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Abstract

In the first part, eigenfunction estimates and embedding results are proved for
the Dunkl harmonic oscillator on the line. These kind of results are generalized to
operators on Ry of the form P = —% + sa? — 2f1% + fa, where s > 0, and f;
and f, are functions satisfying fo = o(0 — 1)2=2 — f2 — f] for some o > —1/2.

The second part contains the main result, which is a version of Morse inequal-
ities for the minimum and maximum ideal boundary conditions of the de Rham
complex on strata endowed with adapted metrics, where compact Thom-Mather
stratifications are considered. An adaptation of the analytic method of Witten is
used in the proof. The local analysis is reduced to the study of the operator P of
the first part.






Introduction

The main goal of this work is to use Witten’s perturbation method to prove a
version of Morse inequalities for the minimum and maximum ideal boundary con-
ditions of the de Rham complex on strata, endowed with adapted metrics, where
compact Thom-Mather stratifications are considered. For that purpose, we study
first eigenfunction estimates and embedding results for the Dunkl harmonic oscil-
lator on the line, which are generalized to other related operators on Ry. The
study of these operators is the key ingredient in our local analysis of the Witten’s
perturbation.

Thus this thesis has two main parts, Parts 1 and 2. Part 1 is devoted to the
study of eigenfunction estimates and embedding results for the Dunkl harmonic
oscillator and related operators. Part 2 deals with the Witten’s perturbation on
strata, where the first part is used.

This work is published in the preprints [1, 2].

Let us introduce those chapters separately and state their main results.

Eigenfunction estimates and embedding theorems

The Dunkl operator T, on C*°(R), depending on some o > —1/2, is the per-
turbation of the usual derivative that can be defined by setting T, = % on even
functions and T, = % + 20% on odd functions. This kind of operator, more gen-
erally on R”, was introduced by C.F. Dunkl [21, 22, 23, 24, 25]. It gave rise to
what is now called Dunkl theory (see the survey article [57]). This area had a big
development in the last years, mainly due to its applications in Quantum Calogero-
Moser-Sutherland models (see e.g. [10, 52, 37, 38, 61, 3, 4]). In particular, the
Dunkl harmonic oscillator [55, 26, 50, 49] is L, = —T2 + sx?, depending on s > 0;
i.e., it is given by using T, instead of d/dx in the expression of the usual harmonic
oscillator H = f% + s22.

On the other hand, let py (k € N, including zero') is the sequence of orthog-
onal polynomials for the measure e’”2|x|2" dx, taken with norm one and posi-
tive leading coefficient. Up to normalization, these are the generalized Hermite
polynomials [59, p. 380, Problem 25]; see also [16, 20, 27, 17, 55, 56]. Let
Tk < Tpp—1 < -+ < zk,1 denote the roots of each py; in particular, zy, /2 is the
smallest positive root if k is even. The corresponding generalized Hermite functions
are ¢y = pre 5 /2.

It is known that L, with domain the Schwartz space S = S(R), is essentially
self-adjoint in L2(R, |2|?? dz). Moreover the spectrum of its self-adjoint extension,
denoted by L., consists of the eigenvalues (2k + 1 + 20)s, with corresponding
eigenfunctions ¢y.

lwe adopt the convention 0 € N.



4 INTRODUCTION

We show asymptotic estimates of the functions ¢y as k — oo, which are used
to prove embedding theorems, and these results are extended to other related per-
turbations of H. Even though we consider only the Dunkl harmonic oscillator on
the line to begin with, this work is more difficult than in the case of H, and has
some new features. It may also give a hint of how to proceed for higher dimension.

To get uniform estimates, we consider the functions & = |z|” ¢y instead of ¢y.
They satisfy the equation & +¢x&, = 0, where g, = (2k+1+20)s—s?2% —7,2~2 with
o, = a(o—(—1)%). Let I, = ¢ 1(R,) (the oscillation region), which is of the form:
(=bg, —akr) U (ag, bg) if a > 0 (for k > 0), (—bg,bg) if 5 =0, or (—bg,0) U (0, by)
if 5, < 0, where by > a > 0 with b, € O(k'/?) and a, € O(k~'/?) as k — oo.
If 6, > 0, then set j\k = fk When 75, < 0 and k is large enough, the equation
qx(b) = 47 /b? has two positive solutions, by, < by _, with by y € O(k~'/2). Then
set jk = (—bg, —br,+] U [bk,+, br). The first important estimate proved in Part 1 is
the following.

THEOREM A. There exist C,C',C" > 0, depending on o and s, such that, for
k>1:

(i) €2(x) < C/\/qr(x) for all x € Jy ;
(i) if k is odd or o > 0, then &2(z) < C'k~/S for allx € R ; and
(iil) if k is even and o < 0, then & (x) < C"k~Y/6 if |x| > Th /2

In the case of Theorem A-(iii), the estimate of & cannot be extended to R\ {0}
because these functions are unbounded near zero. Therefore some condition of the
type |z| > xj /2 must be assumed; the meaning of this condition is clarified by
pointing out that zy /2 € O(kil/z) as k — oo. This weakness is complemented by
the following result.

THEOREM B. Suppose that o < 0. There exist C"' > 0, depending on o and s,
such that ¢%(x) < C" for all k even and all x € R.

The following theorem asserts that the type of asymptotic estimates of Theo-
rem A-(ii),(iii) are optimal.

THEOREM C. There exist CUV) CV) > 0, depending on o and s, such that,
fork >1:

(i) max,er &7 (2) > CUVIE=Y/6; and,
(ii) if k is even and o < 0, then maxX|y|>z, , & (z) > CWME=1/6,

To prove Theorems A-C, we apply the method that Bonan-Clark have used
with H [6]. The estimates are satisfied by the functions £ instead of ¢ because
the method can be applied to the conjugation K, = || L, |2|~. This method has
two steps: first, it estimates the distance from any point = in an oscillation region to
some root x, ;, and, second, the value of £2(z) is estimated by using |z —x ;|. These
computations for K, become much more involved than in [6]; indeed, several cases
are considered separately, some of them with significant differences; for instance,
some roots z3; may not be in the oscillation region 7 k, and the functions £ may
not be bounded, as we said.

The asymptotic distribution of the roots xj ; as k — oo also has a well known
measure theoretic interpretation [28, 62, 63]; specially, the generalized Hermite
polynomials are considered in [62, Section 4]. However the weak convergence of
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measures considered in those publications does not seem to give the asymptotic
approximation of the roots needed in the first step.

For each m € N, let 8™ be the Banach space of functions ¢ € C™(R) with
sup, [7°¢V) (z)| < oo for i+ j < m; thus S = (), S™ with the corresponding
Fréchet topology. On the other hand, for each real m > 0, let W* be the version
of the Sobolev space obtained as Hilbert space completion of S with respect to the
scalar product defined by (¢, ¥)wmn = ((1+ L;)"¢,v)s, where (, ), denotes the
scalar product of L*(R, |z|?? dz). Let also W° =), W2* with the corresponding
Fréchet topology. The subindex ev/odd is added to any space of functions on R to
indicate its subspace of even/odd functions. The following embedding theorems are
proved in Part 1; the second one is a version of the Sobolev embedding theorem.

M ! . .
THEOREM D. For each m > 0, chﬂ)ae&'/‘jdd - W;nev/odd continuously? if m’ €
N, m'—m >1/2, and

3m’ m’ 1 'y
Moy evjodd = 4 520 1 [0]([o] +3)+ [o] ifo >0 andm' is even
' R if 0 <0 and m’ is even ,
Moo — %4_%[01([0]-}3)4-(0} if 0 >0 and m' is odd
’ Sm +1 if 0 <0 and m' is odd,
3m/+1 m'+1 1 > '
Y b 5 7-|- = lol([o]+3)+ o] ifo >0 andm' is odd
' mTJF if o0 <0 and m' is odd .

THEOREM E. For all m € N, W;”/ C 8™ continuously if

m —m > {4+§f‘ﬂ(ﬂﬂ+l) ifo >0
4 ifo<0.

Moreover W™ < 8 continuously if o < 0 and m’ > 2.

o,ev

COROLLARY F. § = Wg2° as Fréchet spaces.

In other words, Corollary F states that an element ¢ € L*(R, |z|*? dz) is in S
if and only if the “Fourier coefficients” (¢, ¢ ), are rapidly decreasing on k. This
also means that S = (), D(£™) (the smooth core® D>(L™)) because the sequence
of eigenvalues of L, is in O(k) as k — oo.

We introduce a perturbed version 87" of every S™ (Chapter 3), whose definition
involves T, instead of % and is inspired by the estimates of Theorems A and B.
They satisfy much simpler embedding results (Chapter 4): Sf,"/ cWwWritm' —m >
1/2, and W' c 8™ if m’ —m > 1. The proof of the second embedding uses the
estimates of Theorems A and B. Even though S =(1,, S.*, the inclusion relations
between the spaces SJ* and S™ are complicated, which motivates the complexity
of Theorems D and E.

2Let X and Y be topological vector spaces. It is said that X C Y continuously if X is a
linear subspace of Y and the inclusion map X < Y is continuous.

3Recall that a core of a closed densely defined operator T between Hilbert spaces is any
subspace of its domain D(T') which is dense with the graph norm. If T is self-adjoint, then
D>®(T) = N>y D(TF) is a core for T, which is called its smooth core [11].
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Next, we consider other perturbations of H on Ry (Chapter 5). Let Sev,u
denote the space of restrictions of even Schwartz functions to some open set U, and
set ¢, = ¢r|y. The notation Sey,+ and ¢y 4+ is used if U = Ry.

THEOREM G. Let
d
P:H_2f1%+f2 (1)

where fi € CY(U) and fy € C(U) for some open subset U C R, of full Lebesgue
measure. Assume that

fr=o(o =127 = ff - fi (2)
for some o > —1/2. Let
h=a% | (3)
where Fy € C?(U) is a primitive of fi. Then the following properties hold:

(1) P, with domain hSey v, is essentially self-adjoint in L*(R, e dz);

(ii) the spectrum of its self-adjoint extension, denoted by P, consists of the
eigenvalues (4k + 1 + 20)s (k € N) with multiplicity one and normalized
eigenfunctions \@hgb%,y; and

(iii) the smooth core of P is hSev .

This theorem follows by showing that the stated condition on f; and fs charac-
terizes the cases where P can be obtained by the following process: first, restricting
L, to even functions, then restricting to U, and finally conjugating by h. The
term of P with % can be removed by conjugation with the product of a positive
function, obtaining the operator H + (o — 1)x72.

Several examples of such type of operator P are given. For instance, we get
the following.

COROLLARY H. Let P = H — 20150*1% + cox ™2 for some c1,co € R. If there
is some a € R such that

a4+ (2c; —1)a—cy =0, (4)
ci=a+c >-1/2, (5)

then:

(i) P, with domain % Sey +, is essentially self-adjoint in L*(R,z?* dz);
(ii) the spectrum of its self-adjoint extension, denoted by P, consists of the
eigenvalues (4k + 1 + 20)s (k € N) with multiplicity one and normalized
eigenfunctions \/§xa¢2k,+; and
(iii) D®(P) = 29 Sey .

In Corollary H, for some c¢1,c2 € R, there are two values of a satisfying the
stated condition, obtaining two different self-adjoint operators defined by P in
different Hilbert spaces. For instance, the Dunkl harmonic oscillator L, may define
self-adjoint operators even when o < —1/2.

Corollary H will be applied in Part 2 to prove our Morse inequalities on strata
of compact Thom-Mather stratifications with adapted metrics.
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Witten’s perturbation on strata

A Hilbert complex [11] is a differential complex given by a densely defined
closed operator d in a graded separable Hilbert space $). The corresponding Lapla-
cian A = dd* + d*d is a self-adjoint operator in §). It is said that d is discrete
when A has a discrete spectrum?; in particular, its homology is of finite dimension
by a version of the Hodge decomposition.

Let (20(M), d) be the compactly supported de Rham complex of a Riemannian
manifold M. Its Hilbert complex extensions in L2 (M) (the graded Hilbert space of
square integrable differential forms) are called its ideal boundary conditions (i.b.c.).
There is a minimum i.b.c., dpin = d, and a maximum i.b.c., dyax = 6%, where § is
de Rham coderivative acting on (M ). The Laplacian defined by dyin/max is de-
noted by Apin/max- It is well known that dmin = dmax if M is complete, but suppose
that M may not be complete. The i.b.c. dyin/max defines the min/max-cohomology
H3 i jmax (M), min/max-Betti numbers 81, 0 = By max (M), and min/max-
Euler characteristic Xmin/max = Xmin/max(M) (if the min/max-Betti numbers are
finite); these are quasi-isometric invariants of M. These concepts can indeed be
defined for arbitrary elliptic complexes [11].

From now on, assume that M is a stratum of a compact Thom-Mather stratifi-
cation A [60, 44, 45, 64]. Roughly speaking, around each z € M, there is a chart
of A with values in a product R™ x ¢(L), where:

e L is a compact Thom-Mather stratification of lower depth, and ¢(L) =
L x [0,00)/L x {0} (the cone with link L);

e x corresponds to (0, x), where * is the vertex of ¢(L); and,

e near ¥, M corresponds to R™ x M’ for some stratum M’ of ¢(L).

We have, either M’ = N x Ry for some stratum N of L, or M’ = {x}. Note that
x € M just when M’ = {x}. Let p : ¢(L) — [0,00) be the canonical function
induced by the second factor projection L X [0,00) — [0, 00). The sum of p and the
norm of R™ will be also called the canonical function of R™ x ¢(L).

Endow M with a Riemannian metric g, which is adapted in the following sense
defined by induction on the depth of M [13, 14]: there is a chart around each
x € M\ M as above such that g is quasi-isometric to a model metric of the form
go+p2g+ (dp)? on R™ x N x R, , where go is the Euclidean metric on R™ and § an
adapted metric on N; this g is well defined since depth N < depth M. Note that g
may not be complete. More general adapted metrics are considered in [47, 48, 8].
The first main result of Part 2 is the following.

THEOREM 1. With the above notation, the following properties hold:
(1) dimin/max s discrete.
(ii) Let 0 < Amin/max,0 < Amin/max,1 < --- be the eigenvalues of Amin/max;

repeated according to their multiplicities. Then there is some 8 > 0 such
that iminfy Apin/max,k k=0 > 0.

The discreteness of dyiy is essentially due to J. Cheeger [13, 14]. Theorem I-(ii)
is a weak version of the Weyl’s assymptotic formula (see e.g. [54, Theorem 8.16]).
Elliptic theory for the case of conformally conic manifolds was studied in [12, 39],

4Recall that a self-adjoint operator has a discrete spectrum when there is no essential spec-
trum; i.e., the spectrum consists of eigenvalues with finite multiplicity without accumulation
points.
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and a non-commutative index theorem for the case of conical pseudo-manifolds is
given in [19].

A smooth function f on M is called relatively admissible (or rel-admissible)
when the functions |df| and |Hess f| are bounded. In this case, f may not have
any continuous extension to M but it has a continuous extension to the (compo—
nentwise) metric completion M of M. Then it makes sense to say that x € M is
a rel-critical point of f when there is a sequence (yi) in M such that limg yp, = x
in M and limg |df (yx)| = 0. To say that f is a rel-Morse function on M, it should
be also required that Hess f is “rel-non-degenerate” at each rel-critical point x, but
a “rel-Morse lemma” is missing. Thus, instead, we require the existence of a local
model of M centered at x of the form R™+ x R™- x ¢(L4) x e(L_) so that:

e M corresponds to the stratum R™+ x R™- x My x M_, where My is a
stratum of ¢(Ly); and

e f corresponds to a constant plus the model function 1 (p+ p%) on R™+ x
R™- x My x M_, where p. is the canonical functlon on R™= x ¢(Ly).

Either My is the vertex stratum {x1} of ¢(Li), or My = Ni x Ry for some
stratum Ny of Ly; in the second case, let n4 = dim N4. This local model makes
sense because the product of two Thom-Mather stratifications can be endowed with
a Thom-Mather structure; in particular, the product of two cones becomes a cone.
There is no canonical choice of a product Thom-Mather structure, but all of them
have the same adapted metrics.

For each rel-critical point = of f as above and every r € Z, define v/, min /max in
the following way. If My = Ny x Ry and M_ = N_ x Ry, then let
T
Vx ,min/max — Z ﬁmm/max )ﬂmin/max(N_) ’
T4, —
where (r,,r_) runs in the subset of Z? determined by the conditions:
r=m_+ry+r_+1, (6)
%= —1 if ng is even
ry < me_?’ if ny is odd, in the minimum i.b.c. case (7)
n+T71 if ny is odd, in the maximum i.b.c. case ,
5 if n_ is even
r_ > n+T71 if n_ is odd, in the minimum i.b.c. case (8)
n_—+1

5 if n_ is odd, in the maximum i.b.c. case ,

If My ={s}and Mo = N_ xRy let vy oo, =30 ﬁmm/max( +), where
runs in the the set of integers satisfying r = m_ +r4 and (7). If My = Ny x Ry
and M_ = {s_}, let v o = =3 ﬁmm/max( _), where r_ runs in the the set
of mtegers satisfying r = m_ +r_ + 1 and (8). If My = {4} and M_ = {x_},
let® v vy mm/m&x =4, m_. Finally, let l/mm/max =2 V;,min/max’ where x runs in the
rel-critical point set of f. The second main result of Part 2 is the following.

5Kronecker’s delta is used.
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THEOREM J. With the above notation, we have the inequalities

0

0
min/max v

min/max ?

1 0 1
min/max ﬁmin/max < Vmin/max ~ Ymin/max >

2 1 1 0

0 2
min/max ~ ~min/max + 6min/max < Vmin/max - Vmin/max + Vmin/max ’

etc., and the equality
Xmin/max = Z(_l)r Vr;in/max :

T

We also show that the existence of rel-Morse functions. For instance, for any
smooth action of a compact Lie group G on a closed manifold M, any invariant
Morse-Bott function on M whose critical manifolds are orbits induces a rel-Morse
function on G\ M; this provides a rich family of examples where Theorem J can be
applied.

To prove Theorem I, it is first shown that the stated properties are “rel-local”
(Chapter 10), and it is well known that they are invariant by quasi-isometries.
Then the spectrum is studied for the local models R™ x N x Ry with the model
metrics g + p2g + (dp)?, assuming that the result holds for N with § by induction.
In fact, by the min-max principle, it is enough to make this argument for the
minimum/maximum i.b.c. dg min/max 0of the Witten’s perturbation d, (s > 0) of
d defined by any rel-Morse function [68]; the Laplacian defined by d; min/max 18
denoted by A, min/max- In this way, the proof of Theorem I becomes a step in the
proof of Theorem J by using the analytic method of E. Witten; specially, as it is
described in [54, Chapters 9 and 14].

A part of that method is a local analysis around the rel-critical points; more
explicitly, the spectral analysis of the perturbed Laplacian A, min/max defined with
the model functions §(p% — p2) on R™+ x R™- x M, x M_. By the version
of the Kiinneth formula for Hilbert complexes [11], this study can be reduced to
the case of the functions i%pZ on N x R, where p is the canonical function of
¢(L). Then the discrete spectral decomposition for N with g is used to split the
Witten’s perturbation of the de Rham complex of N xR into direct sum of simple
elliptic complexes of two types (Chapters 11, 14 and 15), whose Laplacians are given
by the perturbation of the harmonic oscillator on R studied in Part 1, which is
related to the Dunkl harmonic oscillator. We end up with the spectral properties of
A min/max needed to describe the “cohomological contribution” from the rel-critical
points (Chapter 19, Section 3).

Another part of the adaptation of Witten’s method is the proof of the “null
cohomological contribution” away from the rel-critical points. In this part, some
arguments of [54, Chapter 14] cannot be used because there is no version of the
Sobolev embedding theorem with the Sobolev spaces W™ (Anyin/max) defined with
Amin/max; such a result may be true, but the usual way to prove it does not work
since W™ (Amin/max) may depend on the choice of the adapted metric (Chapter 21).
Therefore a new method is applied in that part of the proof (Chapter 19, Section 2),
which uses strongly Theorem I-(ii).

By extending f to M , Theorem J can be considered as Morse inequalities on the
Thom-Mather stratification M. In this sense, it would be interesting to compare it
with the Morse inequalities of Goresky-MacPherson [30, Chapter 6, Section 6.12],
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where they consider intersection homology with lower middle perversity of complex
analytic varieties with Whitney stratifications. Another analytic proof of Morse
inequalities was made by U. Luwig in [41, 42, 43] for the special case of conformally
conic manifolds, but her admissible and Morse functions are different from ours:
the norm of their differential is bounded away from zero around the frontier of the
stratum, and the norm of their Hessian may be unbounded.

In the future, we hope to extend this work to the case of other types of adapted
metrics (those considered in [47, 48, 8], or even more general ones); in the case of
dmin with the adapted metrics of [47, 48, 8], it would give Morse inequalities for
the intersection homology with arbitrary perversity. This will require the study of
a perturbation of the harmonic oscillator on R4 more general than in Part 1.

It is also natural to try to extend this work to the case of “rel-Morse-Bott
functions”, where the rel-critical point set consists of “rel-non-degenerate rel-critical
Thom-Mather substratifications”.

ACKNOWLEDGMENT. We thank F. Alcalde for pointing out a mistake in a
different previous version of the thesis, dealing with Morse inequalities for orbit
spaces, which led us to study the version of this work. We thank Y.A. Kordyukov
and M. Saralegui for helpful conversations on topics of this work. We also thank
MathOverflow user R. Israel for answering a question concerning a part of this
work. Finally, we thank R. Sjamaar for indirectly helping us (via M. Saralegui).
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Eigenfunction estimates and
embedding theorems






CHAPTER 1

Preliminaries on the Dunkl harmonic oscillator

Most of the contents of this section are taken or adapted from [55].

1. Dunkl operator

Recall that, for any ¢ € C° = C*°(R), there is some ¢y € C* such that
¢(x) — $(0) = zp(x), which also satisfies

9 (@) = / 7o (1) dt ©)

for all m € N (see e.g. [36, Theorem 1.1.9]). The notation 1) = 2~ 1¢ is used.
The Dunkl operator, in the case of dimension one, is the differential-difference
operator T, on C*°, depending on a parameter o € R, defined by

(1,6)(w) = ¢'(2) + 20 XD =)

It can be considered as a perturbation of the derivative operator %.

Consider the decomposition C° = C @ C554, as direct sum of subspaces
of even and odd functions. The matrix expressions of operators on C*° will be
considered with respect to this decomposition. The operator of multiplication by a

function h will be denoted also by h. We can write

i_()% x_()a:
dx_%O’_xO’

0 <L 420z! d 0 z!
= dx -
To (df; 0 A (I

on C*°. With
c 0
=5 %)
we have
[Ty, 2] =1+2%, (10)
T.X+YXT,=zX+Xx=0. (11)

Consider the perturbed factorial m!, of each m € N, which is inductively defined
by setting 0!, = 1, and

— (m—1l,m if m is even
7 (m=1)(m+20) if mis odd

for m > 0. Observe that m!, > 0if 0 > —1/2, which will be the case of our interest;
otherwise, m!, may be < 0. For k < m, even when k!, = 0, the quotient m!,/k!,

13
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can be understood as the product of the factors from the definition of m!, which
are not included in the definition of k!,. For any ¢ € C*° and m € N, we have

(I7°6)(0) = "2 ) (0) (12)

This equality follows by (9) and induction on m.

2. Dunkl harmonic oscillator

Recall that, for dimension one, the harmonic oscillator, and the annihilation
and creation operators are

d? 5 9 d , d
H:—@—&—sx, A:sx—k%, A:sx—%
on C*°. By using T, instead of d/dx, we get a perturbations of H, A and A’ called
Dunkl harmonic oscillator, and Dunkl annihilation and creation operators:

1 d
L:—T3—|—82x2=H—20(x dz d0—1> )
O %x

0 !

Bsx+Tc,A+20(O O>
; o 0 z7!

B =sz—-T,=A 20(0 0 .

By (10) and (11),

L=BB —(1+2X)s=B'B+ (1+2%X)s= %(BB’ + B'B), (13)
[L,B]=—-2sB, [L,B']=2sB, (14)

[B, B'] = 2s(1+2%) , (15)
[L,YX]=BY+YXB=BY+XB =0. (16)

Recall also that the Schwartz space S = S(R) is the space of functions ¢ € C*>
such that

1]

o= 3 suplaiet)(z)]
itj<m 7

is finite for all m € N. This defines a sequence of norms || ||sm on S, which is
endowed with the corresponding Fréchet topology. The Banach space completion
of 8 with respect to each norm || ||sm will be denoted by S™. We have S™*1 c S™
continuously, and S =("),, ™. Let us remark that ||¢'||sm < ||@||sm+1 for all m.

The above decomposition of C'° can be restricted to each §™ and S, giving
Sm =81 eS8, and § = Seyv @ Soad- The matrix expressions of operators on &
will be considered with respect to this decomposition. For ¢ € C°, 1 = 214 and
1,7 € N it follows from (9) that

1
ERDEAES] S/ 70| (tz) ¢ (t2) | dt < sup [y eV ()
0 yER

for all x € R. Thus |[¢|sm < ||¢||sm+1 for all m € N, obtaining that Spqq =  Sev
and 7! : Cq — O restricts to a continuous operator z7l  Soqd — Sev.
Therefore = : Sey — Seaq is an isomorphism of Fréchet spaces, and T,, B, B’ and
L define continuous operators on S.
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Let (, ), and || ||, denote the scalar product and norm of L3(R, |z|? dz). As-
sume from now on that o > —1/2, and therefore S is a dense subset of L(R, |z|?? dz).
In L?(R,|z|? dz), with domain S, —T, is adjoint of T,, B’ is adjoint of B, and
L is essentially self-adjoint. The self-adjoint extension of L, with domain S, will
be denoted by L, or L,. Its spectrum consists of the eigenvalues (2k + 1 + 20)s
(k € N). The corresponding normalized eigenfunctions ¢y, are inductively defined
by

(bO — 8(20+1)/41—\(g + 1/2)—1/26—sx2/2 , (17)
by = (2ks)~Y2B'¢p_4 if k is even (18)
"T @k + 20)s) V2 B¢y if k is odd
for kK > 1. We also have
B¢0 =0 ) (19)
By — (2ks) /2 ¢y if k is even (20)
T @k + 20)s) 205y if ks odd

for k > 1. These assertions follow from (13)—(16) like in the case of H.

3. Generalized Hermite polynomials

From (17), (18) and the definition of B’, it follows that the functions ¢y are

—sz?/2

the generalized Hermite functions ¢ = pge , where p; is the sequence of

polynomials inductively defined by

po = sV (0 +1/2)71/2 (21)
B (2ks)’1/2(23xpk,1 —Topk-1) if k is even (22)
k= (2(k +20)8) "2 (2sxpp_1 — Typr—1) if k is odd ,

for £ > 1. Up to normalization, these are the generalized Hermite polynomials; i.e.,
the orthogonal polynomials associated with the measure \x|2”e_s‘”2 dx [59, p. 380,
Problem 25]. Each py, is of precise degree k, even/odd if k is even/odd, and with
positive leading coefficient, denoted by ~v¢. By (22),

E=1/2(25)Y 2,4 if k is even
Ve = —1/2 1/2 . . (23)
(k+20) (28)1%y,—1 if kis odd .
We also have
To'po =0 5 (24)
2ks) ' 2py_ if k& is even
Topr = ( ) Pr 11/2 . . (25)
(2(k 4+ 20)s)#pr—1 if k is odd .
The following recursion formula follows directly from (22) and (25):
B k:_l/Q((Qs)l/zxpk_l —(k—1420)"%py_5) if kis even (26)
PEZ e+ 20) 12 ((28) Y 2apiy — (k— 1)Y2p_s) i ki is odd .
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We have pg(0) = 0 if and only if & is odd, and p},(0) = 0 if and only if k is even.
By (26) and induction on k,

pr(0) = (_1>k/2\/(k 14+20)(k—3+20) - (14 20)

RE—2) 2 Po (27)

if k is even. When k is odd, by (25) and (27),

(Typi)(0) = (—U““‘”/Q\/ e S

obtaining

(28)

po (D) ®D2 (k4 20)(k— 24 20) -+ (1 + 20)2s
p(0) = =77 \/ (k—1)(k—3)--2 Po

by (12). From (26) and by induction on k, we also get

-1 k—t=1 (k—1)(k—3)---(£+2)2s
vope= (=1 \/ (29)
" zqo;k_l} (k+20)(k—2+20) - ({+1+20) "

if k is odd®.

The following assertions come from the general theory of orthogonal polynomi-
als [59, Chapter III]. All zeros of each polynomial pj are real and of multiplicity
one. Each open interval between consecutive zeros of p; contains exactly one zero
of prpy1, and at least one zero of every p, with £ > k. Moreover p; has exactly
| k/2]| positive zeros and | k/2] negative zeros. The zeros of each pj will be denoted
T > Tka > -+ > xpk. On each interval (xy 41,k ;), the function pygiq/py is
strictly increasing, and satisfies

i P (z)

For every polynomial p of degree < k — 1, we have

oo . k
PO < [ RO ey ) (30)
e =0

for all z € R. The Gauss-Jacobi formula states that there are Ay 1, Ax2,..., Apr €R
such that, for any polynomial p of degree < 2k — 1,

e} k
/ p) |27 e dz = 3" plan) i - (31)
> i=1
LEMMA 1.1. We have

2s if k is even

;2
i) Ak, =
P (i) Ak, {25/(1+20) if k is odd .

1 As a convention, the product of an empty set of factors is 1. Thus (k—1)(k—3)--- (£+2) =1
for £ = k — 1 in (29). Similarly, (27) and (28) also hold for kK = 0 and k = 1, respectively.
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PROOF. This is a direct adaptation of the proof of [6, Corollary 3]. With
_ PrPr—1
T— Tk,

the formula (31) becomes

T = ph(r)pr—r (T0) Mo
Vk—1
and the result follows from (23)—(25). O

4. Proofs of the properties of the Dunkl harmonic oscillator

For the reader’s convenience, we include in this part the formal statements and
proofs of the spectral properties of L indicated in Section 2. The polynomials py of
Section 3 are also used. The reader familiar with this type of arguments can skip
this part; there will not be any further reference to it.

LEMMA 1.2. With S as domain, —T, is adjoint of T, in L*(R, |z|*? dx).

PROOF. For ¢ € Seyen and ¢ € Spqq,

d = o
(ge00) = [ oviaas
—9 > / 20 d
/0 o' Yx? dx
=2 / ¢ 2% + 20227 da
0
— 72/ ¢(1/1' + 20:07177/1)502” dx
0

= _ /jo oY + 2027 ) |2|* dx

d
=— <¢, ( + 2090‘1) ¢> . O
dz -
COROLLARY 1.3. With S as domain, B’ is adjoint of B in L*(R, |x|** dx), and
L is symmetric in L*(R, |x|?° dx).
PRrROOF OF (19) AND (20). By (17),

Boo = sC7HV/A1((20 4+ 1) /2) 72 (w + dd) et =0,

X
Next, we proceed by induction on k > 1. By (13) and (18),
Béy = (2(1 +20)s)"'/2 BB ¢y
= (2(1+20)s)"2 (B'B 4 2(1 + 2%)s) o
= (2(1 4 20)s) "2 2(1 + 20)s¢0)
= (2(1 4+ 20)s)2 ¢y .

Now, let £ > 2 and suppose that the statement holds for ¢,_1. To simplify the
notation, let v = 1 — (—=1)%. Observe that vy = v4_; + 2 (—1)*1. Then, by (13)
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and (18) again,

= (2(k 4+ vo)s) Y2 BB ¢4

= (2(k + v40)s) Y2 (B'B +2(1 + 2%)s)dp_1

= (2(k + v£0)s) V2 ((2(k — 1 4 v4_120)8) 2B ¢ 5

+2(1+ (=1)F"20) 55 1)

= (2(k +v0)s) % (2(k — 1 + vp_120)s + 2(1 + (—1)*'20)s)dp_1
= (2(k +vp0)s) 2 gp_y . O

PRrROPOSITION 1.4. For each k € N, ¢y, is an eigenfunction of L, normalized in
L?(R, |z|?? dx), with corresponding eigenvalue (2k + 1 + 20)s.

PRrROOF. This follows by induction on k. For k =0,

Lo = |[voll; ' Lbo = |[vholl, " (Hebo — 202" 1))
= ||w0||a (14+20)stg=(1+20)s¢g ,

and ||¢ol|s = 1 because

o 0
/ e_sx2|l"20 dr = 2/ e—stxQU dr = 8—(20+1)/2 F((20’ 4 1)/2) .
—0 0

Now suppose that & > 1 and the result holds for ¢5_;. Let v = 1 — (=1)¥, like in
the proof of (19) and (20). By (13), (14), (18) and Corollary 1.3,

Loy = (2(k 4+ vio)s) Y2 LB ¢4
= (2(k + vxo)s) Y2 (B'L + 2sB")r—1
= (2(k +vx0)s) Y2 ((2(k — 1) + 14 20)s + 28)B'dp_1
=2k+1420)s¢s,
6kl12 = (2(k + vko)s) " (BB ¢p_1, fr—1)o
= (2(k + vo)s)” 1<(L+(1+2E)5)¢k 1, 0k—1)o
= 2k +v0)s) " 2(k + 0 + (=1)*to)s || ok l2
=1. O

The functions ¢, form a base of the linear subspace
P = {pe*”2/2 |pisa polynomial} cS.

The density of P in L?(R, |z|?* dz) does not follow from the general theory of
orthogonal polynomials [59, Section 3.1], and therefore a particular proof must be
given like in the case of the Hermite polynomials [59, Theorem 5.7.1].

PROPOSITION 1.5. P is dense in L*(R, |z|*? dx).
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. . . 2
PRrROOF. For each integer j > 0, let f;(z) = 27 e=5*" /2. We have

%) ) )
1512 = [ e o do

o - 4 ]
= 2/ 220+9) e 75Ty
0
= 8_1/2/ y]"'% e Y dy
0

2 1
g
sTV2(j+ o))t
where we have used the substitution y = sz2. Hence

1GA (G2 fillo < s7HA(Lo 12l 2212 N () 2
for each A\ € R because
G loll gy (3171 ot
J! J
It follows that the series

IA

r s o= (iM)
ez/\x. /222( )f]

1l
=0

19

is convergent in L*(R, |z|?? dz); indeed, it belongs to P because f; € P. Therefore

any f orthogonal to P in L?(R, |x|? dz) satisfies

/ f(.]?) ei)\m’fsmz/Z ‘1‘|20 dr =0

for all A € R, obtaining f(z) e=**"/2 |2|2? = 0 almost everywhere with respect to da

by Plancherel’s theorem. So f = 0 almost everywhere with respect to |z|? dz.

O

The following result is a direct consequence of Propositions 1.4 and 1.5, and

Corollary 1.3.

COROLLARY 1.6. With domain S, the operator L is essentially self-adjoint
in L*(R, |x|?? dx), and its spectrum consists of the eigenvalues and eigenfunctions

stated in Proposition 1.4.






CHAPTER 2

Estimates of the generalized Hermite functions

To get uniform estimates of the functions ¢, they are multiplied by |z|7,
obtaining eigenfunctions of another perturbation of H.

1. Second perturbation of H

Now, consider the perturbed derivative,

0 % + ozt
% —ozx™! 0 ’

and the perturbed harmonic oscillator,

_ H+o(oc—1)272 0
o o o _ _ 12 2 2:
K =|z|°Llz|”7 = —E; + s’z ( 0 Htolo+)a2) >

E, = |z|°T,|z|~°

defined on

|(E|US = |x‘USev S2) ‘x|080dd .
According to Sections 2 and 3 of Chapter 1, and since |z|° : L%(R, |z|?° dz) —
L?(R,dr) is a unitary isomorphism, K is essentially self-adjoint in L?(R,dr), and
the spectrum of its self-adjoint extension, denoted by /C, or K, consists of the

eigenvalues (2k+1+20)s (k € N) of multiplicity one, and corresponding normalized
eigenfunctions

w2
fk — |$|g¢k :pk|$‘06 sz*/2 )

Each & is C* on R\ {0}, and it is C*° on R if and only if c € N. If ¢ > 0 or
k is odd, then & is defined and continuous on R, and & (0) = 0. If 0 < 0 and k is
even, then & is only defined on R\ {0}; in fact, by (27),

lim &, (x) = (=1)"c0 .

By (25) and (26),

g _sx?
&= (ph+ (5 —s2) pe) laf7em /2 (32)
) (V2kspr—1 + (2 — sx)pr) |z|oe=se/2 if k is even
) (V2(k+20)spr_1 — (2 + s2)pr) z|7e=5* /2 if k is odd
(52 + D)pr — 20k + 1+ 20)s pry) |x]7e™57° /2 if k s even (33)
(s — Z)pr — /2(k +1)spry1) |z|o e /2 if k is odd .

21
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By (32), (27) and (28),

0 ifo>1loro=0
+pi(0) ifo=1
1 / =
i, () H(-1)* 200 f0<o<1
F(-1)* 200 if -1/2<0<0
if k is even,
0 ifo>0
lim € () = { 4 (0) if o =0
(-1)E=D/200 if —1/2<0 <0
if k£ is odd, and
0 if kisoddoro=0o0ro>1/2
i +p2(0)/2 if kis even and o = 1/2
tim, (6.81) () = { PO TR /
z—0% +o0 if kisevenand 0 < o < 1/2
Foo if kis even and —1/2< 0 < 0.

By (33),
& _Jsrt+ g - V2(k+1+20)s 225 if ki is even
&k S.%*%*\/Q(k‘F].)Sp;% if k is odd ,
which generalizes a formula of [31] for the Hermite functions.
For the sake of simplicity, let
or =00 — (—=1)%).
Each & satisfies
k+aée =0,
where

Qe = (2k +1+20)s — s*2% — G2 .

2. Description of ¢

The following elementary analysis of the functions g will be used in Sections 3
and 4. If k is even, then 5, =0 if 0 € {0,1}, and 5, < 0if 0 <o < 1, and 5 > 0
otherwise. When k is odd, we have 6, = 0 if 0 = 0, and o7, > 0 if 0 # 0. Each g
is defined and smooth on R just when & = 0, otherwise it is defined and smooth

only on R\ {0}. Moreover gy, is even and
q, = —25%x + 25,270

Observe that

. () I (@) —oo ifap >0
1m r)=—00, 1m xTr) =
r—Fo00 K z—0 Uk o0 ifop, <0,
t+oo if o >0
lim ¢ (z) = Foo, lim g} (x)=
r—+oo Qk( ) T z—0% qk( ) {:FOO if o < 0.

We have the following cases for the zeros of g}



2. DESCRIPTION OF gy, 23

e If 55, > 0, then ¢, has two zeros, which are

TZmax = £/ V0Ok/S,

At these points, ¢ reaches its maximum, which equals ¢y axs for
Cmax = 2k + 1+ 20 — 21/0, .

Notice that, in this case, ¢pmax = 0if & = 0 and 0 = —1/8, cpax < 0 if
k=0and —1/2 < 0 < —1/8, and ¢max > 0 otherwise.
e If 65, = 0, then ¢, has one zero, which is 0, where ¢, reaches its maximum
Cmax$S as above with ¢y =2k + 1+ 20 > 0.
e If 5, < 0, then ¢;, >0 on R_ and ¢;, < 0 on R;.
We have the following possibilities for the zeros of gy:

e If 5, > 0 and cpax > 0, then ¢ has four zeros, which are

2k4+ 1420 —\/(2k+1+420)2 — 45
*ay, = i\/ rltce \/(2 1+ 20) ok )
s

2% +1+2 2k + 1+ 20)% — 45
ibk:ﬁ:\/IH_ +20 4+ \/(2k+1+20)” — 45y,

37
55 (37)
e If 5, > 0 and cpax = 0, or 6, < 0, then g has two zeros, +by, defined
by (37).
e If 5, > 0 and cpax < 0, then ¢ < 0.
If ¢ has four zeros, +a; and +bg, then
S(bk - ak)2 = Cmax » (38)
and _
2 4Jk
2sa;, = )
2k + 1+ 20 ++/(2k +1+20)2 — 45y,
obtaining
ar € O(k™1/?) (39)
as k — oo.
If ¢ has at least two zeros, +by, then
k2 -0+ (1+20)(k—40)+0,—0
25(b2 — 12) = 2+ 4 + (14 20)( )+ 00— 0%
V2 +1+20)2 — 464 + /(20 +1+20)2 — 4oy
for ¢ < k, obtaining
bri1 —br € O(k™Y/?) (40)
as k — oo, and
b — by > C(k — 0)k™Y/? (41)

for some C > 0 if k and £ are large enough. If 55 = 0, then sb7 = ciax.

Like in [6], the maximal open intervals where gy, is defined and > 0 (respectively,
< 0) will be called oscillation (respectively, non-oscillation) intervals of &; this
terminology is justified by Lemma 2.1 bellow. We have the following possibilities
for the oscillation intervals:

e If 55 > 0 and cpax > 0, then & has two oscillation intervals, (ag,by) and
(—bg, —ak), containing Tyax and —rmax, respectively.

o If 5, > 0 and cpax < 0, then & has no oscillation intervals.

o If 5, < 0, then & has two oscillation intervals, (—by,0) and (0, by,).
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e If 5, = 0, then & has one oscillation interval, (—by, by).

3. Location of the zeros of &, and ¢,

In R\ {0}, the functions ¢, and pj have the same zeros. Then &, and ¢, have
no common zeros by (32). The functions &, and & have no zeros in R\ {0}, and
the two zeros a2 of & are in R\ {0}.

LEMMA 2.1. On R\ {0}:

() the zeros of &, belong to the oscillation intervals of &;
(ii) if k is odd or o > 0, the zeros of & belong to the oscillation intervals of
&k; and
(iii) if k is even and o < 0, the zeros of &, possibly except +xp /2, belong to
the oscillation intervals of &j.

PROOF. It is enough to consider the zeros in Ry because & is either even or
odd. We can also assume that {;§), has zeros on R, otherwise there is nothing to
prove.

Let z, and z* denote the minimum and maximum of the zeros of £}, in Ry.
By (36),

(&) =& = ar&t > 0

on the non-oscillation intervals, and therefore &4&;. is strictly increasing on those
intervals. In particular, since £,&;, is strictly increasing on (bg, 00) and (£x&},)(z) —
0 as x — oo, it follows that x* < bg. This shows the statement when there is
one oscillation interval of the form (—bg,bx). So it remains to consider the case
where there is an oscillation interval of & in Ry of the form (ag,by). This holds
when k is odd and ¢ > 0, £k = 0 and 0 € (—1/8,0) U (1,00), or k € 2Z, and
o€ (—1/2,0)U (1,00).

If k is odd and o > 0, or k is even and o € (1,00), then x, > a; because £;&),
is strictly increasing on (0, ax) and (£x&})(x) — 0 as x — 0T by (34).

Finally, assume that k € 2Z; and o € (—1/2,0). Then the above arguments
do not work because (£;¢},)(z) — —oc as  — 01 by (34). Let f be the function on
R, defined by f(z) = sz+ 2. We have f(z) - —occasz — 0%, and f' =s—% >0
on R;. Moreover y/—o/s is the unique zero of f in R.

If z, is a zero of £}, then & (and py as well) has no zeros in [z, z.]. Therefore
0 is the unique zero of pr41 in this interval. So pg+1/px > 0 on (0, z,]. Since

Prot1 ()
pk(x*)
by (35), it follows that f(x.) > 0, obtaining z. > y/—oc/s. But

2k +1+20 —\/(2k +1)2+8(k + 1)o __c
2s s

0= f(zs) —V2(k+1+20)s

a2 =

because k > 1, obtaining x, > ay.
If z, is a zero of & (i.e., 4« = ¥, /2), then the other positive zeros of {i&;, are
> ay, because this function is strictly increasing on (0, ag). O

In the case of Lemma 2.1-(iii), the zero £}, /o of £ may be in an oscillation
interval, in a non-oscilation intervals or in their common boundary point. For
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B 2, [1+2
p2=\\732.5% —\ 5 | P

instance, for k = 2,

by (22), obtaining

9 1420
Ty, = 95
Moreover
9 5+20—+25+ 240
a3 = 5 .
So
—4 ++/25 + 240
2,1 — a2 = T )

and therefore ¢ > —3/8 if and only if z21 > aa. So (ag,b2) contains no zero of &,
when o € (—1/2,-3/8]. For k > 2, every oscillation interval of &, contains some
zero of & by Lemma 2.1.

LEMMA 2.2. There exist Cy,Cq,Cs > 0, depending on o, such that, if k > Cy
and I is any oscillation interval of &, then there is some subinterval J C I so that:

(i) for every x € J, there exists some zero xy; of & in I such that
Cr

ar(z) 7

(ii) each connected component of I\ J is of length < Cok=1/2.

|I — Jc;m' <

PROOF. According to Section 2, for any ¢ > 0 with cs € qx(I), the set I. =
INgq;, " (Jes,00)) is a subinterval of I, whose boundary in I is I N g; *(cs).

Cram 1. If length(1.) > 27/+/cs, then each boundary point of I.. in I satisfies
the condition of (i) with zx; € I, and C; = 2.

Let f. be the function on R defined by f.(z) = sin(y/csz), whose zeros are
¢ /\/csfor £ € Z. Since f/+ecsf. = 0and ¢s < g on I, the zeros of & in I, separate
the zeros of f. in I. by Sturm’s comparison theorem. If length(I.) > 27/+/cs, then
each boundary point z of I, is at a distance < 27/4/cs of two consecutive zeros of
fe in I, and there is some zero of £ between them, which shows Claim 1 because
qr(z) = cs.

Now we have to analyze each type of oscillation interval separately, correspond-
ing to the possibilities for G5 and cpax. When there are two oscillation intervals of
&k, it is enough to consider only the oscillation interval contained in R, because
the function &, is either even or odd.

The first type of oscillation interval is of the form I = (ag,by), which cor-
responds to the conditions 6x > 0 and cpax > 0. We have c¢s € ¢i(I) when
0 < ¢ < Cmax. Then qk_l(cs) consists of the points

iak.c:i\/Qk—f—l—l—Qa—c—\/(§k+1+20—c)2—40k ,
' S

ibk,c_i\/2k+1+20_c+\/(2k+1+20_c)2_40’“

2s ’ (42)



26 2. ESTIMATES OF THE GENERALIZED HERMITE FUNCTIONS

and we get I. = [ag ¢, bg,c]. Since
S(bk,c - ak,c)2 = Cmax — C, (43)

we have length(I.) > 27 /+/cs if and only if ¢(cpmax — ¢) > 472, which means that
Cmax = 4m and c_ < ¢ < cg for

Cmax £ \/C2ax — 1672

5 )
Since cmax € O(k) as k — oo, there is some Cy > 0, depending on o, such that
Cmax > 4w for all & > Cy. Assuming k£ > Cy, let a4+ = ap,, and by + = br ¢y,
which satisfy

C+ =

a < ap,— < a4+ < bk;’Jr < bk,, < by .

Fix any « € I and let gx(x) = cs. First, ¢ € [ag,—,ar +] U [bi,+, bi,—] if and
only if length(I.) > 27/y/cs, and in this case x satisfies the condition of (i) with
xki € I, and C7 = 21 by Claim 1. Second, if € (ag,ar,—) U (bg,—,bg), then
length(I.) < 2m/+/cs, I. D I._, and we already know that I._ contains some zero
of &. Hence x also satisfies the condition of (i) with Cy = 27. And third, if
x € (ak,+,bk,4), then

2 2 2
167 < 327 < 327

Cyq o Cmax o &

$(bpr — g4 )? = Cmax —Cy = C_ =

by (43), obtaining

4427

Ve

Since I. C I., and it is already proved that I., contains some zero of &, it follows
that = also satisfies the condition of (i) with C; = 4v/27. Summarizing, (i) holds
in this case with J = I and C; = 4v/27 if cpuax > 47, In this case, (ii) is obvious
because J = 1.

The second type of oscillation interval is of the form I = (0, by), which corre-
sponds to the condition ; < 0. Now, cs € qr(I) for any ¢ > 0, the set qgl(cs)
consists of the points +by ., defined like in (42), and we have I. = (0,by]. The
equality cs = g, (27 /+/cs) holds when

(2k + 1+ 20)? — 463, — 1672 > 0 (44)

length(I., ) <

and c is

2k +1+20 £ /(2k + 1 + 20)2 — 45, — 1672

o — 4m? ’
Assuming (44), we have length(I.) > 27 /\/cs if and only if ¢ < ¢ < ¢;. Let
bk;,:l: = bk’Ci, satisfying 0< bk’Jr < bk’, < bg.

Fix any « € I and let ¢qx(z) = cs. First, © € [bg+,bg_] if and only if
length(I.) > 2m//cs; in this case, x satisfies the condition of (i) with zy,; € I.
and Cy = 2m by Claim 1. And second, if z € (bg,—, bx), then length(1.) < 27/4/cs,
I. D I._, and we already know that I._ contains some zero of &. Hence z also
satisfies the condition of (i) with C; = 27. So, when (44) is true, (i) holds with
J = [bk’+7bk) and Cl = 2.

Notice that ¢y € O(k) as k — oo. Then there are some Cy, Cy > 0, depend-
ing on o, such that, if k& > Co, then (44) holds and sby , = 4n°/cy < Cok™!,
showing (ii) in this case.

c+ = o272
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The third and final type of oscillation interval is I = (—by, by), which corre-
sponds to the condition 6 = 0. We have c¢s € ¢x(I) when 0 < ¢ < ¢pax. Then
q,gl(cs) consists of the points +by, ., defined like in (42), and we get I, = [—bg ¢, b c)-
Since

Sbi,c = Cmax — C , (45)

we have length(I,) > 27/y/cs if and only if ¢(cpax — ¢) > 72, which means that
Cmax > ™ and c_ < c¢ < ¢y for

Cmax £ \/C2ax — 42

2

Since cmax € O(k) as k — oo, there is some Cy > 0, depending on o, such that
Cmax > 4w for all k > Cy. Assuming k > Cp, let by 1 = by ., which satisfy
0 < bp,4+ <bp,— <by.

Fix any « € I and let gx(z) = cs. First, by 4 < |z| < by, if and only if
length(I.) > 2mw/+/cs; in this case, x satisfies the condition of (i) with xy; € I, and
C; = 27 by Claim 1. Second, if |z| > by —, then length(l.) < 2n/\/cs, I. D I._,
and we already know that I._ contains some zero of . Hence x also satisfies the
condition of (i) with C; = 2x. And third, if |z| < b 4+, then

9 47 8r?  8r?
sby, | = Cmax — Cy = C— _Z < — < -

CcL+ =

by (45), obtaining

V2

N

Since I. C I., and it is already proved that I., contains some zero of &y, it follows
that @ also satisfies the condition of (i) with C; = v/27. Summarizing, (i) holds

in this case with J = I and C; = 27. In this case, (ii) is also obvious because
J=1I O

length(1., ) <

LEMMA 2.3. There exist C},C1,C% > 0, depending on o and s, such that, if
k > C{ and I is any oscillation interval of &, then there is some subinterval J' C I
so that:

(i) qr > CLk'? on J'; and
(ii) each connected component of I\ J' is of length < Chk~1/6.

PRrROOF. We use the notation of the proof of Lemma 2.2. The same type of
argument can be used for all types of oscillation intervals. Thus, e.g., suppose that
I is of the type (0,by). Since by, € O(k'/2) as k — oo, we have b}, = by — k= 1/6 € T
for k large enough, and

ar (b)) = —s2(k~Y/3 — 2bk=1/%) — 4Gy ((by — k71672 = b.2) € O(K'/?)
as k — oco. So there are Cj,C] > 0, depending on ¢ and s, such that bj, € I and
¢ = qi(b},) > C1k'/3 for k > C}. Then (i) and (ii) hold with J' = I, = (0,b}]. O

COROLLARY 2.4. There exist Cl{,Cy > 0, depending on o and s, such that, if
k > C{ and I is any oscillation interval of &, then, for each x € I, there exists
some zero xy; of & in I so that

|z — 4| < CUEYS



28 2. ESTIMATES OF THE GENERALIZED HERMITE FUNCTIONS

PRrOOF. With the notation of Lemmas 2.2 and 2.3, let C{j = max{Cy, C{} and
CY = max{Cy,C}}. Assume k > C{/ and consider the subinterval J” =JnJ C I.
By Lemmas 2.2-(ii) and 2.3-(ii), each connected component of I\ J” is of length
< CYk~Y6. Then, for each x € I, there is some z” € J” such that |z — 2”| <
CYk~1/6. By Lemmas 2.2-(i) and 2.3-(i), there is some zero x; of & in I such that

1

& 71/6_

Ch
— Tpg| = < k
el = @ S Ve

|z — 2| < (CF +Ci/\/CHEYS . O

|

Hence

4. Estimates of &

LEMMA 2.5. Let I be an oscillation interval of &, let © € I and let x1,; be a
zero of & in I. Then

&\l‘*xk‘l if k is even
O ER S VS
m|$—$k,z\ if k is odd .

PrROOF. We can assume that there are no zeros of §;, between x and xj ;. For
the sake of simplicity, suppose also that z; < x and & > 0 on (z,x); the other
cases are analogous. The key observation of [6] is that then the graph of & on
[k, z] is concave down, and therefore

@) < [ G

By Schwartz’s inequality and (31), it follows that

(;fk(ﬂﬁ)(f - $k~,i)>2 < (/Z W dt) (/ﬂ:(t — xk;)? dt)

(z — xp4)3
3 b
and the result follows by Lemma 1.1. O

2
=Pk (Thi) M

With the notation of Lemma 2.2, for each k > Cy, let IAk denote the union of
the oscillation intervals of &, and let Ji C I} denote the union of the corresponding
subintervals J defined in the proof of Lemma 2.2. More precisely:

e if 55, > 0 and cpax > 0, then jk = IAk = (—ag, —br) U (ak, br);
e if 5, < 0, then I, = (—bk,O) @] (O,bk) and J = (—bk, —bk7+] @] [bk’+,bk);
and R
e if 5, =0, then Jy = I, = (—bg, bi).
If £ < Cp, we also use the notation jk =1 & for the union of the oscillation intervals,
which may be empty if there are no oscillation intervals.

PrROOF OF THEOREM A. Part (i) follows from Lemmas 2.2 and 2.5.

In any case, &(z) — 0 as ¢ — oo. If moreover k is odd or o > 0, then &
is continuous on R. Thus &7 is bounded and reaches its maximum at some point
Z € R. Since &,(0) =0 (if 5, #0) or 0 € Iy (if o = 0), it follows from Lemma 2.1
that Z € 1. Then (ii) follows by Corollary 2.4 and Lemma 2.5.
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If k is even and o < 0, then & is not defined at 0 and &2(z) — oo as z — 0.
So we can only conclude as above that the restriction of 5,% to the set defined by
|z| > 2, ;)2 is bounded, and reaches its maximum at some point z of this set. Then

Z € I by Lemma 2.1, and therefore (iii) holds by Corollary 2.4 and Lemma 2.5. O

Consider the case o < 0 and k even, when Theorem A does not provide any
estimate of E,% around zero. According to Section 3 of Chapter 1, the function p% (2)
on the region |z| < xj ) /2 reaches its maximum at z = 0, and moreover p(0) < pj
by (27). Hence ¢7(x) < pg for |z| < @y /2, which complements Theorem A-(iii).
On the other hand, ¢7(z) < &Z(x) for |z| < 1. Moreover zy /2 < 1 for k large
enough by Corollary 2.4 since ar — 0 as k& — co0. So Theorem B follows from
Theorem A-(iii).

The following lemmas will be used in the proof of Theorem C.

LEMMA 2.6. There is some F > 0 such that, for k > 1 and x > b1,

Fk75/12

fk(z) < m .

PROOF. Let zg € (.1, bx) such that &, (zo) = 0. Since

Glo) = [ g
and & (x) < 0 for > by, we get

/x qr(t)&k(t) dt >0

Zo

for © > by. Because & (x) > 0 for > xg, gx(x) > 0 for g < x < by, and gx(z) <0
for & > by, it follows that

bk T
/’%w@wm>—/qwmwma (46)

0 by
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~ According to Corollary 2.4 and Theorem A-(ii),(iii), for & > C§ and with
C = max{C’,C"}, we get

bk _ bk
/ ar()ER (D) dtgcl/zkfl/”/ Qi (t) dt

= V2112 ((Qk + 1+ 20)s(b, — x0)

82 _ _ _
- S0+ oultgt - )

< CV/2p—1/12 ((Qk +1+20)sCy k~1/6

2 = "1.—1/6
_ %(bi — (b — Ci/kfl/G)S) + ok C1'k >

by (b, — O E=1/6)
< CV/2p—1/12 ((Qk +1+20)sCy k1/6

C{ng1/2>

—s? (C{’bzkl/ﬁ — Pk — .

|| CYR/6
bi (b, — Ci’kil/G)

Since -
2k + 1+ 20 — sb} zg—];,
sby,
there is some Fj > 0 such that
b
| awad < Fin (47)
zo

for all £ € N.
On the other hand,

x

- /I qx (t)&x(t) dt > —§k(93)/ qr(t) dt .

bk bk
With the substitution u =t — by, we get

ae(t) = —s%u(u + 2by) + % — p(u+by)2,
k

giving

b}

%l

> () (fbk(a: o= Bl n) - o b,;l)

> fk(x)<<825k - bi(bkfftbkﬁ (z — b)® — |5 b/;1>
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for > br41. By (40), it follows that there is some F; > 0 such that

— / qe ()& (t) dt > F1&(x)k' 2 (x — by)? (48)
by
for all k and © > bp41. Now the result follows from (46)—(48). O

LEMMA 2.7. For each € > 0, there is some G > 0 such that, for all k € N,

1/6
|z~ 1|<5k 1/6 Zfﬁ <Gk

PROOF. Take any = € R such that |z — x41| < ek~1/6. By Corollary 2.4,
|z —by| < |z —@pa| + T — bk| < (e + CY)™H/O (49)

for k > C{/. In particular, by < x if k is large enough. With this assumption, let
Ly, 01,05 € N satisfying 0 < g < ¢ < f5 — 1, where ¢y and ¢; will be determined
later, and /5 is the maximum of the naturals £ < k with by < x for all £/ < £. Let

fet) =2 +1+20£1
for ¢ > 1. We have

+(20+14+20)+1+05
Fi(6) — v/abe = ( o)fl+o

2 (20+1+420+£2—/(20+1+20)2 —46¢) (f+(£) + /sbe)

for ¢ € Z . So, assuming that k is large enough, we can fix £y, independently of k
and x, so that

J-(€) < V/sby < f4(0)
for all £ > ¢5. We have f(¢1) < f_({3) because ¢; < €5 —1. Moreover observe that
i)y =@t+1+0)"2>0,
L) =—-Qt+1+0)"*? <0
for all ¢ > 1. Then, by Lemma 2.6,

l1—1 l1—1 F2£75/6 l1—1 675/6
2 2
Z:Z% &) < g @b =" E:Ze (bey — be)’?
l1—1 £—5/6 Yo t—5/6 dt
< F? < F?
L Tmonor =T, T nor

After integrating by parts four times, we get

/fl I e (e () N P (3
0 (f=(l2) = fr(¥)* = 3(f-(f2) — f+(€1))® 36 (f-(L2) — f+(1))?
550,78 73 (4y) 935 ,—23/6
216 (f-(L2) — f+ (1)) ~ 1296 h
21505
7776

£ ) In(f- (£2))

In(f-(¢2)) / " £729/6 ¢ () dt
— 2 ZD + .
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Therefore, since f/, (t) € O(t~1/2) as t — oo, there exists some G; > 0, independent
of k and x, such that

l1—1

Zf )< G ( o + 6"
D TR S A ERR (R Y R
+ L + 7MY S (o (62)) + In(f_(¢ )))
fo(la) = fo(t) " e )
‘We have

GO m(f- () + (/- (62)) < 6/°
for k large enough. Then Z&’ Le &2(x) has an upper bound of the type of the
statement if ¢, satisfies

o1/ y5/6 g4/3

max 1 1 1 1/6
hﬂ%FiﬂmyMMﬂ—ﬂ%Wﬁ() ﬁ%&<£ (50)

On the other hand, according to Theorem A-(ii),(iii),

_ 6C
de ) < ng 1/6 < & A 1/6 gy = = (52/6 _ €§/6) ,

where C' = max{C’, C"}. Then Ze:el &2 () has an upper bound of the type of the
statement if
08— 3% < Gy/°

for some G5 > 0, independent of k and x, which is equivalent to
0> (1 — Gotly )7 (51)
Thus we must check the compatibility of (50) with (51) for some ¢; and G2. By (51)

L2
and since, for each G5, 4§ > 0, we have GQKQQ/S </, 3 to

replace (50) with
w267 BTG
(F=(62) = (0P 7 (F=(l) = F1(02))?

6 (1 —42_§+6)8/5} < gu/s
f-(l2) — f+ (1) -

for k large enough, we can

for some 0 > 0, which is equivalent to

2
0 < ;(m(zz Fo)— (1 523+5)b> —1-0

for
(CL, b) € {(_1/6? _2/15)7 (_1/27 _1/2>7 (_3/2a _8/5)} :
Thus the compatibility of (50) with (51) holds if there is some G2,d > 0 such that

2
(1= Gaty %)% < ;<\/2(52 o) — (1 zza”)b) —2-0,

which is equivalent to

2 5/6
Gy > 133“(1 - @( o1 +ol3Y) — 052 (1— egg”)b) — 2+ a)zgl) > .
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There is some G5 > 0 satisfying this condition because the 'Hospital rule shows
that, for § small enough, each function

w1 (3(varFam -t ) - @ron) )

is convergent in R as ¢t — oc.

Now, if /5 < k — 1, let {3 denote the minimum integer ¢ < k such that by > x
for all £/ > £. Also, let Gyin/max denote the minimum/maximum values of &, for
¢ € N. Then

\/2(£3—1)+1+2a+\/(2(63—1)+1+2a)2+4amin <
2s -

- \/2(62 + 1)+ 1420+ /(2(l2+ 1)+ 1+20)2 + 40max
2s ’

obtaining
2043 — £s) —
< V(200 +1) +1420)2 + 46max — V(2(ls — 1) + 1 +20)2 + 45 min -
If 43 > 05 + 1, it follows that

(2002 +1) + 14 20)% 4 46max > (2(€s — 1) + 1 4 20)* + 46 min ,
giving
2\/0'de Um1n>\/ €2+ +1+2U)2—(2(£3—1)+1—|—20)2
>2(l3 — lo) —

Therefore Zﬁg’: o1 €%(z) has an upper bound of the type of the statement by The-
orem A-(ii),(iii).
Let
h(t) = (2t 4+ 1+ 20)s — s%2% — Graxs >
for t > 0. According to Theorem A-(i), if £3 < k — 1, then

S < — 1 R=l gt
&) <C <C <C
f:%l o) :ZZ e:%g \/W /43 \/@

= 2%(\/h(k —1)— /() < 2% 2k —1—14s) .

Hence Z?:_zlg +1 & () also has an upper bound like in the statement because, by (41), (40)
and (49), there is some G5, G4 > 0 such that

Gs(k—1—L3)k™ /2 <bp_y — by, by —2z < Guk™V/0. O

Proor orF THEOREM C. By (31),

2

0o 2 20 ,—sT
1:/ ( P (x) ) |§| € da .
oo \T = Tk1/) Pl (k1) Ak
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Thus, by (30) and Lemma 2.7,

2 g2
/ ( Pk(iﬁ) > ‘SL’|2U€ sT i
|z—zp,1|<ek—1/6 \T = Tk,1 pﬁf(mk,l) Ak,1

k—1 k-1
< / Zf%(x) dx < 2ek=1/6 max Z{f(m) < 2eG
\ =0

x—ay,1|<ek=1/6 =1 |o—zp 1|<ek—1/6

for any € > 0. It follows that

2 _ 2
/ ( Pi() ) 27 sl (52)
|z —zp,1|>ek=1/6 \L — Tk,1 p;f(xk,l) Ak,1 T2

which implies part (i) by Lemma 1.1.

1
rell

When £ is even and o < 0, either 0 < @ 1/2 < ag Or |2 /2 — arx| < CYk™
for k large enough according to Corollary 2.4. Moreover |z — by| < C'k~1/6
for k large enough by Corollary 2.4 as well. So, by (39) and (38), there are some
Cp,C1 > 0, independent of k, such that

Tr/2 < ag + CYEY6 < Cok™1/%

Tkl — Thj2 2 bp — ak — 201 k=16 = ,/—Cn;ax — 207 k~Y0 > Oy k12

On the other hand, by (27), there is some Co > 0, independent of k, such that
& (z) < Cy|af? for |z| < @y /2. Therefore

2
/ G)de__ C 2/ ]2 da
|z|<2 k)2 (z — xk,l) (-Tk,l - xk,k/2) |z|<zg k)2

20527505 205057 s 20503
(20 + 1) (21 — Tppy2)? — (20 + 1)C? (20 +1)C?
This inequality and (52) imply part (ii). |

when € <
1/6




CHAPTER 3

Perturbed Schwartz space

We introduce a perturbed version S, of S. It will be shown that S, = S after
all, but the relevance of this new definition to study L will become clear in the
next section; in particular, the norms used to define S, will be appropriate to show
embedding results, like a version of the Sobolev embedding theorem. Since S, must
contain the functions ¢, Theorems A and B indicate that different definitions must
be given for ¢ > 0 and o < 0.

When ¢ > 0, for any ¢ € C*° and m € N, let

Illsp = > sup|z|” [z Tig(z)| . (53)

itj<m ¢

This defines a norm || [|s= on the linear space of functions ¢ € C* with ||¢[|sm < oo,
and let S7 denote the corresponding Banach space completion. There is a canonical
inclusion 871 C 8™, and the perturbed Schwartz space is defined as S, =), S™,
endowed with the corresponding Fréchet topology. In particular, Sy is the usual
Schwartz space S. Like in the case of S, there are direct sum decompositions into
subspaces of even and odd functions, S5 = SJl, ® §;,4q for each m € N, and
Sa = Sa,ev S2) So,odd~

When o < 0, the spaces of even and odd functions are considered separately.
Let

16llsy = > sup [ (T4 ¢) ()|

i+j<m, i+j even z

+ Y suplel (T )| (54)

i+j<m, i+j odd *#0

for ¢ € C, and let

ev)

1Pllsp = > supa|T|e (TYo) (@)

i+3j<m, i+j even ¥ 0

T Y swl (Tio)@) (55)

i+j<m, i+j odd *

for ¢ € €33y These expressions define a norm || |[sm on the linear spaces of
functions ¢ in C954 and C with ||@lsm < oo. The corresponding Banach space
completions will be denoted by 8744 and S7,. Let SF" = 57, © S5, qq, Which is
also a Banach space by considering e.g. the norm, also denoted by || ||sm, defined
by the maximum of the norms on both components. There are canonical inclusions
Srtl c 87, and let S, =(),, S&, endowed with the corresponding Fréchet topol-

ogy. We have S, = S, ev @ So,0dd for So.ev =, Sgev ad Sp0dd = [, Sooda-

35
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From these definitions, it easily follows that S, consists of functions which are
C* on R\ {0} but a priori possibly not even defined at zero, and S7*NC is dense
in 8 for all m; thus S, N C is dense in S, .

Obviously, 3 defines a bounded operator on each S7*. It is also easy to see that
T, defines a bounded operator St — 8™ for any m; notice that, when o < 0,
the role played by the parity of ¢ 4 j fits well to prove this property. Similarly, x
defines a bounded operator S7*! — S™ for any m because

i1 if j is even

i J
Ti 2] = ‘
To. {u+22ﬂgl if j is odd

by (10) and (11). So B and B’ define bounded operators S™*1 — 8™ too, and L
defines a bounded operator ™2 — S™. Therefore T,, z, 3, B, B" and L define
continuous operators on S, .

In order to prove Theorems D and E, we introduce an intermediate weakly
perturbed Schwartz space S, . Like S5, it is defined as a Fréchet space of the

form S, =, Si s, Where each S is the Banach space defined like SJ* by
using % instead of T, in the right hand sides of (53)-(55); in particular, S, , = So

as Banach spaces. The notation || [|s=  will be used for the norm of S;' ,. As before,
Sw,s consists of functions which are C> on R \ {0} but a priori possibly not even
defined at zero, S, N C™ is dense in S, ,, there is a canonical decomposition
Sw,o = Sw,o,0v P Sw,0,0dd given by the subspaces of even and odd functions, and %
and z define bounded operators on St — S . Thus d% and z define continuous
operators on Sy,

LEMMA 3.1. If 0 > 0, then S™*I7l € 8™ _ continuously for all m.

w,o

PrOOF. Let ¢ € S. For all i and j, we have

|7

xid,(j)(x)‘ <

ﬂﬂﬂ&ﬂ@m
for |z| > 1, and

||

xiqb(j)(x)) <

ﬂ&ﬂ@w
for |z] < 1. So
llsz

m o S [@llsmere

for all m. O

LEMMA 3.2. Ifo > 0, then 8{;‘; C 8™ continuously for all m, where

m' = m+ 1+ o](fo] + 1)

ProoF. Let ¢ € S,, ,. For all ¢ and j,

269 (@)| < Jo]”

2¢0(a) (56)

for |z| > 1. It remains to prove an inequality of this type for |x| < 1, which is the
only difficult part of the proof. It will be a consequence of the following assertion.
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CLAIM 2. For each n € N, there are finite families of real numbers, ¢ ;. di ,
and e, where the indices a, b, k, ¢, u and v run in finite subsets of N with

u,v?

b,l,v < M, = 1—1—% and k > n, such that

1
= cp (1) Z dp 2¢O () + ) e at / "o (t) dt
a,b T

u,v
for all ¢ € C'°.

Assuming that Claim 2 is true, the proof can be completed as follows. Let
¢ € Sy,o and set n = [o]. For |z| <1, according to Claim 2,

o)l < 2t 6@ 1)] + 2| 2560 (a)
+ Z e o] 2 max

g2|cg,b|\¢<b> |+Zld 2l |0
%,
)| -

o 1)

O (a)

+) len,| 2max [f7 i

)

Let m,i,7 € N with ¢ + j < m. By applying the above inequality to the function
z'¢(), and expressing each derivative (mi(b(j ) (") as a linear combination of functions
of the form zP¢(?) with p+q < i+j+r, it follows that there is some C' > 1, depending
only on ¢ and m, such that

SiFitMn (57)

76D (@)| < o
for |z| < 1. By (56) and (57),
[¢llsm < C ||¢||S;;Lf(,

with m’ = m + M,,.
Now, let us prove Claim 2. By induction on n and using integration by parts,
it is easy to prove that

n

/ "Dty dt =Y (~1)" n (6" (1) ="M () . (58)

r!
r=0

This shows directly Claim 2 for n € {0,1}. Proceeding by induction, let n > 1
and assume that Claim 2 holds for n — 1. By (58), it is enough to find appropriate
expressions of z”¢(")(z) for 0 < 7 < n. For that purpose, apply Claim 2 for n — 1
to each function ¢("), and multiply the resulting equality by z” to get

T ¢(r) ch 1 Lrte (r+b) +Zdn 1 r+k¢ T+Z)( )

1
+ en 1 r+u/ tn—1¢(r+v) (t) dt ,
Z ’
where a, b, k, £, u and v run in finite subsets ofN with b, 0, v < M,_1 and k > n—1;
thus r + k > n and

7"+b77n+£alr+v§nil+Mn_1:Mnil'
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Therefore it only remains to rise the exponent of ¢ by a unit in the integrals of the
last sum. Once more, integration by parts makes the job:
1

1
/ D () dt = ¢ (1) — 2" () — / et dr . O

x

LEMMA 3.3. If 0 <0, then ST 1 C 8™ continuously for all m.

w,o
PROOF. Let 7,j € N such that i + j < m. Since

|| |xi¢(j)(:v)| ifo<z| <1
2|7 [a 10 (z)| if 2] > 1.

xi¢(j)(x)‘ < {

for any ¢ € C*°, we get [|¢[lsm < [|§]|gm+1. O
LEMMA 3.4. If o <0, then S™2 C Sy continuously for all m.
ProOF. This is proved by induction on m. We have || ||so = |lso on C.

On the other hand, for ¢ € CS5, and ¢ = 27 1¢ € C, we get 1
[(z)| if0<]z]<1

2|7 |g(x)] < {|q§(m)| if [z| > 1.

So, by (9),
[16llsy , < max{[|¢]lso, [[¥]lso} < [[lst -

Now, assume that m > 0 and the result holds for m — 1. Let i, 7 € N such that
i+j <m,andlet ¢ € Sey. If i = 0 and j is odd, then ¢) € Spqq. Thus there is
some 1) € Sey such that ¢\9) = x1), obtaining

) 1 <
$9(w)| < {w@c) 0 < o] <1

|z[”

|69 ()] if |z > 1.
If i+ 7 is odd and ¢ > 0, then

|2t 19 (2)| f0<|z]<1
‘xi¢(j)(x)| if || > 1.

|7

xi¢(j)($)’ < {
Hence, by (9), there is some C' > 0, independent of ¢, such that

[8]lsm . < Cmax{||¢|lsm, [|¥]lso} < Cmax{[|lsm, |6 st} < C|]lsm+ -

Finally, let ¢ € Spqq. There is some 1) € Sey such that ¢ = x1. If 7 is even and
j =0, then

. lzip(z)| 0 <|z] <1

If i + j is even and j > 0, then

|xiw(j)(x)| +jlz|° ’ziw(jfl)(x)} ifo< |zl <1
|z @ (2)] + j |2|7 |20 =D (z)| if |z > 1

d? Cdit
szx} = g

|7

x%(j)(ﬂﬁ)’ < {

because
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Therefore, by (9) and the induction hypothesis, there are some C’,C" > 0, inde-
pendent of ¢, such that

I¢llsy;, < C"max{[|¢lsm, ¥

COROLLARY 3.5. § =Sy, » as Fréchet spaces.

Sm+1 + ||w||$$7;1} S C// ||¢H8m+2 ) |:|

’
COROLLARY 3.6. ™! defines a bounded operator S}/, .qq = Si' gy, Where

,Jm+2+L[o1([o]+3) ifo>0
HE P ifo<0.

PRrOOF. If o > 0, the composite

gmt2talel(le1+8) | gmfol+l 27! = om+[o] | gm

w,o,0dd odd ev w,o,ev
is bounded by Lemmas 3.3 and 3.4. If ¢ < 0, the composite
-1
m+4 m-+3 z m-+2 m
Sw,a,odd - ‘Sodd Sev - Sw,o,ev )

is bounded by Lemmas 3.1 and 3.2. (]

COROLLARY 3.7. 27! defines a continuous operator Sw,0,0dd = Sw,oev-

LEMMA 3.8. S\ mev/edd — gm vJoda continuously for all m, where

w,o,ev/odd e

3ﬂ+% [0]([o]+3) ifoc >0 and m is even

— 2
Mm,cv/odd = {Sm

5 if o <0 and m is even

My ey = {3"21 + 2 [o]([o] +3) if o >0 and m is odd

5m;3 if o <0 and m is odd ,

v )it 4 mEL 57 ([0] 4+ 3)  if o >0 and m is odd
medd % if o <0 andm is odd .

PrROOF. The result follows by induction on m. The statement is true for m =0
because S , = SY as Banach spaces. Now, take any m > 0, and assume that the

w,o

result holds for m — 1.
For ¢ € CL, i+ 75 < m with j > 0 and z € R, we have

|:17’Tg¢(:17)| = ’ziT(Z71¢'(z)| ,
obtaining

I¢llsy < 11¢llsp—r + lIlsz, -

But, by the induction hypothesis and since My, ev = My;,—1,0dd + 1, there are some
C,C’ > 0, independent of ¢, such that

16/l sz < C N8l 5201000 < C' 18] garmen -

For ¢ € €334, and ¢, j and x as above, we have

’szg(b(x)‘ < ’xiTg_l(b’(x)‘ + 20| ’xiTg_lx_1¢(m)

)

obtaining

1]

sp <N llsp-r + 210l |27 bl gp-r + I llsy

w,o
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But, by the induction hypothesis, Corollary 3.6, and since

M _ Myt +2+2[c]([0] +3) ifo>0
PO My + 4 if o <0,

there are some C,C > 0, independent of ¢, such that

16/ s + 2o 2" Bl g1 < C (16 gprsen + 67 Gl 2100 )
S C/ ||¢||$M7n,odd . |:|

COROLLARY 3.9. Sy.0 C S, continuously.



CHAPTER 4

Perturbed Sobolev spaces

Observe that S, C L?(R,|z|?° dz). Like in the case where S is considered as
domain, it is easy to check that, in L?(R, |2|?° dz), with domain S,, B is adjoint
of B’ and L is symmetric.

LEMMA 4.1. S, is a core' of L.

PROOF. Let R denote the restriction of L to S,. Then LC RC R* C L* =L
in L2(R, |z|*? dz) because S C S, by Corollaries 3.5 and 3.9. O

For each m € N, let W* be the Hilbert space completion of S with respect to
the scalar product (, )wm defined by

<¢71/}>ng = <(1 + L)m¢7w>a .

The corresponding norm will be denoted by || [|wm, whose equivalence class is inde-
pendent of the parameter s used to define L. In particular, W2 = L(R, |z|?? dz).
As usual, W™ C W™ when m’ > m, and let W2 = N, W2, which is endowed
with the induced Fréchet topology. Once more, there are direct sum decompositions
into subspaces of even and odd (generalized) functions, W;* = W7, @ W ;,; and
Wz =Wae, ®Wlaa-

According to Lemma 4.1, the space W " can be defined for any real number m
by using (1 + £)™, and moreover S, can be used instead of S in its definition.

Obviously, L defines a bounded operator W2 — W™ for each m > 0, and
therefore a continuous operator on W2°. Moreover, by (16), ¥ defines a bounded
operator on each W/, and therefore a continuous operators on W2°.

LEMMA 4.2. B and B’ define bounded operators Wt — W™ for each m.

PRrROOF. This follows by induction on m. For m = 0, by (13), for each ¢ € S,
1BoI17 = 1B'¢llz = (B'Bé, ¢)o = (L — (1 +2%)s)¢, d)o < Co |6y

for some Cy > 0 independent of ¢. It follows that B and B’ define bounded
operators W} — L2(R,|z|?° dz).

Now take m > 0 and assume that there are some Cy,—1,C),_; > 0 so that

1BOI Ty < Cont 161y 1B'Sllym—r < Cruy 19l

1Recall that a core of a closed densely defined operator T between Hilbert spaces is any
subspace of its domain D(T) which is dense with the graph norm.

41
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for all ¢ € S. Then, by (14),
1Bl = (1 + L)Bo, B}y
— B s + (LB, By
— (1= 25) | BI3, s + (BL, By
< (1= 25) By mes + 1BLGl g1 Bl
< Conet (1= 28) 91121 + IZllwin 16llw)
< 16l s
for some C,, > 0 independent of ¢. Similarly,
186l < Ciull9l s
for some C/, > 0 independent of ¢. O
REMARK 1. B’ is not adjoint of B in W' for m > 0.

L and X preserve W7, and W7 44 for each m, whilst B and B’ interchange
these subspaces.

The motivation of our tour through perturbed Schwartz spaces is the following
embedding results; the second one is a version of the Sobolev embedding theorem.

PROPOSITION 4.3. 8™ C W continuously if m' —m > 1/2.
PROPOSITION 4.4. W™ C 8™ continuously if m' —m > 1.
COROLLARY 4.5. S, = W2° as Fréchet spaces.

For each non-commutative polynomial p (of two variables, X and Y), let p’
denote the non-commutative polynomial obtained by reversing the order of the
variables in p; e.g., if p(X,Y) = X2Y3X, then p/(X,Y) = XY3X2 It will be
said that p is symmetric if p(X,Y) = p'(Y, X). Notice that any non-commutative
polynomial of the form p'(Y, X)p(X,Y) is symmetric. Given any non-commutative
polynomial p, the continuous operators p(B, B’) and p/(B’, B) on S, are adjoint
from each other in L%(R,|z|?° dz); thus p(B, B') is a symmetric operator if p is
symmetric. The following lemma will be used in the proof of Proposition 4.3

LEMMA 4.6. For each non-negative integer m, we have
(1+L)™ =Y q,(B',B)qu(B, B')
a
for some finite family of homogeneous non-commutative polynomials q, of degree
<m.
PrOOF. The result follows easily from the following assertions.

CrLAIM 3. If m is even, then L™ = g,,,(B, B")? for some symmetric homogeneous
non-commutative polynomial g,, of degree m.

CLAIM 4. If m is odd, then
L™ = gy, 1(B', B)gim,1(B, B') + g1 2(B', B)gm,2(B, B')

for some homogeneous non-commutative polynomials gy, 1 and g, 2 of degree m.
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If m is even, then L™/ = g,,(B, B') for some symmetric homogeneous non-
commutative polynomial g,, of degree < m by (13). So L™ = g,,(B, B')?, showing
Claim 3.

If m is odd, then write L™/2] = f, (B, B’) as above for some symmetric
homogeneous non-commutative polynomial f,,, of degree < m — 1. Then, by (13),

om— %fm(B, B')(BB' + B'B)fm(B, B) .
Thus Claim 4 follows with

gmr(B,B) = = B'f.(B,B), gma(B.B) = — Bfn(B,B). O
V2 V2

PROOF OF PROPOSITION 4.3 WHEN ¢ > 0. By the definitions of B and B’, for
each non-commutative polynomial p of degree < m/ (of three variables), there exists
some C}, > 0 such that |z|7 |p(z, B, B")¢| is uniformly bounded by C,, ||¢||gm’ for
all p € S,. Write ’

1+L)™ anB’ )¢a(B, B)

according to Lemma 4.6, and let
Gu(z,B,B') = 2™ ~"q,(B, B') .
Then, for each ¢ € S,

I¢l3m = llga(B, B2
-y / (qa(B. B6) (@)]? 2> da
<2}, (C‘i +C, / a2 dx> 1813,
a 1 i

where the integral is finite because —2(m’ —m) < —1. O

PROOF OF PROPOSITION 4.3 WHEN ¢ < 0. Now, for each homogeneous non-
commutative polynomial p of degree d < m/, there is some C,, > 0 such that:

e |p(x, B, B')¢| is uniformly bounded by C, ||¢||Sm for all ¢ € Sy ey if d is
even, and by C, ||¢||sm for all ¢ € Sy 0a4 if d is odd and
o |z|? |p(z, B, B")¢| is umformly bounded by C, Hqﬁ”sm for all ¢ € Si oda
if d is even, and by C), ||¢Hs;ng for all ¢ € Spev if d is odd
With the notation of Lemma 4.6, let d, denote the degree of each homogenous

non-commutative polynomial g, and let g,(x, B, B) be defined like in the previous
case. Then, as above,

1 o)
ol <2 5 (c2 [emanecd [T ) ol

a with d, even

oo
2> (Ciwéa / w‘2<’"—m>dm) 612,

a with d, odd
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for ¢ € Sy ev, and
2 2 2 > —2(m/—m) 2
Iy <2 Y- (an N dx) 1905y,

a with d, even
1 o] ,
+2 Z (Ci/ x2o dr + C(?,l/ x—Q(m —m)+20 dl') ||¢||?S;,L(I)dd
a with d, odd 0 1 ’

for ¢ € Sy ev, where the integrals are finite because —1/2 < o < 0 and —2(m/—m) <
—1. (I

Let C denote the space of rapidly decreasing sequences of real numbers. Recall
that a sequence ¢ = (c) € RY is rapidly decreasing if

lelle,, = sup ekl (14 K)™

is finite for all m > 0. These expressions define norms || ||c,, on C. Let C,, denote
the completion of C with respect to || ||¢,,, which consists of the sequences ¢ € RN
with ||c[|c,, < 00. So C =), Crn with the induced Fréchet topology. Also, for each
m > 0, let /2, denote the Hilbert space completion of C with respect to the scalar
product (, )ez defined by

(e,dVe2, =D erci(1+ k)™
k

for ¢ = (cx) and ¢’ = (¢},). The corresponding norm will be denoted by || [|¢z . Thus
/2 is a weighted version of ¢?; in particular, (3 = (*. Let (%2 = (), (2, with the
corresponding Fréchet topology.
A sequence ¢ = (¢;;) will be called even/odd if ¢, = 0 for all odd/even k. We get
the following direct sum decompositions into subspaces of even and odd sequences:
Cm = Cm,ev S¥ Cm,odd 5 C= Cev ¥ Codd 5
g?n = E%@,ev D E%’L,odd ’ Ego = ggo,ev D g?)o,odd .
LEMMA 4.7. 03, C Cp, and Cpyr C €2, continuously for all m if 2m’ —m > 1.

PROOF. It is easy to see that

1/2
e, < leles. + lelle, < lelle,. (Z(l +k>m—2’”)

k
for any ¢ € C, where the last series is convergent because m — 2m’ < —1. a

COROLLARY 4.8. (2, = C as Fréchet spaces.

According to Section 2 of Chapter 1, the “Fourier coefficients” mapping ¢ —
((¢k, #)») defines a quasi-isometry W™ — (2 for all m, and therefore an isomor-
phism W2° — C of Fréchet espaces. Notice that the “Fourier coefficients” mapping
can be restricted to the even and odd subspaces.

COROLLARY 4.9. Any ¢ € L*(R,|z|?? dz) is in S, if and only if its “Fourier
coefficients” (pr, d)» are rapidly degreasing on k.

ProoOF. By Corollary 4.5, the “Fourier coefficients” mapping defines an iso-
morphism S, — C of Fréchet spaces. (I

There is also a version of the Rellich theorem stated as follows.
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PROPOSITION 4.10. The operator W™ — W is compact for m' > m.

By using the “Fourier coefficients” mapping, Proposition 4.10 follows from the
following lemma (see e.g. [54, Theorem 5.8]).

LEMMA 4.11. The operator (2, — (2 is compact for m’ > m.

PROOF OF PROPOSITION 4.4. For ¢ € S,, its “Fourier coefficients” ¢ = (dg, @)
form a sequence ¢ = (¢) in C, and

1/2
S el (1 0™ < e, (204 k)
k

k

by Cauchy-Schwartz inequality, where the last series is convergent since m —m’ <
—1. Therefore

S leel (14 k)™2 < Clly e (59)
k
for some C > 0 independent of ¢.

On the other hand, for all 7,j € N with i + j < m, there is some homogeneus
non-commutative polynomial p; ; of degree i+ such that 2'TI = pi,j (B, B’). Then,
by (18)-(20),

(60,2 TI0)0| < Crs(L+R)™2 S e (60)
[6—k[<m
for some C; ; > 0 independent of ¢.

Now suppose that o > 0. By (59), (60) and Theorem A-(ii), there is some

C’{J > 0 independent of ¢ and x so that

2| |2 T ()| < |2|7 ) [, 2" TE)o | |k ()]
k

=Y ok @' T 161(x)| < CFj [l (61)
k

for all z. Hence ||¢||sm < C'[|¢]|yym for some C’" > 0 independent of ¢.
Finally assume that ¢ < 0. By (59), (60) and Theorem B, there is some
Cj; > 0, independent of ¢ and =, so that

' Tio(x)| <Y bk, ' TId)o | [dr(2)] < CFj 18]l
k

for all z if ¢ € Sy oy and @+ j is even, or ¢ € Sy,0d4q and ¢ + j is odd. On the other
hand, by (59), (60) and Theorem A-(ii), there is some C}’; > 0, independent of ¢
and z, such that, like in (61),

2|7 2" T ()| < CF; Il
for all  # 0 if ¢ € Sp0da and i + j is even, or ¢ € S,y and ¢ + j is odd.
Therefore there is some C’ > 0 such that ||¢|lsm < C'||@||yyme for all ¢ € Sy ev,

and ||¢]sr . < C' @l for all ¢ € Spoaa. O

As suggested by (29), consider the mapping ¢ = (ci) — Z(c) = (d¢), where ¢ is
odd and E(c) is even with

P \/ (= 1)(k=3) - (C+2)2s

et T (k+20)(k—2+20)--- ({+ 1+ 20)
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for ¢ even, assuming that this series is convergent.
LEMMA 4.12. Z defines a bounded map (2, 44 — Cmev if m' —m > 1.

PRrROOF. By the Cauchy-Schwartz inequality,

(k—1)(k—=3)--- (£ +2)2s
ldle,, =sup Y ek (L4 0)™
PNy P (k+20)(k—2420)---(£+1+20)
< V2ssup Z lek] (14 6)™
b kefer1,043,..}
) 1/2
VB[, Y asnaren)
C N\pe{e+1,643,...}
N 172
< Vsl (Sa )
k
where the last series is convergent since m —m’ < —1. (]

COROLLARY 4.13. ™! defines a bounded operator S;f‘;d — S if 2m” >
m+ 5.
PROOF. Since 2m’ > m + 5, there are my, mo, m3 > 0 such that
m —m3>1/2, mg—ma>1, 2mg—m;>1, my—m>1.

Then, by Propositions 4.3 and 4.4, Lemmas 4.7 and 4.12, and using the “Fourier
coeflicients” mapping, we get the following composition of bounded maps:

Sa odd Wo’ osdd - ng odd _> Cm2 ev ’gml ev W;nelv — Sjynev .
By (29), this composite is an extension of the map 27! : Spqq — Sev- O

QUESTION 4.14. The proof of Corollary 4.13 is very indirect. Is it possible to
prove it without using (29) and the perturbed Sobolev spaces?

COROLLARY 4.15. 27! defines a continuous operator Ss.0dd — Soev-

LEMMA 4.16. S C St and 872 C S™

7ev w0 ev wo continuously for m > 1.

PROOF. Let us construct a sequence of naturals M,, cy/oaq Such that S M ev/oda C

o,ev/odd
qul,o,ev/odd continuously for all m. Like in the proof of Lemma 3.8, we proceed by
induction on m, with Mg ¢y/0qqa = 0. For m > 0, assume that the terms M, _1 cv/0dd
are constructed

For ¢ € C, z+]<mw1thj>0and:1:€]R we have

P (To0)0 V(@)

ev?

obtaining

[0llsz, < NTodllsp ot + lI¢llsy -

But there are some C,C’ > 0, independent of ¢, such that
||Ta¢||$”' 1 <C ||TU¢HS m—1,0dd < o ||¢||5Mm ev

with
Mm,cv = m—1,odd +1. (62)
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For ¢ € C%4, and 4, j and x as above, we have

260 (@)| < |o'(T,6) 07D (@)| + 20 [¢' (a7 0) U (@)

obtaining
I1lls, < N Todllgmor + 210l Iz @l gmor + sy
But, by Corollary 4.13, there are some C,C’ > 0, independent of ¢, such that
176l s + 210l e Sl sy < C (16 gatnmrow + 2726 001 )

S Cl ||¢||S£Lm,odd

if
Mm,odd Z Mm—Lev + 1 3 2]\4171,0(:1d > Mm—LeV + 5. (63)
The conditions (62) and (63) are satisfied with M; ey = 1, My o4a = 3 and
Mo ev/odd = m + 2 for m > 2. O

Mo ev/o .
COROLLARY 4.17. Sev/o’dd/ 4 c Sg‘ev/odd continuously for all m, where

M 22 2 6)([o] +3)+ [o] ifo >0 and m is even

msev/edd = 57”‘4—2 if o <0 and m is even ,
Mo dm=l 4 med (5] ([o] +3)+ [o] ifo >0 and m is odd
e % if o <0 and m is odd ,

o fEmil 4 L[5 ([0] +3) 4+ [o]  if o >0 and m is odd
miodd = % if o <0 and m is odd .
PRrOOF. This follows from Lemmas 3.1, 3.3 and 3.8. ([

COROLLARY 4.18. S;”/ C 8™ continuously for all m, where
1
=3 2D
Moreover S, ., C 8, continuously.
PrOOF. This follows from Lemmas 3.2, 3.4 and 4.16. O

COROLLARY 4.19. S, = S as Fréchet spaces.
PRrOOF. This is a consequence of Corollaries 4.17 and 4.18 O

Now, Theorems D and E follow from Corollaries 4.17 and 4.18 and Proposi-
tions 4.3 and 4.4.






CHAPTER 5

Perturbation of H on R,

More general perturbations of H can be obtained with conjugation of L by
the operator of multiplication by functions which are defined and positive almost
everywhere (with respect to the Lebesgue measure), like we did in Section 1 of
Chapter 2 with the function |z|?7. We will only consider conjugations of the even
and odd components of L separately, and acting on spaces of functions on R. This
will be also enough for the application in Part 2.

Let Leyjodds OF Lo ev/oda, denote the restriction of L to Sey/oqd- Since the
function |2|?° is even, there is an orthogonal decomposition L?(R,|z|?? dzx) =
L2 (R, |z|?? dx) & L2,4(R,|z|?° dx) as direct sum of subspaces of even and odd
functions. Then Lgy/oqq is essentially self-adjoint in L% /Odd(R, |z|?? dx), and its
self-adjoint extension Ley/0dd, OF Lo,ev/0dd, 1S Obtained by restriction of £. We also
get an obvious version of Corollary F for Ley /0dd-

Fix open subset U C R, of full Lebesgue measure. Let Sey/oqq,0 denote the
linear subspace of C*°(R.) consisting of the restrictions to U of the functions in
Sev/odd- The restriction to U defines a linear isomorphism

Sev/odd = Sev/odd,U ’ (64)
and a unitary isomorphism
12, joaa (B 2?7 do) = I2(R ., 2% d) (65)
Let Ley/odd,us OF Lgev/odd,u, denote the operator defined by Ley/odd 00 Sev/odd, U
via (64). Let also ¢x. i = éx|r, whose norm in L?(R,, 27 dz) is 1/+/2 since (65) is
unitary. When U = R, the notation Sey/odd,+5 Lev/odd,+> OF Lo ev/odd,+> and g +
will be used. Moreover let Ley/0dd,+»> OF Lo ev/odd,+, e the self-adjoint operator in
L?(R ., %7 dx) that corresponds to Ley/oaa via (65).

Going one step further, for any positive function h € C?(U), the operator (of
multiplication by) h defines a unitary isomorphism

h: L3Ry, 2% dz) — L3Ry, 2% h 2 dx) . (66)
We get that hLev/odd,Uh_l, with domain h Sy 0da,u, is essentially self-adjoint

in L*(Ry,2??h~2dx), and its self-adjoint extension is hLley/oaa+h ™' Via (65)
and (66), we obtain an obvious version of Corollary F for hLl, /Oddﬂ_h*l. By using

dx dz2’

it easily follows that hLey/oqa,uh™" is of the form (1) with f; € C'(U) and f; €
C(U). Then Theorem G is a consequence of the following.

d ] 1 d
) T N @

LEMMA 5.1. For o > —1/2, a positive function h € C*(U), and an operator
P of the form (1) with f; € C*(U) and f2 € C(U), we have P = hLy oy uh™' on

49



50 5. PERTURBATION OF H ON R4

hSev.u if and only if (2) and (3) are satisfied with some primitive Fy € C*(U) of
fi-

Proor. By (67),

d? d
hiPh=—-h"'——h+sz®>—2n" 1 fi—h+fo
dz? dx
d? 1 d
T ) el " 2
= h ( h In +h > + sx

d
- 2f1*d — 20 AW 4 fo
X

=H-2h'W + fl)% — R = 2hT AR 4 fs
So P = hLU7eV7Uh_1 if and only if
W =oa™t — fi, (68)
fo=h"th" 27 R £ (69)
The equality (68) is equivalent to (3), and gives
h'n" = (ox™' = fi)? —ox > + f] .

So, by (69),
fa=(oz7 = f1)’ —ox 2+ fl+2(cx"" = fi1)fr
e N
It follows that (68) and (69) are equivalent to (3) and (2). O

REMARK 2. By (67), we get an operator of the same type if h and d% is
interchanged in (1).

REMARK 3. By using (67) with h = 7! on R4, it is easy to check that
Loodd+ = TLitoev+2 " on Soddy = TSev,+ for all ¢ > —1/2. So no new
operators are obtained with the conjugation Ls o440 by h.

REMARK 4. If f; is a rational function, then the function fs, given by (2), is
also rational.

REMARK 5. The term of P with % can be removed by conjugation, obtaining
the operator H + o(0 — 1)2 72, given by restricting K, first to even functions and
second to R, . In this way, we get all operators of the form H +cx~2 with ¢ > —1/4.



CHAPTER 6

Examples

1. Case where f; is a multiple of z~!

A particular class of (1) is given by the operators of the form
d
P=H-— 2611’71 % + 6211772 (70)

for c¢1,co € R. In this case, we can take I} = c;loga. Then et = z¢1, (3) gives
h = 2% with a = 0 — ¢, and (2) becomes co2~2 = (a® + a(2c; — 1))z~ 2. Therefore
Corollary H follows from Theorem G.

REMARK 6. According to Remark 2, we get an operator of the same type if
z~! and % is interchanged in (70). We may also use that, with the function x®

(a € R), (67) becomes

— =z —
dz’ dz?’

REMARK 7. By Corollary H-(iii), we have h D> (P) C D>°(P) for all h €
C*(R;) such that b’ € C§°(R4).

2
[ d “] =az® ', [ d “] =2ax""! di +a(a— 122, (71)
x

The existence of a € R satisfying (4) is characterized by the condition
(2¢1 —1)* +4c2 > 0. (72)

Observe that (72) is satisfied if co > min{0, 2¢; }. In particular, we have the follow-
ing special cases.

EXAMPLE 6.1. Suppose that co = 0;i.e., P = H—ZClx_lﬁ. Thus P = L, ev,+
if ¢4 > —1/2; however, this inequality is not required a priori. Then (4) means
that a € {0,1 — 2¢;1 }, and (5) gives

{cl ifa=0
g =
l—c ifa=1-2¢.
In the case a = 0 and o = ¢y, the condition ¢; > —1/2 is needed to apply Corol-
lary H. In this case, Corollary H holds for P = L, ¢v,+ on Sev 4, which is a
direct consequence of the known properties of L., (Section 2 of Chapter 1 and
Corollary F).

Nevertheless, Corollary H gives new information in the case a = 1 — 2¢; and
o =1—¢;: we have 0 > —1/2 just when ¢; < 3/2 (¢; < —1/2 is allowed!). When
this inequality is satisfied, Corollary H states that P, with domain x'72¢1 S, .,
is also essentially self-adjoint in L?(R, 2% dx); the spectrum of its self-adjoint
extension P consists of the eigenvalues (4k+3—2c¢1)s (k € N) with multiplicity one;
the corresponding normalized eigenfunctions are v2z!'*2¢1¢qy 5 and D®(P) =
1,17201 ch,+~
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Thus, when —1/2 < ¢; < 3/2, we have got two essentially self-adjoint operators
in L?(R, 2% dz) defined by P, with domains Se, + and x'72¢1 S, ;, which are
equal just when ¢; = 1/2. In particular, if ¢; = 0, these operators are defined by
H with domains Sey,+ and = Sev,+ = Sodd,+-

EXAMPLE 6.2. Suppose that co = 2¢y; ie., P = H — 2611‘_1% + 2ci272.
Then (4) means that a € {1, —2¢;}, and (5) gives

14+c¢ fa=1
o =
—C1 ifa=—2¢ .

In the case a = 1 and ¢ = 1 + ¢;, we have 0 > —1/2 if and only if ¢; > —3/2.
When this inequality is satisfied, Corollary H states that P, with domain = Sey 4, is
essentially self-adjoint in L?(R,, 22 dw); the spectrum of its self-adjoint extension
P consists of the eigenvalues (4k + 3 + 2¢1)s (k € N) with multiplicity one; the
corresponding normalized eigenfunctions are v/2 x¢oy +; and D®(P) = x Sey .

In the case a = —2¢; and ¢ = —cy, we have 0 > —1/2 just when ¢ <
1/2. When this inequality is satisfied, Corollary H states that P, with domain
xT2a Sev,+, is essentially self-adjoint in L?(R, 2% dz); the spectrum of its self-
adjoint extension P consists of the eigenvalues (4k + 1 — 2¢1)s (k € N) with mul-
tiplicity one; the corresponding normalized eigenfunctions are \/§$7261¢2k7+; and
D>®(P) = 272 Sey 4.

Thus, when —3/2 < ¢; < 1/2, we have got two essentially self-adjoint operators
in L2(Ry, 22 dz) defined by P, with domains z Sey 4 and 72 S,y 1, which are
equal just when ¢; = —1/2. In particular, if ¢; = 0, we get again that these
operators are defined by H with domains  Sev + = Sodd,+ and Sev +.

In this case, we will use the notation xs g0k = \/§x“¢2k7+ (or simply xg) for
the eigenfunctions. The following property of x5 4,00 Will be also used.

LEMMA 6.3. If h is a bounded measurable function on Ry with h(p) — 1 as
pP— 07 then <hXS,a,0',0a Xs,a,o,0>cl — 1 as s — oo.

PROOF. Given any € > 0, take some zo > 0 such that |h(z) — 1| < €/2 for
x < xg. For s large enough, we have

o0 2 €
e 5% IQO‘ dr < —— —
/z ~ 4p2 max |h — 1]

0

Hence, for s large enough,

> —SIEZ o
(1= B)Xera00 Xommoo)er | < 202 / 11— h(z)| e~ 22 du
0

zo
= p%e/ e 229 dy + 2p% (max |1 — h|) / e 129 dy
0 T

0

< € € €
< ng/ e sz chr dx + 5 = 5 HXs,a,o,OHi + 5 =e. O
0

2. Case where f; is a multiple of other potential functions

Suppose that f; = cz” for ¢,r € R with r # —1. Given any o > —1/2, now (2)
becomes

fo=o0(oc -1z 2+ 2a® —cra™ 1.
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cmrJrl
r+1 7

Cerrl
h=z%¢ -
oo (<)
according to (3). Then Theorem G asserts that the operator

Moreover we can take F} = obtaining

d
P=H - Qerd— +o(oc—1Da 2 —c*2® —cra”™t,
x

with domain h Sey 4, is essentially self-adjoint in L2(R, e*f dz); the spectrum of
its self-adjoint extension P consists of the eigenvalues (4k + 1 4 20)s (k € N) with
multiplicity one and normalized eigenfunctions v/2 hoaok, +; and the smooth core of
P is hSCV7+.

3. Case where f; is a multiple of ¢’'/¢g for some function g

The operators of Section 1 can be generalized as follows. For an open subset
U C R, of full Lebesgue measure, take f; = c¢g’/g for ¢ € R and some non-vanishing
function g € C?(U). Given any o > —1/2, the equality (2) gives
) g/2 g//
fo=oclc=—1Dz™  —clc—1) = —c=—.

g9? g
In this case, we can take F; = clog|g|, obtaining h = 2 |g|~¢ by (3). Then
Theorem G states that the operator
g d 9° g
P:H—QCE%+U(0—1)x_2+c(c—1)g—2—c?,
with domain 27 |g|~¢Sey v, is essentially self-adjoint in L*(R4, |g|*“ dz); the spec-
trum of its self-adjoint extension P consists of the eigenvalues (4k + 1 + 20)s
(k € N) with multiplicity one and normalized eigenfunctions v/2 27 |g|~¢¢ax.v; and

the smooth core of P is 7 |g|~¢ Sey,r. This agrees with Corollary H when g = x.

EXAMPLE 6.4. If we take g = cosx, which does not vanish on U = R \ (2N +
1), we get that, for any o > —1/2, the operator

d
P:H—ZCtanxd—+J(a—1)x_2+c(c—1)tan2x—c,
x

with domain 27 | cos 2| ~%/2 Sey 17, is essentially self-adjoint in L?(Ry, | cos z|?¢ dz);
the spectrum of its self-adjoint extension P consists of the eigenvalues (4k+1+20)s
(k € N) with multiplicity one and normalized eigenfunctions v/2 x| cos x| “¢a r;
and the smooth core of P is 27 | cos x| ~¢/? Sev,U-

Similar examples can be given with other trigonometric and hyperbolic func-
tions.

EXAMPLE 6.5. For g = ¢*, it follows that, for any ¢ > —1/2, the operator

d
P:H—20%+a(o—l)m_2—cz,

with domain z7e~* S,y 4, is essentially self-adjoint in L*(R,e*® dz); the spec-
trum of its self-adjoint extension P consists of the eigenvalues (4k+1+20)s (k € N)
with multiplicity one and normalized eigenfunctions v/22%e~%*/2¢oy 4; and the

—CIT

smooth core of P is z%¢ S
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EXAMPLE 6.6. With more generality, for ¢ = e*" (0 # n € Z) and any o >
—1/2, the operator

d
P=H —2cnz""! =+ o(0 — 1)z~2 — ¢c — 1)n2z2m=D)

- c(n(n —1)z" 2+ n2$2("71)> ,

cx™

with domain x%e~ v+, is essentially self-adjoint in L?(Ry, e?**" dz); the spec-
trum of its self-adjoint extension P consists of the eigenvalues (4k + 1 + 20)s
(k € N) with multiplicity one and normalized eigenfunctions v/2z%e™" ¢y, 4 ;

—cz™

and the smooth core of P is z%¢ v+ -

4. Transformation of P by changes of variables

We can use arbitrary changes of variables to provide a larger family of essentially
self-adjoint operators whose spectrum can be described. For instance, the operator
P on R, given in Chapter 5, can be transformed into a differential operator on R
with the change of variable z = logy, where now y denotes the standard coordinate
of Ry. Since dz/dy =1/y = e %, we get

2 2
4 _ w4 A ey (4 A
dy dx’  dy? dz? dx
So this change of variables transforms the operator P of (1) (on functions of y) into

the operator

2

P =—e? @4-8262 —2(fi(e")e " —e7? )%—l—fg(e)

(on functions of z), and transforms L?(R,,e?"®) dy) into L?(R,,e*F1(¢"e? dx).
Suppose that f; and f, satisfy (2) for some o > —1/2, and let h € C?(U) be defined
by (3) for some primitive F; € C?(U) of fi. Let also V ={z € R|e* € U }. Then
P, with domain

{h(e®)p(e”) | ¢ € Sevyy } € CP(V), (73)
is essentially self-adjoint in L?(R,e?1(¢")e? dz); the spectrum of its self-adjoint
extension P; consists of the eigenvalues (4k + 1 + 20)s (k € N) with multiplicity
one and normalized eigenfunctions v/2 h(e®)pay 7(€); and the smooth core of P,
is (73).
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CHAPTER 7

Preliminaries on Thom-Mather stratifications

1. Thom-Mather stratifications

Here, we recall the needed concepts introduced by R. Thom [60] and J. Mather
[44]. We mainly follow [64], and some new remarks are also made, specially con-
cerning products.

1.1. Thom-Mather stratifications and their morphisms. Let A be Haus-
dorff, locally compact and second countable topological space. Let X C A be a
locally closed subset. Two subsets Y, Z C A are said to be equal near X (orY = Z
near X) f Y NU = ZNU for some neighborhood U of X in A. It is also said
that two maps, f: Y — B and g: Z — B, are equal near X (or f = g near X)
when there is some neighborhood U of X in A such that Y NU = ZNU, and the
restrictions of f and g to Y NU are equal.

Consider triples (T, 7, p), where T is an open neighborhood of X in A, 7 : T —
X is a continuous retraction, and p : X — [0, 00) is a continuous function such that
p~1(0) = X. Two such triples, (T, ,p) and (T, 7', p'), are said to be equal near
X when T =T', 7 = 7’ and p = p’ near X. This defines an equivalence relation
whose equivalence classes are called tubes of X in A. The notation [T, 7, p] is used
for the tube represented by (T, p). If X is open in A, then [X,idx, 0] is its unique
tube (the trivial tube).

DEFINITION 7.1. A Thom-Mather stratification* (or Thom-Mather stratified
space) is a triple (A, S, 7), where:

(i) A is a Hausdorff, locally compact and second countable space,
(ii) S is a partition of A into locally closed subspaces with the additional
structure of smooth (C°) manifolds, called strata, and

(iii) 7 is the assignment of a tube 7x of each X € S in A,
such that the following conditions are satisfied with some choice of (T'x,7x,px) €
7x for each X € S:

(iv) For all X,Y € S, if X NY # 0, then X C Y. The notation X <Y is

used in this case, and this defines a partial order relation on S. As usual,
X <Y means that X <Y but X #Y.
(V) IY #XinSand Tx NY # 0, then X <Y and (7x,px) : ITx NY —
X x R, is a smooth submersion; in particular, dim X < dimY'.
(Vi) If X <Y in S, then Wy(TxﬂTy) CTx,and mx my = 7x and px 7y = px
on TX N Ty.
It may be also said that (S,7) is a Thom-Mather stratification of A.

REMARK 8. (i) A is paracompact and normal.

IThis is called abstract prestratification in [44] and abstract stratification in [64].
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By the normality of A, we can also assume that, if X, Y € S and TxNTy #
0, then X <Y or Y < X.

The frontier of a stratum X equals the union of the strata Y < X.

The connected components of each stratum may have different dimensions.
The connected components of the strata, with the corresponding restric-
tions of the tubes, define an induced Thom-Mather stratification Acon =
(A, Scon,s Teon); in this way, we can assume that the strata are connected
if desirable.

REMARK 9. The following are some variants of the concept “stratification” and
related notions:

(i)

A weak Thom-Mather stratification is defined by removing the condition
px Ty = px from Definition 7.1-(vi).

A stratification is a pair (A,S) satisfying Definition 7.1-(i),(ii),(iv); it
is also said that S is a stratification of A. Definition 7.1-(iv) is called
the frontier condition. If moreover 7 satisfies the other conditions of
Definition 7.1, then it is called Thom-Mather structure on (A,S).

If A is a subspace of a smooth manifold M, then a stratification S of
A is usually required to consist of regular submanifolds of M; the term
stratified subspace of M is used in this case. In [29], a weaker version
of this notion is defined by requiring local finiteness of S instead of the
frontier condition.

For a stratified subspace (A,S) of a smooth manifold M, the condi-
tion (B), introduced by H. Whitney [66, 67], is defined as follows?. In
the case M = R™, it requires that, for all X # Y in S, if (z;) and (y;)
are sequences in X and Y, respectively, both of them converging in A to
some x € X, if the sequence of tangent spaces T;,Y converges® to a linear
subspace T' C R™, and if the sequence of lines R(z; —y;) converges to a line
L C R™, then L C T. This property is preserved by local diffeomorphisms
of R™, and therefore generalizes to arbitrary smooth manifolds. This con-
dition gives rise to the concept of Whitney stratification of a subspace (or
Whitney stratified subspace) of M.

EXAMPLE 7.2. (i) Any smooth manifold is a Thom-Mather stratification

(i)

with one stratum and the trivial tube.

Any smooth manifold with boundary is a stratification with two strata,
the interior and the boundary. It can be endowed with a Thom-Mather
structure by using a collar of the boundary.

Any subanalytic subset of R™ has a primary and secondary stratifications;
the secondary one satisfies condition (B) [40, 45, 33, 32, 34].

J. Mather [44] has proved that any Whitney stratified subspace of a
smooth manifold admits a Thom-Mather structure (see also [29, Propo-
sition 2.6 and Corollary 2.7]).

For a stratification A = (A, S), the depth of any X € S, denoted by depth X,
is the supremum of the naturals n such that there exist strata Xj,..., X, with
Xo < X7 < -+ < X, = X. Notice that depth X < dim X. Moreover depth X = 0

2Certain condition (A) was also introduced by H. Whitney in [66, 67], but J. Mather [44]
has observed that it follows from condition (B).
3The convergence of linear subspaces of R™ is considered in the appropriate Grassmannians.
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(X is minimal in §) if and only if X is closed in A. The depth and dimension of
A are the supremum of the depths and dimensions of its strata, respectively. The
dimension of A equals its topological dimension, which may be infinite. The depth
of A is zero if and only if all strata are open and closed.

Let A = (A,S8,7) be a Thom-Mather stratification. Let B C A be a locally
closed subset. Suppose that, for all X € §, X N B is a smooth submanifold of
X, and BN 77)_(1 (X N B), endowed with the restrictions of mx and px, defines a
tube 7xnp of X N B in B. Then let S|p = {XNB | X € S}, and let 7| be
defined by the assignment of 7x~p to each X N B € S|p. If (B,S|p,7|p) satisfies
the conditions of a stratification, it is said that the stratification A (or (S,7)) can
be restricted to B, and B = (B, S|p, 7|p) is called a restriction of A (or (S|g,7|5)
is called the restriction of (S,7)); it may be also said that B is a Thom-Mather
substratification of A. For instance, A can be restricted to any open subset and to
any locally closed union of strata. A restriction of a restriction of A is a restriction
of A.

For a stratum X of A, we can consider the restriction of A to X. In this way,
to study X, we can assume that X is dense in A and dim X = dim A if desirable.

A locally closed subset B C A is said to be saturated if the stratification A can
be restricted to B and, for every X € S, there is a representative (T'x,7x, px) of
7x such that 7' (X N B) = Tx N B.

Let A" = (A,8’,7') be another Thom-Mather stratification. A continuous
map f : A — A’ is called a morphism if, for any X € S, there is some X' €
S’ such that f(X) C X', the restriction f : X — X’ is smooth, and there are
(Tx,7x,px) € 7x and (T%,, 7., p'x/) € T, such that f(Tx) C T%/,, frx = 7. f
and fpx = p'yx,. Notice that the continuity of a morphism follows from the other
conditions. Morphisms between stratifications form a category with the operation
of composition; in particular, we have the corresponding concepts of isomorphism
and automorphism. The set of morphisms A — A’ is denoted by Mor(A, A"), and
the group of automorphisms of A is denoted by Aut(A). The other variants of the
concept “stratification” given in Remark 9 also have obvious corresponding versions
of morphisms, isomorphisms and automorphisms; in particular, we get the concept
of weak morphism between weak Thom-Mather stratifications. A (weak) morphism
is called submersive when it restricts to smooth submersions between the strata.

ExAMPLE 7.3. Let G be a compact Lie group G acting smoothly on a closed
manifold M. Consider the orbit type stratifications of M and G\M [9]. It is
well known that G\M admits a Thom-Mather structure [64, Introduction], which
can be seen as follows. G\M is locally isomorphic to a semi-algebraic subset of
an Euclidean space whose primary and secondary stratifications are equal [5]. By
using an invariant smooth partition of unity of M, like in the Whitney’s embedding
theorem, it follows that G\M is isomorphic to a Whitney stratified subspace of
some Euclidean space, and therefore it admits a Thom-Mather structure. This
can also be seen by observing that the stratification of M satisfies condition (B),
and the proof of [29, Proposition 2.6] can be adapted to produce an invariant?
Thom-Mather structure on M, which induces a Thom-Mather structure on G\ M.

The following two lemmas are easy to prove.

4@ acts by automorphisms.
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LEMMA 7.4. Let A be a Hausdorff, locally compact and second countable space,
{U;} an open covering of A, and (S;, ;) a Thom-Mather stratification of each U;.
(i) If (Si, 1) and (S;,7;) have the same restrictions to U;j := U; NU; for all
i and j, then there is a unique Thom-Mather stratification (S,7) on A
whose restriction to each U; is (S;, ;).

(ll) If ((8i|Uij)con, (Ti|Uij)Con) = ((Sj|Uij)C01’l7 (Tj‘Uij)COII) for all i and j, then
there is a unique Thom-Mather stratification (S,7) on A with connected

strata such that ((S|u,)econs (T|U;)con) = (Si.con, Ticon)-

LEMMA 7.5. Let (A’,S’,7") be another Thom-Mather stratification.

(i) With the notation of Lemma 7.4-(3), let f; : (U;, Siy 1) — (A, 8, 77) be a
morphism for eachi. If filu,; = fjlv,; for alli and j, then the combination
of the maps f; is a morphism f: (A,S,7) — (A',S', 7).

(ii) With the notation of Lemma 7.4-(i4), let f; : (Ui, Si.con, Ticon) — (A7, 8, 7")
be a morphism for eachi. If fi|lu,, = filu,, for alli and j, then the com-
bination of the maps f; is a morphism f : (A,S,7) — (A, S', 7).

REMARK 10. As a particular case of Lemma 7.4, given a countable family of
Thom-Mather stratifications, {A; = (A;,S;, )}, there is a unique Thom-Mather
stratification (S,7) on the topological sum | |, A; whose restriction to each A; is
(Si, Ti); this (S, 7) will be called the sum of the Thom-Mather stratifications (S;, ;).

1.2. Products. The product of two weak Thom-Mather stratifications, A and
A’, has a weak Thom-Mather stratification A x A’ = (A x A", S",7") with §" =
{XxX'|Xe8, X eS8 }and %, x = [Thux Tsx Pxxx], where T, =
T x T, Tl s = mx X o and s (000) = px (@) + ply ().

If A and A’ are Thom-Mather stratifications and the depth of at least one of
them is zero, then A x A’ is a Thom-Mather stratification, but this is not true
when the depths of A and A’ are positive [64, Section 1.2.9, pp. 5-6]. Another
choice of pxxx is needed to get the second equality of Definition 7.1-(vi). For
instance, p%, x» = max{px, p’y,} satisfies that condition, but it is not smooth on
the intersection of the strata with T% . .. To solve this problem, pick up a function
h : [0,00)? — [0, 00) that is continuous, homogeneous of degree one, smooth on R,
with A71(0) = {(0,0)}, and such that, for some C' > 1, we have h(r,s) = max{r, s}
if C min{r, s} < max{r,s}. Then A x A’ becomes a Thom-Mather stratification by
setting p% . x/(x, &) = h(px (z), p'x, (z)); it will be called a product of A and A’.

1.3. Cones. Recall that the cone with link a non-empty topological space
L is the quotient space ¢(L) = L x [0,00)/L x {0}. The class * = L x {0} is
called the vertex or summit of ¢(L). The element of ¢(L) represented by each
(x,p) € L x [0,00) will be denoted by [z, p]. The function on ¢(L) induced by the
second factor projection L x [0,00) — [0, 00) will be called its canonical function,
and will be usually denoted by p. Notice that ¢(L) is locally compact if and only if
L is compact. It is also declared that ¢()) is the singleton space {x}, and the above
terminology can be obviously adapted to this case.

Now, suppose that L is a compact Thom-Mather stratification. Then ¢(L) has
a canonical Thom-Mather stratification so that {} is a stratum, its restriction to
c¢(L)\{*} = L xRy is the product Thom-Mather stratification, and the tube of {x}
is [¢(L), 7, p], where p is the canonical function and 7 is the unique map ¢(L) — {x}.
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If L # (0, then depth (L) = depth L + 1 and dim¢(L) = dim L + 1. For any € > 0,
let (L) = p~ ([0, ).

Let L' be another compact Thom-Mather stratification, and let *’ denote the
vertex of ¢(L'). If L # (0, the cone of any morphism f : L — L’ is the morphism
c(f) : ¢(L) — ¢(L') induced by f xid : L x [0,00) — L’ X [0,00). If L =0, c(f) is
defined by mapping * to *’. Reciprocally, it is easy to check that, for any morphism
h:c(L) — ¢(L"), there is some morphism f : L — L’ such that h = ¢(f) near x; in
particular, h(x) = «’. Let c(Aut(L)) = {c(f) | f € Aut(L) } C Aut(e(L)).

EXAMPLE 7.6. For each integer m > 1, there is a canonical homeomorphism
can : ¢(S™1) — R™ defined by can([z, p]) = pz. Of course, this is not an isomor-
phism of Thom-Mather stratifications, but it restricts to a diffeomorphism of the
stratum S™! xR, of ¢(S™7 1) to R™\ {0}. Via can : ¢(S™~!) — R™, the canonical
function of ¢(S™~!) corresponds to the function po(x) = || on R™, which will be
also called the canonical function on R™ for the scope of this work. If p; is the
canonical function on ¢(L) for some compact Thom-Mather stratification L, then
the function p = /pZ + p? will be called the canonical function on R™ x ¢(L).

The following argument shows that a product of two cones is isomorphic to a
cone. With the above notation, let p : ¢(L) — [0,00) and p’ : ¢(L') — [0,00) be the
canonical functions, and let p” = h(p x p') : ¢(L) x ¢(L') — [0, 00) for a function h
like in Section 1.2. Since the restrictions p: L x Ry — Ry and p': I’ x Ry — Ry
are submersive weak morphisms, and h : Ri — R, is non-singular, it follows
that p” : ¢(L) x (L") \ {(x,#)} — R, is a submersive weak morphism. Hence
L = p"7 (1) is saturated in ¢(L) x ¢(L') [64, Lemma 2.9, p. 17]. Let %’ denote
the vertex of ¢(L"). Since h is homogeneous of degree one, the mapping

([, 7], [, 7)), 8] = ([, 7s], [, r's])

defines an isomorphism ¢(L"”) — ¢(L) x ¢(L’), whose inverse is given by (x, *') — ",

and
(oD = [ ([ | [ | ) o)
it (r,1) # (0,0).

1.4. Conic bundles. Let X be a smooth manifold, L a compact Thom-
Mather stratification, and 7 : T — X a fiber bundle whose typical fiber is ¢(L)
and whose structural group can be reduced to c¢(Aut(L)). Thus there is a fam-
ily of local trivializations of w, {(U;, ¢;)}, such that the corresponding transition
functions define a cocycle with values in c¢(Aut(L)); i.e., for all ¢ and j, there is
a map hyj : Uj; == U; NU; — c(Aut(L)) such that ¢;¢; '(z,y) = (z,hi;j(x)(y))
for every x € U;; and y € ¢(L). Thus we get another cocycle consisting of maps
gij : Uij — Aut(L) so that h;;(x) = ¢(g;5(x)) for all x € U;;. Consider the Thom-
Mather stratification on each open subset 7= (U;) C T that corresponds by ¢; to the
product Thom-Mather stratification on U; x ¢(L). For each connected open V' C U;;
and every stratum Ny of L, there is an stratum Ny of L such that g;;(x)(No) = N
for all x € V, and suppose also that, in this case, the map V x Ny — Ny,
(x,y) — gij(x)(y), is smooth. Then each mapping (x,y) — (z, g;;(x)(y)) defines an
automorphism of U;; x L. This means that the induced Thom-Mather stratifications
on 7~ (U;) and 7~ 1(U;) have the same restriction to 77 (U;;). By Lemma 7.4-(i),
it follows that there is a unique Thom-Mather stratification on 7" whose restriction
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to each 7=1(U;) is the above Thom-Mather stratification. Furthermore there is a
canonical section of , called the vertez (or summit) section, which is well defined
by z +— x, = qﬁi_l(:c, ) if € U;, where * denotes the vertex of ¢(L); each %, can be
called the vertex of the fiber over x. The image of the vertex section is a stratum
of T, called the vertex (or summit) stratum, which is diffeomorphic to X.

If 7: T — X is endowed with a maximal family ® of trivializations satisfying
the above conditions, it will be called a conic bundle, and the corresponding Thom-
Mather stratification on T is called its conic bundle Thom-Mather stratification. It
will be also said that ® is the conic bundle structure of .

Let p : ¢(L) — [0, 00) be the canonical function. Its lift to each U; x ¢(L) is also
denoted by p. The functions ¢*p on the sets w;(l(Ui) can be combined to define
a function p : T — [0,00). The tubular neighborhood of X in T is [T, p], and
(T, 7, p) is called its canonical representative.

Let @' : T/ — X’ be another conic bundle, whose structure is given by a
family @’ of trivializations as above. Let F' : T'— T’ be a fiber bundle morphism
over a map f : X — X'. Then we can choose {(U;,¢;)} as above and a family
{(U!,$)} € & such that f(U;) C U! for all i, and therefore F(x—'(U;)) € '~ (U)).
Let hgj = c(ggj) : Ui’j = Ui’ﬁUJ’» — ¢(Aut(L’)) be the maps defined by the transition
maps ¢} ¢;71 as above. Suppose that there are maps k; : U; — Mor(L, L") such
that x;(z) gij(x) = gi;(f(2)) x;(z) for all 2 € Uy;. For each connected open V C U;
and every stratum N of L, there is an stratum N’ of L’ such that x;(z)(N) C
N’ for all x € V, and assume also that, in this case, the map V x N — N/,
(z,y) — ki(x)(y), is smooth. Then F is called a morphism of conic bundles. In
this case, each mapping (x,y) — (f(z), ki(z)(y)) defines a morphism U; x ¢(L) —
U! x ¢(L'). So each restriction F : 7= *(U;) — «'~"(U!) is a morphism of Thom-
Mather stratifications, and therefore F' : T — T’ is a morphism of Thom-Mather
stratifications by Lemma 7.5-(i). According to Section 1.3, any morphism of Thom-
Mather stratifications between conic bundles, preserving the vertex stratum, equals
a conic bundle morphism near the vertex stratum.

The case of conic bundles is specially important because, as pointed out in [7,
Chapitre A, Remarque 3], the proof of [64, Theorem 2.6, pp. 16-17] can be easily
adapted to get the following.

PROPOSITION 7.7. Let A = (A,S,7) be a Thom-Mather stratification with
connected strata. Then, for any X € S, there is some (T,m,p) € Tx such that
m:T — X admits a structure ® of conic bundle such that the corresponding conic
bundle Thom-Mather stratification is (S|, T|T).

REMARK 11. (i) The notation Tx, 7x, px, Lx and ®x will be used
when a reference to the stratum X is desired.

(ii) The connectedness of the strata is assumed for the sake of simplicity.
In the general case, the description of Proposition 7.7 holds around the
connected components of the strata.

(iii) We can choose p so that (T, m,p) is the canonical representative of the
tube around X in T with its conic bundle Thom-Mather stratification.

DEFINITION 7.8. A chart or distinguished neighborhood of A is a pair (O, ¢),
where O is open in A and, for some X € S and ¢ > 0, with the notation and
conditions of Proposition 7.7, £ is an isomorphism O — B X ¢.(L) defined by some
(U, ¢) € ® and some chart (U, ) of X with ((U) = B, where B is an open subset
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of R™ for m = dim X. It is said that (O, £) is said to be centered at x € X if B
is an open ball centered at 0 and £(x) = (0,*), where * is the vertex of ¢(L). A
collection of charts that cover A is called an atlas of A.

REMARK 12. Definition 7.8 also includes the case where any factor of the
product R™ x ¢(L) is missing by taking m = 0 or L = .

REMARK 13. The following two assertions follow by using charts and induction
on the depth of the strata:

(i) In any Thom-Mather stratification, there is at most one dense stratum,
which is open.

(ii) Any stratum with compact closure has a finite number of connected com-
ponents.

1.5. Uniqueness of Thom-Mather stratifications.

LEMMA 7.9. Let A be a Hausdorff, locally compact and second countable space,
let (A", S',7") be a Thom-Mather stratification with connected strata, and let f :
A — A’ be a continuous map. Then there is at most one Thom-Mather stratification
(S,7) on A with connected strata so that f : (A,S,7) — (A',S',7') is a morphism
that restricts to local diffeomorphism between corresponding strata.

PROOF. Let (S,7) be a Thom-Mather stratification on A satisfying the con-
ditions of the statement. Then the elements of S are the connected components
X of the sets f~1(X’) for X’ € S, endowed with the differential structure so that
f: X — X’ is a local diffeomorphism. Thus the elements of S are determined by
f and the elements of S'.

Let X € Sand X' € & with f(X) C X'/, and let (T, 7,p) € 7x and (T", 7, p') €
Ty, with f(T) C T', o' f = fm and p' f = p; in particular, p is determined by f
and p/. Let z € T and 2’ = f(z) € T', and let Y € S such that x € Y. Then
fm(x) = «'(2'), obtaining that 7(x) is the unique point of X N f~1(7/(z')) that is
contained in the connected component of z in f~1a’ "' (7' (2/)). It follows that  is
also determined by f and 7', and therefore 7x is determined by f and 7%, . O

1.6. Relatively local properties on strata. The following kind of termi-
nology will be used for a subspace X of an arbitrary topological space A. Let P be
a property that may hold on open subsets U C X; for the sake of simplicity, let us
say that “U is P” when P holds on U. It is is said that X is relatively locally (or
simply, rel-locally) P at some z € X if there is a base U of open neighborhoods of
x in A such that U N X is P for all U € U; if X is rel-locally P at all points of X,
then X is said to be relatively locally (or simply, rel-locally) P. Similarly, P is said
to be a relatively local (or simply, rel-local) property when X is P if and only if it
is rel-locally P.

We will apply this terminology to the case where A is a Thom-Mather strat-
ification and X is a stratum of A. For instance, on X, we will consider functions
that are rel-locally bounded or rel-locally bounded away from zero, rel-locally fi-
nite open coverings, and rel-local connectedness at points of X. Any locally finite
covering of X by open subsets of A restricts to a rel-locally finite open covering of
X; thus there exist rel-locally finite open coverings of X by the paracompactness
of A. Observe that X is compact if and only if any rel-locally finite open covering
of X is finite.
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2. Adapted metrics on strata

The definition of adapted metrics was given for the regular stratum of any
Thom-Mather stratification that is a pseudomanifold [13, 14, 47, 48]. But its
definition has an obvious version for any stratum of a Thom-Mather stratification.
In this work, we will consider only the simplest type of adapted metrics, whose
definition is recalled. The corresponding (componentwise) metric completion of
strata will be specially studied.

2.1. Adapted metrics on strata and local quasi-isometries between
Thom-Mather stratifications. Let A be a Thom-Mather stratification. The
adapted metrics on its strata are combinations of the adapted metrics on their con-
nected components with respect to the Thom-Mather stratification defined by those
connected components. Thus we can assume that the strata of A are connected to
define adapted metrics. This definition is given by induction on the depth of the
strata.

DEFINITION 7.10. Let M be a stratum of A. If depth M = 0, then M is a closed
manifold, and any Riemannian metric on M is called adapted. If depth M > 0 and
adapted metrics are defined for strata of lower depth, then an adapted metric on M
is a Riemannian metric g such that, for any point # € M \ M, there is some chart
(0,¢) of A centered at z, with £(O) = B x ¢.(L) and £(ON M) = B x N x (0,¢)
for some stratum N of L, so that g is quasi-isometric to £*(go + p2g + (dp)?) on O,
where gg is the standard Riemannian metric on R™, p is the standard coordinate
of R4, and g is some adapted metric on N, which is defined because the depth of
N in L is smaller than the depth of M in A.

REMARK 14. Since all Riemannian metrics on a smooth manifold are locally
quasi-isometric, any metric on R could be used in Definition 7.10 instead of gg.

REMARK 15. The following properties follow by taking charts and using induc-

tion on the depth of the strata:

(i) Any pair of adapted metrics on M, g and ¢’, are rel-locally quasi-isometric;
in particular, if M is compact, then any pair of adapted metrics on M are
quasi-isometric.

(ii) Any point in M has a countable base { O,, | m € N} of open neighbor-
hoods such that, with respect to any adapted metric, vol(M N O,,) — 0
and max{diam P | P € mo(M NO,,) } — 0 as m — oo; in particular, if M
is compact, then, with respect to any adapted metric, we have vol M < oo
and diam P < oo for all P € mo(M).

(iii) Any morphism of Thom-Mather stratifications restricts to rel-locally uni-
formly continuous maps between corresponding strata with respect to ar-
bitrary adapted metrics.

(iv) If g and ¢’ are adapted metrics on strata M and M’ of Thom-Mather
stratifications A and A’, respectively, then g & ¢’ is an adapted metric on
the stratum M x M’ of any product Thom-Mather stratification on A x A’
(Section 1.2).

In [8, Appendix], it was proved that there exist adapted metrics on the regular
stratum of any Thom-Mather stratification that is a pseudomanifold. It can be
easily checked that the same argument proves the existence of adapted metrics on
any stratum M of every Thom-Mather stratification A.
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EXAMPLE 7.11. The proof in [8, Appendix] also shows the following:

(i) With the notation of Definition 7.10, the metric g = go + p%g + (dp)? is
adapted on the stratum M = R™ x N x Ry of ¢(L); it will be called a
model adapted metric.

(ii) Given a rel-locally finite atlas {(O,, &,)} of M, a smooth partition of unity
{Aa} subordinated to the open covering {M N O,} of M, and an adapted
metric g, on each M N O,, then the metric >, A\yg, on M is adapted.

EXAMPLE 7.12. For an integer m > 1, let §o be the restriction to S™! of
the standard metric go of R™. Then, via can : ¢(S™~!) — R™ (Example 7.6), the
model adapted metric g1 = p%go + (dp)? on the stratum S™~! x R of ¢(S™™1)
corresponds to go on R™ \ {0}.

ExaMpPLE 7.13. With the notation of Example 7.3, for any invariant Riemann-
ian metric g on M, consider the Riemannian metric g on the strata of G\ M so that
the canonical projection of the strata of M to the strata of G\M is a Riemannian
submersion. The proof of [29, Proposition 2.6] can be easily adapted to produce an
invariant Thom-Mather structure on M so that the restriction of g to any stratum
is adapted. Hence g is adapted for the induced Thom-Mather structure of G\ M.

A weak isomorphism between Thom-Mather stratifications is called a local
quasi-isometry if it restricts to rel-local quasi-isometries between their strata with
respect to adapted metrics; this is independent of the choice of adapted metrics
by Remark 15-(i). In particular, a local quasi-isometry between compact Thom-
Mather stratifications restricts to quasi-isometries between their strata; thus a local
quasi-isometry between compact Thom-Mather stratifications will be called a quasi-
isometry. The condition of being locally quasi-isometric defines an equivalence
relation on the family of Thom-Mather stratifications on any Hausdorff, locally
compact and second countable space; each equivalence class will be called a quasi-
isometry type of Thom-Mather stratifications. By Remark 15-(iv), the product of
Thom-Mather stratifications is unique up to local quasi-isometries.

DEFINITION 7.14. Consider an adapted metric on a connected stratum M of a
Thom-Mather stratification A, and let d denote the corresponding distance function
on M. For each x € M and p > 0, the relative ball (or rel-ball) of radius p and
center x is the set consisting of the points y € M such that there is a sequence
(21) in M with limg 2z, = 2 in M and limsupy d(y, 21.) < p. The term p-relative
neighborhood (or p-rel-neighborhood) of x will be also used for this concept.

EXAMPLE 7.15. (i) The rel-balls centered at points of M are the usual
balls.
(ii) In the case of a model adapted metric on the stratum M = N x R, of
¢(L), the p-rel-neighborhood of the vertex x is N x (0, p).

2.2. Relatively local completion. Let M be a stratum of a Thom-Mather
stratification A, and fix an adapted metric g on M.

DEFINITION 7.16. Assume first that M is connected, and consider the distance
function d on M induced by g. The relatively local completion (or simply, rel-local
completion) is the subspace M of the metric completion of M whose points can be
represented by Cauchy sequences in M that converge in A; the limits in M of those
sequences define a canonical continuous map lim : M — M. The canonical dense
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injection of M into its metric completion restricts to a canonical dense injection
t: M — M satisfying lim ¢« = idj;. The more specific notation limy; and ¢y, may
be also used. -

If M is not connected, then M is defined as the disjoint union of the rel-local
completions of its connected components.

REMARK 16. (i) If M is compact, then M is independent of the choice
of the adapted metric by Remark 15-(i).
(ii) For any open O C A, MNO can be canonically identified to the open
subspace lim™ ' (M N O) C M
EXAMPLE 7.17 (Relatively local completion of the strata of cones). Let L be a
compact Thom-Mather stratification and M a stratum of ¢(L). With the notation of
Section 1.3, if M = {x}, then M= M, obviously. Now, suppose that M = N x R,
for some stratum N of L. Consider the model adapted metric g = p?j + (dp)?
for some adapted metric § on N, and the corresponding rel-local completion M.
mo(N) is finite by Remark 13-(ii). For each P € mo(N), let P denote the rel-local
completion of P with respect to L¢on, which is independent of the choice of g. Then
it is easy to check that

Lpepxid ~ ~
S Up P xRy | pe(P)

extends to a homeomorphism M — Uperon c(ﬁ)

M=|],P xR,

REMARK 17. The following properties follow easily by using charts, induction
on the depth of the strata, Example 7.17 and Remark 15-(ii):

(i) lim: M — DT is surjective with finite fibers.
(ii) M is rel-locally connected with respect to M.

(iii) If M is compact, then M is compact, and therefore its connected compo-
nents are the metric completions of the connected components of M.

PROPOSITION 7.18. (i) M has a unique Thom-Mather stratification with
connected strata such that lim : M — B is a morphism that restricts
to local diffeomorphisms between corresponding strata. In particular, the
connected components of M can be considered as strata of]/W\ via Ly -

(ii) The restriction of g to the connected components of M are adapted metrics
with respect to M.

(iii) Let M’ be a connected stratum of another Thom-Mather stratification A’
endowed with an adapted metric. Then, for any morphism f : A — A’
with f( ) C M’, the restriction f : M — M’ extends to a morphism
f M — M. Moreover f 18 an isomorphism if f is an isomorphism.

PRrOOF. This is proved by induction on depth M. If depth M = 0, then M=
M = M, and there is nothing to prove.

Suppose that depth M > 0 and the statement holds for strata of lower depth.
We can assume that the strata of M is connected. For each stratum X of M,
let (Tx,mx,px) be a representative of the tube around X in M satisfying the
conditions of Section 1.4 with a compact Thom-Mather stratification Lx and a
family {(U;, ¢:)} of local trivializations of mx. The corresponding cocycle with
values in c¢(Aut(Lx)) consists of the maps h;; : U; N U; — c(Aut(Lx)) defined by
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hij(x) = (¢; ¢; ")(x,-). We have hyj(z) = c(gi;(2)) for a cocycle consisting of maps
Gij U; N Uj — Aut(Lz)

By the density of M in M and Remark 13-(i), there is a dense stratum N of Lx
so that ¢;(M N7y (U;)) = U; x N xRy for all i. Consider triples (z,i, P) such that
x € U; and P € mo(N). Two triples of this type, (x,i, P) and (y, j, Q), are declared
to be equivalent if x = y and g;;(x)(P) = Q. The equivalence class of each triple
(z,4, P) is denoted by [z,i, P], and let X’ denote the corresponding quotient set.
There is a canonical map fx : X’ — X, defined by fx([z,?, P]) = z. Consider the
topology on X’ determined by requiring that the sets U; p = { [z, P] | v € U; } are
open, and the restrictions fx : Ui’7 p — Uj; are homeomorphisms. Notice that fx isa
finite fold covering map; in particular, in the case X = M, fj; is a homeomorphism.
Consider the differential structure on each X’ so that fx is a local diffeomorphism.

By the induction hypothesis, for each P € my(N), P satisfies the statement
of the proposition with some Thom-Mather stratification. Consider quadruples
(2,4, P,u) such that © € U;, P € mp(N) and u € 0(13) Two such quadruples,
(x,i, P,u) and (y,7,@Q,v), are said to be equivalent if x = y, ¢;;(z)(P) = @ and
c(m)(u) = v. The equivalence class of each quadruple (z,4, P,u) is denoted by
[x,, P,u], and let T% denote the corresponding quotient set. There are canonical
maps, T : T — X', lim’y : T% — Tx, p’y : T% — [0,00) and /'y : M N Tx —
T% defined by 7% ([z,i, P,u]) = [z,i, P], lim’y([x,i, P,u]) = ¢;*(x,c(limp)(u)),
Py ([,i, Pyu]) = p(u), and iy (2) = [z,i, P, (tp(v),r)] if 2 € M N a(U;) and
$i(2) = (x,v,7) € U; x P x Ry. Notice that fx 7y = 7x lim’y and px 7 = py.

Let G C Aut(Lx) be the subgroup generated by the above elements g;;(z).
Since the canonical action of G on Lx preserves IV, we get an induced action of G
on (V). Since X is connected, there is a bijection between G\mo(N) and the set
mo(X”) of connected components of X', where any orbit O € G\mo(N) corresponds
to the connected component X/, € mo(X’) consisting of the points [z,i, P] € X'
with P € O. Also, let T ,, = (1)~ (X() C Tk.

Given any O € G\mo(N), fix some Py € O. For any other P € O, there is
some gp € G such that gp(P) = Py. Thus the restriction gp : P — Py induces
amap gp : P — Py, and let Gip () (Ul p) — Uj p x c(./PB) be the bijection
defined by ¢ p([z,i, P,u]) = ([2,i, P],c(gp)(u)). Consider the topology on T%
determined by requiring that the sets (w)~"(U] p) are open, and the maps ¢; p
are homeomorphisms. Then the maps gb; p are local trivializations of the restriction
T o Tx o — Xp of 7', obtaining that 7'y , is a fiber bundle with typical fiber
c(f%). The associated cocycle has values in c(Aut(j%)); in fact, it consists of the
functions A} p; o Ul p N U} 5 — c(Aut(Py)) defined by

h/i,P;j,Q([x7ivP])(u> = c(gg,P;j,Q([fvﬂ;v P]))(u) ’
where g; p.; o Ul p U] 5 — Aut(Py) is the cocycle given by

9. pjo(, i, P) = 33 9i; () 55~
The conditions of Section 1.4 are satisfied, obtaining that W;(,O is a conic bundle,
and therefore T ,, can be endowed with the corresponding conic bundle Thom-
Mather stratification.

Since Nx .0 = Upep P is G-invariant, the set Nx o x Ry is invariant by
all transformations h;;(x) for x € U,;, and therefore it defines an open subspace
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Mxo C MNTx. Let lim o : Tx o — Tx, pxo : Txo — [0,00) and iy :
Mx o — Tk o be defined by restricting lim'y, p’ and t’y. Then (T o, T 0, Px.0)
is the canonical representative of the tube of X’ in T ,, t)x  is a dense open
embedding, lim'X’O x o =id, and lim'X’@ is the conic bundle morphism over fx :
X{, — X induced by the maps k; p : U{’P — Mor(j:%, Lx) given by k; p([z,i, P]) =
limp gp " (Section 1.4). By the induction hypothesis, #; p([x,i, P]) restricts to
local diffeomorphisms between corresponding strata, and therefore lim’X,O restricts
to local diffeomorphisms between corresponding strata.

On T% = UOGG\WO(N) T% o, consider the sum of the topologies and Thom-
Mather stratifications of the spaces T% » (Remark 10). By Lemma 7.5-(i), lim'y :
T% — Tx is a morphism that restricts to local diffeomorphisms between corre-
sponding strata. Observe that the strata of T% are connected.

By using the local trivializations of mx and each 773(70, and Example 7.17,

it follows that tx » : Mx,0 — Tx o extends to an isomorphism ]\TX\O — Ty o
such that lim’ o, corresponds to limps, ,. Hence iy : M NTx — Tk extends to
an isomorphism M/ﬂ\TX — T% such that lim’y corresponds to limpsn7y,. Then,
according to Remark 16-(ii), we can consider the spaces T% as open subspaces of M ,
obtaining an open covering of M as X runs in the family of strata of M. Moreover
each restriction limy; : T% — M N Tx restricts to local diffeomorphisms between
the corresponding strata. Hence, by Lemma 7.9, for strata X and Y of M, the
restrictions of the Thom-Mather stratifications of T% and Ty, to T% N T3, induce
the same Thom-Mather stratification with connected strata. By Lemma 7.4-(ii),
it follows that there is a unique Thom-Mather stratification with connected strata
on M whose restriction to each T% induces the above conic bundle Thom-Mather
stratification. By Lemma 7.5-(ii), lim,; is a morphism because its restriction to
each T% is a morphism. This completes the proof of (i).

In the above construction, consider every Ui” p X Py as a stratum of each Ui" p X
o(Py) via id xvp,. Let g; p be any Riemannian metric on U] p, and let go be an
adapted metric on Py with respect to Py C Lx. Thus gg’ p+Jo is an adapted metric
on Ui’) p X Py, and therefore, by the induction hypothesis, it is also adapted with

respect to U p X ¢(Py). Hence, considering each Mx o as a stratum of T , via
Ux o, the restriction of g to each Mx o is adapted with respect to T% o, and (ii)
follows.

Part (iii) follows from (i), (ii) and Remark 15-(iii). O



CHAPTER 8

Relatively Morse functions

Our version of Morse functions on strata is introduced and studied in this
section.

Let M be a stratum of a Thom-Mather stratification A, and fix an adapted
metric g on M. Identify M and its image by the canonical dense open embedding
LM — M. Let f € C®(M).

DEFINITION 8.1. (i) Tt is said that f is relatively admissible (or sim-
ply, rel-admissible) with respect to g if f, |df| and |Vdf| are rel-locally
bounded.

(ii) A point z € M is called relatively critical (or simply, rel-critical) if
liminf |d =0
Jdminf ldf (y)|

for some adapted metric. The set of rel-critical points of f is denoted by
Critrel(f).

(iii) A point x € Crite(f) is said to be relatively non-degenerate (or simply,
rel-non-degenerate) if there is some neighborhood O of z in M and some
¢ > 0 such that |V,df| > c|v] for all v € T(M N O).

REMARK 18. (i) Let O be any open subset of A. If f € C*(M) is rel-
admissible with respect to g, then f|y/no is rel-admissible with respect to
glmno-

(ii) The rel-local boundedness of |df| is invariant by rel-local quasi-isometries,
and therefore it is independent of g, but the rel-local boundedness of
|[Vdf| depends on the choice of g. However it follows from Lemma 8.4 and
Proposition 8.5 below that the existence of g so that f is rel-admissible
with respect to g is a rel-local property.

(iii) If depth M = 0, then any smooth function is admissible, and its (rel-non-
degenerate) rel-critical points are its (non-degenerate) critical points.

(iv) A rel-admissible function on M may not have any continuous extension to
M, but it has a continuous extension to M by the rel-local boundedness
of |df|. Thus it becomes natural to define its rel-critical points in M.

(v) The admissible functions on M form a unital subalgebra of C*°(M) be-
cause d is a derivation and, for f,h € C*(M),

Vd(fh) = df ® dh + fVdh+ dh ® df + hVdf .

EXAMPLE 8.2. With the notation of Example 7.11-(i), for any h € C§°(R),
the function h(p) is rel-admissible on the stratum R™ x N x Ry of R™ x ¢(L) with
respect to any model adapted metric.
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ExaMPLE 8.3. With the notation of Examples 7.3 and 7.13, for any G-invariant
smooth function f on M, let f denote the induced function on G\M, whose re-
striction to each stratum is smooth, and df is the pull-back of df on corresponding
strata of M and G\M. Fix any invariant metric on M and consider the induced
adapted metric on the strata of G\M. The restriction of Hess f to horizontal tan-
gent vectors on the strata of M corresponds via the canonical projection to Hess f
on the strata of G\M by [51, Lemma 1]. It easily follows that f is rel-admissible
on the strata of G\ M.

LEMMA 8.4. For any rel-locally finite covering {O, | a € A} of M by open
subsets of A, there is a smooth partition of unity {\,} on M subordinated to the
open covering {M N O,} such that, for any adapted metric on M, each function
|d\,| is rel-locally bounded.

ProoF. If depth M = 0, then the rel-locally bounded smooth functions on M
are the locally bounded ones, and therefore the statement holds in this case because
any continuous function is locally bounded. Thus suppose that depth M > 0. For
0 < k < depth M, let §; denote the union of all strata X < M with depth X < k.
The lemma is given by the case k = depth M in the following assertion.

Cram 5. For 0 < k < depth M, there is a family of smooth functions {A, x}
on M such that:

(i) 0< Y 4 Aok < 1 forall k;
(ii) Mgk is supported in M N O, for all a € A,
(iii) there is some open neighborhood Uy, of §i in A so that Y A.x =1 on
U, N M; and,
(iv) for any adapted metric on M, each function |dA, k| is rel-locally bounded.

This claim is proved by induction on k. To simplify its proof, observe that it
is also satisfied for k = —1 with §_1 =U_1 =0, and A, _1 =0 for all a € A.

Now, assume that Claim 5 holds for some k € {—1,0,...,depth M — 1}. Let
Vi be another open neighborhood of §j in A such that Vi, € U,. We can assume
that the strata of A are connected by Remark 8-(v).

Br+1 \ Sk is the union of the strata X that satisfy X \ X C Fk, and therefore
the sets X \ Vi are closed in A\ Vj and disjoint from each other. For the strata
X C Fk+1 \ Sk, choose representatives (T'x, 7x, px) € Tx satisfying the properties
of Definition 7.1-(iv)—(vi), Proposition 7.7 and Remark 11-(iii). Let ®x denote the
conic bundle structure of mx. Moreover, like in Remark 8-(ii), we can assume that
the sets T'x \Vk are disjoint one another.

By refining {O,} if necessary, we can suppose that, for each stratum X C
Fr+1 \ Sk, any point in X\W€ is in some set O, such that there is a chart of A of the
form (Og, &4), obtained from a local trivialization in ® x according to Definition 7.8;
in this case, let £,(0,) = By X ¢, (Lx) for some open subset B, C R™* and some
€, > 0, where mx = dim X; let Ax be the family the indices a € A that satisfy this
condition. For each a € Ay, take a smooth function h, : [0,00) — [0, 1] supported
in [0, €,) and such that h, = 1 around 0. Let { uo | @ € Ax } be a smooth partition
of unity on Fr41 \ Vi subordinated to the open covering { O, \ Vi | @ € Ax }. Set
Ak = D4 Aa,k- Then define

)\a,k+1 = )\a,k + (]- - )‘k) : p;(ha ! ﬂ_;{/u‘a
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if a € Ay for some stratum X C Fr+1 \ Tk, and Ag g+1 = Aqk otherwise. These
functions are smooth on M because Ag is smooth and equals 1 on Uy. It is easy to
check that they also satisfy Claim 5-(i)—(iv). O

PROPOSITION 8.5. Let {O, | a € A} be a rel-locally finite covering of M by
open subsets of A, let {\,} be a partition of unity on M subordinated to the open
covering {M N O,} satisfying the conditions of Lemma 8.4, and let f € C°°(M)
such that each f|pno, is rel-admissible with respect to some metric g, on M N O,.
Then f is rel-admissible with respect to the adapted metric g =, Aaga on M.

To prove Proposition 8.5, we will use the following lemma.

LEMMA 8.6. Let X be a Riemannian manifold of dimension n, and let f €
C>(X) andp € X. If (df)(p) # 0, then there is a system of coordinates (z*, ... z™)
of X around p such that (01(p),...,0n(p)) is an orthonormal reference and 0;0; f =
0 for alli,j € {1,...,n}, where 9; = 8/0x".

PRrOOF. Because (df)(p) # 0, the 1-form df defines a codimension one foliation
around p (its tangent bundle is kerdf). By using a foliation chart around p, it

follows that there is a system of coordinates (x!,...,2™) around p such that the
vectors 91(p),...,0h—1(p) are orthonormal, and =™ = f/|(df)(p)|. It is easy to
check that these coordinates satisfy the stated properties. ([

PROOF OF PROPOSITION 8.5. Let | |, and V® denote the norm and Levi-
Civita connection of each g,, and let | | and V denote the norm and Levi-Civita
connection of g. On every M N O, the functions |df|, and |V*df|, are rel-locally
bounded. Since g and g, are rel-locally quasi-isometric on M NO,, we get that |df|
and |V*df| are rel-locally bounded on M N O,. By shrinking {O,} if necessary, we
can assume that there are constants K, > 0 and C, > 1 such that

\df|,|V2df|,|dN\a| < Ko on M N O, , (74)
1
o Xla< X[ < CalX]e VX €T(MNO) . (75)

For any fixed ag € A, it is enough to prove that |Vdf| is bounded on M N O, .
For each p € M N O,,, take any system of coordinates (z,...,2™) on some open
neighborhood U of p in M such that (91(p),...,,(p)) is an orthonormal reference
with respect to g. Let g,:; and g;; be the corresponding metric coefficients of
ga and g on O, NU and U, respectively; thus g;;(p) = d;;, and we can write
Gij = Y u AaYa,ij o0 U. As usual, the inverses of the matrices (¢q,;;) and (g;;) are
denoted by (g¥) and (¢*/). By (75) and since g;;(p) = &;;, we have

1
Yo?} 9a,ii(p) <1< CF gaii(p)

a

forallie {1,...,n} if p € O,, giving

90,50 = 3 10:0) + %)~ 905(+) ~ 90.15(0)|

1

< |al(p) +8j(p)|<21 +ga,ii<p) “l‘ga,jj(p))

(

o

< =2 (10:(p) + 8;(p)|* + 2) = 2C7,

|



72 8. RELATIVELY MORSE FUNCTIONS

for all 4,5 € {1,...,n}. Since O, meets a finite number of sets O,, it follows
that |ga.i;(p)| and |g%(p)| are bounded by some C' > 1, independent of the point
p € Oy Similarly, by (74), we get that |(df)(p)l, |(V2dF)(p)] and |(dA)(p)] are
bounded by some K > 0 independent of the point p € O,,.

Let Flé,ij and Ffj be the Christoffel symbols of g, and g on O, N U and U,
respectively, corresponding to (z',...,z"). Since g;;(p) = 6;;(p), we have

1
Ffj (p) = 5(3z‘gjk + 0;9ix — Orgij)(p)

1

= 5 Z(ga,jk ai)\a + >\a 8iga,jk + Ga,ik 8jAa + Aa ajga,ik
a

— Ya,ij 8k)\a - )\a akga,ij)(p)

1
= 5 Z(ga,jk ai/\a + Ya,ik aj)\a — Ga,ij ak)\a)<p)

¢ (76)
+ ) Aa(P)Th 5 () Gk (D) -
On the other hand,
Vdf = da' @ V(0 f dz¥)
= 0,0, fdz' ® dz® — O f I‘fj dz' @ da’
= (0:0;f — ORfTY;) da’ @ da’ . (77)
Similarly,
VOdf = (0;0;f — O f Tk ;) da’ @ da? . (78)

If (df)(p) = 0, then

(Vdf)(p) = (9:0;f da’ @ da?)(p) = (V*df ) (p)

by (77) and (78), and therefore |(Vdf)(p)| < K.
If (df)(p) # 0, by Lemma 8.6, we can assume that the coordinates (z!,..., 2")
also satisfy (0;0;f)(p) =0 for all 4,5 € {1,...,n}. So, by (77) and (78),

(Vdf)(p) = = (0nf I da* @ da?)(p) ,
(Vedf)(p) = —(0f Tg iy da’ ® da? ) (p) -
Since ¢¥(p) = 8,5, it follows that [(9kfTX,)(p)| < K for all 4,5 € {1,...,n}, and

a,ij

it is enough to find a similar bound for each |(x f I'};)(p)|. But, by (76),
(O f T5) ()] < %|(df)(p)| D 1A D) (19a,52(P)] + ga,ine ()] + 90,3 (P)])
+ ) Aa@) 1O f T4 1) (D) gaer ()]

< <3K20+K0) #{ae A0, N0, #0}. O

1Einstein convention is used for the sums involving local coefficients.
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We would like to define relatively Morse functions on M as rel-admissible func-
tions whose rel-critical points are rel-non-degenerate. However an appropriate ver-
sion of the Morse lemma [46, Lemma 2.2] is missing (see Problem 8.9 below), and
therefore they are defined by giving their “rel-local models” around their rel-critical
points.

DEFINITION 8.7. It is said that f € C°°(M) is a relatively Morse function (or
rel-Morse function) if it is rel-admissible with respect to some adapted metric and,

for every = € Critye(f), there exists a chart (O, &) of M centered at z, with £0) =

B X ¢(L), such that, for some my € N and compact Thom-Mather stratifications

L, there exists a pointed diffeomorphism 6y : (R™,0) — (R™+ x R™~,(0,0)), and

a local quasi-isometry 6y : ¢(L) — ¢(L4+) % ¢(L-) so that fano corresponds to a
1

constant plus 3 (p% — p?) via (6o x 61)&, where py is the canonical function on

R™% x ¢(Ly) (Example 7.6).

ExXAMPLE 8.8. With the notation of Examples 7.2-(v), 7.13 and (8.3), the
invariant Morse-Bott functions on M whose critical submanifolds are orbits form
a dense subset of the space of invariant smooth functions [65, Lemma 4.8]. They
induce rel-Morse functions on every orbit type stratum of G\ M.

Let f be a rel-Morse function on M. For each x € Critye (f), with the notation
of Definition 8.7, let My be the strata of ¢(Ly) so that (fy x 61)¢ defines an
open embedding of M N O into R™+ x R™~ x My x M_, where either My is the
vertex stratum of ¢(Ly), or My = Ny x Ry for some stratum Ny of Ly with
n+ = dim My. Using this local data, for each r € Z, the number "

z,min/max
Vs min /m ax(f) was defined in the Introduction, before Theorem J, page ??. Recall
also that v . /max

for x € Critye(f)-

— ‘s r
= z/min/max(f) was defined as the sum of the numbers v ..

REMARK 19. (i) Every rel-Morse function on M is a Morse function,
and the rel-critical points in M are the usual critical points. For such a
critical point x € M with index m_, we have V;,min/max = 0y,m_; thus
2 zeCrit(f) Vamin/max 18 the number of critical points with index r. If
depth M = 0, then any Morse function on M is a rel-Morse function by
the Morse lemma.

(ii) The rel-critical points of rel-Morse functions are isolated.

(iif) The function (p% — p%) on R™+ x R™- x M, x M_ is rel-Morse, and

will be called a model rel-Morse function.

PROBLEM 8.9 (“Rel-Morse lemma”). Let = be a rel-non-degenerate rel-critical
point of a rel-admissible function f on M. Does there exist a chart (O,€&) of
M centered at z and maps 6y and 0 satisfying the conditions of Definition 8.77
An affirmative answer may require a stronger condition in Definition 8.1-(i); for
instance, the rel-local boundedness of |V* f| for all k € N.

The existence, and indeed certain abundance, of rel-Morse functions is guaran-
teed by the following result.

ProposITION 8.10. Let F C C>™(M) denote the subset of functions with con-
tinuous extensions to M that restrict to rel-Morse functions on all strata < M.
Then F is dense in C°(M) with the weak C> topology.
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PROOF. If depth M = 0, then the statement holds by the density of the Morse
functions in C*°(M) with the strong C'* topology [35, Theorem 6.1.2]. Thus
suppose that depth M > 0. Let the sets §x be defined like in the proof of Lemma 8.4.

CrAam 6. For 0 < k < depth M, there is an open neighborhood Uy of §j in A
and some fi, € C(Ur N M) such that, for each stratum X < M,

(i) fi restricts to a rel-Morse function on U, N X; and,
(ii) if depth X > k, then:
(a) the restriction of fi to Ux N X has no critical points, and
(b) there is some (T'x,7x, px) € Tx such that fj is constant on the fibers

of rx : U, NMNTx — X.

This assertion is proved by induction on k. To simplify its proof, observe that
it is also satisfied for k = —1 with §_1 =U_1; =0 and f_; = 0.

Now, assume that Claim 6 holds for some k € {—1,0,...,depth M —1}. Let V}
be another open neighborhood of §j in A such that Vi, C U,. We can assume that
the strata of A are connected by Remark 8-(v). For the strata X C Fr+1\Sk, choose
representatives (T'x,mx,px) € Tx satisfying the properties stated in the proof of
Claim 5. We can also suppose that these (T'x, 7x, px) satisfy Claim 6-(ii)-(b) with
fr. A fixed adapted metric g on M will be used.

Let X be a stratum contained in §gy1 \ §k. By the density of the Morse
functions in C*°(X) with the strong C* topology and since the restriction of fj
to U N X has no critical points by Claim 6-(iii), it is easy to construct a Morse
function hx on X such that hx = fr on Vu N X. Since (Tx,7x,px) satisfies
Claim 6-(ii)-(b) with fi, we get mihx = fr on U, N M NTx.

Let Ug41 be the open neighborhood of §;4+1 given as the union of Vj, and the
sets Tx for strata X C Fre1 \ Sx. The function fi on Vi N M and the functions
Txhx + pg( on the sets Tx N M can be combined to define a function fra1 €
C(Ug+1NM). The function fi; satisfies Claim 6-(i) and Claim 6-(ii)-(a). Moreover
it satisfies Claim 6-(ii)-(b) by Definition 7.1-(vi).

Finally, let us complete the proof of Proposition 8.10. A basic neighborhood
N of any h € C°°(M) with respect to the weak C'™ topology can be determined
by a finite family of charts (U;, ¢;) of M, compact subsets K; C U;, some k € N
and some € > 0. Precisely, N consists of the functions b’ € C*°(M) such that
|DY((W — h) ¢ )| < € on ¢;(K;) for all i and 0 < £ < k. By Claim 6, there is some
open neighborhood U of M \ M in A and some f € C(U N M) that restricts to
rel-Morse functions on UNX for all strata X < M, and whose restriction to U N M
has no critical points. By shrinking U if necessary, we can assume that U N K; = ()
for all 4. Let V be another open neighborhood of M \ M in A so that V C U. By
the density of the Morse functions in C*°(M) with the strong C'* topology, it is
easy to check that there is a Morse function A’ € N such that B’ = f on V N M.
Therefore h' € FNN. O

For rel-Morse functions, a much better density result should be true as sug-
gested by the following.

PrOBLEM 8.11. By using the ideas of this section, define and study a “rel-
strong C*° topology” on the set of rel-admissible functions on M, and show that
the rel-Morse functions form a dense subset.
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An approach to Problems 8.9 and 8.11 would take us too far from the main
goals of the work.






CHAPTER 9

Preliminaries on Hilbert complexes

Here, we recall from [11] some basic definitions and needed results about Hilbert
and elliptic complexes. Some elementary observations are also made.

1. Hilbert complexes

For each r € N, let $, be a separable (real or complex) Hilbert space such
that, for some N € N, we have $,. = 0 for all » > N. They give rise to the graded
Hilbert space $ = €D,. 9., where the terms §), are mutually orthogonal. For each
degree r, let d,. be a densely defined closed operator of $),. to $,.11. Let D,. = D(d,.)
and R, = d,(D,) for each r, and let D = @, D, and d = €, d,. Assume that
R, C Dyy1 and d,41d, = 0 for all 7. Then the complex

d() d1 del

0 Dy Dy Dn 0

is called a Hilbert complex; its notation is abbreviated as (D,d), or simply as d.
Assuming that Dy # 0, the maximum N € N such that Dy # 0 will be called the
length of (D,d). We may also consider Hilbert complexes with spaces of negative
degree or with homogeneous operators of degree —1 without any essential change.

For the adjoint operator d* of each d,, let D} = D(d*) C $H,41 and R} =
d:(Dy) C 9, and set D* = P, D; and d* = P, d:. Then we get a Hilbert
complex

dg d;y dy_;

0 D*, Dj Dy, — 0,
denoted by (D*,d*) (or simply d*), which is called dual or adjoint of (D, d).

If (D’,d’) is another Hilbert complex in the graded Hilbert space ' = @, 9.,
a homomorphism of complexes, ( = @, ¢ : (D,d) — (D',d’), is called a map
of Hilbert complezes if it is the restriction of a bounded map ¢ : § — $'. If
moreover ¢ is an isomorphism of complexes and (! is a Hilbert complex map,
then ( is called an isomorphism of Hilbert complexes. If ¢ : (D,d) — (ﬁ’, d’) is an
isomorphism, where 5; = D, ,, for all r and some fixed ro # 0, then it will be
said that ¢ : (D,d) — (D’,d’) is an isomorphismm up to a shift of degree.

Let

f)cv — @5})27" 5 ﬁodd - @927‘+1 5
Dey = @D% ) D;dd = @D;r—l )
dey = @d% ) d:dd = @d;r—l .

7
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Note that D} ;4 C Hev. The operator Dey = dey +dj g, with domain De, ND} 4, is a
densely defined closed operator of Hey t0 Hoad, Wwhose adjoint is Doqg = doga +d,

Thus
0 Dcv _ *
D_<E0dd O)—d+d

is a self-adjoint operator in ) = Hey B Hoaqa with D(D) = D N D*, and
A=D%= DodadDev @ DeyDodq = d*d +dd”

is a self-adjoint non-negative operator, which can be called the Laplacian of (D, d).
Observe that (D,d) and (D*,d*) define the same Laplacian. The Hilbert complex
(D,d) can be reconstructed from D, [11, Lemma 2.3]. The restriction of A to
each space D, will be denoted by A,. Notice that ker A, = kerd, Nkerd}_; for
all r. Moreover we have a weak Hodge decomposition [11, Lemma 2.1]

9, =kerA, ®R,_1 &R .

The smooth core D*°(A), also denoted by D*>°(d) or D*°, is a subcomplex of
(D,d), and (D*°,d) — (D,d) induces an isomorphism in homology [11, Theo-
rem 2.12]. It will be also said that D> (respectively, D°) is the smooth core of d
(respectively, d,.); notice that it is a core of d (respectively, d,). Let R = d,.(D°)
and R} > = d}(D), which are dense subspaces of R, and R*.

The following properties are equivalent [11, Theorem 2.4]:

The homology of (D, d) is of finite dimension and R is closed in $.
The homology of (D, d) is of finite dimension.

D., is a Fredholm operator.

0 & spec.(A) (the essential spectrum of A).

In this case, (D, d) is called a Fredholm complez and satisfies the following proper-
ties:

e R and R* are closed in $) [11, Corollary 2.5], obtaining the stronger Hodge
decompositions
Ny =ker A, ®R,_1 DR, D®=kerA, ®R2; DR
o d,:R:>* — R and d : R — R;*> are isomorphisms.
e ker A, is isomorphic to the homology of degree r of (D, d).

It is said that (D, d) is discrete when A has a discrete spectrum (spec..(A) =
(). The following properties hold when (D, d) is discrete:

e For each A € spec(A|re), we get isomorphisms
dr . E)\(A|R;*‘oo) — EA(A|R30) 5 d;k, . E)\(A|R7oc) — E)\(A|R:oc)

between the corresponding eigenspaces. Thus spec(A|rz) = spec(A|rxo ).
o We have

spec(d,|rr~ @ dy|r=) = {:&:\F)\ | A € spec(Alr=) },

and, for each A € spec(Alrx), £, /x(d |r= @ dj|r:~) consists of the
elements of the form u + v with u € E\(A|rx>) and v € E\(A|gz=)
satisfying d*u = v Av and dv = v/ Au. Moreover the mapping u + v
u — v, for u and v as above, defines an isomorphism

E s(drlrze @ dilre) = E_ s(drlrze @ dy|ree) -
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e Any Hilbert complex (D’,d’) isomorphic to (D, d) is also discrete, and,
if spec(A,.) and spec(A!) consist of the eigenvalues 0 < \g < Ay < -+
and 0 < A\j < M| < ---, respectively, then there is some C' > 1 such that
C—1)\ < A, < CAp for all k € N [11, Lemma 2.17].

Consider Hilbert complexes, (D', d’) and (D”,d"), in respective graded Hilbert
spaces, $ and $”. The Hilbert space tensor product!, $ = $/®%”, has a canonical
grading (9, = @pﬂﬂ $,89,), and

D: (D/®57JH) m (,57)/®D/,) Cﬁ

is a dense graded subspace. Let d =d’ ® 1 + w ® d” with domain D, where w

denotes the degree involution on $’, and let d = d, whose domain is denoted by
D. Then (D,d) is a Hilbert complex in $ called the tensor product of (D’,d’) and
(D”,d"”). If A’, A” and A denote the Laplacians of (D’,d’), (D”,d”) and (D, d),
respectively, then A=A’ ® 1+ 19 A” on D. The following result is elementary.

LEMMA 9.1. If (D', d’) and (D",d") are discrete, then (D,d) is discrete. More
precisely, given complete orthonormal systems of $ and ' consisting of eigenvec-
tors €), and e}l (k € N) of A’ and A", with corresponding eigenvalues \; and N,
respectively, we get a complete orthonormal system of §) consisting of the eigenvec-
tors e}, @ e) € D of A with corresponding eigenvalues ), + \j.

Let (£,d) be a densely defined complex in a graded separable Hilbert space
$ (€ is a dense graded linear subspace of ). Consider the family of Hilbert
complexes (D, d) in $) extending (£,d) ((€,d) is a subcomplex of (D, d)) endowed
with the order relation defined by “being a subcomplex”. We will be interested in
its minimum/maximum elements. Notice that, if (£, d) has some Hilbert complex
extension, then d is a Hilbert complex; thus, in this case, d is the minimum Hilbert
complex extension of (£, d). Another complex of the form (&, 6), with d, : E.41 — &,
for each degree r, will be called a formal adjoint of (£,d) if (du,v) = (u,dv) for
all u,v € &; there is at most one formal adjoint by the density of £ in $. In this
case, if (£, 9) has some Hilbert complex extension, then the adjoint of the minimum
Hilbert complex extension of (£, ) is the maximum Hilbert complex extension of
(&,d).

Now, consider a countable family of densely defined complexes (£%,d®) in sep-
arable graded Hilbert spaces $* (a¢ € N), and let (D*,d*) be a Hilbert complex
extension of each (£%,d*) in $H*. Suppose that the Hilbert complexes (D%, d%) are
of uniformly finite length (there is some N € N such that D¢ = 0 for all r > N
and all a). Let (£,d) be the complex defined by &€ = @, £ and d = @, d*. The

Hilbert space direct sum?, §) = @af)‘ﬂ has an induced grading (), = @,9H%). Let

d= @ad“ (the graph of d is the Hilbert space direct sum of the graphs of the
maps d). The domain D of d consists of the points (u®) € $ such that u® € D®
for all @ and (d?u®) € . Moreover d is defined by (u®) — (d%u®). Clearly, (D, d)

1Recall that this is the Hilbert space completion of the algebraic tensor product ' ® $/ with
respect to the scalar product defined by (v’ ® v, v' @ v") = (u/,v") (u",v"")", where (, )’ and
(', ) are the scalar products of § and £/, respectively.

2Recall that this is the Hilbert space completion of the algebraic direct sum, @, %, with
respect to the scalar product ((u?), (v®)) = >, (u®, v*)qa, where each (, ) is the scalar product
of H*. We have H = @, H* if the number of terms H? is finite.
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is a Hilbert complex extension of (£,d) in $ with

D>(d) = (P P>(d") . (79)

d*=pa. (80)

LEMMA 9.2. (i) If each (D,d*) is a minimum Hilbert complex extension
of (£%,d%) in H°, then (D,d) is a minimum Hilbert complex extension of

(&,d) in 9.
(ii) If each (£*,d") has a formal adjoint (E%,6%) with some Hilbert complex
extension, and each (D%, d%) is a mazimum Hilbert complex extension of
(€%,d%) in H%, then (D,d) is a mazimum Hilbert complex extension of

(&,d) in 9.
PROOF. Property (i) follows because d is dense in d if each d* is dense in d®.
Now, assume the conditions of (i) and let § = @, % Then each d** is a
minimum Hilbert complex extension of (£%,0%). So, by (80) and (i), (D*,d*) is a
minimum Hilbert complex extension of (£,6), and therefore (D,d) is a maximum
Hilbert complex extension of (&, d). O

2. Elliptic complexes

Let M be a possibly non-complete Riemannian manifold, and let £ = ,. E, be
a graded Riemannian (or Hermitean) vector bundle over M, with E, = 0if < 0 or
r > N for some N € N. The space of smooth sections of each F, will be denoted by
C>(E,), its subspace of compactly supported smooth sections will be denoted by
C§°(E,), and the Hilbert space of square integrable sections of FE, will be denoted
by L3(E,); then C=(E) = @, C*(E,), C&(E) = @, C~(E,) and L*(E) —
@, L*(E,). For each r, let d, : C*°(E,) — C*°(E,41) be a first order differential
operator, and set d = @, d,. Suppose that (C°°(E),d) is an elliptic complex?;
however, ellipticity is not needed for several elementary properties stated in this
section. The simpler notation (F,d) (or even d) will be preferred. Elliptic complexes
with non-zero terms of negative degrees or homogeneous differential operators of
degree —1 may be also considered without any essential change.

Consider the formal adjoint 6, = d, : C°(FE,41) — C*>(E,) for each r, and
set 6 = €D, 0,. Then (F, ¢) is another elliptic complex that will be called the formal
adjoint of (E,d), and its subcomplex (C§°(FE),J) is formal adjoint of (C5°(E),d)
in L?(E) in the sense of Section 1. Let D = d +§ and A = D? = d§ + dd on
C>(E); A can be called the Laplacian defined by (E,d). The components of A
are A, = d,_10,—1 + 6,d,.

Any Hilbert complex extension of (C§°(E), d) in L?(E) is called an ideal bound-
ary condition (shortly, i.b.c.) of (E,d). There always exist a minimum and max-
imum i.b.c., dyin = d and dyax = 67, [11, Lemma 3.1]. The complex Amin /max
defines the operator Dy /max = @min/max T Omax/min and the Laplacian A, /max =

D2 /max> Which extend D and A on Cg° (E). The homogeneous components of

min/max are

Amin/max,r = 51nrlauc/r‘ﬂi1'1,r dmin/maxw + dmin/max,r—l 5max/min,r—1 . (81)

SRecall that this means that it is a complex and the sequence of principal symbols of the
operators d; is exact in the fiber over each non-zero cotangent vector
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The notation d,. yin/max a0d 0y max /min also makes sense for diin /max,r A1d Gmax /min,r
by considering d,. and ¢, as differential complexes of length one (ellipticity is not
needed here); similarly, any first order differential operator can be considered as a
differential complex of length one and denote its minimum/maximum i.b.c. with
the the min/max subindex, regardless of ellipticity.

For any i.b.c. (D, d) of (E,d), the map of complexes, (DNC*>(E),d) — (D, d),
induces an isomorphism in homology [11, Theorem 3.5]. We have D> C DNC>(E)
by elliptic regularity.

Let (E’,d") be another elliptic complex over another Riemannian manifold M’.
Consider a vector bundle isomorphism ¢ : E — E’ over a quasi-isometric diffeomor-
phism £ : M — M’ such that the restrictions of ¢ to the fibers are quasi-isometries.
It induces a map ¢ : C®(E) — C®(E') defined by (Cu)(z') = ((u(¢~*(2")) for
u € C®(F) and 2’ € M'. If moreover ¢ : (C®(E’),d) — (C*®(E),d) is a ho-
momorphism of complexes, then it will be called a quasi-isometric isomorphism of
elliptic complexes, and the simpler notation ¢ : (E’,d’) — (F,d) will be preferred.
In this case, ¢ induces a quasi-isometric isomorphism ¢ : L?(E’) — L?(E), which re-
stricts to an isomorphism of complexes, ¢ : (C§°(E’),d') — (C§°(E), d). Moreover,
for any i.b.c. (D’,d’) of (E’,d’), there is a unique i.b.c. (D,d) of (E,d) so that ¢ :
L?(E'") — L?(F) restricts to a Hilbert complex isomorphism ¢ : (D’,d’) — (D, d).
In particular, ¢ induces Hilbert complex isomorphisms between the corresponding
minimum/maximum i.b.c. If £ is isometric and the restrictions to the fibers of ¢ are
isometries, then ¢ : (E',d") — (E,d) is called an isometric isomorphism of elliptic
complexes. For instance, for any quasi-isometric (respectively, isometric) diffeo-
morphism £ : M — M’, the induced isomorphism £* between the corresponding
de Rham complexes is quasi-isometric (respectively, isometric).

Now, let (E’,d’) and (E”,d") be elliptic complexes on Riemannian manifolds
M’ and M", respectively, and consider the exterior tensor product £ = E' X E”
on M = M' x M" with its canonical grading (B, = @, -, £, ¥ E;). With
the weak C*° topology, C*°(E’) ® C*°(E") can be canonically realized as a dense
subspace of C*°(FE). Thend=d' ® 1+ w®d"” on C*(E') ® C*°(E") has a unique
continuous extension to C*°(FE), also denoted by d. It turns out that (F,d) is an
elliptic complex. Moreover the minimum/maximum i.b.c. of (E,d) is the tensor
product, in the sense of Section 1, of the minimum/maximum i.b.c. of (E’,d’) and
(E",d") [11, Lemma 3.6].

ExAMPLE 9.3. A particular case of elliptic complex on M is its de Rham com-
plex (Q(M),d). In this case, d is the de Rham coderivative, the subcomplex of com-
pactly supported differential forms is denoted by Qo (M), and the Hilbert space of L?
differential forms is denoted by L2Q(M). Let H,,y, /max (M) denote the cohomology
of the minimum/maximum i.b.c., diin/max, of (20(M), d), which is a quasi-isometric
invariant of M. Huyiy (M) is canonically isomorphic to the L*-cohomology H z)(M)
[13]; (a generalization to arbitrary elliptic complexes is given in [11, Theorem 3.5]).

The dimensions 31 /... (M) = dim H;}in/max(M) can be called min/maz-Betti
numbers; if they are finite, then Xmin/max(M) = D, (=1)" r’;lin/max(M) is defined

and can be called min/maz-Euler characteristic; the simpler notation 37 . /max and
Xmin/max May be used. Is is known that dyin/max satisfies the following properties
for special classes of Riemannian manifolds:

e If M is complete, then dpin = dmax (a particular case of [11, Lemma 3.8]).
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e If M is the interior of a compact manifold with boundary, then dyin/max
is given by the relative/absolute boundary conditions [11, Theorem 4.1].

e Suppose that M = M\ Y., where M is a closed Riemannian manifold
of dimension > 2 and ¥ is a closed finite union of submanifolds with
codimension > 2. Then dyin = dmax [11, Theorem 4.4].

e Let A be a compact Tham-Mather stratification that is a pseudomanifold.
If M is the regular stratum of A endowed with an adapted metric, then
H 2y(M) is isomorphic to the intersection homology of A with lower middle
perversity [15]. There is a more general isomorphism of this type involving
more general types of adapted metrics and intersection homologies with
other perversities [47, 48, 8].



CHAPTER 10

Sobolev spaces defined by an i.b.c.

Let T be a self-adjoint operator in a Hilbert space . For each m € N, the
Sobolev space of order k associated to T is the Hilbert space completion W™ =
W™(T) of D> = D*°(T) with respect to the scalar product ( , ), on D> defined
by (u,v)m = (u, (1 4+ T)™v). The notation || ||, and Cl,, (or || ||w= and Clym)
will be used for the norm and closure in W™. There are continuous inclusions
Wmtl — W™ and we have D> = (), W™. Moreover T defines a bounded
operator W™m+2 — Wwm,

Now, let (D,d) be an i.b.c. of an elliptic complex (F,d) on a Riemannian
manifold M. Tts adjoint (D*,d*) is an i.b.c. of the elliptic complex (F,§), where
§ = td. We get the operators D = d+§ and D = d+d*, and the Laplacians A = D?
and A = D?. Then W™ = W™(A) can be called the Sobolev space of order m
associated to (D,d), and may be also denoted by W™ (d); the notation W™ (d,)
will be also used when we consider its subspace of homogeneous elements of degree
r. Since (D, d) and (D*,d*) define the same Laplacian, we have W™ (d) = W™ (d*)
for all m. For u € D2°, we have

lull} = llull® + [[Dull* = [lull® + ldvull + 18- —1ull* .
So
W' =D(D)=DnD*, (82)
lullf = [lull® + [Dul? = ul? + | dyull* + [|d;_ul? (83)
for u € Wl(d,).

LEMMA 10.1. The following properties are equivalent:

(i) (D,d) is discrete.
(i) Wt — W= L%(E) is compact.
(iii) WMt — W™ is compact for all m.
PrOOF. The part “(i) = (iii)” follows with the arguments of the proof of the
Rellich’s theorem on a torus (see e.g. [54, Theorem 5.8]). The part “(ii) = (i)”

follows with the arguments to prove that any Dirac operator on a closed manifold
has a discrete spectrum (see e.g. [54, pp. 81-82]). ]

The following refinement of Lemma 10.1 is obtained with a deeper analysis.

LEMMA 10.2. Suppose that (D, d) is discrete, and let 0 < A; < Ao < --- be the
eigenvalues of A, repeated according to their multiplicities. Let B' be the standard
unit ball of W, and B, the standard ball of radius v > 0 in L?>(E). Then the
following properties are equivalent for 6 > 0:

(i) liminf, A\gk=? > 0.

83
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(ii) There are some Co,Cy > 0 such that, for all n € Zy, there is a linear
subspace Z,, C L*(E) so that:
(a) Z, is closed and of codimension < Con/? in L*(E);
(b) DIWNZ,) C Z,; and
(C) B'n Zn C BCl/n'
(iii) There are some Cy,...,Cqy > 0 and A € Zy such that, for alln € Z,,
there is a linear map' R, = (RY,...,R%) : L*(E) — @, L*(E) so that:
(a) dimker R, < Con'/?;
(b) [|Rpul| < Cy |ju|| for all u € L*(E);
(¢) ||Rpull = Cq ||ul| for all u € (ker R,,)*;
(d) RA(WY) Cc Wt and ||[D, R:Jul| < Cs |ju|| for all u € W1; and
(e) B N RA(IX(E)) C Boyjn.

PROOF. Let (e;) (i € Z) be a complete orthonormal system of L?(E) such that
ety is a £/ Ag-eigenvector of D for each k¥ € N. The mapping u = Y, u;e; —
(u;) defines a unitary isomorphism L?(E) = ¢%(Z). Moreover W1 consists of the
elements u € L2(E) with >, (1 4+ Ap)u, < oo, and [[ul|f = Y, (1 + Xe)(uf +u? )
for u e Wt

Suppose that (i) holds. Then there is some C' > 0 so that 1+ A, > Ck? for all
k. For each n € Z_, the linear subspace

Zn = {U € L*(E) |ug, = 0if k < (n/c)l/e}

of L?(E) satisfies (ii)-(a),(b) with Co = 2/C/?. Furthermore, for every u € B'NZ,,

C

k>(n/C)1/9 k>(n/C)1/
1 lullf _ 1
<= 1 2,2 y_ luly 1
s Z (1 + M) (up +uZy) N S
k>(n/C)1/®
completing the proof of (ii)-(c) with C; = 1.
Now, assume that (ii) is satisfied. By (ii)-(a),
13(E) = 7t © 7, (s4)

as topological vector space [58, Chapter I, 3.5]. Furthermore, by (ii)-(a) and the
canonical linear isomorphism
wto W'+ 2Z,
winz,  Z, ’

we also get that W' N Z, is a closed linear subspace of finite codimension in W1.
Hence

wl=v,e(W'nz,) (85)

as topological vector spaces for any linear complement Y,, of Wl N Z, in W! [58,
Chapter I, 3.5].

lFor A € Z and any topological vector space L, the notation @ 4 L is used for the direct sum
of A copies of L. Similarlarly, for any linear map between topological vector spaces, T : L — L/,
the notation @, T : @, L — @ 4 L’ is used for the direct sum of A copies of T'.
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On the other hand, for each u € Z;-, the linear mapping v + (u, Dv) is bounded

on Y, because Y,, is of finite dimension, and (u, Dw) = 0 for all w € W'NZ, by (ii)-

(b). So v + (u,Dv) is bounded on W1 by (85), obtaining that u € W' by (82)

since D is self-adjoint. Hence Z;- C W', and therefore we can take Y, = Z;
n (85), obtaining

Wl=ZreW'nz,) (86)

as topological vector spaces. Note that W1 N Z, is dense in Z,, by (84) and (86).
So, since D is self-adjoint, it follows from (ii)-(b) and (86) that D preserves Z;-.

To get (iii), take A = 1 and R,, equal to the orthogonal projection of L?(E)
to Z,. Then (iii)-(a) follows from (ii)-(a), and properties (iii)-(b),(c) hold with
Cy = C3 = 1 because R, is an orthogonal projection. By (ii)-(b) and since D
preserves Z;-, we get R,(W?') ¢ W' and DR,, = R, D on W', showing (iii)-(d).
Property (iii)-(e) is a consequence of (ii)-(c).

Finally, assume that (iii) is true. The following general assertion will be used.

CramMm 7. Let $) be a (real or complex) Hilbert space, II an orthogonal pro-
jection of $ with finite rank p, and 0 < C < 1. Then the cardinality of any
orthonormal set contained in

Uo ={ues|[ull > Cllull }
is < p/C2.

Suppose vy, . .., vp is an orthonormal basis of II($)). Let uy, ..., ux be orthonor-
mal vectors in Ug, and I’ the orthogonal projection of § to the linear subspace
generated by them. We have

k k p 4
RC? < Tyl =3 [ws,u) =Y I[Mwil* < p,
j=1 j=11i=1 i=1

showing Claim 7.
Let p, = [Con'/?| and 0 < C < 1.

CrLAIM 8. There is some I C Z with #I < p,,/C? and ||Rpe;|| > C2C for all
i€ Z\ I

Let I1,, and II,, be the orthogonal projections of L?(E) to ker R, and (ker R,,)™,
respectively. By Claim 7, the cardinality of the set

I={icZ||Mel >C}
is < p,,/C?. For i € Z\ I, we have
| Rneill = [|RaIlnei]| > Co |Tyei]] > C2C

by (iii)-(b), showing Claim 8.
From Claim 8, it follows that there is some 7,, € Z such that

%4—1, (87)

[Rnei, || = C2C . (88)

lin| <
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We have
IR, I = 1Res, |I” + DR, ||
< ||Rfei, |* + (IR3 Dei, || + [I[D, Ryles, [1)?
< 2 (o fa +Ca)
Hence

a r
o \/C%+(01\/M+03)2
for all r € [0,1), giving
rCyC r||Rpes, ||
O O O T+ (O £ O
SRS TN
\/c + (O + 0

for all » € [0,1) by (88) and (iii)-(e). So there is some C’ > 0, independent of n,
such that

R?Lein € B'n Zn,

AC4

2
— 0% - c§> > C'n? (89)

1 0202
Alinl Z 72
for n large enough. If |in_1| < k < |in| for n large enough and k € N, then
2005 | _ 2
M2 A 2 -1 2 oz o (Sl ZDY S o (Ck
" Co Cy

by (89) and (87). This shows (i) because, since |i,| — 00 as n — oo by (89), there
is an increasing sequence (ng) in Z4 such that [[i,,—1],00) = U,[lin, 1|, |in,]). O

For any fixed f € C*°(M), let f also denote the operator of multiplication by
f on C®(E) (or on L?(E) if f is bounded). Observe that [d, f] is of order zero
because d is of first order; moreover [d, f]* = —[J, f].

LEMMA 10.3. If f and |[d, f]| are bounded, then:

(1) fD(dmin/max) C D(dmin/max) and [dmin/maxv .ﬂ = [d’ f]7 and
(11) le(dmin/max) c Wl(dmin/max)-

PrROOF. For each u € D(dmin), there is a sequence (u,) in C§°(E) such that
uy, — u and (du,) is convergent in L?(E); in fact, dyinu = lim,, du,,. Then fu, —
fu and

d(fun) = fdu, + [d, flup — f dminu + [d, flu
in L2(E) because f and |[d, f]| are bounded. So fu € D(dmin) and dmin(fu) =
fdminu + [d, flu.

Now, suppose that 4 € D(dmax). Thus there is some v € L?(E) such that
(u, dow) = (v,w) for all w € C§°(E); indeed, v = dpaxu. Then

(fu,6w) = (u, féw) = (u,6(fw) — [6, flw)
= <Uafw> - <u7 [57f]w> = <f1}+ [dvf]u7w>

for all w € C§°(E). So fu € D(dmax) and dmax(fu) = fdmaxt + [d, flu. This
completes the proof of (i).
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Property (ii) follows from (82) by applying (i) to d and . O

Let (E’,d") be another elliptic complex on a Riemannian manifold M'. The
scalar product of L?(E’) will be denoted by (, )’, and let 6’ = *d’. Let U and U’ be
open subsets of M and M’, respectively, so that U D supp f, and let ¢ : (E|y,d) —
(E'|y+,d’) be a quasi-isometric isomorphism of elliptic complexes whose underlying
quasi-isometric diffeomorphism is ¢ : U — U’. For each u € L?(E), identify fu to
fuly, and identify ¢(fu) € L?(E'|y+) with its extension by zero to the whole of M’;
in this way, we get a subspace ((f D(dmin/max)) C L2(E').

LEMMA 10.4. If f and |[d, f]| are bounded, then the following properties hold:

(i) We have ¢(f D(dmin/max)) C D(d;nin/max) and d;nin/maxc = (dimin/max ON
fD(dmin/max)
(ii) If moreover ¢ is isometric, then ((f W (din/max)) € W(d!

min/max) :

PRrROOF. Let v € fD(dmin)- Then u € D(dmin) by Lemma 10.3-(i); in fact,
according to its proof, there is a sequence (uy) in C§°(E) such that u, — w and
du,, — dpinu in L2(E), and with supp u,, C supp f for all n. Then (u,, € C§°(E’),
Cup — Cu and d'Cu, = (du, — (dminu in L?(E’). Hence Cu € D(d.,,) and
dininCU = (dmin.

To prove the case of dax, since D(d.,...) is invariant by quasi-isometric changes
of the metrics of M’ and E’, after shrinking U and U’ if necessary, we can assume
that ¢ : (E|ly,d) — (E'|ys,d’) is an isometric isomorphism of elliptic complexes.
Such a change of metrics can be achieved by taking an open subset V' C M’ so
that &(supp f) € V/ and V/ C U’, and using a smooth partition of unity of M’
subordinated to {V’, M’ \ {(supp f)} to combine metrics. Let u € f D(dmax). Then
t € D(dmax) by Lemma 10.3-(i); indeed, according to its proof, the support of
v 1= dpaxt is contained in supp f. Thus

(Cu, 8"Cw)" = (Cu, Cow)" = (u, dw) = (v, w) = (Cv, (w)’

for each u € fD(dmax) and all w € C°(E|y). So (Cu,d'w’) = (Cv,w") for all
w' € C§°(E'), giving Cu € D(d),,) and dmax(Cu) = (dmaxu. This completes the
proof of (i).

If ¢ is isometric, then it is also an isometric isomorphism (E|y,d) — (E'|yr, d').
So (ii) follows from (82) by applying (i) to d and 4. O

PROPOSITION 10.5. Let (E,d) be an elliptic complex on a Riemannian manifold
M. Let {U,} be a finite open covering of M, and let {f,} be a smooth partition of
unity on M subordinated to {U,} such that each |[d, f,]| is bounded. Assume also
that there is another family {f,} € C°°(M) such that f, and |[d, f,]| are bounded,
fo = 1 on supp f,, and supp fa C U,. For each a, let (E%,d*) be an elliptic
complex on a Riemannian manifold M,, let V, C M, be an open subset, and let
(ot (Blu,,d) — (E*v,,d%) be a quasi-isometric isomorphism of elliptic complezes
over &, : U, — V,. Then the following properties hold:

(1) Dldminmar) = {4 € L2(E) | Calfut) € DA ) Va ).

(ii) If dﬁlin/max is discrete for all a, then diyin/max is discrete.

PRrROOF. The inclusion “C” of (i) follows from properties (i) of Lemmas 10.3
and 10.4.
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Now, take any u € L?(E) such that (,(f.u) € D(dg i /max) for all a. Let gq

and g, be the smooth functions on each M,, supported in V,, that correspond to
fo and f, via &,. By Lemma 10.3-(i),

fau = ¢ Ca(fau) = (5 (Ja Ca(farr)) € D(dmin/masx) -

So u =3, fat € D(dmin/max), completing the proof of (i).

To prove (ii), we can make the following reduction. Since discreteness is in-
variant by quasi-isometric isomorphisms of elliptic complexes, like in the proof
of Lemma 10.4-(i), after shrinking {U,} if necessary, we can assume that each

Gt (Elu,,d) — (E%v,,d") is isometric. If every dy; .. is discrete, then each
Wl(dinn/max) — L?(F%) is compact by Lemma 10.1. So
Cli(ga W (dyin max)) = Clo(ga L*(E7))

is compact for all a by Lemma 10.3-(ii). Therefore
Cll(fa Wl (dmin/max)) — ClO(fa L2(E))

is compact by Lemma 10.4-(ii). Since W'(dwmin/max) = dq faW " (dmin/max) by
Lemma 10.3-(ii), it follows that W (dpin /max) < L*(E) is compact. Hence dyin /max
is discrete by Lemma 10.1. O

PROPOSITION 10.6. With the notation of Proposition 10.5, suppose that every
is discrete, and therefore dyin/max 5 also discrete. Let

da

min/max
0 < Ain/max,0 < Amin/max1 <+ 0 < Amin/max,0 < Amin/max,1 <+
denote the eigenvalues, repeated according to their multiplicities, of the Lapla-
cians Aﬁlin/max and Apin/max defined by dfnin/max and dyin/max, respectively. If
there exist some*> 0, > 0 for all a such that liminf}, )\ﬁlin/ma}(’kk_ea > 0, then

lim infg Amin/max,k k=% > 0 with § = min, 6,.

PROOF. According to Sections 1 and 2 of Chapter 9, liminfy A%, /o Gkl >
0 is a condition invariant by quasi-isometric isomorphisms of elliptic complexes.
Therefore, like in the proof of Proposition 10.5-(ii), we can suppose that (, :
(Ely,,d) — (E%y,,d*) is isometric. Set Dglin/max = dﬁlin/max + 6glax/min and
Whe = WHdg, may)- Let BY* denote the standard unit ball in W, and B} the

standard ball of radius r > 0 in L?(E?). By Lemma 10.2, we get the following.

CLAIM 9. There are some C, ,Cqy,1 > 0 for every a such that, for all n € Z,
there is a linear subspace Z¢ C L*(E%) so that:
(a) Z¢ is closed and of codimension < C, gn'/% in L?(E%);
(b) Dﬁlin/max(WL“ NZ%) C Z%; and

(¢c) BY*nZ¢ C BY,

w1/’

For each a, fix an open subset O, C M such that supp f, C O, O, C U, and
the frontier of O, has zero Riemannian measure. Let P, = &,(0,),

P = {v € L*(E") | v is essentially supported in P, } ,

2The notation 04, min/max Would be more correct, but, for the sake of simplicity, reference to
the maximum/minimum i.b.c. is omitted here and in most of the notation of the proof.



10. SOBOLEV SPACES DEFINED BY AN I.B.C. 89

and Z2' = Z2 NP Each P? is a closed linear subspace of L?(E®) satisfying

gﬂin/max(WLa N Pa) cP. (90)
Cram 10. (a) Z%' is closed and of codimension < C, on'/% in P?;

() Bv“nze’ c BS , NP

a,1/m
Claim 10-(a) follows from Claim 9-(a) and the canonical linear isomorphism
Pe P+ 2y
Zgt— Zy
Claim 10-(b) is a consequence of Claim 9-(b) and (90), and Claim 10-(c) follows
from Claim 9-(c).
Now, consider the linear spaces
0 = {u € L*(E) | u is essentially supported in a} ,
Z8" ={ue 0| Jve Z% sothat (,(uly,) =vly, } .
Each 0% is a closed linear subspace of L?(E), and we have L*(E) = > 0% Set
Dmin/max = dmin/max + 5max/min and Wl = Wl(dmin/max)' Let Bl denote the
standard unit ball in W, and B, the standard ball of radius r > 0 in L?*(E). Since
Co: (Ely,,d) — (E%y,,d") is isometric for all a, Claim 10 gives the following.
Cramm 11. (a) Z4" is closed and of codimension < C, on'/% in 0%
(0) Dinjmax(W N Z2") C Z2"; and
(c) B'NZL" C Be, ,/n N O
Let Y,* be a linear complement of each Z2” in O%. By Claim 11-(a), we have
0" =Y'e 70" (91)

as topological vector spaces [58, Chapter I, 3.5]. On the other hand, for any
m € Zy, W™ N O is dense in O because it contains all sections u € C§°(E) with
suppu C Og. So we can choose Y,¢ C W™ by Claim 11-(a), obtaining

WmAO" =Y @ (W™ Ze") (92)

as topological vector spaces with respect to the topology induced by || ||. The
following assertion follows from (91), (92) and the density of W™ N O® in O%.

Cram 12. W™ N Z2" is || ||-dense in Z2".
For the case m = 1, observe that (92) is satisfied with
Yi=0"nWwhnzy")t, (93)

where 11 denotes ( , }j-orthogonality, and therefore (92) also holds with respect
to the topology induced by || ||;. From now on, consider the choice (93) for Y,%.

CLAIM 13. Dipin/max(Y,¢) € W

Since the Riemannian measure of the frontier of O, is zero, @** consists of
the sections u € L?(E) whose essential support is contained in M \ O,. Hence the
set

Wrno*H) + v+ (Whinze")
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is dense in L?(E) by (92) for m = 1. It follows that, given any u € Y,%, to check
that Dinin/maxt € W1, its enough to check that the mapping
U= <Dmin/maxua Dmin/maxv>
is bounded on W'N O+, Y, and W!'NZ2”. This mapping vanishes on W1 N QO+
because
Dmin/max(VV1 n Oa) co ; l)min/rnaux(vv1 N OCLL) - OaL .
Moreover it is bounded on Y,* because this space is of finite dimension. Finally, for
veWINZ4", we have
<Dmin/maxu; Dmin/maxv> = _<uﬂ 'U>
because v L1 v. Thus the above mapping is bounded on W'NZ2" which completes
the proof of Claim 13.
CLAIM 14. Dyin/max (YY) C Y2

For u € Y,2 and v € W2 N Z2", we have

<Dmin/maxu7 ’U>1 = <Dmin/rﬂaxua U> + <Amin/maxu7 Dmin/maxv>
= <U, Dmin/maxv> + <Dmin/maxu7 Amin/maxv> = <U, Dmin/maxv>1 =0

by Claim 13 and because Dyin/max 18 self-adjoint. Then Claim 14 follows by
Claim 12.

CrLamv 15. Y2 = 0°n (Z2")*L.

Let u € Y% andv € WNZ2". By Claim 14, Amin/max is a self-adjoint operator
on Y;¥. Then u = (1 4+ Appin/max)to for g = (1 + Apin/max) ‘v € Y, obtaining
<U7U> = <(1 + Arrlin/max)u07v> - <7.L0,’U>1 =0.
This shows Claim 15 by Claim 12 and (91).

Let 112 : O — Z2" denote the orthogonal projection. The following claim
follows from (92) for m = 1, and Claims 11-(b), 14 and 15.

Cram 16. IIZ(W'NO*) € W N O%, and [Dyin /max, 11%] = 0 on W N O

Consider each function f, as the corresponding bounded multiplication oper-
ator on L?*(E). Assuming that a runs in {1,..., A} for some A € Z,, we get
the bounded operator T' = (fi,...,fa) : L*(E) — @4 L*(E). Also, let ¥ :
@, L?(E) — L*(E) be the bounded operator defined by X(uq,...,ua) = >, Uq.
We have XT = 1 because {f,} is a partition of unity.

CLAIM 17. The image of T is closed.

Let (u') be a sequence in L?(E) such that (Tu?) converges to some v in
@, L*(E). Then v’ = XTu' — v as i — oo, obtaining Tu! — TXv as i — oo.
Hence v = TXv € T(L?*(E)), showing Claim 17.

By Claim 17 and the open mapping theorem (see e.g. [18, Chapter III, 12.1]
or [58, Chapter III, 2.1]), we get that T is a topological homomorphism?®. So 7 :
L*(E) — T(L*(E)) is a quasi-isometric isomorphism; its inverse is ¥ : T(L?(E)) —

3Recall that a bounded operator between topological vector spaces, T': § — &, is called a
topological homomorphism if the map T : § — T($) is open, where T'($)) is endowed with the
restriction of the topology of &.
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L*(E). Since II,, := @, 1% is an orthogonal projection of @, L*(E), it follows
that R,, :=II,, T satisfies Lemma 10.2-(iii)-(b),(c). Moreover, by Claim 11-(a),

dimker R, < dimkerIT, = Y _dimkerI1% <~ Cyon'/% < Con'/’?

with Cy = Y, Co,q and # = min, 6,, which shows that R,, satisfies Lemma 10.2-
(iii)-(a).

We have R, = (RL,...,R2) with R? = II¢ f,. Since each function |[d, f,]| is
uniformly bounded, it follows that f, W! c W' and [Dimin/max; fa] : Wt — L?(E)
extends to a bounded operator on L?(E). Therefore each R% satisfies Lemma 10.2-
(iii)-(d) by Claim 16.

Finally, R? satisfies Lemma 10.2-(iii)-(e) by Claim 11-(c). Now, the result
follows from Lemma 10.2. (]






CHAPTER 11

Two simple types of elliptic complexes

Here, we study the two types of simple elliptic complexes. They will show
up in the direct sum splitting of the local model of Witten’s perturbation (Chap-
ter 15). We could describe better the spectra of the Laplacians associated to the
minimum/maximum i.b.c. of these simple elliptic complexes, but this will be done
with the local model of the Witten’s perturbation (Chapter 14).

1. Some more results on general elliptic complexes
Consider the notation of the beginning of Section 2 in Chapter 9.

LEMMA 11.1. Let G C C*(E) N L%*(E) be a graded linear subspace containing
C§°(E), preserved by d and §, and such that {du,v) = (u,dév) for all u,v € G.
Let dg, 6g and Ag denote the restrictions of d, § and A to G. Assume that Ag
is essentially self-adjoint in L?(E), and G is the smooth core of Ag. Then the
following properties hold:

(i) If G, C D(dwin,r) and Gr—1 C D(dmin,r—1) for some degree r, then G, is
the smooth core of dmin,r-

(i) If G» C D(Omin,r—1) and Gri1 C D(Omin,r) for some degree r, then G, is
the smooth core of dmax.r-

PrOOF. For each degree r, the restrictions d,. : G, — Gry1, 0, : Gr11 — G
and A, : G, — G, will be denoted by dg ,, dg,r and Ag ,, respectively. Suppose
that G, C D(dmin,r) and G,—1 C D(dwmin,r—1), and therefore dg, C duyin,, and
dgr—1 C dmin,r—1. Since C§°(E) C G and (du,v) = (u,0v) for all u,v € G, it
follows that G,11 C D(0max,r) and G, C D(dmax,r—1), and therefore dg , C Omax,r
and 6g,r—1 C Smaxsr—1. By (81), we get Ag, C Apiny. S0 Ag,r C Apin, and
therefore Ag , = Amin,» because these operators are self-adjoint in L?(E,). Then
G, is the smooth core of duin,r, completing the proof of (i).

Now, assume that G, C D(dminr—1) and Gr41 C D(dmin,r), and therefore
0G.7—1 C Omin,r—1 and dgr C Omin,r. As above, it follows that dg,—1 C dmax,r—1
and dg, C dmaxr- By (81), we get Ag, C Amaxr. S0 Ag, C Apax.r, obtaining
Agr = Amax,r as before. Thus G, is the smooth core of dpax r, completing the
proof of (ii). O

Now, suppose that there is an orthogonal decomposition F, 1 = E, 11 1®E, 41,2
for some degree r + 1. Thus

Coo(ErJrl) COO(ET+1,1) ® COO<ET+1,2) )
C(Eri1) =C°(Erg1,1) ® C°(Eryi2)
L*(Epq1) = L*(Ers1,1) © L*(Bpg2)

93
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giving

LEMMA 11.2. We have:

dr max .
D(dmax.r) = D(dr1 max) N D(dr2max) s dmaxr = <d 1, D(d,nax,7)> .
r,2,max‘D(dmax,r)

PROOF. Let u € L*(E,). We have u € D(dmax.) if and only if there is some
w € L?(E,41) such that (u,év) = (w,v) for all v € C§°(E,41), and moreover
Amax,rt = w in this case. Writing w = w; ® wy and v = v; @ vy, this condition on
u means that (u,do;v;) = (w;,v;) for all v; € C§°(E!, ) and i € {1,2}. In turn,
this is equivalent to u € D(dy1,max) N P(dr2,max) With dr i maxt = w;. O

For i € {1, 2}, let Ar,i = 6r,idr,i +dy_16,_1 on COO(ET)

COROLLARY 11.3. Ifa A, =bA,; +c for some a,b,c € R with a,b # 0, din,r
and dy; min have the same smooth core, and dy ; min = dr i max for some i € {0,1},
then dmin,r = dmax,r-

PrOOF. By Lemma 11.2 and since drimin = drimax, We get D(dmaxr) C
D(dy; min)- Because a A, = bA,; + ¢ for some a,b,c € R with a,b # 0, it follows
that

{u € D(dmax.r) NC®(E,) | AFu € L*(E,) Vk € N}
C {u € D(dy,imin) NC®(E,) | A} u € L*(E,) Vk € N} .

T

This means that the smooth core of dmax,r is contained in the smooth core of
dy. i min, Which equals the smooth core of dpin,». Then dmax,r = dmin,r- O

2. An elliptic complex of length two

Consider the standard metric on Ry . Let E be the graded Riemannian/Hermitian
vector bundle over Ry whose non-zero terms are Ey and 7, which are real/complex
trivial line bundles endowed with the standard Riemannian/Hemitian metrics.
Thus

C>®(Ey) = C®(Ry) =C™(Ey), L*(Fy)=L*Ry,dp)=L*E),

where real/complex valued functions are considered in C°°(R,) and L?(R,,dp).
For any fixed s > 0 and x € R, let

C>(Eyp) C>*(E,)
be the differential operators defined by

d d
d=——kp ttsp, d=——kp tEsp.
dp dp
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It is easy to check that (E,d) is an elliptic complex, whose formal adjoint is (E, ).
By (71), the homogeneous components of the corresponding Laplacian A are:

d
=H+r(k—1)p 2 Fs(1+2k), (94)

d d
Ag=0d=H+x [,pl] Fs {,p] +r2p72 T 25k
P dp

d d
Ai=déi=H—k [,p_l] +s {,p] +K2p72% T 25K
dp dp
=H+r(k+1)p 2 +s(1—2k), (95)

where H is the harmonic oscillator on C*°(R, ) defined with the constant s. Then
Ap and A; are of the form of P in (1) (with ¢; = 0) plus a constant; in particular,
for k = 0, they are equal to H plus a constant.

For Ay, the condition (4) means that a € {k,1 — k}, and (5) gives 0 = & if
a=k,and 0 =1—k if a =1— k. By Corollary H, the following holds:

o If x > —1/2, then Ag, with domain p” Sey 4, is essentially self-adjoint in
L?(Ry,dp), the spectrum of its closure is discrete, and the smooth core
of its closure is p" Sey 1.
o If k < 3/2, then Ag, with domain p' =% S, 1, is essentially self-adjoint in
L?(R,dp), the spectrum of its closure is discrete, and the smooth core
of its closure is p' =" Sey 4.
For Ay, the condition (4) means that @ € {14k, —x}, and (5) becomes o = 1+k
ifa=1+k, and 0 = —k if a = —k. Now Corollary H states the following:
o If kK > —3/2, then Ay, with domain p!™* S, 4, is essentially self-adjoint
in L2(R,, dp), the spectrum of its closure is discrete, and the smooth core
of its closure is p' ™% S,y 1.
o If k < 1/2, then Ay, with domain p~" Sey 4, is essentially self-adjoint in
L?(R,,dp), the spectrum of its closure is discrete, and the smooth core
of its closure is p™" Sey 4.

When & > —1/2, let & C C*°(E)N L?(E) be the dense graded linear subspace
with
8? = 0" Sev + 511 = lem Sev,+ -
When k < 1/2, let & € C*°(E) N L?(E) be the dense graded linear subspace with
& = Pliﬁ Sev,+ 521 =p " Sev,4 -

Observe that, by restricting d and §, we get complexes (€1,d) and (€1,6) when
k > —1/2, and complexes (€3,d) and (€2,d) when x < 1/2. Thus A preserves &
when x > —1/2, and preserves & when x < 1/2.

PROPOSITION 11.4. (i) If |k| < 1/2, then & and & are the smooth cores
of dmax and dpin, respectively.
(ii) If |x| > 1/2, then (E,d) has a unique i.b.c., whose smooth core is & when
Kk >1/2, and & when k < —1/2.

The following lemma will be used in the proof of Proposition 11.4.

LEMMA 11.5. Suppose that § > 1/2. Then, for each & € p’ Sey 4+, considered
as subspace of C*(Ey) (respectively, C*(Ey)), there is a sequence (&,) in C§°(Eo)
(respectively, C§°(E1)), independent of k, such that limy, &, = £ and lim, d§, =
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d¢ in L?(Ey) (respectively, lim, 6¢, = 8¢ in L2(E1)). In particular, p®Sey 4 is
contained in D(dmin) (respectively, D(dmin))-

REMARK 20. In Lemma 11.5, the independence of £ means that (&,,) depends
only on 6 and &, whilst the convergences lim,, d§,, = d§ and lim,, &,, = 6§ hold with
d and § defined by any k.

PROOF OF LEMMA 11.5. The proof is made for D(dmin); the case of D(dmin)
is analogous.

Let 0 < a < band f € C§°(R;) such that 0 < f < 1, f(p) =1 for p < a,
and f(p) = 0 for p > b. For each n € N, let g, h, € C°(R;) be defined by

gn(p) = f(np) and h,(p) = f(p/n). It is clear that
X[%,na] < (]- - gn)hn < X[2,nb] » (96)
where xs denotes the characteristic function of each subset S C R.
Let ¢ € Sey 4. From (96), we get (1—g,)hnp?e € C°(Ey) and (1—gp)hnp?d —
p?¢ in L?(Ey) as n — co. Observe that
d((1 = gn)hnp’®) = —gphnp’¢ + (1 = gu) i, p"6 + (1 = gn)hn d(p"9) -

In right hand side of this equality, the last term converges to d(p?®) in L?(E;) as
n — oo by (96). Moreover

11 = ga) L") = / (1= g1 (0) 8 () dp

< max 26 0 [ oo = max ) [ P de
0 0

= (max p*’ o) n " | f]*

which converges to zero as n — oo, and
lohar 6l = | 612 02 (0056 (p) dp < (max ) [ £ (np)o™ dp
0 0

= (max?) ' [ 2 0)a2 do = max )t 757

which converges to zero as n — oo if § > 1/2.

In the case § = 1/2, it is enough to prove that f can be chosen so that || f/p'/?||
is as small as desired. For m > 1 and 0 < € < 1, observe that there is some f as
above such that:

e the support of f’ is contained in [e™¢, e™]
. _mipgf’go,and

o f'(p) = —m% if1<p<em e,

76 )

Then
o o
M2 = f’2(p)PdP<i/ B_mie,
o e “m? ).« p m?
which converges to zero as m — oc. O

PROOF OF PROPOSITION 11.4. Suppose that |k| < 1/2. Since 1+x > 1/2, by
Lemma 11.5, £ C D(dpmin) and £ C D(dpin). The other conditions of Lemma 11.1
are satisfied by d with G = &, and by § with G = &; by the discussion previous
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to Proposition 11.4. So &; is the smooth core of d,;, and &£; is the smooth core of
dmax by Lemma 11.1.

Now, assume that k > 1/2 (respectively, k < —1/2), giving also 1 +x > 1/2
(respectively, 1 —k > 1/2). Then, by Lemma 11.5, £) C D(dpin) and €} C D(dmmin)
(respectively, £ C D(dmin) and £ C D(dmin)). By the discussion previous to
Proposition 11.4, the other conditions of Lemma 11.1 are satisfied by d and § with
G = & (respectively, G = &). So, by Lemma 11.1, & (respectively, &) is the
smooth core of dpy;, and dpyax- O

REMARK 21. In the proof of Lemma 11.5 and Proposition 11.4, we have bor-
rowed ideas from the proof of [11, Theorem 4.1]; in fact, in the case with x = 0,
Proposition 11.4 could be proved exactly like [11, Theorem 4.1].

3. An elliptic complex of length three

Consider again the standard metric on Ry. Let F' be the graded Riemann-
ian/Hermitian vector bundle over R, whose non-zero terms are Fy, F; and Fb,
which are trivial real/complex vector bundles of ranks 1, 2 and 1, respectively,
endowed with the standard Riemannian/Hermitian metrics. Thus

C®(Fy) = C®(Ry) = C¥(Fy),  C%(Fy) = C%(Ry) & C(Ry)
LQ(FO) = LQ(R+,dp> = LZ(FQ) ’ LZ(FI) = L2(R+,dp) D L2(R+,dp) ’

where real/complex valued functions are considered in C°°(R,) and L?(R.,dp).
Fix s,c >0 and k € R, and let

do

C*(Fo) C>=(Fy)

50 61

C*(Fy)

be the differential operators defined by

p 6
do = <dg;> v 0= (do1 do2), di=(dia diz), d= (51;> ’

s
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where
d0’2_¢1iL7<cglp(“+1)p 1i8p> :
60’1:¢1fyj<_c;ip+ﬁp_li5p>’
dio = \/13_762 <;p(’f+1)PIZFSP) ;
51,12\/1:_7<—jp—ﬁp 1:i:sp> ,
c d 1
1’2:m(@_(“+1)p 3F8P>

A direct computation shows that dy and d; define an elliptic complex (F,d) of
length three. Its formal adjoint is the complex (F,d) given by dy and §;. The
homogeneous components Ag and Ay of the corresponding Laplacian A can be
computed as follows, where the notation of Section 1 is used. By (94) and (95),

Ag1 = 0p.1d —L —i—l—ﬁ_lzts i—i—fi_lzlzs
0.1 = 00,1401 = 7775 dp P p p ¥ P

&)

= ljr7c2 (H+k(k+1)p 2 Fs(1—2k)) ,

L (—jp —(k+1p '+ sp) (ci) —(k+1)p~t sp)

Ao = =——
0,2 = 00,2do,2 152
(H+ (k+Drp? Fs(1+2(k+1))) ,

_ 1
142

1 d 4 d .
Ay =di161,1 = 112 ( —Kkp % sp) (dp —Kkp % sp>

_ 1 -2
=T a (H+r(k+1)p? £s(1—-2k)) ,
c? d d

A = = — RN — 1 -1 - 1 -1
22 =d1,201,2 1+c2( i (k+1)p :Fsp) <dp (k+1)p :Fsp>

C2

1—¢c2
_9 1—c?
Ng=d161 =001+ Do =H+k(k+1)p " =£s 2+m(1+2/@) )
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Thus Ag can be identified to Ag, and they are of the form of P in (1) (with ¢; = 0)
plus a constant.

For Ag and A,, the condition (4) means that a € {1 + k,—k}, and (5) gives
oc=1+4+krifa=1+4k, and 0 = —k if a = —k. By Corollary H, the following holds:

o If kK > —3/2, then Ay and Ay, with domain p'™* S,y 1, are essentially
self-adjoint in L?(R,dp), the spectra of their closures are discrete, and
the smooth core of their closures is p!** Sey 4.

o If Kk < 3/2, then Ay and Ay, with domain p'=* Sev,+, are essentially self-
adjoint in L2(R,,dp), the spectra of their closures are discrete, and the
smooth core of their closures is p™" Sey 4.

Write
Al = d050 + 51d1

_ (dopdoar+011d1y dopdoz+01adi2 _ (An A
do 2001 +012d11 do 2002+ 61.2d1 2 B Aip) -

By (94) and (95),
1 d d
A1=—— 2| —+rpt £ —— 4 rp 1t
S (C (dp P S'O) < dp P sp)

(oaren) (o)
1

— m(02 (H+ k(s —1)p 2 Fs(1 —1—2,%))

+H+r(k—1)p7> Fs(1+2k))
_ 2

1-c
:H-'—KZ(K,— 1)p72 :F$1—i_7c2(1+21€),

_ 1 d -1 d 1
A1’21+02<<dp (k+1)p iSP>< a0 (k+1)p j:sp)

1 + ¢ (jg —(k+Dp~ ' F Sp) <—jp —(k+1)p ' F sp>)

= o (4 (4 D+ 27" £ 5(1 - 25+ 1))

+ (H+ (k+1)(k+2)p 2 Fs(1 —2(k+1))))

1—¢2

14 ¢?

So A11 and Aq 5 also are of the form of P in (1) (with ¢; = 0) plus a constant.
For Aq 1, the condition (4) means that a € {k,1 — k}, and (5) gives 0 = & if

a=k,and 0 =1—k if a =1— k. By Corollary H, the following holds:

=H+(k+1)(k+2)p 2Fs

(1+2k).

o If k> —1/2, then Ay 1, with domain p* Sey +, is essentially self-adjoint in
L?(R,dp), the spectrum of its closure is discrete, and the smooth core
of its closure is p" Sey .

o If K < 3/2, then Ay, with domain p'~" S.y 4, is essentially self-adjoint
in L?(R,, dp), the spectrum of its closure is discrete, and the smooth core

—K

of its closure is p v+ -
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For Ay 5, the condition (4) means that a € {2+ x,—1 — k}, and (5) becomes
c=2+kifa=2+k,and 0 = —1 —k if a = —1 — k. Then Corollary H states the
following:

o If K > —5/2, then Ay o, with domain p2te Sev,+, is essentially self-adjoint
in L2(R,dp), the spectrum of its closure is discrete, and the smooth core
of its closure is p? ™" Sey 1.
o If k < —1/2, then A 5, with domain p~!'7% Sy 4, is essentially self-adjoint
in L2(R,, dp), the spectrum of its closure is discrete, and the smooth core
of its closure is p~17% Soy 4.
Finally, by (71),

B P
d d
- — 1)p~ ! — —kp t £
+ (dp (k+1)p qﬂsp) (dp Kp sp>)

2cs d
=+ _(|=,pl-1)=0.
e (5] 1) =0

When x > —1/2, let F; C C*°(F)N L?(F) be the dense graded linear subspace
with

-7:? = p1+n Sev,Jr ) -7:11 = PH Sev,Jr D p2+"'i Sev,+ ) ]:12 = PH_K Sev,Jr .

When £ < —1/2, let Fo C C°°(F) N L*(F) be the dense graded linear subspace
with

-7:3 =p " ev,+ 5 -7:21 = PliNSeV,+ S5 pilil{ SeV,+ ) -7:22 = plin Sev,+ -

By restricting d and ¢, we get complexes (F1,d) and (F1,6) when k£ > —1/2, and
complexes (Fz,d) and (F2,d) when £ < 1/2. Thus A preserves F; when £ > —1/2,
and preserves Fp when £ < —1/2.

PROPOSITION 11.6. Suppose that k # —1/2. Then (F,d) has a unique i.b.c.,
whose smooth core is Fy if K > —1/2, and Fo if k < —1/2.

PROOF. We prove only the case with k > —1/2; the other case is analogous.

By Lemma 11.5 (using the independence of (¢,) on & in its statement), we
get FY C D(domin) and F7 C D(61,min). Then, by the discussion previous to this
proposition, the other conditions of Lemma 11.1 are satisfied by the complexes
defined by d and § with G = F, obtaining that F{ and F? are the smooth cores
of domin and 91 min, respectively. By Proposition 11.4 and since 1 + k,2 + k >
1/2, we get do2.min = do,2,max With smooth core FY and 02,2,min = 02,2 max With
smooth core FZ. So, according to the discussion previous to this proposition, the
conditions of Corollary 11.3 are satisfied with d and d, obtaining do min = do,max
and 01 min = 01,max, Which also gives di min = di max- O
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4. Finite propagation speed of the wave equation

For the Hermitian bundle versions of E and F', consider the wave equation

du .
cTtt —iDu; =0 (97)
on any open subset of Ry, where D = d + § and w; is in C*®(E) or C®(F),

depending smoothly on t € R.

PROPOSITION 11.7. For0 < a < b, suppose that u; € D> (dwin/max), depending
smoothly on t € R, satisfies (97) on (0,b). The following properties hold:
(i) If suppug C [a,0), then suppus C [a — [t],00) for 0 < |t] < a.
(if) If suppug C (0,a], then suppus C (0,a + [t]] for 0 < |t] < b —a.

PROOF. We prove Proposition 11.7 only for E; the proof is clearly analogous for
F, but with more cases because F is of length three. Let u; o € C*°(E?) = C*°(R,)
and u;; € C*°(E') = C*°(R4) be the homogeneous components of u;. From the
description of the smooth core of dpin/max in Proposition 11.4, it follows that

(e 00,1)() = 0. (98)
We have
d a—t a—t
] o) dp= / ((iDur ug) + (ue, iDur)) () dp — ug(a — b)|?
0 0

iy / " (Durur) — (e, Dun))(p) dp — fur(a — 0) -

But, since d and ¢ are respectively equal to d/dp and —d/dp up to the sum of
multiplication operators by the same real valued functions,

dut’o - dut’l - dm + dm
—_— u —_— —— u —_— u D —— u - —_——
dt t,1 dt t,0 t,1 dt t,0 dt

d diiz1 d
:2&‘;( Z;’O S Up UL Z;f) :23%(utom) )

(Dut,ut) — (ut,Dut) =

giving

/oa_t((D“t’“t) — (u, Duy))(p) dp’ <2

= 2|(uromr)(a — O] < Jurola — D + fura(a - O = fur(a — )]

(utotrr)(a—1t) — lpi{lg(ut,o Ur1)(p)

by (98). So
d a—t )
— <
dt 0 ‘Ut(p)| dp = 0 )
giving

a—t a
/ g () 2 dp < / luo(p)dp =0,
0 0

and (i) follows.
Property (ii) can be proved with the same kind of arguments, but using that
lim u(p) =0 (99)
p—00
for all u € D> (dmin/max) instead of (98). |



102 11. TWO SIMPLE TYPES OF ELLIPTIC COMPLEXES

REMARK 22. The proof of Proposition 11.7 is an adaptation of [54, Proposi-
tion 7.20], where (98) and (99) are used to settle the lack of compact support.



CHAPTER 12

Preliminaries on Witten’s perturbation of the
de Rham complex

Let M = (M, g) be a Riemannian manifold of dimension n. For any x € M
and any a € T, M*, let

T
as=(=1)""T" x oA x on /\TIM* ,

involving the Hodge star operator x on A T, M* defined by any choice of orientation
of T, M. Writing a = g(X,-) for X € T,,M, we have o = —tx, where tx denotes
the inner product by X. Moreover let

R,=aN —as, L,=aAN +aJ

on AT,M*. Recall that there is an isomorphism between the underlying linear
spaces of the exterior and Clifford algebras of T, M ™,

/\TIM* — Cl(TL,M*), ey, N---Nej, +r—e,o---0¢; |

where (e, ...,e,) is an orthonormal frame of T, M* and “e” denotes Clifford mul-
tiplication. By this linear isomorphism, L, and R,w correspond to left and right
Clifford multiplication by a. So L, and Rg anticommute for any «, 3 € T, M*.
Any symmetric bilinear form H € T, M* ® T, M* induces an endomorphism H of
AT M* defined by

H= ) Heiej)Le, Re, (100)
ij=1
by using an orthonormal frame (eq,...,e,) of T, M*. Observe that |H| = |H|.

On the graded algebra of differential forms, Q(M), let d and ¢ be the derivative
and coderivative, let D = d+ ¢ (the de Rham operator), and let A = D? = d§ + dd
(the Laplacian on differential forms). For any f € C°(M), E. Witten [68] has
introduced the following perturbations of the above operators, depending on a
parameter s > 0O:

dy=e T def =d+ sdfn, (101)

Ss=else™ sl =5 —sdf, (102)
Dy=ds+d,=D+sR,

Ay = D? =d s+ 6sds = A+ s(RD + DR) + s*R* , (103)

where R = Rg4r. Notice that J, is the formal adjoint of d,, and therefore Dy and
Ay are formally self-adjoint.

The Hessian of f, with respect to g, is the smooth section of TM* @ T M*
defined by Hess f = Vdf, which is symmetric and induces an endomorphism Hess f
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of ATM* according to (100). Then [54, Lemma 9.17]
RD + DR =Hessf, R?=|df*,
obtaining that (103) becomes
A, = A+ sHessf + s% |df|* . (104)

The Witten’s perturbed operators also make sense with complex valued differ-
ential forms, and the above equalities hold as well.

EXAMPLE 12.1. Let dis, 5Oi’s, D({S, Aﬁs denote the Witten’s perturbed op-
erators on Q(R™) defined by the model Morse function +3 p3 and the standard
metric go. According to [54, Proposition 9.18 and the proof of Lemma 14.11], Ais,
with domain Qo (R™), is essentially self-adjoint in L2Q(R™, go), and its self-adjoint
extension has a discrete spectrum of the following form:

e 0 is an eigenvalue of multiplicity one, and the corresponding eigenforms
are of degree zero in the case of Ag’s, and of degree m in the case of Ay ;.

e Let ef be a 0-eigenform of AB%S with norm one, and let h be a bounded
measurable function on R™ such that h(z) — 1 asz — 0. Then (hef,ef) —
1 as s — oo.

e All non-zero eigenvalues, as functions of s, are in O(s) as s — 0.

Therefore (A TR™*, d(j)t,s) has a unique i.b.c., which is discrete.



CHAPTER 13

Witten’s perturbation on a cone

For our version of Morse functions, the local analysis of the Witten’s perturbed
Laplacian will be reduced to the case of the functions i% p? on a stratum of a cone
with a model adapted metric, where p denotes the canonical function. That kind
of local analysis begins in this section.

1. Laplacian on a cone

Let L be a non-empty compact Thom-Mather stratification, let p be the canon-
ical function on ¢(L), let N be a stratum of L of dimension 7, let M = N x Ry be
the corresponding stratum of ¢(L) with dimension n =7+ 1, and let 7 : M — N
denote the second factor projection. From ATM* = ANTN* K ATRY, we get a
canonical identity

T r r—1 T r—1

NTM* =x* NTN* @ dpAn* \ TN*==* NTN* o =* \ TN*  (105)

for each degree r, obtaining
(M) = C=(Ry, @ (N)) @ dp A C= (R, 27~} (N) (106)
= C¥(Ry, (V) @ CF(Ry, (V). (107)
Here, smooth functions Ry — Q(N) are defined by considering () as Fréchet

space with the weak C'°° topology. Let d and d denote the exterior derivatives on
Q(M) and Q(N), respectively. The following lemma is elementary.

LEMMA 13.1. According to (107),

d 0
d= ~1 .
(J’p —d>

Fix an adapted metric § on N, and let g = p?j + (dp)? be the corresponding
adapted metric on M. The induced metrics on A TM* and A TN* are also denoted
by ¢ and g, respectively. According to (105),

g=p T gop g (108)
on \"TM*.

Given an orientation on an open subset W C N, and denoting by @ the corre-
sponding g-volume form on W, consider the orientation on W x Ry C M so that
the corresponding g-volume form is

w=p"tdp NG . (109)
The corresponding star operators on A T(W x Ry )* and A TW* will be denoted
by x and *, respectively.

105



106 13. WITTEN’S PERTURBATION ON A CONE

LEMMA 13.2. According to (105),

L 0 pn—2r+1;
- (_1)T’pn—2r—l; 0

on N"T(W x Ry)*.

PROOF. Let o, € n* ATN*, at the same point (p,z) € Ry x W. If o and
o' are of degree r, then

NPT Hdp ANxa = (=1)"p" L dp A dd A Fa
)l a) dp A G = (~1) gl @)

by (108) and (109), giving xa = (—1)"p"~2"~1dp A . Similarly, if o and o’ are of
degree r — 1, then

dp Ao Ap" 2 ia = pn 2 g a)dp Ao = g(dp A dp A o) w
obtaining x(dp A a) = p" =2 1xa. O
Let L?2Q"(M, g) and L?Q"(N, g) be simply denoted by L?Q" (M) and L2Q"(N).
From (108) and (109), it follows that (107) induces a unitary isomorphism
120 (M) = (IR, ">~ dp) & L2 (V)
& (2R, "2 dp) B 27 (N)) | (110)

which will be considered as an identity.
Let 0 and ¢ denote the exterior coderivatives on Q(M) and Q(N), respectively.

LEMMA 13.3. According to (107),
5= p~26 —dip —(n—=2r+1)p7!
0 —p7 26
on Q" (M).

PROOF. For an oriented open subset W C N, consider the orientation on
W x R, defined as above, and let * and * denote the corresponding star operators
on AT(W x R;)* and ATW*. By Lemmas 13.1 and 13.2, on Q"(W x Ry),

5= (~1)" T wd

(—l)m—i_n—i_l( 10 2r—37 p‘"‘*‘Q’”_l;) g 0
(71)n7r+ p7n+ r—3% 0 Tp —d

" 0 pn72r+1;
(_1)7‘pn—27‘—1; 0

= (fl)n'r‘JrnJrl ((DTPQ;d; p7”+27"*1 jppn2r+1;2>

0 (_1)n7r+1p72;d;
_ p—25 _p—n+2r—1 dipf)n—Qr+l
0 —p~26 ’
which equals the matrix of the statement by (71). O

Let A and A denote the Laplacians on Q(M) and Q(N), respectively.
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COROLLARY 13.4. According to (107),

_ P —2p71d
8= (—2/)‘35 Q )

on Q" (M), where

p~2dé —(i(% +(n—2r+1)p1)
d—‘;p*QS —dd—; —(n—2r+ 1)(1%,0’1 +p72 JS)
B p=2dé —ci(d% +(n—2r+1)p1
B (pztz)g —2p735 —L_(n—2r+ kot +p2 J5>
The sum of these matrices is the matrix of the statement. (I

2. Witten’s perturbation on a cone

Let d¥, 0%, D and A¥ (s > 0) denote the Witten’s perturbations of d, &,
D and A induced by the function f = :I:%p2 on M. In this case, df = *pdp.

According to (107),
(00 . _ (0 p
pdp\ = <p 0) , pdpi = (0 0) .

So the following is a consequence of Lemmas 13.1 and 13.3, (101) and (102).
COROLLARY 13.5. According to (107),

d 0
j: = ~
ds = (ddpisp —d> ’
5t = <p25 fd% —(n—=2r+1)pt+ sp)

on Q" (M).
With the notation of Chapter 12,

- _ —4 (0 »
R = tp(dpA dpJ)_:I:(p O)’
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and therefore
2 (PP 0\ _ o
R:<O pz):p. (111)
LEMMA 13.6. RD + DR = +(2r —n) on Q" (M).
ProoOF. By Lemmas 13.1 and 13.3, and according to (107),

d+p725 —L _—(n—2r+1)p!
RDEi(o 8) o i —(n rh )P
p i —d—p76
B A e )
pd+p7'0 —pk—n+2r—1)"
d+p26 —di—(n—Qr—l)p_1 0 p
= p ~ ~
DR_i< i Y. » 0

_ 4 —d¥‘lpp—n+2r+1 pcz—l—p_lg
—pd—p~'o ap '

0 2r—n
by (71). O

RD+DR_:|:<2r_n 0 >_:|:(2TTL)

REMARK 23. The expression of RD 4+ DR can be also obtained by computing
Hess f (Chapter 12).

The following is a consequence of (104), Corollary 13.4 and Lemma 13.6.
COROLLARY 13.7. According to (107),

P —2up~td
—2p7%  QF

~ d
Psi:p_2A+H—(n—2r—1)p_1d—p:|:s(n—2r),

A:i:

on Q" (M), where

~ d
Q;t:p‘2A+H—(n—2r+1)p_1d—p—l—(n—Qr—i—l)p_Z:Fs(n—Zr).



CHAPTER 14

Domains of the Witten’s Laplacian on a cone

Theorem I is proved by induction on the dimension. Thus, with the notation
of Chapter 13, suppose that dpin/max satisfies the statement of Theorem I. Let
Hmin/max = ker Dmin/max = ker Amin/max ’

which is a graded subspace of Q(N). For each degree r, let

Rmin/max r—1; Iié:;lin/max » C L2QT (N)

be the images of dmm /max,r—1 and 5mm /masx,rs respectively, whose intersections with
D>(A) are denoted by R , and R¥°

Chapter 9, A preserves Rmm Jmax,r—1 and R*®°

According to Section 1 of

min/max,r— min/max,r"

R and its restrictions to these

spaces have the same eigenvalues. For any eigenvalue X of the restriction of A to

S
min/max,r—1° let

= F5 (Amin/max) N R
75'* = F; (Amm/mmx) N R

min/max,r,\

min/max,r—1,\ min/max,r—1

min/max,r *

Moreover

207
L=Q (N) = mm/max@@( min/max,r— 1,2 @Rmm/maxr)\) ) (112)

where A runs in the spectrum of Amm /max Ol R i.e., the positive spec-

min/max,r— 1
trum of Amin/ma,x,r'

Now, consider the Witten’s perturbed Laplacian AF. In the following, suppose
that s > 0.

1. Domains of first type

For some degree r, let 0 £ v € HT By Corollary 13.7,

min/max"
d
AT EH—(n—Qr—l)p‘ld—p$s(n—2r)

on C®(Ry) = C*®(Ry)y C Q°(M). This operator is of the type of P in (1) with
co = 0. Thus (72) is satisfied, and (4) means that a € {0, —n + 2r + 2}.

For a = 0, we have 20 = n — 2r — 1. When ¢ > —1/2, which means r <
"7*1, Corollary H asserts that A, with domain Sev,+, is essentially self-adjoint in
L?(Ry, p" =27~ dp); the spectrum of its closure consists of the eigenvalues

(4k + (1 F 1)(n — 2r))s (113)

109
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of multiplicity one, with corresponding normalized eigenfunctions xj; and the
smooth core of its closure is Sey . For A, (113) becomes 4ks, which is > 0
for all k and = 0 just for k = 0. For A_, (113) becomes (4k + 2(n — 2r))s, which
is > 0 for all k.

For a = —n + 2r + 2, we have 20 = —n + 2r + 3. When o > —1/2, which
means r > 222 Corollary H asserts that AF, with domain p="F2"*2S,, . is
essentially self-adjoint in L?(R, p"~2"~1dp); the spectrum of its closure consists
of the eigenvalues

Ak+4—-(1£1)(n—2r))s (114)
of multiplicity one, with normalized eigenfunctions xx; and the smooth core of its
closure is p~" T2 t2S,, .. For A}, (114) becomes (4k + 4 — 2(n — 2r))s, which is:

° >0fora11k:ifr2”7_1,
° ZOforallkand:Ojustforkzoifr:%—Land

° <Of0rk;:0if7’:"T’3.

For A7, (114) becomes (4k 4+ 4)s, which are > 0 for all k.
When ”Tf?’ <r< ”7’1, we have got two essentially self-adjoint operators, with
a=0and a = —n + 2r + 2. These two operators are equal just when r = 3 — 1.
All of the above operators defined by AT, as well as their domains, will be said

to be of first type.

2. Domains of second type

With the notation of Section 1,
d
AT EH—(n—2r—l)pfld—p—|—(n—27’—1)p*2:|:s(n—2r—2)

on C®(R;) = C®(Ry4)dp Ay C QT (M) by Corollary 13.7. This is an operator
of the type of P in (1) with ¢ = ¢;. Thus (72) is also satisfied, and (4) becomes
a€{l,—n+2r+1}.

For a = 1, we have 20 = n — 2r + 1 according to (5). When o > —1/2, which
means r < "T'H, Corollary H asserts that Af, with domain pSey,+ = Sodd,+, 18
essentially self-adjoint in L?(R,, p" 21 dp); the spectrum of its closure consists
of the eigenvalues

dk+44+1F1)(n—2r—2))s (115)
of multiplicity one, with normalized eigenfunctions yj; and the smooth core of its
closure is pSey 4. For Af, (115) is > 0 for all k. For Ay, (115) is:

° >Of0rallk:ifr§”T_1,
e >0 forall kand =0 just for k =0 if r = 5, and
. <0for/<;:Oifr:"T+1.

For a = —n+2r+1, we have 20 = —n+2r+1 according to (5). Wheno > —1/2,
which means r > 2L, Corollary H asserts that AF, with domain p="*2"+18,, |,
is essentially self-adjoint in L?(R,, p"~2"~1 dp); the spectrum of its closure consists
of the eigenvalues

4k —(1+£1D)(n—2r—2))s (116)
of multiplicity one, with normalized eigenfunctions y; and the smooth core of its
closure is p™" T2 t1 S . . For A, (116) is > 0 for all k. For A7, (116) is > 0 for
all k and = 0 just for k£ = 0.
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For ”T’l <r< "7“, we have obtained two essentially self-adjoint operators,
with a =1 and @ = —n + 2r + 1. These operators are equal just when r = 7.

All of the above operators defined by AT, as well as their domains, will be said
to be of second type.

3. Domains of third type

Let p = \/K for an eigenvalue X of the restriction of &min /max 1O R

min/max,r—1"
According to Section 1 of Chapter 9, there are non-zero differential forms,

a € ﬁmin/max,r—l,A C QT(N) ’ 6 € ﬁ:‘nin/max,r—l,k C QT?I(N) )

such that df = po and do = pB. By Corollary 13.7,

d? d
ASiZ—d—pz—(n 2r+1)p1d—p+u2p_2:|:(n—2r+2)s
such that Jﬂ = pa and ba = uB. By Corollary 13.7,
AT = —d—z—(n—2r—|—1)p71i+u2p72$(n—2r+2)s
o dp? dp

on C®(R;) =C>®(Ry) B C Q" ~1(M). This operator is of the type of P in (1) with
c2 = p? > 0. Thus (72) is satisfied, and (4) becomes

it 2+ /=2 A2
g T2 (; At (117)

These two possibilities for a have different sign because p > 0.
For the choice of positive square root in (117), we get

(n—2r)2 + 4p?

- 118
according to (5). Then Corollary H asserts that AF, with domain p®Sey 1, is
essentially self-adjoint in L2(R, p"~2"*+1dp); the spectrum of its closure consists

of the eigenvalues
(4k+2+ (n—27")2+4,u2:F(n—27"+2))3, (119)

with multiplicity one and corresponding normalized eigenfunctions y; and the
smooth core of its closure is p® Sey,+. Notice that (119) is > 0 for all k.
For the choice of negative square root in (117), we get
1—+/(n—27)2 + 42

o= 5 (120)

according to (5). Then o > —1/2 if and only if

pw<l and |n—2r| <2y/1—p2, (121)

which is equivalent to § <p<landr =3, orpu< § and "T_l <r< "T'H
In this case, Corollary H asserts that AT, with domain p® Sev,+, is essentially self-

adjoint in L2(R,, p" =271 dp); the spectrum of its closure consists of the eigenvalues

(4k+2— (n—2r)2+4u2$(n—2r+2))8, (122)
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with multiplicity one and corresponding normalized eigenfunctions p® ¢oy +; and
the smooth core of its closure is p® Sey,+. For AF, (122) is < 0 for £ = 0. For
A7, (122) is > 0 for all .

When (121) is satisfied, we have got two different essentially self-adjoint oper-
ators defined by the two different choices of @ in (117).

All of the above operators defined by AF, as well as their domains, will be said
to be of third type.

4. Domains of fourth type
Let p, o and 8 be like in Section 3. By Corollary 13.7,

on C®(Ry) = C>®(Ry)dpAa C QFL(M). This is another operator of the type of
P in (1), which satisfies (72) because

A—(n—=2r—1)2+4(p?+n—-2r—1)=n—-2r)> +4u>>0.

Moreover (4) becomes

2 2
_ T+ 2r+24/(n—2r)* +4p . (123)
2
These two possibilities for a are different because p > 0.

With the choice of positive square root in (123) and according to (5), o is also
given by (118), which is > 1/2. Then Corollary H asserts that A, with domain
p® Sev.+, is essentially self-adjoint in L?(R, p"~ 2"~ dp); the spectrum of its closure
consists of the eigenvalues

(4k—|—2+ (71—27‘)2—|—4,u2:|:(71—27‘—2))57 (124)

with multiplicity one and corresponding normalized eigenfunctions yj; and the
smooth core of its closure is p® Sey +. Observe that (124) is > 0 for all k.

With the choice of negative square root in (123) and according to (5), o is
also given by (120), which is > —1/2 if and only if (121) is satisfied. In this case,
Corollary H asserts that AF, with domain p®Sey ., is essentially self-adjoint in

L?(R., p"~2"=Ldp); the spectrum of its closure consists of the eigenvalues
(4kz+2— (n—27“)2+4,u2:|:(n—27"—2))3, (125)

with multiplicity one and corresponding normalized eigenfunctions yx; and the
smooth core of its closure is p® Sey 4. For AF, (125) is > 0 for all k. For A7, (125)
is < 0 for k=0.

When (121) is satisfied, we have got two different essentially self-adjoint oper-
ators defined by the two different choices of a in (123).

All of the above operators defined by A¥, as well as their domains, will be said
to be of fourth type.
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5. Domains of fifth type
Let p, o and 8 be like in Sections 3 and 4. By Corollary 13.7,

+ _9,—1
A;t = < Ppls3 2p M)

=207 Qi
on
C®(Ry) & C®(Ry) = CF(Ry) a+ C¥(Ry ) dp A B € Q7 (M),
where

d
Pj’s =H—-(n—-2r—1)p ! o + 2o 2 F (n—2r)s,

+

d
s H—(n—2r+l)p_ld—+(u2+n—2r+l)p_2:|:(n—2r)s.
’ p

We will conjugate this matrix expression of AF by some non-singular matrix O,
whose entries are functions of p, to get a diagonal matrix whose diagonal entries
are operators of the type of P in (1). This matrix will be of the form © = BC with

(1 0 _ (€1 c12
oo 0 o= )

C22

where c;; are constants to be determined. Let Pljté and Qis be simply denoted by
P and Q. A key observation here is that, by (71),

d? d
—1 _ —1 —2
P 5 d
+p1dT)2p+(n—2r—l)p2—

dpp
d 1 d -2
:—d—p2—(n—2r+1)p d—p+(n—2r+1)p
d? d d
— 42— —2r—1)p ' — —2r —1)p 2
+dp2+ dp+(n r—1)p dp-i—(n r—1)p
= 2(” - 2T)p_2 )

obtaining

_ 10 P —2up N\ /(1 0
b lAétB(O p) (—2W‘3 @ )(0 p‘l)
_( P —2up?
B (—2up‘2 pr‘l)
_( P —2pp~2 )
T \—2up™? P+2(n-2r)p72)"

On the other hand, C' must be non-singular and

- 1 C22 —C12
Cl=__—_ .
det C' (—021 11
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Therefore ©'ATO = (X;;) with

2 _
X11 =P+ —— (p(=co2c21 + c12¢11) — (0 — 27)ci2c21) p 2,

det C
2 _
X2 = JetC (1 (=c3p + fa) — (n = 2r)crzeas) p~2
2 _
Xo1 = JotC (1 (c31 — i) + (n = 2r)enea) p=2

2
Xog =P+ detC (p(carcan — cr1¢12) + (0 — 2r)cr1c02) p 2

We want (X;;) to be diagonal, so we require
p(cly = ¢32) — (n = 2r)eracan = p(ciy — ¢31) — (n = 2r)ennear = 0.
Both of these equations are of the form

2oy —(n—2r)zy =0, (126)

(@

with * = c12 and y = c92 in the first equation, and x = ¢17 and y = c¢2; in the
second one. There is some ¢ € R ~\ {0} such that

n—2r Y

2 xy = (z + cy) (x - E) . (127)

T

In fact, since

1
(z +cy) (x_y) —xz—y2+<c—>xy,
& &

we need
1 n—2r
c——=— ,
¢ K
giving
p +(n—2r)c—p=0, (128)

whose solutions are

— 2r + —2r)2 + 4u?
n+42r+/(n—2r)2+4pu . (129)
2u
Observe that ¢;c_ = —1. Let ¢ = ¢y > 0, and therefore —1/c = c_. By (127), the
solutions of (126) are given by = 4+ cy = 0 and cx —y = 0. Then we can take

C4+ =

with det C =14 ¢? > 0. So, for

o — 1 0 1 —c\ 1 —c
- 0 pfl c 1 - Cpil ,071 )

we get X170 = X917 =0, and

2(—2uc+ (n—2r)c?) _,
1+4¢? p

2Q2uc+n—2r) _,
Xpp=P+—"——-——"= .
22 + 1+¢2

X1 =P+



5. DOMAINS OF FIFTH TYPE 115

The notation X = X;; and Y = Xoo will be used; thus ©7'AT0 = X @Y. The
above expressions of X and Y can be simplified as follows. We have

n—2r 2u — (n — 2r)c
C =
7 7

1+c2=2—

by (128), obtaining
2(—2pc+ (n—2r)c?)  2pe(—2p+ (n — 2r)c)

=2

1+4c2 2p— (n—2r)c He
2(2uc+n—2r)  2u(2uc+n —2r)
1+ ¢2  2u—(n—2r)c

Moreover
(2uc+n—2r)? = (n—2r)? +4p> > 0
by (129), and

2u — (n—2r)c)(2uc +n — 2r)

=4p®c+2u(n —2r) — (n — 2r)2uc® — (n — 2r)%c

n—2r

=4pPc+2u(n —2r) — (n —2r)2u(1 — c) — (n—2r)%

= c(4p’c+ (n —2r)2)
by (128). Therefore
2(2uc+n—2r) 21(2pc +n — 2r)?

1+¢2  (2p— (n—2r)c)(2uc +n — 2r)
_ 2u((n—2r) +4p%)  2u

c(4pPe+(n—2r)2) ¢’

It follows that
X =P —2ucp?
d
=H+sp*—(n—2r—1)p* o + (u* = 2uc)p 2 F (n —2r)s ,

2
y=py 2t
C

d 2
=H+s*p*—(n—2r—1)p " o + (1 + ?M)p_2 F(n—2r)s.

These operators are of the type of P in (1), and satisfy (72) because
(1= (n—2r = 1))* +4(u* - 2pc)
=4+ (n—2r)2 +4p® —4y/(n — 2r)2 + 42
=(2—V(n—2r?2+4p2)* >0
and

(1= (n—2r — 1) + 47 + 2

=44 (n—2r)% +4p® +4y/(n — 2r)2 + 4u2)

(n — 2r)2 + 4u2)?
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So, for X and Y, the constants (4) and (5) become
2—n+2r+(2—/(n—2r)2+4u2)
a =

: (130)

b:2—n+2r:|:(2+ (n—2r)2 +4p?) (131)
12— /(n—2r)2 +4u?)

o= 5 : (132)

o (2+ (n2— 2r)2 +4pu?) . (133)

Suppose that 0,7 > —1/2. By Corollary H, X and Y, with respective domains
P Sev.+ and p® Sey +, are essentially self-adjoint in L?(R, p" 2" "1 dp); the spectra
of their closures consist of the eigenvalues

(dk+2a+(1F1)(n—2r))s, (134)
(4k+2+2b+(1F1)(n—2r))s, (135)
with multiplicity one and corresponding normalized eigenfunctions X q.% and
Xs,b,7k» Tespectively, and the smooth cores of their closures are p® Sy, + and Pk Sev 4+
Since ﬁC is an orthogonal matrix, it defines a unitary isomorphism
LQ(RJ’_’pn—QT—l dp) @ LQ(R+,pn_2T_1 dp)
— L*(Ry, p" 21 dp) © L*(Ry, p" """ dp)
and we already know that
B=1@p ' : L*(Ry,p" >~ dp) ® L*(Ry, p" >~V dp)

N L2(R+,pn—27’—1 dp) @ LQ(R+7pn_2T+1 dp)
1

Vitce?
LY Ry, p" 2" dp) ® L*(Ry, p" ¥~ dp)
— L*(Ry, p" " 1dp) © L*(Ry, p" > dp) .
Therefore, when o, 7 > —1/2, the operator AF, with domain

O(p" Sev,t © P’ Sev,y) = {(p"0 — o’ cp* "+ p" ) | 6,9 € Sev v}, (136)

is essentially self-adjoint in

is a unitary isomorphism too. So © is a unitary isomorphism

L2(R+, pn—27'—1 dp) D LQ(R+7pn—27'+l dp)
= LX Ry, p" """ Hdp)a+ L*(Ry, p" "2 dp)dp A B, (137)
which is a Hilbert subspace of L2Q" (M, g); the spectrum of its closure consists of the

eigenvalues (134) and (135), with multiplicity one and corresponding normalized

eigenvectors
1

1
\/ﬁ G(Xs,a,a,ka 0) ) \/ﬁ @(O, XS,b,T,k,) s

respectively; and the smooth cores of its closure is (136).
The condition 7 > —1/2 only holds with the choice

(n —2r)2 +4u?
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in (133), which corresponds to the choice

b 4—n+2r+/(n—2r)2+4u?

2
in (131). With this choice, the eigenvalues (135) become
(

(4k+6:F(n—2r)+ n—27“)2+4,u2>s,

which are > 0 for all k.
Consider the choice

—n+2r ++/(n —2r)2 + 4u?
2

in (130), and, correspondingly,

—14+/(n—2r)2+44p? 1
o= > —

in (132). Then the eigenvalues (134) become
<4k F(n—=2r)++(n—2r)2+ 4u2) s,
which are > 0 for all k.
Now, consider the choice
4—n+2r—/(n—2r)2+4pu?
2

in (130), and therefore
3—/(n—2r)%2+4pu?
2
in (132). In this case, the condition o > —1/2 means that

w<2 and |n—2r| <2y4—pu?.

The eigenvalues (134) become

o =

(4k+42|2(n727')7\/(nf27")—2+4,u2)5.

For Af, (144) is:
e >0 for all k if and only if n — 2r <2 — p?/2, and
e =0 just when k=0 and n —2r =2 — p2/2.

For A7, (144) is:
e >0 for all k if and only if n — 2r > p?/2 — 2, and
e =0 just when k=0 and n — 2r = p?/2 — 2.

117

(138)

(139)

(140)

(141)

(142)

(143)

(144)

All of the above operators defined by AF, as well as their domains, will be said

to be of fifth type.






CHAPTER 15

Splitting of the Witten complex on a cone

1. Subcomplexes defined by domains of first and second types

Consider the notation of Sections 1 and 2 of Chapter 14. The following result
follows from Corollary 13.5.

LEMMA 15.1. For s > 0, df and §F define maps

dg, - dyri1
s,r— 00 8,7 0o s,T
0 I ¢ (RJr)’y C (RJr)dp/\’V ~= 0,
o
s,r—1 s,T s,r+1

which are given by

d
diT:%iSP’ 5§r:—%—(n—2r—1)p_lisp’

using to the canonical identities
C¥Ry)y=CF[R4)dp Ay =CF(Ry) .

According to Sections 1 and 2 of Chapter 14, v can be used to define the
following domains of first and second type:

n—1
Ei1=Sev,+7 for r< 5
n—3
’:,2 = p_n+2T+2 Sev,+ for r> 5
n+1
S;jl = pSev,+dp N7y for r< 5
- -1
5;*21 =p "TEHLS v dpny for r> r 5
The following is a direct consequence of Lemma 15.1.
LEMMA 15.2. For any s > 0, d¥ and 6F define maps
+ +
ds,r—l -~ r fs%'r N ra1 ds7r+1 N
0= I Vi i vyt Tt 0,
6s,r—1 6S,r 6s,r+1

. . -1 . . -1
where i =1 Zer”T, and i =2 Zfrz%.

REMARK 24. If n is odd, by Lemma 15.1 and (110), and since Sey,+ is contained
in L2(R, p?° dp) if and only if o > —1/2, we get

TEHE) ¢ POM) for r="0
1
e ¢ L) for r= "L

119
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This is compatible with Af 2 0 on &£, when r = 2-3 (Section 1 of Chapter 14),

and A7 #0on Sf/jl when r = 2L (Section 2 of Chapter 14).
REMARK 25. If n is even, notice that

o1 =& 9 =Sev+7 for r=

o33

8,:7{1 = 5;7‘;1 =pSev+dp Ny for r=

By Lemma 15.2, &, ; = &7, ® S,:jl is a subcomplex of length two of Q(M)
with d and 5%, even for s = 0, where i = 1 for r < "T’l, and i = 2 for r > ”Tfl
Moreover let £, o denote the dense subcomplex of £, ; defined by

£y = C(Ry) 7 = C°(Ry) ,

&5 =CRy)dp Ay = CP(Ry) -
The closure of £, ; (and &) in L?Q(M) is denoted by L?E,. We have
L&) = L*(Ry., p" ¥ Hdp)y = L*(Ry, p" >~ dp)
L2 = LRy, p" > Hdp)dp Ay = L*(Ry, p" "M dp) .
Assume now that s > 0. With the notation of Section 2 of Chapter 11, consider
the real version of the elliptic complex (E,d) determined by the constants s and

—or—1
h= (145)

2
and also its subcomplexes &, where i = 1if k > —1/2 (r < 251), and i = 2 if
k<1/2 (r>251).

PROPOSITION 15.3. There is a unitary isomorphism L?*E, — L*(E), which re-
stricts to isomorphisms of complezes up to a shift of degree, (E.0,d%) — (C°(E), d)
and (€, ;,dE) — (Ei,d), where i =1 if r < "771, and i =2 if r > an

PrROOF. The unitary isomorphism
p* ARy, p"~* " dp) — L*(Ry, dp)

induces a unitary isomorphism L?E, — L?(E), which restricts to an isomorphism
&0 — C§°(E). Furthermore

PrEL L = P Sev sV = P Sev s = ET
pﬁgjy”jl =pte Sev+-dp Ny = pl+n8ev,+ = 511
if r < 2=L and
— 2 )
pn ’1;,2 — pnfn+2r+2 ch,—i—’)/ = plfn ch,+ = gg ,
pngj;’-gl _ pnfn+2r+1 Sev,—i— v = pfm Sev,-‘,- = 521

if r > 21 By Lemma 15.1 and (71), we also have

K —K K d —K d —
prdT, p=0p (Ci[)iSp)p =dfp—fwlisw

which is the operator d of Section 2 of Chapter 11. (]
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COROLLARY 15.4. (i) If r # 251, then (£,,0,dE) has a unique Hilbert
complex extension in Lng whose smooth core is &,;, where i = 1 if
7“<"T_1, and i =2 if r > 5=,

(ii) If r = 251, then (€,,0,dE) has minimum and mazimum Hilbert complex

extensions in L?E., whose smooth cores are €5 and .1, respectively.
Proor. This follows from Propositions 11.4 and 15.3. ]

For each degree 7, we will choose one of the possible domains of first and second
type defined by ~, denoted by £7 and £, so that £, = £7 @£ is a subcomplex
of (Q(U),d¥) according to Lemma 15.2.

If n is even, there is only one choice of domains of first and second types by
Remark 25. Thus £ and 5;*1 have only one possible definition in this case.

If n is odd, there are two possible choices of domains of first and second types
just for the following values of 7:

5»:,1 = Sev,+ Y } for 1 — n—3
5:,‘,2 =p ! Sev,+7 2
Ei1=Sev,+7

;,2 = pSev,+ Y n—1
Et = pSey s dp Ny for r="5—
L = Sevrdp Ay
N = pSev s dp Ny } op n_ntl
ErGt = p? Sev,s dp Ay 2

By Remark 24 and Corollary 15.4, we choose

n—3
& =&, for r= —
1 n+1
5,:“ :5;’2 for r= 5

In order to get the minimum and maximum i.b.c. of (A TM*,d), according to
Corrollary 15.3, we choose

Egr = ¢gr 9

ol s . ~

if vyeH!.

r+1 _ er+1 min
57 - 57,2 }

gr _er }

vy 7,1 . ~

if veH,

r+1 _ er+1 max

g'y - 5%1

According to Corollary 15.4, the above choices of £, satisfy the following.

COROLLARY 15.5. (i) If r # 251, then (£,,0,dE) has a unique Hilbert
complex extension in LQEA,, whose smooth core is &,.
(ii) If r = 251, then (£,,0,dE) has di[fer;ent minimum and mazimum Hilbert
complex extensions in LQEW. If v € Huin/max, then &, is the smooth core
of the minimum/maximum Hilbert complex extension of (E,.0,dT).

Let (D, d;t’,y) denote the Hilbert complex extension of (€, 0, d¥) with core &,
let Aétry be the corresponding Laplacian, and let H;'f,y = H;t,:f @H:;j“ = ker A;‘f,y.
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The following result follows from Sections 1 and 2 of Chapter 14, Lemma 6.3 and
the choices made to define &,.

PROPOSITION 15.6. (i) (Dy,dZ,) is discrete.
(i) HE7tt =0, dimHI =1 if

1 ifn is even

r< %3 if n is odd andVEﬁfnin

”Tl if n is odd and’yeﬁr

max ?

and H;”WT = 0 otherwise.
(iii) Hy =0, dimH 7+ =1 4f

if n is even
> if nis odd and v € HI;,
L ~

% if n is odd and v € 'H},

max ?

S N3

r>

and H; 7t = 0 otherwise.
(iv) If ef € ’H;tﬁ with norm one for each s, and h is a bounded measurable
function on Ry with h(p) — 1 as p — 0, then (hef ef) — 1 as s — oo.

(v) All non-zero eigenvalues of AL, are in O(s) as s — oo.

2. Subomplexes defined by domains of third, fourth and fifth types

Consider the notation of Sections 3-5 of Chapter 14. The following result
follows from Corollary 13.5.

LEMMA 15.7. For s > 0, df and §F define maps

d§E,7'—2 00 f,r—l 0o 0o
0 — C>R4)p C¥Ry)a+C*(Ry)dp A B
65,7"—2 s,r—1
dsir s,r+1
- C®(Ry)dp ha === 0,
6577‘ 5s,r+1

which are given by

according to the canonical identities

C*R4)B=CTRy)dpha=C"(Ry),
C*Ry)a+ CP(Ry)dp AB=CT(Ry) & CF(Ry) .
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Consider only the choices of a given by the positive square roots in (117)
and (123) for domains of third and fourth types, and (140) for domains of fifth
type; the other choices of a are rejected because they are very restrictive on p and
r, and give rise to some negative eigenvalues. If these values of a are denoted by as,
a4 and a5 according to the types of domains, then a5 = a3 = a4 — 1, and therefore
the notation a5 = ag = a and a4 = a + 1 will be used. Recall also that we only
have the choice (138) for b, which equals a + 2. So we only consider the following
domains of third, fourth and fifth types defined by « and 5:

fr;a = p"Sev,+ B=p" Sev,+ »
Fild = p" T Sevpdpha=p" Sey
s=p" {(@—cp’)a+ (cp o+ p)dp NP | b € Sevy }
=" {(p—cp’b.cp o+ p¥) | 6,9 € Sevt } -

LEMMA 15.8. For any s > 0, d¥ and 6F define maps

+ + + +
s, r—2 r—1 ds,rfl - ds,r 41 ds 41
0 5 o F 5 — 0
5:|: @ (szl: > 6i @ 5:i:
s,r—2 s,r—1 s,r s,r+1

PROOF. Lemma 15.7 gives 6}(]—';2, ) = di(}"r“)
Observe that

a=cp, (146)
obtaining
cla+n—2r)=nu (147)
by (128). By Lemma 15.7, (146) and (147), for h € Sey 4,

(p*hB) = p" (uha+( + cup” 1isp) (h)dp/\ﬁ> , (148)
SE(p T thdp A a) = p® (( pd—p—z sp2> (h)a—up‘lhdp/\ﬁ) . (149)

The inclusion d¥ (For 1) F, 5 follows from (148) if we can find ¢, € Sev + such
that

¢ —cp*Y = ph, (150)
_ d _
oo+ pY = <dp+cup ! isp) (h) . (151)
Subtract ¢p~? times (150) from p~! times (151) to get
1 1 d
= ==
b= ra () ™,
which is well defined in Sey 4. Then

¢ = ph+ cp*y
by (150). These functions ¢ and ¢ satisfy (150) and (151).
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The inclusion 65 (F., %) C F7, 5 follows from (149) if we can find ¢,1) € Sev,+
such that

2 _ [ i_ﬁ 2
6= (~o g~ s ). (152)
cp o+ p=—pp'h. (153)

The sum (152) and cp times (153) gives

1 d 1+¢ 5
= —— —_) — — :I:
) 1+62<pdp Py sp)(h),

which belongs to Sey,+. The even extensions of h and ¢ to R, also denoted by h
and ¢, satisfy c#(0) = —uh(0), and therefore ph + c¢ € p? Sey. It follows that

¢ =p*(ph+co)

obtained from (153), is well defined in Sey +. These functions ¢ and 1 satisfy (152)
and (153).
For arbitrary ¢,% € Sev 4, let

C=p"((¢—cp™¥) a+ (cp~ "o+ pp) dp A D) . (154)
By Corollary 13.5, (146) and (147),

ds (¢) = p** <(p1 dip + S> (4)

dp
52(0) = p* (e[~ x5 (9)
s dp
d 2 +1
+(pd( ,quQ)iSPz)(@D))ﬂ’
P C
showing d ( ap) C }-2:%1 and 5?(-7:5,,6) - fila1~ H

By Lemma 15.8,
Fap=Fog ®@F,s0F. 1

is a subcomplex of length three of Q(M) with df and dF. Moreover let F, 50
denote the dense subcomplex of F, g defined by

Froo=C5R:) B =C(Ry)
FrHo = CPRy) dp Ao = CF(R,) ,
Fapo=Co Ry)a+C*(Ry)dp A B =C57(Ry) & C5°(Ry) -
The closure of F, g (and Fy, g,0) in L2Q(M) is denoted by L?F, 5. We have
DFL = IRe, "2 dp) B = TRy, 0" dp)
LPF = LRy, p" > dp)dp Aa = L*(Ry, p" >V dp)
L2FT = ARy, o2 dp) a4 LRy, "2 L dp) dp A
= L*(Ry, p" > dp) @ L2(Ry, p" 2"~V dp) .
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Assume now that s > 0. With the notation of Section 3 in Chapter 11, con-
sider the real version of the elliptic complex (F,d), as well as its subcomplex Fi,
determined by the constants s, ¢ and

SRR/ g v B |
k=t ("2T)+” >z (155)

5

By (129),
n—2r—1 p n-2r+1
= —_— = - . 156
Rt T c 2 (156)
PROPOSITION 15.9. There is a unitary isomorphism L*F, 3 — L*(F), which
restricts to isomorphisms of complezes up to a shift of degree, (Fp 5,d<) — (F1,d)
and (faﬁ,md;t) - (CgO(F),d)

PROOF. As an intermediate step, let

Fid =pFug =" Sev s FL =FiG =0 St
Aorl,ﬂ = @_1(}-;,5) =0 Sevt ©p" 2 Sevt
Fop=Fi@FL 30 F S, Fapo=TFapo
Lzﬁ;—ﬂl _ Lzﬁ(:j@l _ szg:s-ﬁl _ Lz(R%pnfzrfl dp) 7
L*F] 5= LRy, p" ¥ Ldp) @ LA(Ry, p" "1 dp) |

T Fr—1 T 41
L*Fop=LF 5 @ L°Fo g0 L*F1 Y .
Moreover let E: L*F, 3 — LQﬁaﬁ be the unitary isomorphism defined by

~ 1
:LQfT‘—l _ L2f‘1‘—1 ,
P o B At

and the identity map L2.7-"(’;+51 — L2.7?(’;+51. It restricts to isomorphisms F, g — .7?047[3

@71 . L2 (’;,ﬁ — L2ﬁ(275

and Fo 30 — .7?(1,5’0. Thus, by Lemma 15.8, (F,, 4, dT) induces via = a complex

at ~ gt ~ i ~ gt
0 s, r—2 }_;,,Bl s,r—1 f;ﬁ s fg:%l s,m+2 0.
By Lemma 15.7 and (71),
5 _ 1 -1 -1
ds,rfl - W © ds,rfl P
(D))
I+c2\—¢ p)\g, tsp
_ 1 cd% +(p—rc)p~tEesp (157)
Vit \ g+ (ep+)pttsp |’

7+ 1 +

S

Od
Ne m s,

o 1 (i +s - ) 1 —C
= 71 +762 dp P 1% Cpfl pfl

1 _ _
:ﬁci%—cup L+ sp —cd%—,up 1:chp> ) (158)
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Now, the unitary isomorphism

n—2r—1

p 2 LX(Ry,p" " hdp) — L*(Ry, dp)

induces a unitary isomorphism L2F, g — L2(F), which restricts to isomorphisms
Fop — F1and Fu g0 — C(F). Moreover, by (157), (158), (71) and (156),

n— 27 1 n—2r—1
2

d;tr 1 pi

1 noor_1 [C d—dp +(p—c)ptEesp\ _n-2rs
2
bt (en+1)ptEsp

_ 1 (5 +rp~" £ 5p)
VitE i~ (k+1)p £sp)

]. n—2r—1 d -1 _ n—=2r
:\/jp 2 (d—pfc,up =+ sp fcdpfup :chp) 2

142
1 d -1 d -1
=— |7+ —K +sp c(—5 —(k+1 Fs ),
m (dp P P ( dp ( )p p)
which are the operators dy and d; of Section 3 in Chapter 11. O

COROLLARY 15.10. (F, 5.0,dE) has a unique Hilbert complex extension in
L2F, 3, whose smooth core is Fp 5.

PRrOOF. This follows from Propositions 11.6 and 15.9. g

Let (D3, dsia ) denote the unique Hilbert complex extension of (Fa 3,0, d¥),
according to Corollary 15.10, and let A a,f denote the corresponding Laplacian.
The following result follows from Sectlons 3 5 of Chapter 14.

PRrROPOSITION 15.11. (i) (Dq ,57ds o) 18 discrete.

(ii) The eigenvalues of A:a s are positive and in O(s) as s — oo.

3. Splitting into subcomplexes

Let Biin/max,0 denote an orthonormal frame of ﬁmin /max consisting of homoge-
neous differential forms. For each positive eigenvalue p of Dyyin/max; 1€t Brin/max,u

be an orthonormal frame of Eu(f)min /max) consisting of differential forms o+ 3 like
in Section 2. Then let

d;t,min/max - @ S,y ® @ @ s,0,03 7
v Boatp

where y runs in B, /max,0, 4 Tuns in the positive spectrum of ﬁmin/max, and a+ 0
runs in Byin/max,.- Observe that the domain of d* is independent of s, and
therefore it is denoted by Diyin/max- Let also

mm/max @g’yo@@@f ,3,0 -+

Boa+p

$,min/max

_ gt
s,min/max ~ s,min/max"

PROPOSITION 15.12. D(d*

s mln/max)

= Dmln/max and d
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PrOOF. By Corollaries 15.5 and 15.10, Lemma 9.2 and (112), (Dyin/max, d5

s,min/max)
is the minimum/maximum Hilbert complex extension of (Guin /max; d¥). Then the
result easily follows from the following assertions.

CLamm 18. gmin/max c D(di

s,min/max)'

Cram 19. Qo(M) C Duin/max-

Let ditmin/max
(Q0(M), d¥) with respect to the product metric § = §+(dp)? on M = N xR,. With
the terminology of [11, p. 110], observe that (2(M),d¥) is the product complex of

the de Rham complex of N, (2(N),d), and the Witten deformation of the de Rham
complex of R, defined by the function §p?. Then, by [11, Lemma 3.6 and (2.38b)],

DY i /max) 2 C6°(Ry) D(dininmax) + C5° (R ) dp A D(dumin /mas)

D Gmin/max - (159)
On the other hand, for 0 < a < b < oo, let L2 ,Q(M, g) and L2 ,Q(M, j) denote
the Hilbert subspaces of L?Q(M,g) and L?Q(M, §), respectively, consisting of L?
differential forms supported in N X [a,b]. Since g and § are quasi-isometric on
N x (a’,b) for 0 < o’ <aand b <V < o0, it follows that

denote the minimum/maximum Hilbert complex extension of

DA pin/max) N LapQ2(M, 9) = DA i mmase) N L b UM, §) (160)
Moreover
gmin/max - U Lz,bQ(Ma g) . (161)
0<a<b<oo

Now Claim 18 follows from (159)—(161).
Finally, Claim 19 follows from

Qo(M) - @6%0 SY @ @ -7:(1,[1’,0 ) (162)

Boatp
where v, p and a+ 3 vary as above. The inclusion (162) can be proved as follows.
According to (106), any £ € Qo(M) can be written as & = &, + dp A &, where
0,61 € C° (R4, Qo(NN)). Then, by (112), we get functions fx ~, fr.r,0.8 € C(Ry),
for k,£ € {0,1}, defined by
Jra(p) = (&r(p), V)3 »
Te0,0,8(0) = &), B)g s fr1,0,8(p) = (&k(p), )z

and moreover

a=> (for v+ frydp A7)

vy
)0 (fo.0.088+ froesa+t froasdp AB+ fiiasdp Aa)
oot

in L2Q(M, g), where 7, u and « + 3 vary as above. Thus ¢ belongs to the space in
the right hand side of (162). O

REMARK 26. From (79), Remark 7, and Propositions 11.4, 11.6 and 15.12, it fol-
lows that, with the notation of Example 8.2, h(p) D“(dfmin/max) C Dm(dfmin/max)
for all h € C*°(R4) such that b’ € C§°(R4).
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Let HT

s,min/max

=@, H: = ker A*

s,min/max s,min/max"’

COROLLARY 15.13. (i) d= is discrete.

s,min/max
(i) Hoih = Hin(N) of

1 ifn is even

r < R
{23 if n is odd ,

3 I3

and H" = 0 otherwise.

min

(ii)) Mol = Hipax(N) if

2 —1 ifn iseven
r<qZ f )
n=s ifn is odd,

and H" = 0 otherwise.

(iv) Hopn™t = Hy, (N) if

n .

z if n is even
r>q2 f .

5= ifnis odd,

and H"™ = 0 otherwise.

min

(v) Ho = Hyo (N) if

max max
n . .
z if n is even
r> {i f

%1 ifn is odd

and Hi =0 otherwise.

(vi) If ef € 'Himin/max with norm one for each s, and h is a bounded mea-

surable function on Ry with h(p) — 1 as p — 0, then (hef ef) — 1 as

s7Ys
s — OQ.

(vil) Let0 < A% <t

s,min/max,0 — “'s,min/max,1
repeated according to their multiplicities. Given k € N, if )\fmin/max >0
for some s, then )\:mm/max’k € 0(s) as s — 0.

(viil) There is some > 0 such that lim inf, AT k=% >0.

s,min/max,k

< -+ be the eigenvalues of Ay min/maxs

ProOF. For v, u and a + 3 as above, the spectra of AT on &, and Fu g is
discrete by Propositions 15.6-(i) and 15.11-(i). Moreover the union of all of these
spectra has no accumulation points according to Sections 1-5 of Chapter 14 and
since Apin/max has a discrete spectrum. Then (i) follows by Proposition 15.12.

Now, properties (ii)—(vii) follow directly from Propositions 15.6, 15.11 and 15.12.

To prove (viii), let 0 < ;\min/max,o < ;\min/max,1 < --- denote the eigenval-

ues of Ay min/max, repeated according to their multiplicities, and let fimin/max,e =

\/S\mm/max’g for each ¢ € N. Since N satisfies Theorem I-(ii) with g, there is some
Co,0 > 0 such that

)‘min/max,é 2 Cj02£0~ (163)

for all £. Consider the counting function

msi,min/max()‘> =# { keN| )\imin/max’k - )\}
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for A > 0. From (113)—(116), (119), (124), (139), (141) and (163), and the choices
made in Chapter 15, it follows that there are some Cy,Cs, C3 > 0 such that

m;t,min/max(A) < # { (k7€) € N2 | Clk + 02 Hmin/max,£ + C(3 < )\}
< #{ (k,0) € N* | C1k + CoCol?’? + C5 < A}

po (A=Cs Gk
"\ Gl CaCy

. 2/60
()\ Cg Cll’ ) de

g#{(k,Z)GW

A—Cy
1

C
</
0

C2Co  C2Cy
G\ — C3)2+0)/0
(24 0)(C2Co)20C,
So ‘ﬁimin/max(/\) < CA2+0)/0 {61 some C' > 0 and all large enough ), giving (viii)
with 6 = 215' |

ExaMpPLE 15.14. Consider the notation of Examples 7.6, 7.12 and 12.1. On
the stratum S™~! x Ry of ¢(S™~1), the model rel-Morse function +1 p* and the
metric g; define the Witten’s perturbed operators d¥, 6%, Df and A¥. Since pg
and go respectively correspond to p and g; by can : S™7! x Ry — R™ \ {0}, it
follows that df, &, DF and AT respectively correspond to d3[,57 50%8, Dgfs, Aéﬁs
by can* : Q(R™ \ {0}) — Q(S™~! x Ry), and moreover

L2Q(R™, go) = L2Q(R™ \ {0},g0) —*"— L*QS" x Ry,qr)  (164)
is a unitary isomorphism. The extension by zero defines a canonical injection
Qo(R™\ {0}) — Qo(R™), whose composite with (can*)~! is an injective homomor-
phism of complexes, (Q0(S™™! xR, ), dF) — (Qo(R™), dis)‘ Thus the unique i.b.c.
of (NTR™*,d7,) in L2Q(R™, go) corresponds to di,,,. via (164).

If m > 2, then H™= (S™~1) = 0 for odd m. So (AT(S™~! x R,)*,d¥) has a
unique i.b.c. by Corollaries 15.5 and 15.10, and Proposition 15.12.

If m = 1, then Q(S%) = Q°(S%) = R?, and therefore, according to (106), (107)
and Corollary 13.5,

Q°(S° x Ry) = C(R,,R?) ,
QNS xRy) =dp ACP(Ry,R?) = C(Ry,R?),
dfzdipj:sp, 6}5—6%15;),
giving d¥ .+ dE . by Proposition 11.4-(i).

s, min 5,max






CHAPTER 16

Local model of the Witten’s perturbation

The local model of our version of Morse functions around their critical points
will be as follows. Let m+ € N, let L4+ be a compact Thom-Mather stratification,
and let M be a stratum in ¢(L). Thus, either M1 = Ny x R, for some stratum
Ny of Ly, or My is the vertex stratum of ¢(Ly). On the stratum M = R™+ x
R™- x M4 x M_ of the Thom-Mather stratification R+ x R™~ x ¢(Ly) x ¢(L_)
(for any choice of product Thom-Mather structure on ¢(L4) X ¢(L_)), consider an
adapted metric given as product of standard metrics on the Euclidean spaces R™+
and model adapted metrics on the strata M. Let ds denote the Witten’s perturbed
differential map on (M) induced by the model rel-Morse function 1(p% — p%)
(Remark 19-(iii)). Let Ay min/max be the Laplacian defined by dg min/max, and
Hs min/max = D, H;min/max = ker A, min/max- The following result is a direct
consequence of Example 12.1, Corollary 15.13 and Lemma 9.1.

COROLLARY 16.1. (1) dsmin/max 5 discrete.
(ll) IfM+ = N+ X R+ and M_ = N_ x R+, then

Z,min/max = @ Hr::irn/max(NJr) ® Hr:liin/max(Nf) ’

T4,

where (ry,r_) runs in the subset of 72 defined by (6)—(8).
(iii) If My is the vertex stratum of ¢(Ly) and M_ = N_ x Ry, then
T« Vi S

s,min/max min/max
r_

where r_ runs in the subset of Z defined by r =m_ +r_ + 1 and (8).
(iv) If My = Ny x Ry and M_ is the vertex stratum of ¢(Ly), then
g,min/max = Hr:1+in/max(N+) ’
T+

where T4 Tuns in the subset of Z defined by r =m_ +ry and (7).

(v) If My and M_ are the vertex strata of ¢(Ly) and c¢(L-), then we have
dim 7_[;min/max = 57"77”7 :

(vi) If es € Hs min/max With norm one for each s, and h is a bounded mea-
surable function on Ry with h(p) — 1 as p — 0, then (hef ef) — 1 as
§ — 00.

(Vll) Let 0 < As,mim/max,O < >\s7min/max,l < bethe Eigenvalues OfAs7min/max7
repeated according to their multiplicities. Given k € N, if g min/max,k > 0
for some s, then Ag min/max,kx € O(s) as s — oc.

(viii) There is some 0 > 0 such that iminfy A min/max,k E=?>0.
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REMARK 27. According to Example 15.14, except for the case m = 1 and d;s min,
the above local study of d iin/max could be simplified by using the homeomorphism
can x id : R™ x ¢(L) — ¢(S™71) x ¢(L) and an isomorphism ¢(S™ 1) x ¢(L) — ¢(L')
for some compact Thom-Mather stratification L’ (Section 1.3 of Chapter 7). This
would allow to consider only a quasi-isometry ¢(L') — ¢(L/, ) x ¢(L") and the model
rel-Morse function on M, x M’ for strata M’ of ¢(L’.). The factors R™+ could
be forgotten in this way.



CHAPTER 17
Spectral properties of A, /max

Here, we prove Theorem I. Consider the notation of that theorem: M be
a stratum with compact closure of a Thom-Mather stratification A, and ¢ is an
adapted metric on M. Let {(Oq,&,)} be a finite covering of M by charts of A. For
each a, we have £,(0,) = By X ¢, (L,), where B, is an open subset of R™ for
some m, € N, L, is a compact Thom-Mather stratification, and €, > 0. Then each
&, defines an open embedding M N O, into R™= x M, for some stratum M, of L,.
We have, either M, = N, x Ry for some stratum N, of L, or M, = {*,}, where
x4 18 the vertex of ¢(L,). If M, = N, xRy, then £,(MNO,) = By X Ny X (0,¢,). If
M, = {*4}, then £, (M NO,) = By X {xq} = B,. Thus every £,(M NO,) is, either
open in R™e or open in R™= x N, x R;. By shrinking {(O,, &,)} if necessary, we
can assume that each diffeomorphism &, : M N O, — &, (M NO,) is quasi-isometric
with respect to a model adapted metric on R™e x M,.

By Lemma 8.4, there is a smooth partition of unity {A,} on M subordinated
to the open covering {M NO,} such that each function |d)\,| is rel-locally bounded;
indeed, by shrinking {(O,,&,)} again if necessary, we can assume that each |d,\,|
is bounded. Also, by using Example 8.2, it is easy to construct another family
{Aa} C© C®(M) such that A\, and |d\,| are bounded, A\, = 1 on supp \,, and
supp Ay C M N O,. The existence of such families {\,} and {\,} is required to
apply Propositions 10.5 and 10.6.

Let d, s be the Witten’s perturbation of d, induced by the function f, = épa on
R™e x M,, where p, is the canonical function of R™= X ¢(L,). According to Corol-
lary 16.1-(i),(viii), each dy s min/max satisfies the properties stated in Theorem I,
and let A, s min/max denote the corresponding Laplacian.

By using Example 8.2 again, it is easy to see that there is some rel-admissible
function h, on R™a x M, such that h, = 0 on (M N O,) and h, = 1 on the
complement of some rel-compact neighborhood of £(M N O,) in R™ x M,. Let
da s and Aa s be the Witten’s perturbatlon of d, and A, induced by the function
fa = hafa- The functions |d, fa dofa| and |Hess fa — Hess f,| are uniformly
bounded, and therefore A(LS — A, s is a homomorphism with uniformly bounded
norm by (104). By the min-max principle (see e.g. [53, Theorem XIII.1]), we
get that cZa,s,mm /max Satisfies the properties stated in Theorem I. Then Theorem I
follows by Propositions 10.5 and 10.6.
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CHAPTER 18

Functions of the perturbed Laplacian on strata

The first ingredient of Theorem J is the following properties of the functional
calculus of the perturbed Laplacian on strata.

Let M be a stratum of a compact Thom-Mather stratification endowed with an
adapted metric, and let d and A be the de Rham derivative and Laplacian on M.
Let f be any rel-admissible function on M, and let ds and A be the corresponding
Witten’s perturbations of d and A. Since f is rel-admissible, for each s, A; — A is
a homomorphism with uniformly bounded norm by (104). Hence d; min/max defines
the same Sobolev spaces as dyin/max- Moreover the properties stated in Theorem I
can be extended to the perturbation d, imin/max by (104) and the min-max principle.

For any rapidly decreasing function ¢ on R, we easily get that ¢(Ag min/max)
is a Hilbert-Schmidt operator on L?Q(M) by the version of Theorem I-(ii) for
s min/max- 10 fact, (A, min/max) is @ trace class operator because ¢ can be given
as the product of two rapidly decreasing functions, |¢|*/? and sign(e) ||'/?, where
sign(6)(x) = sign(é(x)) € {£1} if 6(x) # 0.

The extension of Theorem I-(ii) t0 dy min/max also shows that ¢(Ag min/max) i
valued in W (din/max). However we do not have a “rel-Sobolev embedding theo-
rem” describing W (dpin/max); for instance, we do not know whether the elements
of W™ (dpmin/max) are uniformly bounded for m large enough (see Chapter 21). We
can only assert that W (dmin/max) C (M) by the usual elliptic regularity.

Like in the case of closed manifolds (see e.g. [54, Chapters 5 and 8]), it can
be easily proved that ¢(As min/max) can be given by a Schwartz kernel K, and
Tr (A min/max) €quals the integral of the pointwise trace of K on the diagonal.
But we do not know whether K is uniformly bounded by the indicated lack of a
“rel-Sobolev embedding theorem”.
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CHAPTER 19

Finite propagation speed of the wave equation on
strata

Let M be a stratum of a compact Thom-Mather stratification, g an adapted
metric on M, and f a rel-Morse function on M. Let ds, ds, Ds and Ag (s > 0)
be the corresponding Witten’s perturbed operators on (M), defined by f and
g. These operators make sense on complex valued differential forms as well as real
valued ones. Complex coefficients are needed to consider the induced wave equation

% Dy =0, (165)
where i = v/—1 and «a; € Q(M) depends smoothly on t € R. We may also consider
that (165) is satisfied only on some open subset of M.

If (165) holds on the whole of M, then, given a € D*(d; min/max), & usual
energy estimate shows the uniqueness of the solution of (165) with the initial con-
ditions ap = « (see e.g. [54, Proposition 7.4]). In this case the solution is given
by

ay = exp(itDs,min/rnax)a )
which belongs to D> (ds min/max) for all t.

It is known that compactly supported smooth solutions of (165) propagate at
finite speed (see e.g. [54, Proposition 7.20]). To prove Theorem J, we need a
version of that result for strata, stating this finite propagation speed towards/from
the rel-critical points of f with forms in D*(d, min/max). For that purpose, we
show first the corresponding result for the simple elliptic complexes of Sections 2
and 3 in Chapter 11.

Take a rel-Morse chart around each x € Critye(f), like in Definition 8.7, with
values in a stratum M, = R™=+ x R™=~ x M, y X M, _ of a product R™=+ x
R™= = x ¢(Ly +) X ¢(Ly, ), where either M, + = N, + x Ry, or M, 4 is the vertex
stratum of ¢(L; +). We can assume that the domains of these rel-Morse charts are
disjoint one another. Consider a model metric g, on each M.. For each p > 0,
let B, + , be the standard ball of radius p in R™=*. If M, , = N, x R} and
Myt =Ny xRy, let

Usp=DBat,p X By x Nyt x(0,p) x Ny x (0,p) C M, .

If M, 1 is the vertex stratum, remove the factor N, t x (0, p) from the definition
of Ug,, (or change it by the corresponding vertex stratum). Let d;, ., d;, o, D}, , and

Al ; denote Witten’s perturbed operators on (M) defined by g, and the model
rel-Morse function (Chapter 16). The corresponding wave equation is

s =0, (166)
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with a; € Q(M]) depending smoothly on ¢t € R. By Propositions 15.3, 15.9
and 15.12, the following result clearly boils down to the case of Proposition 11.7.
ProOPOSITION 19.1. For 0 < a < b, suppose that oy € Dw(déys’min/max), de-
pending smoothly on t € R, satisfies (166) on Uy . The following properties hold:
(i) Ifsuppag C M, \ Uy q, then supp oy C My \ Uy q—jy for 0 < |t] < a.
(ii) If supp ag C Uy.q, then supp ay C m for 0 < |t| <b—a.

There is some py > 0 such that each U, ,, is contained in the image of the
rel-Morse chart centered at x, and moreover these charts are disjoint one another.
We will identify each U, ,, with an open subset of M via the rel-Morse chart.
According to Example 7.11, we can choose g so that its restriction to each Uy ,, is
identified to the restriction of g,.

PROPOSITION 19.2. Let 0 < a < b < po and a € L?*Q(M). The following
properties hold for a; = exp(it Dy min/max)
(i) If suppa C M \ Uz q, then suppay C M \ Uy o—p for 0 < [t| < a.
(ii) Ifsuppa C Uygq, then suppay C Uy qpp) for 0 < [t| < b — a.

PROOF. Since exp(it Dy min/max) 15 bounded, we can take o € D> (dy min/max)>
and therefore a; € D™ (d min/max) for all t. According to Remark 26, there is some
h € C°°(M) such that supph C U, p,, h = 1 on Uy p, and hD*(ds min/max) C
D> (ds,min/max). Then ha; satisfies (166) on U, and belongs to DOO(d;’min/maX .
So, by Proposition 19.1,

e hay =0o0n U,y for 0 < [t| < aif suppa C M\ Ug 4, and
e supp hay C Uy qqpy) for 0 < [t| <b—aif suppa C Uy 4.
Thus the result follows because h =1 on Uy . [l




CHAPTER 20

Morse inequalities on strata

Here, we prove Theorem J. Consider the notation of Chapter 19.

1. Analytic inequalities

By (101), we have the isomorphism of complexes e*/ : (Qo(M), ds) — (Q(M), d).
Since f is bounded, we also have the quasi-isometric isomorphism e*/ : L2Q(M) —
L?Q(M). So we obtain the isomorphism of Hilbert complexes

GSf : (D(dS,min/maX)7 dS,min/max) - (D(dmin/max)a dmin/max) ;
and therefore
rrnin/max =dim H" (D(ds,min/max)7 ds,min/max) (167)

for all s > 0. In fact, since |df| is bounded, it also follows from (101) that

D(ds,min/max) = D(dmin/max) ) ds,min/max = dmin/max +s df A
Thus
eSf D(dmin/max) = D(dmin/max) .
Let ¢ be a smooth rapidly decreasing function on R with ¢(0) = 1. Then the
operator ¢(Ag min/max) is of trace class (Chapter 18), and set

H;,min/max = Tr(qs(AS,min/maxm)) .

By (167), the following result follows with the obvious adaptation of the proof of
[64, Proposition 14.3].

ProrosITION 20.1. We have the inequalities
0
<

0
min/max — /‘}’min/max ’

1 0 1
min/max ﬁmin/max < Hs min/max — Ms,min/max

2 1 0 2 1 0
min/max Bmin/max + ﬁmin/max < H’s,min/max - /’Ls,min/max + /’Ls,min/max ’

etc., and the equality
Xmin/max = Z(fl)r N‘:,min/max :

-

PROOF. The proof is reproduced for the reader’s convenience. By Theorem I,
Apin/max,r 18 discrete with k(irnel of dimension 3 . fmax- Then the~re is some non-
negative rapidly decreasing ¢ € C°°(R) such that ¢(0) = 1 and ¢(A) = 0 for all
non-zero eigenvalue of Ay, /max,r; there is no loss of generality in assuming also

that ¢ < ¢. Then 3 = Tr(¢(Apmin/max,r))s S0 that

r
min/max

uglin/max - ﬁ;in/max = TI'((¢ - J))(Amin/maxm)) . (168)
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We may write (¢ — @)(A) = Mp2()), where ¢ € C®(R) is non-negative and
rapidly decreasing, and vanishes at zero, obtaining
(d) - QZ) (Amin/max,'r') = Amin/max,r 1/}2 (Amin/max,'r') . (169)
Then

Tt (drnin /ma,r—1 Oma/minr—1 ¥ (Amin/masx.r))
=Tr (¢(Amin/max,r) dmin/max,rfl 6max/min,r71 ¢(Amin/max,r))
=Tr (5max/min,r—1 ¢2 (Amin/max,r) dmin/max,r—l)
= Tr (Smax/min,r—1 Gmin/max,r—1 ¥ (Amin/max,r—1)) -
By (168), (169) and (81), it follows that

(/’erin/max - mln/mdx) ( mln/max - ;?rll/max) + (’LL:II_II’?/I’II&X - rTninQ/max) -
Tr (dmin/max7r—1 5max/min,r—1 ¢2(Amin/max,7‘))

Tr ((dmin/max,r w(Amin/max,r))* dmin/max,r QZJ(Amin/max,r))
0.

%

For r = n, this is an equality. [l

2. Null contribution away from the critical points
y (104) and because |df| and | Hess f| are bounded on M, we have

D(As,min/max) = D(Amin/max) ) (170)
As,min/max = Amin/max +s Hessf + 32 |df|2 (171)

for all s > 0.

For p < po, let U, = |, Ug,p, with 2 running in Crit,e(f). Fix some p; > 0
such that 3p; < pg. Let & and $ be the Hilbert subspaces of L2Q(M) consisting
of forms essentially supported in M \ U,, and M \ Us,,, respectively. It follows
from (170) and (171) that there is some C > 0 such that!

As,min/max > Amin/max =+ 032 on &N D(Amin/max) (172)

if s is large enough.

Let h be a rel-admissible function on M such that A < 0, h =1 on U,, and
h =0 on M\ Us,, (see Example 8.2). Then T yin/max = Qs min/max + hC's?,
with domain D(Zmin/max), is essentially self-adjoint in L2Q(M) with a discrete
spectrum, and moreover

T@,min/max > Amin/max + 082 (173)

for s is large enough by (172).
Fix some? ¢ € S, such that ¢ > 0, #(0) = 1 and supp ¢ C [—p1, p1], and let
Y € S such that ¢(x) = 1)(z?). By using Proposition 19.2-(i), the argument of the

1Recall that, for symmetric operators S and 7' in a Hilbert space, with the same domain D,
it is said that S < T if (Su,u) < (Tu,u) for all u € D.

2The Schwartz functions with compactly supported Fourier transform are characterized by
the Paley-Wiener-Schwartz theorem (see e.g. [36, Theorem 7.3.1]); they form a dense subalgebra
of S, which is invariant by linear changes of variables.
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first part of the proof of [54, Lemma 14.6] can be obviously adapted to show the
following.

LEMMA 20.2. 1/)(Asmni]ﬂ/m'o\x) = /l/}(TSJI]iH/maX) on $).
PRrROOF. This proof is also reproduced for the reader’s convenience. For a €
D (Amin/max) supported in M\ Us,, , consider the time-dependent differential form

1. ,
ap = COS(tDs,min/max)a — 5 (enDs.min/max + e_ltDs,min/max) o

in D*°(Amin/max)- It is a solution of the differential equation
82
ot
with initial conditions cg = a and &g = 0; in fact, it is the unique solution, as one
can easily check by verifying that the “energy”

51+

+A Qp =

A s, O[t>

is preserved. By Proposition 19.2-(i), a; is supported on M \ U, if |t| < p1, and
therefore Aoy = T min/max@¢. Thus oy for [t| < p; is also the unique solution to
the equation
820415
W + Ts,min/maxat =0
with the same initial conditions. So a; = cos(ty/Ts min/max) -
Now, ¢ has support in [—p1, p1] and is even (since ¢ is). Therefore
w(As,min/max)a = ¢(Ds,min/max)a

1 P1 . n
_ 1 ettDs,min/max ¢, ¢(t) dt

P1

N
3

%>

( ) COS( s min/max)a dt

()O[tdt

" 000) €05 (14T e v
U

s mln/max)a .

hc\
‘&>

I

(=)

Then the result follows because D (Apin /max) N $ is dense in §. O

Let I1 : L2Q(M) — $ denote the orthogonal projection. According to Chap-
ter 18, ¥(Ag min/max) is of trace class for all s > 0. Then the self-adjoint operator
9 (Ag min/max) I is also of trace class (see e.g. [54, Proposition 8.8]).

LEMMA 20.3. Tr(IT9(As min/max) ) — 0 as s — o0o.
PROOF. Let
0< )\min/max,O < )\min/max,l <---, 0< As,min/max,o < )‘s,min/max,l <

be the eigenvalues of Apin/max and T min/max, respectively, repeated according to
their multiplicities. By (173) and the min-max principle, we have

2
As,min/max,k‘ > )‘min/max,k +Cs
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for s large enough. So

Tr(’(/}(Ts,min/maX)) = Z '(/)()‘s,min/max,k) S Z w()‘min/max,k + 052)
k k

for s large enough, giving Tr(¢)(Ts min/max)) — 0 as s — oo since 9 is rapidly
decreasing. Then the result follows because

Tr(Hw(As,min/maX) H) = Tr(H’(/J(Ts,min/maX) H) < Tr(w(Ts,min/maX))
by Lemma 20.2. O

3. Contribution from the rel-critical points
The following is a direct consequence of Corollary 16.1.

COROLLARY 20.4. If h is a bounded measurable function on Ry such that

h(p) — 1 as p — 0, then
lim Tf(h(p) (b( ib,s,min/max,r)) = lim rI\r(b(A;,s,min/max,r) = V;,min/max .

For each 2 € Critye(f), let $, C L2Q(M) be the Hilbert subspace of differ-
ential forms supported in Uy 2,,; it can be also considered as a Hilbert subspace
of LZQ(M)) since g and g, have identical restrictions to U, ,,. Moreover A, and
A, ; can be identified on differential forms supported in U, ,,. By using Proposi-
tion 19.2-(ii), the argument of Lemma 20.2 can be obviously adapted to show the
following.

LEMMA 20.5. ¢(Ag min/max) = G(A] ) on 9, for all x € Critya(f).

x,s,min/max

For each x € Crity(f), let II, : L2Q(M) — $, and II, : L2Q(M.) — 9,
denote the orthogonal projections. Since the subspaces $), are orthogonal to each
other, IT:= " I, : L*Q(M) — § :=)__ 9, is the orthogonal projection.

LEMMA 20.6. Tr(IT ¢ (A min/mas.r) 1) — V7

min/max as § — 0.

PrOOF. By Corollary 20.4 and Lemma 20.5, and because I, is the multipli-
cation operator by the characteristic function of U, in M,
lim Tl‘(ﬁ ¢(As,min/max,7') ﬁ) = lim Z Tr(ﬁr d’(As,min/max,r) ﬁx)

§—00

2€Critrer ()

= lim Z TI‘(H; ¢( ;;,s,min/max,r) H;c)

§— 00

z€Crityer (f)

_ § r T
- Vx,min/max - Vmin/max .
zECrityel (f)

Now,
lim H(‘b(As,min/maX,T)) = ngin/max

S§— 00
by Lemmas 20.3 and 20.6, and because II + Il = 1, showing Theorem J by Propo-
sition 20.1.



CHAPTER 21

Remark on the Sobolev spaces on strata

Our version of the Sobolev spaces on strata, W™ (dmin/max), may depend on
the chosen adapted metric; thus there is no “rel-version” of the elliptic estimate.
By taking local charts and arguing like in Chapter 17, it is enough to check this
assertion for the perturbed local models d;t’min Jmax’

With the notation of Section 1 in Chapter 14, consider the case where n is odd,
r =21 and a = 0; thus ¢ = 0. We have xoy € W>(d* ) with the metric

2 s,min/max
g. Let ¢’ be another adapted metric on N such that A’ v # 0, and consider the
corresponding adapted metric ¢’ = p=2§ + dp® on M. Let A’ be the laplacian on
Q(N) defined by §’, A’ the Laplacian on Q(M) defined by ¢’, and A’* the Witten’s
perturbation of A’ induced by the function +£3p? Let (, J” and (, )’ denote the
scalar products of L2Q(N,§’) and L?Q(M, g’), respectively, and let || || denote
the norm defined by ( , /. By Corollary 13.7, we have A’* = p~2A’ + H F 5 on
C*(R4)~. Then

(ATF(x07), x07) = (A, 7Y / P23 dp+ |71 F 1)s = 0
0

according to (110) and Section 1 of Chapter 14, and because xo(p) = V2pge=sr’/?
is bounded away from zero for 0 < p < 1. So xoy &€ W (d;tmin/max) with the metric
+

g', obtaining different spaces W*(d . Jmax
The above observation is related with the following problem.

) by using g and ¢’.

PROBLEM 21.1. Let M be a stratum of an arbitrary compact stratification
endowed with an adapted metric, and let L'Q(M) denote the Banach space of uni-
formly bounded measurable differential forms on M. Is there a continuous inclusion
of W (dmin/max) into L'Q(M) for m large enough?

For the perturbation P of harmonic oscillator indicated in Chapter 5, the cor-
responding version of this problem has an affirmative answer when a > 0 (Corol-
lary H-(iii)). If the spaces W™ (diin/max) Were independent of the adapted metric,
we could give an affirmative answer to Problem 21.1 by using the local arguments
of this chapter and induction. An affirmative solution of Problem 21.1 would allow
to adapt the nice arguments of [54, Lemma 14.6] to show a stronger version of
Lemma 20.3: the Schwartz kernel of 1)(Ag min/max) Would converge uniformly to
zero on (M \ Usp,) x (M \ Uszp, ).
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Conclusion

The main goal of the thesis was to prove a version of Morse inequalities for
the minimum and maximum ideal boundary conditions of the de Rham complex
on strata endowed with adapted metrics, taken in compact Thom-Mather strati-
fications. The analytic method of Witten was used, involving his perturbation of
the de Rham complex induced by our version of Morse functions on strata. The
cohomology of this minimum ideal boundary condition is isomorphic to the inter-
section homology with lower middle perversity; there are analogous isomorphisms
with other types of adapted metrics and other perversities.

Several new features have shown up in this work. First, the local analysis
around our version of critical points was reduced to the study of an operator related
to the so called Dunkl harmonic oscillator, which was recently very much used in
Quantum Mechanics to describe the interaction among several particles. This led
us to prove eigenfunction estimates and embedding results for the Dunkl harmonic
oscillator on the line, which have their own interest.

Second, it turns out that, surprisingly, the Sobolev spaces defined by the per-
turbed Laplacian depend on the choice of the metric, and therefore the usual way
to prove Sobolev inequalities does not work, even though they could be true. Be-
cause of this lack of Sobolev inequalities, some of the arguments of Witten’s method
cannot be made. Thus new types of arguments were produced to solve that prob-
lem, mainly using certain weak version of the Weyl’s assymptotic formula. This
formula is proved first by showing that it has a local character and holds for the
local models.

Our Morse inequalities on strata seem to be new. Their expressions are a priori
different from those of the Morse inequalities of Goresky-MacPherson, which involve
intersection homology with lower middle perversity on complex analytic varieties
with Whitney stratifications. Also, our version of Morse functions is different from
those of U. Luwig, who studied Witten’s perturbation for the special case of con-
formally conic manifolds. We hope there will be future applications, specially when
we consider functions canonically associated to geometric or physical situations.

In particular, our version of Morse inequalities applies to the case of a smooth
action of a compact Lie group G on a closed manifold M, and functions on the
orbit type strata of G\M induced by invariant Morse-Bott functions on M whose
critical manifolds are orbits. This provides a rich family of examples.

Several open problems emerge from our work: a “rel-Morse lemma’”, a “rel-
strong C'*° topology” where the rel-Morse functions should form a dense subset,
a “rel-Sobolev lemma”, a version with “rel-Morse-Bott functions” , etc. But the
main one is the possible generalization to other types of adapted metrics. We hope
that even completely new types of adapted metrics could be tackled, which could
correspond to generalizations of intersection homology still to be defined, whose
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perversities would be a sequence of functions instead of naturals. This would require
a generalization of our results on the Dunkl harmonic oscillator to other kind of
perturbations of the harmonic oscillator, which seem to be perfectly possible.



Resumen

El principal objetivo de la tesis es usar el método de la perturbacion de Wit-
ten para probar una versién de las desigualdades de Morse para la condicién ideal
de frontera minima y maxima del complejo de de Rham en estratos, dotados con
métricas adaptadas, donde se consideran estratificaciones de Thom-Mather com-
pactas. Para lograrlo, se estudian primero estimaciones de autofunciones y resul-
tados de embebimiento para el oscilador armoénico de Dunkl en la recta, que se
generalizan a otros operadores en Ry. El estudio de estos operadores es el ingre-
diente clave en nuestro andlisis local de la perturbacion de Witten.

Asi, esta tesis tiene dos partes principales, Partes 1 y 2. La primera esta
dedicada al estudio de estimaciones de autofunciones y resultados de embebimiento
para el oscilador harmoénico de Dunkl y operadores relacionados. La segunda aborda
el estudio de la perturbacién de Witten en estratos, en donde se usa la primera parte.

Este trabajo aparece en los preprints [1, 2].

Pasamos a comentar los capitulos por separado y enunciar sus resultados prin-
cipales.

Estimaciones de autofunciones y teoremas de embebimiento

El operador de Dunkl T, en C*°(R), dependiendo de un pardmetro o > —1/2,
es la perturbacién de la derivada usual que se puede definir como T, = % en
funciones pares y T, = % + 20% en funciones impares. Este tipo de operador, més
generalmente en R”, fue introducido por C.F. Dunkl [21, 22, 23, 24, 25]. Dio
lugar a lo que ahora se denomina teorfa de Dunkl (véase el panorama presentado en
[67]). Este drea tuvo un gran desarrollo en los tltimos afos, principalmente debido
a sus aplicaciones en modelos cudnticos de Calogero-Moser-Sutherland (véase por
ejemplo [10, 52, 37, 38, 61, 3, 4]). En particular, el oscilador arménico de Dunkl

[55, 26, 50, 49] es L, = —T2+sx?, dependiendo de s > 0; es decir, se define usando

(e . ’ . 2
T, en vez de d/dx en la expresion del oscilador arménico usual, H = —# + s22.
Por otra parte, sea pi la sucesion de polinomios ortogonales para la medida
2 . . . . ..
e~ |x|?? dx, considerados con norma uno y coeficiente principal positivo. Salvo

normalizacién, éstos son los polinomios de Hermite generalizados [59, p. 380, Prob-
lema 25]; véase también [16, 20, 27, 17, 55, 56]. Denotemos por xj r < T k—1 <

+ < 7z, las raices de cada py; en particular, wj /o es la raiz positiva mds
pequena si k es par. Las correspondientes funciones de Hermite generalizadas son
b = pre /2.

Se sabe que L, con dominio el espacio de Schwartz S = S(R), es esencialmente
auto-adjunto en L?(R, |z|?? dr). Ademaés el espectro de su extensiéon autoadjunta,
denotada por L, estd formada por los autovalores (2k + 1 + 20)s (k € N), cuyas
autofunciones correspondientes son las funciones ¢y.
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Demostramos estimaciones asintoticas de las funciones ¢y segin k — oo, que
son usadas para probar teoremas de embebimiento, y estos resultados se extienden
a otras perturbaciones relacionadas de H. Aunque consideramos sdélo el oscilador
armoénico de Dunkl en la recta para empezar, este trabajo es mas dificil que en el
caso de H, y tiene algunos aspectos nuevos. Podria dar también una indicacién de
cémo proceder en dimensiones mayores.

Para conseguir estimaciones uniformes, se consideran las funciones & = |z|7 ¢y
en vez de ¢,. Cumplen la ecuacién & + ¢x&r = 0, donde g, = (2k + 1+ 20)s —
s222 — Gpa—2 con &), = (o — (=1)%). Sea I, = ¢ *(R,.) (la regién de oscilacién),
que es de la forma: (—by,—ay) U (ag,bg) si g > 0 (para k > 0), (—bg,by) si
gk = 0, 0 (=bx,0) U (0,by) si 6, < 0, donde by, > ap > 0 con b, € O(k'/?) y
ar € O(k~1/2) cuando k — oo. Si &) > 0, entonces sea jk = fk Cuando 6 <0y
k es suficientemente grande, la ecuacién g (b) = 47 /b? tiene dos soluciones positivas,
bey < be._, con by € O(k~Y/2). Entonces sea Jy = (—by, —bg.+] U [br.+,bx). La
primera estimacion importante que se demuestra en la Parte 1 es la siguiente.

TEOREMA A. Ezisten C,C’,C" > 0, dependiendo de o y s, tal que, para k > 1:

(i) & (z) < C/+/qr(x) para todo z € Ji ;
(ii) si k es impar o o >0, entonces £ (x) < C'k~Y/% para todo x € R ; y,
(iii) si k es par y o <0, entonces £ (z) < C"k~Y/6 si|x| > Th /2

En el caso del Teorema A-(iii), la estimacién de & no se puede extender a
R\ {0} porque estas funciones no estdn acotadas cerca de cero. Por tanto alguna
condicién del tipo |z| > x /2 debe ser asumida; el significado de esta condicién
se clarifica indicando que wy, /2 € O(k*1/2) cuando k — oco. Este punto débil es
complementado por el resultado siguiente.

TEOREMA B. Supongamos que o < 0. Eziste algin C" > 0, dependiendo de o
y s, tal que ¢2(z) < C" para todo k par y x € R.

El siguiente teorema afirma que el tipo de estimaciones del Teorema A-(ii),(iii)
son Optimas.

TEOREMA C. Euzxisten C’(IV),C(V) > 0, dependiendo de o y s, tal que, para
k>1:
(1) maxXgeRr 513(1:) > O(Iv)kfl/(i; Y,

(ii) stk es par y o <0, entonces max|y|>z, , , & (z) > CME=1/6,

Para demostrar los Teoremas A—C, aplicamos el método que Bonan-Clark han
usado con H [6]. Las estimaciones se cumplen con & en vez de ¢ porque el método
se puede aplicar a la conjugacién K, = |z|° L, |z|~7. Este método tiene dos pasos:
primero, se estima la distancia de cualquier punto = en una regién de oscilacién a
alguna raiz xy ;, y, segundo, el valor de &(x) se estima usando |z — x;|. Estos
cdlculos para K, son mucho més complicados que en [6]; de hecho, se consideran
varios casos distintos, algunos con diferencias significativas; por ejemplo, algunas
raices zj, ; pueden estar fuera de la regién de oscilacién I, &, v las funciones & pueden
no estar acotadas, segun se ha dicho.

La distribucién asintética de las raices z; segin k& — oo también tiene una
interpretacién como medida muy conocida [28, 62, 63]; especialmente, los poli-
nomios de Hermite generalizados se consideran en [62, Seccién 4]. Sin embargo la
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convergencia débil de medidas considerada en esas publicaciones no parece aportar
la aproximacién asintética de las raices necesaria en el primer paso.

Para cada m € N, sea 8™ el espacio de Banach de funciones ¢ € C™(R) con
sup, [2°¢pV) ()| < oo para i+ j < m; por tanto S = (), S™ con la correspondiente
topologia de Fréchet. Por otra parte, para cada ntmero real m > 0, sea W la
versién del espacio de Sobolev obtenido como complecién de Hilbert de S respecto
del producto escalar definido por (¢,¥)wm = ((1 + Ls)™$,1),, donde ( , ), de-
nota el producto escalar de L*(R, |z|?? dz). Sea también W° = (0, W con la
correspondiente topologia de Fréchet. El subindice ev/odd se anade a cualquier
espacio de funciones en R para indicar su subespacio de funciones pares/impares.
Se demuestran los teoremas de embebimiento siguientes en la Parte 1; el segundo
es una versién del teorema de embebimiento de Sobolev.

M ! . .
TEOREMA D. Para cada m > 0, Sev}"éa‘z/(’dd C W;?ev/odd continuamente si
meN,m' —m>1/2,y

iy ={3’2”'+7Z'f01([a1+3)+w sia 20 ym' es par
m/’,ev/odd 5m’

5 sio<0ym espar,

Mo = Sm;l + m;fl [c]l([o]+3)+ [o] sioc>0ym' esimpar
’ sio<0ym' esimpar,

3m/ 41 | m’4+1 [0]([o] +3)+ [o] sioc>0ym' esimpar

) , .
S sio <0 ym' es impar.

TrEOREMA E. Para todo m € N, W* C 8™ continuamente si

4+ 1[ol([e]+1) sioc>0
4 sio<O0.

m —m >

Ademds W 89, continuamente si o < 0 ym' > 2.

o,ev

COROLARIO F. § = W2° como espacios de Fréchet.

En otras palabras, Corolario F afirma que un elemento ¢ € L?(R, |z|?? dx) est4
en S siy sélo si los “coeficientes de Fourier” (¢, ¢r), son de decrecimiento rdpido
en k. Esto también significa que S = (), D(L™) (el “core” diferenciable’ D> (L™))
porque la sucesién de autovalores de £, es de orden O(k) cuando k — oo.

Introducimos una versién perturbada 87 de cada 8™ (Capitulo 3), cuya de-

d

finicién involucra a T, en vez de - y estd inspirada por los Teoremas A y B.

Cumplen resultados de embebimiento mucho més simples (Capitulo 4): S;”, cwr
sim' —m > 1/2, y W c 8™ si m’ —m > 1. La demostracién del segundo
embebimiento usa las estimaciones de los Teoremas A y B. Aunque S =(),, SY,
las relaciones de inclusién entre los espacios S' y 8™ son complicadas, lo que
motiva la complejidad de los Teoremas D y E.

1Recuérdese que un “core” de un operador cerrado densamente definido 7" entre espacios de
Hilbert es cualquier subespacio de su dominio D(T") que es denso con la norma de la grafica. Si
T es auto-adjunto, entonces D™ (T) = (,»; D(T*) es un “core” de T, que se llama su “core”

diferenciable [11].
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A continuacidn, consideramos otras perturbaciones de H en R, (Capitulo 5).
Sea Seyv,v el espacio de restricciones de funciones de Schwartz pares a algun abierto
U,y sea ¢pu = ¢r|lu. La notacion Sev 4+ y ¢+ se usa si U =R,.

TEOREMA G. Sea P = H — 2f1% + fa, donde f; € CY(U) y fo € C(U) para
algin subconjunto abierto U C Ry de medida de Lebesque completa. Asumimos
que fo = oo — )x=2 — f2 — f para algin 0 > —1/2. Sea h = x°e~ 1, donde
Fy € C%(U) es una primitiva de fi. Entonces se cumplen las siguientes propiedades:

(i) P, con dominio hSey v, es esencialmente auto-adjunto en L?(R, e?™ dx);

(ii) el espectro de su extension auto-adjunta, denotada por P, estd formado
por los autovalores (4k + 1+ 20)s (k € N) con multiplicidad uno y auto-
funciones normalizadas \/ih(ﬁgk)U; Yy

(iii) D®(P) = hSev.ur-

Este teorema se deduce mostrando que la condicién enunciada sobre f; y fo
caracteriza los casos en los que P se puede obtener con el siguiente proceso: primero
restringiendo L, a funciones pares, después restringiendo a U, y finalmente conju-
gando por h. El término de P con % se puede quitar conjugando con el producto
de una funcién positiva, obteniendo el operador H + o(o — 1)z~ 2.

Se dan varios ejemplos de ese tipo de operador P. Por ejemplo, se obtiene lo

siguiente.

COROLARIO H. Sea P = H — 20136_1% + cox™2 con c1,co € R. Si hay algin
a €R tal que a®> + (2¢c; —1)a—ca =0 yo:=a+c; > —1/2, entonces:

(i) P, con dominio % Sey 4, €s esencialmente auto-adjunto en L* (R, 2% dx);

(ii) el espectro de su extension auto-adjunta, denotada por P, estd formada
por los auto-valores (4k + 14 20)s (k € N) con multiplicidad uno y auto-
funciones normalizadas \/ixa(ka—,Jr; Yy

(iif) D*(P) = 2° Sev +-

En el Corolario H, para algunos c1, co € R, hay dos valores de a cumpliendo las
condiciones enunciadas, obteniendo dos operadores auto-adjuntos distintos definidos
por P en espacios de Hilbert diferentes. Por ejemplo, el oscilador arménico de Dunkl
L, puede definir operadores auto-adjuntos incluso cuando o < —1/2.

El Corolario H se aplica para probar nuestras desigualdades de Morse en es-
tratos de estratificaciones de Thom-Mather compactas con métricas adaptadas.

Perturbacién de Witten en estratos

Un complejo de Hilbert [11] es un complejo diferencial dado por un operador
cerrado d definido densamente en un espacio de Hilbert separable graduado $. El
correspondiente Laplaciano A = dd* + d*d es un operador auto-adjunto en $).
Se dice que d es discreto cuando A tiene un espectro discreto?; en particular, su
homologia es de dimension finita por una versién de la descomposicién de Hodge.

Sea (Q0(M), d) el complejo de de Rham con soporte compacto de una variedad
riemanniana M. Sus extensiones como complejos de Hilbert en L2Q(M) (el espacio
de Hilbert graduado de formas diferenciales con cuadrado integrable) se llaman
condiciones ideales de frontera (c.i.f.). Hay una c.i.f. minima, dy;, = d, y una c.i.f.

2Recuérdese que un operador auto-adjunto tiene un espectro discreto cuando no hay espectro
esencial; es decir, el espectro estd formado por autovalores con multiplicidad finita sin puntos de
acumulacién.



PERTURBACION DE WITTEN EN ESTRATOS 151

maxima, dmax = 0%, donde 0 es la codiferencial de de Rham actuando sobre Qo (M).
El laplaciano definido por dpin/max s€ denota por Ay /max- Es bien conocido que
dmin = dmax i M es completa, pero supongamos que M puede no ser completa.
La cif. dyin/max define la cohomologia min/max H M), los ntimeros de

m1n/max<
Betti mm/max ﬁmln/max = ﬁ;in/max

(M), y la caracteristica de Euler min/max
Xmin/max = Xmin/max (M) (si los nimeros de Betti min/max son finitos); éstos son
invariantes quasi-isométricos de M. Estos conceptos pueden definirse de hecho para
complejos elipticos arbitrarios [11].

Desde ahora en adelante, asumamos que M es un estrato de una estratificacion
de Thom-Mather compacta A [60, 44, 45, 64]. A grosso modo, alrededor de cada

x € M, hay una carta de A con valores en un producto R™ x ¢(L), donde:

e [ es una estratificacion de Thom-Mather compacta de profundidad infe-
rior, y ¢(L) = L x [0,00)/L x {0} (el cono con enlace L);

e x corresponde a (0, *), donde * es el vértice de ¢(L); v,

e cerca de z, M corresponde a R™ x M’ para algin estrato M’ de ¢(L).

Se tiene que, o bien M’ = N x R, para algiin estrato N de L, o bien M’ = {x}.
Obsérvese que x € M justo cuando M’ = {x}. Sea p : ¢(L) — [0,00) la funcién
candnica inducida por la proyeccién en el segundo factor L x [0,00) — [0, 00).
La suma de p y la norma de R™ también la denominamos funciéon canodnica de
R™ x ¢(L).

Dotemos a M con una métrica riemanniana g, que es adaptada en el sentido
siguiente definido por induccién en la profundidad de M [13, 14]: hay una carta
alrededor de cada z € M \ M como antes tal que g es quasi-isométrica a una
métrica modelo de la forma go + p?g + (dp)? en R™ x N x R, donde g es la
métrica euclidea en R™ y g una métrica adaptada en N; esta g estda bien definida
ya que depth N < depth M. Obsérvese que g puede no ser completa. En [47, 48, 8]
se consideran métricas adaptadas mas generales. El primer resultado importante
de la Parte 2 es el siguiente.

TEOREMA 1. Con la notacidn anterior, se cumplen las siguientes propiedades:

(1) dmin/max €s discreto.

(i) Sean 0 < Amin/max,0 < Amin/max,y < - los autovalores de Apin/max
repetidos de acuerdo a sus multiplicidades. Entonces hay algin 6 > 0 tal
que lim infk Amin/maxJ@ k_g > 0.

La discrecién de dpyin es esencialmente debida a J. Cheeger [13, 14]. Teo-
rema I-(ii) es una versién débil de la férmula asintética de Weyl (véase por ejemplo
[64, Teorema 8.16]). La teorfa eliptica para el caso de variedades conformalmente
cénicas fue estudiada en [12, 39], y una versién no conmutativa del teorema del
indice para pseudo-variedades cénicas se da en [19].

Una funcién diferenciable f en M se denomina relativamente admisible cuando
las funciones |df| y | Hess f| estdn acotadas. En este caso, f podria no tener exten-
siones continuas a M pero tiene una extensiéon continua a la complemon métrica
(por componentes) M de M. Entonces tiene sentido decir que T € M es un punto
relativamente critico de f cuando hay una sucesién (yx) en M tal que limy yr, = x
en M y limy, |df (yx)] = 0. Para decir que f es una funcién relativamente de Morse
en M, deberia requerirse también que Hess f sea “relativamente no degenerado” en
cada punto relativamente critico x, pero no existe un “lema relativamente Morse”.
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Asi que, en vez de eso, requerimos la existencia de un modelo local de M centrado
en z de la forma R™+ x R™- X ¢(L4) x ¢(L_) tal que:

e M corresponde al estrato R™+ xR™~ x M x M_, donde M es un estrato
de ¢(L+);y

e f corresponde a una constante mas la funcién modelo %(pi —p%) en
R™+ xR™- x M, x M_, donde p+ es la funcién candnica en R+ x ¢(L4 ).

O bien My es el estrato vértice {+1} de ¢(Ly), o bien My = Ny x Ry para
algun estrato Ny de L.; en el segundo caso, sea ny+ = dim N.. Este modelo local
tiene sentido porque el producto de dos estratificaciones de Thom-Mather se puede
dotar con una estructura de Thom-Mather; en particular, el producto de dos conos
se convierte en un cono. No existe una eleccién canénica de una estructura producto
de Thom-Mather, pero todas ellas tienen las mismas métricas adaptadas.

Para cada punto critico relativo = de f como antes y cada r € Z, se define
v de la forma siguiente. Si My = Ny xRy y M_ = N_ x R, entonces

2, min/max
sea

V;,min/max = Z ﬁ:ntn/max(N"")ﬁ;;in/max(N_) ’

T4,T—

donde (r4,7_) recorre el subconjunto de Z? determinado por las condiciones:

r=m_+ry+r_+1,

n4 .
£ si ny es par

ry < ®5=  sing esimpar, en el caso de c.if. minima

—1 . . . ..

"*2 si ny es impar, en el caso de c.i.f. méxima ,
n_ .
£ si n_ es par

r_ > q ™5— sin_ esimpar, en el caso de c.i.f. minima
n_-+1

si n_ es impar, en el caso de c.i.f. maxima ,

En los otros casos, se modifica la definicién de vy ;. .. como sigue. Si M, = {*4+}
y M_ = N_ x R,, entonces se suprime todo lo referente a v, Ny y ny, tomando
r=m_+7r_+1 Si My =Ny xR, y M_ = {x_}, entonces se suprime todo lo
referente a r_, N_ y n_, tomando r = m_ +ry. Si My = {s;} y M_ = {x_},
entonces se define® V;,min/max = 0;,m_. Finalmente, sea V;;lin/max =>. y;’min/max,
donde x el conjunto de puntos relativamente criticos de f. El segundo resultado

principal de la Parte 2 es el siguiente.

TEOREMA J. Con la notacion anterior, se tienen las desigualdades

0 0
min/max < Vmin/max ’
1 1

min/max ﬁmin/max < Vmin/max ~ Ymin/max >

2

1 0 2 1
min/max Bmin/max + ﬁmin/max < Vmin/max — Y,

0
min/max + Vmin/max ’

ete., y la igualdad
Xmin/max = 2(71)7‘ Vrv;lin/max :

r

3Se usa la delta de Kronecker.
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También se demuestra la existencia de funciones relativamente de Morse. Por
ejemplo, para cualquier accién diferenciable de un grupo de Lie compacto G en una
variedad diferenciable cerrada M, cualquier funcién de Morse-Bott invariante en
M cuyas variedades criticas son 6rbitas induce una funcién relativamente de Morse
en G\ M; esto proporciona una rica familia de ejemplos en los que el Teorema J se
puede aplicar.

Para demostrar el Teorema I, se muestra primero que las propiedades enuncia-
das son “relativamente locales” (Capitulo 10), y es bien conocido que son invari-
ables por quasi-isometrias. Entonces el espectro se estudia para los modelos locales
R™ x N x R, con las métricas modelo go + p2g+ (dp)?, asumiendo que el resultado
se cumple para N con g por inducciéon. De hecho, por el principio mini-max, es
suficiente hacer este argumento para la c.i.f. minima/méxima dy min/max de la per-
turbacién de Witten dg (s > 0) de d definida por cualquier funcién relativamente de
Morse [68]; el laplaciano definido por ds min/max € denota por Ay nin/max- De esta
forma, la demostracién del Teorema I se convierte en un paso de la demostracién
del Teorema J usando el método analitico de E. Witten; especialmente, segiin se
describe en [54, Capitulos 9 y 14].

Una parte de ese método es el andlisis local alrededor de los puntos relativa-
mente criticos; mas explicitamente, el analisis espectral del laplaciano perturbado
A min/max definido con las funciones modelo %(pi —p?) en R™+ xR™=x My x M_.
Por la versién de la férmula de Kiinneth para complejos de Hilbert [11], este estudio
se puede reducir al caso de las funciones :I:% p? en N x R, donde p es la funcién
canonica de ¢(L). Entonces la descomposicion espectral discreta de N con § es usada
para descomponer la perturbacién de Witten del complejo de de Rham de V x R
en suma directa de complejos elipticos simples de dos tipos (Capitulos 11, 14 y 15),
cuyos laplacianos estdn dados por la perturbacién del oscilador armoénico en R,
estudiada en la Parte 1, relacionada con el oscilador arménico de Dunkl. Se finaliza
obteniendo las propiedades espectrales de Ag iy /max que se necesitan para describir
la “contribucién cohomoldgica” de los puntos relativamente criticos (Capitulo 19,
Seccién 3).

Otra parte de la adaptacién del método de Witten es la demostracién de la
“contribucién cohomolégica nula” lejos de los puntos relativamente criticos. En
esta parte, algunos argumentos de [54, Capitulo 14] no se pueden usar porque
no hay una versién del teorema de embebimiento de Sobolev con los espacios de
Sobolev W™ (Aypin/max) definidos con Ayiy /max; tal resultado podria ser cierto, pero
la forma usual de probarlo no funciona ya que W™ (A i, /max) Puede depender de la
eleccién de la métrica adaptada (Capitulo 21). Por tanto se aplica un nuevo método
en esa parte de la demostracién (Capitulo 19, Seccién 2), que usa fuertemente el
Teorema I-(ii).

Extendiendo f a M , se puede considerar el Teorema J como desigualdades de
Morse en la estratificacién de Thom-Mather M. En este sentido, seria interesante
compararlo con las desigualdades de Morse probadas por Goresky-MacPherson [30,
Capitulo 6, Seccién 6.12], donde consideran homologia interseccién con perversidad
media inferior de variedades analiticas complejas con estratificaciones de Whitney.
Otra demostracion analitica de desigualdades de Morse fue hecha por U. Luwig
[41, 42, 43| para el caso especial de variedades conformemente cénicas, pero sus
funciones admisibles y de Morse son diferentes de las nuestras: la norma de sus



154 RESUMEN

diferenciales no se aproxima a cero alrededor de la frontera del estrato, y la norma
de su hessiano puede no estar acotada.

En el futuro, esperamos poder extender este trabajo al caso de otras métricas
adaptadas (las consideradas en [47, 48, 8], o incluso mds generales); en el caso
de dmin con las métricas adaptadas de [47, 48, 8], se obtendrian desigualdades de
Morse para la homologia interseccién con perversidad arbitraria. Esto requerird el
estudio de una perturbacién del oscilador armoénico en R, més general que en la
Parte 1.

También es natural intentar extender este trabajo a “funciones relativamente
Morse-Bott”, en las que el conjunto relativamente critico esté formado por “sube-
stratificaciones de Thom-Mather relativamente criticas y relativamente no degen-
eradas”.
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