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A laboratory study of the wave-induced mean flow and set-down in unidirectional
surface gravity wavepackets on finite water depth
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The net movement of Lagrangian particles under water waves comprises a Stokes drift in the
direction of wave propagation and an Eulerian return flow in the opposing direction. Accurate
prediction of the Eulerian return flow in the ocean is of importance in modelling the transport of
plastic pollution, oil, wreckage, and sediment. Herein, we derive a multiple-scales solution for the
Eulerian mean flow under wavepackets that is valid for all water depths, both relative to the length
of the wave and the length of the wavepacket. To validate this solution, we carry out Particle
Tracking Velocimetry experiments in a long flume to extract the mean motion from Lagrangian
seeding particles under wavepackets, finding good agreement. The extraction technique is able to
deal with small background motion and sub-harmonic error waves associated with wave generation
by the paddle, the latter being relatively large in finite-depth flume experiments. In finite depth,
the return flow is forced by both the divergence of the Stokes transport on the wavepacket scale and
the formation of a non-negligible mean set-down underneath the packet, which acts like a bounding
streamtube in the form of a convergent-divergent duct. The magnitude of the horizontal return flow
is thus enhanced, with particular relevance to transport in the finite-depth coastal environment.

Keywords: Wave-induced transport, Stokes drift, Lagrangian displacement, wavepackets, set-down, finite
depth.

I. INTRODUCTION

Although fluid particles under progressive, small-amplitude surface gravity waves predominantly move forwards and
backwards with the linear motion, they undergo a small forward net transport known as the Stokes drift [1]. Realistic
seas are not regular waves but are composed of wavepackets, which can be represented as a linear superposition of
waves of different frequencies [2]. In the limit of a narrow-banded spectrum, these packets can also be obtained by
the amplitude modulation of a single frequency wave. Given that Stokes drift depends on the square of the local wave
amplitude, its associated mass transport becomes divergent at packet-scale: mass transport is larger at the centre
of the group than at leading and trailing edges. This divergence must be balanced by a return flow in the direction
opposite to wave propagation, which also causes a depression in the wave-averaged free surface under the wavepacket,
known as the set-down [3]. The depression in the wave-averaged free surface can be thought of as further enhancing
the magnitude of the return flow.

Together, Stokes drift and the wave-induced Eulerian return flow make up the wave-induced Lagrangian velocity
field, and both occur at second-order in a Stokes expansion. The Lagrangian velocity field is important in the
prediction of species transport in the ocean, encompassing the movement of sediment, plastic, oil, and wreckage (see
van den Bremer & Breivik [4] for a recent review of Stokes drift and its applications). Because of its potentially large
damage to marine wildlife, plastic, and more specifically microplastic, has recently attracted a great deal of attention
[5, 6]. Although recent research has focused on documenting the concentrations of plastic in the coastal region [7],
and predicting locations of plastic accumulation [8], the effect of wave-induced plastic transport is yet to be fully
explored. Wave-induced transport must also be included in the search for wreckage, such as concerning the 2014
MH370 airplane crash in the Indian Ocean [9]. Stokes drift is also important in the modelling of oil spills [10–12] and
in sediment transport [13, 14].

Although it can be ignored in sufficiently deep water [15], the set-down of the wave-averaged free surface becomes
important when the water depth is finite. Ignoring set-down or incorrectly reproducing it in numerical or laboratory
experiments has been shown to lead to incorrect predictions of run-up on beaches [16]. Generation of wavepackets
using linearly controlled wave paddles leads to spurious ‘error waves’ on the scale of the group, which travel ahead
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of the wavepacket as free waves, typically at the shallow-water phase velocity in laboratory flumes [17] (see also
the discussion in [16, 18]). Second-order wave generation, where the sub-harmonic frequencies represent the correct
generation of the mean flow and the set-down of the wave-averaged free surface, has been proposed to remedy this
[19, 20]. Implementation of second-order wave generation can however be limited by the requirement of a large paddle
stroke on the scale of the group [17].

Historically, several approaches have been taken to derive analytical solutions for the mean flow and the wave-
averaged free surface under wavepackets. These solutions can be classified on the basis of two scales: the water depth
d relative to carrier wavelength, namely k0d with k0 denoting the carrier wavenumber, and the water depth relative
to packet length, namely d/σ with σ denoting the packet length scale. Table I shows the regimes based on these
two nondimensional numbers for which solutions have been proposed in the literature. Assuming the return flow
is shallow, i.e. d/σ � 1, such that the horizontal return flow is uniform over depth, Longuet-Higgins and Stewart
[3], Davey and Stewartson [21], Brinch-Nielsen and Jonsson [22] and Mei et al. [23] presented solutions for the set-down
and return flow. These solutions can describe water depths that are shallow, deep or intermediate with respect to
the carrier wave length (k0d � 1, k0d � 1 or k0d = O(1), respectively). When d/σ � 1, the return flow does not
extend to the bottom of the ocean floor, thus is considered a deep return flow and has been modelled by Dysthe [24]
(and van den Bremer and Taylor [25]). None of these multiple-scales solutions are valid for an intermediate depth
return flow, d/σ = O(1). Taking a different approach, Dalzell [26] represents the wavepacket as an infinite sum over
wavenumber, which leads to a solution for the set-down and mean flow in the form of ‘frequency-difference’ terms in
a double summation over wavenumber. Dalzell [26] makes no assumptions concerning the depth of the return flow
or carrier wave, but the solutions do not enable simple evaluation of Lagrangian particle displacements. Expressions
for these ‘frequency-difference’ terms can also be distilled from [3, 27–30] (see [31] for a recent re-derivation that also
includes pressure).

Experimentally, many authors have considered Stokes drift in laboratory wave flumes. There remains some confusion
in the literature whether a net drift should be observed (see the discussion in [4, 32–34]). In addition to the solutions
to the irrotational water wave equations [35, 36], streaming in the boundary layers [33, 37, 38], convection of vorticity
from the ends of the tank into the interior of the fluid [37, 39] (or conduction from the free surface and bottom
boundary layers [40]) or enhanced transport for particles on the surface in breaking waves may play a role [34, 41, 42].
Recently, van den Bremer et al. [43] have demonstrated experimentally that Lagrangian transport by the combination
of Stokes drift and the Eulerian return flow underneath uni-directional, deep-water surface gravity wavepackets is in
good agreement with leading-order solutions to the irrotational water wave equations.

This paper derives solutions for the mean flow and the wave-averaged free surface using the multiple-scales method,
which are valid in arbitrary depths relative to the scale of the packet and the Eulerian return flow. The theory recovers
all regimes for which solutions have previously been derived (see table I), and the predicted set-down matches the
multi-component theory of Dalzell [26] in the narrow-banded limit. In doing so, we correct incomplete predictions in
the finite-depth regime by [44]. We calculate Lagrangian transport by integrating the Eulerian mean flow and Stokes
drift velocity. We also carry out new particle tracking velocimetry (PTV) experiments for wavepackets in a laboratory
wave flume in the finite-depth regime, in which the effect of set-down on Lagrangian particle displacement becomes
significant. We thus extend results for deep-water for which the set-down can be ignored, obtained by van den Bremer
et al. [43], to finite depth for which it cannot. We measure the set-down, take into account the effect of error waves,
extract the Lagrangian displacement and compare results with our theoretical predictions, finding good agreement.

The paper is laid out as follows. First, section II outlines second-order theory, leading to a solution for Eulerian
return flow in arbitrary depth and displacements arising from Eulerian mean flow and Stokes drift. Section III
describes the experimental method, and section IV presents a comparison of theoretically predicted and experimentally
determined displacements. Finally, conclusions are drawn in section V.

II. SECOND-ORDER THEORY

A. Governing equations

We consider unidirectional waves propagating over a horizontal bed in the (x, z)-plane, with z measured vertically
upwards from the still water level, and the free surface located at z = η. For the irrotational flow of inviscid,
incompressible fluid, the governing equation is Laplace,

∇2φ = 0 for − d ≤ z ≤ η, (1)
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Regime carrier wave depth (k0d) return flow depth (d/σ)
Deep carrier wave and deep return � 1 � 1 Dysthe (1979)
flow van den Bremer and Taylor (2016)

This paper
Deep carrier wave and shallow � 1 � 1 Mei et al. (1989)
return flow Longuet-Higgins and Stewart (1962)

Davey and Stewartson (1974)
Brinch-Nielsen and Jonnson (1986)

This paper
Intermediate-depth carrier wave
and intermediate-depth return flow

O(1) O(1) This paper

Intermediate-depth carrier wave O1) � 1 Longuet-Higgins and Stewart (1962)
and shallow return flow Davey and Stewartson (1974)

Longuet-Higgins and Stewart (1962)
This paper

Table I. Classification of the literature in different regimes based on depth relative to the carrier wave length (k0d) and depth
relative to the wavepacket length or the return flow scale (d/σ).

where φ is the velocity potential and d depth. Equation (1) is solved subject to the no-flow bottom boundary condition,

∂φ

∂z
= 0 at z = −d, (2)

and the kinematic and dynamic linear free surface boundary conditions,

w − ∂η

∂t
− u∂η

∂x
= 0 and gη +

∂φ

∂t
+

1

2
(∇φ)2 = 0 at z = η, (3a,b)

where t is time, g is gravity, and the velocity components are u = ∂φ/∂x and w = ∂φ/∂z.

B. Solutions using perturbation methods

We begin by carrying out a Stokes expansion using the steepness α ≡ k0a, where a is the maximum amplitude
of the (linear) free surface A0 and k0 is the carrier wavenumber. Using a Taylor-series expansion of the free surface
boundary conditions (3a,b) about z = 0, we obtain after some manipulation (see also [45, 46]), utilizing the Laplace
equation (1):(1

g

∂2

∂t2
+

∂

∂z

)
φ(2) =

∂

∂x

(∂φ(1)
∂x

η(1)
)
− 1

g

∂

∂t

(1

2
(∇φ(1))2 +

∂2φ(1)

∂z∂t
η(1)

)
+O(α3) at z = 0, (4)

η(2) =
−1

g

(
∂φ(2)

∂t
+
∂2φ(1)

∂z∂t
η(1) +

1

2
|∇φ(1)|2

)
+O(α3) at z = 0, (5)

where the superscripts denote the order in α, and we only consider terms up to second order in α.

Wavepackets can be created by modulating a single frequency carrier wave with angular frequency ω0 and wavenum-
ber k0. Assuming the length scale of the modulation σ is much larger than the wavelength of the carrier wave, allows
a multiple-scales expansion in the small parameter ε ≡ 1/(k0σ). The parameter ε is a measure of the bandwidth
of the spectrum, and the leading-order terms we consider correspond to a narrow-banded spectrum centred around
the carrier wave. Accordingly, we have the fast variables x, z and t and the slow variable X = ε(x − cg,0t), where
cg,0 ≡ ∂ω/∂k|k=k0 = ω0/k0(1/2 + k0d/ sinh(2k0d)) is the group velocity of the wavepacket. Our focus is on leading-
order terms; we thus ignore dispersion of the group and its associated higher-order scales. The fast variables allow
change on the length scale of the carrier wave, whilst the slow variables represent changes in the modulation of the
wavepacket. Derivatives are then expanded for fast and slow variables as

∂

∂x
→ ∂x + ε∂X . (6)
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Linear field O(αε0) O(αε1)

surface elevation η(1) A0 ı k0d
k0 tanh(k0d)

εA0,X

velocity potential φ(1) −ı cp,0
k0

A0 η̂
′
0

cp,0
k2 εA0,X (η̂′1 + (2− cg,0/cp,0) η̂′0)

horizontal velocity u(1) cp,0 A0 η̂
′
0 ı

cp,0
k0

εA0,X (η̂′1 + (1− cg,0/cp,0) η̂′0)

vertical velocity w(1) −ıω0 A0 η̂0 cp,0 εA0,X (η̂1 − cg,0/cp,0 η̂0)

vertical displacement ζ(1) A0 η̂0 ı 1
k0

εA0,X η̂1

horizontal displacement ξ(1) ı 1
k0

η̂′0 − 1
k2
0
εA0,X (η̂′1 + η̂′0)

Table II. Expressions for the different linear (in α ≡ k0|a0|) fields at O(α1ε0) and O(α1ε1). The actual fields are the real parts
of the tabulated expressions after multiplication by exp[ı(k0x− ω0t)].

From here on, ∂/∂x will be used to denote combined slow and fast derivatives, whereas ∂x and ∂X denote fast and
slow derivatives, respectively. The overlines in (4-5) correspond to averaging over the fast scales, and we ignore any
superharmonic contributions to the second-order terms, as they do not contribute to the mean flow. We will now
consider the first two orders in α in turn.

1. First-order in steepness O(α)

Similar to [21, 22], we write the O(α) solutions as summations over different orders in ε (see also [47]),

ζ(1) =
{
A0(X) ζ̂0(z) + εA1(X) ζ̂1(z)

}
eı(k0x−ω0t) +O(αε2), (7)

φ(1) =
{
B0(X)φ̂0(z) + εB1(X)φ̂1(z)

}
eı(k0x−ω0t) +O(αε2), (8)

where the subscripts denote the order in ε and we only consider the first two orders. The variable ζ(1) denotes the
linear vertical displacement field, which corresponds to the linear free surface elevation η(1) evaluated at z = 0, namely
η(1) = ζ(1)(z = 0), and can be found from ∂ζ(1)/∂t = w(1) (cf. (3a)). The vertical structure functions ζ̂0(z), ζ̂1(z),
φ̂0(z) and φ̂1(z) have to be chosen so that the Laplace equation (1) and the bottom boundary condition (2) are
satisfied. We find that

ζ̂0(z) =
sinh(k0(d+ z))

sinh(k0d)
, ζ̂1(z) = a0 sinh(k0(d+ z))− k(d+ z) cosh(k0(d+ z))

sinh(k0d)
, (9)

and

φ̂0(z) =
cosh(k0(d+ z))

sinh(k0d)
, φ̂1(z) = a0 cosh(k0(d+ z))− k0(d+ z) sinh(k0(d+ z))

sinh(k0d)
+ (1− cg,0/cp,0)

cosh(k0(d+ z))

sinh(k0d),
,

(10)
where a0 can be freely chosen (cf. homogeneous solution) and we set a0 = 0. Table II reports all the O(α) polarization
relationships expressed in terms of the amplitude envelope of the free surface at O(αε0).

From the linear solution, we can directly evaluate the Stokes drift, which is generally defined by:

uS ≡
∂u(1)

∂x
ξ(1) +

∂u(1)

∂z
ζ(1), (11)

where ξ(1) and ζ(1) are the linear horizontal and vertical displacements (cf. ∂ξ(1)/∂t = u(1), ∂ζ(1)/∂t = w(1)). Using
the linear polarization relationships from table II, we can find explicit expressions for the horizontal and vertical
Stokes drift velocities:

uS =
ω0k0

2

cosh(2k0(d+ z))

sinh2(k0d)
|A0|2 and wS = −ω0

4

(
1 +

cg,0
cp,0

)
sinh(2k0(z + d))

sinh2(k0d)
ε∂X |A0|2 . (12a,b)
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2. Second-order in steepness O(α2)

Seeking a solution for the Eulerian mean-flow potential φ(2) that varies on the slow scale X and using the linear
polarization relationships in table II, equation (4) becomes,(

ε2c2g,0
g

∂XX + ∂z

)
φ(2)(X, z) =ε

ω0∂X |A0|2

2 tanh(k0d)
+ εcg,0

ω2
0∂X |A0|2

4g sinh2(k0d)
,

= ε(1 + CFD(k0d))
ω0∂X |A0|2

2 tanh(k0d)
, (13)

where the coefficient CFD(k0d) represents terms that only contribute in finite depth:

CFD(k0d) =
cg,0ω0

g sinh(2k0d)
=
k0d sech2(k0d) + tanh(k0d)

2 sinh(2k0d)
, (14)

and in deep-water (k0d� 1), we have CFD(k0d)→ 0.

The forcing equation (13) can be solved using a Fourier transform to give:

φ(2) = −ω0(1 + CFD(k0d))

4π tanh(k0d)

∫ ∞
−∞
|A0|2̂

cosh(κ(z + d))

sinh(κd)

ı exp(ıκx̃)

1− c2g,0κ

g tanh(κd)

dκ, (15)

where |A0|2̂ is the Fourier transform of |A0|2 in x̃ and x̃ ≡ X/ε = x− cg,0t. The poles of this integral do not make a
contribution and are discussed in appendix A. Using (15), the set-down can then be calculated from (5) to be:

η(2) = − ω2
0 |A0|2

4g sinh2(k0d)
− cg,0ω0(1 + CFD(k0d)))

2g tanh(k0d)

∫ ∞
−∞

κ|A0|2̂
cosh(κ(z + d))

sinh(κd)

exp(ıκx̃)

1− c2g,0κ

g tanh(κd)

dκ . (16)

When examining the left-hand side of the forcing equation (13), care must be taken with regard to the order of
φ(2) (see also the discussion in [48]). Here, κ is the wavenumber associated with the wavepacket and scales with ε.
The order of φ(2) then depends on the order of k0d. If k0d is large (deep-water) and ε is small, in such a manner
that d/σ = εk0d� 1, it is justified to make the ‘rigid-lid’ approximation by neglecting the set-down. In intermediate
depth and with a sufficiently narrow-banded wavepacket, the return flow must be shallow d/σ = O(ε) � 1 (i.e.
ε = 1/(k0σ) implies d/σ = k0dε = O(ε) when k0d = O(1)). Thus, the small-argument approximations of hyperbolic
functions can be used (i.e. cosh(κd)/ sinh(κd) → 1/(κd)). As a result, φ(2) becomes one order more significant in
ε (i.e. φ(2)|k0d=O(1) ∝ ε−1φ(2)|k0d�1). If k0d is O(1), the inclusion of ∂XXφ(2) in the left-hand side of the forcing
equation is therefore required (this term was incorrectly ignored in [44]).

The relative depth of the return flow (d/σ) can be assumed to be shallow or deep, allowing the integrals in (16)
and (15) to be calculated analytically. Our solution for general d/σ can then be manipulated to recover the results of
Longuet-Higgins and Stewart [3] and Mei et al. [23] for d/σ � 1 (shallow return flow), and Dysthe [24] and van den
Bremer and Taylor [25] for d/σ � 1 (deep return flow) (see appendix B).

C. Lagrangian displacements

1. Arbitrary water depth: k0d = O(1) and d/σ = O(1)

The Lagrangian velocity under a wavepacket comprises the Stokes drift and the Eulerian return flow, so that
∆xL = ∆xS + ∆xE. To allow for comparison to experiments in which displacements have to be calculated over finite
times to avoid the effect of error waves and their reflections, we calculate finite-time Lagrangian displacements. The
Stokes drift (12) can be readily integrated between t1 and t2 to give:

∆xS =
ω0k0

2

cosh(2k0(d+ z))

sinh2(k0d)

∫ t2

t1

|A0|2dt, (17)
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∆zS = −1

4

(
1 +

cp,0
cg,0

)
k0 sinh(2k0(z + d))

sinh2(k0d)
(|A0|2t=t2 − |A0|2t=t1). (18)

In arbitrary water depth, making no assumptions about the scale of the group relative to the depth d/σ and thus
about the depth of the return flow, the horizontal and vertical components of the Eulerian return flow are obtained
by differentiating (15); the displacements are then be obtained by integrating over time:

∆xE = −ω0(1 + CFD(k0d))

4π tanh(k0d)

∫ t2

t1

∫ ∞
−∞

κ|A0|2̂
cosh(κ(z + d))

sinh(κd)

exp(ıκx̃)

1− c2g,0κ

g tanh(κd)

dκ dt, (19)

∆zE = −ω0(1 + CFD(k0d))

4π tanh(k0d)

∫ t2

t1

∫ ∞
−∞

κ|A0|2̂
sinh(κ(z + d))

sinh(κd)

ı exp(ıκx̃)

1− c2g,0κ

g tanh(κd)

dκ dt. (20)

2. Shallow return flow: k0d = O(1) and d/σ � 1

Assuming a shallow return flow (d/σ � 1) enables an explicit solution of the integral over wavenumber in (15)
to be obtained (using the small-argument approximation of the hyperbolic tangent). In that case, the Eulerian flow
velocity components become:

uE = − ω0(1 + CFD(k0d))

2 tanh(k0d)d
(

1− c2g,0
gd

) |A0|2 and wE = − ω0(1 + CFD(k0d))

2 tanh(k0d)
(

1− c2g,0
gd

) (z + d)

d
∂X |A0|2. (21a,b)

Integrating the horizontal Eulerian velocity when the return flow is shallow (21a) and combining with the previously
derived horizontal displacement by the Stokes drift (17), which is unchanged, we obtain the horizontal Lagrangian
displacement over the time interval t1 to t2,

∆xL =
ω0k0

2

[cosh(2k0(z + d))

sinh2(k0d)
− (1 + CFD(k0d))

k0 tanh(k0d)d
(

1− c2g,0
gd

)] ∫ t1

t2

|A0|2dt, (22)

where t1 and t2 are arbitrary time values. If the group is Gaussian and of the form A0 = a0 exp
(
−(x− cg,0t)2/2σ2

)
and the time integral is taken over the entire group, such that t1 → −∞ is before the arrival of the group and t2 →∞
after the group has passed, then we obtain:

∆xL =

√
πω0α

2σ

2k0cg,0

[cosh(2k0(z + d))

sinh2(k0d)
− (1 + CFD(k0d))

k0 tanh(k0d)d(
(

1− c2g,0
gd

)]. (23)

The vertical Lagrangian displacement component between times t1 and t2 is

∆zL =

1

4
(1 +

cp,0
cg,0

)
k0 sinh(2k0(z + d))

sinh2(k0d)
− ω0(1 + CFD(k0d))

2cg,0 tanh(k0d)(1− c2g,0
gd )

z + d

d

 (|A0|2t=t2 − |A0|2t=t1), (24)

from which we can obtain for the maximum or minimum displacement underneath the centre of the group,

∆zL =
[1

4

(
1 +

cp,0
cg,0

)
sinh(2k0(z + d))

sinh2(k0d)
− ω0(1 + CFD(k0d))

2k0cg,0 tanh(k0d)
(

1− c2g,0
gd

) z + d

d

]α2

k0
. (25)

Figure 1 now examines the effect of ignoring the set-down when computing displacements. As the relative depth
k0d becomes shallower, the role of the set-down increases, and the continuous lines, which include the effect of the set-
down, diverge from the dashed lines, which ignore this effect. This paper sets out to observe this effect experimentally.
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Figure 1. Theoretical normalized horizontal (left panel) and vertical (right panel) displacements as a function of the relative
depth k0d at z = 0 (from (23) and (25)). The displacements by the Eulerian mean flow displacement are shown as black lines,
the displacements by the Stokes drift by red lines and the Lagrangian displacements by blue lines. The solid lines show the
displacements when the set-down is fully accounted for, whereas the dashed lines ignore the set-down.

III. EXPERIMENTAL METHODOLOGY

A. Set-up and data acquisition

To validate the predicted particle trajectories under a wavepacket, a series of particle tracking velocimetry (PTV)
experiments were undertaken in the Sediment Wave Flume in the Coastal, Ocean and Sediment Transport (COAST)
Laboratory, University of Plymouth, UK. The flume has a length of 35 m, a width of 0.60 m, and was filled with
water to a depth of 0.50 m, as shown in fig. 2. We used a double-element piston-type wavemaker to generate a focused
wavepacket with a spectral shape that linearly focuses to a Gaussian packet A0 = a0 exp

(
−(xf − cg,0t)2/2σ2

)
at a

measurement zone located xf = 19.75 m from the resting position of the wavemaker. Seven resistance-type wave
gauges provided 128 Hz free surface elevation measurements. A light-emitting diode (LED) light box illuminated the
motions of small near-neutrally buoyant particles in a plane, which were captured by a camera positioned outside
the flume. After propagating through the measurement zone, the dispersed wavepackets were absorbed by mesh-
filled wedges within an ‘absorption zone’ located at the downstream end of the wave flume. The distance to the
measurement zone was prescribed to allow as much separation as possible of the sub-harmonic error wave from the
group, whilst also avoiding reflections. To ensure near-quiescent initial conditions for each experiment, the water
surface was allowed to settle for 10 minutes between experiments. The settling time of 10 minutes was short enough
that the slightly positively-buoyant particles remained evenly distributed throughout the water column at the start
of each experiment.

Fluid trajectories were measured by tracking a large number of illuminated small-diameter seeding particles within
the flow. These ‘Plascoat’ particles were approximately 150 µm in diameter, small enough to be considered dynamically
unimportant. Although the particles were slightly positively buoyant, their upward settling velocities were negligible
compared to their motion beneath the free surface waves. The particles were effectively uniformly mixed throughout
the measurement zone, which was achieved by adding new particles between experiments when necessary, mixing up
the water column and waiting for the flume to become quiescent before starting experiments. Due to the light sheet,
only particles in a thin slice in the (x-z)-plane were tracked. The camera field of view was not able to capture the
full depth of the flume. Thus, to obtain a complete coverage of water column, the same experiment was repeated
three times. Ambient lighting was removed whilst a Photron SA4 high-speed camera captured the particle motions
at 125 frames/s, at a resolution of 1024 by 1024 pixels and a shutter speed of 1/125 s. This shutter speed achieved an
acceptable compromise between the requirements of obtaining very sharp images and allowing sufficient light to enter
the camera during each image exposure. An image of a ruler was used to quantify the pixel scale, and distortion was
found to be negligible for these tests.
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Figure 2. Experimental setup used to obtain PTV measurements of fluid trajectories beneath focused wavepackets generated
by a double-element piston-type wave maker at the COAST laboratory, University of Plymouth, UK.

B. Wave generation

If operated using a first-order signal, a wavemaker will generate spurious error waves (see e.g. [16, 18] for a
discussion on the effects of these error waves). To partially eliminate the generation of these error waves, the second-
order corrections of Schäffer [19] were applied to the wavemaker signal. The Edinburgh Designs Ltd (EDL) wavemaker
differs from an idealised piston-type wave maker in two ways. First, the EDL wavemaker is a double-element paddle,
which does not extend to the base of the flume. Second, the paddle does not have the range of movement required
to eliminate sub-harmonic error waves in finite water depth. As a result, error waves were not completely removed
by the correction method (see also [49]). Whittaker et al. [17] concluded that the sub-harmonic error wave amplitude
was reduced by approximately 60% in similar conditions. In our case, sub-harmonic error waves had relatively large
amplitude due to the finite-depth nature of experiments (finite k0d), and caused significant difficulty when calculating
the displacements discussed in section IVA.

C. Matrix of experiments

Table III lists the parameters for the 9 experiments we conducted, varying the relative water depth k0d and the
bandwidth ε. Frequencies were chosen such that the water depth is ‘intermediate’ (k0d ≈ 1 − 3); amplitudes such
that second-order motions are large enough to measure, but not so large so that effects beyond second-order play a
role; and the bandwidth parameter ε = 1/(k0σ) such that the wavepacket is still quasi-monochromatic, but not so
long that reflections play a role.

D. Data processing and removal of background motion

The free surface was measured using seven resistance wave gauges, five spread around the focus location and two
significant distances before and after the focus location. The wavepackets were deliberately chosen to have a narrow-
banded spectrum to allow frequency filtering to separate the linear and second-order sub-harmonic parts from the
wave gauge signal. This was achieved using a low-pass filter of 0.5f0 to separate the sub-harmonic set-down and a
band-pass filter between 0.7f0 and 1.3f0 to extract the linear free surface elevation. The linear free surface elevation
is shown in fig. 3, along with the measured envelope |A0|. The measured envelope is calculated using the Hilbert
transform of the linear free surface elevation, which in turn is used to predict the mean flow using (22). The use of
the measured envelope at the location where the trajectories are measured accounts for any dissipation or non-linear
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Figure 3. The experimental linear free surface elevation measured at the focus location (black lines). The linear part has been
extracted with a band-pass filter between 0.7f0 and 1.3f0. The envelope (red dashes lines) has been calculated using a Hilbert
transform of the linear free surface.

dispersion, which may occur between the wavemaker and the measurement zone.

The recorded images were processed using Streams software, a specialist package for flow visualisation applications
[50]. Particles within each image were identified using a dual threshold algorithm, which first searched for pixels of
intensity greater than a threshold value, identified the maximum pixel intensity within the group of pixels, and finally
defined particle boundaries based on a fraction of this maximum intensity. The identified particles were subsequently
matched between frames using an ‘auction’ optimisation algorithm, which minimised the total cost of all potential
matches for each successive pair of frames, where the cost was first assigned based on particle distance, then based
on matched particle velocities in a small region. Recent velocities of matched particles were finally used to generate
additional matches where appropriate. Lagrangian paths were then calculated and stored for post-processing.

Background motion and the motion due to the sub-harmonic error wave had to be eliminated in order to calculate
the displacement due to Stokes drift and Eulerian return flow. The background motion is much slower than the
desired measured Lagrangian motion, and consists of a combination of a rise velocity of the particles, long waves that
decay slowly in the flume, circulation induced by small air flows over the water surface, which cannot be eliminated
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Experiment Peak frequency Steepness Bandwidth Relative depth
f0 [Hz] α = k0a0 ε = (k0σ)−1 k0d

1 1.00 0.12 0.18 2.08
2 1.00 0.13 0.13 2.08
3 1.00 0.12 0.23 2.08
4 0.80 0.09 0.17 1.44
5 0.80 0.09 0.12 1.44
6 0.80 0.09 0.22 1.44
7 0.70 0.09 0.17 1.18
8 0.70 0.09 0.22 1.18
9 0.70 0.09 0.27 1.18

Table III. Matrix of experiments.

in the laboratory and mixing induced motion. The Stokes rise velocity of the spherical particles can be estimated as
w = (2/9)((ρw − ρp)/ρw)(gR2/ν) = 0.49mm/s, where we have used ρp = 0.96g/cm3 (density of Plascoat particle),
ρw = 1.00g/cm3 (density of water), ν = 1.0× 10−6m2/s (viscosity of water) and R = 75× 10−6m (radius of Plascoat
particle). This is much slower than the motion induced by the waves. The smallest amplitude of wave induced motion
at focus are uS = 17.7mm/s and UE = 6.7mm/s, which are significantly larger than the rise velocity of 0.49 mm/s.
This permitted a suitable curve fit to the trajectories before and/or after the focused wavepacket to be subtracted
from the original x(t) and z(t) trajectories. The most successful fitting method was then selected by studying the
frequency spectrum of the trajectories after the curve fit had been subtracted. The exact procedure is described in
appendix C.

IV. RESULTS

A. The sub-harmonic free surface elevation: set-down and error waves

Figure 4 shows the experimental second-order sub-harmonic free surface elevation time series, calculated by filtering
the free surface elevation at 0.5f0. Each experiment clearly exhibits a set-down at the centre of the group (t = 0).
Close to focus, the set-down matches the theoretical curve well, the maximum of the experimental setdown is very
close to the theoretical. However, ‘shoulders’ can be seen either side of the experimental set-down. These shoulders
are not to be confused with the predicted set-down shape in non-shallow return flow. The left shoulder corresponds
to the sub-harmonic error wave propagating in the positive x-direction ahead of the group (and its bound set-down),
and the right shoulder to its reflection travelling in the opposite direction. Because of its length relative to the water
depth, the sub-harmonic error wave travels at the shallow water speed (

√
gd).

Figure 5 shows the time series of the sub-harmonic wave components at seven wave gauges plotted with an offset
proportional to their respective distance from the focus location. Straight lines denote the propagation speeds of
the different features: the positive group speed cg,0 for the set-down, the positive shallow-water speed

√
gd for the

sub-harmonic error wave (left shoulder) and the negative shallow-water speed −
√
gd for its reflection (right shoulder).

The error wave is larger and less separated in the shallower experiments (experiment 4-9 in fig. 4 and fig. 5), which is as
expected because the second-order signal given to the paddle is produced less well and the error wave is consequently
larger, and the difference between the group and the shallow-water speeds is smaller in these cases.

Based on the three repeats we carried out for each experiment, we can quantify the repeatability and quantify
the measurement error associated with the (small) set-down. The left panel of fig. 6 shows an example of this for
experiment 5 (where f0 = 0.80 Hz and ε = 0.12), with the three repeats plotted as a function of time along with
the mean and confidence region of ±2 standard deviations. The set-down of the three experiments show remarkable
repeatability, even though the maximum value of the set-down is only 1.2 mm. The grey confidence band of ±2
standard deviations captures the theoretically predicted magnitude of the set-down (dashed red line), though there
is an error in the time structure and alignment. The right panel of fig. 6 shows the measured magnitude of the
set-down as a function of the theoretically predicted value for all experiments, with the 45◦-line corresponding to
perfect agreement. The error bars in this panel are not estimated from repeats but from the (absolute) calibration
error of the gauges, giving generally larger confidence bands than the error estimated from repeats. A good agreement
between theory and experiments is generally evident for the magnitude of the set-down underneath the centre of the
group, where the error waves have not reached for all experiments.
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Figure 4. Time series of the sub-harmonic components of the free surface elevation representing a ‘set-down’, from experiments
(solid black lines), extracted from the free surface elevation by a low-pass filter at 0.5f0, and theory (dashed red lines) for the
different experiments.

In the same way that the return flow underneath the set-down leads to a negative displacement of particles, the sub-
harmonic error wave (a set-up travelling to the right) gives rise to positive displacement of particles, and its reflection
(a set-up travelling to the left) to negative displacement. In experiments 4-9, the error wave did not separate out
from the group before the group arrived at the focus location. Instead of calculating the true net displacement, in all
experiments a small window (t1 = −0.1σ/cg,0, t2 = 0.1σ/cg,0) has been used to calculate the horizontal displacement
to avoid including any error wave in the displacement. See appendix C for more detail.
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Figure 5. Time series of the sub-harmonic components of the free surface at each wave gauge (extracted from the free surface
elevation using a low-pass filter at 0.5f0). The y-axis is offset by the product of the distance of each gauge from the focus location
xg and C = 8.0 × 10−4. Also shown are the group speed of the wavepacket cg,0 with which the set-down moves (continuous
black lines), the speed of the error wave

√
gd (dashed black lines), and the speed of its reflection −

√
gd (dash-dotted black

lines).

B. Particle trajectories

Figure 7 shows typical trajectories of particles under wavepackets before removal of the background motion. The
trajectories are all for experiment 1 ( f0 = 1.0Hz and ε = 0.18). As denoted by the vertical axis, the left panel is closest
to the free surface, the middle panel lower and the right panel is the deepest down in the water column. Near the free
surface, there is a positive displacement because Stokes drift is dominant (shown in the left panel). Further down in
the water column, the displacement reduces and changes sign; this is when the Stokes drift and the Eulerian return
flow are balanced (the middle panel). Towards the bottom of the tank (right panel), there is still strong evidence of
the waves in the trajectories (shown by the oscillatory motion) because these waves are finite-depth. However, the
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Figure 6. Quantification of the measurement error of the set-down. Panel (a) shows the sub-harmonic set-down for experiment
5 (f0 = 0.88 Hz, ε = 0.12) as a function of time: three repeats are plotted using black dotted lines, and the mean is overlaid in
solid black. The grey region shows a confidence band of ±2 standard deviations around the mean. The theoretical set-down is
plotted using a dashed red line. Panel (b) is a comparison of the magnitude of the set-down between theoretical (labeled η(2)SD,T

on the horizontal axis) and experimentally measured (labeled η(2)SD,M on the vertical axis) magnitude of the set-down for each
experiment. The error bars show ±2 standard deviations of the absolute calibration error.
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Figure 7. Experimental particle trajectories under wave packets with f0 = 1.00 Hz and ε = 0.18 at three different depths and
before removal of the background motion. The left panel is closest to the surface, the central panel is close to the vertical
position where there is no mean drift and the right panel is the deepest trajectory, showing the large negative mean flow. The
blue and red crosses denote the position before the wavepacket has arrived and after it has passed, respectively.

Eulerian mean flow dominates the drift, and the particles move in the opposite direction (right to left) to that of wave
propagation (left to right). Note that there is a small net vertical displacement in fig. 7, as the background motion
has not yet been removed. The predicted and experimentally measured depth profiles after removal of the background
motion are examined in the next section.

C. Horizontal Lagrangian displacements

Figure 8 compares the measured horizontal particle displacements with theoretical predictions based on the mea-
sured (linearized) free surface elevation. As discussed in section IVA, the displacements are calculated over the interval
t1 = −0.1σ/cg,0 to t2 = 0.1σ/cg,0, where t = 0 is the focus time. The short time integral window (t2 − t2 = 0.2σcg,0)
was used to avoid including displacements induced by the sub-harmonic error wave. The packet length scale σ and
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the group velocity of the carrier cg,0 were estimated from fitting a Gaussian to the measured free surface signal.
As expected, for an irrotational flow, Stokes drift dominates at the top of the water column resulting in positive
displacements, whilst the Eulerian return flow causes opposite displacements, which dominate at depth.

Figure 8 includes two theoretical predictions: including the effect of the set-down (22) (continuous red lines) and
excluding the set-down (dotted black lines). To predict the displacement using (22), we use the envelope A0 obtained
from a Hilbert transform of the linearised free surface elevation. To exclude the set-down, we replace the term
(1 − c2g,0/(gd)) in the denominator of the second term in the square bracket in (22) by 1. It is immediately evident
from fig. 8 that agreement between measurements and theoretical predictions indeed requires inclusion of the set-down.
Including the effect of the set-down can be likened to a convergent-divergent duct, thus accelerating the Eulerian mean
flow and resulting in a larger velocity underneath the centre of the group. The set-down grows in magnitude as the
carrier wave gets shallower (f0 decreases) and thus forces the mean flow more significantly. As the carrier waves get
shallower, c2g,0/(gd) approaches 1, and thus the change in denominator creates a very large difference in the predicted
return flow. This can be observed in fig. 8 by the increase in difference between the two theoretical lines as f0
decreases (lower rows). For the experiments with the greatest depth (experiments 1-3, k0d = 2.1), the importance
of the set-down is minimal, as is evident by the small difference between the two theoretical lines. However, for the
shallower cases (experiments 4-6, k0d = 1.4; experiments 7-9, k0d = 1.2), it is evident that the prediction including
the set-down is far better than without. For completeness, we note that the agreement for the shallower experiments
is less good, likely, as a result of the more dominant role of imperfectly eliminated error waves in these cases.

In fig. 8, the bandwidth ε (ε ≡ 1/(k0σ) with σ the group length) is varied for each frequency (each panel in a
particular row has a different ε). One can observe an increase in the magnitudes of the transport with a reduction in
ε: the narrower the bandwidth ε, the longer the wavepacket. Figure 9 shows scaled and non-dimensional measured
horizontal displacement profiles, allowing experiments at the same relative depth k0d but a different group length
σ = 1/(k0ε) to be overlaid. The non-dimensional horizontal displacements collapse onto a single curve for the three
values of k0d considered.

It is evident from the results that there is a mean transport observed under two-dimensional wavepackets, which
can be decomposed into Stokes drift and an Eulerian return flow. Stokes drift is dominant near the surface, as evident
from the positive transport near the surface, and its decay with depth matches the theory well. It is worth noting
that although the displacement by Stokes drift decays with depth, the displacement by the Eulerian return flow is
constant with depth. This is can be seen in eq. (22) and is consistent with the observed measured displacements.

Although the net vertical displacement by a group is zero, the measured vertical displacement underneath the centre
of the group can also be compared to theory. Although the data are subject to more noise, experiments and theory
also agree well here (see appendix D).

V. CONCLUSIONS

In this paper, we have derived from the water wave equations an expression for wave-induced Eulerian mean flow
for a quasi-monochromatic or narrow-banded surface gravity wavepacket that is valid for arbitrary water depth both
relative to the carrier wave and the wavepacket (or return flow) scale. In doing so, we have generalized previous results
in the literature that are valid for packets and their return flows that are either very short (d/σ � 1) or very long
relative to the water depth (d/σ � 1), referred to by us as shallow and deep return-flow, respectively. Furthermore, we
have corrected van den Bremer and Taylor [44], who did take into account the effect of finite depth, but incompletely
so, by ignoring the set-down. Physically, we explain the mechanism by which set-down enhances the mean flow in
finite depth, namely by acting as a convergent-divergent duct.

There has been some disagreement in the literature whether a net drift should be observed in a laboratory wave flume
(see the discussion in [4, 32–34]). We have clearly shown in this paper that for the relatively short groups considered,
observations are in good agreement with leading-order equations of the irrotational water waves equations in two
dimensions. These equations predict a net drift under wavepackets in irrotational flows. The resulting displacement
is the result of both the Stokes drift and the Eulerian return flow. The Stokes drift displacement is positive (in the
direction of the waves) and decays with depth on the scale of the carrier wavelength. The displacement induced by
the return flow is negative and does not vary as a function of the vertical coordinate, as predicted both in the shallow
return flow and in the deep return flow regimes.

Experiments were designed to extract Lagrangian particle displacements for wavepackets in finite depth (k0d =
1.2− 2.2) in a flume without full second-order wave-generation, where the error wave is of significant amplitude and
travels at a similar speed to the wavepacket. The processing technique accounted for motion from the error wave and
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Figure 8. Profiles of horizontal Lagrangian displacement between t1 = −0.1σ/cg,0 and t2 = 0.1σ/cg,0 (with t = 0 the centre of
the packet) as a function of depth: post-processed experimental data (black crosses), theoretical prediction from (22) (continuous
red lines) and theoretical prediction ignoring the set-down from (22) (dotted black lines). The theoretical prediction ignoring
the set-down is obtained by replacing the term (1− c2g,0/(gd)) in the denominator of the second term in the square bracket in
(22) by 1.

eliminated other background motion of the Lagrangian seeding particles. The effect of set-down in these experiments
was clear, and the theoretical solution was found to match the experimental measurements far better than if the
contribution from the set-down forcing was excluded. The experimental methodology presented herein enables mean
flows to be measured in finite water depth despite the presence of an error wave. Although full second-order wave
generation is preferable, such generation will be physically constrained in many wavemakers by the maximum length
of the paddle sweep and its inability to generate all the slow bound sub-harmonic components of the signal. Careful
consideration of the error wave through fitting methods on the mean flow will then be necessary, as demonstrated
herein.

In shallow coastal waters, where the set-down under wavepackets is significant, the increase in mean flow found
herein would significantly effect transport of pollutants (such as plastic, oil, wreckage, and sediment). Transport by
the return flow is opposite to the direction of wave propagation, and, unlike the transport by the Stokes drift, does
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Figure 9. Scaled, non-dimensional profiles of horizontal Lagrangian displacement between t1 = −0.1σ/cg,0 and t2 = 0.1σ/cg,0
(with t = 0 the centre of the packet) as a function of depth: post-processed experimental data (black crosses) and theoretical
predictions from (22) (continuous red lines).

not decay with depth.
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Appendix A: Analysis of poles in wavenumber integral

In the solution to φ(2) (15) there are three poles in the integral over wavenumber. The first is at κ = 0 and can
be considered inconsequential because it only exists in the potential and disappears once spatially differentiated to
velocity; κ = 0 corresponds to a mean increase in potential (infinite wavelength), which has no physical interpretation.
The second and third poles are symmetrical and stem from

(
1− c2g,0κ/ (g tanhκd)

)−1, which we shall define as 1/f(κ).
The poles are at ±κp only if the gradient c2g,0/gd < 1, which is true for all cases other than at the limit of shallow
water where c2g,0/(gd) = 1. If f(κ) is expanded around κp in a Taylor series, it can be shown that f ′(κ) is an odd
function. Thus, when combined with the other terms in the equation for velocity, the two symmetric poles will cancel
each other out upon integration.

Appendix B: Comparison with existing literature

The theory presented in section II describes a single solution for mean flow in water of arbitrary depth. Table I
shows the regimes characterised by relative depths k0d and d/σ. In this section, the solution is shown to recover the
results of these established regimes and, to the authors’ knowledge, is the first to model a return flow in arbitrary
depth, either of the carrier wave (k0d) or the return flow (d/σ).
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1. Shallow return flow: k0d = O(1) and d/σ � 1

The solution for φ(2) in (15) does not make an assumption regarding the depth of the return flow. If the return
flow is assumed to be shallow (d/σ � 1), after differentiation to obtain horizontal velocity, (15) simplifies to:

u(2) = − ω0(1 + CFD(k0d))

4π tanh(k0d)
(

1− c2g,0
gd

) ∫ ∞
−∞

κ|A0|2̂
exp(ıκx̃)

κd
dκ, (B1)

and we can explicitly evaluate (16):

η(2) = −cg,0
g

(1 + CFD(k0d))

2 tanh(k0d)(gd− c2g,0)
g|A0|2 −

ω2
0 |A0|2

4g sinh2(k0d)
, (B2)

which can be rewritten as

η(2) = −
K(c2g,0/g)|A0|2

gd− c2g,0
− ω2

0 |A0|2

4g sinh2(k0d)
, (B3)

where

K =
ω2
0

4 sinh2(k0d)

[ sinh(4k0d) + 3 sinh(2k0d) + 2k0d

2k0d+ sinh(2k0d)

]
. (B4)

Equation (B3) is identical to (3.17b) obtained by Longuet-Higgins and Stewart [3] under the assumption of a shallow
return flow when solving for the potential (φ in equation (3.17a) of Longuet-Higgins and Stewart). Note that Longuet-
Higgins and Stewart initially represent the wavepacket A0 as a sum of difference waves, which are waves with phase
equal to the difference between the that of the linear components, and do not take a multiple-scales approach.

The two terms on right-hand side of (B3) can be combined using a rearranged relation for group velocity,
k0d/ sinh(2k0d) = cg,0/cp,0 − 1/2, to give

η(2) = − g|A0|2

2(gd− c2g,0)

[2cg,0
cp,0

− 1

2

]
, (B5)

which is the same as equation (11.4.4) obtained by Mei et al. [23] through a multiple-scales approach similar to ours.

2. Deep return flow: k0d� 1 and d/σ � 1

Using their non-dimensional notation, our forcing equations (5) and (13) can be rewritten as (2.20-2.21) in Dysthe
[24]. As noted by Dysthe [24], the ε2∂XXφ(2) term in (13) can be ignored in deep water, and an explicit solution for
the return flow velocity can be found [25],

u(2) = −ω0

4π

∫ ∞
−∞

κ|A0|2̂ exp(κz)exp(ıκx̃) dκ . (B6)

Appendix C: Trajectory processing

The raw motion of the seeding particles also included background motion and motion due to the error wave, which
was significantly larger in the shallower experiments. This motion had to be eliminated, and a suitable interval to
calculate displacements used to achieve good agreement of the experimentally measured displacements with the theory.
The background motion of particles is much slower than the Stokes drift and the Eulerian return flow beneath the
group. We eliminated background motion using a suitable curve fit (selected from four possible fits) to the motion of
the particles over specified time interval(s) before and/or after the arrival of the focused wavepacket and then subtract
the fit from the original x(t) and z(t) trajectories. The post-processing algorithm first identified the focus time tf
within the record as the time of the maximum horizontal velocity, and calculated the group velocity cg,0, and hence
the group period Tg, by solving the linear dispersion equation based on the modulation of linear surface signal, A0.
The group period formed the basis of the ‘fit windows’ used by the different curve fit options:
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a) Linear fit to x-displacement prior to the wavepacket arrival (tf−6Tg to tf−3Tg), quadratic fit to z-displacement
before and after the wavepacket arrival (tf ± 6Tg to tf ± 3Tg).

b) Linear fit to x-displacement prior to the wavepacket arrival (tf−12Tg to tf−9Tg), quadratic fit to z-displacement
before and after the wavepacket arrival (tf ± 9Tg to tf ± 3Tg).

c) Linear fit to x-displacement prior to the wavepacket arrival (tf−12Tg to tf−3Tg), quadratic fit to z-displacement
before and after the wavepacket arrival (tf ± 12Tg to tf ± 3Tg).

d) Linear fit to x-displacement prior to the wavepacket arrival (tf−9Tg to tf−3Tg), quadratic fit to z-displacement
before and after the wavepacket arrival (tf ± 9Tg to tf ± 3Tg).

Once the fits to the raw motions had been carried out, the frequency spectrum of the motion was examined (the
motion was first mirrored to create a periodic signal). Using the knowledge that for narrow-banded wavepackets the
sub-harmonic and periodic motion should be well separated (this is not the case for background motion if this is
not periodic), the fitting method that led to the frequency spectrum which was most separated was chosen for each
trajectory.

The remaining signal was then filtered with a low-pass filter to eliminate the periodic motion; this allowed a
accumulated displacement over any time to be compared with theory. For the horizontal motion, an interval of
±0.1σ/cg,0 was used to avoid displacement by the error wave. The vertical displacements were measured over half of
the wavepacket before the time of focus (t1 = −3Tg and t2 = 0). If only a small window before focus was used for the
vertical displacement, the measurements became very small and dominated by noise.

Appendix D: Vertical Lagrangian displacements

Figure 10 compares the measured vertical Lagrangian displacement profiles with theoretical predictions based on the
measured (linearized) free surface elevation from (24). The time integral in (24) has been taken from before the group
arrives (t1 = −3σ/cg,0) to focus time (t2 = 0). The agreement between measured and predicted vertical displacements
appears less satisfactory than for horizontal displacements because the values are an order of magnitude smaller,
leading to larger relative errors. Even so, measurements capture predictions in terms of their shape and magnitude,
including zero vertical displacements at the bottom, negative displacements at mid depth due to the return flow and
positive displacements near the free surface due to Stokes drift. Measurements and theory agree better in deeper
water (experiment 1-3 compared to experiments 4-9). This is most likely because the effect of the error wave is larger
in the shallower cases. Figure 11 shows scaled and non-dimensional measured vertical displacement profiles, allowing
experiments at the same relative depth k0d but a different group length σ = 1/(k0ε) to be overlaid. The measured
vertical displacements again show far more scatter than their horizontal counterparts. The increased magnitude of
the error wave at low k0d is evident in the additional scatter in the experiments at shallower relative depth.
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