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Preface

This work is the result of my first years as a researcher in Mathe-
matics, in particular in the field of Game Theory. Since high school I
have been certain to like Mathematics, by that time facing problems
became a hobby for me. I would like to thank Luisa, an excellent
high school teacher for helping me develop a mathematical way of
thinking and encouraging me to start a bachelor in Mathematics.
During the time spent studying Mathematics at the University of
the Basque Country I realized that my particular hobby would turn
endless. It was during the fifth course of the bachelor when I had
the opportunity to know the field of Game Theory. This happened in
Santiago the Compostela where I came following an exchange pro-
gram between both universities. During that year I had the luck to
follow two courses thought by Ignacio García Jurado, the first one
on Decision Theory and the second one on Game Theory.

Ignacio is one of the persons I am in debt with for being such a
good teacher. In addition, he helped me a lot when I made the de-
cision to start out as a researcher, thanks Ignacio for all your help.
My PhD started under his supervision and with the huge support
of the whole Santiago Game Theory research group (SaGaTh). Soon
after that I meet my current supervisors José María Alonso Meijide
and María Gloria Fiestras Janeiro who have been my greatest aca-
demic supports so far. I would like to express my gratitude to them
for all the time spent on me and for putting up with my stubborn-
ness so many times.

During these four years I had the opportunity to collaborate with
excellent researchers and to discover other ways of working during
my stays in prestigious research centers. The first such research
center is the University of Tilburg in The Netherlands, where I went
invited by Professor Peter Borm. I would like to thank his hospi-
tality and the nice atmosphere I found there. During my visit to
Tilburg I had the opportunity to share the office with Oriol Tejada
Punyol, now at the ETH-Zürich. By that time both of us were PhD
students and our talks late in the afternoon gave rise to a fruitful
scientific collaboration that still continues. Two of the chapters of
this dissertation prove this assertion. I would like to thank Oriol
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very sincerely for all the interesting discussions that we had and for
giving us the opportunity to carry our teamwork out. My second re-
search stay was at the Department of Applied Economics IV of the
University of the Basque Country under the supervision of Miren
Josune Albizuri Irigoien. Again I would like to thank her hospitality
and the chance to know this active research group. The work done
with Josune gave me the opportunity to broaden my research lines
and has proved to be very fruitful.

There is a lot of people to whom I am grateful from a professional
point of view. First, I would like to thank Alberto Pinto and Flavio
Ferreira (from the University of Porto and the Polytechnic Institute
of Porto, respectively) for giving me the opportunity to work with
them. I am much obliged to them for their hospitality and friendli-
ness. Second, I am also grateful to René van den Brink and Gerard
van der Laan (from the Free University of Amsterdam) for their cour-
tesy and cordiality. Most of the results of our collaboration were
obtained during a visit of Oriol and me to the Tinbergen Institute
of Amsterdam, so all the support from the Institute is gratefully ac-
knowledged. Finally, I would also like to thank all the members of
the SaGaTh research group, and all the members of the Department
of Statistics and Operations Research for all their help and support.

I would also like to mention all the PhD students from the Fac-
ulty of Mathematics that I have met during these years, in particular
all of my office mates.

Finally, I would also like to thank all the nice people I have met
during these years in Santiago. Specially, Tito, Sara, Faia, Iván, and
Eva, many thanks for your friendship and support. My warmest
appreciation goes to my dearest friend Anne, for all the wonderful
moments spent together.

Last, but not least, I want to thank my family for being my main
emotional support. With all of you close by everything is much
easier.
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Notations

This thesis is a collection of independent chapters and most of the
notation used is introduced in each of the chapters. However, it is
worth to introduce the followings symbols and notations that are
common throughout the thesis.

N The set of natural numbers
R The set of real numbers

R+ The set of non negative real numbers
∅ The empty set

T ⊆ S T is a subset of S
T ( S T is a subset of S and T is not equal to S
T ∪ S The set of elements which are contained in T or S
T ∩ S The set of elements which are contained in T and S

2N The set of all subsets of N
|S| The number of elements in S

RN
The |N |-dimensional real vector space, where the coordinates
are indexed by the elements of N

Π(N) The set of permutations over the finite set N
� End of a Proof
♦ End of an Example
C End of a Remark
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Introduction

The goal of Game Theory is the analysis of conflictive situations in
which more than one player interact. In such situations the agents
or players have different preferences over the outcomes of the game.
This research branch studies how rational individuals should be-
have when they have to face different kinds of conflictive situations.
Game Theory classifies such situations in two big groups. A situa-
tion is modelled as a non cooperative game when the players do not
have mechanisms to make binding agreements before the game is
played, in this first group each players’ “best” strategies are studied.
A situation is modelled as a cooperative game when players have
mechanisms to make binding agreements before the game itself is
played. The class of cooperative games is divided into transferable
and non transferable utility games. We assume that players obtain
utility from each possible outcome of the game depending on their
preferences. In cooperative transferable utility games, TU games
from now on, the utility that players get can be divided and trans-
ferred among other players without any loss. A main objective of
the research in TU games is the study of values that can be used
for different purposes. Most of the times, values are used for shar-
ing the utility obtained from the cooperation. However, there are
many situations in which values are used to measure the relative
importance of each of the players in the coalition that has emerged.

This dissertation is a collection of contributions for particular
classes of TU games. Classes of games that generalize the basic
model, the so-called games with restricted cooperation, and sim-
ple games, which constitute an important subclass of games. The
main contributions presented in this essay concern characteriza-
tion results. We characterize several values by means of properties.
Characterizing a value by means of properties is interesting for at
least to reasons. First, it may be more appealing to define a value
by means of properties instead of just giving its explicit definition
because in this way the features of the value can be summarized.
Second, characterization results may help on deciding whether to
use one value or another in a particular situation since the proper-
ties may have implications which are easy to interpret.
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INTRODUCTION

Chapter 1 starts introducing some basic concepts and notation
dealing with the basic model of TU games. Next, some of the existing
solution concepts are briefly described making an especial empha-
sis on the Shapley and Banzhaf values. These values are the basis
of most of the subsequent chapters. Chapters 2 through 5 study dif-
ferent types of games with restricted cooperation. In general, games
with restricted cooperation are built introducing additional informa-
tion to enrich the model. This information is represented by some
structure that describes the way in which the agents are allowed to
cooperate. These games are said to generalize TU games since there
is always a trivial structure which indicates that the cooperation is
not restricted at all.

Chapter 2 is devoted to the study of games with levels structure
of cooperation. The games with levels structure of cooperation gen-
eralize the games with a priori unions. A game with a priori unions
assumes that the players are organized in groups and that the co-
operation among them must “respect” this group structure. Hence,
the external information is in this case described by a partition of
the set of players. This type of games are proposed in Aumann
& Drèze (1974) and there is a vast literature related to them. In
Chapter 2 some of the most important results in this framework are
summarized first. Next, the model of games with levels structure of
cooperation is introduced. This model is proposed by Winter (1989)
and the literature related to it is quite limited. The contribution of
Chapter 2 is to generalize some of the existing results of games with
a priori unions to this more general model. More precisely, a value
that generalizes the Banzhaf value is proposed and parallel charac-
terizations of this value and a formerly existing value are presented.
By parallel characterizations we mean characterizations that can be
compared. Ideal parallel characterizations would share most of the
properties. In this way the different properties would highlight the
differences between the solution concepts. Finally, an example is
proposed to illustrate the use of the studied values. Chapter 2 is the
consequence of a joint work with Oriol Tejada and the main results
contained on it have already been published in Decision Support
Systems (Álvarez-Mozos & Tejada 2011).
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INTRODUCTION

Chapter 3 deals with share functions on several classes of games
with restricted cooperation. Share functions are introduced in van der
Laan & van den Brink (1998) as an alternative way to study the
Shapley and Banzhaf values. More precisely, the Shapley value and
the Normalized Banzhaf value. The concept of share functions al-
lows for a common approach to these two values, again highlighting
the differences among them. Chapter 3 studies share functions and
their generalizations in the classes of games that are considered in
Chapter 2. That is, TU games, games with a priori unions, and
games with levels structure of cooperation. The main results con-
tained in this chapter are the result of my ongoing collaboration
with Oriol Tejada, on the one hand, and René van den Brink and
Gerard van der Laan, on the other hand. At the moment an ar-
ticle containing the results presented in this chapter is under the
peer-reviewing process of an international journal and a working
paper has been published in the reports series of the Department of
Statistics and Operations Research of the University of Santiago de
Compostela (Álvarez-Mozos et al. 2011).

Another class of games with restricted cooperation that has a-
roused much interest among game theorists is the class of games
with graph restricted communication proposed by Myerson (1977).
In Chapter 4 this restriction to the cooperation is considered to-
gether with the a priori unions structure. First, some important
results of the literature related to the games with graph restricted
communication are recalled. Then, games with graph restricted
communication and a priori unions are studied. This class of games
with restricted cooperation is introduced by Vázquez-Brage et al.
(1996), where a generalization of the Shapley value is proposed and
characterized. The main contribution of Chapter 4 is to define and
characterize two generalizations of the Banzhaf value to this frame-
work. The characterizations ease the comparison of the three values
considered in this setting because they use similar properties. The
chapter concludes illustrating the values with an example coming
from the political field. The results contained in Chapter 4 con-
stitute my first publication and are the main contribution of my
MSc thesis. It is a joint work with my supervisors, José M. Alonso-
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INTRODUCTION

Meijide and M. Gloria Fiestras-Janeiro and has been published in
Mathematical Social Sciences (Alonso-Meijide et al. 2009a).

In Chapter 5 we study the model of games with incompatibilities.
In this case the restrictions to the cooperation are given by means of
a graph which describes the existing incompatibilities among play-
ers. To my knowledge, the existing literature on this topic is quite
limited. Indeed, only a generalization of the Shapley value has been
proposed. The main contribution of this chapter is to propose and
characterize a generalization of the Banzhaf value to this class of
games. This characterization is comparable with the characteriza-
tion of the formerly existing value, and hence, it helps to compare
both values. The chapter concludes studying a real example coming
from the political field. As the previous chapter, the work contained
in this chapter is a joint work with my supervisors, José M. Alonso-
Meijide and M. Gloria Fiestras-Janeiro. It contains the results of
my second publication (Alonso-Meijide et al. 2009b) which has been
published in Homo Oeconomicus.

Chapter 6 is probably the most different one. This chapter fo-
cuses on simple games and power indices. Hence, this time we do
not consider that the cooperation among the players is restricted,
instead we deal with a particular subclass of TU games. Simple
games are mainly used as tools to study decision making bodies,
such as Parliaments or Committees. This time we propose and
characterize two new power indices. Again, the characterizations
allow several power indices to be compared based on the proper-
ties satisfied by each of them. This chapter closes with the study of
the distribution of power in the Portuguese Parliament. The results
contained in this chapter are a joint work with my supervisor José
M. Alonso-Meijide on the one hand, and professors Alberto A. Pinto
and Flávio Ferreira, on the other hand. The results contained in
this chapter have already been published in the Journal of Differ-
ence Equations and Applications (Alonso-Meijide et al. 2011a) and
as a chapter in the book Dynamics, Games, and Science II (Alonso-
Meijide et al. 2011b). Moreover, another article has been recently
submitted for its possible publication in an international journal
(Álvarez-Mozos et al. submitted).
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1
Preliminaries

This Chapter is devoted to the introduction of the basic concepts of
the Cooperative Transferable Utility Game Theory that will be used
throughout the document. In Section 1.1, the cooperative trans-
ferable utility games are introduced and some important properties
of them stated. Section 1.1.1 revises the different approaches that
have been proposed in order to obtain solutions to this class of
games. Section 1.1.2 recalls with detail the main characterizations
of the Shapley and Banzhaf values. In Section 1.2 the family of
simple games is formally introduced. Section 1.2.1 concludes intro-
ducing power indices related to the Shapley and Banzhaf values.

1.1 Transferable utility games

Definition 1.1.1. A cooperative transferable utility game (game from
now on) is a pair (N, v), where N = {1, . . . , n} is the (finite) set of
players, and v : 2N → R+ is the characteristic function of the game,
which satisfies v(∅) = 0. In general, we interpret v(S) as the benefit
that S can obtain by its own, i.e., independent to the decisions of
players in N \ S. We will denote by GN the class of all games with
set of players N and by G the set of all games with any finite set of
players.

Note that we demand the worth of every coalition to be non neg-
ative, that is, we only consider benefits or savings games. This is
done for simplicity in the explanation but most of the stated results
hold also in the case in which some or all coalitions may have a

1



CHAPTER 1. PRELIMINARIES

negative worth. To avoid cumbersome notation braces will be omit-
ted whenever it does not lead to confusion, for example we will write
v(S ∪ i) or v(S \ i) instead of v(S ∪ {i}) or v(S \ {i}).

We can define the sum and the scalar product in the set GN in
the following way. Let (N, v), (N,w) ∈ GN and λ ∈ R.

• The sum game (N, v + w) ∈ GN is defined for every S ⊆ N by
(v + w)(S) = v(S) + w(S).

• The scalar product game (N,λv) ∈ GN is defined for every S ⊆ N
by (λv)(S) = λv(S).

The set GN together with the operations defined above has a vector
space structure. The neutral element in this space is the null game
(N, v0) ∈ GN , defined for every S ⊆ N , by v0(S) = 0. Shapley (1953)
shows that this space has dimension 2n − 1 and that the family
of unanimity games constitutes a basis of it. Given S ⊆ N , the
unanimity game with carrier S is defined for every T ⊆ N by

uS(T ) =

1 if S ⊆ T

0 otherwise

Then, any game can be uniquely written as a linear combination of
this type of games. In other words, given (N, v) ∈ GN , there exist a
unique set of scalars {λS ∈ R}∅6=S⊆N , for which

v =
∑
∅6=S⊆N

λSuS .

The scalars, λS, are known as the Harsanyi dividends (Harsanyi
1959, 1963) and defined for each S ⊆ N by

λS =
∑
T⊆S

(−1)t−sv(T ),

where s and t are the cardinalities of S and T respectively. Hence,
any game can be decomposed in its positive and negative parts

2



1.1. TRANSFERABLE UTILITY GAMES

(N, v+) and (N, v−). Let (N, v) ∈ G, then v + v− = v+ where

v+ =
∑
∅6=T⊆N
λT>0

λTuT , and v− =
∑
∅6=T⊆N
λT<0

λTuT .

There are important subclasses of games that play a crucial role
in the literature. Moreover, some of the results presented in the
subsequent chapters only hold in some of these classes of games.
Each family of games is characterized by a property that constitutes
a reasonable requirement in many real situations in which the game
is to be used. Next, we enumerate some interesting properties a
game may satisfy.

Definition 1.1.2. Let (N, v) ∈ G be a game.

• (N, v) is called additive if for every S, T ⊆ N such that S∩T = ∅,

v(S ∪ T ) = v(S) + v(T ).

• (N, v) is called superadditive if for every S, T ⊆ N such that
S ∩ T = ∅,

v(S ∪ T ) ≥ v(S) + v(T ).

• (N, v) is called monotone if for every S ⊆ T ⊆ N ,

v(S) ≤ v(T ).

The class of monotone games with set of players N is denoted
by MN and the set of monotone games with any finite set of
players byM.

• (N, v) is called convex if for every S ⊆ T ⊆ N ,

v(S ∪ i)− v(S) ≤ v(T ∪ i)− v(T ).

As one can expect, these classes of games are closely related.
Indeed, the implications depicted in Figure 1.1 hold.

Additive games are in a sense the most basic type of games. They
are defined by an |N |-dimensional vector whose coordinates repre-
sent the worth of each singleton coalition. The worth of any other
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CHAPTER 1. PRELIMINARIES

TU games

Monotone games

Superadditive games

Convex games

Additive games

Figure 1.1: Representation of important sub classes of games

coalition is obtained by simply adding up the individual worths of
each of its members. Clearly, in such a situation players do not have
incentives to form coalitions. In general in superadditive games
players have incentives to cooperate, i.e., they benefit from the co-
operation with the rest of players. Hence, in superadditive games
it can be assumed that the grand coalition N is to be formed. The
monotonicity property may be seen as a weakening of the superad-
ditivity property. In a monotone game larger coalitions are worthier.
However, in monotone games two coalitions can be better off on
their own rather than together. Next, let i ∈ N and (N, v) ∈ G, player
i’s marginal contribution to coalition S ⊆ N \ i is given by

v(S ∪ i)− v(S).

In convex games the marginal contribution of every player is a mono-
tone function in the sense that it does not decrease when the con-
sidered coalition enlarges. That is, in convex games a player’s
marginal contribution to a coalition is higher the larger the coalition
is. The marginal contribution of a player to a coalition measures the
change in the worth of the coalition when this player joins it. The
class of convex games represents an important subclass of games.

Finally, we formally introduce some type of players which are
specially interesting in a given game and which are the basis of
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1.1. TRANSFERABLE UTILITY GAMES

many properties that are used to characterize different solution con-
cepts. The particularities of these players are based on how their
marginal contributions behave.

Definition 1.1.3. Let (N, v) ∈ G be a game,

• Player i ∈ N is called a dummy player in (N, v) if for every
S ⊆ N \ i,

v(S ∪ i) = v(S) + v(i).

• Player i ∈ N is called a null player in (N, v) if it is a dummy
player and

v(i) = 0.

• Players i, j ∈ N are called symmetric in (N, v) if for every S ⊆
N \ {i, j},

v(S ∪ i) = v(S ∪ j)

Hence, a dummy player is a player, i, whose marginal contribu-
tion to any coalition coincides with the worth of her stand alone
coalition, v(i). That is, she contributes every coalition with the
worth she can obtain on her own. A null player is a player whose
marginal contribution to any coalition equals zero. In other words,
a null player is a dummy player such that the worth of her stand
alone coalition equals zero. Finally, a pair of players is symmetric
whenever their marginal contributions to every coalition coincide.

1.1.1 Solution concepts

The situations modelled by a game have a cooperative approach.
Therefore an implicit objective in any situation modelled by a game
is the grand coalition, N , to be formed, and the generated benefits to
be shared among the players. Hence, one of the goals of Cooperative
Game Theory is to distribute the worth of the grand coalition, v(N),
among the players involved. An allocation is simply a vector x ∈
RN , where each coordinate represents the amount allotted to each
player.

The aim is to provide a sharing rule which is “admissible” for
the players. But, what do we mean by admissible? This is an open
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CHAPTER 1. PRELIMINARIES

question in the literature and many different approaches have been
developed in the last years in order to obtain an answer to it. Two
of the most accepted principles are the individual rationality and
the efficiency. We say that an allocation x ∈ RN satisfies individual
rationality if it allocates each player, i, with at least what she can
obtain on her own, i.e., if v(i) ≤ xi. An allocation x ∈ RN is efficient
if it shares the worth of the grand coalition, i.e., if

∑
i∈N xi = v(N).

The allocations which satisfy these two properties are called impu-
tations. In general, a solution concept is a map that associates a
set of allocations to every game.

In general, solution concepts can be classified in two big groups.
In the first one we have the set-valued solutions. They are mainly
based on stability, i.e, they provide a set of solutions on which play-
ers will possibly agree. In other words, this approach discards those
payoffs which are not acceptable for a group of players. It depends
on the game, but these kind of solutions can be unique, can be a
set of different vectors or can even be empty. The most well known
such a solution concept is the core, which was introduced by Gillies
(1953). The idea behind the core is very simple. It follows a coali-
tional rationality principle, which states that no coalition should
have incentives to break the grand coalition. Other set-valued so-
lution concepts are the stable set (von Neumann & Morgenstern
1944), the bargaining set (Aumann & Maschler 1965), the kernel
(Davis & Maschler 1965), the Harsanyi set (Hammer et al. 1977,
Vasil’ev 1980), and the Weber set (Weber 1988). The second group
is formed by the so called point-valued solution concepts or val-
ues. From now on we will focus our attention on them. Each value
provides a solution which is fair in some sense.

A main objective of Cooperative Game Theory is to character-
ize values by means of reasonable properties. For doing so, first
desirable properties that the value satisfies must be identified and
then, a set of them must be chosen in such a way that the value
is the only one satisfying them. The most popular point-valued so-
lution concept is the Shapley value (Shapley 1953). There exists
a vast literature concerning this solution concept and many dif-
ferent characterizations have been provided. The characterizations

6



1.1. TRANSFERABLE UTILITY GAMES

help us to identify the basic properties that each value satisfies and
eases the comparison among the different values. Another popular
point-valued solution is the Banzhaf value (Banzhaf 1965). As we
will later see in its explicit expression, the Banzhaf value is very
similar to the Shapley value. Other point-valued solution concepts
include the nucleolus (Schmeidler 1969), the τ-value (Tijs 1981),
and the core center (González-Díaz & Sánchez-Rodríguez 2007).

1.1.2 The Shapley and Banzhaf values

This section is devoted to the description and comparison of the
Shapley and Banzhaf values. We will first present their explicit
definitions and next, review the characterizations results. These
point-valued solution concepts are the basis of most of the follow-
ing chapters.

Although Shapley (1953) introduces his value axiomatically, i.e.,
he first states a set of desirable properties which a value should
satisfy, and then proves that there is only one value satisfying them.
Here, we will first give the explicit analytical definitions of both the
Shapley and the Banzhaf values, to come to the discussion on the
properties later.

By a value on G we mean a map f that assigns a vector f(N, v) ∈
RN to every game (N, v) ∈ G.

Definition 1.1.4. (Shapley 1953). The Shapley value, Sh, is the
value on G defined for every (N, v) ∈ G and i ∈ N by

Shi(N, v) =
1

|N |!
∑

π∈Π(N)

[v(P πi ∪ i)− v(P πi )] ,

where P πi is the set of predecessors of i at π, i.e., P πi = {j ∈ N : π(j) <

π(i)}.

Note that many permutations give rise to the same set of pre-
decessors. It is an easy exercise to count how many times do they
repeat and to provide an alternative expression of the Shapley value.

7
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Remark 1.1.5. The Shapley value, Sh, is the value on G defined for
every (N, v) ∈ G and i ∈ N by

Shi(N, v) =
∑

S⊆N\i

s!(n− s− 1)!

n!
[v(S ∪ i)− v(S)] ,

where n = |N | and s = |S|. C

Definition 1.1.6. (Owen 1975). The Banzhaf value, Ba, is the value
on G defined for every (N, v) ∈ G and i ∈ N by

Bai(N, v) =
1

2n−1

∑
S⊆N\i

[v(S ∪ i)− v(S)] .

The explicit forms of the Shapley and Banzhaf values show how
both solutions concepts are based on the marginal contributions of
a player to the coalitions not containing this player. The difference
lies on the coefficients used to weight the addend.

The Shapley and Banzhaf values have a simple probabilistic in-
terpretation. For doing so we will base our explanation on the work
by Weber (1988) on probabilistic values.

Fix a player i ∈ N , and let {piS : S ⊆ N \ i} be a probability
distribution over the collection of coalitions not containing i. A value
f on G is a probabilistic value if for every (N, v) ∈ G and every i ∈ N ,

fi(N, v) =
∑

S⊆N\i

piS [v(S ∪ i)− v(S)] .

Let i view her participation in a game as consisting merely of
joining some coalition S ⊆ N \ i, and then receiving as a reward her
marginal contribution to this coalition, v(S ∪ i) − v(S). If, for each
S ⊆ N \ i, piS is the (subjective) probability that she joins coalition S,
then fi(N, v) is simply i’s expected payoff from participating in the
game.

As it can be seen in Remark 1.1.5 and Definition 1.1.6, both
Sh and Ba are instances of probabilistic values. The Banzhaf value
arises from the subjective belief that each player is equally likely to
join any coalition, that is, piS = 1

2n−1 for all S ⊆ N \ i. On the other
hand, the Shapley value arises from the belief that for every player,

8



1.1. TRANSFERABLE UTILITY GAMES

the coalition she joins is equally likely to be of any size s (0 ≤ s ≤
n − 1) and that all coalitions of a given size are equally likely. That
is, for every S ⊆ N \ i such that |S| = s,

piS =
1

n

(
n− 1

s

)−1

=
s!(n− s− 1)!

n!
.

To end with this section we state different characterizations of
both the Shapley and the Banzhaf values. For doing this we need
to define some properties a value on G, f, could be asked to satisfy.
At his point it is worth to make a note on the way the properties
are denoted throughout the whole document. Small capital letters
are used to depict an acronym for each property. Moreover, since
similar properties are used in different frameworks, each acronym
is preceded with some calligraphic letters that represent the class
of games on which it applies.

G:EFF A value on G, f, satisfies efficiency if for every (N, v) ∈ G,∑
i∈N

fi(N, v) = v(N).

G:DPP A value on G, f, satisfies the dummy player property if for
every (N, v) ∈ G and each dummy player i ∈ N in (N, v),

fi(N, v) = v(i).

G:NPP A value on G, f, satisfies the null player property if for every
(N, v) ∈ G and each null player i ∈ N in (N, v),

fi(N, v) = 0.

G:SYM A value on G, f, satisfies symmetry if for every (N, v) ∈ G and
each pair of symmetric players i, j ∈ N in (N, v),

fi(N, v) = fj(N, v).

9



CHAPTER 1. PRELIMINARIES

G:ANO A value on G, f, satisfies anonymity if for every (N, v) ∈ G and
π ∈ Π(N),

fπ(i)(N, v) = fi(N, πv),

where the game πv is defined for all S ⊆ N by πv(S) = v(π(S)).

G:ADD A value on G, f, is additive (or satisfies additivity) if for every
pair of games (N, v), (N,w) ∈ G,

f(N, v + w) = f(N, v) + f(N,w).

G:TRP A value on G, f, satisfies the transfer property if for every pair
of games (N, v), (N,w) ∈ G,

f(N, v) + f(N,w) = f(N, v ∨ w) + f(N, v ∧ w),

where (N, v ∨ w), (N, v ∧ w) ∈ G are defined for every S ⊆ N by
(v ∨ w)(S) = max{v(S), w(S)} and (v ∧ w)(S) = min{v(S), w(S)}.

G :2-EFF A value on G, f, satisfies 2-efficiency if for every (N, v) ∈ G
and each pair of players i, j ∈ N ,

fi(N, v) + fj(N, v) = fp(N
ij , vij),

where (N ij , vij) is the {ij}-merged game obtained from (N, v)

when players i and j merge in a new player p /∈ N , i.e., N ij =

(N \ {i, j}) ∪ {p} and for every S ⊆ N ij

vij(S) =

v(S) if p /∈ S

v((S \ p) ∪ {i, j}) if p ∈ S

G :2-EFF* A value on G, f, satisfies 2-efficiency* if for every (N, v) ∈ G
and each pair of players i, j ∈ N ,

fi(N, v) + fj(N, v) ≤ fp(N
ij , vij).

G :2-AEF A value on G, f, satisfies 2-amalgamation efficiency if for

10
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every (N, v) ∈ G,

fi(N \ j, vi/j) = fi(N, v) + fj(N, v),

where (N \ j, vi/j) is the {i / j}-amalgamation game obtained
from (N, v) when player j leaves the game and delegates her
role to player i, i.e., for every S ⊆ N \ j,

vi/j(S) =

v(S) if i /∈ S

v(S ∪ j) if i ∈ S

G:TPP A value on G, f, satisfies the total power property if for every
(N, v) ∈ G,

∑
i∈N

fi(N, v) =
1

2n−1

∑
i∈N

∑
S⊆N\i

[v(S ∪ i)− v(S)] =
∑
S⊆N

(2s− n)v(S).

G:SMO A value on G, f, satisfies strong monotonicity if for every pair
of games (N, v), (N,w) ∈ G and each i ∈ N such that for all
S ⊆ N \ i, v(S ∪ i)− v(S) ≤ w(S ∪ i)− w(S), then

fi(N, v) ≤ fi(N,w).

G:EMC A value on G, f, satisfies equal marginal contributions if for
every pair of games (N, v), (N,w) ∈ G and each i ∈ N such that
for all S ⊆ N \ i, v(S ∪ i)− v(S) = w(S ∪ i)− w(S), then

fi(N, v) = fi(N,w).

A value is efficient if it completely shares the worth of the grand
coalition, v(N), among the players. When a value is used for sharing
purposes, G:EFF is an essential property.

G:DPP states that a player whose marginal contribution to any
coalition is always the worth she can obtain on her own, v(i), should
be allotted with exactly that amount. G:NPP is just G:DPP only re-
quired for null players.

11
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A value is symmetric when it allocates the same amount to play-
ers whose marginal contribution to every coalition coincide. The
anonymity property states that the amount that a player receives
does not depend on her label or relative position inside N . G:ANO

implies G:SYM while the reverse does not hold in general.

G:ADD is a standard property in the literature, even if it has been
criticized for the use of the sum game. It states that the payoff of the
sum game equals the sum of payoffs in the original games. G:TRP

avoids the use of the sum game but it is very similar to G:ADD.

The G:2-EFF and G:2-AEF properties, as well as G :2-EFF*, describe
how a value should behave when two players of the original game
are not allowed to act independently anymore and in order to pro-
ductively cooperate with other players both of them must be to-
gether. Indeed, G:2-EFF and G:2-AEF state that a value should be
immune against such changes. In a sense, they are quite similar
properties which has lead some authors to think that they are the
same property (see Casajus (to appear) for instance). However, note
that the {ij}-merged game and the {i / j}-amalgamation game have
different players’ sets, and hence, they are different games. The dif-
ference lies on the name given to the merged or amalgamated player,
in one case it is new player, p, which acts on behalf of players i and
j, in the other case one player i stays in the game and player j leaves
delegating her role to player i. Consequently, G:2-EFF and G:2-AEF

are different properties. This confusion between G :2-EFF and G :2-AE

is addressed in Alonso-Meijide et al. (submitted). Using Theorem
1 of Casajus (to appear) it can be easily seen that G:2-AEF implies
G:2-EFF. Nevertheless, the reverse implications does not hold as the
following example shows.

Example 1.1.7. Let a, b be two distinct, fixed, and indivisible players.
By indivisible we mean that there is no pair of players i, j such that
{i, j} = a or {i, j} = b. Let g be the value defined for every (N, v) ∈ G
by

• If N = {a, b},

{
ga(N, v) = 3

4 [v(N)− v(b)] + 1
4v(a)

gb(N, v) = 1
4 [v(N)− v(a)] + 3

4v(b)

• Otherwise g(N, v) = Ba(N, v).

12
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Then, g satisfies G:2-EFF but not G:2-AEF. To show that g does not
satisfy G:2-AEF, take N = {a, b, c} and v = u{a,b}. Then,

ga(N, v) + gb(N, v) = Baa(N, v) + Baa(N, v) = 1 and

ga(N \ c, va/c) =
3

4
[v(N)− v(b)] +

1

4
v(a) =

3

4
.

Finally, g satisfies G:2-EFF. The proof is straightforward taking into
account that a and b are singletons and hence, it is not possible to
have a pair of players i, j such that a = {i, j} or b = {i, j}. ♦

The {ij}-merged game is first introduced by Lehrer (1988) and
used to propose the G :2-EFF* property. Observe that G :2-EFF* is just
a weaker version of G:2-EFF. It states that a value that satisfies it is
immune against the artificial splitting of a player in two new players.
To our knowledge the {i / j}-amalgamation game is introduced in
Casajus (to appear).

G:TPP establishes that the total payoff obtained by the players is
the sum of all marginal contributions of every player normalized by
2n−1. Depending on the particular game this amount may be more,
less or equal to v(N).

The last two properties, G:SMO and G:EMC are logically related
since G:SMO implies G:EMC. They link the payoffs of two games with
the differences between the marginal contributions of the aforemen-
tioned games.

There is a vast literature concerning characterizations of the
Shapley and Banzhaf values by means of properties. Next, we
present the main such characterization results. In Shapley (1953)
the Shapley value is introduced in an axiomatic way.

Theorem 1.1.8. (Shapley 1953). The Shapley value, Sh, is the unique
value on G satisfying G:EFF, G:NPP, G:SYM, and G:ADD.

In Young (1985) the Shapley value is characterized without G:ADD

property, which is the most criticized one among the properties used
in the characterization by Shapley.

Theorem 1.1.9. (Young 1985). The Shapley value, Sh, is the unique
value on G satisfying G:EFF, G:SYM, and G:SMO (or G:EMC).

13
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One can easily check that if G:SMO is replaced by G:EMC the
uniqueness of the characterization above still holds. In general,
characterizations by means of properties are tighter the weaker the
properties are. Thus, characterizations by means of weaker proper-
ties are preferable. Henceforth, we will refer to the characterization
of the Shapley value by Young as the characterization by means of
G:EFF, G:SYM, and G:EMC.

Feltkamp (1995) presents parallel characterizations of both the
Shapley and Banzhaf values. The properties used in the characteri-
zations either coincide or are comparable. In this way a comparison
of the properties that each solution concept satisfies can be easily
done.

Theorem 1.1.10. (Feltkamp 1995). The Shapley value, Sh, is the
unique value on G satisfying G:EFF, G:NPP, G:ANO, and G:TRP.

The first characterization of the Banzhaf value which makes use
of G:SYM, G:ADD and G:DPP is stated in Lehrer (1988). In this theo-
rem Shapley’s G:EFF property is substituted by G:2-EFF*.

Theorem 1.1.11. (Lehrer 1988). The Banzhaf value, Ba, is the unique
value on G satisfying G:2-EFF*, G:NPP, G:SYM, and G:ADD.

Theorem 1.1.12. (Feltkamp 1995). The Banzhaf value, Ba, is the
unique value on G satisfying G:TPP, G:NPP, G:ANO, and G:TRP.

Nowak (1997) shows that the Banzhaf value actually satisfies
G:2-EFF property, which is a strengthening of G:2-EFF* property used
in Theorem 1.1.11.

Theorem 1.1.13. (Nowak 1997). The Banzhaf value, Ba, is the
unique value on G satisfying G:2-EFF, G:DPP, G:SYM, and G:EMC.

In a recent work (Casajus to appear) provides a new characteri-
zation of the Banzhaf value by means of only two properties.

Theorem 1.1.14. (Casajus to appear). The Banzhaf value, Ba, is the
unique value on G satisfying G:2-AEF and G:DPP.

Another recent work which provides a characterization of the
Banzhaf value is Lorenzo-Freire et al. (2007).

14
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Theorem 1.1.15. (Lorenzo-Freire et al. 2007). The Banzhaf value,
Ba, is the unique value on G satisfying G:TPP, G:SYM, and G:SMO.

From the results presented above, four parallel characterizations
may be considered, more precisely, Theorems 1.1.8 versus 1.1.11,
1.1.10 versus 1.1.12, 1.1.9 versus 1.1.13, and 1.1.9 versus 1.1.14.
By parallel we mean characterizations of Sh and Ba by means of
similar sets of properties. In this case this similarity is a conse-
quence of having some of the properties in common and hence, the
differences are restricted to one or two properties. These parallel
characterizations are depicted in Table 1.1

Sh Ba

Shapley (1953)

G:EFF G:2-EFF*

Lehrer (1988)
G:NPP G:NPP

G:SYM G:SYM

G:ADD G:ADD

Feltkamp (1995)

G:EFF G:TPP

Feltkamp (1995)
G:NPP G:NPP

G:ANO G:ANO

G:TRP G:TRP

Young (1985)
G:EFF

G:2-EFF

Nowak (1997)
G:DPP

G:SYM G:SYM

G:EMC G:EMC

Young (1985)
G:EFF G:2-AEF

Casajus (to appear)G:SYM

G:EMC G:DPP

Table 1.1: Parallel characterizations of Sh and Ba

As it can be seen, there are few but important differences be-
tween Sh and Ba. The Shapley value is efficient while the Banzhaf
value is not. The Banzhaf value divides the amount indicated by the
total power property. The last property that makes the difference
between Sh and Ba is the 2-efficiency. The Banzhaf value shares
it while the Shapley value does not (in fact it does not satisfy the
weaker 2-efficiency*). In many situations the efficiency is a basic
requirement. However there are situations in which a value is not
used for sharing purposes. For instance, we may use a value to
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compare the possibilities of the players to be influential in a given
situation, in such a situation the efficiency is less crucial. Hence,
the decision whether to use Sh or Ba depends on the situation under
study.

If we want to use the Banzhaf value for sharing purposes we may
re-scale it to guarantee that the sum of the payoffs equals v(N).
However, as has been argued by several authors, such a normal-
ization is not as innocent as it seems (Dubey & Shapley 1979). In
particular, the probabilistic interpretation of the Banzhaf value is
lost and the dummy player and additivity properties are violated.
We present the formal definition of the normalized Banzhaf value
next.

Definition 1.1.16. (van den Brink & van der Laan 1998a). The
normalized Banzhaf value, Ba, is a value on G defined for every
(N, v) ∈ G and i ∈ N by

Bai(N, v) =
Bai(N, v)∑
j∈N Baj(N, v)

v(N), if (N, v) ∈ G+

and Bai(N, v0) = 0.

A characterization of the normalized Banzhaf value can be found
in van den Brink & van der Laan (1998a) for the class of mono-
tone games. The value is characterized by means of efficiency, null
player out, additive game, independence of irrelevant permutations,
and proportional proxy agreement properties. The last two proper-
ties may also be replaced by independence of irrelevant unanim-
ity replacements and unanimity proxy properties which are slightly
weaker. However, all properties but efficiency are quite different
from the ones seen before in characterizations of both Shapley and
Banzhaf values, and hence, their formal definitions are omitted.
The interested reader is referred to van den Brink & van der Laan
(1998a) and van den Brink & van der Laan (1998b).

An interesting way to avoid the “efficiency issue” is to consider
share functions. The concept of share functions is first introduced
in a working paper back in 1995 which gave rise to van der Laan &
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van den Brink (1998). A share vector for a game (N, v) ∈ G is an |N |-
dimensional real vector, ρ ∈ RN such that,

∑
i∈N ρi = 1 and for every

i ∈ N ρi ≥ 0. ρi represents player i’s share in the worth to be dis-
tributed. By a share function on G we mean a map, ρ, that assigns to
every game (N, v) ∈ G a share vector ρ(N, v) ∈ {x ∈ RN : for every i ∈
N, xi ≥ 0 and

∑
i∈N xi = 1}. Hence, in every game (N, v) ∈ G, a share

function ρ gives a payoff ρi(N, v)v(N) to player i ∈ N . In the literature
share functions are considered on the subclass of monotone games,
which covers the most interesting situations modeled by games. The
reason is that negative shares want to be discarded. Consequently
a share function for monotone games may be obtained from each
value on G just by normalizing it. The literature related to share
functions includes van den Brink & van der Laan (2001), where the
core is studied using share functions, and van den Brink & van der
Laan (2007), where the concepts of potentials and reduced games
are modified for share functions. Then, a share function on M is a
map, ρ, that assigns to every monotone game (N, v) ∈M a share vec-
tor ρ(N, v) ∈ {x ∈ RN : for every i ∈ N, ρi(N, v) ≥ 0 and

∑
i∈N xi = 1}.

Chapter 3 deals with share functions on different classes of games.
Next, we introduce the share functions associated with the Shapley
and Banzhaf values.

Definition 1.1.17. The Shapley share function, ρSh, is a share func-
tion onM defined for every (N, v) ∈M and i ∈ N by

ρShi (N, v) =
Shi(N, v)

v(N)
if (N, v) ∈M+,

and ρShi (N, v0) = 1
n .

Definition 1.1.18. The Banzhaf share function, ρBa, is a share func-
tion onM defined for every (N, v) ∈M and i ∈ N by

ρBai (N, v) =
Bai(N, v)∑
j∈N Bai(N, v)

=
Bai(N, v)

v(N)
if (N, v) ∈M+,

and ρBai (N, v0) = 1
n .
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1.2 Simple games

In this section an important subclass of games is introduced and
some basic results in this framework are revised. The origin of the
idea behind simple games dates back to von Neumann & Morgen-
stern (1944). However, the concept is redefined by Shapley (1962)
and most of the work done on the subject is based on this later
definition. One of the most important features of simple games is
concerned with its applications. In fact, simple games are widely
accepted tools to model decision making bodies, like parliaments or
committees. Therefore, these games are a main objective of Social
Choice and very useful in Political Sciences. Felsenthal & Machover
(1998) constitutes a good survey on the topic.

A simple game is a non-nul monotone game such that the worth
of every coalition is either 0 or 1. Formally, (N, v) ∈ G is a simple
game if and only if

• (N, v) ∈M,

• for every S ⊆ N , v(S) ∈ {0, 1}, and

• v(N) = 1.

The class of all simple games is denoted by SG.

In a simple game (N, v) ∈ SG, a coalition S ⊆ N is winning if
v(S) = 1, and losing if v(S) = 0. W (v) denotes the set of winning
coalitions of the simple game (N, v) and, given i ∈ N , Wi(v) denotes
the subset of W (v) formed by coalitions containing player i, i.e.,
Wi(v) = {S ∈W (v) : i ∈ S}. Given a simple game (N, v) ∈ SG, a swing
for a player i ∈ N is a coalition S ⊆ N such that i ∈ S, S is a winning
coalition, and S \ i is a losing coalition. The set of all swings for
player i ∈ N is denoted by ηi(v). Any simple game (N, v) ∈ SG may
be described by its set of winning coalitions W (v). Given a player set
N and an arbitrary family of coalitions W ⊆ 2N , we abuse notation
slightly and write (N,W ) ∈ SG if

• ∅ /∈W ,

• N ∈W , and
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• for every S ⊆ T ⊆ N , if S ∈W then T ∈W .

A winning coalition S ∈ W (v) is a minimal winning coalition if ev-
ery proper subset of S is a losing coalition, that is, S is a minimal
winning coalition in (N, v) if v(S) = 1 and v(T ) = 0 for every T ( S.
Wm(v) denotes the set of minimal winning coalitions of the game
(N, v) and Wm

i (v) the subset of Wm(v) formed by coalitions contain-
ing player i, i.e., Wm

i (v) = {S ∈ Wm(v) : i ∈ S}. Similar to the case
of winning coalitions, a simple game may also be defined by its set
of minimal winning coalitions Wm(v). Given a player set N and an
arbitrary family of coalitions Wm ⊆ 2N , we abuse notation slightly
and write (N,Wm) ∈ SG if

• ∅ /∈Wm,

• Wm 6= ∅, and

• for every S, T ∈Wm, S 6⊂ T and T 6⊂ S.

It is easy to obtain the set of minimal winning coalitions from the
set of winning coalitions and vice versa, i.e.,

Wm(v) = {S ∈W (v) : for every T ( S, T /∈W (v)},

W (v) = {S ⊆ N : there is T ⊆ S, T ∈Wm(v)}.

1.2.1 Power indices

When simple games are considered, the concept of value for general
games is known as power index. As mentioned before, simple games
and power indices constitute one of the most fruitful application of
Mathematics to Social Sciences. Therefore, a vast literature exists
and many power indices have been introduced so far. The features
of each solution concept have been studied and the different power
indices have been compared. In Chapter 6 simple games and power
indices are taken back again, in order to present a proposal of two
new power indices that have not been considered yet.

In this setting, power is understood as the ability of a player to
influence the outcome in a voting. By a power index we mean a map
f that assigns a vector f(N, v) ∈ RN to every simple game (N, v) ∈ SG.
Since simple games are a subclass of games, each value on G can
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be restricted to simple games giving rise to a power index. In the
definitions below the restrictions of Sh and Ba to simple games are
presented.

Definition 1.2.1. (Shapley & Shubik 1954). The Shapley-Shubik
power index, SS, is a power index defined for every (N, v) ∈ SG and
i ∈ N by

SSi(N, v) =
∑

S∈ηi(v)

s!(n− s− 1)!

n!
,

where s = |S|.

Definition 1.2.2. (Banzhaf 1965, Coleman 1971, Penrose 1946).
The Penrose-Banzhaf-Coleman power index, PBC, is a power index
defined for every (N, v) ∈ SG and i ∈ N by

PBCi(N, v) =
|ηi(v)|
2n−1

.

It is worth to make a comment on the origin of these power in-
dices. On the one hand, the Shapley-Shubik power index is in-
troduced as a direct application of the Shapley value (introduced
one year earlier) to simple games. On the other hand, the Penrose-
Banzhaf-Coleman power index is introduced independently in the
three papers cited above. Penrose (1946) constitutes one of the first
properly scientific proposal to measure the a priori voting power, but
it lay unnoticed by the scientific community for decades. In Banzhaf
(1965), the ideas used by Penrose are reconsidered. Finally, Cole-
man (1971) measures the a priori voting power using the PBC power
index apparently unaware of the previous works. Few years later,
the PBC power index is generalized to the whole class of games by
Owen (1975) and denoted the Banzhaf value (see Definition 1.1.6).
The interested reader is referred to Felsenthal & Machover (2005).
In Laruelle & Valenciano (2008) a critical survey of the literature
is done reflecting in some sense the difficulties that arise when it
comes to measure the power.

The power indices defined above have an interesting probabilis-
tic interpretation that is explained next following Straffin (1988).
Assume that pi is the probability that player i votes in favour of
a bill and that this probability follows a uniform distribution on
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[0, 1]. In such a situation the Shapley-Shubik index is the proba-
bility of player i’s vote to change the result under the homogeneity
assumption, i.e., if pi = p for every i ∈ N . On the other hand, the
Penrose-Banzhaf-Coleman index is the same probability under the
independence assumption, i.e., pi and pj are independent for every
i 6= j ∈ N .

The characterization results of Section 1.1.2 may not hold for
the class of simple games. In particular those characterizations
that use additivity do not hold in SG. The problem is that the
sum of two simple games is never a simple game, and hence, the
additivity property becomes vacuous. To overcome this difficulty,
additivity can be replaced by the transfer property. Note that if
(N, v), (N,w) ∈ SG, then (N, v∧w), (N, v∨w) ∈ SG. In order to present
characterizations of SS and PBC formally, some of the properties
stated in Section 1.1.2 need to be redefined for this context.

SG:EFF A power index, f, satisfies efficiency if for every (N, v) ∈ SG,∑
i∈N

fi(N, v) = 1.

SG:NPP A power index, f, satisfies the null player property if for every
(N, v) ∈ SG and each null player i ∈ N in (N, v),

fi(N, v) = 0.

SG:SYM A power index, f, satisfies symmetry if for every (N, v) ∈ SG
and each pair of symmetric players i, j ∈ N in (N, v),

fi(N, v) = fj(N, v).

SG:TRP A power index, f, satisfies the transfer property if for every
pair of simple games (N, v), (N,w) ∈ SG,

f(N, v) + f(N,w) = f(N, v ∨ w) + f(N, v ∧ w).

SG:TPP A power index, f, satisfies the total power property if for ev-
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ery simple game (N, v) ∈ SG,

∑
i∈N

fi(N, v) =

∑
i∈N |ηi(v)|

2n−1
.

Next, in line with the characterizations of Sh and Ba presented
in Section 1.1.2, parallel characterizations of SS and PBC are pre-
sented.

Theorem 1.2.3. (Dubey 1975) The Shapley-Shubik power index, SS,
is the unique power index satisfying SG:EFF, SG:SYM, SG:NPP, and
SG:TRP.

Theorem 1.2.4. (Dubey & Shapley 1979) The Penrose-Banzhaf-Co-
leman power index, PBC, is the unique power index satisfying SG:TPP,
SG:SYM, SG:NPP, and SG:TRP.

As mentioned in Section 1.1.2, the main difference between Sh

and Ba is that the former is efficient while the later satisfies the total
power property. The characterizations above show that this differ-
ence is transferred when simple games are considered. Hence, the
main difference between SS and PBC is that the former is efficient
while the latter satisfies the total power property. However, when
the goal is to compare the strength of two players the efficiency
may not be necessary. Besides, if in a voting body, the unanim-
ity is needed to reach an agreement, the voting body itself would
have less power than if we consider the majority rule, because it
will be more difficult to make a decision. An efficient power index
can make no difference between these two situations. As before,
the parallel characterizations stated in Theorems 1.2.3 and 1.2.4
are summarized in Table 1.2.

SS PBC

Dubey (1975)

SG:EFF SG:TPP

Dubey & Shapley (1979)
SG:NPP SG:NPP

SG:SYM SG:SYM

SG:TRP SG:TRP

Table 1.2: Parallel characterizations of SS and PBC
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Finally, I would also like to mention several papers that pro-
pose different characterizations of SS and PBC as an example of the
large literature existing in this topic. See for instance, Owen (1978),
Haller (1994), Albizuri & Ruiz (2001), Laruelle & Valenciano (2001),
and Barua et al. (2005). We omit the formal statement of these
results for the shake of brevity.
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2
Games with levels structure of

cooperation

In the game theoretical models introduced in Chapter 1 there is
no restriction to the cooperation, and the game is defined by the
worth that any coalition can obtain by its own. However, there are
many real situations in which there is a priori information about
the behavior of the players or there are environmental restrictions
and only partial cooperation occurs. Different approaches have
been used to address this type of situations and different models
of games with restricted cooperation have been studied so far.

Aumann & Drèze (1974) consider that the restrictions to the co-
operation are given by a partition of the set of agents. This partition
is capable of modelling the affinities among agents. The model in-
cluding a game and such a partition is called a game with a priori
unions. For this family of games, Owen (1977) proposes and charac-
terizes a modification of the Shapley value to allocate the total gains,
the so called Owen value. This value initially splits the total amount
among the unions, according to the Shapley value in the induced
game played by the unions (quotient game). Then, once again using
the Shapley value within each union, its total reward is allocated
among its members (quotient game property), taking into account
their possibilities of joining other unions. Owen (1982) defines a
modification of the Banzhaf value following a similar procedure,
known as the Banzhaf-Owen value. The first characterization of the
Banzhaf-Owen value is proposed in Amer et al. (2002). As argued
in Amer et al. (2002) the Banzhaf-Owen value does not satisfy two
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interesting properties: symmetry among unions and the quotient
game property. In order to solve such a drawback, Alonso-Meijide
& Fiestras-Janeiro (2002) define and characterize the Symmetric
coalitional Banzhaf value, a different modification of the Banzhaf
value, that satisfies the two properties considered above. The Sym-
metric coalitional Banzhaf value uses the Banzhaf value to allocate
the payoff among the unions and the Shapley value to split this
payoff within the members of each union. In Alonso-Meijide et al.
(2007), a comparison among the three aforesaid values is presented.

Winter (1989) takes one step beyond by introducing games with
many levels of cooperation, which extends the model of games with
a priori unions. He proposes and characterizes an extension of the
Owen value for this kind of situations, which we will call the Shap-
ley levels value. As before, players are assumed to be organized in
groups to bargain for the division of the worth available (first level of
cooperation). Nevertheless, this time the formed unions may again
organize themselves in larger groups (second level of cooperation)
while they maintain their internal obligations of the first level, and
so on and so forth. Hence, this time the restrictions to the coopera-
tion are described by a sequence of partitions of the player set, each
of them being coarser than the previous ones. Calvo et al. (1996)
give an alternative characterization of the Shapley levels value us-
ing a balanced contributions property and Vidal-Puga (2005) im-
plements the Shapley levels value in a subgame perfect equilibrium
of a particular bidding mechanism. More recently, Alonso-Meijide &
Carreras (2011) propose the so called Proportional coalitional Shap-
ley value, which is a value for games with a priori unions and show
that it can be easily extended to the levels structure framework.
This new value also follows a two steps procedure. As the Owen
value does, it shares according to the Shapley value among the
unions but in a second step it shares the amount alloted to each
union according to the Shapley values of its members in the origi-
nal game.

This chapter is the consequence of a joint work with Oriol Tejada
from ETH-Zürich and the main results contained here have been
published in Decision Support Systems (Álvarez-Mozos & Tejada
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2011). The remaining part of the chapter is organized as follows. In
Section 2.1 we recall the model of games with a priori unions and
the main results concerning the Owen, the Banzhaf-Owen, and the
Symmetric coalitional Banzhaf values. In Section 2.2 the model of
games with levels structure of cooperation is introduced. The main
results of the literature concerning this model are revised and the
so called Banzhaf levels value is introduced. Section 2.2.1 proceeds
with the characterization of the two values considered previously.
Finally, in Section 2.2.2 an example is presented to illustrate the
studied values.

2.1 Games with a priori unions and values on GU

Let us consider a finite set of agents, say, N = {1, . . . , n}. We will de-
note the set of all partitions of N by P (N). Each P = {P1, . . . , Pm} ∈
P (N) is called a system of a priori unions or coalition structure on
N and each Pk ∈ P is called a union. The so called trivial coali-
tion structures are Pn = {{1}, {2}, . . . , {n}}, where each union is a
singleton, and PN = {N}, where the only union is the grand coali-
tion. Let P = {P1, . . . , Pm} ∈ P (N) and consider that each union
selects a representative. The set of such representatives is denoted
by M = {1, . . . ,m}. For i ∈ Pk ∈ P , P−i will denote the partition
obtained from P when player i leaves the union Pk and becomes a
singleton, i.e.

P−i = {Ph ∈ P |h 6= k} ∪ {Pk \ i, {i}}.

A game with a priori unions is a triple (N, v, P ) where (N, v) ∈ G
and P ∈ P (N). We denote by GU the set of all such games.

Definition 2.1.1. Given a game with a priori unions (N, v, P ) ∈ GU ,
the associated quotient game (M,vP ) ∈ G is the game played by the
unions and defined for every R ⊆M by

vP (R) = v(PR),

where PR = ∪k∈RPk. Note that if P = Pn, vP = v.
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Next, we recall some of the point-valued solution concepts exist-
ing in the literature for this class of games. A value on GU is a map
f that assigns a vector f(N, v, P ) ∈ RN to every game with a priori
unions (N, v, P ) ∈ GU . In this context we consider three possible
extensions of the Shapley and Banzhaf values.

Definition 2.1.2. (Owen 1977). The Owen value, Ow, is the value
on GU defined for every (N, v, P ) ∈ GU and i ∈ N by

Owi(N, v, P )

=
∑

R⊆M\k

∑
T⊆Pk\i

r!(m− r − 1)!t!(pk − t− 1)!

m!pk!
[v(PR ∪ T ∪ i)− v(PR ∪ T )] ,

where i ∈ Pk ∈ P , r = |R|, m = |M | = |P |, pk = |Pk|, and t = |T |.

Definition 2.1.3. (Owen 1982). The Banzhaf-Owen value, BO, is
the value on GU defined for every (N, v, P ) ∈ GU and i ∈ N by

BOi(N, v, P ) =
∑

R⊆M\k

∑
T⊆Pk\i

1

2m−1

1

2pk−1
[v(PR ∪ T ∪ i)− v(PR ∪ T )] ,

where i ∈ Pk ∈ P , m = |M | = |P |, and pk = |Pk|.

Definition 2.1.4. (Alonso-Meijide & Fiestras-Janeiro 2002). The
Symmetric coalitional Banzhaf value, SCB, is the value on GU defined
for every (N, v, P ) ∈ GU and i ∈ N by

SCBi(N, v, P ) =
∑

R⊆M\k

∑
T⊆Pk\i

1

2m−1

t!(pk − t− 1)!

pk!
[v(PR ∪ T ∪ i)− v(PR ∪ T )] ,

where i ∈ Pk ∈ P , m = |M | = |P |, pk = |Pk|, and t = |T |.

The values on GU considered above follow a two steps procedure.
In the first step the worth of the grand coalition is shared among the
unions and in the second step the amount allotted to each union
is shared among the members of the union. There exists a vast
literature concerning values on GU and their characterizations by
means of properties, mainly in the case of the Owen value. However,
for the purpose of this work we do not need to present all of them
in detail.
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The first characterization of Ow is proposed in Owen (1977), in
the paper where the value on GU is introduced. This first char-
acterization is based on five properties, the carrier property, two
anonymity properties, one for the unions and another for the play-
ers, additivity, and one last property which is the basis of the quo-
tient game property which will be presented soon. The carrier prop-
erty together with the null player property is equivalent to efficiency.
In Hart & Kurz (1983) three different characterizations of Ow are
proposed. The three of them are based on efficiency, symmetry, and
additivity but they differ in the fourth property. In Winter (1992) the
Owen value is characterized making use of a consistency property
which states that the payoff of any player i ∈ Pk ∈ N can be de-
rived from a reduced game whose player set is a subset of Pk. Amer
& Carreras (1995b) obtain a characterization of Ow which is based
on only three properties although two of them are quite demand-
ing. Another characterization of the Owen value can be found in
Vázquez-Brage et al. (1997) and will be presented in this section.
In Hamiache (1999), Albizuri & Zarzuelo (2004), and Albizuri (2008)
new characterizations of the Owen value are proposed.

The first characterization of the Banzhaf-Owen value is proposed
in Albizuri (2001), but only on the restricted domain of simple games.
The first characterization of BO on the full domain of games with a
priori unions is established in Amer et al. (2002). The authors use
six properties, three well known properties in the literature (additiv-
ity, dummy player property, and symmetry), and three other proper-
ties which have (to my knowledge) never been used before, although
they appear to be very interesting and easy to interpret. Two of these
new properties are based on a delegation game, which is a game ob-
tained from the original one, considering that a player delegates his
role to another player, and a last property called Many null players
whose definition is quite cumbersome. The aforementioned delega-
tion game follows the same idea of the {i / j}-amalgamation game
game, (N, vi/j), introduced in Section 1.1.2 to define the G:2-AEF

property. However, the former maintains the players set N fixed
even though player j becomes a null player while the later sends
player j off. As they said in Remark 3.3(b) their characterization
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is far from giving rise to an almost common (a parallel) characteri-
zation of both Ow and BO similar to Feltkamp’s one for Sh and Ba.
With that target Alonso-Meijide et al. (2007) propose a new char-
acterization of the Banzhaf-Owen value, together with a survey of
values on GU which helps to understand the differences among the
three allocation rules presented here for games with a priori unions.
This characterization will be presented in this section.

The Symmetric coalitional Banzhaf value is characterized in Alonso-
Meijide & Fiestras-Janeiro (2002) with two different sets of proper-
ties. We will present one of them in detail next.

Some of the properties we need are just defined for games with a
priori unions where the system of a priori unions is the trivial sin-
gleton coalition structure and others are defined for the whole class
of games with a priori unions. Next, the properties that apply only
for games with a priori unions with the trivial singleton coalition
structure are presented.

GU :EFF A value on GU , f, satisfies efficiency if for every (N, v) ∈ G,∑
i∈N

fi(N, v, P
n) = v(N).

GU :2-EFF A value on GU , f, satisfies 2-efficiency1 if for every (N, v) ∈
G and every pair of distinct players i, j ∈ N ,

fi(N, v, P
n) + fj(N, v, P

n) = fp(N
ij , vij , Pn−1).

GU :DPP A value on GU , f, satisfies the dummy player property if for
every (N, v) ∈ G and every i ∈ N dummy player in (N, v),

fi(N, v, P
n) = v(i).

GU :SYM A value on GU , f, satisfies symmetry if for every (N, v) ∈ G
and every pair of symmetric players i, j ∈ N in (N, v),

fi(N, v, P
n) = fj(N, v, P

n).

1Recall the formal definition of the merged game (N ij , vij) in page 10
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GU :EMC A value on GU , f, satisfies equal marginal contributions if
for every (N, v), (N,w) ∈ G and every i ∈ N such that for every
S ⊆ N \ i, v(S ∪ i)− v(S) = w(S ∪ i)− w(S), then

fi(N, v, P
n) = fi(N,w, P

n).

The five properties presented above are based on the efficiency
(G:EFF), 2-efficiency (G:2-EFF), dummy player (G:DPP), symmetry (G:SYM),
and equal marginal contributions (G:EMC) properties considered in
Section 1.1.2. Indeed, since the properties are stated only for the
trivial coalition structure, a value f on GU satisfies them whenever
the value on G that f generalizes satisfies the corresponding prop-
erties in G. Next, the most interesting properties used in the char-
acterizations are presented. These properties apply to games with a
priori unions with an arbitrary coalition structure.

GU :QGP A value on GU , f, satisfies the quotient game property if for
every (N, v, P ) ∈ GU and every Pk ∈ P ,∑

i∈Pk

fi(N, v, P ) = fk(M,vP , Pm).

GU :1-QGP A value on GU , f, satisfies the 1-quotient game property
if for every (N, v, P ) ∈ GU and every i ∈ N such that there is
k ∈M with Pk = {i}, then

fi(N, v, P ) = fk(M, vP , Pm).

GU :BCU A value on GU , f, satisfies balanced contributions within the
unions if for every (N, v, P ) ∈ GU and every i, j ∈ Pk ∈ P ,

fi(N, v, P )− fi(N, v, P
−j) = fj(N, v, P )− fj(N, v, P

−i).

GU :NID A value on GU , f, satisfies neutrality under individual deser-
tion if for every (N, v, P ) ∈ GU and every i, j ∈ Pk ∈ P ,

fi(N, v, P ) = fi(N, v, P
−j).
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The GU :QGP and GU :BCU are introduced in Vázquez-Brage et al.
(1997) and used to characterize the Owen value (see Theorem 2.1.5
below). The GU :QGP states that the sum of the payoffs assigned
to the individual players of a union coincides with the payoff as-
signed to the union in the quotient game. The GU :1-QGP and GU :NID

properties are introduced in Alonso-Meijide et al. (2007). Note that
GU :1-QGP is a weaker version of GU :QGP since it is only required for
players that form singleton unions. The GU :BCU property is an in-
teresting reciprocity property. It states that if two players i and j

are in the same a priori union, then the loss (or gain) that player
i inflicts on player j when she decides to leave the union is the
same loss (or gain) inflicted on player i when j leaves the union.
This property is based on the idea that the benefits (or losses) ob-
tained from constituting a union cannot reward only one player.
The GU :NID property is a stronger version of GU :BCU since it states
that when a player decides to leave a union the remaining players of
that union are not affected by her decision. Finally, we state three
characterization results, one for each of the values on GU presented
in this section.

Theorem 2.1.5. (Vázquez-Brage et al. 1997). The Owen value, Ow,
is the unique value on GU satisfying GU :EFF, GU :SYM, GU :EMC, GU :QGP,
and GU :BCU.

Theorem 2.1.6. Alonso-Meijide & Fiestras-Janeiro (2002). The Sym-
metric coalitional Banzhaf value, SCB, is the unique value on GU sat-
isfying GU :2-EFF, GU :DPP, GU :SYM, GU :EMC, GU :QGP and GU :BCU.

Theorem 2.1.7. (Alonso-Meijide et al. 2007). The Banzhaf-Owen
value, BO, is the unique value on GU satisfying GU :2-EFF, GU :DPP,
GU :SYM,
GU :EMC, GU :1-QGP, and GU :NID.

In Table 2.1 the above characterization results are summarized.
These three results contribute to the understanding of the differ-
ences among the presented values on GU . As it is seen, the only
difference between Ow and SCB lies on the fact that the former is
the Shapley value when the trivial singleton coalition structure is
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Ow SCB BO

GU :EFF
GU :2-EFF GU :2-EFF

GU :DPP GU :DPP

GU :SYM GU :SYM GU :SYM

GU :EMC GU :EMC GU :EMC

GU :QGP GU :QGP GU :1-QGP

GU :BCU GU :BCU GU :NID

Table 2.1: Parallel characterizations of Ow, SCB, and BO

considered whereas the later is the Banzhaf value. Instead, the dif-
ferences between Ow and BO arise in properties GU :EFF/GU :2-EFF,
GU :QGP/GU :1-QGP, and GU :BCU/GU :NID, the latter two pairs being
logically related. Finally, the differences between BO and SCB are
limited to GU :QGP/GU :1-QGP and GU :BCU/GU :NID. Therefore, SCB

can be seen as a compromise between Ow and BO.

2.2 Shapley and Banzhaf levels values

In this section the games with levels structure of cooperation are
introduced. This kind of games were suggested by Owen (1977) as
a possible extension to his work. Indeed, the model generalizes the
games with a priori unions introduced in Section 2.1 by considering
a finite sequence of partitions of the players set. The model is first
studied by Winter (1989). In this first work, the author proposes
and characterizes a generalization of the Owen value for this con-
text. In a similar way a generalization of the Banzhaf-Owen value
is proposed in Álvarez-Mozos & Tejada (2011) together with parallel
characterizations of these two values.

A levels structure of cooperation is a pair (N,B), where N is the
set of players and B = {B0, . . . , Bk+1} is a sequence of partitions
of N such that B0 = {{i} : i ∈ N}, Bk+1 = {N}, and for each r ∈
{0, . . . , k + 1}, Br+1 is coarser than Br. That is to say, for each r ∈
{1, . . . , k + 1} and each S ∈ Br, there is B ⊆ Br−1 such that S =

∪U∈BU . Each U ∈ Br is called a union and Br is called the r-th level
of B. Without loss of generality, we also assume that no partition
is repeated, i.e., for every r ∈ {0, . . . , k}, Br 6= Br+1. Note that B0
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and Bk+1 are fictitious levels which are introduced by notational
convenience. Hence, we will say that (N,B) with B = {B0, . . . , Bk+1}
is a levels structure of cooperation with k levels. The levels structure
of cooperation with 0 levels is called trivial and is denoted by (N,B0),
i.e., B0 = {{i : i ∈ N}, {N}}. Note that such levels structure of
cooperation is actually not restricting the cooperation at all and that
is why we call it trivial. The set of all levels structures of cooperation
over the set N is denoted by L(N). The following example illustrates
the above definitions.

Example 2.2.1. Let N = {1, 2, 3, 4, 5, 6} and B = {B0, B1, B2, B3} be
given by

B3 = {{1, 2, 3, 4, 5, 6}},

B2 = {{1, 2, 3}, {4, 5, 6}},

B1 = {{1, 2}, {3}, {4}, {5, 6}}, and

B0 = {{1}, {2}, {3}, {4}, {5}, {6}}.

Then, (N,B) ∈ L(N) is a levels structure of cooperation with two
levels. ♦

Definition 2.2.2. A game with levels structure of cooperation is a
triple (N, v,B), where (N, v) ∈ G and (N,B) ∈ L(N). We denote by GL
the set of all games with levels structure of cooperation.

In the framework of games with levels structure of cooperation
we assume that players are initially organized into the coalition
structure Bk as groups that bargain for the division of v(N). Then,
each union of the highest level is divided again according to the
coalition structure Bk−1 in order to divide the amount that the unions
of the higher level have obtained, and so on and so forth until the
lowest level, B0, is reached.

Given (N,B) ∈ L(N) with B = {B0, . . . , Bk+1} and i ∈ N , we
denote by (N,B−i) ∈ L(N) the levels structure of cooperation ob-
tained from (N,B) by isolating player i from the union she belongs
to at each level, i.e., B−i = {B0, B

−i
1 , . . . , B−ik , Bk+1}, where, for ev-

ery r ∈ {1, . . . , k}, B−ir = {U ∈ Br : i /∈ U} ∪ {Ur \ i, {i}} given that
i ∈ Ur ∈ Br. For each level r ∈ {1, . . . , k}, the partition Br can be seen
as a set of players, i.e., each union U ∈ Br can be seen as a player.
Then the levels structure of cooperation obtained from (N,B) ∈ L(N)
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considering the unions of the rth level as players is (Br, Br) ∈ L(Br),
where Br = {Br, . . . , Bk+1}.

Definition 2.2.3. Given (N, v,B) ∈ GL with B = {B0, . . . , Bk}, for
each r ∈ {1, . . . , k} we define the rth level union game (Br, v

r, Br) ∈
GL as the game with levels structure of cooperation induced from
(N, v,B) by considering the coalitions of Br as players, i.e., for each
r ∈ {1, . . . , k} and each S ⊆ Br,

vr(S) = v({i ∈ N : there is U ∈ S such that i ∈ U}).

Note that the rth level union game generalizes the quotient game
(Definition 2.1.1) from on-level to an arbitrary levels structure of
cooperation.

A value on GL is a map f that assigns to every game with levels
structure of cooperation (N, v,B) ∈ GL a vector f(N, v,B) ∈ RN .

Recall that Sh is the expected marginal contribution of a player
to her predecessors given that all orderings of players are equally
likely. To generalize the Shapley value to games with levels struc-
ture of cooperation Winter (1989) applied this idea taking into ac-
count only those permutations that are consistent with the levels
structure of cooperation. By consistent we mean permutations that
keep players in the same union consecutive. To formalize this
idea, given a levels structure of cooperation (N,B) ∈ L(N) with
B = {B0, . . . , Bk+1} let the sets Ω(B) = Ω1(B) ⊆ Ω2(B) ⊆ · · · ⊆ Ωk(B) ⊆
Π(N) be defined as follows. First of all,

Ωk(B) = {σ ∈ Π(N) : ∀S ∈ Bk, ∀i, j ∈ S ∈ Bk and l ∈ N,

if σ(i) < σ(l) < σ(j) then l ∈ S}.

Then, for r ∈ {k − 1, . . . , 1} we recursively define

Ωr(B) = {σ ∈ Ωr+1(B) : ∀i, j ∈ S ∈ Br and l ∈ N,

if σ(i) < σ(l) < σ(j) then l ∈ S}.

Observe that Ωr(B) denotes the permutations of Ωr+1(B) such
that the elements of each union of Br are consecutive. Let us see
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an example to illustrate the above definitions.

Example 2.2.4. Let (N,B) ∈ L(N) be the levels structure of coopera-
tion considered in Example 2.2.1. On the one hand,

(1, 2, 4, 3, 5, 6) /∈ Ω2(B),

(1, 3, 2, 4, 5, 6) ∈ Ω2(B) \ Ω1(B), and

(3, 2, 1, 5, 6, 4) ∈ Ω1(B).

On the other hand it is easy to count the number of permutations
of the sets defined above,

|Ω2(B)| = 3! · 3! · 2! = 72, and

|Ω1(B)| = 72 · 2! · 1! · 2!

3!
· 2! · 1! · 2!

3!
= 32. ♦

Now we are in the position to recall the definition of the already
known solution concept for games with levels structure of coopera-
tion.

Definition 2.2.5. (Winter 1989). The Shapley levels value, ShL, is
the value on GL defined for every (N, v,B) ∈ GL and i ∈ N by

ShLi (N, v,B) =
1

|Ω(B)|
∑

σ∈Ω(B)

[v(P σi ∪ i)− v(P σi )] .

Winter (1989) proves that the Shapley levels value is the unique
value on GL satisfying efficiency, additivity, anonymity2, the null
player property and coalitional symmetry. The first four proper-
ties are extensions of standard properties in the literature, whereas
coalitional symmetry demands that the sum of the payoffs to the
players belonging to two unions S and U of some level r be the same
whenever S and U are symmetric players in the rth level union game
and they belong to the same union in the next level. It is worth to
mention that the five properties are natural extensions of the prop-
erties used in Owen (1977) to characterize Ow, which is simply the
restriction of ShL to games with levels structure of cooperation with
a single level.

2In Winter (1989) it is called individual symmetry.
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In this section we introduce a new value on GL that coincides
with the Banzhaf-Owen value (Definition 2.1.3) when the levels struc-
ture of cooperation has just one level, i.e., when B = {B0, B1, B2}.
The idea for defining this new value is to induce, for each player,
a partition of the set of players that respects the restrictions of the
levels structure of cooperation. In other words, instead of looking
at which permutations are feasible for the given levels structure,
as in Winter (1989), for each player we look at which coalitions are
feasible for the given levels structure of cooperation. For doing so,
for each player, we define a partition of the rest of the players such
that any coalition of unions is a coalition that is consistent with the
levels structure of cooperation from this player’s point of view.

Given a levels structure of cooperation (N,B) ∈ L(N), for each
player i ∈ N , let i ∈ U0 = {i} ⊆ U1 ⊆ · · · ⊆ Uk such that Ur ∈ Br for
all r ∈ {0, . . . , k}. Then, the partition induced by B on i is defined as
follows:

P (i, B) =
k⋃
r=0

(Br)|Ur+1\Ur
.

Then, P (i, B) ∈ P (N \ i). We denote |P (i, B)| by mi, and the unions of
the partition induced by B on i, by P (i, B) = {T1, . . . , Tmi}. Finally,
the set of indices of the partition induced by B on i is denoted by
Mi = {1, . . . ,mi} which can be seen as the set of representatives of
the unions in P (i, B).

Example 2.2.6. For the levels structure of cooperation of Example
2.2.1 we have, for instance,

P (1, B) = {{2}, {3}, {4, 5, 6}} and

P (3, B) = {{1, 2}, {4, 5, 6}}. ♦

Using the partition induced by the levels structure of cooperation
for each player, we define a new value on GL, namely the Banzhaf
levels value, which is built based on the Banzhaf-Owen value for
games with a priori unions.

Definition 2.2.7. (Álvarez-Mozos & Tejada 2011). The Banzhaf lev-
els value, BaL, is the value on GL defined for every (N, v,B) ∈ GL and
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i ∈ N by

BaLi (N, v,B) =
∑
R⊆Mi

1

2mi
[v(TR ∪ i)− v(TR)] ,

where TR = ∪r∈RTr.

One can easily check that the coalitions considered in each mar-
ginal contribution, TR, are the coalitions for which there exists σ ∈
Ω(B) such that TR = P σi . Therefore, exploiting for each i ∈ N the
link between coalitions of elements of P (i, B) and permutations of
Ω(B) the Shapley levels value, ShL, can be written in an alternative
way.

Remark 2.2.8. Let (N, v,B) ∈ GL and i ∈ N , then

ShLi (N, v,B) =
∑
R⊆Mi

ciR
|Ω(B)|

[v(TR ∪ i)− v(TR)] ,

where ciR = |{σ ∈ Ω(B) : P σi = TR}|.

Expressions of ShL and BaL above lead to the Owen, Ow, and
Banzhaf-Owen, BO, values respectively for levels structure of coop-
eration with a single level. Hence, for games with the trivial levels
structure of cooperation ShL and BaL lead to the Shapley, Sh, and
Banzhaf, Ba, values respectively.

Remark 2.2.9. Let (N, v) ∈ G, P ∈ P (N), and (N,B) ∈ L(N) with
B = {B0, B1, B2} and B1 = P . Then,

ShL(N, v,B) = Ow(N, v, P ), ShL(N, v,B0) = Sh(N, v),

BaL(N, v,B) = BO(N, v, P ), and BaL(N, v,B0) = Ba(N, v). C

2.2.1 Two parallel characterizations

In this section we characterize both ShL and BaL based on two dif-
ferent groups of properties. The first group applies only to games
with the trivial levels structure of cooperation and points out which
value on G does the value on GL generalize, either the Shapley value
or the Banzhaf value. The second group of properties describes the
performance of the values in GL with respect to the levels structure
of cooperation and they are logically related.
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We start with the first group of properties that only applies to
games with the trivial levels structure of cooperation.

GL:EFF A value on GL, f, satisfies efficiency if for every (N, v) ∈ G,∑
i∈N

fi(N, v,B0) = v(N).

GL:2-EFF A value on GL, f, satisfies 2-efficiency if for every (N, v) ∈ G
and each pair of players i, j ∈ N ,

fi(N, v,B0) + fj(N, v,B0) = fp(N
ij , vij , B0).

GL:DPP A value on GL, f, satisfies the dummy player property if for
every (N, v) ∈ G and each dummy player i ∈ N in (N, v),

fi(N, v,B0) = v(i).

GL:SYM A value on GL, f, satisfies symmetry if for every (N, v) ∈ G
and each pair of symmetric players i, j ∈ N in (N, v),

fi(N, v,B0) = fj(N, v,B0).

GL:EMC A value on GL, f, satisfies equal marginal contributions if
for every (N, v), (N,w) ∈ G and i ∈ N such that v(S ∪ i)− v(S) =

w(S ∪ i)− w(S) for every S ⊆ N \ i,

fi(N, v,B0) = fi(N,w,B0).

The above properties are standard in the literature. Indeed, they
are based on GU :EFF, GU :2-EFF, GU :DPP, GU :SYM, and GU :EMC pre-
sented in Section 2.1. Moreover, note that a value f on GL satis-
fies one of the properties above if and only if the value on G that f

generalizes satisfies the corresponding property on G, for instance
ShL satisfies GL:EFF since Sh satisfies G:EFF. In Theorem 2.2.10
(resp. Theorem 2.2.11) we use, together with other properties that
are presented below, GL:EFF, GL:SYM and GL:EMC to characterize
the Shapley levels value ShL (resp. GL:2-EFF, GL:DPP, GL:SYM and
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GL:EMC to characterize the Banzhaf levels value BaL). Although all
these properties are presented in a weak form, in the sense that
they only concern the trivial levels structure, both ShL and BaL sat-
isfy stronger versions of the corresponding properties as we later
show in Propositions 2.2.14 and 2.2.15.

Next, we consider the second set of properties that applies to
games with arbitrary levels structure of cooperation.

GL:LGP A value on GL, f, satisfies the level game property if for every
(N, v,B) ∈ GL with B = {B0, . . . , Bk+1} and every U ∈ Br with
r ∈ {1, · · · , k}, ∑

i∈U
fi(N, v,B) = fU (Br, v

r, Br).

GL:SLGP A value on GL, f, satisfies the singleton level game property
if for every (N, v,B) ∈ GL with B = {B0, . . . , Bk+1} and every
U ∈ Br with r ∈ {1, . . . , k}, such that U = {i} for some i ∈ N ,

fi(N, v,B) = fU (Br, v
r, Br).

GL:LBC A value on GL, f, satisfies level balanced contributions if for
every (N, v,B) ∈ GL with B = {B0, . . . , Bk+1} and i, j ∈ U ∈ B1,

fi(N, v,B)− fi(N, v,B
−j) = fj(N, v,B)− fj(N, v,B

−i).

GL:LNID A value on GL, f, satisfies level neutrality under individual
desertion if for every (N, v,B) ∈ GL with B = {B0, . . . , Bk+1} and
i, j ∈ U ∈ B1,

fi(N, v,B) = fi(N, v,B
−j).

The GL:LGP is the natural extension of the GU :QGP (see Section
2.1) to games with many levels of cooperation. It states that the total
payoff obtained by the members of a union in a given level equals
the payoff obtained by the union when considering it as a player
in the corresponding level union game. The GL:SLGP is a weaker
version of GL:LGP, which states that any union which is composed of
a single player gets the same payoff in the original game and in the
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corresponding level game when considering the union as a player.
The GL:SLGP is also the natural extension of GU :1-QGP (see Section
2.1) to games with many levels of cooperation. The GL:LBC property
is a reciprocity property that states that the isolation of a player
from the levels structure affects the players in her same union of
the first level in the same amount as if it happens the other way
around. If we consider games with levels structure of cooperation of
only one level, the property is equivalent to GU :BCU (see Section 2.1).
The GL:LNID property is a stronger version of GL:LBC and states that
the isolation of a player from the levels structure does not affect the
payoffs of the players which are in her same union in all the levels.
As before, it coincides with GU :NID when we consider games with a
single level of cooperation.

Next, we state and prove the two characterization results, one
for ShL (Theorem 2.2.10) and one for BaL (Theorem 2.2.11). We start
characterizing the Shapley levels value.

Theorem 2.2.10. (Álvarez-Mozos & Tejada 2011). The Shapley lev-
els value, ShL, is the unique value on GL satisfying GL:EFF, GL:SYM,
GL:EMC, GL:LGP, and GL:LBC.

Proof. First we show that ShL satisfies the properties and then
we prove that it is the only value on GL satisfying them.

(1) Existence. Note that, by Remark 2.2.9, we know that for every
(N, v) ∈ G, ShL(N, v,B0) = Sh(N, v). Hence, from Theorem 1.1.9 we
have that ShL satisfies GL:EFF, GL:SYM, and GL:EMC.

In the case of GL:LGP, let (N, v,B) ∈ GL with B = {B0, . . . , Bk+1},
and U ∈ Br for some r ∈ {1, · · · , k}. We prove that ShL satisfies
GL:LGP by induction over r. If r = 1, from the definition of the
induced partition, P (i, B) \ {{j} : j ∈ U \ i} is the same partition
for each i ∈ U . Moreover, for every i ∈ U it holds that P (U,B1) =

P (i, B) \ {{j} : j ∈ U \ i}. For each i ∈ U , R ⊆ MU , and S ⊆ U \ i,
let ciR+S = |{σ ∈ Ω(B) : P σi = TR ∪ S}|. By the way in which Ω(B)

is constructed, given R ⊆ MU and i ∈ U , ciR+S is the same for any
S ⊆ U \ i of a given cardinality s, and hence it can be denoted by
ciR+s. Moreover, for every i, j ∈ U , R ⊆ MU , and S ⊆ U \ i,ciR+s = cjR+s

and thus ciR+s can be further denoted simply by cR+s. Recall that
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cUR = |{σ ∈ Ω(B1) : P σU = TR}|. Then, by Remark 2.2.8,∑
i∈U

ShLi (N, v,B)

=
1

|Ω(B)|
∑
i∈U

∑
R⊆MU

∑
S⊆U\i

cR+s [v(TR ∪ S ∪ i)− v(TR ∪ S)]

=
1

|Ω(B)|
∑

R⊆MU

∑
i∈U

∑
S⊆U\i

cR+s [v(TR ∪ S ∪ i)− v(TR ∪ S)]

=
1

|Ω(B)|
∑

R⊆MU

[
u · cR+(u−1)v(TR ∪ U)− ucR+0v(TR)

+
∑
∅6=S(U

[
scR+(s−1) − (u− s)cR+s

]
v(TR ∪ S)

]

=
∑

R⊆MU

[
u
cR+(u−1)

|Ω(B)|
v(TR ∪ U)− u cR+0

|Ω(B)|
v(TR)

]
=

1

|Ω(B1)|
∑

R⊆MU

cUR
[
v1(TR ∪ U)− v1(TR)

]
= ShLU (B1, v

1, B1),

(2.1)
where the third equality is obtained by rearranging the terms of the
summation, the fourth equality holds since for every 1 ≤ s ≤ u − 1,
cR+s

cR+(s−1)
= s

u−s and the fifth equality holds since

cR+(u−1) = cR+0 =
cUR
u
· Ω(B)

Ω(B1)
,

which completes the first step of the induction.

Now, take r ∈ {2, . . . , k} and suppose that for every S ∈ Br−1

the following equality holds
∑

i∈S Sh
L
i (N, v,B) = ShLS(Br−1, v

r−1, Br−1)

(induction hypothesis). Let U ∈ Br. Then,∑
i∈U

ShLi (N, v,B) =
∑

S∈Br−1
S⊆U

∑
i∈S

ShLi (N, v,B) =
∑

S∈Br−1
S⊆U

ShLS(Br−1, v
r−1, Br−1)

by the induction hypothesis. Finally, we can follow the argument
from Eq. (2.1) with

(
Br−1, v

r−1, Br−1

)
instead of (N, v,B) and U ∈

Br−1 instead of i ∈ N to obtain∑
S∈Br−1
S⊆U

ShLS(Br−1, v
r−1, Br−1) = ShLU (Br, v

r, Br),
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which completes the induction procedure.

In the case of GL:LBC, let (N, v,B) ∈ GL with B = {B0, . . . , Bk+1}
and i, j ∈ U ∈ B1. Then, it is easy to check that P (i, B) \ {j} =

P (j, B) \ {i}. Hence, we define P (ij, B) = P (i, B) \ {j} = P (j, B) \ {i},
mij = |P (ij, B)|, and Mij = {1, . . . ,mij}. Then,

ShLi (N, v,B)− ShLi (N, v,B
−j)

=
∑

R⊆Mij

{
ciR+j

|Ω(B)|
[v(TR ∪ j ∪ i)− v(TR ∪ j)] +

ciR
|Ω(B)|

[v(TR ∪ i)− v(TR])

}

−
∑

R⊆Mij

{
ci,−jR+j

|Ω(B−j)|
[v(TR ∪ j ∪ i)− v(TR ∪ j)] +

ci,−jR

|Ω(B−j)|
[v(TR ∪ i)− v(TR)]

}

=
∑

R⊆Mij

{[
ciR+j

|Ω(B)|
−

ci,−jR+j

|Ω(B−j)|

]
[v(TR ∪ j ∪ i)− v(TR ∪ j))

+

[
ciR
|Ω(B)|

−
ci,−jR

|Ω(B−j)|

]
[v(TR ∪ i)− v(TR)]

}
,

where for each R ⊆ Mij, c
i,−j
R = |{σ ∈ Ω(B−j) : P σi = TR}| and ci,−jR+j =

|{σ ∈ Ω(B−j) : P σi = TR ∪ j}|. Note that, by definition, ciR = cjR,
ciR+j = cjR+i, c

i,−j
R = cj,−iR , and ci,−jR+j = cj,−iR+i. We additionally claim that

ciR + ciR+j

|Ω(B)|
=
ci,−jR + ci,−jR+j

|Ω(B−j)|
. (2.2)

Indeed, let us define, for r ∈ {1, . . . , k},

λrR = |{σ ∈ Ωr(B) : P σi = TR}|+ |{σ ∈ Ωr(B) : P σi = TR ∪ j}| and

λ−rR = |{σ ∈ Ωr(B
−j) : P σi = TR}|+ |{σ ∈ Ωr(B

−j) : P σi = TR ∪ j}|.

Observe that λ1
R = ciR + ciR+j and λ−1

R = ci,−jR + ci,−jR+j. We prove that
λrR

|Ωr(B)| =
λ−r
R

|Ωr(B−j)| for every r ∈ {1, · · · , k} by backward induction on r.
For each r ∈ {1, . . . , k}, let br = |Br|, ur = |Ur|, Ar = |{U ∈ Br \Ur : U ⊆
Ur+1 and U∩TR = ∅}|, and Br = |{U ∈ Br\Ur : U ⊆ Ur+1 and U ⊆ TR}|.
Recall that Uk+1 = N . Observe that Ak + Bk + 1 = bk and that, for
each r ∈ {1, · · · , k}, |Ur ∩ TR|+ |Ur \ TR| = ur.

We start proving the case r = k. Recall that Uk ∈ Bk is such
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that i, j ∈ Uk. In particular, i, j ∈ Uk \ TR and thus |Uk \ TR| ≥ 2. By
definition of λrR,

λkR =
∏

S∈Bk\Uk

|S|! ·Ak! ·Bk! · (|Uk ∩ TR|)! · (|Uk \ TR| − 1)!

+
∏

S∈Bk\Uk

|S|! ·Ak! ·Bk! · (|Uk ∩ TR|+ 1)! · (|Uk \ TR| − 2)!

=
∏

S∈Bk\Uk

|S|! ·Ak! ·Bk! · (|Uk ∩ TR|)! · (|Uk \ TR| − 2)! · uk.

Similarly, by definition of λ−kR ,

λ−kR =
∏

S∈Bk\Uk

|S|! · (Ak + 1)! ·Bk! · (|Uk ∩ TR|)! · (|Uk \ TR| − 2)!

+
∏

S∈Bk\Uk

|S|! ·Ak! · (Bk + 1)! · (|Uk ∩ TR|)! · (|Uk \ TR| − 2)!

=
∏

S∈Bk\Uk

|S|! ·Ak! ·Bk! · (|Uk ∩ TR|)! · (|Uk \ TR| − 2)! · (bk + 1).

Hence, for every R ⊆ Mij,
λkR
λ−k
R

= uk
bk+1 . To conclude with the first

step of the induction one can easily check that Ωk(B)
Ωk(B−j)

= uk
bk+1 .

Now suppose that for every R ⊆Mij,
|Ωr+1(B)|
|Ωr+1(B−j)| =

λr+1
R

λ
−(r+1)
R

, for some

r ∈ {2, . . . , k}. By definition of λkR,

λrR
λr+1
R

=
∏

S∈Br+1\Ur+1

h(S)!

|S|!
·
∏
S′∈Br
S′⊆S

|S′|!

 ·Ar! ·Br! ·
∏
S′∈Br

S′⊆Ur+1\Ur

|S′|!

· (|Ur ∩ TR|)! · (|Ur \ TR| − 1)! + (|Ur ∩ TR|+ 1)! · (|Ur \ TR| − 1)!

(|Ur+1 ∩ TR|)! · (|Ur+1 \ TR| − 1)! + (|Ur+1 ∩ TR|+ 1)! · (|Ur+1 \ TR| − 2)!

=
∏

S∈Br+1\Ur+1

h(S)!

|S|!
·
∏
S′∈Br
S′⊆S

|S′|!

 ·Ar! ·Br! ·
∏
S′∈Br

S′⊆Ur+1\Ur

|S′|!

· (|Ur ∩ TR|)! · (|Ur \ TR| − 2)!

(|Ur+1 ∩ TR|)! · (|Ur+1 \ TR| − 2)!
· ur+1

ur
,

where h(S) = |{S′ ∈ Br : S′ ⊆ S}| for each S ∈ Br+1. Similarly, by
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definition of λ−kR ,

λ−rR

λ
−(r+1)
R

=
∏

S∈Br+1\Ur+1

h(S)!

|S|!
·
∏
S′∈Br
S′⊆S

|S′|!

 ·Ar! ·Br! ·
∏
S′∈Br

S′⊆Ur+1\Ur

|S′|!

· (|Ur ∩ TR|)! · (|Ur \ TR| − 2)!

(|Ur+1 ∩ TR|)! · (|Ur+1 \ TR| − 2)!
.

Combining the two above expressions we obtain

λrR
λ−rR

=
λr+1
R

λ
−(r+1)
R

· ur
ur+1

. (2.3)

Furthermore,

|Ωr(B)|
|Ωr+1(B)|

=
∏

S∈Br+1\Ur+1

h(S)!

|S|!
·
∏
S′∈Br
S′⊆S

|S′|!

·h(Ur+1)!

ur+1!
·

 ∏
S′∈Br\Ur

S′⊆Ur+1

|S′|!

·ur!,
and

|Ωr(B
−j)|

|Ωr+1(B−j)|

=
∏

S∈Br+1\Ur+1

h(S)!

|S|!
·
∏
S′∈Br
S′⊆S

|S′|!

· h(Ur+1)!

(ur+1 − 1)!
·

 ∏
S′∈Br\Ur

S′⊆Ur+1

|S′|!

·(ur−1)!.

Thus
|Ωr(B)|
|Ωr(B−j)|

=
|Ωr+1(B)|
|Ωr+1(B−j)|

· ur
ur+1

. (2.4)

Hence, from Eq. (2.3) and (2.4), using the induction hypothesis we
obtain,

λrR
|Ωr(B)|

=
λ−,rR

|Ωr(B−j)|
,

Hence, the claim in Eq. (2.2) holds. Then ShLi (N, v,B)−ShLi (N, v,B−j)
depends on i in the same way it depends on j, which means that
ShL satisfies GL:LGP.

(2) Uniqueness. In Theorem 1.1.9 it is proved that any value on
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GL that satisfies GL:EFF, GL:SYM, and GL:EMC is unique for games
with the trivial levels structure of cooperation. In other words, let f1

and f2 be two values on GL satisfying GL:EFF, GL:SYM, and GL:EMC,
then for every (N, v) ∈ G

f1(N, v,B0) = f2(N, v,B0) = Sh(N, v).

Hence, let f1 and f2 be two values on GL satisfying GL:LGP and
GL:LBC such that for every (N, v) ∈ G, f1(N, v,B0) = f2(N, v,B0). We
prove that for every (N, v,B) ∈ GL, with B = {B0, . . . , Bk+1} and k ≥ 1,
f1(N, v,B) = f2(N, v,B) by induction on the number of levels k. The
case k = 1 is proved in Vázquez-Brage et al. (1997) (Theorem 2.1.5
of the present document). Now suppose that f1(N, v,B) = f2(N, v,B)

for any (N, v,B) ∈ GL such that |B| ≤ k and let (N, v,B) ∈ GL with
|B| = k+ 1. Let also i ∈ N . We prove that f1i (N, v,B) = f2i (N, v,B) by a
second induction on u = |U |, where i ∈ U ∈ B1. If u = 1, i.e., U = {i},
since f1 and f2 satisfy GL:LGP, we have

f1i (N, v,B) = f1U (B1, v
1, B1) = f2U (B1, v

1, B1) = f2i (N, v,B),

where the second equality holds by the first induction hypothesis.
Hence, suppose that f1l (N, v,B) = f2l (N, v,B) for any (N, v,B) ∈ GL,
with |B| = k + 1 and any l ∈ U ∈ B1 that satisfies |U | ≤ u. Now
suppose that |U | = u + 1 and let j ∈ U \ i. Since f1 and f2 satisfy
GL:LBC, we have

f1i (N, v,B)− f1j (N, v,B) = f1i (N, v,B−j)− f1j (N, v,B−i)

= f2i (N, v,B−j)− f2j (N, v,B−i) = f2i (N, v,B)− f2j (N, v,B), (2.5)

where the second equality follows from the second induction hy-
pothesis, since i ∈ U \ j ∈ B−j1 and j ∈ U \ i ∈ B−i1 with |U \ j| =

|U \ i| = u, and |B−j | = |B−i| = k + 1. Now, adding up Eq. (2.5) for
each j ∈ U \ i, we have

(u+ 1)f1i (N, v,B)−
∑
j∈U

f1j (N, v,B) = (u+ 1)f2i (N, v,B)−
∑
j∈U

f2j (N, v,B).

(2.6)
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Finally, since f1 and f2 satisfy GL:LGP, we have that∑
j∈U

f1j (N, v,B) = f1U (B1, v
r, B1) = f2U (B1, v

r, B1) =
∑
j∈U

f2j (N, v,B), (2.7)

where the second equality holds by the first induction hypothesis
since |B1| = k. Combining Eq. (2.6) and (2.7) we obtain f1i (N, v,B) =

f2i (N, v,B), which completes the proof. �

In the next result we characterize the Banzhaf levels value with
a set of six properties, four properties that characterize the Banzhaf
value, Ba, and two additional properties that describe the way in
which the Banzhaf levels value, BaL, deals with the levels structure
of cooperation. Recall that the last two properties are logically re-
lated to those used to characterize the Shapley levels value.

Theorem 2.2.11. (Álvarez-Mozos & Tejada 2011). The Banzhaf lev-
els value, BaL, is the unique value on GL satisfying GL:2-EFF, GL:DPP,
GL:SYM, GL:EMC, GL:SLGP, and GL:LNID.

Proof. As in the previous theorem, we first show that BaL sat-
isfies the properties and then we prove that it is the only value
satisfying them.

(1) Existence. Note that, by Remark 2.2.9, we know that for every
(N, v) ∈ G, BaL(N, v,B0) = Ba(N, v). Hence, from Theorem 1.1.13 we
have that BaL satisfies GL:2-EFF, GL:DPP, GL:SYM, and GL:EMC.

In the case of GL:SLGP, the proof follows immediately taking into
account the fact that, for every (N, v,B) ∈ GL with B = {B0, . . . , Bk+1}
and U = {i} ∈ Br for some r ∈ {1, . . . , k}, P (i, B) = P (U,Br).

In the case of GL:LNID, we only need to check that for every
(N, v,B) ∈ GL with B = {B0, . . . , Bk+1}, and every i, j ∈ U ∈ B1,
P (i, B) = P (i, B−j), which follows from the definition of the parti-
tion induced by B.

(2) Uniqueness. From the characterization in Theorem 1.1.13, we
have that any value on GL that satisfies GL:2-EFF, GL:DPP, GL:SYM,
and GL:EMC is unique for games with the trivial levels structure
of cooperation. In other words, let f1 and f2 be two values on GL
satisfying GL:2-EFF, GL:DPP, GL:SYM, and GL:EMC, then for every
(N, v) ∈ G,

f1(N, v,B0) = f2(N, v,B0) = Ba(N, v).
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Now let f1 and f2 be two values on GL satisfying GL:SLGP and
GL:LNID such that f1(N, v,B0) = f2(N, v,B0) for every (N, v) ∈ G. We
prove that for any (N, v,B) ∈ GL, with B = {B0, . . . , Bk+1}, f1(N, v,B) =

f2(N, v,B) by induction on the number k of levels of (N,B). The case
k = 1 is proved in Alonso-Meijide et al. (2007) (Theorem 2.1.7 of
the present document). Hence suppose that f1(N, v,B) = f2(N, v,B)

for every (N, v,B) ∈ GL such that (N,B) has at most k levels and
let (N, v,B) ∈ GL be such that (N,B) has k + 1 levels, i.e., B =

{B0, . . . , Bk+2}. Let i ∈ U ∈ B1 be an arbitrary player that belongs
to an arbitrary union of the first level. We prove that f1i (N, v,B) =

f2i (N, v,B) by a second induction on u = |U |. If u = 1, i.e. U = {i},
since f1 and f2 satisfy GL:SLGP, we have

f1i (N, v,B) = f1U (B1, v
1, B1) = f2U (B1, v

1, B1) = f2i (N, v,B),

where the second equality follows from the first induction hypoth-
esis since (B1, B1) ∈ L(B1) is a levels structure of cooperation with
k levels. Now suppose that f1l (N, v,B) = f2l (N, v,B) for every (N, v,B)

such that B = {B0, . . . , Bk+2} and every l ∈ U ∈ B1 where |U | ≤ u.
Next, suppose that |U | = u+1 and let j ∈ U \ i. Since f1 and f2 satisfy
GL:LNID, we have

f1i (N, v,B) = f1i (N, v,B−j) = f2i (N, v,B−j) = f2i (N, v,B),

where the second equality holds by the second induction hypothesis
since i ∈ U \ j ∈ B−j1 ∈ B−j, (N,B−j) has k + 1 levels, and |U \ j| = u,
which concludes the proof. �

Table 2.2 summarizes the parallel characterizations of ShL and
BaL presented above.

In the current section we have proposed a new value for games
with levels structure of cooperation, the Banzhaf levels value, and
we have provided characterizations of this new value and the Shap-
ley levels value. It should be pointed out that, in both theorems,
the group of properties that apply only for trivial levels structures
of cooperation can be replaced by any other group of properties
that characterizes either the Shapley or the Banzhaf value (see Ta-
ble 1.1). The remaining properties, GL:LGP and GL:LBC in Theorem
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ShL BaL

GL:EFF
GL:2-EFF

GL:DPP

GL:SYM GL:SYM

GL:EMC GL:EMC

GL:LGP GL:SLGP

GL:BCU GL:LNID

Table 2.2: Parallel characterizations of ShL and BaL

2.2.10 and GL:SLGP and GL:LNID in Theorem 2.2.11, describe the
behavior of the values with respect to the non trivial levels structure
of cooperation. Moreover, since these latter properties are logically
comparable, the results help on deciding which value to use in a
particular situation.

Next we check that the proposed properties are independent, and
hence we cannot drop any of them from the characterizations. We
start examining the properties used for the characterization of the
Shapley levels value, ShL.

Remark 2.2.12. The properties considered in Theorem 2.2.10 are
independent as the following examples show:

(i) The value on GL, g1, defined for every (N, v,B) ∈ GL by

g1(N, v,B) = 0,

satisfies GL:SYM, GL:EMC, GL:LGP, GL:LBC but not GL:EFF.

(ii) Let a and b be two different and fixed players. Let g2 be the
value on GL defined as follows:

• If N = {a, b} and B = B0,

g2
a(N, v,B) =

3

4
(v(N)− v(b)) +

1

4
v(a) and

g2
b(N, v,B) =

1

4
(v(N)− v(a)) +

3

4
v(b).

• Otherwise, g2(N, v,B) = ShL(N, v,B).

Thus, g2 satisfies GL:EFF, GL:EMC, GL:LGP, GL:LBC, but not
GL:SYM.
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(iii) Consider the value on GL, g3, defined for every (N, v,B) ∈ GL
by

g3(N, v,B) =

ShL(N, v,B) if (N, v,B) /∈ C

αi(N,v)1i(N,v) if (N, v,B) ∈ C

where 1k ∈ Rn is such that 1k(l) = 1 if k = l and 1k(l) = 0 if k 6= l and

C = {(N, v,B) ∈ GL : v = βiτi + (αi − βi)δN ,

for some i = i(N, v) ∈ N and 0 ≤ βi < αi}

such that, for every S ⊆ N ,

τi(S) =

1 if i ∈ S

0 otherwise
and δN (S) =

1 if S = N

0 otherwise
.

Then g3 satisfies GL:EFF, GL:SYM, GL:LGP, GL:LBC, but not GL:EMC.

(iv) The value on GL, g4, defined for every (N, v,B) ∈ GL by

g4(N, v,B) = Sh(N, v),

satisfies GLEFF, GL:SYM, GL:EMC, GL:LBC, but not GL:LGP.

(v) Let a and b be two distinct and fixed players. Let g5 be the
value on GL defined as follows:

• If N = {a, b} and B = B0, g5(N, v,B) = (v(N)
2 , v(N)

2 ).

• Otherwise, g5(N, v,B) = ShL(N, v,B).

Thus, g5 satisfies GL:EFF, GL:SYM, GL:EMC, GL:LGP, but not
GL:LBC. C

Lastly, we examine the properties used for the characterization
of the Banzhaf levels value, BaL.

Remark 2.2.13. The properties considered in Theorem 2.2.11 are
independent as the following examples show:

(i) The value on GL, g6, defined for every (N, v,B) ∈ GL by

g6
i (N, v,B) =

∑
R⊆Mi

|R|!(mi − |R| − 1)!

mi!
[v(TR ∪ i)− v(TR)]

50



2.2. SHAPLEY AND BANZHAF LEVELS VALUES

satisfies GL:DPP, GL:SYM, GL:EMC, GL:SLGP, GL:LNID but not GL:2-
EFF.

(ii) The value on GL, g1, defined above satisfies GL:2-EFF, GL:SYM,
GL:EMC, GL:SLGP, GL:LNID, but not GL:DPP.

(iii) Let a, b be two distinct, fixed, and indivisible players. In this
context, by indivisible we mean that there are no players i1, . . . , il

such that {i1, . . . , il} = a or {i1, . . . , il} = b. Let g7 be the value on GL
defined as follows:

• If N = {a, b} and B = B0,

g7
a(N, v,B) =

3

4
[v(N)− v(b)] +

1

4
v(a) and

g7
b(N, v,B) =

1

4
[v(N)− v(a)] +

3

4
v(b).

• Otherwise, g7(N, v,B) = BaL(N, v,B).

Thus, g7 satisfies GL:2-EFF, GL:DPP, GL:EMC, GL:SLGP, GL:LNID,
but not GL:SYM.

(iv) Again, let a, b be two distinct, fixed, and indivisible players.
The value on GL, g8, defined for every (N, v,B) ∈ GL by

g8(N, v,B) =

(0, 0) if (N, v,B) = ({a, b}, δ{a}, B0)

BaL(N, v,B) otherwise

satisfies GL:2-EFF, GL:DPP, GL:SYM, GL:SLGP, GL:LNID, but not GL:EMC.

(v) The value on GL, g9, defined for every (N, v,B) ∈ GL by

g9(N, v,B) = Ba(N, v)

satisfies GL:2-EFF, GL:DPP, GL:SYM, GL:EMC, GL:LNID, but not GL:SLGP.

(vi) The value on GL, g10, defined for every (N, v,B) ∈ GL by

g10
i (N, v,B)

=
∑
R⊆Mi

1

2mi−|TR∩Uk|
· |TR ∩ Uk|!(|Uk \ TR| − 1)!

|Uk|!
[v(TR ∪ i)− v(TR)] ,

satisfies GL:2-EFF, GL:DPP, GL:SYM, GL:EMC, GL:SLGP, but not GL:LNID,
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where recall that Uk is the union of the k-th level to which player i
belongs. C

To end with, it is worth to discuss that the properties that ap-
ply only to the trivial levels structure, namely, GL:EFF, GL:2-EFF,
GL:DPP, GL:SYM, GL:EMC, can be required for games with arbitrary
levels structure of cooperation. However we have considered the
weak versions of them since they are enough to show the unique-
ness. Formally, consider the following strong versions of the afore-
mentioned properties.

GL:EFF∗ A value on GL, f, satisfies strong efficiency if for every
(N, v,B) ∈ GL, ∑

i∈N
fi(N, v,B) = v(N).

GL:2-EFF∗ A value on GL, f, satisfies strong 2-efficiency if for every
(N, v,B) ∈ GL with B = {B0, . . . , Bk+1} and i, j ∈ U1 ∈ B1,

fi(N, v,B) + fj(N, v,B) = fp(N
ij , vij , Bij),

where (N ij , vij , Bij) is the game with levels structure of co-
operation obtained from the original one such that players i

and j have merged into the new player p /∈ N , i.e., (N ij , vij)

is as defined in Section 1.1.2 (back in page 10) and Bij =

{Bij
0 , . . . , B

ij
k+1} is such that Bij

0 = {{l} : l ∈ N ij} and for ev-
ery r ∈ {1, . . . , k + 1} if Ur ∈ Br is such that i, j ∈ Ur, then
Bij
r = (Br \ Ur) ∪ ((Ur \ {i, j}) ∪ p).

GL:DPP∗ A value on GL, f, satisfies the strong dummy player prop-
erty if for every (N, v,B) ∈ GL, if i ∈ N is a dummy player in
(N, v),

fi(N, v,B) = v(i).

GL:SYM∗ A value on GL, f, satisfies strong symmetry if for every
(N, v,B) ∈ GL with B = {B0, . . . , Bk+1} and every pair i, j ∈ U1 ∈
B1 of symmetric players in (N, v),

fi(N, v,B) = fj(N, v,B).
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GL:EMC∗ A value on GL, f, satisfies strong equal marginal contribu-
tions if for every (N, v,B), (N,w,B) ∈ GL and every i ∈ N such
that for every S ⊆ N \ i, v(S ∪ i)− v(S) = w(S ∪ i)− w(S) ,

fi(N, v,B) = fi(N,w,B).

Then, we can prove the following two propositions.

Proposition 2.2.14. The Shapley levels value ShL satisfies GL:EFF∗,
GL:SYM∗, and GL:EMC∗.

Proof. The GL:EFF∗ property is proved in Winter (1989).

In the case of GL:SYM∗, let (N, v,B) ∈ GL and i, j ∈ N be symmet-
ric players in (N, v) ∈ G that belong to the same union at any level
r ≥ 1. From Remark 2.2.8 it follows that

ShLi (N, v,B)

=
∑

R⊆Mij

ciR
Ω(B)

[v(TR ∪ i)− v(TR)] +
ciR+j

Ω(B)
[v(TR ∪ j ∪ i)− v(TR ∪ j)]

=
∑

R⊆Mij

cjR
Ω(B)

[v(TR ∪ j)− v(TR)] +
cjR+i

Ω(B)
[v(TR ∪ i ∪ j)− v(TR ∪ i)]

= ShLj (N, v,B),

where Mij, ciR, cjR, ciR+j, and cjR+i are as defined in the proof of Theo-
rem 2.2.10. The expression above follows from the fact that for each
R ⊆Mij, ciR = cjR and ciR+j = cjR+i, and the symmetry of i and j.

Finally, the GL:EMC∗ property can be easily proved taking into
account that Ω(B) only depends on (N,B). �

Proposition 2.2.15. The Banzhaf levels value BaL satisfies GL:2-
EFF∗, GL:DPP∗, GL:SYM∗, and GL:EMC∗.

Proof. The GL:EMC∗ property can be proved easily taking into
account the fact that P (i, B) does not depend on the game (N, v).

In the case of GL:SYM∗, let (N, v,B) ∈ GL and i, j ∈ N be symmet-
ric players in (N, v) ∈ G that belong to the same union at any level
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r ≥ 1. Then,

BaLi (N, v,B)

=
∑

R⊆Mij

1

2mi
{[v(TR ∪ i)− v(TR)] + [v(TR ∪ j ∪ i)− v(TR ∪ j)]}

=
∑

R⊆Mij

1

2mj
{[v(TR ∪ j)− v(TR)] + [v(TR ∪ i ∪ j)− v(TR ∪ i)]}

= BaLj (N, v,B),

where Mij = {1, . . .mij}, mij = |P (ij, B)|, P (ij, B) = P (i, B) \ {i} =

P (j, B) \ {j}, and mi = mj, and the second equality holds since i

and j are symmetric players and therefore v(S ∪ i) = v(S ∪ j) for all
S ⊆Mij.

The GL:DPP∗ property holds straightforwardly since, in this case,
we have that

BaLi (N, v,B) =
∑
R⊆Mi

1

2mi
[v(TR ∪ i)− v(TR)]

=
∑
R⊆Mi

1

2mi
v(i) = v(i)

∑
R⊆Mi

1

2mi
= v(i).

Finally, we prove the GL:2-EFF∗ property. Let (N, v,B) ∈ GL and
i, j ∈ N be two players that belong to the same union at any level
r ≥ 1. Then,

BaLi (N, v,B) + BaLj (N, v,B)

=
∑

R⊆Mij

1

2mij
[v(TR ∪ i)− v(TR) + v(TR ∪ j ∪ i)− v(TR ∪ j)]

+
∑

R⊆Mij

1

2mij
[v(TR ∪ j)− v(TR) + v(TR ∪ i ∪ j)− v(TR ∪ i)]

=
∑

R⊆Mij

1

2mij−1 [v(TR ∪ i ∪ j)− v(TR)]

=
∑
R⊆Mp

1

2mp

[
vij(TR ∪ p)− vij(TR)

]
= BaLp(N

ij , vij , Bij),

where Mij is as defined in the proof of Theorem 2.2.10 above. �
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2.2.2 An example

We conclude the chapter by examining an example to illustrate the
use of the two different values in a decision problem. Before do-
ing so, we make a comment on the validity of the application of the
Banzhaf levels value. Laruelle & Valenciano (2004) claim that, in
the context of voting games with a single level structure of coopera-
tion and the Banzhaf levels value, only comparisons between play-
ers that belong to the same union of the first level are meaningful.
The reason why they state so is that the number that BaL assigns to
player i can be interpreted as the mathematical expectation of the
decisiveness of player i when considering the probability distribu-
tion defined on the set of permutations of players conditional to the
partition induced by the levels structure on player i. Since players
that belong to different unions give rise to different induced par-
titions, their corresponding probability distributions are different
and hence Laruelle & Valenciano (2004) conclude that they cannot
be compared. Nevertheless, when the levels structure of coopera-
tion is pin down and the players cannot behave strategically and
change their position in the structure, as it is the case in the ex-
ample below, we can do compare the values of players belonging to
different unions, even in the case of simple games. We argue that
even so the probability distribution of each agent is different, all
of them are obtained from the same fixed structure following the
same rules, which can be seen as public knowledge. Therefore, we
may interpret the Banzhaf levels value as the subjective expectation
of any player about the outcome of the game, provided the follow-
ing condition holds: all agents believe that, for any arbitrary given
agent, all possible coalitions that may form before she takes a de-
cision -which may be different depending on the player considered-
are equally likely.

Example 2.2.16. Consider a grid computing network to which some
departments of several universities contribute with resources, e.g.,
memory, databases or processing capacity. The whole network re-
sources are used for purposes of calculations demanding massive
levels of resources such as climate predictions. The departments in-
volved are willing to use the grid computing network for their inves-
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tigations and the problem arises when more than one department
simultaneously request access to the common resources, which can
only be accessed by one department at a time.

Moreover, consider a numerical example where the amount of
resources that each department contributes with can be measured,
e.g., either TB or Ghz. The total amount of resources add up to 41
units that are provided by 10 departments namely A, B, C, D, E, F,
G, H, I and J, which respectively contribute 3, 1, 2, 10, 3, 5, 2, 3,
2, 10 units.

In order to measure the contribution of each department to the
network we assume that a grid computing network needs a min-
imum of 21 units to operate. Hence, any group of departments
whose resources add up to 21 units or more could form a smaller
network. Even though, all departments prefer to be part of a net-
work as big as possible, we consider this possibility in order to mea-
sure the bargaining strength of each department.

The situation described so far can be modeled by a simple game
(N, v), where N is the set of departments and the characteristic
function v(S) equals 1 if the aggregate amount of resources of coali-
tion S is at least equal to 21 and 0 otherwise. Therefore, the priority
rule needed to decide which department will use the grid first can
be based on either the Shapley or the Banzhaf value, Sh or Ba, re-
spectively. More precisely, we first normalize the Banzhaf value
and the payoff of each department is interpreted as the probabil-
ity -henceforth just priority- that the corresponding department can
make use of the common resources when all departments simulta-
neously request access. These values (Sh and Ba) are depicted in
Table 2.3.

However, each department involved is part of a university which,
in turn, is in a given country. It may happen that when bargain-
ing for the priority the departments are not autonomous anymore
and need the permission of the university or country they belong to.
If we take into account these restrictions, a levels structure of co-
operation emerges naturally, and hence, the Shapley and Banzhaf
levels values, ShL and BaL, could be used as basis for a priority
rule. Consider for instance, that the 10 departments are part of 6
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different universities which, in turn, are in 4 countries. More pre-
cisely, suppose there is the following levels structure of cooperation,
{{A}, {B,C}, {D}, {E,F}, {G,H, I}, {J}} and {{A,B,C}, {D,E, F},
{G,H, I}, {J}}, i.e. for instance Dep. B and Dep. C belong to the
same university, which at its turn it is located in the same country
as the university which Dep. A belongs to.

Table 2.3 comprises the different values considered in this sec-
tion3.

Dep. Res. Sh ShL Ba BaL Ba BaL

A 3 .0690 .0833 .1523 .1250 .0736 .0800
B 1 .0341 .0417 .0724 .0625 .0358 .0400
C 2 .0405 .0417 .0898 .0625 .0434 .0400
D 10 .2579 .2500 .4961 .3750 .2396 .2400
E 3 .0690 .0417 .1523 .0625 .0736 .0400
F 5 .1214 .2083 .2773 .3125 .1340 .2000
G 2 .0405 .0278 .0898 .0625 .0434 .0400
H 3 .0690 .1110 .1523 .1875 .0736 .1200
I 2 .0405 .0278 .0898 .0625 .0434 .0400
J 10 .2579 .1667 .4961 .2500 .2396 .1600

Table 2.3: The different measures of priority.

From Table 2.3, it follows that when considering the restrictions
given by the levels structure of cooperation the priorities change sig-
nificantly. For instance, a relevant such a difference is the change
in the priority assigned to Dep. J. When the departments are con-
sidered autonomous, it is given top priority together with Dep. D.
However, when the universities and countries are taken into ac-
count it ranks third, having Dep. F priority over Dep. J. This is
explained by the fact that even so Dep. J is one of the departments
whose contribution is the highest, the aggregate resources of its
country are not so high compared to the aggregate resources of the
remaining countries. Finally, the difference between ShL and BaL

reveals intensely on the values of Dep. E and Dep. I, since BaL

gives equal priority to both of them, whereas ShL doubles the value
of Dep. E. ♦

3By f̄ we denote the normalized f value. The different values have been calcu-
lated using a MATLAB c© routine.
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3
Share functions for monotone

games

The concept of share functions is first introduced in van der Laan
& van den Brink (1998). Share functions represent an alternative
approach to the problem of allocating payoffs to the agents partici-
pating in a game. As mentioned in Section 1.1.2 a share vector for a
game (N, v) is an |N |-dimensional vector x ∈ RN such that for every
i ∈ N , xi ≥ 0 and

∑
i∈N xi = 1. The amount xi represents player i’s

share in the worth to be distributed.

Hence, a first singularity of share functions over values is that
share functions avoid the “efficiency issue”. In this chapter three
families of share functions will be studied in each of the following
frameworks: monotone games (M), monotone games with a priori
unions, and monotone games with levels structure of cooperation.
Each of these families will be generated by real valued functions on
M satisfying certain conditions. On the one hand, these families
will include the share functions associated with many of the values
studied in previous chapters. In particular, the share functions as-
sociated with Sh, Ba, Ow, SCB, and ShL lie within these families. On
the other hand, Banzhaf-like share functions will be proposed for
games with a priori unions and games with levels structure of co-
operation that differ from the ones associated with BO and BaL. Be-
sides these points, each of the families allows us to build new share
functions in each of the considered frameworks only by choosing a
real valued function onM that satisfies the demanded properties.

The main contribution of this chapter is a joint work with Oriol

59



CHAPTER 3. SHARE FUNCTIONS FOR MONOTONE GAMES

Tejada from the ETH-Zürich on the one hand, and René van den
Brink and Gerard van der Laan from the Free University of Amster-
dam on the other hand. At the moment an article is under the peer-
reviewing process of an international journal and the main results
of it are published (Álvarez-Mozos et al. 2011) on the working paper
series of the Department of Statistics and Operations Research of
the University of Santiago de Compostela. The chapter is organized
as follows. Section 3.1 deals with share functions on monotone
games following van der Laan & van den Brink (1998). However, in-
stead of being just a review of the results of the aforementioned pa-
per we have tried to round off some of the results. Theorem 3.1.2 is
the main contribution in this regard. Section 3.2 focuses on share
functions for monotone games with a priori unions. Two papers
constitute the basis of this section, van der Laan & van den Brink
(2002) and van den Brink & van der Laan (2005). However, instead
of just recalling the main results of these works we have tried to
extend the results a little bit. In particular, we have extended the
family of share functions defined in these papers so that the share
function associated with the Symmetric coalitional Banzhaf value,
SCB, lies within the family. Moreover, two characterizations of this
family of share functions for monotone games with a priori unions
are proposed. Finally, Section 3.3 focuses on share functions for
monotone games with levels structure of cooperation. A family of
share functions is introduced for this class of games using a mul-
tiplication property. Roughly speaking, the multiplication property
builds a sharing for monotone games with levels structure of co-
operation using a sharing of monotone games. First, the family is
introduced and next, three characterization results are proposed.

3.1 Share functions onM

In van der Laan & van den Brink (1998), a class of share functions
is defined and characterized based on real valued functions on the
set of monotone games1, µ : M −→ R. The Shapley and Banzhaf
share functions (Definitions 1.1.17 and 1.1.18 back in page 17) are

1The setM is introduced back in Definition 1.1.2, page 3
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included in this class for appropriate choices of µ functions. In this
section, we try to round off the results of van der Laan & van den
Brink (1998). More precisely, in Section 3.1.1 we propose a set
of properties for µ functions that will allow us to write them as a
sum of weighted marginal contributions where the weights are of a
certain type. Finally, in Section 3.1.2 we merge the aforesaid result
with the characterization in van der Laan & van den Brink (1998).

3.1.1 Real valued functions on M

We consider some properties that real valued functions on M, µ :

M→ R, might satisfy. We say2 that

(a) µ is positive if µ(N, v0) = 0 and for every (N, v) ∈M+,

µ(N, v) > 0.

(b) µ is additive if for every pair of monotone games (N, v), (N,w) ∈
M,

µ(N, v + w) = µ(N, v) + µ(N,w).

(c) µ is anonymous if, for every monotone game (N, v) ∈ M, every
permutation π ∈ Π(N), and every ∅ 6= S ⊆ N ,

µ(S, v|S) = µ(π(S), (π−1v)|π(S)).

The positivity property states that the only monotone game that
should be assigned zero is the null game and any other mono-
tone game is to be assigned a positive amount. The additivity is
the standard additivity property for mappings. Finally, observe
that anonymity requires the function to be independent of players’
names.

Remark 3.1.1. Note that additivity, positivity, and anonymity are in-
dependent properties. Indeed, in the first place, µ(N, v) = v(N)2 sat-
isfies positivity, anonymity but not additivity. In the second place,

2We abuse notation and write µ(N, v) instead of µ((N, v)).
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µ(N, v) = −v(N) satisfies additivity, anonymity but not positivity. In
the third place, take a fixed player a and let µ be defined by,

µ(N, v) =

2v(N) if N = {a},

v(N) otherwise.

It is clear that µ is additive and positive. Consider the set of players
N = {a, b} for some other player b and let π ∈ Π(N) be the permu-
tation that exchanges a with b, i.e., π(a) = b and π(b) = a. Let also
(N, v) ∈M be a monotone game such that v(a) > 0. Then,

µ
(
{a}, v|{a}

)
= 2v(a) 6= v(a) = µ({b}, (π−1v)|{b}) = µ({π(a)}, (π−1v)|{π(a)}).

That is, µ is not anonymous. C

In the next result we show that any real valued function µ that
is positive, additive, and anonymous can be written as a weighted
sum of marginal contributions, the weights depending only on the
size of the corresponding coalitions.

Theorem 3.1.2. Let µ be a real valued function onM. Then, the two
following statements are equivalent:

(a) µ is positive, additive, and anonymous.

(b) There is a unique family of strictly positive weights,
{ωn,sµ : n ∈ N, s ∈ {0, 1, . . . , n− 1}} such that, for every (N, v) ∈M,

µ(N, v) =
∑
i∈N

∑
S⊆N\i

ω|N |,|S|µ [v(S ∪ i)− v(S)] .

Proof. We only prove that (a) implies (b), the reverse implication
is straightforward. Let n ∈ N, N be a set of players with |N | =

n, and µ : M −→ R be fixed. Recall that by MN we denote the
set of monotone games on N . It is well known that MN is a cone
in the euclidean space of dimension 2n − 1. As a consequence µ

can be cast as the restriction of a map µ∗ : R2n−1 −→ R to MN .
Moreover, observe that MN has positive measure in R2n−1 because
{(N, uS)}∅6=S⊆N is a base of R2n−1 and for every ∅ 6= S ⊆ N , (N, uS) ∈
M.
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Therefore, since µ is positive, µ∗ is bounded from below in a set
of positive measure. From the solution of the Cauchy equation for
several variables applied to µ (see for instance, Aczél & Dhombres
(1989) Proposition 1 on page 35), for every ∅ 6= S ⊆ N there is a
scalar aS ∈ R, such that for every (N, v) ∈MN ,

µ(N, v) = µ∗(N, v) =
∑
∅6=S⊆N

aSv(S). (3.1)

Note that the reasoning above applies for any given µ and N . Hence,
for every positive, additive, and anonymous µ, every finite set of
players N , and every coalition ∅ 6= S ⊆ N there are scalars aN,Sµ such
that for every (N, v) ∈M,

µ(N, v) =
∑
∅6=S⊆N

aN,Sµ v(S).

Next, let N ′ be a set of players with |N ′| = |N | and N ′ ∩ N = ∅,
∅ 6= S ⊆ N , and S′ ⊆ N ′ such that |S| = |S′|. Let π ∈ Π(N ∪ N ′) be a
permutation that exchanges S with S′ and N with N ′. By anonymity,

µ(N, uS |N ) = µ(π(N), (π−1uS)|Π(N)) = µ(N ′, uS′ |N ′). (3.2)

We prove that aN,Sµ = aN
′,S′

µ by backward induction on the cardinality
of S.

Let S = N and S′ = N ′. By Eq. (3.1) and (3.2) we have that
aN
′,N ′

µ = aN,Nµ . Next, assume that aN,Sµ = aN
′,S′

µ whenever |S| = |S′| >
s > 0. Now, let |S′| = |S| = s > 0. By Eq. (3.1) and (3.2),∑

T ′∈2N
′

S′⊆T ′

aN
′,T ′

µ =
∑
T∈2N
S⊆T

aN,Tµ

and, therefore

aN
′,S′

µ +
∑

T ′∈2N
′

S′(T ′

aN
′,T ′

µ = aN,Sµ +
∑
T∈2N
S(T

aN,Tµ .

63



CHAPTER 3. SHARE FUNCTIONS FOR MONOTONE GAMES

Then, by the induction hypothesis we have aN,Sµ = aN
′,S′

µ . That is, for
every (N, v) ∈M

µ(N, v) =
∑
∅6=S⊆N

a|N |,|S|µ v(S). (3.3)

Analogously to Corollary 3.8 of van der Laan & van den Brink
(1998), for every n ∈ N and s ∈ {0, . . . , n − 1}, we recursively define
the parameters wn,sµ , by

ωn,n−1
µ =

1

n
an,nµ , (3.4)

and for every s ∈ {0, . . . , n− 2}

ωn,sµ =
1

s+ 1

(
an,s+1
µ + (n− s− 1)ωn,s+1

µ

)
. (3.5)

Using Eq. (3.4) and (3.5), we can rewrite Eq. (3.3) as∑
∅6=S⊆N

a|N |,|S|µ v(S) =
∑
i∈N

∑
S⊆N\i

ωn,sµ [v(S ∪ i)− v(S)] ,

where n = |N | and s = |S|. That is, there is a family of weights,
{ωn,sµ : n ∈ N and s ∈ {0, . . . , n− 1}} such that, for every (N, v) ∈M,

µ(N, v) =
∑
i∈N

∑
S⊆N\i

ωn,sµ [v(S ∪ i)− v(S)] . (3.6)

Next let {ωn,sµ : n ∈ N and s ∈ {0, . . . , n − 1}} and {δn,sµ : n ∈
N and s ∈ {0, . . . , n − 1}} be two systems of weights that satisfy Eq.
(3.6). For each n ∈ N and s ∈ {0, . . . , n − 1}, let (N, vs) ∈ M with
|N | = n and the characteristic function, defined for every T ⊆ N by
vs(T ) = 1 if |T | > s and vs(T ) = 0 otherwise. Then,

0 = µ(N, vs)− µ(N, vs) =
∑
i∈N

∑
S⊆N\i

(ωn,|S|µ − δn,|S|µ ) [vs(S ∪ i)− vs(S)]

= (ωn,sµ − δn,sµ )

(
n− 1

s

)
n,

which implies that ωn,sµ = δn,sµ for every n ∈ N and s ∈ {0, . . . , n − 1}.
Hence, the system of weights is unique.
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Lastly, since the game (N, vs) ∈M is not null and µ is positive,

0 < µ(N, vs) =
∑
i∈N

∑
T⊆N\i

ωn,|T |µ [vs(T ∪ i)− vs(T )] = ωn,sµ

(
n− 1

s

)
n,

which implies that ωn,sµ > 0 for every n ∈ N and s ∈ {0, . . . , n− 1}. �

Two important examples of additive, positive and anonymous
real valued functions are

µSh(N, v) = v(N)

and
µBa(N, v) =

1

2n−1

∑
i∈N

∑
S⊆N\i

[v(S ∪ i)− v(S)] ,

which respectively induce two families of weights defined by

ωn,sSh = ωn,s
µSh

=
s!(n− s− 1)!

n!
(3.7)

and
ωn,sBa = ωn,s

µBa
=

1

2n−1
. (3.8)

3.1.2 A family of share functions on M

In the last part of this section we focus on share functions on M.
We start by considering three properties that a share function onM
might satisfy.

M:NPP A share function on M, ρ, satisfies the null player property if
for every (N, v) ∈M+ and every null player i ∈ N in (N, v),

ρi(N, v) = 0.

M:SYM A share function onM, ρ, satisfies symmetry if for every (N, v) ∈
M and every pair i, j ∈ N of symmetric players in (N, v),

ρi(N, v) = ρj(N, v).

M:µ-ADD Let µ :M→ R. A share function on M, ρ, satisfies µ-additivity
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if for every pair of monotone games (N, v), (N,w) ∈M,

µ(N, v + w)ρ(N, v + w) = µ(N, v)ρ(N, v) + µ(N,w)ρ(N,w).

The properties M:NPP and M:SYM are standard, whereas M:µ-
ADD generalizes G:ADD. Note that since efficiency is somehow in-
cluded in the definition of a share function on M, the three prop-
erties above are essentially the properties used in the first charac-
terization of the Shapley value (see Theorem 1.1.8). The only differ-
ence is that the additivity (G:ADD) is replaced by the more general
µ-additivity (M:µ-ADD), and hence, it allows for a characterization
of a wider class of solutions.

The next result shows that the above three properties determine
a unique share function on M and that none of the properties can
be left out.

Proposition 3.1.3. Let µ : M→ R be positive, additive, and anony-
mous. Then, the only share function onM satisfyingM:NPP,M:SYM,
and M:µ-ADD is the µ-share function on M defined for every i ∈ N
by

ρµi (N, v) =

∑
S⊆N\i ω

n,s
µ [v(S ∪ i)− v(S)]

µ(N, v)
if (N, v) ∈M+

and ρµi (N, v0) = 1
n . Moreover, the three properties are independent.

Proof. We only prove the independence of the properties since
the characterization result holds as a direct consequence of Theo-
rem 3.5 in van der Laan & van den Brink (1998).

In the first place, let a and b be two fixed and different players,
N = {a, b} and (N, v) ∈ M. Since µ is additive, positive, and anony-
mous, we can write

µ(N, v) = λ1v(a) + λ1v(b) + λ2v(a, b),

for some λ1, λ2 > 0. Then we define ρ as follows

• If N = {a, b} and (N, v) ∈M+,{
ρa(N, v) = 1

µ(N,v) [λ1v(a) + λ2(v(a, b)− v(b))]

ρb(N, v) = 1
µ(N,v) [(λ1 + λ2)v(b)]
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• Otherwise,
ρ(N, v) = ρµ(N, v).

It is straightforward to check that ρ satisfies M:NPP and M:µ-
ADD but notM:SYM. To prove this last assertion, consider the game
(N, v) ∈ M where N = {a, b} and v(a) = v(b) = v(a, b) = 1. It is clear
that a and b are symmetric players in (N, v) but

µ(N, v)ρa(N, v) = λ1 6= λ1 + λ2 = µ(N, v)ρb(N, v).

In the second place, let µ : M → R be positive, additive, and
anonymous. Take µ′ : M → R a positive, additive, and anonymous
function different from µ, i.e., µ′ 6= µ. Then, from the uniqueness of
the characterization result, ρµ

′
satisfies M:NPP and M:SYM but not

M:µ-ADD.

Lastly, let ρ be defined, for every (N, v) ∈ M and every i ∈ N by
ρi(N, v) = 1/n. Then, for any additive µ, ρ satisfies M:µ-ADD and
M:SYM but notM:NPP. �

In the proof above we made use of Theorem 3.5 in van der Laan
& van den Brink (1998). However, the original formulation of this
result considers symmetry instead of anonymity. We say that µ is
symmetric if for every pair of symmetric players i, j ∈ N in (N, v) ∈M
and every S ⊆ N \ {i, j}, µ(S ∪ i, v|S∪i) = µ(S ∪ j, v|S∪j).

Proposition 3.1.4. A mapping µ :M→ R is symmetric if and only if
it is anonymous.

Proof. Let µ : M → R be anonymous. On the one hand, let
i, j ∈ N be two symmetric players in (N, v) ∈M and let S ⊆ N \ {i, j}.
Consider the permutation π ∈ Π(N) that leaves any player in N \
{i, j} invariant and exchanges player i with player j. This type of
permutations are known as transpositions. We denote the set of all
transpositions over N by Π∗(N). Then, since µ is anonymous

µ(S ∪ i, v|S∪i) = µ(π(S ∪ i), (π−1v)|π(S∪i)). (3.9)
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Next, by definition for every T ⊆ π(S ∪ i) = S ∪ j,

(π−1v)(T ) = v(π−1(T )) =

v((T \ j) ∪ i) if j ∈ T

v(T ) if j /∈ T,

which, means that (π(S ∪ i), (π−1v)|π(S∪i)) = (S ∪ j, v|S∪j) because i

and j are symmetric players in (N, v). Hence, by Eq. (3.9) µ is
symmetric.

Let now µ : M → R be symmetric. Let N be a set of players
with |N | ≥ 2 (otherwise the result is straightforward) and π ∈ Π(N).
It is well known that every permutation can be written as a finite
composition of transpositions, i.e., there are π1, . . . , πr ∈ Π∗(N) such
that,

π = π1 ◦ · · · ◦ πr.

Next, we claim that for every (N, v) ∈ M, π ∈ Π∗(N), and ∅ 6= S ⊆
N ,

µ(S, v|S) = µ(π(S), (π−1v)|π(S)). (3.10)

Observe that if the claim above holds then µ is anonymous. Indeed,
let (N, v) ∈ M, π ∈ Π(N), and ∅ 6= S ⊆ N . Let also π = π1 ◦ · · · ◦ πr be
a decomposition of π in transpositions. Then,

µ(S, v|S)

= µ(πr(S), (π−1
r v)|πr(S)) = µ(πr−1(πr(S)), (π−1

r−1(π−1
r v))|πr−1(πr(S)))

= · · · = µ(π1(· · · (πr(S)) · · · ), (π−1
1 (· · · (π−1

r v) · · · ))|π1(···(πr(S))··· ))

= µ
(
(π1 ◦ · · · ◦ πr)(S), ((π1 ◦ · · · ◦ πr)−1v)|π1◦···◦πr(S)

)
= µ(π(S), (π−1v)|π(S)),

because, for every T ⊆ (π1 ◦ · · · ◦ πr)(S),

(π−1
1 (· · · (π−1

r v) · · · ))(T ) = v((π−1
r ◦ · · · ◦ π−1

1 )(T )) = v((π1 ◦ · · · ◦ πr)−1(T )).

Hence, it only remains to prove the claim in Eq. (3.10). Let
π ∈ Π∗(N) be a transposition, then there are i, j ∈ N such that
π(i) = j, π(j) = i, and for every l ∈ N \ {i, j}, π(l) = l. Let ∅ 6= S ⊆ N ,
we distinguish three cases.
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Case 1: S ∩ {i, j} = ∅.

Since π|S is the identity permutation, that is, the permutation
which leaves every player invariant. Eq. (3.10) is trivially satisfied.

Case 2: S ∩ {i, j} 6= ∅ and π(S) ∩ {i, j} 6= ∅.

We can assume without loss of generality that i ∈ S ∩ {i, j}, and
thus j ∈ π(S) ∩ {i, j}. Then consider the game (N ′, v′), defined by
N ′ = S ∪ j and for every T ⊆ N ′, by

v′(T ) =

v(T ) if j /∈ T,

v((T \ j) ∪ i) if j ∈ T.

By construction, i and j are symmetric players in (N ′, v′). Let S′ =

S \ i, then, by symmetry,

µ(S, v|S) = µ(S′ ∪ i, v′|S′∪i) = µ(S′ ∪ j, v′|S′∪j) = µ(π(S), (π−1v)|π(S)).

Case 3: {i, j} ⊆ S.

Observe that in this case we have π(S) = S. Let k /∈ N be an extra
(fictitious) player. Then, define the game (N ′, v′) by N ′ = N∪k and for
every T ⊆ N ′ by v′(T ) = v(T \k). Let πi,k ∈ Π∗(N ′) be the transposition
that exchanges i with k and leaves the remaining players invariant.
Similarly, let πj,i, πj,k ∈ Π∗(N ′) be the transpositions that exchange j
with i and j with k, respectively. It is an easy exercise to check that
for every l ∈ N , π(l) = (πj,k ◦ πj,i ◦ πi,k)(l). Let T = S \ {i, j} and define,

S0 = T ∪ {i, j} = S,

S1 = πi,k(S
0) = πi,k(T ∪ {i, j}) = T ∪ {k, j},

S2 = πj,i(S
1) = (πj,i ◦ πi,k)(T ∪ {i, j}) = T ∪ {k, i}, and

S3 = πj,k(S
2) = (πj,k ◦ πj,i ◦ πi,k)(T ∪ {i, j}) = T ∪ {i, j} = S.

Observe that S ∩ πi,k(S) 6= ∅ and πi,k(S) \ S 6= ∅, hence, by Case 2,

µ(S, v|S) = µ(πi,k(S), (π−1
i,k v)|πi,k(S)) = µ(S1, (πi,kv)|S1), (3.11)

where the second equality holds because the inverse of every trans-
position is the transposition itself. Next, note that S1 ∩ πj,i(S1) 6= ∅
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and πj,i(S
1) \ S1 6= ∅, hence, we can apply Case 2 to obtain,

µ(S1, (πi,kv)|S1) = µ(πj,i(S
1), (π−1

j,i (πi,kv))|πj,i(S1)) = µ(S2, ((πj,i◦πi,k)v)|S2).

(3.12)
Finally, observe again that S2 ∩ πk,j(S2) 6= ∅ and πk,j(S

2) \ S2 6= ∅,
hence, we can again apply case 2 to obtain,

µ(S2, ((πj,i ◦ πi,k)v)|S2) = µ(πk,j(S
2), π−1

k,j ((πj,i ◦ πi,k)v)|πk,j(S2))

= µ(S3, ((πk,j ◦ πj,i ◦ πi,k)v)|S3) = µ(S, (πv)|S) = µ(π(S), (π−1v)|π(S)),

(3.13)

where the last equality follows from the fact that π−1 = π. Taking
into account Eq. (3.11), (3.12), and (3.13) the desired result follows.
�

Note that, when µ = µSh, the unique share function satisfying
the corresponding properties is ρSh, whereas when µ = µBa, it is ρBa.
Observe that when µ = µSh, the property ofM:µ-ADD is equivalent to
G:ADD, and hence, the characterization result above coincides with
the characterization of Sh presented in Theorem 1.1.8.

3.2 Share functions onMU

In this section, we extend the family of share functions defined in
Section 3.1 to monotone games with a priori unions based on the
so-called “multiplication” property. This property is first suggested
by Owen (1977) when he introduces the Owen value. According to
this property, the fraction of the total payment v(N), received by a
player in a game with a priori unions should be equal to the product
of the share of the coalition she belongs to in the quotient game, and
her share in some internal game played among the members of her
union. In van der Laan & van den Brink (2002) and van den Brink
& van der Laan (2005) the idea is formalized and applied to Ow and
BO. As a result, the unified approach to ρSh and ρBa presented in
Section 3.1 is extended to monotone games with a priori unions. In
this section this approach is generalized to cover the share function
associated with SCB.
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A monotone game with a priori unions is a triple (N, v, P ) where
(N, v) ∈ M and P ∈ P (N). The set of monotone games with a priori
unions and fixed player set N is denoted by MUN and the set of
monotone games with a priori unions and any finite set of players
by MU . The set of monotone non null games with a priori unions
is denoted by MU+, i.e., MU+ = {(N, v, P ) ∈ MU : (N, v) ∈ M+}.
A share function on MU is a map, ρ, that assigns a share vector,
ρ(N, v, P ), to every monotone game with a priori unions, (N, v, P ) ∈
MU .

The only value on GU which is efficient among the three pre-
sented in Section 2.1 is the Owen value. Therefore, we can define a
share function on MU associated to each value on GU dividing the
payoffs by a proper amount.

Definition 3.2.1. The Owen share function, ρOw, is the share func-
tion onMU defined for every (N, v, P ) ∈MU and i ∈ N by

ρOw
i (N, v, P ) =

Owi(N, v, P )

v(N)
if (N, v, P ) ∈MU+,

and ρOw
i (N, v0, P ) = 1

m
1
pk

, where i ∈ Pk ∈ P , m = |M |, and pk = |Pk|.

Definition 3.2.2. The Banzhaf-Owen share function, ρBO, is the
share function onMU defined for every (N, v, P ) ∈MU and i ∈ N by

ρBOi (N, v, P ) =
BOi(N, v, P )∑
j∈N BOj(N, v, P )

if (N, v, P ) ∈MU+,

and ρBOi (N, v0, P ) = 1
m

1
pk

, where i ∈ Pk ∈ P , m = |M |, and pk = |Pk|.

Definition 3.2.3. The Symmetric coalitional Banzhaf share function,
ρSCB, is the share function on MU defined for every (N, v, P ) ∈ MU
and i ∈ N by

ρSCBi (N, v, P ) =
SCBi(N, v, P )∑
j∈N SCBj(N, v, P )

if (N, v, P ) ∈MU+,

and ρSCBi (N, v0, P ) = 1
m

1
pk

, where i ∈ Pk ∈ P , m = |M |, and pk = |Pk|.

However, as argued in van der Laan & van den Brink (2002)
some of these definitions do not yield share functions on MU that
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satisfy the above described multiplication property. Hence, in what
follows the class of share functions on MU that generalizes ρµ and
satisfies the multiplication property will be introduced. For doing
so, some concepts need to be formally introduced. First, following
van der Laan & van den Brink (2002) two “internal” games among
the players of each union will be defined. Let (N, v, P ) ∈ MU and
i ∈ Pk ∈ P , we define the so-called Shapley internal-game (Pk, v

Pk)

and Banzhaf internal-game (Pk, v
Pk) for every S ⊆ Pk as follows,

vPk(S) =
∑

R⊆M\k

ωm,rSh [v(PR ∪ S)− v(PR)] , and

vPk(S) =
∑

R⊆M\k

ωm,rBa [v(PR ∪ S)− v(PR)] .
(3.14)

Recall that the weights ωSh and ωBa are the ones associated with
µSh and µBa respectively and defined in Eq. (3.7) and (3.8). The
Shapley internal-game is introduced back in Owen (1977) and stud-
ied together with the Banzhaf internal-game in van der Laan &
van den Brink (2002) and van den Brink & van der Laan (2005).
Next, the two internal games defined above are generalized and a
family of internal games is considered.

Definition 3.2.4. Given a game with a priori unions (N, v, P ) ∈MU
and a positive, additive, and anonymous function µ : M → R, we
define for each Pk ∈ P the µ-internal game (Pk, v

Pk
µ ), for every S ⊆ Pk,

as follows
vPk
µ (S) =

∑
R⊆M\k

ωm,rµ [v(PR ∪ S)− v(PR)] .

In some sense, the µ-internal game describes the possibilities of
every coalition S ⊆ Pk if it defects from Pk, assuming that the shar-
ing is done according to µ. Note that the µ-internal game generalizes
the Shapley and Banzhaf internal-games when µSh and µBa are con-
sidered, i.e., (Pk, v

Pk

µSh
) = (Pk, v

Pk) and (Pk, v
Pk

µBa
) = (Pk, v

Pk). Observe
also that for every positive, additive, and anonymous µ :M→ R the
µ-internal game described above is monotone whenever (N, v) ∈M.

Example 3.2.5. Consider the following monotone game with a pri-
ori unions: (N, v, P ) ∈ M, where N = {1, 2, 3, 4, 5}, v = u{1,2,4} +

u{3,5} + uN , where uS is the unanimity game with carrier S, and
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P = {{1, 2, 3}, {4, 5}}. Then, the µSh-internal game played among the
members of coalition P1 = {1, 2, 3}, that is, the Shapley internal-
game of coalition P1, is denoted by (P1, v

P1

µSh
), or simply by (P1, v

P1),
and is defined as follows:

vP1({1}) = vP1({2}) = 0, vP1({3}) = 1/2,

vP1({1, 2}) = vP1({1, 3}) = vP1({2, 3}) = 1/2, and

vP1({1, 2, 3}) = 3/2.

Note that when there are only two unions (m = |P | = 2) the Shapley
and Banzhaf weights coincide, i.e., for every r ∈ {1, 2}, ω2,r

Sh = ω2,r
Ba =

1/2. Hence, in this example for every k ∈ {1, 2}, (Pk, v
Pk) = (Pk, v

Pk).
♦

Next, a family of share functions on MU is defined. This family
generalizes the family of share functions onMU defined in Theorem
3.1 of van den Brink & van der Laan (2005). It is a wider class since
the use of two different share functions is allowed. First, a µ1-share
function is used to share among the unions and second, a µ2-share
function is used to share within each union.

Definition 3.2.6. Let µ1, µ2 : M → R be positive, additive, and
anonymous. Then the {µ1, µ2}-share function on MU , ρµ

1,µ2, is de-
fined for every (N, v, P ) ∈MU and i ∈ Pk ∈ P , by

ρµ
1,µ2

i (N, v, P ) = ρµ
1

k (M,vP )ρµ
2

i (Pk, v
Pk

µ1
).

It can be easily checked that the above definition yields a share
function on MU , taking into account that ρµ

1
and ρµ

2
are share

functions. Note that as mentioned above the class of share func-
tions defined in Theorem 3.1 in van den Brink & van der Laan (2005)
is a particular instance of the family of share functions on MU de-
fined here. In fact, it is obtained taking µ1 = µ2. In Proposition
3.2.7 below some of the properties satisfied by the {µ1, µ2}-share
functions are described.

Proposition 3.2.7. Let µ1, µ2 : M → R be positive, additive, and
anonymous and (N, v, P ) ∈ MU . Then, ρµ

1,µ2 satisfies the following
properties:
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1.
∑

i∈Pk
ρµ

1,µ2

i (N, v, P ) = ρµ
1

k (M, vP ).

2. ρµ
1,µ2(N, v, PN ) = ρµ

2
(N, v).

3. ρµ
1,µ2(N, v, Pn) = ρµ

1
(N, v).

Proof. Property 1. is a direct consequence of ρµ being a share
function. Property 3. is also straightforward since for P = Pn, M =

N and vP = v. To prove Property 2. note that (N, vNµ1) = (N,ω0,1
µ1
v)

and by definition of ρµ, ρµ
2
(N,ω0,1

µ1
v) = ρµ

2
(N, v). �

The Properties 2. and 3. show the fact that ρµ
1,µ2 generalizes

the class of µ-share functions. In the next proposition we show
that the Owen and Symmetric coalitional Banzhaf share functions
(Definitions 3.2.1 and 3.2.3) lie within the family of {µ1, µ2}-share
functions for particular choices of µ1 and µ2.

Proposition 3.2.8. The Owen and Symmetric coalitional Banzhaf
share functions are particular instances of {µ1, µ2}-share functions.
Indeed,

ρOw = ρµ
Sh,µSh , ρSCB = ρµ

Ba,µSh .

Proof. Let (N, v, P ) ∈ MU . If (N, v) is the null game, then, by
Definitions 3.2.6, 3.2.1, and 3.2.3 and Proposition 3.1.3, for every
i ∈ Pk ∈ P ,

ρµ
Sh,µSh

i (N, v, P ) = ρOw
i (N, v, P ) =

1

m

1

pk
and

ρµ
Ba,µSh

i (N, v, P ) = ρSCBi (N, v, P ) =
1

m

1

pk
.

Let now (N, v, P ) ∈ MU+ and i ∈ Pk ∈ P . If k is a null player in
(M,vP ) by the monotonicity of (N, v) and Eq. (3.14), (Pk, v

Pk) and
(Pk, v

Pk) are both null games. Hence, on the one hand,

ρµ
Sh,µSh

i (N, v, P ) = ρµ
Sh

k (M, vP )
1

pk
= 0 and

ρµ
Ba,µSh

i (N, v, P ) = ρµ
Ba

k (M,vP )
1

pk
= 0.

On the other hand, since Sh and Ba satisfy G:NPP, Shk(M,vP ) =

Bak(M, vP ) = 0. Finally, it is easy to check that since Ow and
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SCB satisfy GU :QGP and (N, v) is monotone, Owi(N, v, P ) = 0 and
SCBi(N, v, P ) = 0 and hence,

ρOw
i (N, v, P ) = 0 and ρSCBi (N, v, P ) = 0.

Finally, let (N, v, P ) ∈ MU+ and i ∈ Pk ∈ P where k is not a null
player in (M,vP ). Then, by Eq. (3.14), (Pk, v

Pk) and (Pk, v
Pk) are not

null games, in particular, vPk(Pk) > 0 and vPk(Pk) > 0. Then, by
Definitions 3.2.6 and 3.2.4,

ρµ
Sh,µSh

i (N, v, P ) = ρµ
Sh

k (M, vP )ρµ
Sh

i (Pk, v
Pk

µ1
) = ρShk (M,vP )ρShi (Pk, v

Pk)

=
Shk(M,vP )

vP (M)

Shi(Pk, v
Pk)

vPk(Pk)
=

Shk(M,vP )

v(N)

Owi(N, v, P )

Shk(M, vP )
= ρOw

i (N, v, P ),

where the last two equalities hold by the definitions of ρSh, Sh, and
(Pk, v

Pk) (Definitions 1.1.17 and 1.1.4 and Eq. (3.14), respectively).

Similarly, by Definitions 3.2.6 and 3.2.4 and Proposition 3.1.3,

ρµ
Ba,µSh

i (N, v, P ) = ρµ
Ba

k (M,vP )ρµ
Sh

i (Pk, v
Pk

µBa
) =

Bak(M,vP )

µBa(M,vP )

Shi(Pk, v
Pk)

vPk(Pk)

=

∑
R⊆M\k ω

m,r
Ba

[
vP (R ∪ k)− vP (R)

]
µBa(M,vP )

∑
T⊆Pk\i ω

pk,t
Sh

[
vPk(T ∪ i)− vPk(T )

]∑
R⊆M\k ω

m,r
Ba [v(PR ∪ Pk)− v(PR)]

=

∑
T⊆Pk\i ω

pk,t
Sh

[
vPk(T ∪ i)− vPk(T )

]
µBa(M,vP )

=
SCBi(N, v, P )∑
l∈M Bal(M, vP )

From Theorem 2.1.7 we know that SCB satisfies the quotient
game property (GU :QGP). Hence,

ρSCBi (N, v, P ) =
SCBi(N, v, P )∑

l∈M
∑

i∈Pl
SCBi(N, v, P )

=
SCBi(N, v, P )∑
l∈M Bal(M, vP )

.

�

However, as we show in the Remark below, the Banzhaf-Owen
share function does not arise as a product of the Banzhaf share of
the union in the external game and the Banzhaf share of the player
in the Banzhaf internal-game.

Remark 3.2.9. The Banzhaf-Owen share function is not the {µBa, µBa}-
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share function, i.e.,
ρBO 6= ρµ

Ba,µBa .

Let N = {1, 2, 3, 4}, P = {{1, 2, 3}, {4}}, and v = uN . Then, using the
definitions we have that

ρBO(N, v, P ) =

(
1

7
,
1

7
,
1

7
,
4

7

)
6=
(

1

6
,
1

6
,
1

6
,
1

2

)
= ρµ

Ba,µBa(N, v, P ). C

Next, we present the first characterization of the family of {µ1, µ2}-
share functions by means of the aforementioned multiplication prop-
erty. Note that, since the multiplication uses the µ-internal game
(Pk, v

Pk
µ ), we will need to define the property for a given µ :M→ R.

MU :µ-MUL Let µ : M → R. A share function on MU , ρ, satisfies
µ-multiplication if for every (N, v, P ) ∈MU and i ∈ Pk ∈ P ,

ρi(N, v, P ) = ρk(M,vP , Pm)ρi(Pk, v
Pk
µ , PPk).

Next, we define the null player property for share functions on
MU .

MU :NPP A share function on MU , ρ, satisfies the null player prop-
erty if for every (N, v, P ) ∈ MU+ and every null player i ∈ N in
(N, v),

ρi(N, v, P ) = 0.

Note that, in line with M:NPP, the null player property only re-
quires that every null player in a monotone non-null game with a
priori unions earns a zero payoff.

The next property is a slight modification of the individual sym-
metry property of van den Brink & van der Laan (2005). It states
that two symmetric players in the original game get the same payoff
in two situations, either, if they are in the same coalition or if they
both form singleton coalitions.

MU :SYM A share function onMU , ρ, satisfies symmetry if for every
(N, v, P ) ∈ MU and every pair of symmetric players i, j ∈ N in
(N, v) ∈M such that i, j ∈ Pk ∈ P or {i}, {j} ∈ P ,

ρi(N, v, P ) = ρj(N, v, P ).
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3.2. SHARE FUNCTIONS ONMU

The last two properties extend the µ-additivity property (M:µ-
ADD) of share functions onM to the framework of monotone games
with a priori unions.

MU :µ-ADD(PN ) Let µ : M → R. A share function on MU , ρ, sat-
isfies µ-additivity for PN if for every pair of monotone games
(N, v), (N,w) ∈M,

µ(N, v+w)ρ(N, v+w,PN ) = µ(N, v)ρ(N, v, PN )+µ(N,w)ρ(N,w, PN ).

MU :µ-ADD(Pn) Let µ : M → R. A share function on MU , ρ, sat-
isfies µ-additivity for Pn if for every pair of monotone games
(N, v), (N,w) ∈M,

µ(N, v+w)ρ(N, v+w,Pn) = µ(N, v)ρ(N, v, Pn)+µ(N,w)ρ(N,w, Pn).

The next result states that the class of {µ1, µ2}-share functions
is characterized by the five properties above.

Theorem 3.2.10. Let µ1, µ2 : M → R be positive, additive, and
anonymous. Then, ρµ

1,µ2 is the unique share function onMU satisfy-
ing MU :µ1-MUL, MU :NPP, MU :SYM, MU :µ2-ADD(PN ), and MU :µ1-
ADD(Pn).

Proof.
(1) Existence. From the definition of ρµ

1,µ2 and Properties 2. and
3. of Proposition 3.2.7 we have that ρµ

1,µ2 satisfiesMU :µ1-MUL.
Let (N, v, P ) ∈MU+ and i ∈ Pk ∈ P a null player in (N, v). If k is a

null player in (M,vP ), since (M,vP ) ∈M+ and ρµ
1

satisfiesM:NPP,

ρµ
1

k (M,vP ) = 0.

Next, suppose that k is not a null player in (M,vP ), i.e., there is
R ⊆M \ k such that v(PR ∪ Pk)− v(PR) > 0. Then, (Pk, v

Pk

µ1
) is not the

null game because by definition, vPk

µ1
(Pk) ≥ ωm,rµ1

[v(PR ∪ Pk)− v(PR)] >

0. On the other hand it is easy to check that i is a null player in
(Pk, v

Pk

µ1
) because it is so in (N, v). Since ρµ

2
satisfiesM:NPP,

ρµ
2

i (Pk, v
Pk

µ1
) = 0.
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That is, in any case ρµ
1,µ2

i (N, v, P ) = 0.

Next, let i, j ∈ N be symmetric players in (N, v) ∈ M+. If i, j ∈
Pk ∈ P , then i and j are symmetric players in (Pk, v

Pk

µ1
). Since ρµ

2

satisfiesM:SYM,

ρµ
1,µ2

i (N, v, P ) = ρµ
1

k (M, vP )ρµ
2

i (Pk, v
Pk

µ1
)

= ρµ
1

k (M,vP )ρµ
2

j (Pk, v
Pk

µ1
) = ρµ

1,µ2

j (N, v, P ).

If {i}, {j} ∈ P , there are k, l ∈ M such that Pk = {i} and Pl = {j}.
Then, k and l are symmetric players in (M,vP ). Since ρµ

1
satisfies

M:SYM,

ρµ
1,µ2

i (N, v, P ) = ρµ
1

k (M,vP )ρµ
2

i ({i}, vPk

µ1
)

= ρµ
1

l (M, vP )ρµ
2

j ({j}, vPl

µ1
) = ρµ

1,µ2

j (N, v, P ).

Finally, Property 2. of Proposition 3.2.7 and the fact that ρµ
2

sat-
isfies M:µ2-ADD directly imply that ρµ

1,µ2 satisfies MU :µ2-ADD(PN ).
And the same reasoning using Property 1. instead of Property 2.
of Proposition 3.2.7 is valid and shows that ρµ

1,µ2 satisfies MU :µ1-
ADD(Pn).

(2) Uniqueness. Suppose that ρ is a share function on MU sat-
isfying the five properties. Then, MU :SYM and the fact that ρ is
a share function on MU imply that for every i ∈ N ρi(N, v0, P

N ) =

ρi(N, v0, P
n) = 1/n. Next, for every ∅ 6= T ⊆ N , let (N,wT ) ∈ M

be such that wT = cTuT , where cT > 0 and (N, uT ) is the una-
nimity game of coalition T . For i ∈ N \ T , MU :NPP implies that
ρi(N,wT , P

N ) = ρi(N,wT , P
n) = 0. For i ∈ T , MU :SYM and the

fact that ρ is a share function on MU imply that ρi(N,wT , PN ) =

ρi(N,wT , P
n) = 1/|T |. Hence, ρ(N,wT , P

N ) and ρ(N,wT , P
N ) are uni-

quely determined.

For (N, v) ∈M, recall from the preliminaries (page 3) that v+v− =

v+, with both v− and v+ being non negative linear combinations
of unanimity games. Then, using MU :µ2-ADD(PN ) and MU :µ1-
ADD(Pn) we know that ρ(N, v−, PN ), ρ(N, v+, PN ), ρ(N, v−, Pn), and
ρ(N, v+, Pn) are uniquely determined. Finally, for an arbitrary
(N, v, P ) ∈ MU , the uniqueness of ρ(N, v, P ) directly follows from
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3.2. SHARE FUNCTIONS ONMU

MU :µ1-MUL. �

To end with, we propose a second characterization of ρµ
1,µ2 based

on a property which is stronger that the two additivity properties
used in the characterization above. Next, let µ1, µ2 : M → R be
positive, additive, and anonymous, we extend the previous proper-
ties of µ2-additivity for PN (MU :µ-ADD(PN )) and µ1-additivity for Pn

(MU :µ-ADD(Pn)) to the new (µ1, µ2)-additivity which is stated for an
arbitrary P ∈ P (N).

MU :(µ1, µ2)-ADD Let µ1, µ2 : M → R. A share function on MU , ρ,
satisfies (µ1, µ2)-additivity if for every (N, v, P ), (N,w, P ) ∈ MU ,
z = v + w, and every i ∈ Pk ∈ P ,

µ1(M, zP )µ2(Pk, z
Pk

µ1
)ρi(N, z, P )

=
[
µ2(Pk, v

Pk

µ1
)ρi(Pk, v

Pk

µ1
, PPk) + µ2(Pk, w

Pk

µ1
)ρi(Pk, w

Pk

µ1
, PPk)

]
×
[
µ1(M, vP )ρk(M,vP , Pm) + µ1(M,wP )ρk(M,wP , Pm)

]
.

We obtain the next characterization replacingMU :µ1-MUL,MU :µ2-
ADD(PN ), andMU :µ1-ADD(Pn) byMU :(µ1, µ2)-ADD.

Corollary 3.2.11. Let µ1, µ2 : M → R be positive, additive, and
anonymous. Then ρµ

1,µ2 is the unique share function on MU satis-
fyingMU :NPP,MU :SYM, andMU :(µ1, µ2)-ADD.

Proof. (1) Existence. By Definition 3.2.6 and the M:µ-ADD

property of ρµ it is straightforward to check that ρµ
1,µ2 satisfies

MU :(µ1, µ2)-ADD. Finally, ρµ
1,µ2 satisfies the remaining properties

by Theorem 3.2.10.

(2) Uniqueness. It is a consequence of the uniqueness in The-
orem 3.2.10. Note that MU :(µ1, µ2)-ADD includes MU :µ2-ADD(PN ),
MU :µ1-ADD(Pn), and MU :µ1-MUL. Indeed, if we take P = Pn, MU :
(µ1, µ2)-ADD becomes MU :µ1-ADD(Pn), if we take P = PN , MU :
(µ1, µ2)-ADD becomes MU : µ2-ADD(PN ). Finally if we take w = v0,
MU :(µ1, µ2)-ADD becomesMU :µ1-MUL. �

To conclude, we check that the properties used in the character-
izations are independent.
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Remark 3.2.12. The properties considered in Theorem 3.2.10 are
independent as the following examples show. Let µ1, µ2 :M→ R be
additive, positive, and anonymous.

(i) Let ρ1 be a share function on MU defined for every (N, v, P ) ∈
MU as follows:

• If P = Pn, ρ1(N, v, P ) = ρµ
1
(N, v),

• Otherwise, ρ1(N, v, P ) = ρµ
2
(N, v).

Then ρ1 satisfies MU :NPP, MU :SYM, MU :µ2-ADD(PN ), and MU :µ1-
ADD(Pn) but notMU :µ1-MUL.

(ii) The share function on MU , ρ2, defined for every (N, v, P ) ∈
MU and i ∈ N by

ρ2
i (N, v, P ) =

1

mpk
, where i ∈ Pk ∈ P,

satisfiesMU :µ1-MUL,MU :SYM,MU :µ2-ADD(PN ), andMU :µ1-ADD

(Pn) but notMU :NPP.

(iii) Let a and b be two fixed and different players. If N = {a, b},
for every (N, v) ∈ M let λ1, λ2 > 0 be such that µ2(N, v) = λ1v(a) +

λ1v(b) + λ2v(N). Define the share function on MU , ρ3, for every
(N, v, P ) ∈MU as follows:

• If N = {a, b}, P = PN , and (N, v) ∈M+

{
ρ3
a(N, v, P ) = λ1v(a)+λ2(v(N)−v(b))

µ2(N,v)

ρ3
b(N, v, P ) = (λ1+λ2)v(b)

µ2(N,v)

• If N 6= {a, b} and P = PN , ρ3(N, v, P ) = ρµ
2
(N, v).

• If P = Pn, ρ3(N, v, P ) = ρµ
1
(N, v).

• Otherwise, for every i ∈ N ,

ρ3
i (N, v, P ) = ρ3

k(M,vP , Pm)ρ3
i (Pk, v

Pk

µ1
, PPk), where i ∈ Pk ∈ P.

Then, ρ3 satisfies MU :µ1-MUL, MU :NPP, MU :µ2-ADD(PN ), and
MU :µ1-ADD(Pn) but notMU :SYM.
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(iv) The share function on MU , ρ4, defined for every (N, v, P ) ∈
MU by

ρ4(N, v, P ) = ρµ
1,µ1(N, v, P ),

satisfies MU :µ1-MUL, MU :NPP, MU :SYM, and MU :µ1-ADD(Pn) but
notMU :µ2-ADD(PN ).

(v) Let ρ5 be a share function onMU defined for every (N, v, P ) ∈
MU as follows:

• If P = Pn or P = PN , ρ5(N, v, P ) = ρµ
2
(N, v),

• Otherwise, for every i ∈ N ,

ρ5
i (N, v, P ) = ρ5

k(M, vP , Pm)ρ5
i (Pk, v

Pk

µ1
, PPk), where i ∈ Pk ∈ P.

Then, ρ5 satisfies MU :µ1-MUL, MU :NPP, MU :SYM, and MU :µ2-ADD

(PN ) but notMU :µ1-ADD(Pn). C

Remark 3.2.13. The properties considered in Theorem 3.2.11 are
independent as the following examples show. Let µ1, µ2 :M→ R be
additive, positive, and anonymous.

(i) The share function on MU , ρ1, defined as above satisfies
MU :NPP andMU :SYM but notMU :(µ1, µ2)-ADD.

(ii) The share function on MU , ρ2, defined as above satisfies
MU :SYM andMU :(µ1, µ2)-ADD but notMU :NPP.

(iii) The share function on MU , ρ3, defined as above satisfies
MU :NPP andMU :(µ1, µ2)-ADD but notMU :SYM. C

3.3 Share functions onML

In the present section we introduce a family of share functions for
monotone games with levels structures of cooperation. The differ-
ent share functions depend only on the choice of a positive, additive,
and anonymous real valued function µ :M→ R. Therefore, we gen-
eralize the family of share functions on M, ρµ, (Section 3.1.2) and
the family of share functions onMU , ρµ,µ, (Section 3.2) to monotone
games with an arbitrary number of levels structures of cooperation.
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Let ML be the set monotone games with leveles structure of coop-
eration, i.e.,ML = {(N, v,B) ∈ GL : (N, v) ∈M}.

A share function on ML is a map, ρ, that assigns a share vector
ρ(N, v,B) to every monotone game with levels structure of coopera-
tion (N, v,B) ∈ ML. We generalize the results of van den Brink &
van der Laan (2005) to monotone games with an arbitrary number
of levels structure of cooperation. That is, if in Section 3.2 we take
µ1 = µ2, all the results of Section 3.2 will be generalized to monotone
games with an arbitrary number of levels structure of cooperation.
To do so, for each i ∈ N and r ∈ {0, 1, . . . , k}, let N i

r(N,B) = {U : U ∈
Br, U ⊆ U ir+1} be the set of all unions of the rth level of cooperation
that form the union U ir+1 of the (r + 1)th level of cooperation. Recall
that, for each i ∈ N , {i} = U i0 ⊆ U i1 ⊆ · · · ⊆ U ik ⊆ U ik+1 are such that
U ir ∈ Br, for every r ∈ {0, 1, . . . , k, k+ 1}. In order to ease the notation,
we write N i

r or N i
r(B) when no confusion may arise.

Example 3.3.1. Recall the levels structure of cooperation of Example
2.2.1, i.e., N = {1, 2, 3, 4, 5, 6} and B = {B0, B1, B2, B3} given by

B3 = {{1, 2, 3, 4, 5, 6}},

B2 = {{1, 2, 3}, {4, 5, 6}},

B1 = {{1, 2}, {3}, {4}, {5, 6}}, and

B0 = {{1}, {2}, {3}, {4}, {5}, {6}}.

Consider player 1 ∈ N , then,

U i
0︷︸︸︷
{1} ⊆

U i
1︷ ︸︸ ︷

{1, 2} ⊆

U i
2︷ ︸︸ ︷

{1, 2, 3} ⊆
U i
3︷︸︸︷
N , and

N i
0 = {{1}, {2}}, N i

1 = {{1, 2}, {3}}, and N i
2 = {{1, 2, 3}, {4, 5, 6}}. ♦

Following the philosophy behind the definition of the internal
and external (or quotient) games for games with coalition structure,
given a game with k levels structure of cooperation we define k + 1

different games for each player.

Definition 3.3.2. Let µ be positive, additive, and anonymous. For
every (N, v,B) ∈ ML, i ∈ N , and r ∈ {0, 1, . . . , k}, let the rth level
game of i with respect to µ, (N i

r(N,B), vi,rµ ) ∈ M, be given, for each
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T ⊆ N i
r, by

vi,rµ (T ) =
∑

Sk⊆N i
k

U i
k /∈Sk

· · ·
∑

Sr+1⊆N i
r+1

U i
r+1 /∈Sr+1

ω
ni
k,sk
µ · · ·ωn

i
r+1,sr+1
µ [v(Sk,r+1 ∪ T )− v(Sk,r+1)] ,

(3.15)
where Sk,r = Sk ∪ Sk−1 ∪ · · · ∪ Sr and lowercase letters denote cardi-
nalities, i.e., nir = |N i

r| and sr = |Sr| for every r ∈ {0, . . . k}.

Note that in the definition above we abuse notation and simply
write v(Sk,r+1) to denote v({i ∈ U : U ∈ Sl for some l ∈ {r + 1, . . . , k}}).
This kind of notational abuse is done in many places throughout
this section. Further, we assume that the empty set always belongs
to the summation in Eq. (3.15). Therefore the kth level game of any
player with respect to any µ coincides with the kth union level game
(Definition 2.2.3 on page 35) or the quotient game (Definition 2.1.1
on page 27) when there is only one level, i.e., we have vi,kµ (T ) = vk(T )

for every T ⊆ N i
k = {U ∈ Bk : U ⊆ N} = Bk. Moreover, it is easy to

check that, when k = 1, that is B = {B0, B1, B2} = {{i}i∈N , B1, {N}}
with B1 = P , for every i ∈ Pk ∈ P , (N i

0, v
i,0
µ ) = (Pk, v

Pk
µ ) and (N i

1, v
i,1
µ ) =

(M,vP ). It is as well straightforward to check that for every i ∈ N and
r ∈ {0, . . . , k}, (N i

r, v
i,r) ∈ M whenever (N, v) ∈ M. The rth level game

of i with respect to µ, describes the possibilities of each coalition of
unions of N i

r if it defects form U ir+1 and forms its own union in the
(r + 1)th level of cooperation, considering that the sharing is carried
out according to µ. Observe that given a positive, additive, and
anonymous µ and (N, v,B) ∈ ML with B = {B0, . . . , Bk+1}, for every
i, j ∈ U ∈ Br and l ≥ r, (N i

l (N,B), vi,lµ ) = (N j
l (N,B), vj,lµ ). Hence, we

are actually defining as many internal games as unions in levels
1, . . . , k + 1.

Next, in line with Theorem 3.1 in van den Brink & van der Laan
(2005) (which corresponds to Definition 3.2.6 of the present doc-
ument restricted to the case µ1 = µ2), a class of share functions
on ML is defined based on positive, additive, and anonymous µ

functions. Each member of this class of share functions on ML is
denoted by ρµ and is defined as a product of the shares in each of
the internal games.
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Definition 3.3.3. Let µ : M → R be positive, additive, and anony-
mous. Then, the µshare function on ML, ρµ, is defined for every
(N, v,B) ∈ML and i ∈ N , by

ρµi (N, v,B) =
k∏
r=0

ρµ
U i
r
(N i

r, v
i,r
µ ), (3.16)

where ρµ is as defined in Proposition 3.1.3.

It can be easily checked that the above definition indeed yields a
share function onML. It is a consequence of ρµ being a share func-
tion on M and the aforementioned fact that for each r ∈ {1, . . . , k}
and U ∈ Br, (N i

r, v
i,r
µ ) is the same game for every i ∈ U . In Proposi-

tion 3.3.4 below it is shown that µ-share functions on ML satisfy
some other properties, especially that each µ-share function onML
coincides, when the levels structure of cooperation is trivial, with
the µ-share function on M defined in Proposition 3.1.3 for games
without levels structure of cooperation.

Proposition 3.3.4. Let µ : M→ R be positive, additive, and anony-
mous. Then

(i) For every (N, v) ∈M,

ρµ(N, v,B0) = ρµ(N, v).

(ii) For every (N, v,B) ∈ML+ and every null player i ∈ N in (N, v),

ρµi (N, v,B) = 0.

(iii) For every (N, v,B) ∈ ML and every pair i, j ∈ N of symmetric
players in (N, v) that are in the same union of every level, i.e.,
given that B = {B0, . . . , Bk+1}, i, j ∈ U ∈ B1,

ρµi (N, v,B) = ρµj (N, v,B).

Proof. Let µ :M→ R be positive, additive, and anonymous.
To prove (i), let (N, v) ∈ M and (N,B) be the trivial levels struc-

ture of cooperation, i.e., B0 = {B0, B1}. Then, for every i ∈ N , N i
0 = N

84



3.3. SHARE FUNCTIONS ONML

and for every positive, additive, and anonymous µ :M→ R, vi,0µ = kv

for some k ∈ R+. Hence, by Definition 3.3.3,

ρµi (N, v,B0) = ρµ
U i
0
(N i

0, v
i,0
µ ) = ρµi (N, v),

where the last equality holds by Proposition 3.1.3.

To prove (ii), let (N, v,B) ∈ ML+ and i ∈ N a null player in
(N, v). First of all, and by Definition 3.3.2, (N, v) ∈ M+ implies
that (N i

k, v
i,k
µ ) ∈M+. We will show that for every r ∈ {1, . . . , k}, if U ir is

not a null player in (N i
r, v

i,k
µ ), then (N i

r−1, v
i,r−1
µ ) ∈M+. We first show

it for r = k because it is the easiest case. Let U ik ∈ N i
k be a non null

player in (N i
k, v

i,k
µ ), hence, there is S∗k ⊆ N i

k \ U ik such that

vi,kµ (S∗k ∪ U ik)− vi,kµ (S∗k) = v(S∗k ∪ U ik)− v(S∗k) > 0. (3.17)

Next, we show that (N i
k−1, v

i,k−1
µ ) is not a null game. Note that by the

monotonicity of (N, v),

vi,k−1
µ (N i

k−1) =
∑

Sk⊆N i
k

U i
k /∈Sk

ω
ni
k,sk
µ

[
v(Sk ∪ U ik)− v(Sk)

]
≥ 0. (3.18)

Observe that in the summation of Eq. (3.18) we also take S∗k and,
hence, by Eq. (3.17), vi,k−1

µ (N i
k−1) > 0.

Next, let U ir be a non null player in (N i
r, v

i,r
µ ), i.e., there is S∗r ⊆

N i
r \ U ir such that

vi,rµ (S∗r ∪ U ir)− vi,rµ (S∗r )

=
∑

Sk⊆N i
k

U i
k /∈Sk

· · ·
∑

Sr+1⊆N i
r+1

U i
r+1 /∈Sr+1

ω
ni
k,sk
µ · · ·ωn

i
r+1,sr+1
µ

[
v(Sk,r+1 ∪ S∗r ∪ U ir)
−v(Sk,r+1 ∪ S∗r )

]
> 0,

(3.19)

we show that (N i
r−1, v

i,r−1
µ ) is not a null game. Again, by the mono-
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tonicity of (N, v),

vi,r−1
µ (N i

r−1) =
∑

Sk⊆N i
k

U i
k /∈Sk

· · ·
∑
Sr⊆N i

r

U i
r /∈Sr

ω
ni
k,sk
µ · · ·ωni

r,sr
µ

[
v(Sk,r ∪ U ir)− v(Sk,r)

]
≥ 0.

(3.20)
Finally, observe that in the summation of Eq. (3.20) we also take S∗r
and, hence, by Eq. (3.19), vi,r−1

µ (N i
r−1) > 0.

Hence, going over again, we have seen first that (N i
k, v

i,k
µ ) is not

a null game, and second, that for every r ∈ {1, . . . , k} if U ir is not a
null player in (N i

r, v
i,k
µ ), then (N i

r−1, v
i,r−1
µ ) ∈M+. In other words, two

cases may arise,

• either there is r ∈ {1, . . . , k} such that U ir is a null player in
a non null game (N i

r, v
i,r
µ ), which by M:NPP of ρµ means that

ρµ
U i
r
(N i

r, v
i,r
µ ) = 0,

• or, for every r ∈ {1, . . . , k}, (N i
r−1, v

i,r−1
µ ) is not a null game. In

particular (N i
0, v

i,0
µ ) ∈ M+. Finally, since i is a null player in

(N, v) it is also a null player in (N i
0, v

i,0
µ ), which means that

ρµ
U i
0
(N i

0, v
i,0
µ ) = 0.

Therefore, in any case ρµi (N, v,B) = 0.
In order to prove (iii), let (N, v,B) ∈ ML with B = {B0, . . . , Bk+1}

and i, j ∈ N a pair of symmetric players in (N, v) such that i, j ∈ U ∈
B1. From the latter condition it follows that for every r ∈ {1, . . . , k},
U ir = U jr and (N i

r, v
i,r
µ ) = (N j

r , v
j,r
µ ). Then, by Definition 3.3.3

ρµi (N, v,B)− ρµj (N, v,B) =
[
ρµi (N i

0, v
i,0
µ )− ρµj (N j

0 , v
j,0
µ )
] k∏
r=1

ρµ
U i
r
(N i

r, v
i,r
µ ).

(3.21)
Finally, note that (N i

0, v
i,0
µ ) = (N j

0 , v
j,0
µ ) and since i, j are symmetric

players in (N, v), they are also symmetric players in (N i
0, v

i,0
µ ). By

M:SYM of ρµ,
ρµi (N i

0, v
i,0
µ )− ρµj (N j

0 , v
j,0
µ ) = 0

which together with Eq. (3.21) implies that ρµi (N, v,B)−ρµj (N, v,B) =

0 and concludes the proof. �

Property (i) shows that the µ-share function on ML, ρµ, extends
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the µ-share function on M, ρµ. Properties (ii) and (iii) are standard
and apply to every game with levels structure of cooperation. Al-
though only weaker versions of these two properties will be needed
in the forthcoming characterization results, it is important to point
out that these stronger versions are also satisfied.

In the last part of this section we prove that the share function
on ML defined from the Shapley levels value, ShL, belongs to the
family of µ-share functions on ML introduced in Definition 3.3.2.
In order to do so, we give an alternative expression of the Shapley
levels value which will be very useful henceforth. We will use two
of the properties satisfied by the Shapley levels value (see Theorem
2.2.10) which are recalled next.

GL:LGP A value on GL, f, satisfies the level game property if for every
(N, v,B) ∈ GL with B = {B0, . . . , Bk+1} and U ∈ Br for some
r ∈ {1, · · · , k}, ∑

i∈U
fi(N, v,B) = fU (Br, v

r, Br).

GL:LBC A value on GL, f, satisfies level balanced contributions if for
every (N, v,B) ∈ GL with B = {B0, . . . , Bk+1} and i, j ∈ U ∈ B1,

fi(N, v,B)− fi(N, v,B
−j) = fj(N, v,B)− fj(N, v,B

−i).

Lemma 3.3.5. Let (N, v,B) ∈ GL be a game with levels structure of
cooperation. Then, for each i ∈ N ,

ShLi (N, v,B) =
∑

Sk⊆N i
k\U

i
k

· · ·
∑

S0⊆N i
0\U i

0

ω
ni
k,sk

Sh · · ·ωn
i
0,s0

Sh [v(Sk,0 ∪ i)− v(Sk,0)] .

(3.22)

Proof. We prove it by induction on the number k of levels of
(N,B). The case k = 1 is a consequence of ShL being a generalization
of Ow. Hence, suppose that the Shapley levels value ShL(N, v,B) is
obtained from Eq. (3.22) for every (N ′, v′, B′) ∈ GL such that B′ =

{B′0, . . . , B′k} and let (N, v,B) ∈ GL be such that B = {B0, . . . , Bk+1}.
Let i ∈ N , we prove that ShLi (N, v,B) is obtained from Eq. (3.22) by a
second induction on |U i1| (recall that U i1 ∈ B1 is such that i ∈ U i1). If
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u = 1, i.e. U i1 = {i}, since ShL satisfies GL:LGP, we have

ShLi (N, v,B) =
∑
i∈U i

1

ShLi (N, v,B) = ShLU i
1
(B1, v

1, B1)

=
∑

Sk⊆N i
k(B1,B1)

U i
k /∈Sk

· · ·
∑

S1⊆N i
1(B1,B1)

U i
1 /∈S1

ω
ni
k(B1,B1),sk

Sh · · · ωn
i
1(B1,B1),s1

Sh

[
v1(Sk,1 ∪ U i1)

−v1(Sk,1)

]

=
∑

Sk⊆N i
k

U i
k /∈Sk

· · ·
∑
S0⊆N i

0

U i
0 /∈S0

ω
ni
k,sk

Sh · · ·ωn
i
0,s0

Sh [v(Sk,0 ∪ i)− v(Sk,0)] ,

where the third equality holds by the first induction hypothesis
since (B1, B1) is a levels structure of cooperation with one level less
than (N,B) and the fourth equality holds since N i

0(N,B)\U i0 = ∅ and
for every r ∈ {1, . . . , k}, N i

r(B1, B1) = N i
r(N,B).

Now assume that ShLi (N, v,B) is obtained from Eq. (3.22) for
every (N ′, v′, B′) such that B′ = {B′0, . . . , B′k} and every i ∈ N such
that |U i1| < u. Next, let (N, v,B) ∈ GL be such that B = {B0, . . . , Bk+1}
and i ∈ N such that |U i1| = u. Since ShL satisfies GL:LBC, for every
j ∈ U i1,

ShLi (N, v,B)− ShLj (N, v,B) = ShLi (N, v,B
−j)− ShLj (N, v,B

−i), (3.23)

adding up Eq. (3.23) for all j ∈ U i1,

|U i1|ShLi (N, v,B)−
∑
j∈U i

1

ShLj (N, v,B)

=
∑
j∈U i

1

[
ShLi (N, v,B

−j)− ShLj (N, v,B
−i)
]

=
∑
j∈U i

1\i

[
ShLi (N, v,B

−j)− ShLj (N, v,B
−i)
]
. (3.24)

Now, since ShL satisfies GL:LGP we can rewrite Eq. (3.24) as

ni0Sh
L
i (N, v,B)−ShLU i

1
(B1, v

1, B1) =
∑
j∈U i

1\i

[
ShLi (N, v,B

−j)− ShLj (N, v,B
−i)
]
.

(3.25)
Observe that according to the double induction hypothesis, for every
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j ∈ U i1 \ i, ShLi (N, v,B
−j), ShLj (N, v,B

−i), and ShL
U i
1
(B1, v

1, B1) can be
obtained from Eq. (3.22). Hence, for every j ∈ U i1 \ i,

ShLi (N, v,B
−j)

=
∑

Sk⊆N i
k(B−j)

U i
k /∈Sk

· · ·
∑

S0⊆N i
0(B−j)

U i
0 /∈S0

ω
ni
k(B−j),sk

Sh · · ·ωn
i
0(B−j),s0

Sh [v(Sk,0 ∪ i)− (v(Sk,0)]

=
∑

Sk⊆N i
k(B−j)

{j},U i
k /∈Sk

· · ·
∑

S0⊆N i
0(B−j)

U i
0 /∈S0

{
ω
ni
k(B−j),sk

Sh · · ·ωn
i
0(B−j),s0

Sh [v(Sk,0 ∪ i)− v(Sk,0)]

+
sk + 1

nik(B
−j)− sk − 1

· ωn
i
k(B−j),sk

Sh · · ·ωn
i
0(B−j),s0

Sh [v(Sk,0 ∪ j ∪ i)− v(Sk,0 ∪ j)]

}
,

where the first equality holds by the induction hypothesis and the
second equality is obtained by distinguishing the cases U ik ∈ Sk and
U ik /∈ Sk. Notice that for every r ∈ {1, . . . , k − 1}, N i

r(B
−j) = N i

r \ U ir ∪
(U ir \ j), N i

k(B
−j) = N i

k \U ik ∪ (U ik \ j)∪ j, and N i
0(B−j) = N i

0 \ j. Hence,

ShLi (N, v,B
−j)

=
∑

Sk⊆N i
k

U i
k /∈Sk

· · ·
∑
S0⊆N i

0
{i},{j}/∈S0

{(
nik − sk
nik + 1

ni0
ni0 − s0 − 1

)
ω
ni
k,sk

Sh · · ·ωn
i
0,s0

Sh

[
v(Sk,0 ∪ i)
−v(Sk,0)

]

+

(
sk + 1

nik + 1

ni0
ni0 − s0 − 1

)
ω
ni
k,sk

Sh · · ·ωn
i
0,s0

Sh [v(Sk,0 ∪ j ∪ i)− v(Sk,0 ∪ j)]

}
.

Using twice the above expression, exchanging i and j, we obtain,

ShLi (N, v,B
−j)− ShLj (N, v,B

−i)

=
∑

Sk⊆N i
k

U i
k /∈Sk

· · ·
∑
S0⊆N i

0
{i},{j}/∈S0

ni0
ni0 − s0 − 1

ω
ni
k,sk

Sh · · ·ωn
i
0,s0

Sh [v(Sk,0 ∪ i)− v(Sk,0 ∪ j)] .

Then, by the above equation and using the induction hypothesis
on
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ShL
U i
1
(B1, v

1, B1), Eq. (3.25) can be rewritten as

ShLi (N, v,B) =
1

ni0

∑
Sk⊆N i

k

U i
k /∈Sk

· · ·
∑
S1⊆N i

1

U i
1 /∈S1

ω
ni
k,sk

Sh · · ·ωn
i
1,s1

Sh

{[
v(Sk,1 ∪ U i1)− v(Sk,1)

]

+
∑
j∈U i

1\i

∑
S0⊆N i

0
{i},{j}/∈S0

ni0
ni0 − s0 − 1

ω
ni
0,s0

Sh [v(Sk,0 ∪ i)− v(Sk,0 ∪ j)]

}

Thus, it suffices to prove that, given Sk ⊆ N i
k\{U ik}, . . . , S1 ⊆ N i

1\{U i1},

1

ni0

[
v(Sk,1 ∪ U i1)

−v(Sk,1)

]
+
∑
j∈U i

1\i

∑
S0⊆N i

0
{i},{j}/∈S0

s0!(ni0 − s0 − 2)!

ni0!

[
v(Sk,0 ∪ i)
−v(Sk,0 ∪ j)

]

=
∑
S0⊆N i

0
{i}/∈S0

s0!(ni0 − s0 − 1)!

ni0!
[v(Sk,0 ∪ i)− v(Sk,0)] .

We prove the above claim by rearranging the addend in the left-hand
side of the expression. Note that

∑
j∈U i

1\i

∑
S0⊆N i

0
{i},{j}/∈S0

s0!(ni0 − s0 − 2)!

ni0!
[v(Sk,0 ∪ i)− v(Sk,0 ∪ j)]

=
∑

S0⊆N i
0\{i}

S0 6=N i
0\{i}

(ni0 − s0 − 1)
s0!(ni0 − s0 − 2)!

ni0!
v(Sk,0 ∪ i)

−
∑

S0⊆N i
0\{i}

S0 6=∅

s0
(s0 − 1)!(ni0 − s0 − 1)!

ni0!
v(Sk,0),

where the equality holds by observing that, given S0 ( N i
0 \ i, the

number of different players j ∈ N i
0 \ i such that j /∈ S0 is ni0 − s0 − 1,

whereas, given ∅ 6= S0 ⊆ N i
0 \ i, the number of different players

j ∈ N i
0 \ i such that j ∈ S0 is s0.
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Finally,

1

ni0

[
v(Sk,1 ∪ U i1)− v(Sk,1) + v(Sk,1 ∪ i)− v(Sk,1 ∪ U i1 \ i)

]
+

∑
S0⊆N i

0\{i}
S0 6=∅,N i

0\{i}

s0!(ni0 − s0 − 1)!

ni0!
[v(Sk,0 ∪ i)− v(Sk,0)]

=
∑

S0⊆N i
0\U i

0

s0!(ni0 − s0 − 1)!

ni0!
[v(Sk,0 ∪ i)− v(Sk,0)] ,

which concludes the proof. �

In the definition below the share function on ML associated to
the Shapley levels value is introduced. Note that since ShL is effi-
cient, we only need to divide the value by the worth of the grand
coalition.

Definition 3.3.6. The Shapley levels share function, ρSh
L
, is the

share function onML defined for every (N, v,B) ∈ML and i ∈ N by

ρSh
L

i (N, v,B) =
ShLi (N, v,B)

v(N)
if (N, v) ∈M+,

and ρSh
L

i (N, v0, B) =
k∏
r=0

1
|N i

r|
.

Next we prove that the Shapley levels share function, ρSh
L
, lies

within the class of µ-share functions on ML (Definition 3.3.3), i.e.,
that there is a positive, additive, and anonymous real-valued func-
tion, µ, such that ρSh

L
= ρµ. Furthermore, µ = µSh.

Proposition 3.3.7. Let (N, v,B) ∈ ML be a monotone game with
levels structure of cooperation. Then,

ρSh
L

(N, v,B) = ρµ
Sh

(N, v,B). (3.26)

Proof. Let (N, v,B) ∈ ML, i ∈ N , and µ = µSh. First of all, note
that if (N, v) is a null game the result is straightforward. Then, in
the sequel we assume that (N, v) ∈ M+. If i is a null player in
(N, v), by M:NPP ρSh

L

i (N, v,B) = 0 and by (ii) of Proposition 3.3.4
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ρµ
Sh

i (N, v,B) = 0. Thus, we can also assume that i is not a null
player.

From the proof of (ii) in Proposition 3.3.4, we know that for every
r ∈ {1, . . . , k} if U ir is not a null player in (N i

r, v
i,r
µ ) then (N i

r−1, v
i,r−1
µ ) is

not a null game. Since (N i
k, v

i,k
µ ) = (Bk, v

k), we know that it is not a
null game. Hence, if for some r ∈ {1, . . . , k}, U ir is a null player it is so
in a non null game, (N i

r, v
i,r
µ ). Suppose that for some r ∈ {1, . . . , k},

U ir is a null player in (N i
r, v

i,r
µ ) ∈ M+. Then, on the one hand by

M:NPP we have that ρµ
U i
r
(N i

r, v
r,i
µ ) = 0 and, hence, ρµi (N, v,B) = 0 too.

On the other hand, for every Sr ⊆ N i
r \ U ir,

vi,rµ (Sr ∪ U ir) = vi,rµ (Sr), (3.27)

it can be checked that in such case U ir is a null player also in (Br, v
r),

in particular it is a dummy player. Then, since ShL satisfies GL:DPP∗,

ShLU i
r
(Br, v

r, Br) = vr(U ir) = 0, (3.28)

where the second equality holds by Eq. (3.27). Finally, taking into
account that (N, v) ∈M+ we know that for every j ∈ N , ShLj (N, v,B) ≥
0. Which by Eq. (3.28) and the fact that ShL satisfies GL:LGP im-
plies that ShLi (N, v,B) = 0 and, hence, ρSh

L

i (N, v,B) = 0 and the re-
sult is proved. So, we can assume that for every r ∈ {0, . . . , k},
(N i

r, v
r,i
µ ) ∈M+.

Using Definition 3.3.3 and Proposition 3.1.3, it is enough to
check that,

ρSh
L

i (N, v,B) =

k∏
r=0

ShU i
r
(N i

r, v
i,r
µ )

vi,rµ (N i
r)

. (3.29)

On the one hand, note that by Definitions 1.1.4 and 3.3.2, for
each r ∈ {0, . . . , k − 1},

ShU i
r+1

(N i
r+1, v

i,r+1
µ ) = vi,rµ (N i

r). (3.30)
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On the other hand, using Lemma 3.3.5, we have

ShLi (N, v,B) =
∑

Sk⊆N i
k\U

i
k

· · ·
∑

S0⊆N i
0\U i

0

ω
ni
k,sk

Sh · · ·ωn
i
0,s0

Sh [v(Sk,0 ∪ i)− v(Sk,0)]

=
∑
S0⊆N i

0

U i
0 /∈S0

ω
ni
0,s0

Sh


∑

Sk⊆N i
k

U i
k /∈Sk

· · ·
∑
S1⊆N i

1

U i
1 /∈S1

ω
ni
k,sk

Sh · · ·ωn
i
1,s1

Sh [v(Sk,0 ∪ i)− v(Sk,0)]


= Shi(N

i
0, v

i,0
µ ) = ShU i

0
(N i

0, v
i,0
µ ) (3.31)

where the last equality holds by Definition 3.2.4.
Finally, by Eq. (3.30) (for the third equality), Eq. (3.31) and the

fact that vi,kµ (N i
k) = v(N) (for the fifth equality), and the definition of

ρSh (for the last equality),

ρSh
L

i (N, v,B) =
ShLi (N, v,B)

v(N)

=
ShLi (N, v,B)

v(N)

k−1∏
r=0

vi,rµ (N i
r)

vi,rµ (N i
r)

=
ShLi (N, v,B)

v(N)

k−1∏
r=0

ShU i
r+1

(N i
r+1, v

i,r+1
µ )

vi,rµ (N i
r)

=
ShLi (N, v,B)

v(N)

k−1∏
r=1

ShU i
r
(N i

r, v
i,r
µ )

vi,rµ (N i
r)

ShU i
k
(N i

k, v
i,k
µ )

vi,0µ (N i
0)

=
ShU i

0
(N i

0, v
i,0
µ )

vi,0µ (N i
0)

k−1∏
r=1

ShU i
r
(N i

r, v
i,r
µ )

vi,rµ (N i
r)

ShU i
k
(N i

k, v
i,k
µ )

vi,kµ (N i
k)

=
k∏
r=0

ρShU i
r
(N i

r, v
i,r
µ ).

�

In the remaining part of this chapter we propose sets of prop-
erties that characterize the class of µ-share functions on ML. Two
kind of properties are considered. The first ones apply only to games
with trivial levels structure of cooperation. The second type of prop-
erties involve games with arbitrary levels structures of cooperation.

In the first place, let us consider some properties of the first type.

ML:NPP0 A share function on ML, ρ, satisfies the null player prop-
erty for the trivial levels structures of cooperation if, for every
(N, v) ∈M+ and every null player i ∈ N in (N, v),

ρi(N, v,B0) = 0.
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ML:SYM0 A share function on ML, ρ, satisfies symmetry for the
trivial levels structures of cooperation if, for every (N, v) ∈ M
and every pair i, j ∈ N of symmetric players in (N, v),

ρi(N, v,B0) = ρj(N, v,B0).

ML:µ-ADD0 Let µ : M → R be additive, positive and anonymous.
A share function on ML, ρ, satisfies µ-additivity for the triv-
ial levels structures of cooperation if for every pair of games
(N, v), (N,w) ∈M,

µ(N, v+w)ρ(N, v+w,B0) = µ(N, v)ρ(N, v,B0)+µ(N,w)ρ(N,w,B0).

The properties above are formulated only for the trivial levels
structure of cooperation, which means that the possible restrictions
to the cooperation are not taken into account. Hence, they are re-
formulations ofM:NPP,M:SYM, andM:µ-ADD properties defined in
Section 3.1.2 for share functions onML.

In the second place, let us consider some properties of a second
type.

ML:µ-MUL Let µ : M → R. A share function on ML, ρ, satisfies
µ-multiplication if for every (N, v,B) ∈ML and i ∈ N ,

ρi(N, v,B) =
k∏
r=0

ρU i
r
(N i

r, v
i,r
µ , B0).

ML:µ-ADDL Let µ :M→ R. A share function on ML, ρ, satisfies µ-
additivity for arbitrary levels structure of cooperation if for every
pair of monotone games (N, v), (N,w) ∈ M, every levels struc-
ture of cooperation (N,B) ∈ L(N), and every player i ∈ N ,

ρi(N, z,B)

k∏
r=0

µ(N i
r, z

i,r
µ )

=

k∏
r=0

[
µ(N i

r, v
i,r
µ )ρU i

r
(N i

r, v
i,r
µ , B0) + µ(N i

r, w
i,r
µ )ρU i

r
(N i

r, w
i,r
µ , B0)

]
,
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where z = v + w.

ML:CON A share function on ML, ρ, satisfies consistency if for ev-
ery (N, v,B) ∈ML with B = {B0, . . . , Bk+1} and U ∈ Br for some
r ∈ {1, · · · , k}, ∑

i∈U
ρi(N, v,B) = ρU (Br, v

r, Br).

ML:µ-DIF Let µ : M → R. A share function on ML, ρ, satisfies µ-
difference if for every (N, v,B) ∈ ML with B = {B0, B1 . . . , Bk+1}
and every union of the first level U ∈ B1 there is a unique scalar
Kµ
U,(B1,v1,B1)

∈ R+ such that for every i, j ∈ U ,

ρi(N, v,B)− ρj(N, v,B) = Kµ
U,(B1,v1,B1)

[
ρi(U, v

i,0
µ , B0)− ρj(U, vj,0µ , B0)

]
.

The ML:µ-MUL property is a generalization of the MU :µ-MUL

property (see Section 3.2) in line with the way in which the class of
µ-share function on ML has been constructed. It states that the
share of a player in a monotone game with levels structure of coop-
eration is the product of the shares of the unions she belongs to in
the “internal” games played among the unions with the trivial levels
structure of cooperation. The ML:µ-ADDL property generalizes the
ML:µ-ADD0 property defined above and the MU :(µ1, µ2)-ADD prop-
erty when µ1 = µ2. It relates the share of a player in a sum game
with levels structure of cooperation with shares of players in games
with the trivial levels structure of cooperation obtained from the
original ones. The ML:CON property states that the joint share of
the players that make up a union of a given level equals the share of
that union in the corresponding union level game. The property is
a reformulation of the GL:LGP considered in Section 2.2.1 in terms
of share functions on ML instead of values on GL. Finally, the
ML:µ-DIF property describes the difference between the shares of
two players that lie in the same union at every level. In fact, it states
that this difference only depends on the particular union they be-
long to in the first level, U , the first level union game played among
the unions of the first level, and the difference among the shares of
the players in the internal game played among the members of U .

Next, the first characterization result is stated and proved.
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Theorem 3.3.8. Let µ : M → R be additive, positive, and anony-
mous. Then, ρµ is the unique share function onML satisfyingML:NPP0,
ML:SYM0,ML:µ-ADD0, andML:µ-MUL.

Proof. Let µ :M→ R be additive, positive, and anonymous.
(1) Existence. From Proposition 3.3.4 we know that ρµ satisfies

ML:NPP0 and ML:SYM0. We also have that ρµ generalizes ρµ (part
(iii) of Proposition 3.3.4). Since ρµ satisfies M:µ-ADD, ρµ satisfies
ML:µ-ADD0. Finally, by Definition 3.3.3 and the fact that ρµ gener-
alizes ρµ, ρµ satisfiesML:µ-MUL.

(2) Uniqueness. Let ρ be a share function on ML satisfying the
properties above. Note that by Proposition 3.1.3, ρ is unique for
games with the trivial levels structure of cooperation by ML:NPP0,
ML:SYM0, andML:µ-ADD0. Finally, theML:µ-MUL property relates
the share of any player in any game with levels structure of cooper-
ation to shares of players in games with the trivial levels structure
of cooperation. Hence, byML:µ-MUL and the uniqueness for games
with the trivial levels structure cooperation, ρ is unique. �

Theorem 3.3.8 upgrades Theorem 3.2.10 (when µ1 = µ2) in the
sense that, on the one hand, it extends the characterization result
of the class of share functions from one-level structures to an arbi-
trary number of levels structures of cooperation, and, on the other
hand, it replaces for both characterizations three of the properties
by weaker versions.

Corollary 3.3.9. Let µ : M → R be additive, positive, and anony-
mous. Then, ρµ is the unique share function onML satisfyingML:NPP0,
ML:SYM0, andML:µ-ADDL.

Proof.
(2) Existence. Using Proposition 3.3.4 it only remains to prove

ML:µ-ADDL. However, note that ML:µ-ADDL directly follows using
ML:µ-MUL andML:NPP0.

(2) Uniqueness. Note that ML:µ-ADDL property includes ML:µ-
ADD0, by taking B = B0, and ML:µ-MUL, by taking w = v0. Hence,
the uniqueness follows from the uniqueness result of Theorem 3.3.8
above. �

Corollary 3.3.9 upgrades Theorem 3.2.11 in the sense that, on
the one hand, it extends the characterization result of the class of
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share functions from one-level structures to an arbitrary number of
levels structures of cooperation, and, on the other hand, it replaces
two of the axioms by weaker versions. Moreover, if we face the result
above with Theorem 5.3 in van den Brink & van der Laan (2005)
we realize that the consistency property can be dropped without
changing the result.

Lastly, another characterization of ρµ is presented using a differ-
ent set of properties.

Theorem 3.3.10. Let µ : M → R be additive, positive, and anony-
mous. Then, ρµ is the unique share function onML satisfyingML:NPP0,
ML:SYM0,ML:µ-ADD0,ML:CON, andML:µ-DIF.

Proof. Let µ :M→ R be additive, positive, and anonymous.

(1) Existence. By Proposition 3.3.4, it only remains to prove that
ρµ satisfiesML:CON andML:µ-DIF.

Let (N, v,B) ∈ ML with B = {B0, . . . , Bk+1} and U ∈ Br for some
r ∈ {1, . . . , k}. Note that for every i, j ∈ U and l ∈ {r, . . . , k}, U il = U jl
and (N i

l , v
i,l
µ ) = (N j

l , v
j,l
µ ). Then, by Definition 3.3.3,

∑
i∈U

ρµi (N, v,B) =
∑
i∈U

k∏
l=0

ρµ
U i
r
(N i

l , v
i,l
µ ) =

k∏
l=r

ρµ
U i
r
(N i

l , v
i,l
µ )
∑
i∈U

r−1∏
l=0

ρµ
U i
r
(N i

l , v
i,l
µ )

= ρµU (Br, v
r, Br)

∑
i∈U

ρµi (U, v|U , {B0|U , . . . , Br−1|U}) = ρµU (Br, v
r, Br),

where the last equality holds because ρµ is a share function onML.

Let (N, v,B) ∈ ML with B = {B0, . . . , Bk+1} and i, j ∈ U ∈ B1.
Note that for every i, j ∈ U and l ∈ {1, . . . , k}, U il = U jl and (N i

l , v
i,l
µ ) =

(N j
l , v

j,l
µ ). Then, by Definition 3.3.3,

ρµi (N, v,B)− ρµj (N, v,B) =

k∏
r=0

[
ρµ
U i
r
(N i

r, v
i,r
µ )− ρµ

Uj
r
(N j

r , v
j,r
µ )
]

=

k∏
r=1

ρµ
U i
r
(N i

l , v
i,l
µ )
[
ρµi (U, vi,0µ )− ρµj (U, vj,0µ )

]
= ρµU (B1, v

1, B1)
[
ρµi (U, vi,0µ , B0)− ρµj (U, vj,0µ , B0)

]
.

Thus, ρµ satisfiesML:µ-DIF.
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(2) Uniqueness. Let µ : M → R be a given additive, positive,
and anonymous mapping. Suppose that ρ1 and ρ2 are two share
functions on ML satisfying the properties. We show that for every
(N, v,B) ∈ ML with B = {B0, . . . , Bk+1}, ρ1(N, v,B) = ρ2(N, v,B) by
induction on the number of levels k.

Let k = 0, i.e., B = B0. In this case from Proposition 3.1.3 and
using that ρ1 and ρ2 satisfy ML:NPP0, ML:SYM0, and ML:µ-ADD0

we have that

ρ1(N, v,B0) = ρ2(N, v,B0) = ρµ(N, v).

Next, assume that for every (N ′, v′, B′) ∈ML with B′ = {B′0, . . . , B′l+1},
ρ1(N ′, v′, B′) = ρ2(N ′, v′, B′). Let (N, v,B) ∈ML with B = {B0, . . . , Bl+1,

Bl+2}. Let i ∈ N and j ∈ U i1 \ i, then by ML:µ-DIF there is a unique
scalar Kµ

U,(B1,v1,B1)
∈ R+ such that,

ρ1
i (N, v,B)− ρ1

j (N, v,B) = Kµ
U,(B1,v1,B1)

[
ρ1
i (U, v

i,0
µ , B0)− ρ1

j (U, v
j,0
µ , B0)

]
= Kµ

U,(B1,v1,B1)

[
ρ2
i (U, v

i,0
µ , B0)− ρ2

j (U, v
j,0
µ , B0)

]
= ρ2

i (N, v,B)−ρ2
j (N, v,B),

(3.32)

where the second equality is a consequence of the uniqueness for
monotone games with trivial levels structure of cooperation and the
induction hypothesis applied to the scalar Kµ

U,(B1,v1,B1)
since (B1, B1)

is a levels structure of cooperation with 1 level less than (N,B).
Next, adding up Eq. (3.32) for every j ∈ U i1 \ i,

|U i1|ρ1
i (N, v,B)−

∑
j∈U i

1

ρ1
j (N, v,B) = |U i1|ρ2

i (N, v,B)−
∑
j∈U i

1

ρ2
j (N, v,B).

(3.33)
Finally, byML:CON∑

j∈U i
1

ρ1(N, v,B) = ρ1(B1, v
1, B1) = ρ2(B1, v

1, B1) =
∑
j∈U i

1

ρ2(N, v,B),

(3.34)
where the second equality is due to the induction hypothesis, since
(B1, B1) is a levels structure of cooperation with 1 level less than
(N,B). This last equation together with Eq. (3.33) concludes the
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proof. �

Remark 3.3.11. The properties considered in Theorem 3.3.8 are in-
dependent as the following examples show. Let µ :M→ R be addi-
tive, positive, and anonymous.

(i) The share function onML, ρ1, defined for every (N, v,B) ∈ML
by ρ1(N, v,B) = ρµ(N, v), satisfies ML:NPP0, ML:SYM0, and ML:µ-
ADD0, but notML:µ-MUL.

(ii) The share function on ML, ρ2, defined for every (N, v,B) ∈

ML and i ∈ N by ρ1
i (N, v,B) =

k∏
r=0

1
|N i

r|
, satisfies ML:SYM0, ML:µ-

ADD0, andML:µ-MUL, but notML:NPP0.
(iii) Let a and b be two fixed and different players. If N = {a, b},

for every (N, v) ∈ M let λ1, λ2 > 0 be such that µ(N, v) = λ1v(a) +

λ1v(b) + λ2v(N). Define the share function on ML, ρ3, for every
(N, v,B) ∈ML as follows:

• If N = {a, b}, B = B0, and (N, v) ∈M+,{
ρ3
a(N, v,B) = λ1v(a)+λ2(v(N)−v(b))

µ(N,v)

ρ3
b(N, v,B) = (λ1+λ2)v(b)

µ(N,v)

• If N 6= {a, b} and B = B0, ρ3(N, v,B) = ρµ(N, v).

• If B 6= B0, for every i ∈ N , ρ3
i (N, v,B) =

k∏
r=0

ρ3
U i
r
(N i

r, v
i,r
µ , B0).

Then, ρ3 satisfies ML:NPP0, ML:µ-ADD0, and ML:µ-MUL, but not
ML:SYM0.

(iv) Let µ0 : M → R be additive, positive, anonymous, and dif-
ferent from µ. The share function on ML, ρ4, defined for every

(N, v,B) ∈ ML and i ∈ N by ρ4
i (N, v,B) =

k∏
r=0

ρµ
0

U i
r
(N i

r, v
i,r
µ ), satisfies

ML:SYM0,ML:NPP0, andML:µ-MUL, but notML:µ-ADD0. C

Remark 3.3.12. The properties considered in Corolary 3.3.9 are in-
dependent as the following examples show:

(i) The share function onML, ρ1, defined above satisfiesML:NPP0

andML:SYM0, but notML:µ-ADDL.
(ii) The share function onML, ρ2, defined above satisfiesML:SYM0

andML:µ-ADDL, but notML:NPP0.
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(iii) The share function onML, ρ3, defined above satisfiesML:NPP0

andML:µ-ADDL, but notML:SYM0. C

Remark 3.3.13. The properties considered in Theorem 3.3.10 are
independent as the following examples show:

(i) The share function on ML, ρ2, defined as above satisfies
ML:SYM0,ML:µ-ADD0,ML:CON, andML:µ-DIFF, but notML:NPP0.

(ii) The share function on ML, ρ3, defined as above satisfies
ML:NPP0,ML:µ-ADD0,ML:CON, andML:µ-DIFF, but notML:SYM0.

(iii) The share function on ML, ρ4, defined as above satisfies
ML:NPP0,ML:SYM0,ML:CON, andML:µ-DIFF, but notML:µ-ADD0.

(iv) Let ρ5 be the share function onML defined for every (N, v,B) ∈
ML as follows:

• If B = B0, ρ5(N, v,B) = ρµ(N, v).

• Otherwise, for every i ∈ N ρ5
i (N, v,B) = ρµ

U i
1
(B1, v

1, B1) 1
|U i

1|
.

Then ρ5 satisfiesML:NPP0,ML:SYM0,ML:µ-ADD0, andML:µ-DIFF,
but notML:CON.

(v) Let ρ6 be the share function onML defined for every (N, v,B) ∈
ML as follows:

• If B = B0, ρ6(N, v,B) = ρµ(N, v).

• If N is a set of indivisible players, that is for every i ∈ N there
are no players i1, . . . , il such that i = {i1, . . . , il}. For every U ∈
B1 let iU ∈ U be a randomly selected particular agent, then{

ρ6
iU

(N, v,B) = ρµU (B1, v
1, B1)

ρ6
i (N, v,B) = 0 for every i ∈ U \ iU

• Otherwise, ρ6
i (N, v,B) = ρµi (N, v,B).

Then ρ6 satisfies ML:NPP0, ML:SYM0, ML:µ-ADD0, and ML:CON,
but notML:µ-DIFF. C

100



4
Games with a priori unions and
graph restricted communication

Myerson (1977) depicted partial cooperation through a graph. Each
link of the graph indicates that direct communication, and hence
cooperation, is possible between agents located at each end. Also,
communication occurs between agents joined via a path. In this
framework, the game and the graph define a new game, called the
communication game. In this paper, an allocation of the total gains
is proposed and characterized, the so-called Myerson value. This
value coincides with the Shapley value of the communication game.
Owen (1986) proposed a new value for the family of games with
graph restricted communication. In this case, this value coincides
with the Banzhaf value of the corresponding communication game
and it is called the Banzhaf graph value. The Banzhaf graph value
is characterized by Alonso-Meijide & Fiestras-Janeiro (2006) where
a comparison between the properties satisfied by the Myerson value
and the Banzhaf graph value is provided.

The model of games with a priori unions introduced in Section
2.1 is compatible with the model of games with graph restricted
communication. In fact, Vázquez-Brage et al. (1996) studied both
generalizations jointly, that is, they considered games with a pri-
ori unions and graph restricted communication. For this family
of games, they proposed and characterized a generalization of the
Shapley value which extends both the Owen and Myerson values.
We refer to it as the Owen graph value. The properties used in the
characterizations are modifications of the properties considered in
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previous characterizations of the Owen and Myerson values.

In this chapter, the model with the two restrictions to the co-
operation mentioned above is considered. Two new values for this
family of games are defined and characterized. The first proposal
is an extension of the Banzhaf graph value and the Banzhaf-Owen
value. The second one is an extension of the Banzhaf graph value
and the Symmetric coalitional Banzhaf value. Besides, we define a
new game, the communication quotient game. This game is build
following the ideas behind the quotient game and the communica-
tion game. Finally, a new characterization of the Owen graph value
is provided together with a comparison of the properties satisfied
by the three values considered for the class of games with graph
restricted communication and a priori unions.

The results contained in this chapter are a joint work with my
supervisors José M. Alonso-Meijide and M. Gloria Fiestras-Janeiro
and have been published in Mathematical Social Sciences (Alonso-
Meijide et al. 2009a). The chapter is organized as follows. In Section
4.1, the model of games with graph restricted communication is in-
troduced. Extensions of the Shapley and Banzhaf values in this
context are presented together with the main characterization re-
sults. The main results are contained in Section 4.2. First, the
model of games with a priori unions and graph restricted commu-
nication is presented and the existing literature on such models is
recalled. Next, two new values for this family of games are pro-
posed and parallel characterizations of them provided. Finally, in
Section 4.2.1 a real example coming from the political field is used
to illustrate the differences among the values.

4.1 Games with graph restricted communication

An undirected graph without loops on N is a set C of unordered
pairs of distinct elements of N . Each pair (i : j) ∈ C with i 6= j

is a link. Given i, j ∈ S ⊆ N , we say that i and j are connected
in S by C if there is a path in S connecting them, i.e., there is
some k ≥ 1 and a subset {i0, i1, . . . , ik} ⊆ S such that i0 = i, ik = j

and (ih−1 : ih) ∈ C, for every h = 1, . . . , k. Denote by S/C the set of
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connected components of S determined by C, i.e., the set of maximal
subsets of elements connected in S by C. Observe that S/C is a
partition of S. We denote by CN the set of all undirected graphs
without loops on N . Given C ∈ CN , C∗ denotes the dual graph of C,
i.e., C∗ = {(i : j) : i, j ∈ N, i 6= j, (i : j) 6∈ C}. Then, ∅∗ denotes the
complete graph on N , i.e., ∅∗ = {(i : j) : i, j ∈ N, i 6= j}.

Given C ∈ CN we say that agent i ∈ N is an isolated agent with
respect to the graph C if there is no j ∈ N such that (i : j) ∈ C,
that is, if {i} ∈ N/C. Given a link (i : j) ∈ C, the graph C−ij ∈ CN

is defined as the resulting graph after the elimination of the link
(i : j), that is C−ij = C \ (i : j). For any i ∈ N , we denote by C−i the
element of CN obtained from C by breaking the links where agent i
is involved, i.e., C−i = {(j : h) ∈ C : j 6= i and h 6= i}. A game with
graph restricted communication is a triple (N, v, C) where (N, v) ∈ G
and C ∈ CN . We denote by GC the set of all such games. Next, a
game which will play a crucial role in the sequel is defined.

Definition 4.1.1. Given (N, v, C) ∈ GC, the communication game
(N, vC) ∈ G is defined for every S ⊆ N , by

vC(S) =
∑

T∈S/C

v(T ).

Notice that when C = ∅∗, we have vC = v and when C = ∅, (N, vC) ∈ G
is an additive game.

The definition of the communication game can be understood as
follows. Consider a coalition of players S ⊆ N . If coalition S is inter-
nally connected, i.e., if all players in S can communicate with one
another (directly or indirectly) without the help of players in N \ S,
then they can fully coordinate their actions and obtain the worth
v(S). Nevertheless, if coalition S is not internally connected, then
not all players in S can communicate with each other without the
help of outsiders. Coalition S will then be split into communication
components according to the partition S/C. The best that players
in S can accomplish under these conditions is to coordinate their
actions within each of these components. Players in different com-
ponents cannot coordinate their actions and hence, the components
will operate independently.
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A value on GC is a map f that assigns a vector f(N, v, C) ∈ RN

to every game with graph restricted communication (N, v, C) ∈ GC.
In this context there are two well known values on GC based on
the Shapley and Banzhaf values which are presented in the next
definition.

Definition 4.1.2. (Myerson 1977). The Myerson value, ShC, is the
value on GC defined for every (N, v, C) ∈ GC by

ShC(N, v, C) = Sh(N, vC).

Definition 4.1.3. (Owen 1986). The Banzhaf graph value, BaC, is
the value on GC defined for every (N, v, C) ∈ GC by

BaC(N, v, C) = Ba(N, vC).

If two players are in different communication components of a
graph restricted game (N, v, C) ∈ GC, then they do not interact with
each other at all. Consequently, it seems reasonable to expect that
the values on GC of coalitions that include players that are not con-
nected to player i ∈ N as well as links involving such players do
not influence the payoff of player i. This requirement is satisfied by
both the Myerson and the Banzhaf graph values, which are compo-
nent decomposable as it was shown in van den Nouweland (1993)
and Alonso-Meijide & Fiestras-Janeiro (2006).

GC:CDE A value on GC, f, satisfies component decomposability if for
every (N, v, C) ∈ GC and every player i ∈ N ,

fi(N, v, C) = fi(S, v|S , C|S),

where S ∈ N/C such that i ∈ S, and (S, v|S , C|S) ∈ GC is the
graph restricted game obtained from (N, v,B) ∈ GC when the
player set is restricted to S.

Myerson (1977) defines the Myerson value axiomatically, that is,
he obtains the Myerson value looking for an allocation rule that
satisfies component efficiency and fairness. These two properties
are formally introduced below.
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GC:CEF A value on GC, f, satisfies component efficiency if for every
(N, v, C) ∈ GC and every S ∈ N/C,∑

i∈S
fi(N, v, C) = v(S).

GC:FAI A value on GC, f, satisfies fairness if for every (N, v, C) ∈ GC
and every i, j ∈ N such that (i : j) ∈ C,

fi(N, v, C)− fi(N, v, C
−ij) = fj(N, v, C)− fj(N, v, C

−ij).

An allocation rule satisfies GC:CEF if the payoffs of the players
in a maximal connected component add up to the worth of that
component. Using a component efficient value on GC, the players
distribute the worth of this component among themselves. GC:FAI

is a reciprocity property. It reflects the equal gains equity principle
that two players should gain or loose equally from their bilateral
agreement. Moreover, it is a reciprocity property that reminds the
balanced contributions properties studied in the previous chapter
(MU :BCO andML:LBC).

In this setting, other properties that a value on GC should sat-
isfy have been proposed in the literature. Next, we define four
more properties which will be used to characterize the Myerson and
Banzhaf graph values.

GC:BCG A value on GC, f, satisfies balanced contributions in the graph
if for every (N, v, C) ∈ GC and every i, j ∈ N ,

fi(N, v, C)− fi(N, v, C
−j) = fj(N, v, C)− fj(N, v, C

−i).

GC:GIS A value on GC, f, satisfies graph isolation if for every (N, v, C) ∈
GC and any i ∈ N isolated agent,

fi(N, v, C) = v(i).

GC:CTP A value on GC, f, satisfies component total power if for every
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(N, v, C) ∈ GC and every S ∈ N/C,

∑
i∈S

fi(N, v, C) =
1

2s−1

∑
i∈S

∑
T⊆S\i

[
vC(T ∪ i)− vC(T )

]
.

GC:2-EFF A value on GC, f, satisfies 2-efficiency if for every (N, v, C) ∈
GC and every pair of players i, j ∈ N such that (i : j) ∈ C,

fi(N, v, C) + fj(N, v, C) = fp(N
ij , vij , Cij),

where (N ij , vij , Cij) is the game obtained from (N, v, C) when
players i and j merge in a new player p, i.e., (N ij , v) is as de-
fined in Section 1.1.2 and given l, k ∈ N ij ,

(l : k) ∈ Cij if and only if


(l : k) ∈ C with l, k ∈ N \ {i, j},

(l : i) ∈ C or (l : j) ∈ C and k = p, and

(i : k) ∈ C or (j : k) ∈ C and l = p.

The GC:BCG property generalizes GC:FAI. It is a reciprocity prop-
erty that states that a player’s isolation from the graph affects an-
other player in the same amount as if it happens the other way
around. GC:GIS is very similar to the dummy player property, in
fact it is just a weaker version of the dummy player property ap-
plied to the communication game (N, vC) since an isolated agent in
the graph becomes a dummy in the communication game. GC:GIS

states that a player who cannot communicate to any other player
should be given what she can obtain on her own. The GC:CTP prop-
erty indicates the amount that a connected component will receive.
Finally, GC:2-EFF is just the generalization of the G:2-EFF property
defined in Section 1.1.2 for a pair of agents that are directly con-
nected by the graph. It states that a value on GC satisfying it is
immune against artificial merging or splitting of directly communi-
cated players.

To conclude with the section the main characterizations of the
Myerson and the Banzhaf graph values are presented below. The
first two characterizations by Myerson have been widely used in the
literature.

Theorem 4.1.4. (Myerson 1977). The Myerson value, ShC, is the
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unique value on GC satisfying GC:CEF and GC:FAI.

Theorem 4.1.5. (Myerson 1980). The Myerson value, ShC, is the
unique value on GC satisfying GC:CEF and GC:BCG.

More recently, the Banzhaf graph value has been characterized
using a similar set of properties. The difference between the Shapley
and the Banzhaf value, described in Section 1.1.2, is transferred to
this context. The Banzhaf graph value characterizations replace the
GC:CEF property of the Myerson value either by the GC:CTP property
or by GC:GIS and GC:2-EFF properties.

Theorem 4.1.6. (Alonso-Meijide & Fiestras-Janeiro 2006).

• The Banzhaf graph value, BaC, is the unique value on GC satis-
fying GC:CTP and GC:FAI.

• The Banzhaf graph value, BaC, is the unique value on GC satis-
fying GC:CTP and GC:BCG.

Theorem 4.1.7. (Alonso-Meijide & Fiestras-Janeiro 2006).

• The Banzhaf graph value, BaC, is the unique value on GC satis-
fying GC:GIS, GC:2-EFF, and GC:FAI.

• The Banzhaf graph value, BaC, is the unique value on GC satis-
fying GC:GIS, GC:2-EFF, and GC:BCG.

Finally, we depict in Table 4.1 the characterizations of ShC and
BaC in short.

ShC BaC

GC:CEF GC:CTP
GC:2-EFF

Myerson GC:GIS Alonso-Meijide and
(1977) GC:FAI GC:FAI GC:FAI Fiestras-Janeiro (2006)

GC:CEF GC:CTP
GC:2-EFF

Myerson GC:GIS Alonso-Meijide and
(1980) GC:BCG GC:BCG GC:BCG Fiestras-Janeiro (2006)

Table 4.1: Parallel characterizations of ShC and BaC
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4.2 Games with a priori unions and graph restricted
communication

In this section games with a priori unions and graph restricted
communication are studied. First of all, the results in Vázquez-
Brage et al. (1996) are recalled. They propose and characterize the
Owen graph value that generalizes the Owen and Myerson values to
this framework. Next, two new values are introduced, namely the
Banzhaf Owen graph value and the Symmetric coalitional Banzhaf
graph value. Finally, parallel characterizations of these three values
are proposed.

A game with a priori unions and graph restricted communication
is a quadruple (N, v, C, P ), where (N, v) ∈ G, C ∈ CN , and P ∈ P (N).
We denote by GUC the set of all such quadruples. Let (N, v, C, P ) ∈
GUC and Pk, Ps ∈ P , then C−(Pk,Ps) ∈ CN is the graph obtained from
C when all links between members of Pk and Ps are deleted, i.e.,
C−(Pk,Ps) = C \ {(i : j) ∈ C : i ∈ Pk and j ∈ Ps}. A value on GUC is
a map f that assigns a vector f(N, v, C, P ) ∈ RN to every game with
a priori unions and graph restricted communication (N, v, C, P ) ∈
GUC.

Definition 4.2.1. (Vázquez-Brage et al. 1996). The Owen graph
value, OwC, is the value on GUC defined for every (N, v, C, P ) ∈ GUC
by

OwC(N, v, C, P ) = Ow(N, vC , P ).

Next we recall a characterization of this value based on the fol-
lowing properties.

GUC:CEF A value on GUC, f, satisfies component efficiency if for every
(N, v, C, P ) ∈ GUC and every T ∈ N/C,∑

i∈T
fi(N, v, C, P ) = v(T ).

GUC:FAQ A value on GUC, f, satisfies fairness in the quotient if for
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every (N, v, C, P ) ∈ GUC and every Pk, Ps ∈ P ,

∑
i∈Pk

fi(N, v, C, P )−
∑
i∈Pk

fi(N, v, C
−(Pk,Ps), P )

=
∑
i∈Ps

fi(N, v, C, P )−
∑
i∈Ps

fi(N, v, C
−(Pk,Ps), P ).

GUC:BCU A value on GUC, f, satisfies balanced contributions within
the unions if for every (N, v, C, P ) ∈ GUC, Pk ∈ P , and i, j ∈ Pk,

fi(N, v, C, P )− fi(N, v, C, P−j) = fj(N, v, C, P )− fj(N, v, C, P−i).

GUC:CEF states that a value on GUC should be efficient inside
each connected coalition. It is a generalization of GC:CEF to the
framework of games with a priori unions and graph restricted com-
munication. The most demanding property may be GUC:FAQ. It
states that the joint profit or loss of the agents in a union when this
union is disconnected from another union is the same for each of
the unions involved. It studies the implications of the way in which
unions are connected among them, hence it takes into account both
the communication graph and the structure of a priori unions. Fi-
nally, GUC:BCU is a generalization of the GU :BCU property studied in
Section 2.1. It stipulates that the gain (or loss) inflicted to a player
by another player’s withdrawal from the union they both lie in is the
same if it happens the other way around.

Theorem 4.2.2. (Vázquez-Brage et al. 1996). The Owen graph value,
OwC, is the unique value on GUC satisfying GUC:CEF, GUC:FAQ, and
GUC:BCU.

Note that as one might expect, this value generalizes the Shap-
ley, Owen, and Myerson values. Table 4.2 depicts these general-
izations for particular instances of systems of a priori unions and
communication graphs.

Following the way in which the Owen graph value is defined,
two new values on GUC that generalize the Banzhaf value are intro-
duced.

Definition 4.2.3. (Alonso-Meijide et al. 2009a) The Banzhaf-Owen
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graph \ unions P = Pn P = PN P ∈ P (N)

C = ∅∗ Sh Sh Ow

C ∈ CN ShC ShC OwC

Table 4.2: The Owen graph value

graph value, BOC, is the value on GUC defined for every (N, v, C, P ) ∈
GUC by

BOC(N, v, C, P ) = BO(N, vC , P ).

Definition 4.2.4. (Alonso-Meijide et al. 2009a) The Symmetric coali-
tional Banzhaf graph value, SCBC, is the value on GUC defined for
every
(N, v, C, P ) ∈ GUC by

SCBC(N, v, C, P ) = SCB(N, vC , P ).

Again, note that these two values on GUC generalize Sh, Ba, ShC,
BaC, BO, and SCB in the way shown in Table 4.3 and Table 4.4. Ob-
serve in Table 4.4 that SCBC generalizes the Symmetric coalitional
Banzhaf value, the Myerson and Banzhaf graph values, and the
Banzhaf and Shapley values.

graph \ unions P = Pn P = PN P ∈ P (N)

C = ∅∗ Ba Ba BO

C ∈ CN BaC BaC BOC

Table 4.3: The Banzhaf-Owen graph value

graph \ unions P = Pn P = PN P ∈ P (N)

C = ∅∗ Ba Sh SCB

C ∈ CN BaC ShC SCBC

Table 4.4: The Symmetric coalitional Banzhaf graph value

Once the new values on GUC are introduced we now switch the
attention to their characterizations. Let us consider the following
properties for a value on GUC. Some of the properties only apply to
games with the trivial singleton system of a priori unions Pn.
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GUC:GIS A value on GUC, f, satisfies graph isolation if for every
(N, v, C) ∈ GC and all i ∈ N such that i is an isolated agent,
i.e, {i} ∈ N/C,

fi(N, v, C, P
n) = v(i).

The idea behind this property is that an isolated agent with
respect to the communication situation given the trivial singleton
coalition structure will only receive the utility she can obtain on
her own, because she will not be able to communicate with another
agent. GUC:GIS is based on GC:GIS, which is presented in Section
4.1.

GUC:2-EFF A value on GUC, f, satisfies 2-efficiency if for every (N, v, C)

∈ GC and all i, j ∈ N such that (i : j) ∈ C,

fi(N, v, C, P
n) + fj(N, v, C, P

n) = fp(N
ij , vij , Cij , Pn−1).

Property GUC:2-EFF states that a value satisfying it is immune
against artificial merging or splitting of two directly connected play-
ers in C ∈ CN under the trivial singleton coalition structure. It
generalizes GC:2-EFF as well as G:2-EFF.

GUC:FAG A value on GUC, f, satisfies fairness in the graph if for every
(N, v, C) ∈ GC and every i, j ∈ N such that (i : j) ∈ C,

fi(N, v, C, P
n)−fi(N, v, C−ij , Pn) = fj(N, v, C, P

n)−fj(N, v, C−ij , Pn).

The fairness in the graph property says that, given the trivial sin-
gleton coalition structure, if a player’s payoff increases or decreases
when breaking the link with another player, this other player should
gain or lose the same amount. GUC:FAG is based on GC:FAI property
introduced in Myerson (1977).

The following properties are stated for games with arbitrary struc-
tures of a priori unions. All of them are based on properties intro-
duced in Section 2.1.

GUC:NID A value on GUC, f, satisfies neutrality under individual de-
sertion if for every (N, v, C, P ) ∈ GUC and i, j ∈ N such that
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{i, j} ⊆ Pk ∈ P ,

fi(N, v, C, P ) = fi(N, v, C, P−j).

The neutrality under individual desertion property states that
the desertion of an agent from an a priori union does not affect the
payoff of the remaining members of the union. Property GUC:NID is
just a stronger version of GUC:BCU. It is based on GU :NID.

In order to present the last two properties we need a game which
combines the ideas behind both the quotient game, (N, vP ), and the
communication game, (N, vC). It is formally introduced next.

Definition 4.2.5. Given (N, v, C, P ) ∈ GUC, the communication quo-
tient game (M, vCP ) ∈ GM is defined for every R ⊆M , by

vCP (R) =
∑

L∈PR/C

v(L),

recall that for every R ⊆M , PR = ∪r∈RPr.

GUC:1-QGP A value on GUC, f, satisfies 1-quotient game property if
for every (N, v, C, P ) ∈ GUC and i ∈ N such that {i} = Pk ∈ P ,

fi(N, v, C, P ) = fk(M,vCP , ∅∗, Pm).

Property GUC:1-QGP states that, using the value on GUC in the
original game, any isolated agent with respect to the system of a
priori unions gets the same payoff as the union she forms in the
communication quotient game with the trivial singleton coalition
structure and the complete graph.

GUC:QGP A value on GUC, f, satisfies the quotient game property if
for every (N, v, C, P ) ∈ GUC and every Pk ∈ P ,∑

i∈Pk

fi(N, v, C, P ) = fk(M,vCP , ∅∗, Pm).

The GUC:QGP property states that the total payoff obtained by the
members of a union in the original game, is the amount obtained by
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the union itself in the communication quotient game with the trivial
system of a priori unions and the complete graph. In the case where
Pk = {i} properties GUC:1-QGP and GUC:QGP are equivalent. Hence,
GUC:QGP implies GUC:1-QGP.

At this point the properties needed to characterize the values on
GUC proposed in Definition 4.2.3 and 4.2.4 have been introduced.

Theorem 4.2.6. (Alonso-Meijide et al. 2009a). The Banzhaf-Owen
graph value, BOC, is the unique value on GUC satisfying GUC:GIS,
GUC:2-EFF, GUC:FAG, GUC:NID, and GUC:1-QGP.

Proof. As depicted in Table 4.3, BOC(N, v, C, Pn) = BaC(N, v, C).
Then, using the characterization of BaC depicted in Theorem 4.1.7
it follows that BOC is characterized by GUC:GIS, GUC:2-EFF, and
GUC:FAG when the system of a priori unions is Pn. Then, we just
need to prove that BOC satisfies GUC:NID and GUC:1-QGP and the
uniqueness for every (N, v, C, P ) ∈ GUC where P 6= Pn.

(1) Existence. Take (N, v, C, P ) ∈ GUC and let i, j ∈ Pk. Then we
can write

BOC
i (N, v, C, P )

= 22−m−pk
∑

R⊆M\k

∑
T⊆Pk\{i,j}

[
vC(PR ∪ T ∪ i ∪ j)− vC(PR ∪ T )

+vC(PR ∪ T ∪ i)− vC(PR ∪ T ∪ j)

]
.

Take P−j = {P ′1, . . . , P ′m+1} where P ′l = Pl for all l ∈ {1, . . . , k − 1, k +

1, . . . ,m}, P ′k = Pk \ j, and P ′m+1 = {j}. Let M ′ = {1, . . . ,m+ 1}. Then,

BOC
i (N, v, C, P−j) =

∑
R⊆M ′\k

1

2m

∑
T⊆P ′k\i

1

2pk−2

[
vC(PR ∪ T ∪ i)− vC(PR ∪ T )

]
=

∑
R⊆M\k

1

2m

∑
T⊆Pk\{i,j}

1

2pk−2

[
vC(PR ∪ T ∪ i)− vC(PR ∪ T )

]
+

∑
R⊆M\k

1

2m

∑
T⊆Pk\{i,j}

1

2pk−2

[
vC(PR ∪ T ∪ j ∪ i)− vC(PR ∪ T ∪ j)

]
= 22−m−pk

∑
R⊆M\k

∑
T⊆Pk\{i,j}

[
vC(PR ∪ T ∪ i ∪ j)− vC(PR ∪ T )

+vC(PR ∪ T ∪ i)− vC(PR ∪ T ∪ j)

]
.

Hence, BOC satisfies GUC:NID.
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Finally, we show that BOC satisfies GUC:1-QGP. Take i ∈ N and
k ∈M such that Pk = {i} and consider the communication quotient
game (M,vCP , ∅∗, Pm) ∈ GUC. Since (vCP )∅

∗
= vCP ,

BOC
k (M,vCP , ∅∗, Pm) =

∑
R⊆M\k

1

2m−1

[
(vCP )∅

∗
(R ∪ k)− (vCP )∅

∗
(R)
]

=

=
∑

R⊆M\k

1

2m−1
(vCP (R ∪ k)− vCP (R)) = BOC

i (N, v, C, P ).

(2) Uniqueness. Suppose that there are two different values
on GUC, f1 and f2, that satisfy the properties. Then, there exists
(N, v, C, P ) ∈ GUC such that f1(N, v, C, P ) 6= f2(N, v, C, P ). Which
means that P 6= Pn. We may suppose that for the triple (N, v, C), P
is a system of a priori unions with the maximum number of unions
for which f1(N, v, C, P ) 6= f2(N, v, C, P ) holds. Take i ∈ N such that
f1i (N, v, C, P ) 6= f2i (N, v, C, P ). Two possible cases arise.

• {i} = Pk ∈ P . By GUC:1-QGP and the uniqueness for the trivial
coalition structure we have,

f1i (N, v, C, P ) = f1k(M,vCP , ∅∗, Pm) = f2k(M,vCP , ∅∗, Pm) = f2i (N, v, C, P ).

• There is j 6= i such that i, j ∈ Pk. Then, by GUC:NID and the
maximality of P we have,

f1i (N, v, C, P ) = f1i (N, v, C, P−j) = f2i (N, v, C, P−j) = f2i (N, v, C, P ).

Which contradicts the inequality in the beginning, and hence,
the result is proved. �

With a similar scheme, a characterization of the Symmetric coali-
tional Banzhaf graph value is obtained, we just need to replace
properties GUC:NID and GUC:1-QGP by GUC:BCU and GUC:QGP.

Theorem 4.2.7. (Alonso-Meijide et al. 2009a) The Symmetric coali-
tional Banzhaf graph value, SCBC, is the unique value on GUC satis-
fying GUC:GIS, GUC:2-EFF, GUC:FAG, GUC:BCU, and GUC:QGP.

Proof. As depicted in Table 4.4, SCBC(N, v, C, Pn) = BaC(N, v, C).
Then, using the characterization of BaC depicted in Theorem 4.1.7
it follows that SCBC is characterized by GUC:GIS, GUC:2-EFF, and
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GUC:FAG when the system of a priori unions is Pn. Then, we just
need to prove that SCBC satisfies GUC:BCU and GUC:QGP and the
uniqueness for every (N, v, C, P ) ∈ GUC where P 6= Pn.

(1) Existence. By Definition 4.2.4 we know that SCBC satisfies
GUC:BCU and GUC:QGP because SCB satisfies GU :BCU and GU :QGP

(see Theorem 2.1.6).
(2) Uniqueness. Suppose that there are two different values on

GUC, f1 and f2, that satisfy the properties. Then, there is (N, v, C, P ) ∈
GUC such that f1(N, v, C, P ) 6= f2(N, v, C, P ). Which means that P 6=
Pn. We may suppose that for the triple (N, v, C), P is a system
of a priori unions with the maximum number of unions for which
f1(N, v, C, P ) 6= f2(N, v, C, P ) holds. Then, there is i ∈ N such that
f1i (N, v, C, P ) 6= f2i (N, v, C, P ). Two cases may arise.

• {i} = Pk ∈ P . By GUC:QGP and the uniqueness for the trivial
singleton coalition structure, we have that

f1i (N, v, C, P ) = f1k(M,vCP , ∅∗, Pm) = f2k(M,vCP , ∅∗, Pm) = f2i (N, v, C, P ).

• There is j ∈ Pk \ i. Then, by GUC:BCU and the maximality of P ,

f1i (N, v, C, P )− f1j (N, v, C, P ) = f2i (N, v, C, P )− f2j (N, v, C, P ). (4.1)

Using GUC:QGP and Eq. (4.1), we have

pkf
1
i (N, v, C, P ) = pkf

2
i (N, v, C, P ).

We obtain a contradiction in both cases. �

Lastly, we give a characterization of OwC which will be useful to
discuss the differences between the values on GUC considered in
this section.

Theorem 4.2.8. (Alonso-Meijide et al. 2009a). The Owen graph
value, OwC, is the unique value on GUC satisfying GUC:CEF(for Pn),
GUC:FAG, GUC:BCU, and GUC:QGP.

Proof.
(1) Existence. Using that OwC generalizes ShC, that is, using

that for every (N, v, C, Pn) ∈ GUC, OwC(N, v, C, Pn) = ShC(N, v, C) and
Theorem 4.1.4, OwC satisfies GUC:CEF (for Pn) and GUC:FAG. From
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Vázquez-Brage et al. (1997) we know that OwC satisfies both GUC:BCU

and GUC:QGP.
(2) Uniqueness. We know that the Myerson value is characterized

by GC:CEF and GC:FAI (see Theorem 4.1.5). Hence, GUC:CEF (for
Pn) and GUC:FAG uniquely determine OwC for every (N, v, C, Pn) ∈
GUC. It remains to prove the uniqueness for every (N, v, C, P ) ∈ GUC
with P 6= Pn. The reasoning used in the proof of the uniqueness of
Theorem 4.2.7 can be repeated here and the result is proved. �

In Table 4.5 the characterization results of Theorems 4.2.6, 4.2.7,
and 4.2.8 are summarized.

OwC SCBC BOC

GUC:CEF
GUC:2-EFF GUC:2-EFF

GUC:GIS GU :GIS

GUC:FAG GUC:FAG GUC:FAG

GUC:QGP GUC:QGP GUC:1-QGP

GUC:BCU GUC:BCU GUC:NID

Table 4.5: Parallel characterizations of OwC, SCBC, and BOC

Note that, the characterizations are based on two sets of prop-
erties. The first set of properties is defined only for games with a
priori unions and graph restricted communication where the sys-
tem of a priori unions is the trivial singleton coalition structure.
This first set of properties determines which value on GC, either
the Myerson value or the Banzhaf graph value, does the value on
GUC generalize. Moreover, from the proofs above it follows that this
first set of properties can be replaced by any other set of properties
that characterizes the corresponding value on GC. The second set
of properties applies to arbitrary games with a priori unions and
graph restricted communication. This set of properties reveals the
way in which the corresponding value on GUC deals with the sys-
tem of a priori unions. Besides, such sets of properties are logically
related which eases the comparation among the different solutions.
Finally, we check that the properties used in the characterizations
are indeed independent.

Remark 4.2.9. The properties considered in Theorem 4.2.6 are in-
dependent as the following examples show:
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(i) The value on GUC, g1, defined for every (N, v, C, P ) ∈ GUC, by

g1(N, v, C, P ) = 0,

satisfies properties GUC:2-EFF, GUC:FAG, GUC:NID and GUC:1-QGP,
but not GUC:GIS.

(ii) The value on GUC, g2, defined for every (N, v, C, P ) ∈ GUC and
i ∈ N , by

g2
i (N, v, C, P ) = v(i),

satisfies GUC:GIS, GUC:FAG, GUC:NID and GUC:1-QGP, but not GUC:2-
EFF.

(iii) Let a, b be two distinct, fixed, and indivisible players. Recall
that by indivisible we mean that there is no pair of players i, j such
that {i, j} = a or {i, j} = b. The value on GUC, g3, defined for every
(N, v, C, P ) ∈ GUC, by

• If (N, v, C, P ) = ({a, b}, ∅∗, Pn),

g3
a(N, v, C, P ) =

3

4
[v(N)− v(b)] +

1

4
v(a), and

g3
b(N, v, C, P ) =

1

4
[v(N)− v(a)] +

3

4
v(b).

• Otherwise, g3(N, v, C, P ) = BOC(N, v, C, P ),

satisfies GUC:GIS, GUC:2-EFF, GUC:NID and GUC:1-QGP, but not GUC
:FAG.

(iv) The SCBC value satisfies GUC:GIS, GUC:2-EFF, GUC:FAG, and
GUC:1-QGP, but not GUC:NID.

(v) The value on GUC, g4, defined for every (N, v, C, P ) ∈ GUC, by

g4(N, v, C, P ) = BaC(N, v, C),

satisfies GUC:GIS, GUC:2-EFF, GUC:FAG, and GUC:NID, but not GUC:1-
QGP. C

Remark 4.2.10. The properties considered in Theorem 4.2.7 are in-
dependent as the following examples show:

(i) The value on GUC, g1, defined above satisfies properties GUC:2-
EFF, GUC:FAG, GUC:BCU and GUC:QGP, but not GUC:GIS.

117



CHAPTER 4. GAMES WITH A PRIORI UNIONS AND GRAPH RESTRICTED
COMMUNICATION

(ii) The OwC value satisfies properties GUC:GIS, GUC:FAG, GUC:BCU,
and
GUC:QGP, but not GUC:2-EFF.

(iii) Again, let a, b be two distinct, fixed, and indivisible players.
The value on GUC, g5, defined for every (N, v, C, P ) ∈ GUC, by

• If (N, v, C, P ) = ({a, b}, ∅∗, Pn),

g5
a(N, v, C, P ) =

3

4
[v(N)− v(b)] +

1

4
v(a), and

g5
b(N, v, C, P ) =

1

4
[v(N)− v(a)] +

3

4
v(b).

• Otherwise, g5(N, v, C, P ) = SCBC(N, v, C, P ),

satisfies properties GUC:GIS, GUC:2-EFF, GUC:BCU and GUC:QGP but
not GUC:FAG.

(iv) The value on GUC, g6, defined for every (N, v, C, P ) ∈ GUC and
every i ∈ N , by

g6
i (N, v, C, P ) = Bak(M, vCP )/|Pk|,

where i ∈ Pk and k ∈ M satisfies GUC:GIS, GUC:2-EFF, GUC:FAG, and
GUC:QGP, but not GUC:BCU.

(v) The BOC value, satisfies GUC:GIS, GUC:2-EFF, GUC:FAG, and
GUC:BCU, but not GUC:QGP. C

Remark 4.2.11. The properties considered in Theorem 4.2.8 are in-
dependent as the following examples show:

(i) The value on GUC, g1, defined above satisfies properties GUC:FAG,
GUC:BCU, and GUC:QGP, but not GUC:CEF (for Pn).

(ii) Again, let a, b be two distinct, fixed, and indivisible players.
The value on GUC, g7, defined for every (N, v, C, P ) ∈ GUC, by

• If (N, v, C, P ) = ({a, b}, v, ∅∗, Pn),

g7
a(N, v, C, P ) =

3

4
[v(N)− v(b)] +

1

4
v(a), and

g7
b(N, v, C, P ) =

1

4
[v(N)− v(a)] +

3

4
v(b).

• Otherwise, g7(N, v, C, P ) = OwC(N, v, C, P ).

118



4.2. GAMES WITH A PRIORI UNIONS AND GRAPH RESTRICTED
COMMUNICATION

satisfies properties GUC:CEF (for Pn), GUC:BCU, and GUC:QGP, but
not GUC:FAG.

(iii) The value on GUC, g8, defined for every (N, v, C, P ) ∈ GUC and
i ∈ N , by

g8
i (N, v, C, P ) = Shk(M,vCP )/|Pk|,

where i ∈ Pk and k ∈ M , satisfies GUC:CEF (for Pn), GUC:FAG, and
GUC:QGP, but not GUC:BCU.

(iv) The value on GUC, g9, defined for every (N, v, C, P ) ∈ GUC, by

g9(N, v, C, P ) = ShC(N, v, C),

satisfies properties GUC:CEF (for Pn), GUC:BCU, and GUC:FAG, but
not GUC:QGP. C

To conclude this section the studied values on GUC are illus-
trated by means of an example coming from the political field. In-
deed, the values on GUC considered are used as power indices to
measure the decisiveness of the political parties with parliamentary
representation.

4.2.1 A political example

The Parliament of the Basque Country, one of Spain’s seventeen
regions, is constituted by 75 members. Since most decisions are
taken by majority, the characteristic function of the game played by
the parties with parliamentary representation is as follows, unity
for any coalition adding up to 38 or more members, and zero for
the rest. Since elections in 2005, the Parliament was composed by
22 members of the Basque nationalist conservative party EAJ/PNV,
"A", 18 members of the Spanish socialist party PSE-EE/PSOE, "B",
15 members of the Spanish conservative party PP, "C", 9 members of
the Basque nationalist left-wing party EHAK/PCTV, "D", 7 members
of the Basque nationalist social democrat party EA, "E", 3 members
of the Spanish left-wing party EB/IU, "F", and 1 member of the
Basque nationalist moderated left-wing party Aralar, "J".

In order to build a model that takes into account the ideology
of the political parties involved we propose a communication graph
defined in Figure 4.1. The graph is based on the relations between
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the parties in such a way that we put a link between two agents
whenever these parties had reached agreements in the past.

Finally, we propose a cooperation structure in terms of a priori
system of unions. Since the government was formed by A, E, and
F before the elections, we consider the system of a priori unions
P = {P1, P2, P3, P4, P5}, where P1 = {A,E, F}, P2 = {B}, P3 = {C},
P4 = {D}, and P5 = {G}. The proposed coalition and communication
structures are jointly depicted in Figure 4.1.

A

C B E G D

F

P1P2 P5P3 P4

Figure 4.1: The communication graph and the system of a priori of
unions

First, in Table 4.6 we compute the power of each party with no
restriction to the cooperation and the power of each party taking
into account the graph restricted communication. Concerning the
results presented in Table 4.6, the most remarkable effect of the
communication graph restriction is that the most powerful player
switches from A to B. In general those parties which have more
links to other parties increase their payoffs at the expense of the
parties located at the extremes of the graph.

Next, we compute in Tables 4.7 and 4.8 the different measures of
power of the parties taking into account only the restrictions given
by the coalition structure, on Table 4.7, and the restrictions given
by both the coalition structure and the communication graph, on
Table 4.8.

Table 4.7 shows the distribution of power based on the different
values on GU studied in Section 2.1 given the system of a priori
unions P . This approach gives more power to A, which is the biggest
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Party Seats Sh Ba Ba ShC BaC BaC

A 22 .352 .594 .345 .302 .484 .248
B 18 .252 .406 .236 .369 .531 .272
C 15 .186 .344 .200 .035 .125 .064
D 9 .086 .156 .091 .069 .187 .096
E 7 .086 .156 .091 .086 .250 .128
F 3 .019 .031 .018 .069 .187 .096
G 1 .019 .031 .018 .069 .187 .096

Table 4.6: The Shapley, Banzhaf, Myerson, and Banzhaf graph val-
ues

Party Seats Ow BO BO SCB SCB

A 22 .383 .594 .388 .583 .389
B 18 .167 .250 .163 .250 .167
C 15 .167 .250 .163 .250 .167
D 9 .167 .250 .163 .250 .167
E 7 .100 .156 .102 .146 .097
F 3 .017 .031 .020 .021 .014
G 1 0 0 0 0 0

Table 4.7: The Owen, Banzhaf-Owen, and Symmetric coalitional
Banzhaf values

Party Seats OwC BOC BOC SCBC SCBC

A 22 .381 .469 .357 .448 .352
B 18 .250 .375 .286 .375 .295
C 15 0 0 0 0 0
D 9 .083 .125 .095 .125 .098
E 7 .072 .125 .095 .104 .082
F 3 .131 .094 .071 .094 .074
G 1 .083 .125 .095 .125 .098

Table 4.8: The Owen, Banzhaf-Owen, and Symmetric coalitional
Banzhaf graph values

party in the union P1. On the other hand the next three parties,
B, C, and D are each allotted with the same power. Finally, the
smallest party becomes a null player.
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When we consider the communication graph together with the
system of a priori unions (Table 4.8) the distribution of power chan-
ges significantly. The most remarkable change is that player C,
third most voted one, becomes irrelevant and that G, which has
only one representative, is not null anymore. This shows that the
studied model is different from the models presented in Section 2.1
and Section 4.1, and that considering the two restrictions together
enriches the model. Last, but not least, if we focus on the values
on GUC, the difference between OwC and the other two lies in the
power of parties E and F. The Owen graph value gives more weight
to coalitions formed by many players (also by few players), while
the other two (mostly BOC) are not so sensible to the sizes of the
coalitions where there are swings. This is the reason why parties E
and F switch their order.

122



5
Games with incompatible players

In this chapter we study games in which there are incompatible
players. So, we consider another class of games with restricted co-
operation. The incompatibilities among the players are described
by means of an undirected graph without loops. A link between two
agents means that the agents are incompatible, and hence they can
not productively cooperate. The first work concerning cooperative
games where there are players who cannot be together in a coali-
tion may be Kilgour (1974). However, the approach of this work is
rather cumbersome. The first work in which the incompatibilities
among the players are described by an undirected graph is Carreras
(1991). In this paper a joint model which takes into account the
affinities, described by a communication graph, and incompatibili-
ties among the players is proposed for simple games. In Carreras &
Owen (1996) a political application is provided taking into account
the existence of incompatible players.

In Bergantiños (1993) and Bergantiños et al. (1993) the model of
games with incompatibilities is extended to the class of TU games.
The existence of incompatible players is much more restrictive than
the restrictions to the cooperation arriving from the affinities among
the players (communication graph), since players which are not
connected by the affinities graph can still cooperate if there is a
path connecting them while if two players are incompatible they
could never be in the same coalition. In the aforesaid works a gen-
eralization of the Shapley value to this setting is proposed and char-
acterized. In this setting we saw the lack of a generalization of the
Banzhaf value, which will be introduced and characterized in this
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chapter.

The joint model of games with affinities and incompatibilities was
considered in Amer & Carreras (1995a). In this work the authors
defined the cooperation index, which is a map p : 2N → [0, 1] that
describes quantitative restrictions to the cooperation. The cooper-
ation index is capable of modeling situations in which the affinities
among players have different intensities, the only requirement is
that for every i ∈ N , p(i) = 1 (non schizophrenic players). If p(S) = 0,
it means that there are incompatible players on S, while p(S) > 0

means that players in S can communicate, and hence, cooperate.
In Amer & Carreras (1995a) the Shapley value is extended and char-
acterized for games with cooperation indices. The model studied in
Section 4.1 is included in this new model if we consider the coop-
eration index pC , given by pC(S) = 1 if S ⊆ N is connected by C

and pC(S) = 0 otherwise. In a similar way, the model that will be
described in this chapter is included in the approach of Amer &
Carreras (1995a) as we will soon see.

This chapter contains the results of my second publication (Alonso-
Meijide et al. 2009b) which has been published in Homo Oeconomi-
cus. As the previous chapter, the work contained in this chapter
is a joint work with my supervisors, José M. Alonso-Meijide and M.
Gloria Fiestras-Janeiro. The outline of the rest of the chapter is as
follows. In Section 5.1, we present the games with incompatibilities
and recall the main results in this framework. Then, in Section 5.2
a new value for this class of games is defined and two characteriza-
tions of it proposed. Finally, Section 5.3 concludes illustrating the
new value by means of an example coming from the political field.

5.1 The model of games with incompatibilities

A game with incompatibilities is a triple (N, v, I) where (N, v) ∈ G is
a game and I ∈ CN is the incompatibility graph, i.e., i, j ∈ N are
incompatible if (i : j) ∈ I. We denote by GI the set of all such games.
Given (N, v, I) ∈ GI we say that a coalition S ⊆ N is I-admissible
if there are not incompatible players contained on it. By P (S, I)

we will denote the set of all partitions of S whose elements are I-
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admissible coalitions. Recall some notation defined in Section 4.1.
Given I ∈ CN , I∗ denotes the dual graph of I, i.e., I∗ = {(i : j) : i, j ∈
N, i 6= j, (i : j) 6∈ I}. Then, ∅∗ denotes the complete graph on N , i.e.,
∅∗ = {(i : j) : i, j ∈ N, i 6= j}. Finally, let I ∈ CN and i ∈ N , I+i denotes
the graph obtained from I when player i becomes incompatible with
the rest of the players, i.e., I+i = I ∪ {(i : j) : j ∈ N \ i}.

Definition 5.1.1. Given (N, v, I) ∈ GI, the I-restricted game (N, vI) ∈
G is defined for every S ⊆ N by

vI(S) = max
P∈P (S,I)

∑
T∈P

v(T ).

The I-restricted game is in correspondence with the communica-
tion game defined in Section 4.1. The idea behind the I-restricted
game is that players of a coalition S form I-admissible subcoalitions
(which are the only feasible coalitions) and they choose them in such
a way that the joint worth of the subcoalitions of S is maximized.

In Bergantiños (1993) it is shown that the game with incom-
patibilities (N, v, I) ∈ GI is not in general equal to the game with
graph restricted communication, (N, v, I∗) ∈ GC, restricted by the
dual graph. This fact will be shown in Example 5.1.2. In Bergan-
tiños (1993) it is also shown that the I-restricted game is always su-
peradditive. In fact, Example 5.1.2 illustrates the way in which the
I-restricted game is built and the difference between the I-restricted
game and the communication game associated with the dual graph.

Example 5.1.2. Let (N, v, I) ∈ GI be the game with incompatibilities
where N = {1, 2, 3}, I = {(1 : 2)}, and the characteristic function is
defined as follows:

v(i) = 0 for every i ∈ N,

v({1, 2}) = v({1, 3}) = 1, v({2, 3}) = 2, and

v(N) = 10.
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Let us compute the I-restricted game vI following its definition.

vI(i) = 0 for every i ∈ N,

vI({1, 2}) = v(1) + v(2) = 0,

vI({1, 3}) = v({1, 3}) = 1,

vI({2, 3}) = v({2, 3}) = 2, and

vI(N) = max
P∈P (N,I)

∑
T∈P

v(T ) = v({2, 3}) + v(1) = 2. ♦

Next, let us consider the dual graph of I given by I∗ = {(1 : 3), (2 :

3)}. Then, the communication game (N, vI
∗
) ∈ G is given by,

vI
∗
(i) = 0 for every i ∈ N,

vI
∗
({1, 2}) = v(1) + v(2) = 0,

vI
∗
({1, 3}) = v({1, 3}) = 1,

vI
∗
({2, 3}) = v({2, 3}) = 2, and

vI
∗
(N) =

∑
S∈N/I∗

v(S) = v({1, 2, 3}) = 10.

Hence, in the I-restricted game the grand coalition is not feasi-
ble since it contains incompatible players. Nevertheless, the grand
coalition N can cooperate jointly in the communication game (N, vI

∗
)

since players 1 and 2 can communicate through player 3. ♦

After having introduced the model of games with incompatibili-
ties, we come now to the matter of how to allocate the benefits of
the cooperation.

A value on GI is a map, f, that assigns a vector f(N, v, I) ∈ RN

to every game with incompatibilities (N, v, I) ∈ GI. In Bergantiños
(1993) a generalization of the Shapley value for this kind of games
is proposed and characterized. As in the case of the Myerson value,
that is just the Shapley value of the communication game, the in-
compatibility Shapley value is the Shapley value of the I-restricted
game. Its formal definition is given next.

Definition 5.1.3. (Bergantiños 1993). The incompatibility Shapley
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value, ShI, is the value on GI defined for every (N, v, I) ∈ GI by

ShI(N, v, I) = Sh(N, vI).

Example 5.1.4. Consider the game with incompatibilities presented
in Example 5.1.2. We saw that the I-restricted game, (N, vI), differs
from the communication game of the dual graph, (N, vI

∗
). Next, we

show that the incompatibility Shapley value of (N, v, I) ∈ GI is also
different from the Myerson value of (N, v, I∗) ∈ GC.

ShI(N, v, I) = (1/6, 4/6, 7/6), ShC(N, v, I∗) = (17/6, 20/6, 23/6). ♦

The incompatibility Shapley value is characterized in Bergan-
tiños (1993) and more recently by Alonso-Meijide & Casas-Méndez
(2007). In order to present such characterizations we first introduce
the following properties.

GI :CEF A value on GI, f, satisfies component efficiency if for every
S ∈ N/I∗, ∑

i∈S
fi(N, v, I) = max

P∈P (S,I)

∑
T∈P

v(T ) = vI(S).

GI :FAI A value on GI, f, satisfies fairness if for every pair of incom-
patible players i, j ∈ N such that (i : j) /∈ I,

fi(N, v, I)− fi(N, v, I ∪ (i : j)) = fj(N, v, I)− fj(N, v, I ∪ (i : j)).

GI :BCG A value on GI, f, satisfies balanced contributions for the
graph if for every i, j ∈ N ,

fi(N, v, I)− fi(N, v, I
+j) = fj(N, v, I)− fj(N, v, I

+i).

The GI :CEF property is similar to the component efficiency pro-
posed by Myerson (1977) and presented in Section 4.1 (GC:CEF). It
states that the joint payoff of the players of a connected component
in the dual graph equals the worth of that component. The idea
behind the GI :FAI property keeps a close relation with GC:FAI (Sec-
tion 4.1). It is a reciprocity property that states that if two players
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are not incompatible anymore, both gain or loss the same amount.
Finally, the GI :BCO property is in line with the balanced contribu-
tions in the graph property defined in Section 4.1 (GC:BCG). It is
a strengthening of the GI :FAI property and states that if a player i
becomes incompatible with the rest of the players this benefits or
damages another player j in the same amount as if it happens the
other way around.

In the next theorem the first characterization of the incompati-
bility Shapley value is presented.

Theorem 5.1.5. (Bergantiños 1993). The incompatibility Shapley
value, ShI, is the unique value on GI satisfying GI :CEF and GI :FAI.

Theorem 5.1.5 above reveals that, as in the case of the Myer-
son value ShC, the incompatibility Shapley value is characterized
by means of only two properties. More recently, Alonso-Meijide
& Casas-Méndez (2007) present an alternative characterization of
ShI, using the GI :BCO property. Hence, these two characterizations
are the counterparts of Theorems 4.1.4 and 4.1.5 in the context of
games with incompatibilities.

Theorem 5.1.6. (Alonso-Meijide & Casas-Méndez 2007). The in-
compatibility Shapley value, ShI, is the unique value on GI satisfying
GI :CEF and GI :BCG.

5.2 The incompatibility Banzhaf value

In this section we introduce and characterize a new value on GI
which generalizes the Banzhaf value. This is done using the I-
restricted game.

Definition 5.2.1. The incompatibility Banzhaf value, BaI, is the value
on GI defined for every (N, v, I) ∈ GI by

BaI(N, v, I) = Ba(N, vI).

First of all, we come to the discussion on the properties that this
new value on GI satisfies. To do so, we first define another property,
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which is the natural modification of G:TPP (see Section 1.1.2) for this
scenario.

GI :CTP A value f on GI satisfies the component total power property
if for every S ∈ N/I∗,

∑
i∈S

fi(N, v, I) =
1

2s−1

∑
i∈S

∑
L⊆S\i

[
vI(L ∪ i)− vI(L)

]
.

The GI :CTP determines the amount that the players in a con-
nected component of the dual graph obtain jointly. Next, we check
that the incompatibility Banzhaf value satisfies all the properties
introduced in this chapter so far but GI :CEF.

Lemma 5.2.2. The incompatibility Banzhaf value satisfies properties
GI :FAI, GI :BCG, and GC:CTP.

Proof. We will check that BaI satisfies the three properties.

GI :FAI. Let (N, v, I) ∈ GI and i, j ∈ N such that (i : j) /∈ I, then

2n−1
[
BaIi(N, v, I)− BaIi(N, v, I ∪ (i : j))

]
=

∑
S⊆N\{i,j}

[
vI(S ∪ i ∪ j)− vI(S ∪ j) + vI(S ∪ i)− vI(S)

]
−

∑
S⊆N\{i,j}

[
vI∪(i:j)(S ∪ i ∪ j)− vI∪(i:j)(S ∪ j)

+vI∪(i:j)(S ∪ i)− vI∪(i:j)(S)

]
.

Since for every S ⊆ N \ {i, j},

vI(S) = vI∪(i:j)(S), vI(S ∪ i) = vI∪(i:j)(S ∪ i), and

vI(S ∪ j) = vI∪(i:j)(S ∪ j).

BaIi(N, v, I)− BaIi(N, v, I ∪ (i : j))

=
1

2n−1

∑
S⊆N\{i,j}

[
vI(S ∪ i ∪ j)− vI∪(i:j)(S ∪ i ∪ j)

]
= BaIj(N, v, I)− BaIj(N, v, I ∪ (i : j)).
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GI :BCG. Let (N, v, I) ∈ GI and i, j ∈ N , then

2n−1
[
BaIi(N, v, I)− BaIi(N, v, I

+j)
]

=
∑

S⊆N\{i,j}

[
vI(S ∪ i ∪ j)− vI(S ∪ j) + vI(S ∪ i)− vI(S)

]
−

∑
S⊆N\{i,j}

[
vI

+j
(S ∪ i ∪ j)− vI+j

(S ∪ j) + vI
+j

(S ∪ i)− vI+j
(S)
]
.

Since for all S ⊆ N \ j,

vI(S) = vI
+j

(S) and vI
+j

(S ∪ j) = vI(S) + v(j).

BaIi(N, v, I)− BaIi(N, v, I
+j)

=
1

2n−1

∑
S⊆N\{i,j}

[
vI(S ∪ i ∪ j)− vI(S ∪ i)− vI(S ∪ j) + vI(S)

]
= BaIj(N, v, I)− BaIj(N, v, I

+i).

GI :CTP. Let (N, v, I) ∈ GI, S ∈ N/I∗ and take (N, vI,S) ∈ G defined
for every T ⊆ N as follows

vI,S(T ) = max
P∈P (T∩S,I)

∑
L∈P

v(L).

First of all we will see that vI =
∑

S∈N/I∗ v
I,S .

Let P ∈ P (T, I) and L ∈ P . As L is I-admissible it follows that
L is a connected component of I∗ on N . Then, there exists S′ ∈
N/I∗ such that L ⊆ S′. Hence, for every S ∈ N/I∗, each partition
P ∈ P (T, I) induces another partition P ∈ P (T ∩ S, I). Taking into
account the definition of the I-restricted game we conclude that for
every T ⊆ N ,

vI(T ) ≤
∑

S∈N/I∗
vI,S(T ).

On the other hand, let T ⊆ N . If N/I∗ = {S1, . . . , Sm}, for every
j ∈ {1, . . . ,m} we may take Pj ∈ P (T ∩ Sj , I) and a partition P of T
defined by those Pj ’s. As P ∈ P (T, I), we conclude that for every
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T ⊆ N ,
vI(T ) ≥

∑
S∈N/I∗

vI,S(T ).

Then, the stated equality is proved. Given S ∈ N/I∗ and using the
additivity of the Banzhaf value (G:ADD) we have∑

j∈S
Baj(N, v

I) =
∑
j∈S

∑
T∈N/I∗

Baj(N, v
I,T ) =

∑
T∈N/I∗

∑
j∈S

Baj(N, v
I,T ).

For every i ∈ N \ T , i is a null player in (N, vI,T ) ∈ G. Hence,∑
T∈N/I∗

∑
j∈S

Baj(N, v
I,T ) =

∑
j∈S

Baj(N, v
I,S) =

∑
j∈S

Baj(S, v
I,S).

Lastly, using that the Banzhaf value satisfies the total power prop-
erty (G:TPP) we conclude that,

∑
j∈S

Baj(S, v
I,S) =

1

2s−1

∑
j∈S

∑
L⊆S\j

[
vI(L ∪ j)− vI(L)

]
.

�

At this point we have defined the concepts and results needed to
characterize the incompatibility Banzhaf value.

Theorem 5.2.3. The incompatibility Banzhaf value, BaI, is the unique
value on GI satisfying GI :BCG and GI :CTP.

Proof.
(1) Existence. It is shown in Lemma 5.2.2.
(2) Uniqueness. Let f be an allocation rule satisfying the prop-

erties. Let also (N, v, ∅∗) ∈ GI, then, N/I∗ = {{1}, {2}, . . . , {n}}. By
GI :CTP we have

f(N, v, I) = (v(1), . . . , v(n)),

and, hence, f is unique. Suppose that there are two different values
f1 and f2 satisfying the properties. Then there exists (N, v, I) ∈ GI
such that f1(N, v, I) 6= f2(N, v, I) and I 6= ∅∗. Hence, we can take
I ∈ CN with the maximum number of links for which the inequality
above holds. Thus, there is i ∈ N such that f1i (N, v, I) 6= f2i (N, v, I).

If for every j ∈ N \ i, (i : j) ∈ I, then {i} ∈ N/I∗. Applying GI :CTP

we come to a contradiction.
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If there is j ∈ N \ i such that (i : j) /∈ I, then by GI :BCG, the fact
that |I+i| ≥ |I|, and the maximality of I,

f1i (N, v, I)− f1j (N, v, I) = f1i (N, v, I+j)− f1j (N, v, I+i) =

= f2i (N, v, I+j)− f2j (N, v, I+i) = f2i (N, v, I)− f2j (N, v, I).
(5.1)

Moreover, let S ∈ N/I∗ be such that i ∈ S, then for each j ∈ S \ i
either (i : j) /∈ I or there are {i1, i2, . . . , ik} ⊆ S such that i = i1, j = ik,
and (il : il+1) /∈ I for every l = 1, . . . , k − 1. Hence by Eq. (5.1),

f1i1(N, v, I)− f1i2(N, v, I) = f2i1(N, v, I)− f2i2(N, v, I)
...

f1ik−1
(N, v, I)− f1ik(N, v, I) = f2ik−1

(N, v, I)− f2ik(N, v, I).

Adding up both sides,

f1i (N, v, I)− f1j (N, v, I) = f2i (N, v, I)− f2j (N, v, I). (5.2)

On the other hand, using GI :CTP,

∑
i∈S

f1i (N, v, I) =
1

2s−1

∑
i∈S

∑
T⊆S\i

[
vI(T ∪ i)− vI(T )

]
=
∑
i∈S

f2i (N, v, I).

(5.3)
By Eq. (5.2) and (5.3) it follows that

sf1i (N, v, I) = sf2i (N, v, I).

Hence, we come to contradiction and the result is proved. �

In a similar way, we can obtain a characterization of the incom-
patibility Banzhaf value by means of GI :FAG and GI :CTP.

Theorem 5.2.4. The incompatibility Banzhaf value, BaI, is the unique
value on GI satisfying GI :FAI and GI :CTP.

Proof.

(1) Existence. It is shown in Lemma 5.2.2.

(2) Uniqueness. It can be easily proved following the lines of the
proof of the uniqueness in Theorem 5.2.3. Note that we can use
GI :FAI in all the steps in which GI :BCG is used. �
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The parallel characterizations of the incompatibility Shapley and
Banzhaf values are summarized in Table 5.1. The difference be-
tween ShI and BaI lies on the fact that the former satisfies GI :CEF

while the latter satisfies GI :CTP. Hence, the differences between Sh

and Ba are transferred to situations with incompatibilities. Finally,
we show that the pairs of properties used in both characterizations
are indeed independent.

ShI BaI

Bergantiños (1993)
GC:CEF GC:CTP Alonso-Meijide et al.
GC:FAI GC:FAI (2009b)

Alonso-Meijide et al. GC:CEF GC:CTP Alonso-Meijide et al.
(2007) G:BCG G:BCG (2009b)

Table 5.1: Parallel characterizations of ShI and BaI

Remark 5.2.5. The properties considered in Theorem 5.2.3 are in-
dependent as the following examples show:

(i) The incompatibility Shapley value satisfies GI :BCG but not
GI :CTP.

(ii) Let a and b be two fixed and different players. The value on
GI, g, defined for every (N, v, I) ∈ GI by,

• If N = {a, b} and I = ∅,

ga(N, v, I) = gb(N, v, I) =
v(N)

2
.

• Otherwise, g = BaI,

satisfies GI :CTP but not GI :BCG. C

Remark 5.2.6. The properties considered in Theorem 5.2.4 are in-
dependent as the following examples show:

(i) The incompatibility Shapley value satisfies GI :FAI but not
GI :CTP.

(ii) The value on GI, g, satisfies GI :CTP but not GI :FAI. C
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5.3 A political example

In this section we study the power distribution in the Parliament of
the Basque Country, illustrating in this way the use of the differ-
ent solution concepts studied in this chapter. However, this time
we consider the situation in the Parliament after the elections in
November 1986, because it has been studied before in Carreras &
Owen (1996) using the Shapley value and its extension to GI and in
Alonso-Meijide & Casas-Méndez (2007) using the Public good index
(see Section 6.1) and its extension to GI.

The Parliament of the Basque Country, one of Spain’s seventeen
regions, is constituted by 75 members. Since most decisions are
taken by majority, the characteristic function of the game played by
the parties with parliamentary representation is as follows, unity
for any coalition adding up to 38 or more members, and zero for
the rest. Since elections in 1986, the Parliament was composed
by 19 members of the Spanish socialist party PSE, 17 members of
the Basque nationalist conservative party PNV, 13 members of the
Basque nationalist social democrat party EA, 13 members of the
Basque nationalist left-wing party HB, 9 members of the Basque
nationalist moderated left-wing party EE, 2 members of the Span-
ish conservative party CP, and 2 members of the Spanish centrist
party CDS. In the papers mentioned above, taking into account the
behavior of the parties and the declarations made by the representa-
tives of the parties involved it is assumed the incompatibility graph
is as described in Figure 5.1.

EE HB PSE PNV

CDS CP EA

Figure 5.1: The incompatibility graph

For a more detailed description of each party and their political
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positions the reader is referenced to Carreras & Owen (1996).
In the original simple game there are twelve possible minimal

winning coalitions, which are the following:

{PSE, PNV, EA} {PSE, EA, EE}
{PSE, PNV, HB} {PSE, HB, EE}
{PSE, PNV, EE} {PNV, EA, HB}
{PSE, PNV, CP} {PNV, EA, EE}
{PSE, PNV, CDS} {PNV, HB, EE}
{PSE, EA, HB} {EA, HB, EE, CP, CDS}

However when we consider the I-restricted game with the in-
compatibility graph only six minimal winning coalitions are feasible,
which are:

{PSE, PNV, EA} {PSE, EA, EE}
{PSE, PNV, EE} {PNV, EA, HB}
{PSE, PNV, CDS} {PNV, EA, EE}

In Table 5.2, we present the Banzhaf value and the incompati-
bility Banzhaf value for games with incompatibilities.

Party Seats Ba BaI

PSE 19 .4688 .40625
PNV 17 .4688 .53125
EA 13 .2812 .40625
HB 13 .2812 .09375
EE 9 .2812 .28125
CP 2 .0312 0

CDS 2 .0312 .09375

Table 5.2: The Banzhaf and Incompatibility Banzhaf values

The depicted results are in line with those presented in Carreras
& Owen (1996) and Alonso-Meijide & Casas-Méndez (2007). PNV
ranks first, even though PSE has more seats. PNV and EA are the
only parties which increase their power significantly. CP becomes
a null player because his rejection to PSE and HB. In conclusion,
when incompatibilities among players are considered the power dis-
tribution changes significantly.
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6
Two new power indices based on

null player free winning coalitions

In the last decades the measurement of power in decision making
bodies has been a main topic in Political Sciences and many work
has been done in order to attain an appropriate such a measure.
However there is still a debate even on the definition of power. Most
of the times, the power is understood as the ability of an agent to
influence the outcome. But even when the definition of power is
agreed the choice of an appropriate rule to represent it is still an
open question. The modeling of decision making bodies and voting
procedures has been tackled using simple games. In this chapter
the simple games that have been formally introduced in Section 1.2
are taken up again.

Among the most studied power indices in the literature one can
find the Shapley-Shubik and Penrose-Banzhaf-Coleman indices, that
were introduced in Section 1.2, but also the Deegan-Packel index
(Deegan & Packel 1979) and the Public good index (Holler 1982).
All the above power indices are evaluations of an agent’s relative
significance to each of the coalitions that might be formed. In this
chapter, we will first of all review some of the main results related
to the Deegan-Packel and Public good indices. These power indices
restrict their attention to some kinds of coalitions that are partic-
ularly important. Indeed, they only take into account the minimal
winning coalitions. More recently, other interesting power indices
have been introduced. The Public help index (Bertini et al. 2008) is
based on the set of all winning coalitions, more precisely, the power
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of each agent is proportional to the number of winning coalitions
in which she participates. The Shift power index (Alonso-Meijide &
Freixas 2010) considers only a subset of the minimal winning coali-
tions, the so-called minimal winning coalitions without any surplus,
in a sense, these coalitions are the most efficient minimal winning
coalitions. In this chapter we propose and characterize two new
power indices, namely fnp and gnp. These power indices are also
based on a particularly important set of coalitions, specifically on
the winning coalitions that do not contain null players. Such set
of coalitions contains the set of minimal winning coalitions and is
contained in the set of winning coalitions. A first consequence of
this fact is that fnp and gnp do not consider minimal winning coali-
tions as the only source of power. This is the case in many real
situations, for instance many times the adopted decisions are more
stable the greater the winning coalition supporting it is.

The results contained in this chapter are a joint work with my
supervisor José M. Alonso-Meijide on the one hand, and profes-
sors Alberto Pinto from the University of Porto and Flávio Ferreira
from the Polytechnic Institute of Porto, both in Portugal, on the
other hand. The results contained in this chapter have already been
published in the Journal of Difference Equations and Applications
(Alonso-Meijide et al. 2011a) and as a chapter in the book Dynam-
ics, Games, and Science II (Alonso-Meijide et al. 2011b). Moreover,
another article has been recently submitted for its possible pub-
lication in an international journal (Álvarez-Mozos et al. submit-
ted). The rest of the chapter is organized as follows. In Section 6.1,
the Deegan-Packel and Public good power indices are presented to-
gether with the existing characterizations of them. Next, in Section
6.2 the main contributions are presented, that is, the new power
indices fnp and gnp are defined and characterized by means of prop-
erties which are either standard in the literature or modifications
of standard properties. Finally, in Section 6.3 the distribution of
power in the IX term of office of the Portuguese Parliament is stud-
ied.
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6.1 Power indices based on minimal winning coali-
tions

In this section the scientific literature dealing with power indices
based on minimal winning coalitions is summarized. In pursuing
this objective, two power indices based on minimal winning coali-
tions are formally introduced and two parallel characterizations of
them presented.

The Deegan-Packel power index (Deegan & Packel 1979) is based
on the idea that when it comes to measure the power of an agent
it should only be considered her participation in minimal winning
coalitions. Moreover, it assumes the following three facts:

• Only minimal winning coalitions will emerge victorious.

• Each minimal winning coalition has an equal probability of
forming.

• Players in minimal winning coalitions divide the spoils equally.

The conditions above seem reasonable in many situations. The first
condition is a consequence of considering that players are rational
in the sense that they seek for maximizing their power and, hence,
they will only participate in minimal winning coalitions. In other
words, if a winning coalition is not a minimal winning coalition it
means that there is at least a player whose participation in the coali-
tion is not needed. Hence, the remaining players will prefer to form
the minimal winning coalition contained on the winning coalition
since there will be less people to share the spoils with. The sec-
ond condition states that all minimal winning coalitions are equally
likely, which is very reasonable once the first condition is accepted.
The last condition is a solidarity or equal treatment property. The
requirements above lead to the following definition. Some of the
concepts used throughout this chapter were defined in Section 1.2
(from page 18 to page 22).

Definition 6.1.1. (Deegan & Packel 1979). The Deegan-Packel power
index, DP, is the power index defined for every (N, v) ∈ SG and i ∈ N ,
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by

DPi(N, v) =
1

|Wm(v)|
∑

S∈Wm
i (v)

1

|S|
.

Deegan & Packel (1979) introduce the DP power index together
with a probabilistic interpretation and a characterization by means
of four properties. The characterization of SS presented in Section
1.2.1 shares three of them, namely, SG:EFF, SG:SYM, and SG:NPP.
Indeed, DP coincides with SS in the class of unanimity games. How-
ever, the DP power index does not satisfy SG:TRP. Instead, it satis-
fied the so-called DP-mergeability property that is introduced next.

Two simple games (N, v) and (N,w) are mergeable if for all pair
of minimal winning coalitions S ∈ Wm(v) and T ∈ Wm(w), it holds
that S 6⊂ T and T 6⊂ S. If two games (N, v) and (N,w) are mergeable,
the minimal winning coalitions in the maximum game (N, v ∨w) are
precisely the union of the minimal winning coalitions in the two
original games (N, v) and (N,w). Hence, the mergeability condition
guarantees that |Wm(v∨w)| = |Wm(v)|+|Wm(w)|. Recall from Section
1.1.2 (page 10) the definition of a merged or maximum game, (N, v ∨
w), given for every S ⊆ N by, (v ∨ w)(S) = max{v(S), w(S)}.

SG:DP-MER A power index f satisfies DP-mergeability if for every pair
of mergeable simple games (N, v), (N,w) ∈ SG,

f(N, v ∨ w) =
|Wm(v)|f(N, v) + |Wm(w)|f(N,w)

|Wm(v ∨ w)|
.

The property above states that the power in a merged game is
a weighted mean of the power in the two component games. The
weights being the number of minimal winning coalitions in each
component game, divided by the number of minimal winning coali-
tions in the merged game. Hence, it coincides with SG:TRP in the
sense that it assesses the power in a merged game in terms of the
power in the two component games. At this point, the properties
considered in the first characterization of the Deegan-Packel index
have been introduced.

Theorem 6.1.2. (Deegan & Packel 1979) The Deegan-Packel index,
DP, is the unique power index satisfying SG:EFF, SG:SYM, SG:NPP,
and SG:DP-MER.
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More recently, Lorenzo-Freire et al. (2007) proposed a different
characterization of the Deegan-Packel index. This characterization
is based on the so-called DP-minimal monotonicity property which
is based on the strong monotonicity property (see G:SMO in Section
1.1.2). The property is formally introduced next.

SG:DP-MM A power index f satisfies DP-minimal monotonicity if for
every pair of simple games (N, v), (N,w) ∈ SG and every player
i ∈ N such that Wm

i (v) ⊆Wm
i (w),

fi(N, v)|Wm(v)| ≤ fi(N,w)|Wm(w)|.

The SG:DP-MM property is based on the G:SMO property (see Sec-
tion 1.1.2) used by Young (1985) to characterize the Shapley value.
Indeed, SG:DP-MM describe the behavior of a value in two simple
games, (N, v) and (N,w), in which there is a player i ∈ N such that
Wm
i (v) ⊆ Wm

i (w), in other words, v(S ∪ i)− v(S) ≤ w(S ∪ i)− w(S) for
every S ⊆ N \ i. The difference between SG:DP-MM and G:SMO lies
on the relation between the payoffs of player i in both games. The
G:SMO property states that player i’s payoff in (N,w) is at least as
big as in (N, v). Instead, SG:DP-MM property states that the rela-
tion holds after multiplying the payoffs by the number of minimal
winning coalitions. In other words, if player i improves her posi-
tion in a game, her power times the number of minimal winning
coalitions in the game increases. The characterization of DP power
index proposed in Lorenzo-Freire et al. (2007) replaces the SG:DP-
MER property by the SG:DP-MM property.

Theorem 6.1.3. (Lorenzo-Freire et al. 2007) The Deegan-Packel in-
dex, DP, is the unique power index satisfying SG:EFF, SG:SYM, SG:NPP,
and SG:DP-MM.

In the scientific literature concerning power indices, one can find
another power index that takes only minimal winning coalitions into
account. For instance, the so-called Public good index proposed in
Holler (1982) considers that each player’s power is proportional to
the amount of minimal winning coalitions in which she participates.

141



CHAPTER 6. TWO NEW POWER INDICES BASED ON NULL PLAYER FREE
WINNING COALITIONS

Definition 6.1.4. (Holler 1982). The Public good index, PG, is the
power index defined for every (N, v) ∈ SG and i ∈ N , by

PGi(N, v) =
|Wm

i (v)|∑
j∈N |Wm

j (v)|
.

The first characterization of this power index by means of a set
of properties is proposed in Holler & Packel (1983). The charac-
terization follows the spirit of the characterization of the DP index
presented in Theorem 6.1.2. Indeed, the property of SG:DP-MER is
modified to SG:PG-MER. Next, this modification is formally intro-
duced.

SG:PG-MER A power index f satisfies PG-mergeability if for every pair
of mergeable simple games (N, v), (N,w) ∈ SG and every i ∈ N ,

fi(N, v ∨ w) =
fi(N, v)

∑
j∈N |Wm

j (v)|+ fi(N,w)
∑

j∈N |Wm
j (w)|∑

j∈N |Wm
j (v ∨ w)|

.

Hence, SG:PG-MER describes the power in the merged game as
a weighted mean of the power in the two component games as the
SG:DP-MER does. However, the weights used in SG:PG-MER differ
from the ones used in SG:DP-MER. Note that for every (N, v) ∈ SG,∑

j∈N |Wm
j (v)| =

∑
S∈Wm |S|. Next, the counterpart of Theorem 6.1.2

for the PG index is presented.

Theorem 6.1.5. (Holler & Packel 1983) The Public good index, PG,
is the unique power index satisfying SG:EFF, SG:SYM, SG:NPP, and
SG:PG-MER.

More recently, Alonso-Meijide et al. (2008) propose a different
characterization of the Public good index. This characterization is
parallel to the one of the Deegan-Packel index presented in Theorem
6.1.3. It is based on the so called PG-minimal monotonicity property
which is similar to the DP-minimal monotonicity property stated
above. The property is formally introduced next.

SG:PG-MM A power index f satisfies PG-minimal monotonicity if for
every pair of simple games (N, v), (N,w) ∈ SG and every player
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i ∈ N such that Wm
i (v) ⊆Wm

i (w),

fi(N, v)
∑
j∈N
|Wm

j (v)| ≤ fi(N,w)
∑
j∈N
|Wm

j (w)|.

The SG:PG-MM property keeps a close relation with the SG:PG-MM

property. Both properties describe the relation between the power of
an agent in two different simple games when the minimal winning
coalitions that contain the player in one game are minimal win-
ning coalitions in the other game. The difference lies on the scalars
that multiply the power in each of the simple games. Hence, using
SG:PG-MM property a counterpart of Theorem 6.1.3 is obtained for
the PG index.

Theorem 6.1.6. (Alonso-Meijide et al. 2008) The Public good index,
PG, is the unique power index satisfying SG:EFF, SG:SYM, SG:NPP,
and SG:PG-MM.

The four characterization results presented in this section are
summarized in Table 6.1. These parallel characterizations reveal
the differences between DP and PG. First of all, it is worth to men-
tion that both power indices are efficient, symmetric, and satisfy
the null player property. These properties are also satisfied by SS

while PBC satisfies only SG:SYM and SG:NPP. Hence, the differences
among the characterizations of SS, DP, and PG are limited to a single
property.

DP PG
SG:DP-MER SG:PG-MER

Deegan and Packel SG:EFF SG:EFF Holler and Packel
(1979) SG:SYM SG:SYM (1983)

SG:NPP SG:NPP

SG:DP-MM SG:PG-MM

Lorenzo-Freire SG:EFF SG:EFF Alonso-Meijide
et al. (2007) SG:SYM SG:SYM et al. (2008)

SG:NPP SG:NPP

Table 6.1: Parallel characterizations of DP and PG

Taking into account the first pair of parallel characterizations
(Theorem 6.1.2 and 6.1.5) the difference between DP and PG lies
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on the mergeability properties (SG:DP-MER and SG:PG-MER). Both
properties state that the power in a merged game is a weighted sum
of the power in the two component games and they only differ in the
weights used. In the case of the SG:DP-MER the weights represent
the number of minimal winning coalitions whereas in the case of
the SG:PG-MER the weights represent the sum of the cardinalities of
all minimal winning coalitions.

If we focus on the second pair of parallel characterizations (Theo-
rem 6.1.3 and 6.1.6) the difference between DP and PG is the type of
monotonicity. Moreover, note that since the SS power index is just
the Shapley value restricted to simple games and Sh satisfies strong
monotonicity (see G:SMO on Section 1.1.2) the differences among SS,
DP, and PG are restricted to the type of monotonicity that each of
the power indices satisfies. All the monotonicity properties describe
the way in which a player’s power changes when a simple game is
modified leaving this player better off. In such situation, the SS in-
dex of this player increases whereas the DP and PG indices of the
player increase but after multiplying them by a proper amount. In
the case of DP by the number of minimal winning coalitions and in
the case of PG by the sum of the number of minimal winning coali-
tions that contain each of the players. In conclusion, the differences
between DP and PG are rather slight.

6.2 Two new power indices based on null player
free winning coalitions

In this section two new power indices are introduced following Alonso-
Meijide et al. (2011a). These new power indices are based on a par-
ticular type of winning coalitions. Next, this new class of winning
coalitions is introduced and its relation to W (v) and Wm(v) studied.

A winning coalition S ∈ W (v) is said to be a null player free
winning coalition if no null player (see Definition 1.1.3) belongs
to S. The set of null player free winning coalitions is denoted by
Wnp(v). As before, for every player i ∈ N , Wnp

i (v) denotes the set
of null player free winning coalitions that contain player i, i.e.,
Wnp
i (v) = {S ∈ Wnp(v) : i ∈ S}. Note that for every (N, v) ∈ SG,
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the following relation holds,

Wm(v) ⊆Wnp(v) ⊆W (v).

Thus, the set of null player free winning coalitions can be seen
either as a refinement of the set of winning coalitions or as an ex-
tension of the set of minimal winning coalitions.

Note that a simple game is determined by its set of null player
free winning coalitions, Wnp(v). Recall from Section 1.2 that either
W (v) or Wm(v) determine the simple game (N, v) and note that the
set of winning coalitions can be easily obtained from Wnp(v), i.e.,

W (v) = {T ⊆ N : there is S ∈Wnp(v) such that S ⊆ T}.

It is also easy to obtain the set of minimal winning coalitions given
the set of null player free winning coalitions and vice versa, as fol-
lows,

Wm(v) = {T ∈Wnp(v) : for every S ( T, S /∈Wnp(v)}. (6.1)

Wnp(v) = {S ⊆ N : for every i ∈ S,Wm
i (v) 6= ∅ and

there is T ∈Wm(v) such that T ⊆ S} (6.2)

Next, the two new power indices based on null player free win-
ning coalitions are introduced. The new power indices consider that
only null player free winning coalitions should be taken into ac-
count when it comes to measure the power. The formal definitions
are introduced next.

Definition 6.2.1. (Alonso-Meijide et al. 2011a). The fnp power index
is the power index defined for every (N, v) ∈ SG and i ∈ N by

fnpi (N, v) =
1

|Wnp(v)|
∑

S∈Wnp
i (v)

1

|S|
.

Definition 6.2.2. (Alonso-Meijide et al. 2011a). The gnp power index
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is the power index defined for every (N, v) ∈ SG and i ∈ N by

gnpi (N, v) =
|Wnp

i (v)|∑
j∈N |W

np
j (v)|

.

The idea behind the power indices defined above is in line with
the definitions of the Deegan-Packel and the Public good indices
(see Definitions 6.1.1 and 6.1.4). The only difference is that fnp and
gnp consider all winning coalitions that do not contain null play-
ers instead of only considering minimal winning coalitions. Con-
sequently, fnp considers that all null player free winning coalitions
are equally likely and that the players in a null player free winning
coalition divide the spoils equally. The power index gnp assumes
that the power of each player is proportional to the number of null
player free winning coalitions in which she participates.

In order to characterize fnp and gnp the following monotonicity
properties are introduced.

SG:fnp-MM A power index f satisfies fnp-minimal monotonicity if for
every pair of simple games (N, v), (N,w) ∈ SG and every player
i ∈ N such that Wm

i (v) ⊆Wm
i (w),

fi(N, v)|Wnp(v)| ≤ fi(N,w)|Wnp(w)|.

SG:gnp-MM A power index f, satisfies gnp-minimal monotonicity if for
every pair of simple games (N, v), (N,w) ∈ SG and every player
i ∈ N such that Wm

i (v) ⊆Wm
i (w),

fi(N, v)
∑
j∈N
|Wnp

j (v)| ≤ fi(N,w)
∑
j∈N
|Wnp

j (w)|.

The SG:fnp-MM and SG:gnp-MM properties are based on the SG:DP-
MM and SG:DP-MM properties used to characterize the Deegan-Packel
and Public good indices. The monotonicity properties describe the
way in which the payoff of a player changes when the simple game
is modified improving this players’ possibilities.

Finally, fnp and gnp power indices are characterized with a close
set of properties of the ones used in Theorems 6.1.3 and 6.1.6 to
characterize DP and PG, respectively.
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Theorem 6.2.3. The power index fnp is the unique power index sat-
isfying SG:EFF, SG:NPP, SG:SYM, and SG:fnp-MM.

Proof. (1) Existence. From Definition 6.2.1 it straightforward to
check that fnp satisfies SG:EFF, SG:NPP, and SG:SYM. For SG:fnp-MM

property, note that by Eq.(6.2), Wm
i (v) ⊆ Wm

i (w) implies Wnp
i (v) ⊆

Wnp
i (w). Then,

fnpi (N,w) =
1

|Wnp(w)|
∑

S∈Wnp
i (w)

1

|S|

=
1

|Wnp(w)|
∑

S∈Wnp
i (v)

1

|S|
+

1

|Wnp(w)|
∑

S∈Wnp
i (w)\Wnp

i (v)

1

|S|
,

and hence,

fnpi (N,w)|Wnp(w)|

=
∑

S∈Wnp
i (v)

1

|S|
+

∑
S∈Wnp

i (w)\Wnp
i (v)

1

|S|
≥

∑
S∈Wnp

i (v)

1

|S|

= fnpi (N, v)|Wnp(v)|.

(2) Uniqueness. The uniqueness is proved by induction on the
number of minimal winning coalitions. If |Wm(v)| = 1, then v = uS

where Wm(v) = {S}. If a power index, f satisfies SG:EFF, SG:NPP,
and SG:SYM, we have,

fi(N, v) =

 1
|S| if i ∈ S

0 if i /∈ S

Hence, the uniqueness holds when |Wm(v)| = 1. Next, assume that a
power index satisfying the properties is unique for every (N, v) ∈ SG
with less than m > 1 minimal winning coalitions, i.e., f is unique
for every (N, v) ∈ SG such that |Wm(v)| < m. Let (N, v) ∈ SG with
Wm(v) = {S1, . . . , Sm}. Take T = ∩mk=1Sk. Then, for each i /∈ T let us
define (N,w) ∈ SG by Wm(w) = Wm

i (v). Then, since Wm
i (v) = Wm

i (w),
applying SG:fnp-MM twice,

fi(N, v)|Wm(v)| = fi(N,w)|Wm(w)|.
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Finally, note that |Wm(w)| < m and hence by induction the right
hand side of the equality above is unique. It remains to prove the
uniqueness for i ∈ T . By SG:SYM there is a constant c ∈ R such that
for every i ∈ T , fi(N, v) = c. Moreover, by SG:EFF and the uniqueness
for any i /∈ T , c is unique, which concludes the proof. �

Theorem 6.2.4. The power index gnp is the unique power index sat-
isfying SG:EFF, SG:NPP, SG:SYM, and SG:gnp-MM.

Proof. The proof follows immediately from a reasoning similar to
the one used in the proof of Theorem 6.2.3. �

Hence, Theorems 6.2.3 and 6.2.4 show that the differences be-
tween fnp and gnp are restricted to a monotonicity property. More-
over, the only difference among SS, DP, PG, fnp, and gnp is the type
of monotonicity satisfied by each power index. Finally, the parallel
characterizations of fnp and gnp are depicted in Table 6.2.

fnp gnp

SG:fnp-MER SG:gnp-MER

SG:EFF SG:EFF

SG:SYM SG:SYM

SG:NPP SG:NPP

Table 6.2: Parallel characterizations of fnp and gnp

6.3 A political example

In this section the power indices considered so far are illustrated by
means of a political example following Alonso-Meijide et al. (2011b).
The Portuguese Parliament or Assembly of the Republic is consti-
tuted by 230 members. Since most of the decisions are taken by
simple majority, the characteristic function of the game played by
the parties with parliamentary representation is as follows, unity for
any coalition adding up to 116 or more votes, and zero for the rest.
Since elections in 2002, the Parliament was composed by 105 mem-
bers of the center to the right liberal conservative party, PPD/PSD,
96 members of the social democratic party, PS, 14 members of the
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conservative, christian democratic party, CDS/PP, 10 members of
the communist party, PCP, 3 members of the left-wing party BE,
and 2 members of the green and eco-socialist party PEV.

Party Seats SS PBC DP PG fnp gnp

PPD/PSD 105 .4667 .7188 .3333 .3077 .2473 .2288
PS 96 .1833 .2812 .1677 .1538 .1720 .1695

CDS/PP 14 .1833 .2812 .1677 .1538 .1720 .1695
PCP 10 .1333 .2188 .2000 .2308 .1559 .1610
BE 3 .0167 .0312 .0667 .0769 .1263 .1356
PEV 2 .0167 .0312 .0667 .0769 .1263 .1356

Table 6.3: The distribution of power in the IX term of office of Por-
tuguese Parliament

In the simple game described above there are only 5 minimal
winning coalition, which are the following:

{PPD/PSD, PS}
{PPD/PSD, CDS/PP}
{PPD/PSD, PCP, BE}
{PPD/PSD, PCP, PEV}

{PS, CDS/PP, PCP}

Note that there are not null players since each party is at least
in one minimal winning coalition. Thus, the set of wining coalitions
coincides with the set of null player free winning coalitions. There
are up to 31 wining coalitions.

First of all, note that there are two pairs of symmetric players
in this simple game. The two smallest parties on the one hand, BE
and PEV, which have respectively two and three seats in the Parlia-
ment. On the other hand, and more surprisingly PS and CDS/PP
are symmetric players even though PS has almost seven times more
members in the parliament.

Second, note that the power indices considered may be classified
in three different groups. The first group consist on SS and PBC

and corresponds to the power indices that are based on swings.
Note that the difference between the indices of the most and less
powerful agents is the highest in this group, more precisely,
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SSPPD/PS − SSPEV = 0.45, PBCPPD/PS − PBCPEV = 0.6876

This difference reveals the sensitivity of the power indices in
the first group since the differences among the seats distribution
is transferred to the power distribution. Note also that the rank-
ing of the players with respect to their power is maintained by the
power indices in this group. Moreover, the order is the one given by
the seat distribution. The second group corresponds to the power
indices based on minimal winning coalitions, i.e., DP and PG. If the
range in which the power of the agents varies is computed as before,

DPPPD/PS − DPPEV = 0.2666, PGPPD/PS − PGPEV = 0.2308

Observe that the gap is significantly lower for these indices. This
is due to the fact that there are smaller differences in the num-
ber of minimal winning coalitions in which each player participates.
Hence, DP and PG are less sensible to the differences in the seat
distribution. On the other hand, note that the ranking of the play-
ers with respect to these two indices is the same, but different from
the order with respect to the power indices in the first group. In-
deed, PCP ranks second with respect to DP and PG. Many times
parties with small representation participate in more minimal win-
ning coalitions than parties with big representation. Finally, fnp and
gnp form the third group of power indices. This group corresponds
to the power indices based on null player free winning coalitions. In
comparison with the second group of properties one may think that
the indices in this group are more sensible since they are based on a
broader set of winning coalitions. However, the difference between
the powers of the most and less powerful players is the smallest
among the power indices considered here.

fnpPPD/PS − fnpPEV = 0.1210, gnpPPD/PS − gnpPEV = 0.0932

Lastly, note that the ranking of the players with respect to the
power indices in this group coincides with the order given by the
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seats distribution. Hence, the ordering coincides also with the one
proposed by SS and PBC.
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Conclusions

In this chapter the main conclusions that can be obtained from
this dissertation are summarized. Since the thesis is a collection
of contributions, we will mention the main conclusions that can be
obtained from each of the chapters. The first chapter is preliminary
and hence, there is no relevant contribution to comment on.

In Chapter 2 we have studied cooperative games with levels struc-
ture of cooperation, which constitutes the natural generalization of
cooperative games with a priori unions. The results obtained in
this chapter imply, first of all, that the Banzhaf and Banzhaf-Owen
values can be generalized to the framework of games with levels
structure of cooperation in a natural way. Second, from the pre-
sented characterizations we can conclude that the differences be-
tween the Owen and Banzhaf-Owen values are transferred to games
with levels structure of cooperation. More precisely, the differences
between the Shapley and Banzhaf levels values can be summarized
in the following two ideas. The first difference lies on the fact that
the Shapley levels value is a sharing rule while the Banzhaf leveles
value is not. The Shapley levels value shares the worth of the grand
coalition efficiently. Besides, it shares the amount that a union
obtains efficiently among the unions of the lower level that are con-
tained on it. That is, it is efficient in each of the steps in which the
sharing is carried out. Instead, the Banzhaf levels value generalizes
the Banzhaf value and hence, it is not efficient. However, it satis-
fies the 2-efficiency property that indicates that the Banzhaf levels
value is not manipulable against artificial merging or splitting of
players. The second difference has to do with the consequences of
an agent’s isolation from the levels structure. Consider two agents
that lie on the same union at every level, then, the fact that the first
agent is isolated from the levels structure does not affect second
players payoff when the Banzhaf levels value is used. Nevertheless,
the Shapley levels value is sensitive to such changes, that is the
second agent’s payoff may be altered. What happens is that the
second agent’s payoff is affected in the same amount as the first
agent’s payoff would be affected if it was the second agent who got
isolated from the levels structure.
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Chapter 3 has dealt with share functions in the framework of
monotone games, monotone games with a priori unions, and mono-
tone games with levels structure of cooperation. In particular, the
share functions associated with the values considered in Chapter 2
have been studied. Indeed, in Chapter 3 we have focused on the
normalized versions of the values introduced in the previous chap-
ter. The main consequence of the results in Chapter 3 is related to
the multiplication property. Roughly speaking, the values that gen-
eralize the Shpapley value satisfy this property but the values that
generalize the Banzhaf value do not. The multiplication property
explains how is the sharing carried out when there is a structure
with several levels if we know how to share when there is no level at
all. In this chapter we have also introduced efficient generalizations
of the Banzhaf value. In this way, if we assume that the shar-
ing should satisfy the multiplication property, we have proposed a
generalization of the Banzhaf value to each of the considered frame-
works that does so. Finally, it is worth to mention that the approach
used in Chapter 3 allows to build new sharing rules in each of the
studied contexts in a quite easy way, we only need to take a real
valued function on the set of monotone games that satisfies certain
properties.

The main conclusion that can be obtained from Chapter 4 is
that the restrictions to the cooperation arriving from a communica-
tion graph are compatible with the ones arriving from an a priori
unions structure. Indeed, we can generalize the three values con-
sidered for games with a priori unions to this more general model
in a natural way and hence, we can define the Owen, Banzhaf-
Owen, and Symmetric coalitional Banzhaf graph values. Besides,
the aforementioned generalizations are characterized by means of
properties which are similar to the ones used to characterize the
Owen, Banzhaf-Owen, and Symmetric coalitional Banzhaf values.
In this framework, if we seek for a value that is efficient in each of
the two stages in which the sharing is carried out, for each con-
nected coalition in the graph, we should choose the Owen graph
value. However, if we want the value not to be affected by possible
desertions inside the unions, we should select the Banzhaf-Owen
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graph value. Finally, if we want a compromise between the two
features explained above we should use the Symmetric coalitional
Banzhaf graph value.

Taking into account the results presented in Chapter 5, we con-
clude that the model of games with incompatibilities is not as man-
ageable as the one of games with graph restricted communication.
As a consequence, the incompatibility Banzhaf value is not as easy
to characterize as the Banzhaf graph value. I have only achieved
characterizations of the incompatibility Banzhaf value by means of
the total power property and I have not been able to characterize it
by means of a 2-efficiency property, as is the case for the Banzhaf
and Banzhaf graph values. Therefore, we can conclude that the dif-
ferences between the incompatibility Shapley and Banzhaf values
are restricted to the fact that the former is efficient while the latter
is not.

To conclude, in Chapter 6, following the ideas behind the defi-
nitions of the Deegan-Packel and Public good indices, we have pro-
posed two new power indices. These new power indices are based
on null player free winning coalitions. The motivation is that many
times the minimal winning coalitions are not the only relevant coali-
tions. The new power indices are characterized by means of three
standard properties and another one, which a modification of the
monotonicity property. In this way, we are able to spell out the
distinguishing features of the new proposed indices.
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Summary

Game Theory focuses in the analysis of conflictive situations in
which more than one player interact. In such situations the agents
or players have different preferences over the outcomes of the game.
This research branch studies how rational individuals should be-
have when they have to face different kinds of conflictive situations.
Game Theory classifies such situations in two big groups. A situa-
tion is modelled as a non cooperative game when the players do not
have mechanisms to make binding agreements before the game is
played, in this first group each players’ “best” strategies are studied.
A situation is modelled as a cooperative game when players have
mechanisms to make binding agreements before the game itself is
played. The class of cooperative games is divided into transferable
and non transferable utility games. We assume that players obtain
utility from each possible outcome of the game depending on their
preferences. In cooperative transferable utility games, TU games
from now on, the utility that players get can be divided and trans-
ferred among other players without any loss. A main objective of
the research in TU games is the study of values that can be used
for different purposes. Most of the times, values are used for shar-
ing the utility obtained from the cooperation. However, there are
many situations in which values are used to measure the relative
importance of each of the players in the coalition that has emerged.

This dissertation is a collection of contributions for particular
classes of TU games. Classes of games that generalize the basic
model, the so-called games with restricted cooperation, and sim-
ple games, which constitute an important subclass of games. The
main contributions presented in this essay concern characteriza-
tion results. We characterize several values by means of properties.
Characterizing a value by means of properties is interesting for at
least to reasons. First, it may be more appealing to define a value
by means of properties instead of just giving its explicit definition
because in this way the features of the value can be summarized.
Second, characterization results may help on deciding whether to
use one value or another in a particular situation since the proper-
ties may have implications which are easy to interpret.
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Chapter 1 starts introducing some basic concepts and notation
dealing with the basic model of TU games. Next, some of the existing
solution concepts are briefly described making an especial empha-
sis on the Shapley and Banzhaf values. These values are the basis
of most of the subsequent chapters. Chapters 2 through 5 study dif-
ferent types of games with restricted cooperation. In general, games
with restricted cooperation are built introducing additional informa-
tion to enrich the model. This information is represented by some
structure that describes the way in which the agents are allowed to
cooperate. These games are said to generalize TU games since there
is always a trivial structure which indicates that the cooperation is
not restricted at all.

Chapter 2 is devoted to the study of games with levels structure
of cooperation. The games with levels structure of cooperation gen-
eralize the games with a priori unions. A game with a priori unions
assumes that the players are organized in groups and that the co-
operation among them must “respect” this group structure. Hence,
the external information is in this case described by a partition of
the set of players. This type of games are proposed in Aumann
& Drèze (1974) and there is a vast literature related to them. In
Chapter 2 some of the most important results in this framework are
summarized first. Next, the model of games with levels structure of
cooperation is introduced. This model is proposed by Winter (1989)
and the literature related to it is quite limited. The contribution of
Chapter 2 is to generalize some of the existing results of games with
a priori unions to this more general model. More precisely, a value
that generalizes the Banzhaf value is proposed and parallel charac-
terizations of this value and a formerly existing value are presented.
By parallel characterizations we mean characterizations that can be
compared. Ideal parallel characterizations would share most of the
properties. In this way the different properties would highlight the
differences between the solution concepts. Finally, an example is
proposed to illustrate the use of the studied values.

Chapter 3 deals with share functions on several classes of games
with restricted cooperation. Share functions are introduced in van der
Laan & van den Brink (1998) as an alternative way to study the
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Shapley and Banzhaf values. More precisely, the Shapley value and
the Normalized Banzhaf value. The concept of share functions al-
lows for a common approach to these two values, again highlighting
the differences among them. Chapter 3 studies share functions and
their generalizations in the classes of games that are considered in
Chapter 2. That is, TU games, games with a priori unions, and
games with levels structure of cooperation.

Another class of games with restricted cooperation that has a-
roused much interest among game theorists is the class of games
with graph restricted communication proposed by Myerson (1977).
In Chapter 4 this restriction to the cooperation is considered to-
gether with the a priori unions structure. First, some important
results of the literature related to the games with graph restricted
communication are recalled. Then, games with graph restricted
communication and a priori unions are studied. This class of games
with restricted cooperation is introduced by Vázquez-Brage et al.
(1996), where a generalization of the Shapley value is proposed and
characterized. The main contribution of Chapter 4 is to define and
characterize two generalizations of the Banzhaf value to this frame-
work. The characterizations ease the comparison of the three values
considered in this setting because they use similar properties. The
chapter concludes illustrating the values with an example coming
from the political field.

In Chapter 5 we study the model of games with incompatibilities.
In this case the restrictions to the cooperation are given by means of
a graph which describes the existing incompatibilities among play-
ers. To my knowledge, the existing literature on this topic is quite
limited. Indeed, only a generalization of the Shapley value has been
proposed. The main contribution of this chapter is to propose and
characterize a generalization of the Banzhaf value to this class of
games. This characterization is comparable with the characteriza-
tion of the formerly existing value, and hence, it helps to compare
both values. The chapter concludes studying a real example coming
from the political field.

Chapter 6 is probably the most different one. This chapter fo-
cuses on simple games and power indices. Hence, this time we do
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not consider that the cooperation among the players is restricted,
instead we deal with a particular subclass of TU games. Simple
games are mainly used as tools to study decision making bodies,
such as Parliaments or Committees. This time we propose and
characterize two new power indices. Again, the characterizations
allow several power indices to be compared based on the properties
satisfied by each of them. This chapter closes with the study of the
distribution of power in the Portuguese Parliament.
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Resumen en Castellano

La Teoría de Juegos es una rama de las Matemáticas que estudia
modelos para la toma de decisiones en situaciones en las que hay
varios agentes implicados y el resultado depende de la elección que
realice cada uno de ellos. La importancia de esta disciplina radi-
ca principalmente en su aplicación a otros ámbitos, tales como la
Economía, las Ciencias Políticas, la Sociología, la Filosofía, o incluso
la Biología.

A pesar de que se conoce algún trabajo previo relacionado con
la Teoría de Juegos, se puede decir que la Teoría de Juegos nace
como disciplina científica en el año 1944 con la publicación del li-
bro “Theory of Games and Economic Behavior”, escrito por John
von Newmann y Oskar Morgenstern. En 1950, John Nash define
el equilibro que lleva su nombre y que es considerado como uno
de los conceptos más importantes dentro de la Teoría de Juegos.
Desde ese momento, las contribuciones a la Teoría de Juegos ex-
perimentan un aumento considerable. La importancia de la Teoría
de Juegos en la Economía queda demostrada al haberse otorgado
en tres ocasiones el premio Nobel en Economía a teóricos de juegos.
En el año 1994, a John Harsanyi, John Nash y Reinhard Selten,
en el año 2005, a Robert Aumann y Thomas Schelling, y en el año
2007 a Leonid Hurwicz, Eric Maskin y Roger Myerson.

La Teoría de Juegos se divide en dos importantes áreas: los jue-
gos no cooperativos y los juegos cooperativos. En el caso de los
juegos no cooperativos, un juego es un modelo que describe todos
los posibles movimientos de los jugadores. La investigación en este
área trata fundamentalmente de encontrar las “mejores” estrate-
gias que cada agente puede seguir desde un punto de vista egoísta.
En cambio, en el caso de los juegos cooperativos, se asume que se
puede llegar a acuerdos vinculantes entre jugadores y se describen
únicamente los resultados que se obtienen en todas las posibles
coaliciones de jugadores. Las principales líneas de investigación en
este ámbito estudian reglas “justas” que puedan servir para repartir
los beneficios generados por la cooperación

En esta tesis se realizan aportaciones en el estudio de algunas
clases de juegos cooperativos. En concreto, los principales resul-
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tados consisten en definir nuevos conceptos de solución para estas
clases de juegos y caracterizarlos. También se presentan nuevas
caracterizaciones de conceptos de solución existentes en la litera-
tura. Este tipo de caracterizaciones constituyen una de las líneas
de investigación más activas dentro de la Teoría de Juegos. De he-
cho, las caracterizaciones de soluciones por medio de propiedades
son una forma de resumir las principales características de cada
concepto de solución. Las caracterizaciones que se presentan en
esta memoria pueden considerarse paralelas ya que en un mismo
contexto presentamos caracterizaciones de distintos conceptos de
solución basadas en propiedades fácilmente comparables. Este tipo
de caracterizaciones ayudan a comparar las distintas soluciones
debido a que resaltan las similitudes y diferencias existentes. Lo
que es especialmente interesante cuando tratamos de aplicar al-
guna solución en un problema concreto.

En el Capítulo 1 se presenta el modelo básico de juegos coopera-
tivos que servirá de base para los modelos estudiados en los siguien-
tes capítulos. La mayor parte de esta tesis estudia juegos coopera-
tivos en los que la cooperación está restringida. Existen muchas
situaciones en las que no se puede aceptar que cualquier coalición
de jugadores sea factible. Esto puede deberse a restricciones del
entorno o a las preferencias de los individuos involucrados. Los
modelos de juegos cooperativos con cooperación restringida inten-
tan incorporar esta información adicional al modelo tratando así de
ajustarse mejor a la situación que se quiere modelar. Los mode-
los considerados entre los Capítulos 2 y 5 son ejemplos de juegos
con cooperación restringida. El Capítulo 2 estudia los juegos con
estructura de niveles. El Capítulo 3 se centra en el estudio de las
denominadas “share functions” en distintos contextos de juegos con
cooperación restringida. El Capítulo 4 considera los juegos con co-
municación restringida y uniones a priori. El Capítulo 5 trata de
juegos con incompatibilidades. Finalmente, el Capítulo 6 está dedi-
cado al estudio de los juegos simples sin ningún tipo de restricción
a la cooperación.
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Resumen del Capítulo 1

En este capítulo se introduce el modelo básico de juegos coope-
rativos con utilidad transferible y se hace una revisión de algunos
de los principales resultados existentes en la literatura. Después de
introducir el modelo formalmente, se enumeran ciertas propiedades
que un juego cooperativo puede verificar. A continuación, se dis-
cuten los distintos enfoques existentes en la literatura en cuanto a
conceptos de solución se refiere. Gran parte de este capítulo se cen-
tra en dos de los principales valores o conceptos de solución para
juegos cooperativos como son los valores de Shapley (Shapley 1953)
y Banzhaf (Owen 1975). En primer lugar se introducen los valores y
se describe su interpretación probabilística. A continuación se hace
una exhaustiva revisión de las distintas caracterizaciones propues-
tas hasta el momento. Finalmente, se introducen también los de-
nominados juegos simples que se estudian con más profundidad en
el Capítulo 6.

Resumen del Capítulo 2

Una de las primeras propuestas de juegos con cooperación res-
tringida son los juegos con uniones a priori o estructura coalicional
que introducen Aumann y Drèze (1974). En un juego con uniones
a priori se asume que los jugadores se organizan en grupos y que
la cooperación debe “respetar” esta estructura. Es decir, se supone
que además de la información contenida en la función caracterís-
tica, se tiene información adicional que en este caso viene dada por
medio de una partición del conjunto de jugadores. En primer lugar,
se revisan algunos de los resultados más importantes existentes
para esta clase de juegos. En concreto, se presentan tres genera-
lizaciones de los valores de Shapley y Banzhaf para esta clase de
juegos junto con una caracterización de cada una de estas genera-
lizaciones. En segundo lugar, se introduce el modelo de juegos con
estructura de niveles y se revisan los principales resultados exis-
tentes. Esta clase de juegos se introduce en Winter (1989), donde
se propone y caracteriza una generalización del valor de Shapley,
el denominado valor de niveles de Shapley. El valor de niveles de
Shapley también generaliza el valor de Owen (Owen 1977) que es
uno de los valores más estudiados para juegos cooperativos con
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uniones a priori. A continuación se presentan las aportaciones de
este capítulo que consisten en proponer un nuevo valor que general-
iza el valor de Banzhaf a este contexto, denominado valor de niveles
de Banzhaf, y dos caracterizaciones, una para cada uno de los va-
lores considerados en este contexto. El valor de niveles de Banzhaf
generaliza a su vez el valor de Banzhaf-Owen (Owen 1982). Las ca-
racterizaciones propuestas pueden considerarse paralelas y, por lo
tanto, son fácilmente comparables. Las caracterizaciones ayudan a
entender las diferencias entre ambos valores. Para terminar, se es-
tudia un ejemplo en el que se pueden aplicar los valores estudiados
en este capítulo y se obtienen las correspondientes conclusiones.

Resumen del Capítulo 3

En este capítulo se estudian las denominadas “share functions”,
que no son más que una forma alternativa de ver los valores, en dis-
tintas clases de juegos con cooperación restringida. Estas funciones
se introducen en van der Laan y van den Brink (1998) permitiendo
así el estudio conjunto de los valores de Shapley y Banzhaf. En este
capítulo se estudian “share functions” y sus generalizaciones a los
modelos de juegos considerados en el Capítulo 2. Es decir, juegos
cooperativos, juegos cooperativos con uniones a priori y juegos co-
operativos con estructura de niveles. En cada una de estas clases
de juegos se propone una familia de “share functions” de forma que
la mayoría de los valores estudiados en el anterior capítulo están
incluidos en ellas. Por último, se proponen varias caracterizaciones
para cada una de estas familias. De esta forma se completan los
resultados de van der Laan y van den Brink (2002) y van den Brink
y van der Laan (2005) y se extienden para el caso en el que exista
una estructura formada por varios niveles de uniones a priori.

Resumen del Capítulo 4

En este capítulo se considera otro de los modelos de juegos con
cooperación restringida que más interés ha despertado entre los
teóricos de juegos. Se trata del modelo de juegos con comunicación
restringida propuesto por Myerson (1977). Este modelo supone que
los jugadores solo pueden cooperar a través de los cauces de co-
municación bilateral existentes. Es decir, se supone la existencia
de un grafo no dirigido que describe la forma en la que los agentes
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se comunican y la cooperación solo puede darse entre agentes que
se comuniquen, bien directamente, o bien mediante otros agentes
que también estén dispuestos a cooperar. El Capítulo 4 comienza
repasando algunos de los resultados más importantes que existen
para el modelo de juegos con comunicación restringida. En par-
ticular, se presentan las generalizaciones de los valores de Shapley
y Banzhaf a este contexto junto con varias caracterizaciones que
ayudan a identificar las características comunes y diferencias exis-
tentes entre ambas. A continuación se introducen los juegos con
comunicación restringida y uniones a priori que consideran que
la cooperación está restringida tanto por el grafo de comunicación
como por la estructura de uniones a priori. Este modelo se pro-
pone en Vázquez-Brage et al. (1996). En este trabajo se propone y
caracteriza una generalización del valor de Shapley a esta clase de
juegos. La principal contribución de este capítulo consiste en pro-
poner dos nuevos valores para juegos con comunicación restringida
y uniones a priori y caracterizar estos dos valores y el propuesto
por Vázquez-Brage et al. (1996) por medio de propiedades. Las tres
caracterizaciones propuestas se basan en propiedades fácilmente
comparables por lo que ayudan a identificar las diferencias exis-
tentes. El capítulo concluye con un ejemplo que ilustra el uso de
los valores considerados. En concreto se estudia la distribución de
poder en la VIII legislatura del Parlamento Vasco teniendo en cuenta
las afinidades existentes entre los partidos políticos implicados.

Resumen del Capítulo 5

En este capítulo se consideran juegos cooperativos en los que
existen jugadores incompatibles. En este caso, las restricciones
a la cooperación vienen dadas por un grafo no dirigido en el que
cada arco indica que los jugadores situados en cada extremo son
incompatibles y, por tanto, no van a poder cooperar. El modelo que
consideramos en este capítulo se propone en Carreras (1991) para
la clase de juegos simples y se generaliza a la clase general de jue-
gos cooperativos en Bergantiños (1993). En este último trabajo se
propone y caracteriza una generalización del valor de Shapley. Este
capítulo comienza revisando los principales resultados contenidos
en los citados artículos. A continuación se propone y caracteriza
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una generalización del valor de Banzhaf a este contexto. Este capí-
tulo también concluye estudiando la distribución de poder en el
Parlamento Vasco pero en este caso en su III legislatura y teniendo
en cuenta las incompatibilidades existentes en aquella época.

Resumen del Capítulo 6
En el Capítulo 6 se estudian juegos simples. Los juegos sim-

ples son una subclase importante de los juegos cooperativos. Es
decir, en este capítulo no se considera un modelo de juegos coope-
rativos en el que la cooperación está restringida a través de cierta
estructura matemática, en cambio, se trabaja con un subconjunto
de los juegos cooperativos. Los juegos simples sirven de modelo
para el estudio de órganos de toma de decisiones como pueden ser
parlamentos o consejos de dirección. En este contexto, los índices
de poder son medidas para cuantificar el poder que cada agente
tiene en un órgano de toma de decisiones. El capítulo comienza re-
visando algunos de los más importantes índices de poder existentes
y sus caracterizaciones por medio de propiedades. A continuación
se proponen y caracterizan dos nuevos índices de poder. Las carac-
terizaciones propuestas utilizan propiedades similares a otras que
podemos encontrar en la literatura pudiendo así comparar distintos
índices de poder basándonos en las propiedades que estos satis-
facen. El capítulo concluye ilustrando los distintos índices de poder
con un ejemplo. En este caso, se estudi la distribución de poder en
la IX legislatura del Parlamento Portugués.

Conclusiones
En el segundo y tercer capítulo de esta tesis hemos estudiado

juegos cooperativos con estructura de niveles, que son la generali-
zación natural de los juegos con uniones a priori. Los resultados
obtenidos en el Capítulo 2 indican en primer lugar, que los valores
de Banzhaf y Banzhaf-Owen pueden extenderse de forma natural a
este contexto. En segundo lugar, de las caracterizaciones obtenidas
concluimos que las diferencias existentes entre el valor de Owen y el
valor de Banzhaf-Owen se transfieren al caso de juegos con niveles.
En concreto, las diferencias entre el valor de niveles de Shapley y
el valor de niveles de Banzhaf se pueden resumir en dos ideas. La
primera es que el valor de niveles de Shapley es una regla de reparto
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y el valor de niveles de Banzhaf no. El valor de niveles de Shapley
divide lo que la gran coalición puede obtener de forma eficiente,
más aún, reparte de forma eficiente lo que obtiene cada unión en-
tre las uniones del nivel inferior que la componen. En definitiva,
el valor de niveles de Shapley es eficiente en cada etapa. En cam-
bio el valor de niveles de Banzhaf generaliza el valor de Banzhaf
y, por tanto, no es eficiente. La contrapartida es que satisface la
propiedad de 2-efficiencia que indica que no es manipulable frente
a uniones o divisiones artificiales de agentes. La segunda diferen-
cia tiene relación con las consecuencias de que un agente se vea
aislado de la estructura de niveles. Imaginemos a dos agentes que
están en las mismas uniones de cada nivel, entonces el hecho de
que el primer agente sea aislado de la estructura de niveles no afec-
tará el pago del segundo agente si tomamos el valor de niveles de
Banzhaf. El valor de niveles de Shapley en cambio sí que es sensible
a este tipo de cambios, es decir el pago del segundo agente podría
verse afectado. Lo que sucede es que el pago del segundo agente se
ve afectado en la misma cantidad en la que se vería afectado el pago
del primer agente si fuera el segundo agente quien quedase aislado
de la estructura.

En el tercer capítulo se han estudiado las “share functions” para
juegos con uniones a priori y juegos con estructura de niveles. En
particular se han considerado las “share functions” asociadas con
todos los valores estudiados en el anterior capítulo, es decir, en este
capítulo se han estudiado las versiones normalizadas de los valores
del Capítulo 2. La principal conclusión de este capítulo tiene que
ver con la propiedad de multiplicabilidad. Podríamos decir que los
valores que generalizan Shapley sí la verifican mientras que los va-
lores que generalizan Banzhaf no lo hacen. Esta propiedad explica
cómo repartir cuando nos enfrentamos a una estructura con va-
rios niveles si sabemos cómo se reparte cuando no hay estructura
alguna. En este capítulo también se proponen generalizaciones efi-
cientes del valor de Banzhaf para juegos con uniones a priori y es-
tructura de niveles. De esta forma, si se asume que una regla de
reparto debe satisfacer la propiedad de multiplicabilidad, tenemos
una generalización de Banzhaf que la verifica para cada uno de los
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dos contextos estudiados. Finalmente, cabe destacar que el enfoque
utilizado en el Capítulo 3 permite construir nuevas reglas de reparto
en cada uno de los contextos considerados de forma bastante sen-
cilla, solo hay que seleccionar una función con valores reales sobre
el conjunto de juegos monótonos que cumpla ciertas propiedades.

La principal conclusión que podemos extraer del Capítulo 4 es
que las restricciones a la cooperación dadas por un grafo de co-
municación son compatibles con las dadas por una estructura de
uniones a priori. Es decir, podemos extender los tres valores consi-
derados para juegos con uniones a priori a este modelo más general
de una forma natural, de esta forma se pueden definir el valor de
comunicación de Owen, de Banzhaf-Owen y coalicional simétrico
de Banzhaf. Además estas extensiones van a ser caracterizadas por
propiedades similares a las que se utilizan para caracterizar los va-
lores de Owen, Banzhaf-Owen y coalicional simétrico de Banzhaf.
En este contexto, si se busca un valor que sea eficiente en cada una
de las dos etapas en las que se hace el reparto, para cada coalición
conectada por el grafo, se debería escoger el valor de comunicación
de Owen. En cambio si lo que se quiere es que la solución no se vea
afectada por posibles deserciones dentro de una unión se debería
elegir el valor de comunicación de Banzhaf-Owen. Por último, si se
busca un valor que tenga características de los dos valores men-
cionados se debería considerar el valor de comunicación coalicional
simétrico de Banzhaf.

En cuanto al Capítulo 5, se pode decir que el modelo de jue-
gos cooperativos con incompatibilidades no es tan manejable como
el modelo de juegos con comunicación restringida. En consecuen-
cia, el valor de Banzhaf con incompatibilidades no se caracteriza
tan fácilmente como el valor de Banzhaf o el valor de comunicación
de Banzhaf. Solo se han obtenido dos caracterizaciones basadas
en el poder total y no se ha podido encontrar ninguna basada en
la propiedad de 2-eficiencia que tanto Banzhaf como Banzhaf de
comunicación satisfacen. Por lo tanto, se puede concluir que las
diferencias entre los valores de Shapley con incompatibilidades y
Banzhaf con incompatibilidades se restringen a que el primero es
eficiente en cada coalición conectada por el grafo dual mientras que
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el segundo no.
Para terminar, en el Capítulo 6, siguiendo las ideas de los índices

de poder de Deegan-Packel y Public good se han definido dos nuevos
índices de poder. Estos índices de poder se basan en las coaliciones
ganadoras que no contienen jugadores nulos. Para definirlos se ha
tenido en cuenta que existen situaciones en las que las coaliciones
minimales no son las únicas que juegan un papel importante. Los
nuevos índices de poder propuestos se pueden caracterizar con tres
propiedades estandares en la literatura y una más, que es una mo-
dificación de la propiedad de monotonía. Esto permite desgranar
las características diferenciadoras de los nuevos índices de poder
propuestos.
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