (159)

On the other hand, for 0 < a < b < ∞, let L2
a,bΩ(M, g) and L2

a,bΩ(M, ĝ) denote
the Hilbert subspaces of L2Ω(M, g) and L2Ω(M, ĝ), respectively, consisting of L2

differential forms supported in N × [a, b]. Since g and ĝ are quasi-isometric on
N × (a′, b′) for 0 < a′ < a and b < b′ <∞, it follows that

D(d±s,min/max) ∩ L2
a,bΩ(M, g) = D(d̂±s,min/max) ∩ L2

a,bΩ(M, ĝ) . (160)

Moreover
Gmin/max ⊂

⋃
0<a<b<∞

L2
a,bΩ(M, g) . (161)

Now Claim 18 follows from (159)–(161).
Finally, Claim 19 follows from

Ω0(M) ⊂
⊕
γ

Eγ,0 ⊕
⊕̂
µ

⊕
α+β

Fα,β,0 , (162)

where γ, µ and α+ β vary as above. The inclusion (162) can be proved as follows.
According to (106), any ξ ∈ Ω0(M) can be written as ξ = ξ0 + dρ ∧ ξ1, where
ξ0, ξ1 ∈ C∞0 (R+,Ω0(N)). Then, by (112), we get functions fk,γ , fk,`,α,β ∈ C∞0 (R+),
for k, ` ∈ {0, 1}, defined by

fk,γ(ρ) = 〈ξk(ρ), γ〉g̃ ,
fk,0,α,β(ρ) = 〈ξk(ρ), β〉g̃ , fk,1,α,β(ρ) = 〈ξk(ρ), α〉g̃ ,

and moreover

α =
∑
γ

(f0,γ γ + f1,γ dρ ∧ γ)

+
∑
µ

∑
α+β

(f0,0,α,β β + f1,0,α,β α+ f1,0,α,β dρ ∧ β + f1,1,α,β dρ ∧ α)

in L2Ω(M, g), where γ, µ and α+ β vary as above. Thus ξ belongs to the space in
the right hand side of (162). �

Remark 26. From (79), Remark 7, and Propositions 11.4, 11.6 and 15.12, it fol-
lows that, with the notation of Example 8.2, h(ρ)D∞(d±s,min/max) ⊂ D∞(d±s,min/max)
for all h ∈ C∞(R+) such that h′ ∈ C∞0 (R+).



128 15. SPLITTING OF THE WITTEN COMPLEX ON A CONE

Let H±s,min/max =
⊕

rH
±,r
s,min/max = ker ∆±s,min/max.

Corollary 15.13. (i) d±s,min/max is discrete.

(ii) H+,r
min
∼= Hr

min(N) if

r ≤

{
n
2 − 1 if n is even
n−3

2 if n is odd ,

and H+,r
min = 0 otherwise.

(iii) H+,r
max
∼= Hr

max(N) if

r ≤

{
n
2 − 1 if n is even
n−1

2 if n is odd ,

and H+,r
max = 0 otherwise.

(iv) H−,r+1
min

∼= Hr
min(N) if

r ≥

{
n
2 if n is even
n−1

2 if n is odd ,

and H+,r+1
min = 0 otherwise.

(v) H−,r+1
max

∼= Hr
max(N) if

r ≥

{
n
2 if n is even
n+1

2 if n is odd ,

and H+,r+1
max = 0 otherwise.

(vi) If e±s ∈ H±s,min/max with norm one for each s, and h is a bounded mea-
surable function on R+ with h(ρ) → 1 as ρ → 0, then 〈he±s , e±s 〉 → 1 as
s→∞.

(vii) Let 0 ≤ λ±s,min/max,0 ≤ λ
±
s,min/max,1 ≤ · · · be the eigenvalues of ∆s,min/max,

repeated according to their multiplicities.Given k ∈ N, if λ±s,min/max,k > 0
for some s, then λ±s,min/max,k ∈ O(s) as s→∞.

(viii) There is some θ > 0 such that lim infk λ±s,min/max,kk
−θ > 0.

Proof. For γ, µ and α + β as above, the spectra of ∆±s on Eγ and Fα,β is
discrete by Propositions 15.6-(i) and 15.11-(i). Moreover the union of all of these
spectra has no accumulation points according to Sections 1–5 of Chapter 14 and
since ∆̃min/max has a discrete spectrum. Then (i) follows by Proposition 15.12.

Now, properties (ii)–(vii) follow directly from Propositions 15.6, 15.11 and 15.12.
To prove (viii), let 0 ≤ λ̃min/max,0 ≤ λ̃min/max,1 ≤ · · · denote the eigenval-

ues of ∆̃s,min/max, repeated according to their multiplicities, and let µmin/max,` =√
λ̃min/max,` for each ` ∈ N. Since N satisfies Theorem I-(ii) with g̃, there is some

C0, θ̃ > 0 such that

λ̃min/max,` ≥ C2
0`
θ̃ (163)

for all `. Consider the counting function

N±s,min/max(λ) = #
{
k ∈ N | λ±s,min/max,k < λ

}
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for λ > 0. From (113)–(116), (119), (124), (139), (141) and (163), and the choices
made in Chapter 15, it follows that there are some C1, C2, C3 > 0 such that

N±s,min/max(λ) ≤ #
{

(k, `) ∈ N2 | C1k + C2 µmin/max,` + C3 ≤ λ
}

≤ #{ (k, `) ∈ N2 | C1k + C2C0`
θ̃/2 + C3 ≤ λ }

≤ #

{
(k, `) ∈ N2

∣∣∣∣∣ ` ≤
(
λ− C3

C2C0
− C1k

C2C0

)2/θ̃
}

≤
∫ λ−C3

C1

0

(
λ− C3

C2C0
− C1x

C2C0

)2/θ̃

dx

=
θ̃(λ− C3)(2+θ̃)/θ̃

(2 + θ̃)(C2C0)2/θ̃C1

.

So N±s,min/max(λ) ≤ Cλ(2+θ̃)/θ̃ for some C > 0 and all large enough λ, giving (viii)

with θ = θ̃
2+θ̃

. �

Example 15.14. Consider the notation of Examples 7.6, 7.12 and 12.1. On
the stratum Sm−1 × R+ of c(Sm−1), the model rel-Morse function ± 1

2 ρ
2 and the

metric g1 define the Witten’s perturbed operators d±s , δ±s , D±s and ∆±s . Since ρ0

and g0 respectively correspond to ρ and g1 by can : Sm−1 × R+ → Rm \ {0}, it
follows that d±s , δ±s , D±s and ∆±s respectively correspond to d±0,s, δ

±
0,s, D

±
0,s, ∆±0,s

by can∗ : Ω(Rm \ {0})→ Ω(Sm−1 × R+), and moreover

L2Ω(Rm, g0) ≡ L2Ω(Rm \ {0}, g0) can∗−−−−→ L2Ω(Sm−1 × R+, g1) (164)

is a unitary isomorphism. The extension by zero defines a canonical injection
Ω0(Rm \ {0})→ Ω0(Rm), whose composite with (can∗)−1 is an injective homomor-
phism of complexes, (Ω0(Sm−1×R+), d±s )→ (Ω0(Rm), d±0,s). Thus the unique i.b.c.
of (
∧
TRm∗, d±0,s) in L2Ω(Rm, g0) corresponds to d±s,max via (164).

If m ≥ 2, then H
m−1

2 (Sm−1) = 0 for odd m. So (
∧
T (Sm−1 × R+)∗, d±s ) has a

unique i.b.c. by Corollaries 15.5 and 15.10, and Proposition 15.12.
If m = 1, then Ω(S0) = Ω0(S0) ≡ R2, and therefore, according to (106), (107)

and Corollary 13.5,

Ω0(S0 × R+) ≡ C∞(R+,R2) ,

Ω1(S0 × R+) ≡ dρ ∧ C∞(R+,R2) ≡ C∞(R+,R2) ,

d±s ≡
d

dρ
± sρ , δ±s ≡ −

d

dρ
± sρ ,

giving d±s,min 6= d±s,max by Proposition 11.4-(i).





CHAPTER 16

Local model of the Witten’s perturbation

The local model of our version of Morse functions around their critical points
will be as follows. Let m± ∈ N, let L± be a compact Thom-Mather stratification,
and let M± be a stratum in c(L±). Thus, either M± = N±×R+ for some stratum
N± of L±, or M± is the vertex stratum of c(L±). On the stratum M = Rm+ ×
Rm− ×M+ ×M− of the Thom-Mather stratification Rm+ ×Rm− × c(L+)× c(L−)
(for any choice of product Thom-Mather structure on c(L+)× c(L−)), consider an
adapted metric given as product of standard metrics on the Euclidean spaces Rm±
and model adapted metrics on the strata M±. Let ds denote the Witten’s perturbed
differential map on Ω(M) induced by the model rel-Morse function 1

2 (ρ2
+ − ρ2

−)
(Remark 19-(iii)). Let ∆s,min/max be the Laplacian defined by ds,min/max, and
Hs,min/max =

⊕
rHrs,min/max = ker ∆s,min/max. The following result is a direct

consequence of Example 12.1, Corollary 15.13 and Lemma 9.1.

Corollary 16.1. (i) ds,min/max is discrete.
(ii) If M+ = N+ × R+ and M− = N− × R+, then

Hrs,min/max
∼=
⊕
r+,r−

H
r+
min/max(N+)⊗Hr−

min/max(N−) ,

where (r+, r−) runs in the subset of Z2 defined by (6)–(8).
(iii) If M+ is the vertex stratum of c(L+) and M− = N− × R+, then

Hrs,min/max
∼=
⊕
r−

H
r−
min/max(N−) ,

where r− runs in the subset of Z defined by r = m− + r− + 1 and (8).
(iv) If M+ = N+ × R+ and M− is the vertex stratum of c(L+), then

Hrs,min/max
∼=
⊕
r+

H
r+
min/max(N+) ,

where r+ runs in the subset of Z defined by r = m− + r+ and (7).
(v) If M+ and M− are the vertex strata of c(L+) and c(L−), then we have

dimHrs,min/max = δr,m− .
(vi) If es ∈ Hs,min/max with norm one for each s, and h is a bounded mea-

surable function on R+ with h(ρ) → 1 as ρ → 0, then 〈he±s , e±s 〉 → 1 as
s→∞.

(vii) Let 0 ≤ λs,min/max,0 ≤ λs,min/max,1 ≤ · · · be the eigenvalues of ∆s,min/max,
repeated according to their multiplicities.Given k ∈ N, if λs,min/max,k > 0
for some s, then λs,min/max,k ∈ O(s) as s→∞.

(viii) There is some θ > 0 such that lim infk λs,min/max,k k
−θ > 0.
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Remark 27. According to Example 15.14, except for the casem = 1 and ds,min,
the above local study of ds,min/max could be simplified by using the homeomorphism
can× id : Rm×c(L)→ c(Sm−1)×c(L) and an isomorphism c(Sm−1)×c(L)→ c(L′)
for some compact Thom-Mather stratification L′ (Section 1.3 of Chapter 7). This
would allow to consider only a quasi-isometry c(L′)→ c(L′+)×c(L′−) and the model
rel-Morse function on M ′+ ×M ′− for strata M ′± of c(L′±). The factors Rm± could
be forgotten in this way.



CHAPTER 17

Spectral properties of ∆min/max

Here, we prove Theorem I. Consider the notation of that theorem: M be
a stratum with compact closure of a Thom-Mather stratification A, and g is an
adapted metric on M . Let {(Oa, ξa)} be a finite covering of M by charts of A. For
each a, we have ξa(Oa) = Ba × cεa(La), where Ba is an open subset of Rma for
some ma ∈ N, La is a compact Thom-Mather stratification, and εa > 0. Then each
ξa defines an open embedding M ∩Oa into Rma ×Ma for some stratum Ma of La.
We have, either Ma = Na × R+ for some stratum Na of La, or Ma = {∗a}, where
∗a is the vertex of c(La). If Ma = Na×R+, then ξa(M ∩Oa) = Ba×Na×(0, εa). If
Ma = {∗a}, then ξa(M ∩Oa) = Ba ×{∗a} ≡ Ba. Thus every ξa(M ∩Oa) is, either
open in Rma , or open in Rma ×Na × R+. By shrinking {(Oa, ξa)} if necessary, we
can assume that each diffeomorphism ξa : M ∩Oa → ξa(M ∩Oa) is quasi-isometric
with respect to a model adapted metric on Rma ×Ma.

By Lemma 8.4, there is a smooth partition of unity {λa} on M subordinated
to the open covering {M ∩Oa} such that each function |dλa| is rel-locally bounded;
indeed, by shrinking {(Oa, ξa)} again if necessary, we can assume that each |daλa|
is bounded. Also, by using Example 8.2, it is easy to construct another family
{λ̃a} ⊂ C∞(M) such that λ̃a and |dλ̃a| are bounded, λ̃a = 1 on suppλa, and
supp λ̃a ⊂ M ∩ Oa. The existence of such families {λa} and {λ̃a} is required to
apply Propositions 10.5 and 10.6.

Let da,s be the Witten’s perturbation of da induced by the function fa = 1
2ρ

2
a on

Rma ×Ma, where ρa is the canonical function of Rma × c(La). According to Corol-
lary 16.1-(i),(viii), each da,s,min/max satisfies the properties stated in Theorem I,
and let ∆a,s,min/max denote the corresponding Laplacian.

By using Example 8.2 again, it is easy to see that there is some rel-admissible
function ha on Rma × Ma such that ha = 0 on ξ(M ∩ Oa) and ha = 1 on the
complement of some rel-compact neighborhood of ξ(M ∩ Oa) in Rm ×Ma. Let
d̂a,s and ∆̂a,s be the Witten’s perturbation of da and ∆a induced by the function
f̂a = hafa. The functions |daf̂a − dafa| and |Hess f̂a − Hess fa| are uniformly
bounded, and therefore ∆̂a,s − ∆a,s is a homomorphism with uniformly bounded
norm by (104). By the min-max principle (see e.g. [53, Theorem XIII.1]), we
get that d̂a,s,min/max satisfies the properties stated in Theorem I. Then Theorem I
follows by Propositions 10.5 and 10.6.
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Functions of the perturbed Laplacian on strata

The first ingredient of Theorem J is the following properties of the functional
calculus of the perturbed Laplacian on strata.

Let M be a stratum of a compact Thom-Mather stratification endowed with an
adapted metric, and let d and ∆ be the de Rham derivative and Laplacian on M .
Let f be any rel-admissible function on M , and let ds and ∆s be the corresponding
Witten’s perturbations of d and ∆. Since f is rel-admissible, for each s, ∆s −∆ is
a homomorphism with uniformly bounded norm by (104). Hence ds,min/max defines
the same Sobolev spaces as dmin/max. Moreover the properties stated in Theorem I
can be extended to the perturbation ds,min/max by (104) and the min-max principle.

For any rapidly decreasing function φ on R, we easily get that φ(∆s,min/max)
is a Hilbert-Schmidt operator on L2Ω(M) by the version of Theorem I-(ii) for
ds,min/max. In fact, φ(∆s,min/max) is a trace class operator because φ can be given
as the product of two rapidly decreasing functions, |φ|1/2 and sign(φ) |φ|1/2, where
sign(φ)(x) = sign(φ(x)) ∈ {±1} if φ(x) 6= 0.

The extension of Theorem I-(ii) to ds,min/max also shows that φ(∆s,min/max) is
valued in W∞(dmin/max). However we do not have a “rel-Sobolev embedding theo-
rem” describing W∞(dmin/max); for instance, we do not know whether the elements
of Wm(dmin/max) are uniformly bounded for m large enough (see Chapter 21). We
can only assert that W∞(dmin/max) ⊂ Ω(M) by the usual elliptic regularity.

Like in the case of closed manifolds (see e.g. [54, Chapters 5 and 8]), it can
be easily proved that φ(∆s,min/max) can be given by a Schwartz kernel K, and
Trφ(∆s,min/max) equals the integral of the pointwise trace of K on the diagonal.
But we do not know whether K is uniformly bounded by the indicated lack of a
“rel-Sobolev embedding theorem”.
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CHAPTER 19

Finite propagation speed of the wave equation on
strata

Let M be a stratum of a compact Thom-Mather stratification, g an adapted
metric on M , and f a rel-Morse function on M . Let ds, δs, Ds and ∆s (s ≥ 0)
be the corresponding Witten’s perturbed operators on Ω(M), defined by f and
g. These operators make sense on complex valued differential forms as well as real
valued ones. Complex coefficients are needed to consider the induced wave equation

dαt
dt
− iDsαt = 0 , (165)

where i =
√
−1 and αt ∈ Ω(M) depends smoothly on t ∈ R. We may also consider

that (165) is satisfied only on some open subset of M .
If (165) holds on the whole of M , then, given α ∈ D∞(ds,min/max), a usual

energy estimate shows the uniqueness of the solution of (165) with the initial con-
ditions α0 = α (see e.g. [54, Proposition 7.4]). In this case the solution is given
by

αt = exp(itDs,min/max)α ,

which belongs to D∞(ds,min/max) for all t.
It is known that compactly supported smooth solutions of (165) propagate at

finite speed (see e.g. [54, Proposition 7.20]). To prove Theorem J, we need a
version of that result for strata, stating this finite propagation speed towards/from
the rel-critical points of f with forms in D∞(ds,min/max). For that purpose, we
show first the corresponding result for the simple elliptic complexes of Sections 2
and 3 in Chapter 11.

Take a rel-Morse chart around each x ∈ Critrel(f), like in Definition 8.7, with
values in a stratum M ′x = Rmx,+ × Rmx,− ×Mx,+ ×Mx,− of a product Rmx,+ ×
Rmx,− × c(Lx,+)× c(Lx,−), where either Mx,± = Nx,± ×R+, or Mx,± is the vertex
stratum of c(Lx,±). We can assume that the domains of these rel-Morse charts are
disjoint one another. Consider a model metric gx on each M ′x. For each ρ > 0,
let Bx,±,ρ be the standard ball of radius ρ in Rmx,± . If Mx,+ = Nx,+ × R+ and
Mx,± = Nx,− × R+, let

Ux,ρ = Bx,+,ρ ×Bx,−,ρ ×Nx,+ × (0, ρ)×Nx,− × (0, ρ) ⊂M ′x .

If Mx,± is the vertex stratum, remove the factor Nx,± × (0, ρ) from the definition
of Ux,ρ (or change it by the corresponding vertex stratum). Let d′x,s, δ

′
x,s, D

′
x,s and

∆′x,s denote Witten’s perturbed operators on Ω(M ′x) defined by gx and the model
rel-Morse function (Chapter 16). The corresponding wave equation is

dαt
dt
− iD′x,sαt = 0 , (166)
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138 19. FINITE PROPAGATION SPEED OF THE WAVE EQUATION ON STRATA

with αt ∈ Ω(M ′x) depending smoothly on t ∈ R. By Propositions 15.3, 15.9
and 15.12, the following result clearly boils down to the case of Proposition 11.7.

Proposition 19.1. For 0 < a < b, suppose that αt ∈ D∞(d′x,s,min/max), de-
pending smoothly on t ∈ R, satisfies (166) on Ux,b. The following properties hold:

(i) If suppα0 ⊂M ′x \ Ux,a, then suppαt ⊂M ′x \ Ux,a−|t| for 0 < |t| ≤ a.
(ii) If suppα0 ⊂ Ux,a, then suppαt ⊂ Ux,a+|t| for 0 < |t| ≤ b− a.

There is some ρ0 > 0 such that each Ux,ρ0 is contained in the image of the
rel-Morse chart centered at x, and moreover these charts are disjoint one another.
We will identify each Ux,ρ0 with an open subset of M via the rel-Morse chart.
According to Example 7.11, we can choose g so that its restriction to each Ux,ρ0 is
identified to the restriction of gx.

Proposition 19.2. Let 0 < a < b < ρ0 and α ∈ L2Ω(M). The following
properties hold for αt = exp(itDs,min/max)α:

(i) If suppα ⊂M \ Ux,a, then suppαt ⊂M \ Ux,a−|t| for 0 < |t| ≤ a.
(ii) If suppα ⊂ Ux,a, then suppαt ⊂ Ux,a+|t| for 0 < |t| ≤ b− a.

Proof. Since exp(itDs,min/max) is bounded, we can take α ∈ D∞(ds,min/max),
and therefore αt ∈ D∞(ds,min/max) for all t. According to Remark 26, there is some
h ∈ C∞(M) such that supph ⊂ Ux,ρ0 , h = 1 on Ux,b, and hD∞(ds,min/max) ⊂
D∞(ds,min/max). Then hαt satisfies (166) on Ux,b and belongs to D∞(d′s,min/max).
So, by Proposition 19.1,

• hαt = 0 on Ux,a−|t| for 0 < |t| ≤ a if suppα ⊂M \ Ux,a, and
• supphαt ⊂ Ux,a+|t| for 0 < |t| ≤ b− a if suppα ⊂ Ux,a.

Thus the result follows because h = 1 on Ux,b. �



CHAPTER 20

Morse inequalities on strata

Here, we prove Theorem J. Consider the notation of Chapter 19.

1. Analytic inequalities

By (101), we have the isomorphism of complexes esf : (Ω0(M), ds)→ (Ω0(M), d).
Since f is bounded, we also have the quasi-isometric isomorphism esf : L2Ω(M)→
L2Ω(M). So we obtain the isomorphism of Hilbert complexes

esf : (D(ds,min/max), ds,min/max)→ (D(dmin/max), dmin/max) ,

and therefore
βrmin/max = dimHr(D(ds,min/max), ds,min/max) (167)

for all s ≥ 0. In fact, since |df | is bounded, it also follows from (101) that

D(ds,min/max) = D(dmin/max) , ds,min/max = dmin/max + s df ∧ .

Thus
esf D(dmin/max) = D(dmin/max) .

Let φ be a smooth rapidly decreasing function on R with φ(0) = 1. Then the
operator φ(∆s,min/max) is of trace class (Chapter 18), and set

µrs,min/max = Tr(φ(∆s,min/max,r)) .

By (167), the following result follows with the obvious adaptation of the proof of
[54, Proposition 14.3].

Proposition 20.1. We have the inequalities

β0
min/max ≤ µ

0
min/max ,

β1
min/max − β

0
min/max ≤ µ

1
s,min/max − µ

0
s,min/max ,

β2
min/max − β

1
min/max + β0

min/max ≤ µ
2
s,min/max − µ

1
s,min/max + µ0

s,min/max ,

etc., and the equality

χmin/max =
∑
r

(−1)r µrs,min/max .

Proof. The proof is reproduced for the reader’s convenience. By Theorem I,
∆min/max,r is discrete with kernel of dimension βrmin/max. Then there is some non-

negative rapidly decreasing φ̃ ∈ C∞(R) such that φ̃(0) = 1 and φ̃(λ) = 0 for all
non-zero eigenvalue of ∆min/max,r; there is no loss of generality in assuming also
that φ̃ ≤ φ. Then βrmin/max = Tr(φ̃(∆min/max,r)), so that

µrmin/max − β
r
min/max = Tr((φ− φ̃)(∆min/max,r)) . (168)
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140 20. MORSE INEQUALITIES ON STRATA

We may write (φ − φ̃)(λ) = λψ2(λ), where ψ ∈ C∞(R) is non-negative and
rapidly decreasing, and vanishes at zero, obtaining

(φ− φ̃)(∆min/max,r) = ∆min/max,r ψ
2(∆min/max,r) . (169)

Then

Tr
(
dmin/max,r−1 δmax/min,r−1 ψ

2(∆min/max,r)
)

= Tr
(
ψ(∆min/max,r) dmin/max,r−1 δmax/min,r−1 ψ(∆min/max,r)

)
= Tr

(
δmax/min,r−1 ψ

2(∆min/max,r) dmin/max,r−1

)
= Tr

(
δmax/min,r−1 dmin/max,r−1 ψ

2(∆min/max,r−1)
)
.

By (168), (169) and (81), it follows that

(µrmin/max − β
r
min/max)− (µr−1

min/max − β
r−1
min/max) + (µr−2

min/max − β
r−2
min/max)− · · ·

= Tr
(
dmin/max,r−1 δmax/min,r−1 ψ

2(∆min/max,r)
)

= Tr
(
(dmin/max,r ψ(∆min/max,r))∗ dmin/max,r ψ(∆min/max,r)

)
≥ 0 .

For r = n, this is an equality. �

2. Null contribution away from the critical points

By (104) and because |df | and |Hess f | are bounded on M , we have

D(∆s,min/max) = D(∆min/max) , (170)

∆s,min/max = ∆min/max + sHessf + s2 |df |2 (171)

for all s ≥ 0.
For ρ ≤ ρ0, let Uρ =

⋃
x Ux,ρ, with x running in Critrel(f). Fix some ρ1 > 0

such that 3ρ1 < ρ0. Let G and H be the Hilbert subspaces of L2Ω(M) consisting
of forms essentially supported in M \ Uρ1 and M \ U2ρ1 , respectively. It follows
from (170) and (171) that there is some C > 0 such that1

∆s,min/max ≥ ∆min/max + Cs2 on G ∩ D(∆min/max) (172)

if s is large enough.
Let h be a rel-admissible function on M such that h ≤ 0, h ≡ 1 on Uρ0 and

h ≡ 0 on M \ U2ρ1 (see Example 8.2). Then Ts,min/max = ∆s,min/max + hCs2,
with domain D(∆̃min/max), is essentially self-adjoint in L2Ω(M) with a discrete
spectrum, and moreover

Ts,min/max ≥ ∆min/max + Cs2 (173)

for s is large enough by (172).
Fix some2 φ ∈ Sev such that φ ≥ 0, φ(0) = 1 and supp φ̂ ⊂ [−ρ1, ρ1], and let

ψ ∈ S such that φ(x) = ψ(x2). By using Proposition 19.2-(i), the argument of the

1Recall that, for symmetric operators S and T in a Hilbert space, with the same domain D,
it is said that S ≤ T if 〈Su, u〉 ≤ 〈Tu, u〉 for all u ∈ D.

2The Schwartz functions with compactly supported Fourier transform are characterized by

the Paley-Wiener-Schwartz theorem (see e.g. [36, Theorem 7.3.1]); they form a dense subalgebra
of S, which is invariant by linear changes of variables.
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first part of the proof of [54, Lemma 14.6] can be obviously adapted to show the
following.

Lemma 20.2. ψ(∆s,min/max) = ψ(Ts,min/max) on H.

Proof. This proof is also reproduced for the reader’s convenience. For α ∈
D∞(∆min/max) supported in M \U2ρ1 , consider the time-dependent differential form

αt = cos(tDs,min/max)α =
1
2
(
eitDs,min/max + e−itDs,min/max

)
α

in D∞(∆min/max). It is a solution of the differential equation

∂2αt
∂t2

+ ∆sαt = 0

with initial conditions α0 = α and α̇0 = 0; in fact, it is the unique solution, as one
can easily check by verifying that the “energy”∥∥∥∥∂αt∂t

∥∥∥∥2

+ 〈∆sαt, αt〉

is preserved. By Proposition 19.2-(i), αt is supported on M \ Uρ1 if |t| < ρ1, and
therefore ∆sαt = Ts,min/maxαt. Thus αt for |t| < ρ1 is also the unique solution to
the equation

∂2αt
∂t2

+ Ts,min/maxαt = 0

with the same initial conditions. So αt = cos(t
√
Ts,min/max)α.

Now, φ̂ has support in [−ρ1, ρ1] and is even (since φ is). Therefore

ψ(∆s,min/max)α = φ(Ds,min/max)α

=
1

2π

∫ ρ1

−ρ1
eitDs,min/maxα φ̂(t) dt

=
1
π

∫ ρ1

0

φ̂(t) cos(tDs,min/max)αdt

=
1
π

∫ ρ1

0

φ̂(t)αt dt

=
1
π

∫ ρ1

0

φ̂(t) cos
(
t
√
Ts,min/max

)
αdt

= · · · = ψ(Ts,min/max)α .

Then the result follows because D∞(∆min/max) ∩ H is dense in H. �

Let Π : L2Ω(M) → H denote the orthogonal projection. According to Chap-
ter 18, ψ(∆s,min/max) is of trace class for all s ≥ 0. Then the self-adjoint operator
Πψ(∆s,min/max) Π is also of trace class (see e.g. [54, Proposition 8.8]).

Lemma 20.3. Tr(Πψ(∆s,min/max) Π)→ 0 as s→∞.

Proof. Let

0 ≤ λmin/max,0 ≤ λmin/max,1 ≤ · · · , 0 ≤ λs,min/max,0 ≤ λs,min/max,1 ≤ · · ·
be the eigenvalues of ∆min/max and Ts,min/max, respectively, repeated according to
their multiplicities. By (173) and the min-max principle, we have

λs,min/max,k ≥ λmin/max,k + Cs2
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for s large enough. So

Tr(ψ(Ts,min/max)) =
∑
k

ψ(λs,min/max,k) ≤
∑
k

ψ(λmin/max,k + Cs2)

for s large enough, giving Tr(ψ(Ts,min/max)) → 0 as s → ∞ since ψ is rapidly
decreasing. Then the result follows because

Tr(Πψ(∆s,min/max) Π) = Tr(Πψ(Ts,min/max) Π) ≤ Tr(ψ(Ts,min/max))

by Lemma 20.2. �

3. Contribution from the rel-critical points

The following is a direct consequence of Corollary 16.1.

Corollary 20.4. If h is a bounded measurable function on R+ such that
h(ρ)→ 1 as ρ→ 0, then

lim
s→∞

Tr(h(ρ)φ(∆′x,s,min/max,r)) = lim
s→∞

Trφ(∆′x,s,min/max,r) = νrx,min/max .

For each x ∈ Critrel(f), let H̃x ⊂ L2Ω(M) be the Hilbert subspace of differ-
ential forms supported in Ux,2ρ1 ; it can be also considered as a Hilbert subspace
of L2Ω(M ′x) since g and gx have identical restrictions to Ux,ρ0 . Moreover ∆s and
∆′x,s can be identified on differential forms supported in Ux,ρ0 . By using Proposi-
tion 19.2-(ii), the argument of Lemma 20.2 can be obviously adapted to show the
following.

Lemma 20.5. φ(∆s,min/max) ≡ φ(∆′x,s,min/max) on H̃x for all x ∈ Critrel(f).

For each x ∈ Critrel(f), let Π̃x : L2Ω(M) → H̃x and Π̃′x : L2Ω(M ′x) → H̃x
denote the orthogonal projections. Since the subspaces H̃x are orthogonal to each
other, Π :=

∑
x Π̃x : L2Ω(M)→ H̃ :=

∑
x H̃x is the orthogonal projection.

Lemma 20.6. Tr(Π̃φ(∆s,min/max,r) Π̃)→ νrmin/max as s→∞.

Proof. By Corollary 20.4 and Lemma 20.5, and because Π′x is the multipli-
cation operator by the characteristic function of Uρ1 in M ′x,

lim
s→∞

Tr(Π̃φ(∆s,min/max,r) Π̃) = lim
s→∞

∑
x∈Critrel(f)

Tr(Π̃x φ(∆s,min/max,r) Π̃x)

= lim
s→∞

∑
x∈Critrel(f)

Tr(Π̃′x φ(∆′x,s,min/max,r) Π̃′x)

=
∑

x∈Critrel(f)

νrx,min/max = νrmin/max . �

Now,
lim
s→∞

Tr(φ(∆s,min/max,r)) = νrmin/max

by Lemmas 20.3 and 20.6, and because Π + Π̃ = 1, showing Theorem J by Propo-
sition 20.1.



CHAPTER 21

Remark on the Sobolev spaces on strata

Our version of the Sobolev spaces on strata, Wm(dmin/max), may depend on
the chosen adapted metric; thus there is no “rel-version” of the elliptic estimate.
By taking local charts and arguing like in Chapter 17, it is enough to check this
assertion for the perturbed local models d±s,min/max.

With the notation of Section 1 in Chapter 14, consider the case where n is odd,
r = n−1

2 and a = 0; thus σ = 0. We have χ0 γ ∈ W∞(d±s,min/max) with the metric

g. Let g̃′ be another adapted metric on N such that ∆̃′γ 6= 0, and consider the
corresponding adapted metric g′ = ρ−2g̃′ + dρ2 on M . Let ∆̃′ be the laplacian on
Ω(N) defined by g̃′, ∆′ the Laplacian on Ω(M) defined by g′, and ∆′ ±s the Witten’s
perturbation of ∆′ induced by the function ± 1

2ρ
2. Let 〈 , 〉̃ ′ and 〈 , 〉′ denote the

scalar products of L2Ω(N, g̃′) and L2Ω(M, g′), respectively, and let ‖ ‖̃ ′ denote
the norm defined by 〈 , 〉̃ ′. By Corollary 13.7, we have ∆′ ±s = ρ−2∆̃′ + H ∓ s on
C∞(R+) γ. Then

〈∆′ ±s (χ0 γ), χ0γ〉′ = 〈∆̃′γ, γ〉̃ ′
∫ ∞

0

ρ−2χ2
0 dρ+ ‖γ‖̃ ′2(1∓ 1)s =∞

according to (110) and Section 1 of Chapter 14, and because χ0(ρ) =
√

2p0e
−sρ2/2

is bounded away from zero for 0 < ρ ≤ 1. So χ0 γ 6∈W 1(d±s,min/max) with the metric
g′, obtaining different spaces W 1(d±s,min/max) by using g and g′.

The above observation is related with the following problem.

Problem 21.1. Let M be a stratum of an arbitrary compact stratification
endowed with an adapted metric, and let L1Ω(M) denote the Banach space of uni-
formly bounded measurable differential forms on M . Is there a continuous inclusion
of Wm(dmin/max) into L1Ω(M) for m large enough?

For the perturbation P of harmonic oscillator indicated in Chapter 5, the cor-
responding version of this problem has an affirmative answer when a ≥ 0 (Corol-
lary H-(iii)). If the spaces Wm(dmin/max) were independent of the adapted metric,
we could give an affirmative answer to Problem 21.1 by using the local arguments
of this chapter and induction. An affirmative solution of Problem 21.1 would allow
to adapt the nice arguments of [54, Lemma 14.6] to show a stronger version of
Lemma 20.3: the Schwartz kernel of ψ(∆s,min/max) would converge uniformly to
zero on (M \ U2ρ1)× (M \ U2ρ1).
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Conclusion

The main goal of the thesis was to prove a version of Morse inequalities for
the minimum and maximum ideal boundary conditions of the de Rham complex
on strata endowed with adapted metrics, taken in compact Thom-Mather strati-
fications. The analytic method of Witten was used, involving his perturbation of
the de Rham complex induced by our version of Morse functions on strata. The
cohomology of this minimum ideal boundary condition is isomorphic to the inter-
section homology with lower middle perversity; there are analogous isomorphisms
with other types of adapted metrics and other perversities.

Several new features have shown up in this work. First, the local analysis
around our version of critical points was reduced to the study of an operator related
to the so called Dunkl harmonic oscillator, which was recently very much used in
Quantum Mechanics to describe the interaction among several particles. This led
us to prove eigenfunction estimates and embedding results for the Dunkl harmonic
oscillator on the line, which have their own interest.

Second, it turns out that, surprisingly, the Sobolev spaces defined by the per-
turbed Laplacian depend on the choice of the metric, and therefore the usual way
to prove Sobolev inequalities does not work, even though they could be true. Be-
cause of this lack of Sobolev inequalities, some of the arguments of Witten’s method
cannot be made. Thus new types of arguments were produced to solve that prob-
lem, mainly using certain weak version of the Weyl’s assymptotic formula. This
formula is proved first by showing that it has a local character and holds for the
local models.

Our Morse inequalities on strata seem to be new. Their expressions are a priori
different from those of the Morse inequalities of Goresky-MacPherson, which involve
intersection homology with lower middle perversity on complex analytic varieties
with Whitney stratifications. Also, our version of Morse functions is different from
those of U. Luwig, who studied Witten’s perturbation for the special case of con-
formally conic manifolds. We hope there will be future applications, specially when
we consider functions canonically associated to geometric or physical situations.

In particular, our version of Morse inequalities applies to the case of a smooth
action of a compact Lie group G on a closed manifold M , and functions on the
orbit type strata of G\M induced by invariant Morse-Bott functions on M whose
critical manifolds are orbits. This provides a rich family of examples.

Several open problems emerge from our work: a “rel-Morse lemma”, a “rel-
strong C∞ topology” where the rel-Morse functions should form a dense subset,
a “rel-Sobolev lemma”, a version with “rel-Morse-Bott functions” , etc. But the
main one is the possible generalization to other types of adapted metrics. We hope
that even completely new types of adapted metrics could be tackled, which could
correspond to generalizations of intersection homology still to be defined, whose
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perversities would be a sequence of functions instead of naturals. This would require
a generalization of our results on the Dunkl harmonic oscillator to other kind of
perturbations of the harmonic oscillator, which seem to be perfectly possible.



Resumen

El principal objetivo de la tesis es usar el método de la perturbación de Wit-
ten para probar una versión de las desigualdades de Morse para la condición ideal
de frontera mı́nima y máxima del complejo de de Rham en estratos, dotados con
métricas adaptadas, donde se consideran estratificaciones de Thom-Mather com-
pactas. Para lograrlo, se estudian primero estimaciones de autofunciones y resul-
tados de embebimiento para el oscilador armónico de Dunkl en la recta, que se
generalizan a otros operadores en R+. El estudio de estos operadores es el ingre-
diente clave en nuestro análisis local de la perturbación de Witten.

Aśı, esta tesis tiene dos partes principales, Partes 1 y 2. La primera está
dedicada al estudio de estimaciones de autofunciones y resultados de embebimiento
para el oscilador harmónico de Dunkl y operadores relacionados. La segunda aborda
el estudio de la perturbación de Witten en estratos, en donde se usa la primera parte.

Este trabajo aparece en los preprints [1, 2].
Pasamos a comentar los caṕıtulos por separado y enunciar sus resultados prin-

cipales.

Estimaciones de autofunciones y teoremas de embebimiento

El operador de Dunkl Tσ en C∞(R), dependiendo de un parámetro σ > −1/2,
es la perturbación de la derivada usual que se puede definir como Tσ = d

dx en
funciones pares y Tσ = d

dx + 2σ 1
x en funciones impares. Este tipo de operador, más

generalmente en Rn, fue introducido por C.F. Dunkl [21, 22, 23, 24, 25]. Dio
lugar a lo que ahora se denomina teoŕıa de Dunkl (véase el panorama presentado en
[57]). Este área tuvo un gran desarrollo en los últimos años, principalmente debido
a sus aplicaciones en modelos cuánticos de Calogero-Moser-Sutherland (véase por
ejemplo [10, 52, 37, 38, 61, 3, 4]). En particular, el oscilador armónico de Dunkl
[55, 26, 50, 49] es Lσ = −T 2

σ+sx2, dependiendo de s > 0; es decir, se define usando
Tσ en vez de d/dx en la expresión del oscilador armónico usual, H = − d2

dx2 + sx2.
Por otra parte, sea pk la sucesión de polinomios ortogonales para la medida

e−sx
2 |x|2σ dx, considerados con norma uno y coeficiente principal positivo. Salvo

normalización, éstos son los polinomios de Hermite generalizados [59, p. 380, Prob-
lema 25]; véase también [16, 20, 27, 17, 55, 56]. Denotemos por xk,k < xk,k−1 <
· · · < xk,1 las ráıces de cada pk; en particular, xk,k/2 es la ráız positiva más
pequeña si k es par. Las correspondientes funciones de Hermite generalizadas son
φk = pke

−sx2/2.
Se sabe que Lσ, con dominio el espacio de Schwartz S = S(R), es esencialmente

auto-adjunto en L2(R, |x|2σ dx). Además el espectro de su extensión autoadjunta,
denotada por Lσ, está formada por los autovalores (2k + 1 + 2σ)s (k ∈ N), cuyas
autofunciones correspondientes son las funciones φk.
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Demostramos estimaciones asintóticas de las funciones φk según k → ∞, que
son usadas para probar teoremas de embebimiento, y estos resultados se extienden
a otras perturbaciones relacionadas de H. Aunque consideramos sólo el oscilador
armónico de Dunkl en la recta para empezar, este trabajo es más dif́ıcil que en el
caso de H, y tiene algunos aspectos nuevos. Podŕıa dar también una indicación de
cómo proceder en dimensiones mayores.

Para conseguir estimaciones uniformes, se consideran las funciones ξk = |x|σφk
en vez de φk. Cumplen la ecuación ξ′′k + qkξk = 0, donde qk = (2k + 1 + 2σ)s −
s2x2 − σ̄kx−2 con σ̄k = σ(σ − (−1)k). Sea Îk = q−1(R+) (la región de oscilación),
que es de la forma: (−bk,−ak) ∪ (ak, bk) si σ̄k > 0 (para k > 0), (−bk, bk) si
σ̄k = 0, o (−bk, 0) ∪ (0, bk) si σ̄k < 0, donde bk > ak > 0 con bk ∈ O(k1/2) y
ak ∈ O(k−1/2) cuando k →∞. Si σ̄k ≥ 0, entonces sea Ĵk = Îk. Cuando σ̄k < 0 y
k es suficientemente grande, la ecuación qk(b) = 4π/b2 tiene dos soluciones positivas,
bk,+ < bk,−, con bk,+ ∈ O(k−1/2). Entonces sea Ĵk = (−bk,−bk,+] ∪ [bk,+, bk). La
primera estimación importante que se demuestra en la Parte 1 es la siguiente.

Teorema A. Existen C,C ′, C ′′ > 0, dependiendo de σ y s, tal que, para k ≥ 1:

(i) ξ2
k(x) ≤ C/

√
qk(x) para todo x ∈ Ĵk ;

(ii) si k es impar o σ ≥ 0, entonces ξ2
k(x) ≤ C ′k−1/6 para todo x ∈ R ; y,

(iii) si k es par y σ < 0, entonces ξ2
k(x) ≤ C ′′k−1/6 si |x| ≥ xk,k/2.

En el caso del Teorema A-(iii), la estimación de ξk no se puede extender a
R \ {0} porque estas funciones no están acotadas cerca de cero. Por tanto alguna
condición del tipo |x| ≥ xk,k/2 debe ser asumida; el significado de esta condición
se clarifica indicando que xk,k/2 ∈ O(k−1/2) cuando k → ∞. Este punto débil es
complementado por el resultado siguiente.

Teorema B. Supongamos que σ < 0. Existe algún C ′′′ > 0, dependiendo de σ
y s, tal que φ2

k(x) ≤ C ′′′ para todo k par y x ∈ R.

El siguiente teorema afirma que el tipo de estimaciones del Teorema A-(ii),(iii)
son óptimas.

Teorema C. Existen C(IV ), C(V ) > 0, dependiendo de σ y s, tal que, para
k ≥ 1:

(i) maxx∈R ξ
2
k(x) ≥ C(IV )k−1/6; y,

(ii) si k es par y σ < 0, entonces max|x|≥xk,k/2 ξ
2
k(x) ≥ C(V )k−1/6.

Para demostrar los Teoremas A–C, aplicamos el método que Bonan-Clark han
usado con H [6]. Las estimaciones se cumplen con ξk en vez de φk porque el método
se puede aplicar a la conjugación Kσ = |x|σLσ |x|−σ. Este método tiene dos pasos:
primero, se estima la distancia de cualquier punto x en una región de oscilación a
alguna ráız xk,i, y, segundo, el valor de ξ2

k(x) se estima usando |x − xk,i|. Estos
cálculos para Kσ son mucho más complicados que en [6]; de hecho, se consideran
varios casos distintos, algunos con diferencias significativas; por ejemplo, algunas
ráıces xk,i pueden estar fuera de la región de oscilación Îk, y las funciones ξk pueden
no estar acotadas, según se ha dicho.

La distribución asintótica de las ráıces xk,i según k → ∞ también tiene una
interpretación como medida muy conocida [28, 62, 63]; especialmente, los poli-
nomios de Hermite generalizados se consideran en [62, Sección 4]. Sin embargo la
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convergencia débil de medidas considerada en esas publicaciones no parece aportar
la aproximación asintótica de las ráıces necesaria en el primer paso.

Para cada m ∈ N, sea Sm el espacio de Banach de funciones φ ∈ Cm(R) con
supx |xiφ(j)(x)| <∞ para i+ j ≤ m; por tanto S =

⋂
m Sm con la correspondiente

topoloǵıa de Fréchet. Por otra parte, para cada número real m ≥ 0, sea Wm
σ la

versión del espacio de Sobolev obtenido como compleción de Hilbert de S respecto
del producto escalar definido por 〈φ, ψ〉Wm

σ
= 〈(1 + Lσ)mφ, ψ〉σ, donde 〈 , 〉σ de-

nota el producto escalar de L2(R, |x|2σ dx). Sea también W∞σ =
⋂
mW

m
σ con la

correspondiente topoloǵıa de Fréchet. El sub́ındice ev/odd se añade a cualquier
espacio de funciones en R para indicar su subespacio de funciones pares/impares.
Se demuestran los teoremas de embebimiento siguientes en la Parte 1; el segundo
es una versión del teorema de embebimiento de Sobolev.

Teorema D. Para cada m ≥ 0, SMm′,ev/odd

ev/odd ⊂ Wm
σ,ev/odd continuamente si

m′ ∈ N, m′ −m > 1/2, y

Mm′,ev/odd =

{
3m′

2 + m′

4 dσe(dσe+ 3) + dσe si σ ≥ 0 y m′ es par
5m′

2 si σ < 0 y m′ es par ,

Mm′,ev =

{
3m′−1

2 + m′−1
4 dσe(dσe+ 3) + dσe si σ ≥ 0 y m′ es impar

5m′+1
2 si σ < 0 y m′ es impar ,

Mm′,odd =

{
3m′+1

2 + m′+1
4 dσe(dσe+ 3) + dσe si σ ≥ 0 y m′ es impar

5m′+7
2 si σ < 0 y m′ es impar .

Teorema E. Para todo m ∈ N, Wm′

σ ⊂ Sm continuamente si

m′ −m >

{
4 + 1

2dσe(dσe+ 1) si σ ≥ 0
4 si σ < 0 .

Además Wm′

σ,ev ⊂ S0
ev continuamente si σ < 0 y m′ > 2.

Corolario F. S = W∞σ como espacios de Fréchet.

En otras palabras, Corolario F afirma que un elemento φ ∈ L2(R, |x|2σ dx) está
en S si y sólo si los “coeficientes de Fourier” 〈φ, φk〉σ son de decrecimiento rápido
en k. Esto también significa que S =

⋂
mD(Lmσ ) (el “core” diferenciable1 D∞(Lmσ ))

porque la sucesión de autovalores de Lσ es de orden O(k) cuando k →∞.
Introducimos una versión perturbada Smσ de cada Sm (Caṕıtulo 3), cuya de-

finición involucra a Tσ en vez de d
dx y está inspirada por los Teoremas A y B.

Cumplen resultados de embebimiento mucho más simples (Caṕıtulo 4): Sm
′

σ ⊂Wm
σ

si m′ − m > 1/2, y Wm′

σ ⊂ Smσ si m′ − m > 1. La demostración del segundo
embebimiento usa las estimaciones de los Teoremas A y B. Aunque S =

⋂
m Smσ ,

las relaciones de inclusión entre los espacios Smσ y Sm′ son complicadas, lo que
motiva la complejidad de los Teoremas D y E.

1Recuérdese que un “core” de un operador cerrado densamente definido T entre espacios de
Hilbert es cualquier subespacio de su dominio D(T ) que es denso con la norma de la gráfica. Si
T es auto-adjunto, entonces D∞(T ) =

T
k≥1D(Tk) es un “core” de T , que se llama su “core”

diferenciable [11].
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A continuación, consideramos otras perturbaciones de H en R+ (Caṕıtulo 5).
Sea Sev,U el espacio de restricciones de funciones de Schwartz pares a algún abierto
U , y sea φk,U = φk|U . La notación Sev,+ y φk,+ se usa si U = R+.

Teorema G. Sea P = H − 2f1
d
dx + f2, donde f1 ∈ C1(U) y f2 ∈ C(U) para

algún subconjunto abierto U ⊂ R+ de medida de Lebesgue completa. Asumimos
que f2 = σ(σ − 1)x−2 − f2

1 − f ′1 para algún σ > −1/2. Sea h = xσe−F1 , donde
F1 ∈ C2(U) es una primitiva de f1. Entonces se cumplen las siguientes propiedades:

(i) P , con dominio hSev,U , es esencialmente auto-adjunto en L2(R+, e
2F1 dx);

(ii) el espectro de su extensión auto-adjunta, denotada por P, está formado
por los autovalores (4k + 1 + 2σ)s (k ∈ N) con multiplicidad uno y auto-
funciones normalizadas

√
2hφ2k,U ; y

(iii) D∞(P) = hSev,U .

Este teorema se deduce mostrando que la condición enunciada sobre f1 y f2

caracteriza los casos en los que P se puede obtener con el siguiente proceso: primero
restringiendo Lσ a funciones pares, después restringiendo a U , y finalmente conju-
gando por h. El término de P con d

dx se puede quitar conjugando con el producto
de una función positiva, obteniendo el operador H + σ(σ − 1)x−2.

Se dan varios ejemplos de ese tipo de operador P . Por ejemplo, se obtiene lo
siguiente.

Corolario H. Sea P = H − 2c1x−1 d
dx + c2x

−2 con c1, c2 ∈ R. Si hay algún
a ∈ R tal que a2 + (2c1 − 1)a− c2 = 0 y σ := a+ c1 > −1/2, entonces:

(i) P , con dominio xa Sev,+, es esencialmente auto-adjunto en L2(R+, x
2c1 dx);

(ii) el espectro de su extensión auto-adjunta, denotada por P, está formada
por los auto-valores (4k + 1 + 2σ)s (k ∈ N) con multiplicidad uno y auto-
funciones normalizadas

√
2xaφ2k,+; y

(iii) D∞(P) = xa Sev,+.

En el Corolario H, para algunos c1, c2 ∈ R, hay dos valores de a cumpliendo las
condiciones enunciadas, obteniendo dos operadores auto-adjuntos distintos definidos
por P en espacios de Hilbert diferentes. Por ejemplo, el oscilador armónico de Dunkl
Lσ puede definir operadores auto-adjuntos incluso cuando σ ≤ −1/2.

El Corolario H se aplica para probar nuestras desigualdades de Morse en es-
tratos de estratificaciones de Thom-Mather compactas con métricas adaptadas.

Perturbación de Witten en estratos

Un complejo de Hilbert [11] es un complejo diferencial dado por un operador
cerrado d definido densamente en un espacio de Hilbert separable graduado H. El
correspondiente Laplaciano ∆ = dd∗ + d∗d es un operador auto-adjunto en H.
Se dice que d es discreto cuando ∆ tiene un espectro discreto2; en particular, su
homoloǵıa es de dimensión finita por una versión de la descomposición de Hodge.

Sea (Ω0(M), d) el complejo de de Rham con soporte compacto de una variedad
riemanniana M . Sus extensiones como complejos de Hilbert en L2Ω(M) (el espacio
de Hilbert graduado de formas diferenciales con cuadrado integrable) se llaman
condiciones ideales de frontera (c.i.f.). Hay una c.i.f. mı́nima, dmin = d, y una c.i.f.

2Recuérdese que un operador auto-adjunto tiene un espectro discreto cuando no hay espectro

esencial; es decir, el espectro está formado por autovalores con multiplicidad finita sin puntos de
acumulación.



PERTURBACIÓN DE WITTEN EN ESTRATOS 151

máxima, dmax = δ∗, donde δ es la codiferencial de de Rham actuando sobre Ω0(M).
El laplaciano definido por dmin/max se denota por ∆min/max. Es bien conocido que
dmin = dmax si M es completa, pero supongamos que M puede no ser completa.
La c.i.f. dmin/max define la cohomoloǵıa min/max H•min/max(M), los números de
Betti min/max βrmin/max = βrmin/max(M), y la caracteŕıstica de Euler min/max
χmin/max = χmin/max(M) (si los números de Betti min/max son finitos); éstos son
invariantes quasi-isométricos de M . Estos conceptos pueden definirse de hecho para
complejos eĺıpticos arbitrarios [11].

Desde ahora en adelante, asumamos que M es un estrato de una estratificación
de Thom-Mather compacta A [60, 44, 45, 64]. A grosso modo, alrededor de cada
x ∈M , hay una carta de A con valores en un producto Rm × c(L), donde:

• L es una estratificación de Thom-Mather compacta de profundidad infe-
rior, y c(L) = L× [0,∞)/L× {0} (el cono con enlace L);

• x corresponde a (0, ∗), donde ∗ es el vértice de c(L); y,
• cerca de x, M corresponde a Rm ×M ′ para algún estrato M ′ de c(L).

Se tiene que, o bien M ′ = N × R+ para algún estrato N de L, o bien M ′ = {∗}.
Obsérvese que x ∈ M justo cuando M ′ = {∗}. Sea ρ : c(L) → [0,∞) la función
canónica inducida por la proyección en el segundo factor L × [0,∞) → [0,∞).
La suma de ρ y la norma de Rm también la denominamos función canónica de
Rm × c(L).

Dotemos a M con una métrica riemanniana g, que es adaptada en el sentido
siguiente definido por inducción en la profundidad de M [13, 14]: hay una carta
alrededor de cada x ∈ M \ M como antes tal que g es quasi-isométrica a una
métrica modelo de la forma g0 + ρ2g̃ + (dρ)2 en Rm × N × R+, donde g0 es la
métrica eucĺıdea en Rm y g̃ una métrica adaptada en N ; esta g̃ está bien definida
ya que depthN < depthM . Obsérvese que g puede no ser completa. En [47, 48, 8]
se consideran métricas adaptadas más generales. El primer resultado importante
de la Parte 2 es el siguiente.

Teorema I. Con la notación anterior, se cumplen las siguientes propiedades:

(i) dmin/max es discreto.
(ii) Sean 0 ≤ λmin/max,0 ≤ λmin/max,1 ≤ · · · los autovalores de ∆min/max,

repetidos de acuerdo a sus multiplicidades. Entonces hay algún θ > 0 tal
que lim infk λmin/max,k k

−θ > 0.

La discreción de dmin es esencialmente debida a J. Cheeger [13, 14]. Teo-
rema I-(ii) es una versión débil de la fórmula asintótica de Weyl (véase por ejemplo
[54, Teorema 8.16]). La teoŕıa eĺıptica para el caso de variedades conformalmente
cónicas fue estudiada en [12, 39], y una versión no conmutativa del teorema del
ı́ndice para pseudo-variedades cónicas se da en [19].

Una función diferenciable f en M se denomina relativamente admisible cuando
las funciones |df | y |Hess f | están acotadas. En este caso, f podŕıa no tener exten-
siones continuas a M , pero tiene una extensión continua a la compleción métrica
(por componentes) M̂ de M . Entonces tiene sentido decir que x ∈ M̂ es un punto
relativamente cŕıtico de f cuando hay una sucesión (yk) en M tal que limk yk = x

en M̂ y limk |df(yk)| = 0. Para decir que f es una función relativamente de Morse
en M , debeŕıa requerirse también que Hess f sea “relativamente no degenerado” en
cada punto relativamente cŕıtico x, pero no existe un “lema relativamente Morse”.
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Aśı que, en vez de eso, requerimos la existencia de un modelo local de M̂ centrado
en x de la forma Rm+ × Rm− × c(L+)× c(L−) tal que:

• M corresponde al estrato Rm+×Rm−×M+×M−, donde M± es un estrato
de c(L±); y

• f corresponde a una constante más la función modelo 1
2 (ρ2

+ − ρ2
−) en

Rm+×Rm−×M+×M−, donde ρ± es la función canónica en Rm±×c(L±).
O bien M± es el estrato vértice {∗±} de c(L±), o bien M± = N± × R+ para
algún estrato N± de L±; en el segundo caso, sea n± = dimN±. Este modelo local
tiene sentido porque el producto de dos estratificaciones de Thom-Mather se puede
dotar con una estructura de Thom-Mather; en particular, el producto de dos conos
se convierte en un cono. No existe una elección canónica de una estructura producto
de Thom-Mather, pero todas ellas tienen las mismas métricas adaptadas.

Para cada punto cŕıtico relativo x de f como antes y cada r ∈ Z, se define
νrx,min/max de la forma siguiente. Si M+ = N+ × R+ y M− = N− × R+, entonces
sea

νrx,min/max =
∑
r+,r−

β
r+
min/max(N+)βr−min/max(N−) ,

donde (r+, r−) recorre el subconjunto de Z2 determinado por las condiciones:

r = m− + r+ + r− + 1 ,

r+ ≤


n+
2 − 1 si n+ es par
n+−3

2 si n+ es impar, en el caso de c.i.f. mı́nima
n+−1

2 si n+ es impar, en el caso de c.i.f. máxima ,

r− ≥


n−
2 si n− es par
n+−1

2 si n− es impar, en el caso de c.i.f. mı́nima
n−+1

2 si n− es impar, en el caso de c.i.f. máxima ,

En los otros casos, se modifica la definición de νrx,min/max como sigue. Si M+ = {∗+}
y M− = N− × R+, entonces se suprime todo lo referente a r+, N+ y n+, tomando
r = m− + r− + 1. Si M+ = N+ × R+ y M− = {∗−}, entonces se suprime todo lo
referente a r−, N− y n−, tomando r = m− + r+. Si M+ = {∗+} y M− = {∗−},
entonces se define3 νrx,min/max = δr,m− . Finalmente, sea νrmin/max =

∑
x ν

r
x,min/max,

donde x el conjunto de puntos relativamente cŕıticos de f . El segundo resultado
principal de la Parte 2 es el siguiente.

Teorema J. Con la notación anterior, se tienen las desigualdades

β0
min/max ≤ ν

0
min/max ,

β1
min/max − β

0
min/max ≤ ν

1
min/max − ν

0
min/max ,

β2
min/max − β

1
min/max + β0

min/max ≤ ν
2
min/max − ν

1
min/max + ν0

min/max ,

etc., y la igualdad
χmin/max =

∑
r

(−1)r νrmin/max .

3Se usa la delta de Kronecker.
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También se demuestra la existencia de funciones relativamente de Morse. Por
ejemplo, para cualquier acción diferenciable de un grupo de Lie compacto G en una
variedad diferenciable cerrada M , cualquier función de Morse-Bott invariante en
M cuyas variedades cŕıticas son órbitas induce una función relativamente de Morse
en G\M ; esto proporciona una rica familia de ejemplos en los que el Teorema J se
puede aplicar.

Para demostrar el Teorema I, se muestra primero que las propiedades enuncia-
das son “relativamente locales” (Caṕıtulo 10), y es bien conocido que son invari-
ables por quasi-isometŕıas. Entonces el espectro se estudia para los modelos locales
Rm×N ×R+ con las métricas modelo g0 +ρ2g̃+ (dρ)2, asumiendo que el resultado
se cumple para N con g̃ por inducción. De hecho, por el principio mini-max, es
suficiente hacer este argumento para la c.i.f. mı́nima/máxima ds,min/max de la per-
turbación de Witten ds (s > 0) de d definida por cualquier función relativamente de
Morse [68]; el laplaciano definido por ds,min/max se denota por ∆s,min/max. De esta
forma, la demostración del Teorema I se convierte en un paso de la demostración
del Teorema J usando el método anaĺıtico de E. Witten; especialmente, según se
describe en [54, Caṕıtulos 9 y 14].

Una parte de ese método es el análisis local alrededor de los puntos relativa-
mente cŕıticos; más expĺıcitamente, el análisis espectral del laplaciano perturbado
∆s,min/max definido con las funciones modelo 1

2 (ρ2
+−ρ2

−) en Rm+×Rm−×M+×M−.
Por la versión de la fórmula de Künneth para complejos de Hilbert [11], este estudio
se puede reducir al caso de las funciones ± 1

2ρ
2 en N × R+, donde ρ es la función

canónica de c(L). Entonces la descomposición espectral discreta deN con g̃ es usada
para descomponer la perturbación de Witten del complejo de de Rham de N ×R+

en suma directa de complejos eĺıpticos simples de dos tipos (Caṕıtulos 11, 14 y 15),
cuyos laplacianos están dados por la perturbación del oscilador armónico en R+

estudiada en la Parte 1, relacionada con el oscilador armónico de Dunkl. Se finaliza
obteniendo las propiedades espectrales de ∆s,min/max que se necesitan para describir
la “contribución cohomológica” de los puntos relativamente cŕıticos (Caṕıtulo 19,
Sección 3).

Otra parte de la adaptación del método de Witten es la demostración de la
“contribución cohomológica nula” lejos de los puntos relativamente cŕıticos. En
esta parte, algunos argumentos de [54, Caṕıtulo 14] no se pueden usar porque
no hay una versión del teorema de embebimiento de Sobolev con los espacios de
SobolevWm(∆min/max) definidos con ∆min/max; tal resultado podŕıa ser cierto, pero
la forma usual de probarlo no funciona ya que Wm(∆min/max) puede depender de la
elección de la métrica adaptada (Caṕıtulo 21). Por tanto se aplica un nuevo método
en esa parte de la demostración (Caṕıtulo 19, Sección 2), que usa fuertemente el
Teorema I-(ii).

Extendiendo f a M̂ , se puede considerar el Teorema J como desigualdades de
Morse en la estratificación de Thom-Mather M̂ . En este sentido, seŕıa interesante
compararlo con las desigualdades de Morse probadas por Goresky-MacPherson [30,
Caṕıtulo 6, Sección 6.12], donde consideran homoloǵıa intersección con perversidad
media inferior de variedades anaĺıticas complejas con estratificaciones de Whitney.
Otra demostración anaĺıtica de desigualdades de Morse fue hecha por U. Luwig
[41, 42, 43] para el caso especial de variedades conformemente cónicas, pero sus
funciones admisibles y de Morse son diferentes de las nuestras: la norma de sus
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diferenciales no se aproxima a cero alrededor de la frontera del estrato, y la norma
de su hessiano puede no estar acotada.

En el futuro, esperamos poder extender este trabajo al caso de otras métricas
adaptadas (las consideradas en [47, 48, 8], o incluso más generales); en el caso
de dmin con las métricas adaptadas de [47, 48, 8], se obtendŕıan desigualdades de
Morse para la homoloǵıa intersección con perversidad arbitraria. Esto requerirá el
estudio de una perturbación del oscilador armónico en R+ más general que en la
Parte 1.

También es natural intentar extender este trabajo a “funciones relativamente
Morse-Bott”, en las que el conjunto relativamente cŕıtico esté formado por “sube-
stratificaciones de Thom-Mather relativamente cŕıticas y relativamente no degen-
eradas”.
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