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de las Reacciones Qúımicas, Teresa Tarrazo Antelo, Nicolás Ramos Berdullas, Marta Pombar
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Resumen

L
as reacciones de transferencia de hidrógeno se consideran unas de las más importantes en
Qúımica, porque están presentes en multitud de procesos qúımicos, biológicos e industriales.

A modo de ejemplo, estas reacciones son relevantes en qúımica orgánica, qúımica atmosférica,
qúımica de la combustión, qúımica interestelar, aśı como en procesos biológicos importantes
tales como las reacciones enzimáticas y la rotura de la cadena de ADN. Además, también
juegan un papel cŕıtico en procesos industriales tales como la fabricación de capas de diamante
mediante la deposición qúımica de vapor a bajas presiones.

Entender, no sólo cómo tienen lugar, sino cuáles son los factores que influyen en su dinámica
es de gran importancia y, por consiguiente, estas reacciones han recibido una amplia atención,
tanto desde los puntos de vista experimental, como teórico.

Este tipo de reacciones tienen en común que la part́ıcula que se transfiere, ya bien sea un
átomo de hidrógeno, un protón o un hidruro, o bien sus análogos isotópicos, es una part́ıcula
ligera, lo que hace esencial en su estudio la consideración de efectos cuánticos tales como el
efecto túnel.

El efecto túnel se define como la capacidad de las part́ıculas de atravesar una barrera
de enerǵıa potencial cuya altura es superior a la enerǵıa de la part́ıcula, pasando a través
de una región clásicamente prohibida. Su nombre deriva de la analoǵıa con la única manera
de atravesar una barrera geográfica sin superarla. En el cálculo de la contribución del efecto
túnel a la constante de velocidad es necesario tener en cuenta el carácter multidimensional
del mismo, ya que la coordenada de reacción se acopla con el resto de modos normales de
vibración perpendiculares a la misma. Experimentalmente este fenómeno se evidencia por la
desviación del valor de las constantes de velocidad respecto a la ley de Arrhenius, en especial a
bajas temperaturas, y por presentar altos valores del efecto isotópico cinético (“kinetic isotope
effect”, KIE). El KIE se define como el cociente entre la constante de velocidad del sistema
con hidrógeno y la constante de velocidad cuando dicho hidrógeno se sustituye por un isótopo
más pesado. Dado que el efecto túnel depende en gran medida de la masa de la part́ıcula que
se transfiere, la magnitud de este cociente es de gran importancia en la dilucidación de los
mecanismos de reacción.

Para estudiar la constantes de velocidad de estas reacciones qúımicas existen diversas me-
todoloǵıas. La dinámica cuántica auna todas las ventajas de un tratamiento lo más riguroso
posible desde el punto de vista microscópico mediante la resolución de la ecuación de Schrödin-
ger dependiente del tiempo. Por contra tiene como gran desventaja que sólo es aplicable a
sistemas con un número de átomos muy pequeño debido a su alto coste computacional. Otras
metodoloǵıas, como la de los instantones, seŕıan en general adecuadas cuando las temperaturas
son muy bajas, pero no tienen una extrapolación obvia a temperaturas intermedias (por encima
de 250 K). En este sentido la teoŕıa variacional del estado de transición con un tratamiento
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XII Resumen

multidimensional del efecto túnel (“variational transition state theory with multidimensional
treatment of tunneling”, VTST/MT), encuadrada dentro de las aproximaciones semiclásicas,
ha demostrado ser una herramienta muy versátil a la hora de estudiar la dinámica de este
tipo de reacciones a temperaturas a partir de aproximadamente 200 K. Esta teoŕıa permite el
estudio de sistemas relativamente grandes, puesto que necesita una cantidad de información de
la superficie de enerǵıa potencial muy reducida, además de ser una metodoloǵıa susceptible de
mejora.

En esta tesis doctoral se han utilizado la teoŕıa convencional del estado de transición (“tran-
sition state theory”, TST) y la teoŕıa variacional canónica del estado de transición (“canonical
variational transition state theory”, CVT); ambas son variantes de la VTST para un colectivo
canónico, esto es, a temperatura constante. La teoŕıa CVT incluye los efectos de recruzamiento
localizando la superficie divisoria perpendicular al camino de mı́nima enerǵıa en el punto dónde
el valor de la constante de velocidad se minimiza. La constante de velocidad térmica CVT viene
dada por la expresión:

kCVT(T ) = σ
kBT

h

QGT(T, sCVT
∗ (T ))

ΦR(T )
exp

[

−VMEP(sCVT
∗ (T ))/kBT

]

, (1)

donde σ es el número de simetŕıa, kB y h son las constantes de Boltzmann y Planck, respectiva-
mente, y VMEP(sCVT

∗ (T )) es el valor del potencial en el camino de mı́nima enerǵıa (“minimum
energy path”, MEP) en el punto sCVT

∗ , que es el lugar en el que se coloca la superficie divisoria
que minimiza el flujo de trayectorias hacia productos. La función de partición de reactivos por
unidad de volumen es ΦR(T ) y QGT(T, sCVT

∗ (T )) es la función de partición del estado de transi-
ción generalizado a sCVT

∗ (T ). Los efectos cuánticos, a excepción de aquellos sobre la coordenada
de reacción se tienen en cuenta considerando funciones de partición vibracionales cuánticas.

Los efectos cuánticos sobre la coordenada de reacción se incorporan en la VTST/MT a
través del coeficiente de transmisión, κ(T ), que multiplica la constante de velocidad

kCVT/MT(T ) = κCVT/MT(T )kCVT(T ) (2)

El coeficiente de transmisión se evalúa de manera semiclásica, utilizando la aproximación de
Wentzel-Kramers-Brillouin (WKB), como el cociente entre las probabilidades de transmisión
semiclásica y clásica ponderadas energéticamente. La probabilidad semiclásica depende inver-
samente del valor de la integral de acción, que se define como el área bajo la curva de enerǵıa
potencial. Aśı, cuando la integral de acción es mı́nima, el valor del coeficiente de transmisión
será máximo. El valor de la integral de acción depende de la forma (la altura y la anchura) de
la barrera de enerǵıa potencial y de la masa de la part́ıcula que se transfiere. En el contexto de
la VTST/MT la barrera de enerǵıa sobre la que se evalúa el coeficiente de transmisión viene
definida por el potencial vibracional adiabático, que es la suma de la enerǵıa potencial del
sistema más la enerǵıa del punto cero. El camino multidimensional a lo largo del cual se evalúa
el efecto túnel constituye la principal diferencia entre los distintos métodos que se han desa-
rrollado para calcular el coeficiente de transmisión. Considerando que el acoplamiento entre el
modo normal asociado a la coordenada de reacción y los modos transversales es despreciable,
es decir cuando no se considera la curvatura de camino de reacción, el potencial vibracional
adiabático se localiza a lo largo del camino de mı́nima enerǵıa. El coeficiente de transmisión
calculado de esta forma utiliza la aproximación de curvatura cero (“zero curvature tunneling
approximation”, ZCT) y ha demostrado ser un método inadecuado pues subestima seriamente
la contribución del efecto túnel a la constante de velocidad.
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Entre los métodos que śı tienen en cuenta el acoplamiento entre la coordenada de reacción
y los modos transversales, está la aproximación de efecto túnel de pequeña curvatura (“small
curvature tunneling approximation”, SCT). En esta aproximación, inicialmente propuesta por
Marcus y Coltrin y más tarde generalizada por Truhlar y col., la masa de la part́ıcula que se
transfiere, es sustituida por una masa efectiva cuyo valor viene dado por una expresión anaĺıtica.
Esta expresión, tiene en cuenta el acoplamiento de la coordenada de reacción con los modos
transversales, lo que hace que el valor de la masa efectiva sea menor que el de la masa de la
part́ıcula que se transfiere. Esto conlleva una disminución del valor de la integral de acción, lo
que se traduce en un aumento de la probabilidad de túnel.

Aunque la aproximación de pequeña curvatura puede tener en cuenta casos en los que la
curvatura es relativamente grande, suele fallar en el caso de reacciones en las que se transfiere
una part́ıcula ligera entre dos átomos pesados. Para estos sistemas, en los que el efecto túnel es
dominante y el camino de reacción está muy alejado del camino de mı́nima enerǵıa, fue diseñado
el método de gran curvatura (“large curvature tunneling”, LCT), que evalúa el coeficiente de
transmisión a lo largo de caminos rectos entre el valle de reactivos y el valle de productos.

Los métodos de pequeña curvatura y de gran curvatura cubren los dos extremos respecto
al valor que puede tomar la curvatura de reacción. Para aquellos sistemas de curvatura inter-
media existe un método, denominado método de túnel multidimensional microcanónicamente
optimizado (“microcanonical optimized multidimensional tunneling”, µOMT), en el que, a cada
enerǵıa de túnel, se elige como la más grande de entre las probabilidades de túnel de pequeña
y de gran curvatura.

Esta tesis doctoral está organizada de forma que cada caṕıtulo se corresponde con un
art́ıculo publicado o enviado a publicación y en su conjunto aborda, tanto la mejora de diversos
aspectos relacionados principalmente con el desarrollo de nuevos coeficientes de transmisión,
como la aplicación de la CVT/SCT a diferentes sistemas en los que la reacción de transferencia
de hidrógeno juega un papel importante. Se han estudiado reacciones de interés industrial o
tecnológico, como la reacción de abstracción de hidrógeno en metanol por parte de hidrógeno
atómico, que resulta de vital importancia en la comprensión de su mecanismo de combustión,
aśı como reacciones de interés biológico, como la transposición sigmatrópica [1,7] de hidrógeno
que tiene lugar en la formación de la vitamina D. Esta última supone un reto desde el punto de
vista del estudio dinámico cuantitativo de sistemas de gran tamaño con la VTST/MT, y cuyo
estudio comparativo con un sistema modelo, como es el 7-metilocta-1,3(Z),5(Z)-trieno, pone de
manifiesto la importancia de utilizar sistemas modelo lo más realistas posibles.

La primera parte de la tesis doctoral trata de aspectos metodológicos relacionados con
la VTST/MT. En el caṕıtulo 2 se clarifica el concepto y el uso de los números de simetŕıa
rotacionales y se dan pautas para su correcta utilización en el contexto de la teoŕıa del estado
de transición. Los siguientes tres caṕıtulos incluyen el desarrollo y la puesta a punto de un
nuevo método para la evaluación de coeficientes de transmisión.

La segunda parte de la tesis doctoral analiza las aplicaciones de la teoŕıa VTST/MT a
diferentes sistemas. En el caṕıtulo 6 se aborda el estudio de la reacción de abstracción de
hidrógeno de la molécula de metanol por parte de hidrógeno atómico en fase gas, utilizando
para ello métodos de la estructura electrónica de alto nivel. En los dos últimos caṕıtulos se
estudian las reacciones [1,7] sigmatrópica de hidrógeno en el 7-metilocta-1,3(Z),5(Z)-trieno y
en la vitamina D. Además para estas dos reacciones se ha estudiado el efecto del entorno, es
decir, el papel que juega el disolvente en las mismas y su influencia sobre las constantes de
velocidad.
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El caṕıtulo 2 muestra como evaluar los números de simetŕıa para diferentes configuraciones
moleculares y cómo estos se incorporan en la teoŕıa del estado de transición. El concepto de
número de simetŕıa rotacional dentro de la TST es de vital importancia pues de él depende la
correcta evaluación de las constantes de velocidad térmicas. Como se aprecia en la Ecuación
(1), σ aparece como un factor multiplicativo, que surge en el empleo de la función de partición
de rotación clásica, que considera las part́ıculas idénticas como f́ısicamente distinguibles, en
contra de lo que se establece en mecánica cuántica. En general, el número de simetŕıa viene
dado por el cociente entre los números de simetŕıa rotacionales de los reactivos y del estado de
transición, aunque hay que tener especial cuidado en su evaluación en los siguientes casos: (i) si
la reacción es bimolecular, cuando ambos reactivos son iguales (ii) si la reacción es simétrica (iii)
si los reactivos y/o los estados de transición son quirales, (iv) si los reactivos y/o los estados de
transición presentan múltiples confórmeros, y (v) si hay una rotación interna en alguna parte
del sistema molecular. Todos estos casos son tratados y analizados sistemáticamente en detalle
y se incluyen un gran número de ejemplos.

Las aproximaciones ZCT y LCT constituyen dos casos extremos de un método mucho
más general. El primer método considera que el camino en el que se evalúa el efecto túnel
es el más largo pero el más favorable energéticamente, mientras que el segundo considera el
camino más corto, pero el más desfavorable energéticamente. A lo largo de esta tesis doctoral
se ha desarrollado e implementado un nuevo método para reacciones poliatómicas, basado
en un procedimiento desarrollado por Garrett y Truhlar para reacciones átomo-diátomo, que
busca el camino para el que el valor de la integral de acción se minimiza y por lo tanto se
maximiza la probabilidad de túnel a lo largo de una familia de caminos que van, desde el
camino de mı́nima enerǵıa, hasta el camino recto. Estos caminos de reacción se construyen
como una combinación lineal del camino recto y del camino de mı́nima enerǵıa mediante un
parámetro que, a cada enerǵıa de túnel, los relaciona. Esta nueva aproximación permite obtener
coeficientes de transmisión de mı́nima acción (“least-action tunneling”, LAT), y supone la
búsqueda del camino que sea el mejor compromiso entre la longitud y la altura de la barrera.
En el método de mı́nima acción es necesario evaluar la enerǵıa de las geometŕıas que quedan
muy alejadas del camino de mı́nima enerǵıa en la zona no adiabática. Además, el valor del
integral de acción se optimiza variacionalmente, lo que supone llevar a cabo un procedimiento
iterativo hasta conseguir la convergencia del valor de la integral de acción. Todo ello, unido a
que es necesario repetir dicho proceso para cada enerǵıa de túnel, hacen del LAT un método
que implica un elevado coste computacional, especialmente cuando se desea utilizar junto con
cálculos de dinámica directa. Para ilustrar su funcionamiento se han calculado los coeficientes
de transmisión para la reacción de abstracción de hidrógeno CH4 + H −−→ CH3 + H2, y para
reacciones similares en las que se ha modificado la masa del hidrógeno que está abstrayendo el
protón, a fin de ver el efecto de la curvatura en las diferentes aproximaciones.

Los caṕıtulos 4 y 5 describen dos nuevos algoritmos, que permiten llevar a cabo cálcu-
los mediante dinámica directa, para obtener coeficientes de transmisión LAT para reacciones
poliatómicas. Estos algoritmos se basan en una interpolación monodimensional (“interpolated
LAT one dimension”, ILAT1D) y en una doble interpolación (“double interpolated LAT”, DI-
LAT). El primero de ellos utiliza un spline monodimensional para interpolar los potenciales
efectivos a lo largo de las porciones no adiabáticas de los caminos de túnel, mientras que el
segundo además interpola las integrales de acción imaginarias como funciones de las enerǵıas
de túnel. Este último método fue diseñado para el cálculo de los coeficientes de transmisión
multidimensionales LAT en sistemas poliatómicos de elevado tamaño molecular.
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El comportamiento de ambos algoritmos se comprobó en las reacciones de abstracción de
hidrógeno, CH4/CD3H/CD4 + CF3, obteniéndose resultados muy satisfactorios en términos de
fiabilidad y tiempos de cálculo, siendo el método DILAT hasta 30 veces más rápido respecto al
cálculo completo y con errores menores al 5 %.

A la luz de estos nuevos métodos y de los ya existentes se realizó un estudio comparativo
de los KIEs de la reacción CH4 + H −−→ CH3 + H2 con diferentes isotopómeros poniendo de
manifiesto las diferencias entre las aproximaciones que evalúan el coeficiente de transmisión
expĺıcitamente a lo largo de un camino de reacción como son, la aproximación de curvatura cero,
la aproximación de gran curvatura o la aproximación de mı́nima acción, frente a la aproximación
de pequeña curvatura, que recurre a una expresión anaĺıtica para tener el cuenta el efecto de
la curvatura de reacción.

El excelente acuerdo para la reacción anterior entre las constantes de velocidad térmicas
calculadas con métodos de dinámica cuántica y aquellas calculadas mediante CVT/µOMT mo-
tivaron, entre otros, el estudio de la reacción de abstracción de hidrógeno del metanol por parte
de hidrógeno atómico. Los datos experimentales disponibles hasta la fecha para esta reacción
difieren considerablemente unos de otros, tanto en el rango de bajas, como en el de altas tem-
peraturas, independientemente del tipo de técnica experimental utilizada. Utilizando cálculos
de estructura electrónica de alto nivel, se evaluaron las constantes de velocidad CVT/µOMT
para las dos principales reacciones de abstracción de hidrógeno, CH3OH + H −−→ CH2OH + H2

y CH3OH + H −−→ CH3O + H2 y se incluyeron los efectos de la anarmonicidad en el modo de
torsión respecto al enlace C−O mediante el método de la suma de los valores propios asociados
a la torsión (“torsional eigenvalue summation”, TES). Se ha encontrado que esta anarmonici-
dad es importante a altas temperaturas. En dicho estudio se compararon, los valores obtenidos
de las constantes de velocidad, los efectos cinéticos isotópicos y los cocientes de cada una de las
constantes de velocidad de las reacciones anteriores respecto a la constante total del proceso,
con todos los datos experimentales y teóricos disponibles. Otro hecho destacable es que las
constantes de velocidad calculadas muestran un cambio substancial de la enerǵıa de activación
con la temperatura, lo que invalida un ajuste tipo Arrhenius para analizar la dependencia de
las constantes de velocidad con la temperatura.

Respecto al estudio de las reacciones de transferencia de hidrógeno que juegan un papel
biológico importante, se ha analizado la reacción de isomerización térmica a través de la que se
forma la vitamina D. Es una reacción de transposición sigmatrópica [1,7] de hidrógeno para la
que se dispone de numerosos datos experimentales, en diferentes entornos. Este sistema permite
examinar la fiabilidad, no sólo de los métodos de estructura electrónica disponibles hasta la
fecha, sino también de la VTST/MT para tratar sistemas de tamaño relativamente grande.
En este sentido el 7-metilocta-1,3(Z),5(Z)-trieno, ha sido elegido, tanto desde los puntos de
vista teórico, como experimental, como sistema modelo para la reacción [1,7] sigmatrópica en
la vitamina D.

Las constantes de velocidad teóricas calculadas mediante la CVT/µOMT y los KIEs obteni-
dos para ambos sistemas concuerdan bastante bien con los datos existentes en la bibliograf́ıa. El
análisis teórico del efecto isotópico permite la factorización de éste en diferentes contribuciones,
poniendo de manifiesto la importancia del efecto túnel en el proceso. En el caso del 7-metilocta-
1,3(Z),5(Z)-trieno se estudió la influencia de los diferentes confórmeros sobre la constante de
velocidad. Por otra parte la vitamina D posee mucha más flexibilidad conformacional que el
7-metilocta-1,3(Z),5(Z)-trieno, debido a la presencia de dos anillos de seis miembros, lo que
diversifica el número de canales de reacción y amplifica la influencia que pueda tener el entorno
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sobre cada uno de ellos. Se calcularon las constantes de velocidad de cada uno de los canales
independientes con su coeficiente de transmisión correspondiente, lo que ha permitido obtener
la constante de velocidad del proceso global y las contribuciones, no sólo de cada canal reactivo,
sino de aquellos confórmeros que tienen más importancia en las constantes de velocidad y en
los efectos isotópicos. Toda esta información ha posibilitado el análisis sobre el papel jugado
por la flexibilidad de la vitamina D en la isomerización y ha permitido establecer las diferen-
cias principales con respecto al sistema modelo, aśı como la relación estructura-reactividad en
ambos sistemas.



Chapter 1

Introduction

H
ydrogen transfer reactions are present in many areas of the chemistry and biology. They
take place in atmospheric chemistry, [1] combustion chemistry, [2] interstellar chemistry [3]

as well as in many important biological processes like enzymatic reactions, [4, 5] DNA strand
breaking, [6, 7] catalysis [8] and various facets of organic chemistry. [9] They also play a critical
role in industrial processes like the making of diamond films via low-pressure chemical vapor
deposition (CVD). [10, 11]

The dynamical study of these kind of reactions is a difficult task due to the need to in-
clude quantum mechanical effects. Tunneling is a key issue in the understanding of hydrogen
transfer reactions. In general, different methodologies, which take into account the quantum
effects, can be used for the calculation of the rate constants. The modern wave packet dynam-
ics calculations, as for instance, the multiconfigurational time-dependent Hartree (MCTDH)
approach, [12, 13] or the theory of the instantons, [14, 15] provide very accurate values of the
rate constants but are only affordable for reduced-dimensional systems, in the first case, and
for reactions that occur at low temperatures, in the second case. Moreover, these dynamical
theories are quite complex from a mathematics point of view, so they are difficult to improve.

On the other hand, variational transition state theory with multidimensional treatment
of tunneling (VTST/MT) [16, 17] is one of the most accessible and useful theories to study
hydrogen transfer reactions, which still needs some improvements. In the framework of VTST
theory, quantum effects are included differently for bound modes and for the reaction coordi-
nate. For bound modes, they are included through quantum mechanical vibrational partition
functions (normally within the harmonic approximation). Quantum effects on the reaction
coordinate are included through a multiplicative transmission coefficient. It is defined as the
Boltzmann average between the quantum and classical probabilities. In this context, it is very
important to develop new methods to obtain reliable transmission coefficients for reactions
where the tunneling contribution is important. There are several approximations to compute
transmission coefficients, and one of the major goals of this Dissertation is the development
and implementation of a new method which computes them in a more reliable manner.

Probably the most relevant issue in the evaluation of the transmission coefficient is to
take into account the multidimensional character of tunneling, by incorporating the effect of
the reaction-path curvature. The latter is related to the coupling between the reaction-path
coordinate and the transverse modes. Marcus and Coltrin [18] developed the small curvature
tunneling (SCT) method for systems with small coupling, and Truhlar and co-workers [19]
generalized the method. The SCT approach may break down for heavy-light-heavy systems for
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which the large curvature tunneling (LCT) [20–23] approach works well. The microcanonical
optimized multidimensional tunneling, (µOMT), [24] which is a compromise between SCT and
LCT approaches, had been developed for the case of chemical reactions with intermediate
curvature values.

Truhlar and Garrett in the 80’s proposed a new transmission coefficient for colinear atom-
diatom reactions called the least-action tunneling approximation (LAT). [25]. Even for small
systems the LAT method is computationally highly demanding when used together with the
direct-dynamics approach. We have extended the applicability of the LAT method for poly-
atomic systems and have reduced the computational cost in order to apply it to very large
molecules.

It has also been included a Chapter about the use of the rotational symmetry numbers in
the context of the VTST together with a large number of examples to clarify some complicated
situations.

The last part of this Dissertation includes VTST applications to several systems involving
different active areas of research. Direct-dynamics calculations had been carried out for the
hydrogen abstraction reaction from methanol by atomic hydrogen and for reactions of biolog-
ical interest such as the isomerization reaction of vitamin D. For the latter the effect of the
environment has been analyzed and, despite the size of the system, it was possible to report
thermal rate constants in good agreement with experiment. There is also a chapter dedicated
to the [1,7] sigmatropic shift in the 7-methylocta-1,3(Z),5(Z)-triene, a model system to mimic
the isomerization reaction of vitamin D.

It should be noticed that the structure of each chapter of this Dissertation follows the
scheme of its corresponding published article, with the exception of the Chapter on vitamin D,
which is an unpublished work.



Chapter 2

Symmetry numbers and chemical
reaction rates

This Chapter shows how to evaluate rotational symmetry numbers for different molecular
configurations and how to apply them to transition state theory. In general, the symmetry
number is given by the ratio of the reactant and transition state rotational symmetry numbers.
However, special care is advised in the evaluation of symmetry numbers in the following situ-
ations: (i) if the reaction is symmetric, (ii) if reactants and/or transition states are chiral, (iii)
if the reaction has multiple conformers for reactants and/or transition states and, (iv) if there
is an internal rotation of part of the molecular system. All these four situations are treated
systematically and analyzed in detail in the present Chapter. We also include a large number of
examples to clarify some complicated situations, and in the last section we discuss an example
involving an achiral diasteroisomer.

2.1. Introduction

Transition state theory (TST) [17, 26–30] is the most widely used method for calculating
rate constants of chemical reactions. The conventional TST rate expression may be written

kTST(T ) = σ
kBT

h

QTS(T )

ΦR(T )
exp

[

−V ‡/kBT
]

(2.1)

where kB is Boltzmann’s constant; h is Planck’s constant; V ‡ is the classical barrier height; T
is the temperature and σ is the reaction-path symmetry number; QTS(T ) and ΦR(T ) are the
quantum mechanical transition state quasi-partition function and reactant partition function,
respectively, without rotational symmetry numbers, and with the zeroes of energy at the zero-
point-exclusive energies of the saddle point and equilibrium reactants, respectively. QTS(T ) is
referred to as a quasi-partition function because it is missing the vibrational degree of freedom
corresponding to the reaction coordinate. ΦR(T ) is the unitless reactant partition function for
unimolecular reactions and the reactants partition function per unit volume for bimolecular
reactions. Specifically for bimolecular reactions (A+B −−→ P), the reactants partition function
can be factorized as ΦR(T ) = ΦA,B

rel (T )QR(T ) = ΦA,B
rel (T )QA(T )QB(T ), where ΦA,B

rel is the rela-
tive translational motion per unit volume and QR(T ) = QA(T )QB(T ) is the unitless reactants
partition function for the internal motions. The present chapter is mainly concerned with σ.

3
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Equation (2.1) can be generalized by variationally optimizing the transition state (so it is
no longer located at the saddle point) and by adding a transmission coefficient to account for
recrossing and quantum effects (including tunnelling). [17, 28–30] These generalizations do not
change the considerations involved in giving a value to σ.

In a classic article, Pollak and Pechukas [31] sorted out conceptual difficulties involving σ
and proved that it is always equal to the ratio of the total symmetry number of the reactant
divided by the total symmetry of the transition state. Despite the simplicity and clarity of this
result, it can sometimes be confusing to apply it to complex reactions, because it may require
considering more than the usual rotational symmetry numbers, and it is discouraging to find
in some recent applications that the symmetry numbers are ignored, ill-defined, or wrong. In
addition, the increased complexity of new applications also raises interesting new questions.
For these reasons it is useful to review some of the arguments of Pollak and Pechukas and to
add some new comments on the subject. It should be noted that symmetry number arguments
similar to those of Pollak and Pechukas were also given by Coulson [32].

In conventional TST, the forward thermal rate constant can be calculated with information
about only two configurations, i.e., reactants and the transition state. Leaving the symmetry
numbers out of the rotational partition function in Eq. (2.1) means that we are treating the
identical particles as distinguishable, and in this case the rotational partition functions would
be given by

Q∗
rot(T ) =

2I

~2β
(2.2a)

for a lineal molecule, where I is the moment of inertia, ~ is Planck’s constant divided by 2π ,
and β is defined as 1/kBT . For nonlinear molecules, the expression for the rotational partition
function of distinguishable particles Q∗

rot(T ) is

Q∗
rot(T ) =

[

(

2

~2β

)3

πIAIBIC

]1/2

(2.2b)

where IA, IB and IC are the principal moments of inertia. The symmetry number in Eq. (2.1)
arises from the indistinguishability of identical particles, i.e., the rotational partition is given
by

Qrot(T ) =
1

σrot
Q∗

rot(T ) (2.3a)

where σrot is the rotational symmetry number. Therefore the ratio between the rotational
partition functions of the transition state, Qrot,TS(T ), and reactants, Qrot,R(T ), leads to:

Qrot,TS(T )

Qrot,R(T )
=

σrot,R

σrot,TS

Q∗
rot,TS(T )

Q∗
rot,R(T )

= σ
Q∗

rot,TS(T )

Q∗
rot,R(T )

(2.3b)

Therefore, in simple cases, the rotational symmetry numbers in the above partition functions
account for all the effects of nuclear indistinguishablility on reaction rates, and the symmetry
number in Eq. (2.1) is given by

σ = σrot,R/σrot,TS, (2.4)

with σrot,R and σrot,TS being the rotational symmetry numbers of the reactants and the tran-
sition state, respectively. For a bimolecular reaction, where the reactants are different, σrot,R

is the product of the two σrot numbers. In some cases, it will not be sufficient to consider just
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Table 2.1: Ratios of approximate rotational partition functions for 16O2 to the accurate one with only
odd J

Temperature(K) Classical with Quantal without
symmetry factora symmetryb

1,000 0.9993 2.0000
600 0.9988 2.0000
300 0.9977 2.0000
200 0.9965 2.0000
100 0.9931 2.0000
50 0.9862 2.0000
25 0.9726 2.0000
10 0.9326 2.0002
5 0.8883 2.0452
1 5.1368 22.3732

For this illustration we use the rigid rotor approximation with a moment of inertia of 75,894 mebohr2, where me

is the mass of an electron.
a Ratio of Eq. (2.3a) with σrot = 2 to accurate result.
b Ratio of partition function with all J to partition function with only odd J .

rotational symmetry numbers, σrot. We will need to consider rotational translational symmetry
numbers σr–t.

It is useful to review the fundamental origin of the symmetry factors. Consider 16O2 as
an example. Because the 16O nucleus is a boson, the nuclear spin wave function is symmetric
under interchange of the nuclei. By Bose–Einstein statistics, the overall wave function must
be symmetric under such interchange. Since the nuclear spin wave function is symmetric, and
the ground electronic state (3Σ−

g ) is odd, the rotational wave function must be antisymmetric
(odd). Therefore, half of the rotational quantum numbers J (the even ones) are missing [33].
In the classical limit where sums over rotational levels are replaced by an integral [34], half
of the levels being missing decreases the rotational partition function by a factor of two. At
low temperature where only a few rotational levels are populated, the factor of two is only
approximately correct. In practice, the inclusion of the inaccessible J = 0 state would cause a
very large error at very low temperature. This is illustrated in Table 2.1, which first shows the
ratio of the partition function calculated using Eq. (2.3a) to the accurate one, and then shows
the ratio of the hypothetical partition function for all J to the accurate one. The table shows
that the symmetry factor is very close to 2 at most temperatures of interest. The classical
approximation is so good that one almost always uses it–the main exception being H2 below
room temperature.

When the identical nuclei are fermions, the situation is more complicated. H2 provide the
classic example. Since it is treated in most statistical mechanics texts [34], we just summarize
the result. It turns out that one fourth of the nuclear spin states are forbidden for odd J
and three fourths are forbidden for even J . Averaging over many states again decreases the
partition function by a factor of two.
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Polyatomic molecules are more complicated, because there can be more than two identical
nuclei, because the vibrational wave functions are not all symmetric, and because the rotational
wave functions are more complicated. Consider methane (CH4) as an example. The total wave
function must be antisymmetric with respect to the exchange of both coordinates and spins
of the hydrogen nuclei because they are fermions. As discussed in detail elsewhere [35–37], in
order to find the correct nuclear degeneracy associated with each rovibrational state, one has
to evaluate a direct product between the permutation group symmetries of the rovibrational
states and the nuclear spin wave functions. The net result is that, on average, the molecule
has only 1/12 as many states as it would have if the nuclear permutation antisymmetry were
not enforced.

In the rest of this chapter, except briefly in the discussion of the H + H2 reaction, we shall
simply use the classical symmetry factors without considering nuclear spin states or very low
temperatures where the classical limit breaks down. Equation (2.4) and the product rule given
right below it usually suffice, but exceptions arise when reactants in a bimolecular reaction are
indistinguishable, when species are chiral, when a reaction is symmetric (sometimes called a
degenerate rearrangement), or when TST is used to account for multiple elementary reactions.
Continuing along the line of the article of Pollak and Pechukas, it is the objective of this paper
to show by examples how to calculate the reaction-path symmetry number of Eq. (2.1) for any
unimolecular or bimolecular reaction.

To evaluate the symmetry number of Eq. (2.1) the first step is to calculate the rotational
symmetry number of the reactants and the transition state. This is explained in Section 2.2.
Section 2.3 of the present chapter, illustrates by means of examples how to calculate the sym-
metry numbers for chemical reactions with additional complications such as chiral isomers,
symmetric reactions, low-energy conformers, and internal rotation.
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2.2. Symmetry numbers and rotation

Consider the molecules depicted in Structure 2.1 in their equilibrium configurations:
water, ammonia, and the methyl radical. If all of the indistinguishable atoms are labelled
and treated as distinguishable and the molecule is fixed in space, the configurations shown in
Structure 2.1 are obtained. That is, there are two possible configurations for water and six each
for nonplanar ammonia and planar methyl radical. In general, the total number of possible
configurations equals the m! permutations of the m equivalent atoms. Of those, we would like
to know which of them cannot be transformed into each other by rotation or translation of
the whole molecule. The water molecule, labelled as a2 in Structure 2.1, can be transformed
into a1 by a rotation of 180◦ and, therefore, there is only one unique configuration. In the
case of ammonia b5 and b4 are transformed into b1 by clockwise rotations of 120◦ and 240◦,
respectively, whereas b3 and b6 can be transformed into b2. However, it is not possible to
find any combination of rotation and translation of the ammonia molecule that transforms b1
into b2 and, therefore, these two structures are each unique configurations. For the methyl
radical c2, c3 and c6 can be transformed into c1 by rotations of 180 degrees around the C–Ha,
C–Hc and C–Hb axes, respectively; additionally c4 and c5 are identical to c1 by rotations of
120◦ and 240◦ about an axis that is perpendicular to the molecule and that passes through
the central atom. Therefore, there is only one unique configuration of the methyl radical. The
rotational symmetry number is given by the number of permutations of m atoms of the same
type divided by the number of unique configurations, nd, that remain different under rotation
of the molecule, i.e.,

σrot =
m!

nd
(2.5)

From these examples we find that for water, ammonia, and the methyl radical the symmetry
number is two, three and six, respectively. The symmetry number is uniquely determined
by the point group symmetry of the molecule. A molecule without any symmetry (denoted
as C1) has a rotational symmetry number of one. The water molecule with C2v point group
symmetry in the equilibrium configuration has a rotational symmetry number of two because
of the C2 and E symmetry operations. The methyl radical with D3h point group symmetry
has a rotational symmetry number of 6 because of the identity operation, E, three C2 rotation
axes along any of the C−H bonds, and C3 (rotation of 120◦) and C2

3 (rotation 240◦) operations.
This makes a total of six rotational symmetry operations. In the same way ammonia, which
has C3v symmetry, has a symmetry number of three. Therefore, as a general rule, the symmetry
number of rotation for a given molecule equals the number of rotational symmetry operations.
As a final example let us consider ferrocene, a molecule with D5h point group symmetry. For
this molecule the symmetry number of rotation is ten (E + 2C5 + 2C5 + 5C2).

As stated above, the symmetry number of reactants for a bimolecular reaction (A +
B −−→ Products) is usually given by the product σrot,R = σrot,Aσrot,B, with σrot,A and σrot,B be-
ing the rotation symmetry numbers of A and B, respectively. However, a bimolecular reaction
of the type A + A −−→ Products constitutes a special case. In this case the symmetry number
of reactants is given by σr−t,R = 2σ2

A. The factor of two appears because of the ability of the
reactants to exchange positions between molecules by translation. For instance, let’s consider
the reaction of a water molecule reacting with another water molecule. The number of possible
configurations with labelled hydrogen and oxygen is 2!4! = 48. Of those, only the 12 depicted
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in Structure 2.2 cannot be superimposed by rotation, but only six configurations are really
distinguishable, because w1 = w9, w2 = w7, w3 = w8, w4 = w11, w5 = w12, and w6=
w10 by simply translating the first water molecule to the place of the second and vice versa.
Therefore, symmetry number is 48/6 = 8. In this particular case we talk about a symmetry
number of rotation-translation σr−t,R which is given by σr−t,R = 2σ2

rot,A, which in this case is

σr−t,R = 2(2)2 = 8.

H

HH

H

Structure 2.3
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Table 2.2: Rotational symmetry, σrot, of the most common point groups of symmetry

Point group σrot

C1 1
Cs 1
C2 2
C2v 2
C3v 3
C∞v 1
D2h 4
D3h 6
D5h 10
D∞h 2
D3d 6
Td 16
Oh 24

In some cases the symmetry number of the molecule has a counterintuitive value. For
example, consider the molecule of methane, which is depicted in Structure 2.3. There are four
equivalent hydrogen atoms; however, the rotational symmetry number is not four. For methane
the number of possible configurations is 4! = 24 of which only two cannot be superimposed by
rotation as indicated below in Structure 2.4. Thus, the symmetry number is 24/2 = 12. Again
this agrees with what is inferred from the point group symmetry of the molecule, which is Td ,
because Td has 12 rotational symmetry operations (E + 8C3 + 3C2).

Ha

HbHd

Hc

Hb

HaHd

Hc

d1 d2
Structure 2.4

In other cases the symmetry number corresponds to the number of equivalent atoms, such
as the symmetry number for ethane (D3d symmetry), which has six equivalent hydrogen atoms
and also has a rotational symmetry number of six. Table 2.2 lists the rotation symmetry
number for the most common point groups.
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2.3. The symmetry number in chemical reactions

Below we illustrate how to calculate the symmetry numbers for a given chemical reaction.
This section involves the rotational symmetry numbers of Section 2.2.
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Structure 2.5

2.3.1. Some easy examples

Structure 2.5 illustrates the bimolecular abstraction of hydrogen from methane by a hydro-
gen atom. The symmetry number for the forward reaction, σf , making use of Table 2.2 and
Eq. (2.4), is given by

σf =
σrot,R

σrot,TS
=

σHσrot,CH4(Td)

σrot,TS(C3v)
=

1 × 12

3
= 4 (2.6)

which matches the intuitive answer because there are four equivalent hydrogen atoms to ab-
stract. However, sometimes the symmetry number for a reaction is not intuitive. If the hydro-
gen is abstracted by the CF3 radical (which has C3v symmetry in its equilibrium configuration),
then the symmetry number is 12 because

σf =
σrot,R

σrot,TS
=

σCF3(C3v)σrot,CH4(Td)

σrot,TS(C3v)
=

3 × 12

3
= 12 (2.7)

This can be difficult to comprehend if the symmetry numbers are visualized in terms of the
number of equivalent reactions, because in classical mechanics there are four different hydrogen
atoms to abstract. However, when it is recognized that there is only one transition state that is
quantum mechanically distinguishable, it becomes clear that the symmetry number of 12 arises
entirely from the effect that symmetry has on the rotational partition functions of reactants and
the transition state. The reader should keep in mind that the symmetry number results from
certain rotational states (that would be present for distinguishable particles) being missing
in quantum mechanics. It should be noticed that the difference of a factor of three when
comparing Eq. (2.6) with Eq. (2.7) is unrelated to the internal rotation of the CH3 fragment
around the CF3 as one may be tempted to think. The relation between internal rotation and
symmetry numbers is discussed in Section 2.3.5.
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2.3.2. Symmetric reactions

An example of a symmetric reaction is H + H2 −−→ H2 + H. The rotational symmetry num-
bers for H, H2 , and the linear transition state are one, two, and two, respectively. Therefore,
the symmetry number for the reaction is naively expected to be one. However, it is important
to be more precise, and ask precisely what observable one is calculating. In fact, the reaction
of H with H2 is not observable as a macroscopic reaction rate. It could, however, be observed
by measuring the rate of interconversion of ortho and para hydrogen, and this topic is dis-
cussed elsewhere [38]. Similar reactions interconverting the two modifications [33, 39] of other
molecules, e.g., N2, may also be imagined, although these are not as well known. The H + H2

reaction provides one of the rare examples of a case where calculations of the effect of nu-
clear identical-particle symmetry have gone beyond the symmetry-number approximation. In
particular, Schatz and Kuppermann [40] used the technique of postantisymmetrization [41] to
calculate nuclear-motion wave functions with the correct permutation symmetry for H+H2 with
zero total angular momentum. Para-to-ortho rate constants calculated from distinguishable-
atom rate constants with appropriate classical symmetry numbers differ from those calculated
with a proper treatment of permutation symmetry by 0.8, 1.6, 3, 5, and 26% at 400, 300, 250,
200, and 100 K, respectively. Just as nonclassical symmetry effects on rotational partition
functions are much smaller for all other molecules than for H2, nonclassical symmetry effects
on reaction rates are expected to be much smaller for other reactions than for H + H2. In
general, any symmetric reaction with just one transition state between reactants and products
is unobservable as a macroscopic rate phenomenon, unless one resolves quantum states as in
the ortho-para conversion of hydrogen.

O N

H
H

H

O

H
H

H

N

O

H H

O

N O

H
+

Reactant

Products

TS

e1

O

Structure 2.6

2.3.3. Chiral species

In the previous examples none of the species are chiral, so the symmetry number for any
nonsymmetric reaction is given by Eq. (2.4). In this section we consider chiral species. We note
that some of the species in this section are not considered optically active in the traditional sense
because they are short-lived or have low barriers of conversion between the two mirror images.
Because of this, we will avoid the words optically active and enantiomer, and instead use the
word chiral, which describes any three-dimensional object that cannot be rotated to coincide
with its mirror image. An illustrative example of chiral transition states is the elimination
reaction of HNO in the cis-methylnitrite molecule (showed in Structure 2.6). This elimination
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reaction has a reactant with Cs symmetry in the equilibrium configuration and a four-center
transition state with C1 symmetry as indicated in Structure 2.6.

In the transition state of Structure 2.6 the oxygen atom is not coplanar with the C, O, H,
and N atoms. There is another transition state e1*, with the same energy as e1, for which the
oxygen is on the opposite side the plane as indicated in Structure 2.7.

O

H
H

H

N

O
e1

O

H
H

H

N

O
e1*

Structure 2.7

The structures e1 and e1* are chiral, i.e., they are mirror images that cannot be superim-
posed by rotation. (It should be noticed that there is no possibility of having chirality when the
molecule has one or more planes of symmetry.) There are two separate elementary reactions
leading to products from a common reactant, and therefore the total forward rate constant kf

is

kf = ke1 + ke1∗ (2.8)

where ke1 and ke1∗ are the rate constants for the passage to products from the e1 and e1∗

transition state structures, respectively. Both rate constants are equal, so the previous equation
can be written as

kf = 2ke1 (2.9)

Another example of a chiral transition state is the hydrogen abstraction reaction from
methanol by a hydrogen atom. The rotational symmetry number for reactants is one. The
transition state has C1 symmetry and therefore the symmetry number for the elementary

H

H H

H     +
H H

O

H

H2

H H

H

H
H2

H H

H

Reactants Products

TS
f1 f1*

+

Structure 2.8
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reaction is one. However, Chuang et al. [42] have calculated two possible transition states,
f1 and f1*, which are chiral (see Structure 2.8). As in the previous example, there are two
elementary reactions with rate constants that are equal, so the total forward rate constant is
given by

kf = 2kf1 (2.10)

Cl

HI

Br

H

ClI

Br+

g1 g1*

Structure 2.9

An example in which the reactants are chiral is the hydrogen abstraction by a hydrogen
atom from the C(I)(Br)(Cl)H molecule. This molecule would be present as a racemic mixture
of the two possible chiral isomers, as shown in Structure 2.9.

The hydrogen abstraction reaction from g1 and g1* would lead to the two chiral transition
states shown in Structure 2.10.

Cl

Br
I

H H

Br

Cl
I

H H

TS1 TS1*

Structure 2.10

TS1 is only accessible from g1, and TS1* is only accessible from g1*. There are two
distinct reactions with unique reactants and transition states that lead to the same products.

The rate constant for passage through TS1, kTS1(T ) would be

kTS1(T ) =
kBT

h

1

ΦH,CHClBrI
rel (T )

QTS1(T )

Qg1(T )
exp

[

−V ‡/kBT
]

(2.11)

where ΦH,CHClBrI
rel (T ) is the relative translational energy per unit of volume and Qg1(T ) is the

partition function of g1 excluding translation. In the same way, the rate constant for passage
through TS1∗, which can be reached only from g1∗, would be

kTS1∗(T ) =
kBT

h

1

ΦH,CHClBrI
rel (T )

QTS1∗(T )

Qg1∗(T )
exp

[

−V ‡/kBT
]

(2.12)
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When using the rate constant to calculate a reaction rate, it is important to recognize
what the rate constant refers to. In this example, the overall reaction rate for the formation
of products is given by kTS1(T )[g1][H] + kTS1∗(T )[g1∗][H], where [g1], [g1∗] and [H] are the
concentrations of g1, g1∗ and H, respectively. Therefore, after one recognizes the unique
elementary reactions, the symmetry number is calculated normally using Eq. (2.4).

Another example involving a chiral transition state is the hydrogen abstraction reaction from
propane by a hydrogen atom. Propane in the equilibrium configuration has C2v symmetry and
has no optical isomers, so the rotational symmetry is two. In Structure 2.11, the non-equivalent
hydrogen atoms have been labelled as Ha , Hb and Hc.

HbHb

Hc Hc
HcHc

Ha Ha

Structure 2.11

There are eight transition state configurations for the formation of H2 , which are depicted
in Structure 2.12. The h1 and h2 transition state configurations correspond to the abstraction
of a central hydrogen atom. These configurations are superimposable, with the symmetry num-
ber for this single transition state equal to one because the symmetry is Cs. The same reasoning
can be applied to h3 and h4. For the last four transition state configurations there is no point
group symmetry, but h5 and h8 are superimposable, and so are h6 and h7. However, h5 and
h6 cannot be superimposed and therefore are chiral. The thermal rate constant for hydrogen
abstraction is the sum of the contributions of all the transition states depicted in Structure 2.13:

kf(T ) =
σrot,RnTS(h1)

σrot,TS(h1)nR
kh1(T ) +

σrot,RnTS(h3)

σrot,TS(h3)nR
kh3(T ) +

σrot,RnTS(h5)

σrot,TS(h5)nR
kh5(T )

=
2 × 1

1 × 1
kh1(T ) +

2 × 1

1 × 1
kh3(T ) +

2 × 2

1 × 1
kh5(T )

=2kh1(T ) + 2kh3(T ) + 4kh5(T )

(2.13)

where nR is two for chiral reactants and the unity otherwise, nTS(h5) is the number of distinct
transition state configurations that can be represented by h5, which is two because h5 and
h6 have identical thermodynamic properties, and both nTS(h1) and nTS(h3) are equal to one
because they do not correspond to a chiral transition state. It should be noted that because
the transitions states h5 and h6 are non-superimposable, they are part of different elementary
reactions. Doubling the rate constant from two to four for the reaction corresponding to h5 is
simply a shortcut that is utilized by recognizing that mirror images have properties that are
equivalent. Calculating each of the four elementary reactions separately would yield the same
result achieved in Eq. (2.13).
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Structure 2.12

The hydrogen abstraction reaction of OH with propane [43] is calculated in the same man-
ner. For this reaction, the non-degenerate transition states are in Structure 2.14, and as a
first approximation the rate constant is calculated using Eq. (2.13) Structure 2.14. However,
abstracting with an OH group rather than an H atom presents a new difficulty because of the
ability of the OH group to rotate. To appropriately model this reaction, each of the transition
states needs to be modelled by treating the OH group as a hindered rotor. This is discussed in
Section 2.3.5.

HH

H H
HH

H H2

HH2

H H
HH

H H

HH

H H
HH2

H H

h1 h3 h5

Structure 2.13
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Structure 2.14
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2.3.4. Reactions with many conformers

This section demonstrates how to calculate rate constants for reactions in which the reac-
tants have several conformations. An example is considered where the reactants may be present
in two energetically different conformations j1 and j2 of which only j2 can lead to products.
A model potential for this type of reaction is depicted in Figure 2.1, in which all energies are
relative to the most stable conformer of reactants. The reactant conformations are all stable
structures that cannot be superimposed by rotation and therefore cannot be taken into account
in the rotation symmetry number.

∆Ε1,2
j2

V

TS

E
ne

rg
y

j1

Figure 2.1: Schematic illustration showing a model potential for a reaction with a reactant with two
different conformations j1 and j2, of which only j2 can lead to products through the transition state
TS (see text).

The expression for the forward rate constant would be similar to Eq. (2.13), with the
difference that there are multiple reactants instead of multiple transition states, and they are
not necessarily chiral species with the same energy, i.e.

kf(T ) =
kBT

h

QTS(T )/σrot,TS

Φj1(T )e−∆E1,2/kBT /σrot,j1 + Φj2(T )/σrot,j2

× exp
[

−V ‡/kBT
]

(2.14)

where σrot,j1, σrot,j2 and σrot,TS are the rotation symmetry numbers of j1, j2, and the transition
state, respectively, ∆E1,2 is the energy difference between j1 and j2, i.e., ∆E1,2 = E(j1)–E(j2)
and V ‡ is the barrier height. For the specific case that j1 and j2 are nonsuperimposable mirror
images of each other, σrot,j1 = σrot,j2 , ∆E1,2 = 0, Φj1(T ) = Φj2(T ) and therefore

kf(T ) = σ
kBT

h

QTS(T )

Φj1(T )
exp

[

−V ‡/kBT
]

(2.15)

where σ is given by Eq. (2.4), but including the factor of two in the denominator due to the
chirality of reactants, i.e.,

σ =
σrot,j1

2σrot,TS

(2.16)
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For a general reaction with a set of {R1...Ri...RN} conformers of reactants that can lead to
a set of {T1...Tj...TM} transition states, which lead to products, the forward rate constant is
given by

kf(T ) =
kBT

h

∑M
j=1

QTj
(T )e

−∆ETj
/kBT

σrot,Tj

∑N
i=1

ΦRi
(T )e

−∆ERi
/kBT

σrot,Ri

exp
[

−V ‡/kBT
]

(2.17)

where σrot,Ri , σrot,Tj , Φrot,Ri(T ) and QTj(T ) are the rotational symmetry numbers and partition
functions of conformations Ri and Tj, respectively. The value of ∆ERi is a positive energy
calculated as the difference between the energy of conformation Ri and the energy of the most
stable conformation of reactants. In the same manner, ∆ETj is the energy difference between
the energy of transition state Tj and the energy of the most stable transition state that leads
to products. The value of V ‡ is calculated as the difference between the energy of the most
stable transition state conformation and the energy of the most stable reactant conformation.
It should be noticed that the sum also runs over the different chiral isomers and that all the
barriers for interconversions of reactants should be smaller than V ‡. The above expression
is valid when the potentials in the vicinity of the stationary points are well described by the
harmonic oscillator approximation. Complications may arise from low barriers of conversion
between conformations, which may lead to nearly free internal rotations and the breakdown of
the harmonic oscillator approximation, which are discussed in Section 2.3.5.

2.3.5. Symmetry numbers and internal rotation

In this section the implications of internal rotation are considered. It should be noticed
that rotational symmetry numbers are based on the rotational symmetry of the molecule, i.e.,
they are based on the rotation of the molecule as a whole, whereas internal rotation involves
the rotation of a given part of the molecule relative to the rest of the molecule, and that it is
actually a vibrational mode.

Torsion approximations can properly account for indistinguishable minima corresponding
to a nearly free internal rotation. This is demonstrated with the example of the hydrogen
abstraction reaction from methane by the fluorine atom. For this reaction, some electronic
structure calculations predict a transition state with C3v symmetry (TS1), such as the one
shown in Structure 2.15.

H

HH

H

Reactants

F    + F H +

H

H H

Products

H

H

H

H F

TS1

Structure 2.15
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Therefore, the symmetry number for this reaction σf1 is:

σf1 =
σrot, R

σrot,TS1

=
σF × σrot,CH4(Td)

σrot,TS1(C3v)
=

1 × 12

3
= 4 (2.18)

Other electronic structure calculations predict a bent transition state with Cs symmetry
(TS2) as depicted below

TS2

H

H

H

H
F

In this case the symmetry number σf2 is given by

σf2 =
σrot,R

σrot,TS2

=
σF × σrot,CH4(Td)

σrot,TS2(Cs)
=

1 × 12

1
= 12 (2.19)

The symmetry numbers are correct in both cases. The reaction through TS1 has C3v

symmetry and the reaction through TS2 has Cs symmetry, which causes the symmetry number
for the reaction through TS2 to be three times larger. However, when the internal rotation for
TS2 is treated correctly, the difference in the partition functions at the transition state will
largely reconcile the symmetry number difference. There are three indistinguishable transition
state configurations of the type TS2 for each reactive hydrogen, as shown in Structure 2.16.
The three transition state configurations can be obtained from one another through a torsional
motion about the C–H bond. This internal rotation leads to a potential with three equivalent
minima, which coincide with the above configurations, and to three equivalent maxima, which
correspond to the eclipsed configurations. The crucial aspects of the potential of internal
rotation are the magnitude of both the vibrational frequency of the torsion, ωtor, and the
barrier height between the minima, Wtor.

In the regime of a high torsional frequency and low temperature, i.e., when kBT ≪ ~ωtor,
the potential is well represented by an inverted parabola and the harmonic oscillator (HO)
partition function is a good approximation for this torsional mode. Assuming separable HO
partition functions for all the normal modes, the total partition function for TS2 is given by:

Qvib,TS2(T ) = qHO
tor,TS2(T )

3N−8
∏

m=1

qHO
m,vib,TS2(T ) =

3N−7
∏

m=1

qHO
m,vib,TS2(T ) (2.20)

where qHO
tor,TS2(T ) and qm,3N−7,TS2(T ) are two names for the HO vibrational partition function

of the torsional mode with frequency ωtor, and qHO
m,vib,TS2(T ) for m = 1, ..., 3N − 8 are the

HO vibrational partition functions of the other modes. In this case the thermal rate constant
evaluated by the TST expression is given by:

kTST(T ) = 12
kBT

h

Q∗
rot,TS2(T )Qvib,TS2(T )

ΦR(T )
exp

[

−V ‡/kBT
]

(2.21)
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Structure 2.16

where Q∗
rot,TS2(T ) is the TS2 rotational partition function for distinguishable particles given

by Eq. (2.2b) and Qvib,TS2(T ) is given by Eq. (2.20).
However, when kBT ≫ Wtor, the rotation around the C–H bond would be nearly free,

therefore the classical free rotor (FR) partition function is a good approximation. The FR
partition function is given by:

qFR(T ) =
(2πIkBT )1/2

~σint
=

1

σint
qFR∗(T ) (2.22)

where I is the effective moment of inertia for internal rotation, qFR∗(T ) is the FR partition
function without the symmetry number for internal rotation, and σint is the symmetry number
for internal rotation. For the above reaction, σint is three because the three minima depicted in
Structure 2.16 are quantum mechanically indistinguishable. In this case the torsional mode is
treated as a free rotation instead of a harmonic vibration, and therefore the TST rate constant
is given by:

kTST(T ) =12
kBT

h

Q∗
rot,TS2(T )

qFR∗

tor,TS2
(T )

3

∏3N−8
m=1 qHO

m,vib,TS2(T )

ΦR(T )
× exp

[

V ‡/kBT
]

=4
kBT

h

Q∗
rot,TS2(T )qFR∗

tor,TS2(T )
∏3N−8

m=1 qHO
m,vib,TS2(T )

ΦR(T )
× exp

[

V ‡/kBT
]

(2.23)

where the symmetry number of rotation is partially cancelled out by the internal rotation
symmetry number. This result indicates that a free rotation for the torsional mode is similar
to that for which the transition state is of type TS1, since in that case:

kTST(T ) = 4
kBT

h

Q∗
rot,TS1(T )qHO

m,3N−7,TS1(T )
∏3N−8

m=1 qHO
m,vib,TS1(T )

ΦR(T )
× exp

[

−V ‡/kBT
]

(2.24)

The internal rotation for TS2 is very nearly a free rotation, therefore the factor of three
that was lost from the rotational partition function when the C3v symmetry of TS1 was broken
reappears in the vibrational partition function from the internal rotation. However, the rate
constants for TS1 and TS2 will still be different, as they should be because they are different
structures. Most importantly, qFR∗

tor,TS2(T ) may not be similar to qHO
m,3N−7,TS1(T ); additionally

the other vibrational and rotational partition functions will likely be slightly different. While
the factor of three has been recovered, it depends on how the change in geometry has influenced
the partition functions as to whether or not the rate constant for TS1 will be similar to the
rate constant for TS2.
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It should be noticed that Eq. (2.21) and Eq. (2.23) are extreme cases. An important
intermediate regime is when ~ωtor ≪ kBT ≪ Wtor. The partition function for this intermediate
(I) case is given by:

QI(T ) =
kBT

~ωtor
(2.25)

For a reaction in which internal rotations may play a role, it would be desirable to have an
expression for the partition function that is accurate for the two extreme cases of FR and HO
and displays smooth behaviour for intermediate cases. A function with these characteristics
has been given elsewhere [44] and has the form:

Q(T ) = QHO(T ) tanh
(

QFR(T )/QI(T )
)

(2.26)

where QHO(T ), QFR(T ) and QI(T ) are the partition function for the HO, FR and intermediate
case of Eq. (2.25), respectively. The example of this section deals with internal rotations in the
transition state but the same reasoning can be applied to internal rotations in the reactants or
in both reactants and the transition state.

The H + CH3OH −−→ H2 + CH2OH abstraction reaction [42] is a case where an internal
rotation approximation is able to account for multiple configurations. If two of the three
hydrogens of the methyl group were deuterated, the rate constant for hydrogen abstraction
is expected to be approximately three times smaller than that involving the undeuterated
methanol because there are one third as many reactive atoms. The rate constant of interest
is for the H + HCD2OH −−→ H2 + CD2OH process. The molecule HCD2OH has the three
conformers depicted in Structure 2.17, where k1 and k1∗ are chiral.
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Structure 2.17

Structure 2.18 depicts the two lowest-energy transition states starting from the above re-
actants
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For this case Eq. (2.17) leads to the following expression:

kTST(T ) =
kBT

h

1

Φ
H,HCD2OH
rel (T )

exp
[

−V ‡/kBT
]

Q∗
rot,Tk1(T )Qvib,Tk1(T ) + Q∗

rot,Tk1∗(T )Qvib,Tk1∗(T )

Q∗
rot,k1(T )Qvib,k1(T ) + Q∗

rot,k2(T )Qvib,k2(T ) + Q∗
rot,k1∗(T )Qvib,k1∗(T )

=
kBT

h

1

Φ
H,HCD2OH
rel (T )

2Q∗
rot,Tk1(T )Qvib,Tk1(T )

2Q∗
rot,k1(T )Qvib,k1(T ) + Q∗

rot,k2(T )Qvib,k2(T )
exp

[

−V ‡/kBT
]

(2.27)

where Φ
H,HCD2OH
rel is the relative translational partition function per unit of volume as mentioned

in the Introduction. Notice that this rate constant is about one third the rate constant obtained
for the undeuterated reaction as it should be. For distinguishable conformers, as is the case here,
it may be desirable to use a torsional method that accounts for the multiple wells of the reactant
and/or transition state regions instead of using a simple HO approximation. Specifically, the
HO approximation for the torsional mode is replaced by the multiconformer HO (MC–HO)
treatment: [45]

QMC−HO
tor =

P
∑

j=1

e−β(Uj+~ωtor,j/2)

1 − e−β~ωtor,j
(2.28)

where P is the number of distinguishable minima, ωtor,j, is the harmonic frequency at minimum
j of the torsional mode, and Uj is the energy of well j of this mode relative to the lowest well
of this mode. In this example we have labeled the torsional mode as 3N − 7 in the transition
state and 3N − 8 in reactants In the case of the deuterated methanol, all of the wells have the
same energy so Uj = 0 in all cases, but k2 does have a frequency for the torsional mode that
is different than k1 and k1*. In the same manner, the MC–HO method is used as part of the
torsional method to calculate the partition function for the transition state. However, because
the multiple transition state configurations are now accounted for using the torsional method,
the symmetry number for the transition state is no longer equal to two, rather it is equal to
one. This MC–HO partition function for the torsion is then used in the equations given above
and the TST rate constant is given by Eq. (2.29),

kTST(T ) =
kBT

h

1

Φ
H,HCD2OH
rel (T )

QMC−HO
3N−7,TS(T )Q∗

rot,Tk1(T )
∏3N−8

m=1 qm,vib,Tk1(T )

QMC−HO
3N−6,R (T )Q∗

rot,k1(T )
∏3N−7

m=1 qm,vib,k1(T )
exp

[

−V ‡/kBT
]

=
kBT

h

1

Φ
H,HCD2OH
rel (T )

∑2
j=1

(

e
−β~ω3N−7,j/2

1−e
−β~ω3N−7,j

)

× Q∗
rot,Tk1(T )

∏3N−8
m=1 qm,vib,Tk1(T )

∑3
j=1

(

e
−β~ω3N−6,j/2

1−e
−β~ω3N−6,j

)

× Q∗
rot,k1(T )

∏3N−7
m=1 qm,vib,k1(T )

exp
[

−V ‡/kBT
]

=
kBT

h

1

Φ
H,HCD2OH
rel (T )

exp
[

−V ‡/kBT
]

×

2 e
−β~ω3N−7,Tk1/2

1−e
−β~ω3N−7,Tk1

Q∗
rot,Tk1(T )

∏3N−8
m=1 qm,vib,Tk1(T )

(

2 e
−β~ω3N−6,k1/2

1−e
−β~ω3N−6,k1

+ e
−β~ω3N−6,k2/2

1−e
−β~ω3N−6,k2

)

× Q∗
rot,k1(T )

∏3N−7
m=1 qm,vib,k1(T )

(2.29)
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Because the summation accounts for three degenerate wells, the torsional treatment causes
the reactant partition function to be approximately three times as large as the partition function
for undeuterated methanol, which causes the rate constant for the deuterated methanol to be
about 1/3 as large, just as expected.

While the rate constant for undeuterated methanol was calculated in an earlier example by
accounting for the two nonsuperimposable transition states that were low in energy, a better
way to account for the entire range of motion is to use a torsional method for the transition state
as well. Note that the strategy used for this example is very similar to the strategy discussed
in Section 2.3.4. The difference is that in Section 2.3.4, the vibrations were only calculated
using the HO approximation, whereas this example uses the MC-HO partition function in
conjunction with Eq. (2.26). Therefore, as the motion becomes more like a free internal rotation,
the rotational partition function calculated by Eq. (2.26) remains qualitatively correct. If the
multiple conformations of the torsion were calculated using the strategy in Section 2.3.4, there
would be substantial error in regions where the HO approximation was not valid. The drawback
of Eq. (2.29) is that the rotational and vibrational partition functions, with exception of the
torsional mode, are considered to be equal for all conformers.

For further details on the treatment of internal rotation, we refer to references [42, 44–46].
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2.3.6. An example involving an achiral diasteromer

Tartaric acid is an organic acid that is naturally occurring in the L-(-)-tartaric acid form [47,
48]. Tartaric acid has two carbon stereocenters and which allows it to be synthesized in three
distinguishable configurations. There is a set of enantiomers, and there is also a meso complex.
These configurations are shown in Structure 2.19.

While L-tartaric acid and D-tartaric acid are distinguishable, the two drawings of meso-
tartaric acid are superimposable, so there is only a single distinguishable configuration for
mesotartaric acid. That is, there are three stereoisomers of tartaric acid; two of them are
enantiomers, and the third is an achiral diastereomer.

For a reaction where the acidic proton is abstracted by OH – to create the conjugate base, we
illustrate the transition states (this time explicitly drawing the carboxyl group on the reacting
carbon).
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The transition states have been labelled according to which reactant they originated from,
where L- indicates that it originated from L-tartaric acid, D- indicates that it originated from
D-tartaric acid, and m- indicated that is originated from mesotartaric acid. The transition
states that originate from the meso reactant are labelled with m-instead of meso- because they
are not superimposable. L-TS1 and L-TS2 are superimposable by a rotation, so there is only
a single indistinguishable transition state for this reaction. This is also true for D-TS1 and
D-TS2. For the L- and D-enantiomers, there is a single elementary reaction leading to a single
product for each enantiomer, as shown in Structure 2.21.
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The two transition states for mesotartaric acid are not superimposable. There are two
elementary reactions with distinct transition states that lead to distinct products. These are
shown in Structure 2.22.

Now that the elementary reactions have all been determined, the symmetry numbers for
the rate constants can be calculated. For L-tartaric acid, the reactant has C2 symmetry and
the transition state has C1 symmetry, which yields a symmetry number of 2. Therefore, the
forward rate constant for the formation of L-product is

kL(T ) = 2
kBT

h

1

ΦL−R,OH−

rel (T )

QL−TS(T )

QL−R(T )QOH−(T )
exp

[

−V ‡/kBT
]

(2.30)

where QL−R(T ) is the reactant partition function for L-tartaric acid excluding translation

and ΦL−R,OH−

rel is the relative translational partition function per unit volume as stated in
Section 2.1. Similarly, the forward rate constant for the formation of D-product is

kD(T ) = 2
kBT

h

1

ΦD−R,OH−

rel (T )

QD−TS(T )

QD−R(T )QOH−(T )
exp

[

−V ‡/kBT
]

(2.31)

where QD−R(T ) is the reactant partition function for D-tartaric acid. At this point, we are
able to take advantage of mirror images, and we find that QL−TS(T ) = QD−TS(T ), QL−R(T ) =
QD−R(T ), and the barrier heights are the same, therefore kL(T ) = kD(T ).
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For mesotartaric acid, the reactant has Cs symmetry, and both of the transition states
have C1 symmetry, which yield a rotational symmetry number of 1. However, the chiral
transition states present an additional difficulty, because the single reactant can follow two
different elementary reactions, so the symmetry number for the formation of the two products
is two. Therefore, each elementary reaction has a symmetry number of one due to the chi-
rality of the transition states [31]. The rate constants for meso-product1 and meso-product2 are

km−1(T ) =
kBT

h

1

Φm−R,OH−

rel (T )

Qm−TS1(T )

Qm−R(T )QOH−(T )
exp

[

−V ‡/kBT
]

(2.32)

km−2(T ) =
kBT

h

1

Φm−R,OH−

rel (T )

Qm−TS2(T )

Qm−R(T )QOH−(T )
exp

[

−V ‡/kBT
]

(2.33)

where Qm−R(T ) is the reactant partition function for meso-tartaric acid. Once again, we may
take advantage of the mirror images to find that Qm−TS1(T ) = Qm−TS2(T ), and therefore
km−1(T ) = km−2(T ).

For tartaric acid, there are three possible reactants that can form four possible products.
Each product is only accessible from a single reactant. The properties of mirror images can
be used to decrease the number of quantities that must be calculated. It is advisable not to
employ any additional shortcuts when dealing with a complicated system like this one. We
recommend for the rate constants to be used exclusively with their corresponding reactants
and products and not to use formulas like Eq. (2.17) in any case where it may be conceptually
difficult.



26 2.4. Summary

2.4. Summary

The present Chapter shows how to calculate the rotational symmetry numbers for various
molecular configurations and how to apply these symmetry numbers to transition state theory.
For most reactions, the overall symmetry number is given by the ratio of the reactant and
transition state rotational symmetry numbers, as given by Eq. (2.4). For bimolecular reactions
where the two reactants are equivalent, the symmetry number is a rotational-translational
symmetry number, which gives rise to an additional factor of two.

Section 2.3 contains several examples for calculating the symmetry number for reaction
rate constants. Section 2.3.1 gives examples for symmetry numbers that are both intuitive and
nonintuitive. Section 2.3.2 illustrates that Eq. (2.4) is technically valid for symmetric reactions,
but the number of interest is typically twice as large as predicted by Eq. (2.4) because both
the forward and reverse flux contribute equally. Section 2.3.3 illustrates how to account for
chiral isomers using the symmetry number. Multiple conformers for reactants and/or transition
states are illustrated in Section 2.3.4, and Section 2.3.5 deals with internal rotation, where the
treatment used in some previous examples is improved upon. Section 2.3.6 gives an example
involving an achiral diasteromer.

Many of the typical problems that arise when using symmetry numbers have been high-
lighted. Even complicated scenarios are treated systematically by properly calculating rota-
tional symmetry numbers and differentiating between distinguishable and indistinguishable
reaction paths.



Chapter 3

Least-action tunneling transmission
coefficient for polyatomic reactions

In this Chapter we present a new least-action variational approximation for tunneling in
polyatomic reactions based on the procedure developed by Garrett and Truhlar for atom-diatom
reactions [J. Chem. Phys. 1983, 79, 4931]. The method calculates the semiclassical ground-
state tunneling probability at every tunneling energy by minimizing the value of imaginary
action integral along a family of paths ranging from the minimum energy path to the straight
path. The method is illustrated by applications to two hydrogen-atom abstraction reactions
from methane using analytical potential energy surfaces.

3.1. Introduction

Tunneling is a quantum mechanical effect by which a particle can penetrate into classi-
cally forbidden regions of coordinate space.[49–51] Less than ten years after the formulation
of modern quantum mechanics, Wigner [52] and Bell [53] pointed out the importance of this
effect in chemical kinetics. Tunneling is very sensitive to the mass of the particles involved in
the tunneling motion and to the shape and height the effective barrier being crossed. Tun-
neling often competes well with overbarrier processes at low temperatures for processes that
involve the transfer of proton or deuteron. It is well established that quantum tunneling ef-
fects require a multidimensional treatment and that they are important processes even at room
temperature.[54–57] Because the likelihood of tunneling depends on the mass that is being
transferred, the analysis of kinetic isotope effects is one of the chief means of getting insight into
the reaction mechanisms of many processes of biological and technological importance.[58, 59]
Therefore, the treatment of quantum tunneling within a multidimensional framework is very
important.

Variational transition state theory with multidimensional tunneling contributions [16, 17]
(VTST/MT) has been shown to be capable of accounting for quantum effects on large
systems,[60, 61] but the methodology for treating those effects still allows for some improve-
ments. Here we present a new approximation that leads to a more complete treatment of
quantum tunneling effects in polyatomic chemical reactions.

In Section 3.2 we present background necessary to understand the new work in the context
of VTST/MT. Section 3.3 presents the new LAG4 approximation. Section 3.4 presents the
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application of the LAG4 method to the H + CH4 −−→ H2 + CH3 and 15H + CH4 −−→ 15H−H +
CH3 reactions using the Jordan and Gilbert (JG) potential energy surface.[62] Section 3.5 has
concluding remarks.

3.2. Background

Variational transition state theory [16, 17, 29, 63–70] is based on transition state theory
(TST), also called conventional transition state theory, which was originally formulated by
Eyring [26] and Evans and Polanyi [27]. TST calculates the one-way equilibrium flux through
the transition state (a surface dividing reactants from products in phase space) and assumes
that the transition state is a reaction bottleneck that separates reactants from products such
that all trajectories that start in the reactants region and cross the transition state do not recross
it before becoming equilibrated as products; this is known as the no-recrosssing assumption.
Furthermore, TST assumes that the Born-Oppenheimer approximation is valid and that the
reactants are equilibrated canonically (in a fixed-temperature ensemble) or microcanonically
(in a fixed-total-energy ensemble).

TST and VTST can be formulated unambiguously in a classical world,[71] and quantum
effects on all degrees of freedom except the reaction coordinate can reasonably be included by
quantizing their partition functions,[26] as justified to order ~

2 by Wigner.[52] Quantum effects
on the reaction coordinate can be incorporated by the addition of a multiplicative multidimen-
sional factor, called tunneling transmission coefficient,[72–74] but this can only be accomplished
consistently in VTST.[75] In fact, VTST/MT incorporates both recrossing (with respect to con-
ventional TST) and quantum tunneling effects, although it needs more information than TST
about the potential energy surface of the reaction. TST (without tunneling) needs informa-
tion only about reactants and the transition state, while VTST/MT needs information at least
about the reaction path that joins the transition state with reactants and products and some-
times also about a wider region called the reaction swath which includes additional geometries
on the concave side of the reaction path. In the present work, the reaction path is chosen as
the minimum energy path (MEP) in isoinertial coordinates,[73, 76] scaled to a reduced mass
of µ, and the signed distance along this path is labeled as s. By convention s = 0 indicates
the location of the transition state, whereas s < 0 and s > 0 correspond to the reactant and
product sides, respectively. The variational method that minimizes the one-way flux from reac-
tants to products through trial dividing surfaces that cross the reaction path at various values
of s in a fixed-temperature ensemble is called canonical variational transition state theory or
canonical variational theory (CVT).[66, 77] The CVT rate constant for a bimolecular reaction
at temperature T is given by

kCVT(T ) = σ
kBT

h

QGT(T, sCVT
∗ (T ))

ΦR(T )
exp

[

−VMEP(sCVT
∗ (T ))/kBT

]

, (3.1)

where σ is the symmetry number,[31, 78] kB and h are the Boltzmann and Planck constants,
respectively, and VMEP(sCVT

∗ (T )) is the value of the potential on the reaction path at sCVT
∗ ,

which is the location along the reaction coordinate of the dividing surface that minimizes
the one-way flux rate constant. The quantized reactant partition function per unit volume is
ΦR(T ), and QGT(T, sCVT

∗ (T )) is the quantized generalized transition state partition function
at sCVT

∗ (T ).



3. Least-action tunneling transmission coefficient for polyatomic reactions 29

In this Chapter we are concerned with quantum effects on the reaction coordinate, which
are incorporated by multiplying the CVT rate constant by a transmission coefficient, κ. The
resulting rate constant rate constant is given by

kCVT/SAG(T ) = κCVT/SAG(T )kCVT(T ) (3.2)

where SAG denotes semiclassical (vibrationally) adiabatic ground-state. Neglecting κ(T ) is
called the quasiclassical approximation.[61] The transmission coefficient, which rigorously is
the ratio of the averaged quantum mechanical reaction probabilities to the model underlying
TST or VTST without the transmission coefficient, is approximated by the ratio of the averaged
SAG and quasiclassical probabilities. The SAG transmission coefficient is evaluated by using
an effective potential that (in the first approximation under discussion here) is vibrationally
adiabatic with the further approximation [67] that the vibrationally adiabatic potential curves
of all the vibrational excited states have the same shape as the ground-state vibrationally
adiabatic potential curve, V G

a (s), so all the tunneling probabilities are evaluated with this
potential, which is given in the harmonic approximation by

V G
a (s) = VMEP(s) +

~

2

∑

m

ωm(s) (3.3)

where ωm(s) is a frequency of one of the 3N -7 (3N -6 for linear molecules) generalized normal
modes at s. In general the harmonic approximation used in the evaluation of the vibrationally
adiabatic potential is reasonable for polyatomic systems, the exception being those systems
presenting low frequency internal rotations, for which it is important to include anharmonic-
ity on those torsional modes.[79, 80] Because the barrier height, V AG

a , of the ground-state
vibrationally adiabatic potential curve may be different from V G

a (sCVT
∗ (T )), the CVT/SAG

transmission coefficient on the right-hand side of Eq. (3.2) is equal to an intrinsic transmission
coefficient κSAG(T ) times the factor exp{β[VG

a (sCVT
∗ (T)) − VAG

a ]} to make the transmission
coefficient consistent in spite of the difference in the effective thresholds of the transmission
coefficient and of the CVT rate constant. The intrinsic transmission coefficient is given by

κSAG(T ) =

∫ ∞

0 dEP SAG(E) exp(−βE)
∫ ∞

V AG
a

dEPC(E) exp(−βE)
, (3.4)

where PC(E) is the classical probability, which equals zero below V AG
a and unity otherwise, so

the transmission factor can be writen as:

κSAG(T ) = β exp(βV AG
a )

∫ ∞

0
dEP SAG(E) exp(−βE). (3.5)

The semiclassical adiabatic probability of the ground state P SAG(E) for the whole range of
energies is given by

P SAG(E) =















0, E < E0

{1 + exp[2θ(E)]}−1, E0 ≤ E ≤ V AG
a

1 − P SAG(2V AG
a − E), V AG

a ≤ E ≤ 2V AG
a − E0

1, 2V AG
a − E0 < E

(3.6)
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where E0 is the lowest energy at which it is possible to have tunneling (this is the energy of the
reactant zero-point level when the reaction is written in the exoergic direction) and θ(E) is the
so called action integral, actually the magnitude of the imaginary part of the action integral:

θ(E) = ~
−1

∫ s̃1

s̃0

ds{2µeff(s)(V G
a (s) − E)}1/2 (3.7)

where µeff(s) is the effective mass of the tunneling motion, and s̃0 and s̃1 are the classical
turning points at a given tunneling energy, E, in the reactant and product valleys, respectively.
Both turning points have to obey the resonance condition:

V G
a (s̃0) = V G

a (s̃1) = E (3.8)

The simplest case for the evaluation of the action integral of Eq. (3.7) is when the coupling
between the reaction coordinate and the transverse modes is neglected. In that case the effective
mass equals that of the isoinertial coordinate system, i.e., µeff(s) = µ. This method is known as
the zero-curvature tunneling (ZCT) approximation.[73] The ZCT method is not recommended
for general use because it often seriously underestimates the tunneling contribution.[81, 82]
Wyatt [83] and Marcus and Coltrin [18, 84] showed that the coupling enters the reaction-
path Hamiltonian through the kinetic energy term producing a negative centrifugal effect that
shortens the tunneling path by moving it toward the concave side of the reaction path. This is
now called corner-cutting tunneling. Marcus and Coltrin derived a corner-cutting approxima-
tion to the transmission coefficient for the collinear H + H2 reaction (for which the curvature
of the MEP in isoinertial coordinates is small) by finding for that case a least-action path,
i.e., the tunneling path that minimizes Eq. (3.7), by incorporating the reaction path curva-
ture (the centrifugal effect) into the effective mass. This method was extended to polyatomic
systems by making the vibrationally adiabatic approximation for all bound modes of the tran-
sition state,[85] by modifying the effective mass to avoid the singularity in the reaction path
Hamiltonian due to the breakdown of the natural collision coordinates when the reaction path
curvature is large,[19, 86] and by properly including the simultaneous corner cutting in more
than one mode of vibration.[87, 88] The resulting method is called the centrifugal-dominant
small-curvature semiclassical adiabatic ground-state (CD-SCSAG) approximation or simply the
small-curvature tunneling (SCT) approximation.

For systems with large curvature of the isoinertial MEP, such as bimolecular reactions
in which the hydrogen atom is transferred between two heavy atoms,[89] tunneling may be
dominated by paths that lie very far from the MEP and, therefore, the adiabatic approximation
may breakdown. The large-curvature ground-state tunneling (LCT) method [16, 17, 20, 21,
24, 87, 90–92] was designed for such cases. Other straigh-path methods [93–95] have been
put forward as well. The latest version of the LCT approximation is called LCG4.[17, 21] At
each tunneling energy, LCT includes a set of tunneling paths that are the straight trajectory
between the two classical turning points at that energy plus the set of all lower-energy tunneling
paths. To evaluate action integrals along these paths requires not only information in the
potential valley around the MEP (the regions close to the MEP, which can be treated within
the adiabatic approximation), but also information about the broader reaction swath on the
concave-side of the MEP; this region is the locus of deep-tunneling paths that are vibrationally
nonadiabatic. In the LCT approximation, tunneling into excited vibrational states of the
products in the exoergic direction is also included;[24] tunneling into excited states is also
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included for thermoneutral reactions.[96] The LCG4 approximation is more accurate than the
previous LCG3 approximation because it includes a nonquadratic correction in the nonadiabatic
region. In general, the evaluation of the LCG4 transmission coefficients is quite demanding
from the computational point of view, so two interpolated large curvature tunneling (ILCT)
methods, called ILCT1D [22] and ILCT2D,[23] were proposed. The latter evaluates the LCG4
transmission coefficient with an error (with respect to the uninterpolated calculation) smaller
than 1%, but it reduces the computer time by more than an order of magnitude.

The SCT and LCT transmission coefficients cover the whole range of reaction-path curva-
tures, so it seems natural to built a transmission coefficient which, at every tunneling energy,
chooses the largest between the SCT and LCT tunneling probabilities, or similarly (essentially
equivalently), the smallest between the SCT and LCT imaginary action integrals. This approx-
imation is called microcanonical optimized multidimensional tunneling (µOMT) method.[24]
The µOMT tunneling probabilities are, therefore,

PµOMT(E) = max
E

{

P SCT(E)
PLCT(E)

(3.9)

where P SCT(E) and PLCT(E) are the SCT and LCT probabilities evaluated within the CD-
SCSAG and LCG4 approximations, respectively. However, these two approximations are just
two particular cases of a more general method in which the tunneling path is variationally
optimized by employing a criterion of least imaginary action. This method, which is called
least-action ground-state tunneling (LAT) approximation, was developed some years ago for
atom-diatom reactions, and it was shown to be superior to the SCT and LCT methods.[25,
97] Other LAT methods using a family of paths similar to that described by Garrett and
Truhlar [25] have also been developed for polyatomic reactions, although those methods were
only used to compute tunneling splittings. For instance, Taketsugu and Kimihiko [98] used a
multidimensional LAT method to obtain the least-action integral at a given tunneling energy.
Similarly, Tautermann et al. [99–101] obtained the optimal tunneling path to predict ground-
state tunneling splittings in symmetric polyatomic systems. So far though the LAT method
has not been applied to evaluate thermal rate constants for polyatomic systems. However,
it has been extensively applied to atom-diatom reactions,[82] and compared with SCT and
LCT approximations. Although all the LCT calculations were performed using the LCG3
approximation, it was concluded that for some cases the µOMT method was as accurate as the
LAT method, but on average the latter was superior to the former.

The current µOMT method evaluates the large-curvature probabilities with the LCG4
approximation and it performs well for polyatomic reactions. However, it is interesting to
know the effect of full optimization of the tunneling paths in a multidimensional framework
in polyatomic reactions even when full optimization may be more expensive computationally
than the current methods. In this work we present a new version, which adds the following
features to the previous LAT method: (i) it is now developed for polyatomic reactions, and (ii)
it uses the same criteria for the specification of the adiabatic and nonadiabatic regions as the
LCG4 method. Therefore, we label this version of the least-action tunneling method as LAG4.
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3.3. Method

LAG4, like LCG3 and LCG4, is always applied to a reaction in the exoergic or thermoneutral
direction with the reactant in its ground vibrational state. The tunneling process may end in
the product ground state or in an excited diabatic vibrational mode of the product. In general
one sums over the probabilities of producing each final state, but in many cases, one needs
to consider only ground-state-to-ground-state tunneling, and this Section will start with the
ground-state-to-ground-state process.

The LAG4 approximation involves the minimization of the imaginary action integrals along
a given set of paths which are between the MEP and the straight path (which is the reference
path for all the LCT methods, including the LCG4 approximation). At a given tunneling energy
the end points of any particular tunneling path are given by s̃0 and s̃1 with the resonance
condition given by Eq. (3.8). The mass-scaled Cartesian geometries of these two classical
turning points that are located on the MEP are x(s̃0) and x(s̃1), respectively. The paths to
initiate the search for the least-action are built as a function of a single parameter α, such
that α = 0 yields the MEP and α = 1 yields the straight path. Therefore α = 0 and α = 1
correspond to the ZCT and LCT transmission coefficients, respectively. We introduce a progress
variable along the path, called ξ(α), which is in the interval 0 ≤ ξ(α) ≤ ξP(α), where ξP(α) is
the total length of path at a given tunneling energy.

The lengths of the MEP and of the straight path are ξP(0) and ξP (1), respectively, so all
the intermediate paths obey the condition ξP(1) ≤ ξP(α) ≤ ξP(0). The variable γ is defined by

γ =
ξ(α)

ξP(α)
(3.10)

The γ parameter is in the interval [0, 1], being 0 at the reactants classical turning point and
1 at the products classical turning point. This parameter is useful to unify all the paths with
different α values to see how much we have progress along them. We prefer to use ξ(α) instead,
because in this case the length of the paths is explicitly used.

The mass-scaled Cartesian geometries for a given value of α, at a point ξ(α) along the path,
and, at a given tunneling energy, are x [α, ξ(α), s̃0]. Thus, the mass-scaled Cartesian geometries
along the MEP are given by x [0, ξ(0), s̃0], whereas the ones along the straight path are

x [1, ξ(1), s̃0] = x(s̃0) + ξ(1)η̂ [1, ξ(1), s̃0] (3.11)

where x [0, 0, s̃0] = x(s̃0). The parameter ξ(1) indicates the progress along the straight path,
η̂ [1, ξ(1), s̃0] is the unit vector along the straight path, i.e.,

η̂ [1, ξ(1), s̃0] =
x(s̃1) − x(s̃0)

ξP(1)
(3.12)

where the length of the straight path is ξP(1) =| x(s̃1) − x(s̃0) |.
The MEP and the straight path are the extreme cases of a a family of α dependent paths,

which are chosen as

x [α, ξ(α), s̃0] = (1 − α)x [0, ξ(0), s̃0] + αx [1, ξ(1), s̃0] (3.13)

where x [0, ξ(0), s̃0] and x [1, ξ(1), s̃0] are the geometries along the MEP and along the straight
path, respectively, with the same progress, that is, ξ(0)/ ξP(0) = ξ(1)/ ξP(1) = γ.
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The imaginary action integral for each of these paths is a generalization of the imaginary
action integral along the LCT straight path. At every tunneling energy, the paths of Eq. (3.13)
are built as a function of the α parameter as showed in Figure 3.1. For small values of α the
geometries along the path will be very close to those along the MEP and, therefore, motion
along the entire path is treated as vibrationally adiabatic. For intermediate to large values
of α the path is divided into three regions. Regions I and III, located on the reactants and
products sides, respectively, are treated as vibrationally adiabatic, and region II is vibrationally
nonadiabatic.

The vibrationally adiabatic potential is obtained in such a way that the geometry
x [α, ξ(α), s̃0] is perpendicular to the gradient at that s value, that is,

{x [α, ξ(α), s̃0] − x [0, ξ(0), s̃0]}
dx [0, ξ(0), s̃0]

ds
= 0 (3.14)

The above equation may have multiple solutions, but we are interested in the solution that
makes s a continuous function of ξ(α). There is no guarantee that Eq. (3.14) will be met
for any geometry along the tunneling path. To find the solution to Eq. (3.14) for a geometry
x [α, ξ(α), s̃0] starting from region I, a root search procedure is set up starting from the reactants
side turning point s̃0, i.e., at ξ(α) = 0. The value of s which satisfies Eq. (3.14) is sI[α, ξ(α), s̃0].
In the same way can be found a value sIII[α, ξ(α), s̃0] starting from products at the classical
turning point s̃1. If it is not possible to find a geometry along the MEP which satisfies Eq. (3.14),
it means that there is no projection for that geometry of the tunneling path onto the modes
perpendicular to the reaction path in the interval [s̃0, s̃1]. When this happens going from
reactants to products, the nonadiabatic region in the reactants side starts at ξ(α) = ξI(α), being
ξI(α) the last value for which sI[α, ξ(α), s̃0] exists. In the same way, the nonadiabatic region
in products side starts at ξ(α) = ξIII(α), being ξIII(α) the last value for which sIII[α, ξ(α), s̃0]
exists.

It may occur that ξIII(α) < ξI(α), so there is an overlap between the adiabatic regions and
the nonadiabatic region does not exist. In this case the vibrationally adiabatic potential in the
interval [ξIII(α), ξI(α)] is evaluated as:

min
{

V G
a [sI(0, ξ(0)); s̃0] , V

G
a [sIII(0, ξ(0)); s̃0]

}

(3.15)

Each of the two si(0, ξ(0)), i = I, III values needed for the evaluation of the vibrationally
adiabatic potentials V G

a [si(0, ξ(0)); s̃0)] is obtained from Eq. (3.14).
In the case that ξIII(α) > ξI(α) the potential is nonadiabatic in the region II, which has

boundaries ξI(α) and ξIII(α) with regions I and III, respectively. Therefore, region I corresponds
to 0 ≤ ξ(α) < ξI(α), region II to ξI(α) ≤ ξ(α) ≤ ξIII(α), and region III to ξIII(α) < ξ(α) ≤
ξP(α). As shown in Figure 3.1, the path along regions I and III is given by Eq. (3.13) whereas
the path along region II is a straight path between the boundaries, where the geometries are
given by

x [α, ξ(α), s̃0] = x [α, ξI(α), s̃0] +
ξ(α) − ξI(α)

ξIII(α) − ξI(α)

(

x [α, ξIII(α), s̃0] − x [α, ξI(α), s̃0]

)

(3.16)

The nonadiabatic region is defined in the same way as for the LCG4 method, i.e., the path is
in the adiabatic region when (i) the condition given by Eq. (3.14) is obeyed (ii) all the gener-
alized normal mode coordinates are within their vibrational turning points, (iii) the geometry
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x [α, ξ(α), s̃0] lies within the single-valued region of the reaction path coordinates and (iv) the
adiabatic potential should be greater than or equal to the effective potential at the boundary of
the nonadiabatic region, in other case the nonadiabatic region is extended until this condition
is met. On the other hand, if the adiabatic potential is smaller than the effective potential the
difference is due to anharmonicity, so the effective potential is modified with a nonquadratic
correction.

The imaginary action integral at every tunneling energy and for each α value along the
paths of Eq. (3.13) is:

θ(α, s̃0) =
(2µ)1/2

~

[

∫ ξI(α)

0
dξ(α)

{

V G
a [sI(0, ξ(0)); s̃0)] − V G

a (s̃0)
}1/2

cos χ0 {s̃0, η̂ [α, ξ(α), s̃0]}

+

∫ ξIII(α)

ξI(α)
dξ(α)

{

V II
eff(α, ξ(α), s̃0) − V G

a (s̃0)
}1/2

+

∫ ξP(α)

ξIII(α)
dξ(α)

{

V G
a [sIII(0, ξ(0)); s̃0)] − V G

a (s̃0)
}1/2

cos χ1 {s̃1, η̂ [α, ξ(α), s̃1]}
]

,

(3.17)

The two cosines of Eq. (3.17), cos χi {s̃i, η̂ [α, ξ(α), s̃i]} for i = 0, 1 are obtained as the dot
products between the unit vectors η̂ [α, ξ(α), s̃i] and the unit vectors tangent to the MEP at
si, i.e.,

cos χi {s̃i, η̂ [α, ξ(α), s̃i]} = η̂ [α, ξ(α), s̃i]
dx(s̃i)

ds
, i = 0, 1 (3.18)

The effective potential of Eq. (3.17) of the LAG4 method is the same as that of the LCG4
method, with the difference that now the geometries at which the potential is evaluated are
functions of α and of the progress variable ξ, which also depends on α. Therefore the effective
potential is given by

V II
eff(α, ξ(α), s̃0) = V {x [α, ξ(α), s̃0]} + V I

corr(α, ξI(α), s̃0) + V I
anh(α, s̃0)

+
ξ(α) − ξI(α)

ξIII(α) − ξI(α)

[

V III
corr(α, ξIII(α), s̃0) − V I

corr(α, ξI(α), s̃0) + V III
anh(α, s̃0) − V I

anh(α, s̃0)

]

(3.19)

The potentials V i
corr(α, ξi(α), s̃0), i = I, III correct for the zero-point energy in the modes

that are still within their turning points. The potentials V i
anh(α, s̃0) incorporate anharmonic

nonquadratic corrections to the effective potential in the same way as in the LCG4 method.

The optimum tunneling path (i.e., the LAG4 path) of the family of paths given by Eq. (3.13)
is the one that minimizes the imaginary action integral of Eq. (3.17). The searching procedure
is similar to the one described in Ref. [16], i.e., the smallest value of θ(α, s̃0) is found by a
quadratic search in α starting with a initial set of 11 equally spaced points. The optimum
value of α at every tunneling energy is labeled as α̃.

The tunneling amplitude of the LAG4 path initiated at s̃0 is approximated using a primitive
semiclassical expression

TLAG4
tun (α̃, s̃0) = TLAG4

tun (α̃, s̃1) = exp [−θ(α̃, s̃0)] (3.20)
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Figure 3.1: Plot of the JG PES (energy in kcal/mol) as a funcion of two distances; rC−H is the distance
between the carbon atom and the abstracted CH4 hydrogen atom and rH−H is the distace between the
hydrogen atom and the abstracted CH4 hydrogen atom. The graph also shows some possible reaction
paths at a given tunneling energy with classical turning points given by s̃0 and s̃1 in the reactant and
product sides, respectively. The reaction swath is partitioned into the adiabatic region of reactants
(labeled as I), adiabatic region of products (labeled as III) and the nonadiabatic region (labeled as II
and with boundaries given by a black dotted-dashed line). The symbol ‡ indicates the position of the
saddle point, which is the conventional transition state. Four different paths are plotted as solid curves
over the PES using Eq. (3.13). The four different values of α are 0 (black solid line), 0.10 (red line),
0.50 (green line) and 1 (blue line). The path with α = 0 corresponds to the MEP and is labelled as
ξ(0). The path with α = 0.10 (labeled as ξ(α′)) corresponds to a curved path passing through a region
which is completelly vibrationally adiabatic. The path with α = 0.50 (labeled as ξ(α)) corresponds to a
curved path which crosses the nonadiabatic region with boundaries given by ξI(α) in the reactants side
and by ξIII(α) in the products side. In the nonadiabatic region this path does not follow the curved
path (green dotted line), but the straight path (green solid line). Finally, the path with α = 1 (labelled
as ξ(1)) corresponds to the straight path connecting the geometries of the MEP at the classical turning
points. The nonadibatic region starts at ξI(1) in the reactants side and ends at ξIII(1) in the products
side. The black dashed line joining the straight path and the MEP indicates the progress along each of
the four tunneling paths for a given value of γ (see Eq. (3.10)).
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The LAG4 primitive probability, PLAG4
prim (E), is obtained from the tunneling amplitude of

the previous Eq. (3.20) plus the contribution due to the vibrational motion perpendicular to
the reaction coordinate along the incoming T0(E) and outgoing T1(E) trajectories at tunneling
energy E

PLAG4
prim (E) =|T0(E) + T1(E)|2

+

(

cos χ0 {s̃0, η̂ [α̃, ξ(α̃), s̃0]} + cos χ1 {s̃1, η̂ [α̃, ξ(α̃), s̃1]}
2

)2

× exp [−2θ(α̃, s̃0)]

(3.21)

The tunneling amplitude of the incoming trajectory along the reaction coordinate is
exp [−θ(α̃, s̃0)] cos χ0 {s̃0, η̂ [α̃, ξ(α̃), s̃0]} and that of the outgoing trajectory is
exp [−θ(α̃, s̃0)] cos χ1 {s̃1, η̂ [α̃, ξ(α̃), s̃1]}. The expression used in Eq. (3.21) is the average of
the two tunneling amplitudes. Similarly the tunneling amplitude due to the all the vibrational
degrees of freedom perpendicular to the reaction coordinate is averaged using T0(E) and T1(E),
instead of using 2T0(E), to inforce macroscopic reversibility. The expression for T0(E) is similar
to the one given in Ref. [17] but evaluated along the LAG4 tunneling path (α = α̃) instead of
along the LCG4 tunneling path (α = 1).

The primitive probability of Eq. (3.21) can be greater than one because of the integration
of the amplitudes over the incoming and outgoing trajectories, so it is enforced to go to 1/2 at
the maximum of the vibrational adiabatic potential V AG

a by the expression

PLAG4(E) =

{

1 +
1

2

[

PLAG4
prim (V AG

a )
]−1

− 1

PLAG4
prim (V AG

a )
PLAG4

prim (E)

}

× 1

1 +
[

PLAG4
prim (E)

]−1 (3.22)

It is possible to include tunneling into excited vibrational states of products in the exoergic
direction. It can be done easily by using the LAG4 approximation for the ground state and
the LCG4 approximation for excited vibrational states. The procedure is described in detail
in Ref. [17] and will not be discussed here. The LAT method in its LAG4 version has been
implemented in POLYRATE 2008.[102]

3.4. Results and discussion

In this Section we apply VTST/MT, including the LAG4 approximation for the evaluation
of the transmission coefficients, for two hydrogen abstraction reactions:

H + CH4 −−→ H2 + CH3 (R1)

15H + CH4 −−→ 15H−H + CH3 (R2)

Both reactions R1 and R2 were studied using the Jordan and Gilbert (JG) potential energy
surface.[62] In the case of reaction R2 we just have changed the mass of the hydrogen, which is
abstracting the proton, by that of a methyl group in order to observe the effect of the reaction-
path curvature on the transmission coefficients. Both reactions are of the type A + BC →
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AB + C, where A, B and C are atoms or groups of atoms. The reaction path curvature is a
function of the skew angle, which in isoinertial coordinates is given by

β = cos−1

(

mAmC

(mA + mB)(mB + mC)

)1/2

(3.23)

The skew angle is close to 90 degrees when B has a much larger mass than A and C and it
is close to zero when the mass of A and C is much larger than the mass of B. For the latter,
tunneling effects are more important because a light particle is being transferred between two
heavy atoms (heavy–light–heavy system). For reaction R1 the skew angle is β = 47 degrees,
whereas for reaction R2 the skew angle is only β = 20 degrees. From these values of the skew
angle, we expect small values of α̃ at all tunneling energies for reaction R1, because the reaction
path curvature is small, whereas large values of α̃ are expected for reaction R2. Indeed, this
is the case at low tunneling energies, as showed in Figure 3.2, which plots the variation of θ
with α for every tunneling energy for reactions R1 and R2. For any reaction-path curvature
the least-action path is always the path with the best compromise between length and energy,
i.e, between short paths with high barriers and long paths with low barriers. The two extreme
cases are, on one side, the straight path, which is the shortest path between two classical
turning points, but the must unfavorable from the energetic point of view and, on the other
side, the MEP, which is the longest path but the most favorable energetically. The transmission
coefficients obtained using these two prescriptions are the LCT, for the straight path, and the
ZCT, for the MEP.

For both reactions, at low tunneling energies and for the paths characterized by the optimum
α̃, there is an important area of the reaction swath that is vibrationally nonadiabatic and that
involves a significant increase of the potential energy. That increase has to be compensated by
shortening the length of the path. That compensation occurs for reaction R2, for which the
curvature of the reaction path makes the straight path very short, but not for reaction R1, for
which decreasing the length of the path does not compensate the increase in potential energy.
This is why the incursion of the least-action path into the vibrationally nonadiabatic region
is weaker for reaction R1 than for reaction R2. The sudden increase of the action integral
observed in Figure 3.2 for reaction R2 at α values about 0.9 is due to the extension of the
nonadiabatic region, because for those paths there are geometries for which Eq. (3.14) is not
satisfied. At high tunneling energies the whole reaction swath is vibrationally adiabatic and,
therefore, there is no rise in energy even for very short paths, so the least-action path coincides
with the straight path.

The transmission coefficients and rate constants for reaction R1 are listed in Table 3.1 and
Table 3.2, respectively, whereas the transmission coefficients for reaction R2 are listed in Ta-
ble 3.3. The LAT results for reactions R1 and R2 show that SCT and LCT underestimate
the transmission coefficients for tunneling. As expected SCT is better for small to interme-
diate curvature and LCT is better for large curvature. The µOMT transmission coefficient
also underestimates tunneling but is the best choice when the LAT transmission coefficient is
considered to be too expensive.
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at each of the tunneling energies (in kcal/mol) for reactions R1 and R2. The solid line indicates the
locations of α̃ at every tunneling energy. The dashed line indicates the lowest α value for which there
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Table 3.1: Transmission coefficients for reaction R1 on the JG surface

T (K) ZCT SCT LCT µOMT LAT

200 4.36 18.7 13.7 18.8 27.3
250 2.49 6.27 5.11 6.28 7.30
300 1.87 3.54 3.04 3.54 3.73
400 1.41 2.02 1.84 2.03 2.01
500 1.25 1.57 1.47 1.57 1.54

For reaction R1, we compare the thermal rate constants with accurate multidimensional
quantum dynamical calculations [103, 104] in the interval 200–500 K. There are also previous
CVT/µOMT calculations [105, 106] for the same interval of temperatures, which showed a
very good agreement with the previous quantum calculations. The CVT/LAT rate constants
obtained in this work show even a better agreement with the quantum results. The µOMT
transmission coefficients are identical to the SCT ones, indicating that the least-action path
is quite far from the straight path. Therefore, in this case the LCT transmission coefficients
underestimate quantum effects. Sansón et al. [107] reached a similar conclusion for the H2 + Cl
reaction, which has similar skew angle than reaction R1. Because the skew angle for R1 is not
large (small to intermediate curvature case), it is expected that the SCT transmission coefficient
accounts well for tunneling. However, the comparison between SCT and LAT at T=200 K shows
that SCT underestimates tunneling at this temperature, although the difference is already small
at room temperature. From the comparison of CVT/SCT and CVT/LAT with the accurate
rate constants it is difficult to know which of the two transmission coefficients is more accurate,
since both approximations lead to very good results; LAT could be more accurate than SCT
because it finds the optimum tunneling paths in a set of paths at every tunneling energy and it
includes nonadiabaticity; but SCT could also be more accurate because it incorporates a more
accurate treatment of systems in the small-curvature limit.

When the curvature of the reaction path is large, as for reaction R2, SCT seriously under-
estimates tunneling at all temperatures in the range 200–500 K (see Table 3.3) and, therefore,
this approximation accounts poorly for quantum effects in this case. The LAT transmission
coefficients are also larger than the LCT ones. The straight path used in the LCT method
is a particular path in the family of paths generated by Eq. (3.13) and the LCT calculation

Table 3.2: VTST/MT thermal rate constants (in cm3 molecule−1 s−1) compared to accurate quantal
ones for reaction R1 on the JG surface

T (K) CVT/SCTa CVT/LCTa CVT/µOMTa CVT/LATb Accuratec

200 7.1(-21)d 5.2(-21) 7.1(-21) 1.0(-20) 9.0(-21)
250 4.3(-19) 3.5(-19) 4.3(-19) 5.0(-19) 5.5(-19)
300 7.8(-18) 6.7(-18) 7.8(-18) 8.2(-18) 9.8(-18)
400 3.6(-16) 3.3(-16) 3.6(-16) 3.6(-16) 4.0(-16)
500 4.1(-15) 3.8(-15) 4.1(-15) 4.0(-15) 3.8(-15)

aFrom Ref. 106. bThis work. cFrom Ref. 104. dPowers of 10 in parenthesis.
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Table 3.3: Transmission coefficients for reaction R2 on the JG surface

T (K) ZCT SCT LCT µOMT LAT

200 2.98 4.62 31.3 31.3 36.5
250 2.08 2.83 11.3 11.3 12.5
300 1.69 2.12 6.14 6.14 6.59
400 1.35 1.56 3.10 3.10 3.23
500 1.22 1.34 2.16 2.16 2.22

corresponds, at every energy for which α̃ does not equal 1, to an incompletely optimized LAG
calculation (whereas SCT does not). Thus whenever, LCT differs from LAT, it gives less trans-
mission probability. However, the LAT transmission factor is underestimated by LCT by only
14% at T=200 K, and this percentage is reduced by half at room temperature.

To further analyze the tunneling, we examined, at every temperature, the integrand of
Eq. (3.5), PW(E), which is the Boltzmann-weighted transmission probability. The value of
PW, with the zero of energy taken here as the maximum of the vibrationally adiabatic ground-
state potential curve, is shown at several temperatures for reactions R1 and R2 in Figure 3.3
an Figure 3.4, respectively. The area under the curves gives the tunneling contribution to
the transmission coefficients, which it is clearly more important for reaction R2. Figure 3.3
and Figure 3.4 also show how PW evolves with the tunneling energy for different transmission
coefficients. Taking the LAT as reference approximation, we observe that for reaction R2 the
µOMT curve follows closely the LAT curve, and as a consequence the µOMT transmission
coefficients are quite similar to the LAT ones. For reaction R1 the µOMT transmission proba-
bilities coincide with the SCT ones, but that curve is quite far from the LAT curve at T=200 K
due to the difference in magnitude of the transmission coefficients. At T=300 K and above
the magnitude of SCT and LAT transmission coefficients is similar, so the curves are quite
close between them. However, there is a subtlety here, the shape of both curves is different,
being the µOMT (or SCT) probabilities smaller, at low tunneling energies, and bigger, at high
tunneling energies, when compared with the LAT probabilities. This behaviour is observed
even at T=200 K and indicates that the SCT probabilities are too high at tunneling energies
close to the top of the barrier. Another argument supporting this conclusion is offerend during
the discussion of the graphs depicted in Figure 3.5 and Figure 3.6.

Table 3.4: Representative tunneling energies for reaction R1 (in kcal mol−1)a

T (K) ZCT SCT LCT µOMT LAT

200 37.03 35.68 36.07 35.68 34.75
250 37.29 36.42 36.14 36.42 36.11
300 37.42 36.81 36.18 36.81 36.16
400 37.61 37.21 37.46 37.21 37.45
500 37.70 37.39 37.59 37.39 37.58

aThe maximum of the vibrationally adiabatic ground-state potential curve has an energy of 37.70 kcal mol−1.

The Boltzmann-weighted probability also shows the tunneling energy that contributes the
most to the different transmission coefficients. This characteristic energy is called representa-
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Figure 3.3: Representation of the LAT (solid
line) and µOMT (dashed line) Boltzmann-
weighted probabilities versus tunneling en-
ergy at different temperatures and for reac-
tion R1. The tunneling energies are plotted
using the maximum of the vibrationally adia-
batic ground-state potential curve, V AG

a , as the
temporary zero of energy.
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Figure 3.6: Same as Figure 3.5, but for reac-
tion R2.
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tive tunneling energy (RTE) and it can be easily identified as the energy for which PW has a
maximum. The RTEs for reactions R1 and R2 obtained by different approximations for tunnel-
ing are listed in Table 3.4 and Table 3.5, respectively. If the temperature is high the maximum
coincides with the top of the barrier, indicating that tunneling is already unimportant. If the
LAT imaginary action integral and, therefore, the tunneling probability, is the best compro-
mise between length and energetics for the family of paths of Eq. (3.13), the RTE is the best
compromise between the tunneling probability and the Boltzmann factor. It is obvious that
at low temperatures the RTE is located at low energies. In the limiting case, at T=0 K the
only contribution to the transmission coefficient comes from the tunneling probability at the
lowest tunneling energy (i.e., the zero-point energy). As temperature increases more energy
levels are populated and tunneling is possible at several energies, and in this case we have to
look for the least-action path at every tunneling energy. A quite different approach, known
as the instanton theory [15, 108–110] seeks, at every temperature (not a every energy) for a
unique least-action periodic trajectory, called instanton, that comprises all trajectories. Unfor-
tunately, above a given critical temperature (usually for temperatures above 250 K) there is
no instanton trajectory, although it is still possible to solve the problem approximately using
analytical expressions.[111] There is a certain resemblance between RTE and instanton in the
sense that, at every temperature, both trajectories indicate the most relevant region of the PES
for tunneling.

Table 3.5: Representative tunneling energies for reaction R1 (in kcal mol−1)a

T (K) ZCT SCT LCT µOMT LAT

200 35.90 35.81 35.01 35.01 34.95
250 36.14 35.86 35.34 35.34 35.11
300 36.28 36.00 35.53 35.53 35.52
400 36.57 36.23 35.71 35.71 35.71
500 36.65 36.37 35.74 35.74 35.74

aThe maximum of the vibrationally adiabatic ground-state potential curve has an energy of 36.66 kcal mol−1.

Figure 3.5 and Figure 3.6 depict effective potentials, which are given by Eq. (3.19) in the
nonadiabatic region and by the vibrationally adiabatic ground-state potential in the adiabatic
region, versus the length of the path for several values of α, taking as turning points the rep-
resentative tunneling energies at T=200, 300 and 500 K for reactions R1 and R1, respectively.
Each of the graphs was generated by mapping the PES using Eq. (3.13). The green lines de-
picted in each of the graphs represent the least-action path. At T=200 K the least action paths
for both reactions, R1 and R2, have nonadiabatic regions and the value of α̃ is 0.62 and 0.83,
respectively. For reaction R1 the ratio ξP(α̃)/ξP(0) is 0.78 and the difference Vmax(α̃) − V AG

a

is 0.64 kcal mol−1, whereas for reaction R2 the ratio between lengths is 0.53 and the difference
in energy is only 0.05 kcal mol−1. Those numbers show that at T=200 K the shortcut through
the nonadiabatic region compensates the rise in energy for both reactions. This behaviour is
more noticable for reaction R2, which exhibits a larger reaction-path curvature.

From the previous discussion it seems odd that, at T=300 K, α̃ is 1.00 and 0.93 for reactions
R1 and R2, respectively, but it is easily understood taking into account that for the former
reaction all the family of curves at that temperature from α = 0 to α = 1 lie completely on
the adiabatic region, so the maximum of the effective potential is always the maximum of the
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vibrationally adiabatic ground-state potential, as shown in Figure 3.5. The consequence is that
there is no energy penalty for shorter paths and, therefore, the least-action path coincides with
the straight path. This circumstance does not occur for reaction R2, which has a nonadiabatic
region for some values of α. Therefore, when the reaction swath is completely adiabatic the
least-action path should be always the straight path and the probabilies obtained with the SCT
approximation should not be larger than the LCT ones in that region of the PES. However
this occurs for reaction R1, as shown previously in Figure 3.3. On the light of the values of
the transmission coefficients obtained by SCT and LAT for R1 this issue seems unimportant,
but in a future work it would be interesting to analyze this behaviour in more depth for a large
number of reactive systems presenting different reaction-path curvatures.

In this work we have used analytical PES to show how the LAT approximation works for
polyatomic systems. However, the method is very expensive in computer time, which is an
obstacle for ‘on the fly’ generation of the PES. The easiest solution to the problem is a ‘brute-
force’ approach consisting in the evaluation of several tunneling energies at the same time by
parallelization of the method. A more reasonable approach would be to make use of different
interpolation procedures to save computer time. The two graphs of Figure 3.2 give us a hint
about a possible solution to the problem. In principle it would be feasible to use a spline
under tension similar to the one used in the ILCT2D [23] approximation, with the difference
that, instead of interpolating tunneling paths and tunneling energies, we interpolate imaginary-
action integrals and tunneling energies. It is possible to make the procedure even cheaper in
computer time by interpolating the potential needed for the evaluation of the imaginary-action
integral at every α value. A more detailed discussion about how to extend the LAT method to
make it practical for its use within the direct dynamics approach will be presented elsewhere.

3.5. Concluding remarks

We have extended the large least-action tunneling (LAT) approximation to polyatomic re-
actions. The implementation is called least-action ground state version 4 because it is based on
the reactant ground state when the reaction is written in the exoergic or thermoneutral direction
and because in the limit of large reaction-path curvature it reduces to the large-curvature tun-
neling (LCT) approximation carried out by the large-curvature ground-state version 4 (LCG4)
method. The new method is more complete than the simpler microcanonically optimized mul-
tidimensional tunneling (µOMT) approximation, and in the tests presented here it is slightly
more accurate. The method has being incorporated in the POLYRATE computer program.



Chapter 4

Practical implementation and
applications of the least-action
tunneling transmission coefficient

In this Chapter we present two new direct dynamics algorithms for calculating transmission
coefficients of polyatomic chemical reactions by the multidimensional least-action tunneling
approximation. The new algorithms are called the interpolated least-action tunneling method
based on one-dimensional interpolation (ILAT1D) and the double interpolated least-action
tunneling (DILAT) method. The DILAT algorithm, which uses a one-dimensional spline under-
tension to interpolate both the effective potentials along the nonadiabatic portions of tunneling
paths and the imaginary action integrals as functions of tunneling energies, was designed for
the calculation of multidimensional LAT transmission coefficients for very large polyatomic
systems. The performance of this algorithm has been tested for the CH4/CD3H/CD4 + CF3

hydrogen abstraction reactions with encouraging results, i.e., when the fitting is performed
using 13 points, the algorithm is about 30 times faster than the full calculation with deviations
that are smaller than 5%. This makes direct dynamics least-action tunneling calculations
practical for larger systems, higher levels of electron correlation, and/or larger basis sets.

4.1. Introduction

Hydrogen and proton transfer reactions are among the most prominent reactive processes
in chemistry and biology. [58, 59] These reactions are often dominated by quantum mechan-
ical tunneling because the hydrogen atom, due to its small mass, can readily pass through
classically forbidden regions of a potential energy surface (PES). Tunneling effects can be
taken into account by rigorous quantum mechanical methods, [103, 112–123] which are only
applicable to systems with a small number of atoms, or by WKB-like semiclassical meth-
ods, [18, 25, 91, 97, 98, 124–131] which can handle a large number of atoms. Among the
semiclassical methods, variational transition state theory with multidimensional tunneling cor-
rections (VTST/MT) [16, 17, 29, 63–70, 82, 132, 133] is the best validated practical choice for
the study of chemical reactions with several atoms because, on the one hand, it has proved to
be very accurate when compared with quantum mechanical dynamics calculations[61, 82] and,
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on the other hand, it needs only semiglobal information about the PES and in many cases is
sensitive to the PES only near to the minimum-energy path.

The simplest case for VTST is when the transition state dividing surface (which is the
dynamical bottleneck for reaction) is located at a saddle point and quantum effects on the
reaction coordinate are negligible; in such a case all the information required for the evaluation
of thermal rate constants can be obtained from the reactants and the conventional transition
state. In this case VTST/MT can be safely replaced by conventional transition state theory. [26]
Unfortunately, this is hardly ever the case for hydrogen transfer reactions, which, unless they
have no barrier, are usually dominated by tunneling even up to temperatures well above room
temperature. [54–57, 134]

Even when variational effects (i.e., effects due to the variational transition state not being
located at a saddle point) are negligible, the incorporation of quantum effects in the VTST/MT
treatment of generalized transition states requires more information about the PES than just
reactants and transition state properties. Quantum effects are incorporated differently for the
reaction coordinate, which–for overbarrier processes–is the mode with an imaginary frequency
at the saddle point, and for the F -1 normal modes of bound motion perpendicular to the
reaction coordinate (where F -1 equals 3N -7 for nonlinear transition states and 3N -6 for linear
transition states, and where N is the number of atoms; the reaction coordinate is labeled as
mode F ). The thermal rate constant calculated by taking into account only the quantum
effects on the coordinates in motion is bound is called quasiclassical, and it is obtained by
replacing the classical vibrational partition functions by quantum-mechanical ones. [26, 51]
The quantum effects on the reaction coordinate are taken into account through a transmission
coefficient [51, 61, 72–74, 128] that multiplies the quasiclassical thermal rate constant. The
evaluation of the transmission coefficient requires the selection of a tunneling path or paths.

As a zeroth approximation one may assume that the tunneling path coincides with the min-
imum energy path (MEP) (the union of the steepest descent paths in isoinertial coordinates
down from the saddle point to reactants and that down to products [73, 76, 84]). When zero
point effects are taken into account for bound motions transverse to the MEP, this assumption
yields the zero-curvature tunneling (ZCT) approximation. [73] The signed distance from the
saddle point along the MEP will be called the reaction coordinate, even though the dominant
dynamical path may be offset from the MEP; the MEP is tangent to the imaginary-frequency
normal mode at the saddle point so this definition coincides with defining the reaction coordi-
nate in the vicinity of the saddle point as distance along that mode.

It has been shown that the ZCT path, i.e., the MEP, is a poor choice as tunneling path, [81,
82] since it does not take account of the MEP’s curvature, which couples the reaction coordinate
to the other vibrational modes. The curvature has the effect that the dominant tunneling path
is on the concave side of the reaction path and, depending on the magnitude of the curvature,
tunneling is better treated by the small-curvature tunneling (SCT) approximation [19, 86–
88] or by the large curvature tunneling (LCT) approximation [16, 17, 20, 21, 24, 87, 90–92],
for the cases of small and large couplings, respectively (for collinear atom-diatom reactions
with very small curvature one could also use the Marcus-Coltrin approximation [18]). The
path implied by the SCT approximation is not uniquely defined because the calculation is
carried out in terms of an effective mass for tunneling along the MEP rather than using the
true reduced mass along a tunneling path; the curvature-dependent effective mass is smaller
than the true reduced mass to account for shortening of the tunneling path by corner cutting.
The large-curvature tunneling approximation, in contrast, involves, for every energy, an explicit
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sequence of paths chosen as the straight lines that join equipotential points on the reactants and
products sides of the vibrationally adiabatic potential curves along the MEP. Neither the SCT
nor the LCT is variational; rather they represent limiting cases. However, the tunneling fluxes
predicted by the SCT and LCT approximations roughly overlap for intermediate curvature,
and so they more or less cover the whole range of curvatures. It is reasonable to define a new
tunneling probability that, at every tunneling energy, gives the larger of the SCT and LCT
tunneling probabilities. This result is called the (microcanonically) optimized multidimensional
tunneling probability (µOMT or, for short, OMT). [24] Note that the ZCT, SCT, LCT, and
OMT tunneling approximations are all multidimensional in that they all include the important
effect that the vibrational zero-point energy (or –in the LCT and OMT approximations– also
excited-state quantized vibrational energies) depends upon the distance along the reaction path
or tunneling path; thus the reaction coordinate is not separable in these approximations, and
this mimics VTST in removing one of the major approximations of conventional transition
state theory. For this reason, it is most appropriate to apply these approximations in the
context of VTST rather than conventional transition state theory. The SCT, LCT, and OMT
approximations include multidimensional effects not only in the vibrational energy requirements
along the tunneling path but also in the choice of the tunneling path.

Very recently [131] we have generalized to polyatomic reactions the least-action tunnel-
ing (LAT) path, which was initially developed by Garrett and Truhlar for atom-diatom reac-
tions. [25] In this approximation, one considers, for each tunneling energy and final vibrational
state, a sequence of paths parameterized by a unique parameter. These paths are all located at
or between the MEP and the LCT path. At every tunneling energy, the path is variationally
optimized within this sequence by choosing it as the path with the largest tunneling probability.
For this reason, in principle, the LAT transmission coefficients should be more accurate than
those obtained by the µOMT approximation.

The current version of the LAT method for ground-state transmission coefficients (which
are used to calculate thermally averaged rate constants [17]) may be called the least-action
ground-state tunneling method, version 4 (LAG4) because we always base the transmission
coefficients for thermal reactions on a ground-state transmission coefficient (computed in the
exoergic direction) and because the LCT-like portions of the calculation are based on version 4
of the LCT method. (Note that although the reactant is in the ground state for the prototype
tunneling process on which the calculation of the thermally averaged rate is based, a range of
vibrational states is populated in the product of the tunneling event, if the energy is high enough
to populate dynamically coupled states in the product valley, and tunneling for excited-state
reactants is approximated in terms of the ground-state tunneling probabilities and the quantized
threshold energies at the variational transition state.) The present Chapter is concerned with
the calculation of LAG4 transmission coefficients, and we will simply abbreviate them as LAT.
Similarly we use LCT as shorthand for LCG4.

The LCT, µOMT, and LAT transmission coefficients are more computationally intensive
than the SCT one because, whereas the SCT transmission coefficient can be obtained from a
very limited knowledge of the PES, i.e., from information calculated along the MEP (including
its curvature and local force constants for motion transverse to the MEP), the calculation of
the other transmission coefficient approximations requires information not only along the MEP
but also in the wide region on the concave side the MEP; this region is called the reaction
swath [135, 136], and it is the region through which LCT and LAT tunneling paths pass. The
LCT, µOMT, and LAT transmission coefficients involve the calculation of a potentially large



48 4.2. Methodology

number of points of the PES in the reaction swath. The development of faster computers and
more accurate density functionals has made it possible in many cases to evaluate the energy
reasonably accurately at those geometries by direct dynamics, which allows ”the calculation of
rates or other observables directly from electronic structure information without intermediacy
of fitting the electronic energies in the form of a potential energy surface.” [137] Direct dynamics
together with VTST/MT is a powerful combination that, for instance, is being widely used in
the evaluation of thermal rate constants and kinetic isotope effects (KIEs) of many enzymatic
reactions.[138]

However, the calculation of LCT and LAT transmission coefficients by direct dynamics is
still computationally very demanding if one uses the original algorithms. For that reason we
developed an algorithm (called ILCT2D) based on a two-dimensional spline-under-tension, [139]
to evaluate LCT tunneling probabilities with a reduction in the computer time by a factor of
about 30. [23] The error with respect to the full calculation is less than 1%. It is the objective
of the present work to present an analogous efficient algorithm based on spline-under-tension
interpolations for calculation of LAT transmission coefficients using direct dynamics, and we
will present two such algorithms. To show the performance of the new algorithms, we have
chosen the following set of hydrogen abstraction reactions:

CH4 + CF3 −−→ CH3 + HCF3 (R1)

CD3H + CF3 −−→ CD3 + HCF3 (R2)

CD3H + CF3 −−→ CD2H + DCF3 (R3)

CD4 + CF3 −−→ CD3 + DCF3 (R4)

which we have previously studied using the SCT, LCT (with the ILCT2D algorithm), and
µOMT approximations for tunneling. [23] The calculated thermal rate constants were in good
agreement with experimental data. However, the calculated KIEs were too low, particularly
those for the ratio R2/R3. In this paper, in addition to developing a more efficient algorithm
for LAT calculations, we use it to apply the LAT approximation to these reactions to see if
this method improves the previous results.

Section 4.2 presents a general description of the evaluation of tunneling transmission coeffi-
cients and presents the new interpolation schemes used for efficient direct dynamics calculations
of LAT transmission coefficients. Section 4.3 describes the performance of those interpolation
schemes for reactions R1 to R4. Section 4.4 has concluding remarks.

4.2. Methodology

The VTST/MT thermal rate constant [16, 17] can be written as the quasiclassical canoni-
cal variational theory (CVT) rate constant kCVT(T ) multiplied by the tunneling transmission
coefficient, κCVT/X(T ), i.e.

kCVT/X(T ) = κCVT/X(T )kCVT(T ) (4.1)

where X stands for the ZCT, [73] SCT, [88] LCT, [21, 24, 25] µOMT, [24] or LAT [25, 131]
approximations for tunneling. In general κCVT/X(T ) is equal to a so called CAG factor (called
κCVT/CAG(T ) and almost always very close, within about 15 per cent, to unity) times a more
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universal transmission coefficient called κX(T ). Since the CAG factor is explained in detail
elsewhere, [16, 17, 128] we concentrate here on κX(T ).

The ZCT approximation assumes that the reaction coordinate is adiabatically separated
from the F -1 other degrees of freedom and that all the excited-state vibrationally adiabatic
potentials that significantly contribute to tunneling have the same shape as the ground-state
vibrationally adiabatic potential V G

a (s), which is given by:

V G
a (s) = VMEP(s) + ǫGvib(s) (4.2)

where s is the reaction coordinate mentioned in the introduction (it measures progress along
the isoinertial MEP, being negative on the reactants side, zero at the saddle point, and positive
on the products side, where the isoinertial coordinates are scaled to a reduced mass of µ);
VMEP(s) is the potential along the MEP; and ǫGvib(s) is the local zero-point vibrational energy.
The other tunneling approximations also involve the V G

a (s), but in more complicated ways.
The lowest energy at which is possible to have tunneling is the energy of the reactant

zero-point level when the reaction is written in the exoergic direction; this is called E0. The
transmission coefficient is given by:

κX(T ) = β exp(βV AG
a )

∫ ∞

E0

dEPX(E) exp(−βE) (4.3)

where β = (kBT )−1, kB is the Boltzmann constant, and T is the temperature; V AG
a is the

maximum of the ground-state vibrationally adiabatic potential; and PX(E) is the ground-state
semiclassical probability at energy E, which is approximated in the ZCT and SCT approxima-
tions as

PX(E) =















0, E < E0

{1 + exp[2θ(E)]}−1, E0 ≤ E ≤ V AG
a

1 − PX(2V AG
a − E), V AG

a ≤ E ≤ 2V AG
a − E0

1, 2V AG
a − E0 < E

(4.4)

where θ(E) is the imaginary part of action integral. When X = µOMT, the tunneling proba-
bilities are obtained as: [24]

PµOMT(E) = max
E

{

P SCT(E)
PLCT(E)

(4.5)

where PLCT is obtained from a more complicated expression than P SCT.
In the LCT and LAT approximations, one must sum over tunneling probabilities from the

ground state of the reactants to all accessible diabatic vibrational states of the product. In
many cases, only the ground-state-to-ground-state process need be considered. Even when the
excited states of the product must be considered, it is sufficient to consider the ground-state-
to-ground-state case to explain the new algorithms being introduced here, and so we limit
our consideration to the ground-state-to-ground-state case. (We previously found [23] that
tunneling into excited vibrational states does not make a large contribution for the reactions
under consideration here.)

For a given tunneling path, the imaginary part of the action integral is given by:

θ(E) = ~
−1

∫ ξ1

ξ0

Imp(ξ)dξ (4.6)
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where ξ is a progress variable along the tunneling path; ξ0 and ξ1 mark the beginning and end
of the tunneling path, respectively; and Imp(ξ) is the imaginary part of the momentum in the
tunneling direction, which is written as:

p(ξ) = {2µeff(ξ)[E − Veff(ξ)]}1/2 (4.7)

where µeff(ξ) and Veff(ξ) are respectively the effective reduced mass and the effective potential
along the tunneling path. The calculation of the transmission coefficient of Eq. (4.3) requires
the evaluation of tunneling probabilities at several energies, and these depend on the tunneling
paths. For X = ZCT the tunneling path coincides with the MEP, and therefore the progress
variable along the path is s, and the effective potential is given by the ground-state vibrationally
adiabatic potential given by Eq. (4.2). The effective mass µeff(s) equals µ. Therefore, in the
ZCT approximation the action integral, at every tunneling energy, is given by:

θ(E) = ~
−1

∫ s̃1

s̃0

ds{2µ(V G
a (s) − E)}1/2 (4.8)

where s̃0 and s̃1 are the classical turning points in the reactant and product valleys, respectively.
Both turning points obey the resonance condition:

V G
a (s̃0) = V G

a (s̃1) = E (4.9)

and therefore it is equivalent to write θ(E) or θ(s̃0) in Eq. (4.8).

The coupling between the reaction coordinate and the F − 1 other modes produces an
internal centrifugal effect that shortens the dominant tunneling path at a given energy by
displacing it toward the concave side of the MEP. The SCT approximation incorporates this
effect in the effective mass for tunneling without an explicit evaluation of the tunneling path.
The SCT action integral is given by:

θ(E) = ~
−1

∫ s̃1

s̃0

ds{2µeff(s)(V G
a (s) − E)}1/2 (4.10)

It should be noticed that now the effective mass depends on the progress along the MEP
and that µeff ≤ µ. For this reason the SCT transmission coefficient is always larger or equal
than the ZCT transmission coefficient.

To evaluate the LAT tunneling probability, one must calculate the action integrals of a
family tunneling paths that depend on a parameter α; these paths correspond to the MEP
when α = 0 and to the LCT path, which is a straight path, for α = 1. Let ξP(0) be the length
of the tunneling path along the MEP from s̃0 to s̃1 (this is equal to s̃1 − s̃0), and let ξP(1) be
the length of the straight-line path, which is shorter. Then, the geometry of a point on the
path with parameter α is given by

x [α, ξ(α), s̃0] = (1 − α)x [0, ξ(0), s̃0] + αx [1, ξ(1), s̃0] (4.11)

where x [0, ξ(0), s̃0] and x [1, ξ(1), s̃0] are respectively geometries on the MEP and on the straight
path; thus ξ(1) is equal to ξ(0) times the ratio of ξP(1) to ξP(0). Consequently, the progress
variable ξ depends on the value of the α parameter, and ξ(1) is less than or equal to ξ(α),
which is less than or equal to ξ(0). The probabilities along the series of paths of Eq. (4.11) may
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involve regions of the PES that are vibrationally nonadiabatic (see Refs. [17, 131] for details),
so in general the action integral is split into three terms:

θ(α, E) = θI(α, E) + θII(α, E) + θIII(α, E) (4.12)

The action integrals θi(α, E), with i equal to I and III correspond to the adiabatic regions
on the reactants side (i = I) and on the products side (i = III), respectively, and they are given
by the following expressions:

θI(α, E) = ~
−1

∫ ξI(α)

0
dξ(α)

{

V G
a [sI(0, ξ(0)); s̃0)] − V G

a (s̃0)
}1/2

cos χ0, (4.13)

θIII(α, E) = ~
−1

∫ ξP(α)

ξIII(α)
dξ(α)

{

V G
a [sIII(0, ξ(0)); s̃0)] − V G

a (s̃0)
}1/2

cos χ1 (4.14)

The total length of the path is ξP(α); and the values ξi(α) i = I, III indicate boundaries of
the adiabatic region. Each of the si(0, ξ(0)), i = I, III values needed for the evaluation of
the vibrationally adiabatic potentials V G

a [si(0, ξ(0)); s̃0)] is obtained in such a way that the
vector defined by the geometry x [α, ξ(α), s̃0] and the reaction path geometry x [0, ξ(0), s̃0] is
perpendicular to the derivative of x [0, ξ(0), s̃0] with respect to s at that s value, i.e.,

{x [α, ξ(α), s̃0] − x [0, ξ(0), s̃0]} ·
dx [0, ξ(0), s̃0]

ds
= 0 (4.15)

The angles between the gradient and tangent vector to the path at s̃0 and s̃1 are χ0 and χ1,
respectively. If the entire path is adiabatic (i.e., if there is no region II) there will be overlap
between regions I and III in the interval ξIII(α) ≤ ξ(α) ≤ ξI(α) and the vibrationally adiabatic
potential in that region is taken to be

min
{

V G
a [sI(0, ξ(0)); s̃0)] , V

G
a [sIII(0, ξ(0)); s̃0)]

}

(4.16)

The action integral through the nonadiabatic region is given by:

θII(α, E) = ~
−1

∫ ξIII(α)

ξI(α)
dξ(α)

{

V II
eff(α, ξ(α), s̃0) − V G

a (s̃0)
}1/2

(4.17)

The effective potential V II
eff(α, ξ(α), s̃0) is obtained from

V II
eff(α, ξ(α), s̃0) = V {x [α, ξ(α), s̃0]} + V I

corr(α, ξI(α), s̃0) + V I
anh(α, s̃0)

+
ξ(α) − ξI(α)

ξIII(α) − ξI(α)

[

V III
corr(α, ξIII(α), s̃0) − V I

corr(α, ξI(α), s̃0) + V III
anh(α, s̃0) − V I

anh(α, s̃0)

]

(4.18)

In this expression the potentials V i
corr(α, ξi(α), s̃0), i = I, III correct for the zero-point energy

in the modes that still behave adiabatically. The potentials V i
anh(α, s̃0) incorporate anharmonic

nonquadratic corrections to the effective potential in the same way as in eq 5 of the LCT
method. [21] The geometries x [α, ξ(α), s̃0], needed for the evaluation of the classical potential
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V {x [α, ξ(α), s̃0]}, are obtained from the straight path joining the geometries x [α, ξI(α), s̃0]
and x [α, ξIII(α), s̃0], i.e.,

x [α, ξ(α), s̃0] = x [α, ξI(α), s̃0] +
ξ(α) − ξI(α)

ξIII(α) − ξI(α)

(

x [α, ξIII(α), s̃0] − x [α, ξI(α), s̃0]

)

(4.19)

We note that the LCT expressions are obtained for the effective potential of Eq. (4.18) and
the action integrals of Eqs. (4.12), (4.13), (4.14), and (4.17) when α = 1.

Converged probabilities at every tunneling energy are obtained by the numerical integration
of Eqs. (4.13), (4.14), and (4.17) at N points along the path; for the present work we set N
= 180. If there is a nonadiabatic region, then NI of those N points belong to region I, NII

are in region II, and NIII are in region III. The potential in regions I or III is obtained from
the vibrationally adiabatic potential along the MEP. However, the effective potential at the
geometries obtained from Eq. (4.19) requires single-point calculations of the potential energy
at points ξi(α), i = 1, ..., NII, where ξ1(α) = ξI(α) and ξNII

(α) = ξIII(α). We found that the
evaluation of the LCT transmission coefficients by the interpolated large-curvature tunneling
algorithm based on one-dimensional interpolation (ILCT1D) [22] of these potential energies
almost perfectly reproduces the specifically calculated potentials V {x [1, ξ(1), s̃0]} when the
NII points are replaced by NS = 9 equally spaced points which are interpolated by a one-
dimensional spline-under-tension. [140, 141] If, at a given tunneling energy, NII < 9 then no
interpolation is carried out along the nonadiabatic region of the tunneling path. Similarly, the
above procedure can be used to obtain the LAT transmission coefficients; the only difference
being that now NS points are used to evaluate the α-dependent effective potential of Eq. (4.18).
We call this algorithm the interpolated least-action tunneling method based on one-dimensional
interpolation (ILAT1D).

The calculation of transmission coefficients by the full-LAT method (without any inter-
polation) using direct dynamics requires a large amount of computer time, so we tested the
performance of the ILAT1D algorithm by using analytical PESs. We used the same analytical
PESs as for the testing of the ILCT1D method and found that the mean unsigned percentage
error (MUPE) of the ILAT1D algorithm with respect to a full LAT calculations (as a reference)
is smaller than 0.20% in the interval from T = 200 to 400 K (see Appendix A for further details
of these tests). Therefore, we believe that the transmission coefficients obtained by the ILAT1D
algorithm can safely replace full LAT calculations without loss of accuracy. Hereafter, we use
the ILAT1D algorithm as a reference in the development of more approximate algorithms, as
discussed below.

The ILAT1D algorithm is still very expensive in computer time, since the value, α̃, of α
that minimizes the action of Eq. (4.12) is obtained by a golden section search [142] at every
tunneling energy. Therefore, we developed another, even more efficient algorithm that further
reduces the number of tunneling energies at which the least-action integral, θ(α̃, E), has to be
explicitly computed. The method is described next.

In the ILAT1D algorithm the least-action integral is evaluated at tunneling energies Ei, i =
1, . . . , M , with E1 being the lowest energy at which it is possible to locate the classical turning
points that determine the straight path and M being the number of tunneling energies (all below
the maximum of the vibrationally adiabatic potential) at which the tunneling probabilities are
calculated. In general one has 40 ≤ M ≤ 80. The tunneling energies that are computationally
most demanding are those for which there is a nonadiabatic region for some of the possible
tunneling paths. It should be noticed that the absence of nonadiabatic region at a given



4. Practical implementation and applications of the LAT transmission coefficient 53

tunneling energy along the LCT path means also the absence of nonadiabatic regions at any of
the α-dependent paths at that tunneling energy and that makes the LAT and LCT probabilities
to coincide. The potential in the adiabatic region is readily available, because it can be obtained
from information along the MEP. Therefore the effort in developing the more efficient algorithm
is focused on the Ei, i = 1, . . . , MII tunneling energies with nonadiabatic regions along the
straight path, where Ei=MII

is the highest tunneling energy for which there is a nonadiabatic
region along the LCT path. It is possible to reduce computer time by explicitly evaluating
the least-action integral at MS tunneling energies instead of at MII tunneling energies. The
remaining least-action integrals are obtained implicitly by interpolation with a one-dimensional
spline-under-tension. The MS tunneling energies are chosen in such a way that E1 and EMII

are
the first and last energies of the fit, respectively, and the remaining MS − 2 energies are taken
as equally spaced between those two values. (We also considered interpolating α̃ instead of
θ(α̃, E), but we found, as shown in Section 4.3, that the latter is a much better choice because
θ(α̃, E) changes smoothly with the tunneling energy.) In summary, the new algorithm uses one-
dimensional interpolation for both the tunneling paths and the optimized action integrals, and
therefore we call the method the double interpolated least-action tunneling (DILAT) method.

The remaining steps are explained fully in previous discussions of the LCT and LAT meth-
ods [17, 87, 131, 143] and so are only briefly summarized here. The least-action integrals
obtained at every tunneling energy are used to compute tunneling amplitudes defined by

TLAT
tun (α̃, s̃0) = TLAT

tun (α̃, s̃1) = exp [−θ(α̃, s̃0)] (4.20)

The LAT primitive probability at every tunneling energy, using either the ILAT1D or the
DILAT algorithm, is obtained from the tunneling amplitude of Eq. (4.20) plus the contribution
due to the vibrational motion perpendicular to the reaction coordinate along the incoming and
outgoing trajectories. The LAT primitive probability is then uniformized such that it goes
to 1/2 at the maximum of the ground-state vibrationally adiabatic potential. The resulting
LAT tunneling probabilities are also used for the calculation of the nonclassical over-the-barrier
tunneling probabilities, as in Eq. (4.4).

Note the the µOMT transmission coefficient is always equal to both the SCT and LCT
ones, and the LAT transmission coefficient is always great than or equal to the LCT one.
However, the LAT transmission coefficient can be either greater than or smaller than the SCT
one, because the LAT paths lie between the MEP and LCT paths, but the LAT method does
not incorporate the small-curvature limit explicitly.

A full calculation of the LAT transmission coefficients scales as M × N × L, since for each
of the M tunneling energies, we need to perform L iterations to obtain a converged least-action
integral on tunneling paths obtained with N single-point calculations. Typical values for these
parameters are M = 60, N = 180 and L = 25, which involves approximately 3 × 105 single-
point energy calculations. Many of those points fall in the adiabatic regions, so they can be
readily calculated from the information available along the MEP, and only the evaluation of
the effective potential of nonadiabatic region II requires additional direct dynamics electronic
structure calculations. The number of points in the nonadiabatic region in the full calculation
would be MII × N̄II × L, where N̄II is the average of nonadiabatic points at every tunneling
energy. The size of the nonadiabatic region depends on the PES, but reasonable numbers for
MII and N̄II are 40 and 50, respectively, and therefore the number of single point calculations in
the nonadiabatic region is approximately 5× 104. The ILAT1D algorithm reduces the number
of single point calculations to MII×NS×L such that it requires approximately 9000 single point
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calculations in the nonadiabatic region. The DILAT algorithm reduces further the number of
single-point calculations by the ratio MII/MS .

The ILAT1D and the DILAT algorithms for the calculation of LAT transmission coefficients
using direct dynamics have been implemented in a development version of POLYRATE [102],
and we plan that they will be made available in an upcoming new version of the program.
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Figure 4.1: Plot of the α parameter versus the tunneling energy (E, in kcal·mol−1) relative to the
reactants at their equilibrium separation without zero point energy. The dots correspond to the values
of α at which there are local minima of the imaginary action integral at every of the calculated tunneling
energies. The solid line joins the global minimum of the α parameter, α̃, at every tunneling energy.

4.3. Applications

The electronic structure calculations needed for the evaluation of LAT transmission coeffi-
cients for reactions R1 to R4 using the ILAT1D and DILAT algorithms were performed with
the MPWB1K [144] density functional using the 6-31+G(d,p) basis set. [145] The details of the
electronic structure calculations can be found in Ref. [23]. The previous calculations showed
that the maximum of the vibrationally adiabatic potential occurs at the saddle point, that is,
V AG

a = V ‡G
a , and that there are no variational effects in the interval of temperatures between

200 and 700 K, so the variational dividing surface is located at the conventional transition
state. Besides, κCVT/X(T ) of Eq. (4.1) equals κX(T ) because κCVT/CAG(T ) = 1.

Figure 4.1 shows that the values of α̃ at different tunneling energies may change abruptly,
which makes a fit of α̃ as a function of tunneling energy quite difficult and inaccurate, and
instead we chose to interpolate the action integrals corresponding to α̃. It is noteworthy that
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Figure 4.2: The solid line shows the variation of the imaginary action integral, θ(α̃, E), of Eq. (4.12)
with the tunneling energy (in kcal·mol−1).

there are several tunneling energies with two or even three local minima for the imaginary
action integral. However, even in this difficult case, an interpolation of the least-action integral
as a function of tunneling energy is easier to perform than an interpolation of α̃ due to the
smooth behavior of θ(α̃, E), as shown in Figure 4.2.

Table 4.1 lists the number of single-point calculations needed to evaluate the effective po-
tential of Eq. (4.18) for R1 for the calculation of the LAT transmission coefficients with the
ILAT1D and DILAT algorithms (the number of points for R2, R3, or R4 is similar than for
R1 and is not shown in the table). We use as reference calculations those obtained by the
ILAT1D algorithm. The ILAT1D algorithm allows one to obtain LAT transmission coefficients
7.5 times faster than the full LAT calculation. In this case the DILAT algorithm is 50 and 20
times faster than the full calculation for MS = 7 and 17 points, respectively. The next step
would be to test the accuracy of the LAT transmission coefficients by the DILAT algorithm by
finding the optimum number of MS points that give the best compromise between accuracy
and computational cost. The procedure to obtain the transmission coefficients was the one
described in the previous section, i.e., a set of θ(α̃r, Er) values at energies Er, r = 1, . . . , MS

is chosen, with Er=1 being the lowest tunneling energy at which it is possible to locate the
classical turning points on the MEP for defining the straight path and Er=MS

being the last
tunneling energy at which there is a nonadiabatic region along the straight path.

The deviation from the ILAT1D values of the DILAT transmission coefficients for different
numbers of fitting points is given in Table 4.2 and plotted in Figure 4.3 for reactions R1 to
R4. For the present study we have considered temperatures from 250 to 400 K, which for
many practical applications is the temperature range for which one needs to evaluate the
tunneling. At T = 250 K the smallest value of MS that yields an accuracy better than 5%
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Figure 4.3: MUPEs for η1,4 and η2,3 KIEs R1 to R4 obtained by the DILAT algorithm using different
fitting points to a spline-under-tension with respect to those LAT values obtained with the ILAT1D
algorithm. The solid line plots the MUPE obtained at T = 250 and 300 K.

is MS = 13 (and an interpolation with this value is hereafter called DILAT(13)). However,
the interpolation using MS = 7 (hereafter DILAT(7)), although it gives MUPES about three
times larger than DILAT(13), yields small errors when compared with MS = 9 or MS = 11
points and is about two times faster than DILAT(13), so comparisons involving both of them
are interesting. At T=300 K all the MUPEs are smaller, with the largest errors for DILAT(7)
and DILAT(13) being 6% and 1.7%, respectively. For reactions R1 to R1 Table 4.3 shows
the DILAT(7) and DILAT(13) transmission coefficients together with the reference ILAT1D
transmission coefficients.

In general Table 4.2 shows convergence to about 5% at 250 K and to about 1% at 300 K.

Table 4.1: Number of single-point calculations (NSP) in the nonadiabatic region needed for the calcu-
lation of the LAT transmission coefficients with selected values of MS for reaction R1

Level MS NSP

Full 43 137895
ILAT1D 43 18564
DILAT 7 2809

9 3699
13 5165
17 7264
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Table 4.2: MUPEs for reactions R1 to R4 of the LAT transmission coefficients obtained by DILAT for
different numbers of fitting points, MS , when compared with ILAT1D reference values

MUPE

MS R1 R2 R3 R4

T = 250 K
5 16.56 17.76 1.70 18.11
7 7.88 7.12 2.08 0.61
9 9.54 11.32 6.17 1.33
11 9.00 12.12 0.54 3.58
13 0.51 1.28 3.06 2.27
15 1.74 2.59 0.77 5.25
17 0.51 2.15 0.02 4.86
19 3.68 5.10 0.63 5.83

T = 300 K
5 13.06 14.12 1.19 4.62
7 6.06 5.20 0.27 1.04
9 9.85 9.90 2.93 1.31
11 8.79 9.31 0.29 0.69
13 1.30 1.67 1.39 0.40
15 1.39 2.13 0.36 1.21
17 0.61 1.79 0.01 0.97
19 4.02 4.28 0.36 1.56

The transmission coefficients are compared in Table 4.3. To compute the KIEs η1,4(T ) ≡
kR1(T )/kR4(T ) and η2,3(T ) ≡ kR2(T )/kR3(T ) using several tunneling approximations we have
factored them into two contributions,

ηTST/X(T ) = ηX
tun(T )ηTST(T ) (4.21)

In Eq. (4.21) ηX
tun(T ) includes quantum effects (tunneling plus nonclassical reflection) on

the reaction coordinate using the approximation X, where X = SCT, LCT, µOMT, or LAT,
and ηTST(T ) includes the symmetry numbers, the classical translational and rotational con-
tributions, and the quasiclassical quantized vibrational contribution. (There is no potential
energy contribution in the cases considered here because the variational transition state is the
conventional transition state for these reactions.)

Table 4.4 lists the KIEs obtained by the different tunneling approximations together with
the experimental [146, 147] data. In general, all the methods underestimate the observed KIEs
although the ones obtained with the LAT approximation for tunneling are in better agreement
with experimental values. The LCT transmission coefficients may underestimate the tunneling
contribution in same cases, as was pointed out by Sansón et al.[107], however the KIEs obtained
by this approximation are quite similar to the LAT ones. The µOMT approximation gives
similar results to those obtained with the LAT approximation for the hydrogen abstraction
processes, but it gives larger values for the deuterium transfer. Therefore, this discrepancy is
due to the magnitude of the SCT transmission coefficients for deuterium transfer, which has the
effect of decreasing the calculated KIEs. In any case the η2,3(T ) KIEs calculated using the LAT
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Table 4.3: Transmission coefficients for reactions R1 to R4

Reaction T (K) SCT LCTa µOMTa LATb

ILCT2D DILAT(7) DILAT(13) ILAT1D

R1 250 21.9 28.1 31.4 39.4 36.1 36.3
300 9.18 9.26 10.7 11.6 10.7 10.9
350 5.32 4.97 5.78 5.75 5.43 5.52
400 3.69 3.37 3.88 3.73 3.57 3.62
500 2.37 2.16 2.42 2.28 2.22 2.25

R2 250 16.1 15.8 18.2 19.6 18.0 18.2
300 7.40 6.83 7.91 7.79 7.27 7.39
350 4.54 4.13 4.74 4.50 4.27 4.33
400 3.27 2.98 3.36 3.16 3.03 3.07
500 2.18 2.02 2.22 2.09 2.03 2.06

R3 250 15.2 10.7 16.0 11.8 11.7 12.1
300 6.52 4.60 6.68 4.84 4.76 4.83
350 3.94 2.92 3.98 3.00 2.98 2.99
400 2.85 2.22 2.86 2.26 2.24 2.25
500 1.95 1.64 1.95 1.66 1.65 1.65

R4 250 14.3 10.3 15.3 11.7 11.9 11.6
300 6.29 4.49 6.47 4.65 4.68 4.70
350 3.85 2.87 3.90 2.92 2.92 2.83
400 2.80 2.20 2.82 2.22 2.22 2.22
500 1.93 1.63 1.93 1.64 1.64 1.64

a From Ref. [23]. There are errors in Table 7 of Ref. [23]; the correct values of the LCT
and µOMT transmission coefficients are listed here.
b LAT transmission coefficients.

approximation for tunneling are still too small when compared to the available experimental
data. From these values we arrive to the same conclusions as in Ref [23], i.e., at the moment
we cannot explain this discrepancy, and we encourage further experiments on these systems.

Finally, it is interesting to analyze the errors (with respect to a ILAT1D calculation) of the
DILAT method, not just in the case of the transmission coefficients, but also in the context
of the KIEs. In the worst scenario the largest error in the evaluation of the KIEs would be
the sum of the MUPEs, i.e., assuming no error cancellation. Using this worst-case possibility,
we establish a maximum error of the DILAT(7) algorithm at T = 250 K of 9% for η1,4(T )
and η2,3(T ). For DILAT(13), these errors go down to 3% and 4% for η1,4(T ) and η2,3(T ),
respectively. In round numbers, the errors of the DILAT(7) and DILAT(13) algorithms, at T
= 250 K, are smaller than 10% and 5%, respectively. In fact the errors, as shown in Figure 4.3,
due to error cancellation are 7% and 4% for η1,4(T ) and 9% and 2% for η2,3(T ) using DILAT(7)
and DILAT(13), respectively.

At T = 300 K, if we assume no error cancellation, the MUPEs for η1,4(T ) and η2,3(T ) would
be about 7% and 3% for DILAT(7) and DILAT(13), respectively. Similar calculated errors are
obtained for DILAT(7), but when using DILAT(13) the calculated MUPEs are less than 1%
for both of the two evaluated KIEs. These results are very encouraging, especially when we
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Table 4.4: Calculated KIEs using various approximations for tunneling. The last column lists the
experimental KIEs

T (K) ηTST(T ) ηTST/SCT(T ) ηTST/LCT(T ) ηTST/µOMT(T ) ηTST/LAT a
(T ) ηexp(T)

b

R1/R4
250 7.8 11.9 21.3 16.0 26.3 23.7 24.4 –
300 5.8 8.4 11.9 9.6 14.5 13.3 13.5 –
350 4.6 6.4 8.0 6.8 9.1 8.6 9.0 –
400 3.9 5.1 6.0 5.4 6.5 6.3 6.4 6.5c

500 3.0 3.7 4.0 3.8 4.2 4.1 4.1 4.8c

R2 / R3
250 5.7 6.0 8.4 6.5 9.4 8.8 8.6 –
300 4.4 5.0 6.5 5.2 7.1 6.7 6.7 –
350 3.7 4.3 5.3 4.4 5.7 5.3 5.4 13.0
400 3.2 3.6 4.3 3.2 4.5 4.3 4.4 8.5
500 2.6 2.9 3.2 3.0 3.3 3.2 3.2 5.0

a LAT transmission factors obtained with DILAT(7), DILAT(13) and ILAT1D
algorithms are listed in columns 6, 7 and 8, respectively.
b From Refs. [146] and [147].
c Erratum in Table 8 of Ref. [23]; the correct values of the experimental KIEs are listed here.

take into account that the DILAT(7) and DILAT(13) methods are, respectively, 6.6 and 3.6
times faster than ILAT1D and about 50 and 30 times faster than the full (uninterpolated)
calculation. It should also be noticed that this is a difficult case with two or three minima
in the action integral at every tunneling energy, so for reactions with a less abrupt PES, the
errors are expected to be smaller. The present results show that the DILAT(13) algorithm is
reliable above T = 250 K to within 5% for the cases studied, although more testing would be
needed to make broadly applicable statements of this nature.

4.4. Concluding remarks

We have presented two algorithms for efficient direct dynamics evaluation of the LAT trans-
mission coefficients for polyatomic reactions. The interpolated least-action tunneling method
based on one-dimensional interpolation (ILAT1D) uses the same philosophy as the previous
ILCT1D algorithm; in particular, both make use of spline-under-tension interpolations for the
effective potentials in the nonadiabatic regions of the tunneling paths. This algorithm, de-
pending on the system, is about 5 to 10 times faster than the full calculation without loss
of accuracy. However, the ILAT1D procedure is still quite expensive for polyatomic systems,
so we have developed a much less expensive algorithm called double interpolated least-action
tunneling, DILAT, which employs one-dimensional interpolations of not only the effective po-
tential along nonadiabatic portions of the tunneling paths but also of the values of the action
integrals as functions of energy; this even simpler method still provides quite accurate results.
The performance of the DILAT algorithm was tested for four hydrogen/deuterium abstraction
reactions and we found that the optimum number of effective potential energies to be calculated
in the nonadiabatic region is MS = 13. The DILAT method based on 13 tunneling energies can
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be from 3 to 5 times faster than the ILAT1D algorithm, depending on the characteristics of
the nonadiabatic region, but with an error of less than 5%. The method is being incorporated
into the POLYRATE computer program.

The LAT calculations do not account for the discrepancy from experimental η2,3(T ) KIEs
of the previously computed KIEs that were based on the less accurate LCT approximation.
This discrepancy remains unexplained.



Chapter 5

Tunneling transmission coefficients
for large systems

The accurate evaluation of quantum effects is of great importance in many reaction pro-
cesses. Variational transition state theory with multidimensional tunneling is the natural choice
for the study of these reactions, because it incorporates quantum effects through a multiplicative
transmission coefficient and it can deal with large systems. Currently, the main approximation
used for taking into account tunneling is the small-curvature approximation, mainly because
the large curvature and the least-action approximations are computationally very demanding
and their use it is usually associated to small systems. Here we describe two algorithms based
on splines under tension, which allow the evaluation of these two transmission coefficients for
large systems. The analysis of kinetic isotope effects on a model reaction show that the least-
action transmission coefficient should be used instead of the more inexpensive, but probably
less accurate small curvature transmission coefficient.

5.1. Introduction

The contribution of the theoretical methods to the understanding of complex reaction mech-
anisms relies on both, the accuracy of the electronic structure calculations and the reliability
of the dynamics models. The electronic structure calculations provide us with the potential
energy surface and the thermochemistry of the reaction, whereas the dynamics models provide
us with the kinetic parameters (for instance, thermal rate constants). There are reactions for
which the thermochemical calculations are sufficient to disregard a given proposed mechanism,
without proceeding further, i.e., it is enough to know the relative stability of all the stationary
points (reactants, intermediates and transition states) to decide the reaction path. This is
usually the case for reactions in which classical dynamics effects (recrossing) and/or quantum
dynamics effects (tunneling) are not significant. Besides, if we need to evaluate the thermal
rate constants, conventional transition state theory (CTST), [26, 27] which only requires infor-
mation at reactants and the transition state, would be adequate. On the other hand, there are
systems with a small number of atoms (about 6 or 7) for which it is now possible to evaluate
accurately the thermal rate constants by quantum dynamical methods. However, there is a
large number of chemical reactions which do not fall in any of these categories, i.e., they are
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too big to be treated by quantum dynamics and they present dynamical effects which cannot
be handled by CTST. For instance, this is the case for most of the proton transfer reactions.

Proton transfer reactions are probably the most important group of processes that take place
in Chemistry and Biology. [58, 59] Protons, because of their light weight, can undergo tunneling,
i.e. they can penetrate quite easily through classically forbidden potential energy barriers. [49–
53] Therefore, tunneling is a quantum mechanical effect that can not be taken into account by
classical methods (like for instance, classical trajectories). On the other hand, the applicability
of quantum dynamics is reduced to small systems, so we have to find alternative methodologies
able to deal with tunneling in large systems. Methods based on semiclassical methods, such as
the Wentzel-Kramers-Brillouin (WKB) approximation, [127] meet those requirements, they can
be used for large systems and include quantum mechanical tunneling using classical concepts.
In the WKB approximation tunneling is considered as the penetration through a barrier with
negative kinetic energy so the momentum and the action are imaginary. Usually the error
introduced by semiclassics regarding to quantum calculations is about 15%.

Variational transition state theory [16, 17, 29, 63–70] with multidimensional corrections for
tunneling (VTST/MT) is a semiclassical (WKB like) theory based on CTST, which incorpo-
rates both classical dynamics effects (recrossing) and quantum mechanical tunneling. It has
been tested against quantum mechanical calculations for several atom–diatom reactions and
for the polyatomic H + CH4 → H2 + CH3 hydrogen abstraction reaction.[103] In general, the
comparison showed a very good agreement, so it makes VTST/MT one of the most suitable
candidates to study proton transfer reactions. It is not our intention to explain all the aspects
related to VTST, which can be looked up in a recent review [17], so hereafter we focus mainly
our attention onto the tunneling effect, since for most of the proton transfer reactions is a
crucial phenomena.

The most common version of VTST is canonical variational transition state theory
(CVT) [66, 77], in which the rate constants are calculated considering a fixed-temperature
ensemble. The CVT/MT thermal rate constant, kCVT/X, is given by

kCVT/X(T ) = κCVT/X(T )kCVT(T ) (5.1)

where kCVT(T ) is the CVT thermal rate constant that minimizes the one-way flux from
reactants to products through trial dividing surfaces that cross the reaction path at sev-
eral points. The reaction path is chosen as the minimum energy path (MEP) in isoinertial
coordinates,[73, 76] scaled to a reduced mass of µ, and the signed distance along this path is la-
beled as s. By convention s = 0 indicates the location of the transition state, whereas s < 0 and
s > 0 correspond to the reactant and product sides, respectively. The kCVT(T ) rate constant
is ‘quasiclassical’ because involves quantized vibrational partition functions in its evaluation.
κCVT/X(T ) is the transmission coefficient, which gives the tunneling contribution in the approx-
imation X to the final rate constant. All the 3N -7 normal modes perpendicular to the reaction
coordinate (3N -6 in linear molecules), being N the number of atoms, are quantized (through the
vibrational partition functions) and, therefore, the transmission coefficient takes into account
the quantum effects associated to the reaction-coordinate motion. The transmission coefficients
accompanying Eq. (8.1) are typically evaluated by any of the following approximations: zero-
curvature tunneling (ZCT)[73], which neglects the coupling between the reaction coordinate
and the transverse modes; small curvature tunneling (SCT), [18, 19, 84, 86–88] which incor-
porates such coupling, but considering that tunneling effect is not too large; large-curvature
tunneling (LCT), [16, 17, 20, 21, 24, 87, 90–92] which considers straight trajectories as the
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tunneling paths and it was specially designed for reactions with important quantum effects;
the microcanonically optimized multidimensional tunneling (µOMT), [24] which is the best
compromise, at every tunneling energy between SCT and LCT and; the least-action tunneling
(LAT), [25, 97, 131] which samples a given family of paths between the ZCT and LCT paths
with the objective of seeking the path that minimizes the imaginary action. Very recently we
have extended the range of application of the LAT method to polyatomic reactions. [131] A
more detailed description of these methods is presented in Section 5.2.

The LCT and LAT transmission coefficients are computationally quite demanding, which
makes SCT the most practical choice for large systems. This technical problem has led to
a misuse of the SCT approximation in some cases. An important group of proton transfer
processes, which certainly would benefit from a greater availability of the LCT and LAT trans-
mission coefficients, are the enzymatic reactions, because there are many enzymes for which the
rate-determining step for reaction is the proton transfer between the enzyme and the substrate.
One of the main experimentally determined kinetic parameters to get insight into the mecha-
nism of the enzymatic catalysis is the analysis of intrinsic isotope effects (KIEs). In general,
the isotopic substitution is carried out on the transferred atom, so the KIE is the ratio between
the thermal rate constant for transfer of the root species (hydrogen) and that for transfer of
the heavier isotope (deuterium or tritium). Nowadays it is quite established that quantum
effects are of great importance in enzymatic proton transfer, [5, 57, 61, 148, 149] due mainly
to the observation of abnormally large KIEs. This is usually considered one of the signatures
of tunneling, since protons are lighter and pass through the barrier easier than the heavier iso-
topes. In general, although not always, [150–153] we expect tunneling to be more important for
hydrogen than for deuterium. [154] We also expect LCT to be a better approximation for the
hydrogen transfer than SCT, at least in some cases. Pang et al. found that tunneling dominates
the proton transfer reaction from nicotinamide adenine dinucleotide (NADH) to enzyme-bound
flavin mononucleotide (FMN) in the flavoprotein morphinose reductase. They also found that
LCT described tunneling more adequately than SCT for the proton transfer, whereas SCT was
more adequate for the deuteron transfer. This example shows the importance of making LCT
and LAT computationally more accessible. This issue will be discussed in Section 5.3.

Finally in Section 5.4 we discuss briefly with an example the influence of the choice of the
tunneling transmission coefficient over the computed KIEs.

5.2. Tunneling transmission coefficients

In VTST, the tunneling transmission coefficient [72–74] is evaluated as the ratio between
the semiclassical adiabatic ground state (SAG) probability and the quasiclassical probability:

κSAG(T ) =

∫ ∞

0 dEP SAG(E) exp(−βE)
∫ ∞

V AG
a

dEPC(E) exp(−βE)
, (5.2)

where PC(E) is the classical probability, which equals zero below V AG
a (the maximum of the

vibrationally adiabatic potential) and unity otherwise, so the transmission coefficient can be
written as:

κSAG(T ) = β exp(βV AG
a )

∫ ∞

0
dEP SAG(E) exp(−βE). (5.3)

As shown in Eq. (5.2) and Eq. (5.3), the tunneling transmission coefficient is evaluated
by using an effective potential that in the first approximation, is vibrationally adiabatic and
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harmonic with the further approximation [67] that the vibrationally adiabatic potential curves
of all the vibrational excited states have the same shape as the ground-state vibrationally
adiabatic potential curve, V G

a (s), so all the tunneling probabilities are evaluated with this
potential, which is given by

V G
a (s) = VMEP(s) +

~

2

∑

m

ωm(s) (5.4)

where ωm(s) is the frequency of one of the 3N -7 generalized normal modes at s. The semiclassi-
cal adiabatic probability of the ground state for tunneling P SAG(E) is given by the semiclassical-
WKB relation

P SAG(E) =
1

1 + exp [2θ(E)]
(5.5)

where θ(E) is the imaginary action integral:

θ(E) = ~
−1

∫ s̃1

s̃0

ds{2µeff(s)(V G
a (s) − E)}1/2 (5.6)

where µeff(s) is the effective mass of the tunneling motion, and s̃0 and s̃1 are the classical
turning points at a given tunneling energy, E, in the reactant and product valleys, respectively.
Both turning points obey the resonance condition:

V G
a (s̃0) = V G

a (s̃1) = E (5.7)

The transmission coefficient does not include only tunneling but also the non-classical reflection
above the barrier. Thus, the semiclassical probability for the whole range of energies is given
by

P SAG(E) =















0, E < E0

{1 + exp[2θ(E)]}−1, E0 ≤ E ≤ V AG
a

1 − P SAG(2V AG
a − E), V AG

a ≤ E ≤ 2V AG
a − E0

1, 2V AG
a − E0 < E

(5.8)

where E0 is the lowest energy at which it is possible to have tunneling.

When Eq. (5.6) is evaluated within the ZCT [73] approximation, there is no coupling be-
tween the reaction coordinate and the transverse modes and therefore the tunneling path
follows the MEP. From the classical point of view the MEP is the most favorable path but the
longest, because usually it involves a substantial motion of the heavy atoms which readjust
their positions. However, the best tunneling path is the one that minimizes the imaginary
action (maximizes the tunneling probability), i.e., the one with the best compromise between
energy and length of the path. Currently, this transmission coefficient is calculated only for
comparative purposes, because it has been shown that seriously underestimates the tunneling
contribution[81, 82]. Marcus and Coltrin[18, 84] showed that the coupling between the reaction
coordinate and the transverse modes shortens the tunneling path increasing the tunneling prob-
ability. They showed, that for the collinear H + H2 reaction, the coupling curves the reaction
path in such a way that the least-action path is obtained. The coupling can be incorporated as
an effective mass into Eq. (5.6). Unfortunately the method could only handle cases in which
the reaction path curvature was small, because when the reaction path curvature is large there
is a singularity in the reaction path Hamiltonian due to the breakdown of the natural collision
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coordinates. Truhlar and coworkers [19, 86–88] modified the method (i.e. the effective mass)
developing an analytical expression that avoids the singularity and extends its range of appli-
cation to polyatomic reactions. This method is called the centrifugal-dominant small-curvature
semiclassical adiabatic ground-state (CD-SCSAG) approximation or in abbreviated form the
small-curvature tunneling (SCT) approximation. It should be noticed that the effective mass
obtained by SCT is always smaller than (considers coupling) or equal to (neglects coupling)
the mass of the transferred particle.

For a reaction of the type A + BC → AB + C, where A, B and C are atoms or groups
of atoms, the reaction path curvature is a function of the skew angle, which in isoinertial
coordinates (coordinates in which the kinetic energy consists of diagonal square terms) is given
by

β = cos−1

(

mAmC

(mA + mB)(mB + mC)

)1/2

(5.9)

The skew angle is close to zero when the masses of A and C are much larger than the mass of
B and it is close to 90 degrees when B has a much larger mass than A and C. Tunneling effects
are more important for small skew angles because a light particle is being transferred between
two atoms (i.e. heavy–light–heavy system)[89]. In those cases tunneling may be dominated by
paths that lie very far from the MEP and the adiabatic approximation may breakdown. The
large-curvature ground-state tunneling (LCT) method [16, 17, 20, 21, 24, 87, 90–92] considers
the extreme case in which tunneling is dominated at every tunneling energy by paths that are
straight trajectories between the two classical turning points. The geometries along a given
straight path are given by

x [ξ, s̃0] = x(s̃0) +
ξ

ξP
[x(s̃1) − x(s̃0)] (5.10)

where x(s̃0) and x(s̃1) are the MEP geometries at the classical turning points. The parameter
ξ indicates the progress along the straight path. The length of the path is given by

ξP =| x(s̃1) − x(s̃0) | . (5.11)

The evaluation of the action integrals along these paths requires not only information of the
potential valley around the MEP, which can be treated within the adiabatic approximation, but
also information about the reaction swath on the concave-side of the MEP, which is vibrationally
nonadiabatic. The vibrationally adiabatic region in the reactants and products sides is labeled
as I and III, respectively, whereas the nonadiabatic region is labeled as II (see Figure 5.1).
The vibrationally adiabatic potential is obtained in such a way that the geometry x [ξ, s̃0] is
perpendicular to the gradient at that s value, i.e.,

{x [ξ, s̃0] − x(s̃0)}
dx(s̃0)

ds
= 0 (5.12)
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Figure 5.1: Generic contour plot of the PES of a bimolecular reaction as a function of to distances
r1 and r2. The dashed-dotted yellow line divides the adiabatic region (labeled as I for reactants and III
for products) from the non-adiabatic region (labeled as II). Four different tunneling paths are plotted:
(i) The path with α=0, (red solid line) corresponds to the MEP. (ii) The path with α=0.12 (green
solid line, labeled as ξ(α’)) corresponds to a curved path passing through a region, which is completely
vibrationally adiabatic. (iii) The path with α=0.50 (magenta solid line, labeled as ξ(α)) corresponds
to a curved path which crosses the nonadiabatic region with boundaries given by ξI(α) in the reactants
side and by ξIII(α) in the products side. This path does not follow the curved path (magenta dotted
line) but the straight path (magenta solid line) through the nonadiabatic region. (iv) The path with
α=1, (cyan solid line) corresponds to the LCT. The boundaries of the nonadiabatic region are given by
ξI(1) in the reactants side and by ξIII(1) in the products side.
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If it is not possible to find a geometry along the MEP which satisfies Eq. (5.12), it means that
there is no projection for that geometry of the tunneling path onto the modes perpendicular to
the reaction path in the interval [s̃0, s̃1]. When this happens going from reactants to products,
the nonadiabatic region in the reactants side starts at ξ = ξI, being ξI the last value for which
there is projection onto the MEP. That point on the MEP is labeled as sI[ξ, s̃0]. In the same
way, the nonadiabatic region in products side starts at ξ = ξIII, being ξIII the last value for
which sIII[ξ, s̃0] exists. If there is an overlap between the adiabatic regions and the nonadiabatic
region does not exists, i.e., ξIII < ξI, the vibrationally adiabatic potential in the interval [ξIII, ξI]
is evaluated as:

min
{

V G
a [sI(ξ); s̃0] , V

G
a [sIII(ξ); s̃0)]

}

(5.13)

Each of the two si, i = I, III values needed for the evaluation of the vibrationally adiabatic
potentials V G

a [si(ξ); s̃0)] is obtained from Eq. (5.12).
The nonadiabatic region has boundaries ξI and ξIII with regions I and III, respectively.

Therefore, region I is located in the interval 0 ≤ ξ < ξI, region II in the interval ξI ≤ ξ ≤ ξIII,
and region III in the interval ξIII < ξ ≤ ξP. Besides of the condition (i), given by Eq. (5.12), we
consider that a given geometry is in the adiabatic region when (ii) all the generalized normal
mode coordinates are within their vibrational turning points, (iii) the geometry x [ξ, s̃0] lies
within the single-valued region of the reaction path coordinates and (iv) the adiabatic potential
should be greater than or equal to the effective potential at the boundary of the nonadiabatic
region, in other case the nonadiabatic region is extended until this condition is met. On the
other hand, if the adiabatic potential is smaller than the effective potential the difference
is due to anharmonicity, so the effective potential is modified with a nonquadratic correction.
Condition (iv) entails the difference between the large curvature ground-state version 3 (LCG3)
and large curvature ground-state version 4 (LCG4) [17, 21] methods. The previous LCG3
method usually involved abrupt changes in the effective potential at the boundaries between
the adiabatic and nonadiabatic regions, leading to spuriously large transmission coefficients at
low temperatures [155–157]. The effective potential in the LCG4 approximation is given by

V II
eff(ξ, s̃0) = V {x [ξ, s̃0]} + V I

corr(ξI, s̃0) + V I
anh(ξI, s̃0)

+
ξ − ξI

ξIII − ξI

[

V III
corr(ξIII, s̃0) − V I

corr(ξI, s̃0) + V III
anh(ξIII, s̃0) − V I

anh(ξI, s̃0)

]

(5.14)

The potentials V i
corr(ξi, s̃0), i = I, III correct for the zero-point energy in the modes that are still

within their turning points. The potentials V i
anh(ξi, s̃0) incorporate anharmonic nonquadratic

corrections to the effective potential, i.e.,

V i
anh(ξi, s̃0) = V G

a [si(ξ); s̃0)] − V II
eff(ξi, s̃0), i = I, III (5.15)

The LCG4 imaginary action integral at every tunneling energy along the straight paths
given by Eq. (5.10) is:

θ(s̃0) =
(2µ)1/2

~

[

∫ ξI

0
dξ

{

V G
a [(sI; s̃0)] − V G

a (s̃0)
}1/2

cos χ0 {s̃0, η̂ [ξ, s̃0]}

+

∫ ξIII

ξI

dξ
{

V II
eff(ξ, s̃0) − V G

a (s̃0)
}1/2

+

∫ ξP

ξIII

dξ
{

V G
a [(sIII; s̃0)] − V G

a (s̃0)
}1/2

cos χ1 {s̃1, η̂ [ξ, s̃1]}
]

,

(5.16)
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The two cosines of Eq. (5.16), cos χi {s̃i, η̂ [ξ, s̃i]} for i = 0, 1 are obtained as the dot products

between the unit vectors η̂ [ξ, s̃i] = x(s̃1)−x(s̃0)
ξP

and the unit vectors tangent to the MEP at si,
i.e.,

cos χi {s̃i, η̂ [ξ, s̃i]} = η̂ [ξ, s̃i]
dx(s̃i)

ds
, i = 0, 1 (5.17)

The tunneling amplitude of the LCG4 path initiated at the reactants turning point s̃0 is
approximated using a primitive semiclassical expression

TLCG4
tun (s̃0) = TLCG4

tun (s̃1) = exp [−θ(s̃0)] (5.18)

The LCG4 primitive probability, PLCG4
prim (E), is obtained from the tunneling amplitude of the

previous Eq. (5.18) plus the contribution due to the vibrational motion perpendicular to the
reaction coordinate along the incoming T0(E) and outgoing T1(E) trajectories at tunneling
energy E

PLCG4
prim (E) =|T0(E) + T1(E)|2

+

(

cos χ0 {s̃0, η̂ [ξ, s̃0]} + cos χ1 {s̃1, η̂ [ξ, s̃1]}
2

)2

× exp [−2θ(s̃0)]

(5.19)

The tunneling amplitude of the incoming trajectory along the reaction coordinate is
exp [−θ(s̃0)] cos χ0 {s̃0, η̂ [ξ, s̃0]} and that of the outgoing trajectory is
exp [−θ(s̃0)] cos χ1 {s̃1, η̂ [ξ, s̃1]}. To enforce macroscopic reversibility, the expression used in
Eq. (5.19) is the average of the two tunneling amplitudes and the amplitude due to the all
the vibrational degrees of freedom perpendicular to the reaction coordinate is averaged using
T0(E) and T1(E). The expressions for T0(E) and T0(E) are given in Ref. [17].

The primitive probability of Eq. (5.19) has to be uniformized prior to its use in Eq. (5.8)
because it can be greater than one, so it is enforced to go to 1/2 at the maximum of the
vibrational adiabatic potential V AG

a by the expression:

PLCG4(E) =

{

1 +
1

2

[

PLCG4
prim (V AG

a )
]−1

− 1

PLCG4
prim (V AG

a )
PLCG4

prim (E)

}

× 1

1 +
[

PLCG4
prim (E)

]−1 (5.20)

In the LCG4 method the tunneling path starts and ends as vibrationally adiabatic but
during the tunneling process the potential can be nonadiabatic and tunneling may end up
in vibrationally excited states. The contribution of those final vibrationally excited states
(considering always the reaction in the exoergic direction) is included by finding all accessible
vibrational states of a projected mode defined as linear combination of all the generalized
normal modes coupled to the tunneling path [24, 87, 91, 92, 96].

The LCG4 approximation is a particular case of a more general method that minimizes
the action integral for a family of α dependent paths for which the MEP is located at α = 0
and the LCT path at α = 1 (hereafter we indicate explicitly the dependence with α of the
progress variable along the straight path and use ξ(1) instead of ξ). This method is called
least-action tunneling (LAT) and since it is based on the LCG4 approximation is called least-
action tunneling ground-state version 4 (LAG4) approximation. The family of paths used for
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the search of the least-action at every tunneling energy is given by

x [α, ξ(α), s̃0] = (1 − α)x [0, ξ(0), s̃0] + αx [1, ξ(1), s̃0] (5.21)

where x [0, ξ(0), s̃0] and x [1, ξ(1), s̃0] are the geometries along the MEP and along the straight
path, respectively. It should be noticed that the progression variable ξ depends on the value of
the α parameter.

The LAG4 imaginary action integral at every tunneling energy and for each α value along
the paths of Eq (5.21) is:

θ(α, s̃0) =
(2µ)1/2

~

[

∫ ξI(α)

0
dξ(α)

{

V G
a [sI(0, ξ(0)); s̃0] − V G

a (s̃0)
}1/2

cos χ0 {s̃0, η̂ [α, ξ(α), s̃0]}

+

∫ ξIII(α)

ξI(α)
dξ(α)

{

V II
eff(α, ξ(α), s̃0) − V G

a (s̃0)
}1/2

+

∫ ξP(α)

ξIII(α)
dξ(α)

{

V G
a [sIII(0, ξ(0)); s̃0] − V G

a (s̃0)
}1/2

cos χ1 {s̃1, η̂ [α, ξ(α), s̃1]}
]

,

(5.22)

Eq. (5.22) is similar to Eq. (5.16) with the difference that the action integral is not restricted
to the straight paths.

The effective potential of Eq. (5.22) of the LAG4 method is the same as that of the LCG4
method, with the difference that now the geometries at which the potential is evaluated are
functions of α and of the progress variable ξ, which also depends on α. Therefore the effective
potential is given by

V II
eff(α, ξ(α), s̃0) = V {x [α, ξ(α), s̃0]} + V I

corr(α, ξI(α), s̃0) + V I
anh(α, s̃0)

+
ξ(α) − ξI(α)

ξIII(α) − ξI(α)

[

V III
corr(α, ξIII(α), s̃0) − V I

corr(α, ξI(α), s̃0) + V III
anh(α, s̃0) − V I

anh(α, s̃0)

]

(5.23)

The potentials V i
corr(α, ξi(α), s̃0), i = I, III correct for the zero-point energy in the modes

that are still within their turning points. and the potentials V i
anh(α, s̃0) incorporate anharmonic

nonquadratic corrections to the effective potential in the same way as in the LCG4 method.

As shown in Figure 5.1, in the case that the whole path is adiabatic, which it may happen
for small values of α, the path given by Eq. (5.21) is the reference path between the two classical
turning points. However, if there is a nonadiabatic region (region II), the path along regions I
(0 ≤ ξ(α) < ξI(α)) and III (ξIII(α) < ξ(α) ≤ ξP(α)) is evaluated along the reference path given
by Eq. (5.21), whereas the path along region II (ξI(α) ≤ ξ(α) ≤ ξIII(α)) is built as a straight
path between the boundaries, where the geometries are given by

x [α, ξ(α), s̃0] = x [α, ξI(α), s̃0] +
ξ(α) − ξI(α)

ξIII(α) − ξI(α)

(

x [α, ξIII(α), s̃0] − x [α, ξI(α), s̃0]

)

(5.24)

The LAG4 path is the optimum path from the family of paths given by Eq. (5.21), i.e., it is
the one that minimizes the imaginary action integral of Eq (5.22). The optimum value of α at
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every tunneling energy, which we label as α̃, is found through a search in which different initial
θ(αi, s̃0) values are calculated for a given number K of equally spaced points (i = 1, . . . , K). We
have found out that K = 11 is a good starting guess. In the grid of K points we search for the
values of the imaginary action which are minima, i.e., the values θ(αj , s̃0) with j = 1, . . . , Km,
being Km the number of minima. If there is only one minimum (Km = 1), we limit the search
to the interval [αi−1, αi+1], where αj = αi is inside the interval. From the three initial values
{αi−1, αj , αi+1}, two new values are obtained as αL = 1

2 [αi − αi−1] and αR = 1
2 [αi+1 − αi] and

two new values of the imaginary action are calculated θ(αL, s̃0) and θ(αR, s̃0). Of the set of
5 resulting α values {αi−1, αL, αj , αR, αi+1}, we take the three new values of α based on the
values of the imaginary actions {θ(αi−1, s̃0), θ(αL, s̃0), θ(αj , s̃0), θ(αR, s̃0), θ(αi+1, s̃0)}. There
are the following possibilities: a) if θ(αL, s̃0) < θ(αR, s̃0) there are two possibilities: a1) if
θ(αL, s̃0) < θ(αj , s̃0) then the new set of three values of α is {αi−1, αL, αj}; a2) if θ(αL, s̃0) >
θ(αj , s̃0) then {αL, αj , αR}; b) if θ(αL, s̃0) > θ(αR, s̃0) there are also two possibilities: b1) if
θ(αR, s̃0) < θ(αj , s̃0) then {αj , αR, αi+1}; b2) if θ(αR, s̃0) > θ(αj , s̃0) then {αL, αj , αR}. The
new 3 values of α substitute the initial values and the process is repeated. Convergence is
achieved when two successive loops give differences in α smaller than 10−6 or differences in the
imaginary action smaller than 5 × 10−5. Usually the number of iterations is smaller than 15.
If there is more than one minima, (Km > 1), the above iterative process is repeated for each
of them. Of all the obtained local minima, we choose the absolute minimum, i.e. the lowest
value of the imaginary action, which is labeled as θ(α̃, s̃0).

The next step is to calculate the LAG4 primitive probabilities, which are obtained in the
same way than the LCG4 ones, but in this case considering the optimized path with α = α̃
instead of the path with α = 1. The evaluation of the LAG4 transmission coefficients involve
an extra computational cost when compared with the evaluation of the LCG4 ones, because,
at every tunneling energy, we have to search for the best tunneling path.

In principle, an approximate way of obtaining better transmission coefficients than the SCT
and LCT ones, but avoiding the explicit evaluation of the LAT transmission coefficients, is to
built a transmission coefficient which, at every tunneling energy, chooses the largest between
the SCT and LCT tunneling probabilities (the smallest between the SCT and LCT imaginary
action integrals). This approximation is called microcanonical optimized multidimensional
tunneling (µOMT) method. [24] The µOMT tunneling probabilities are, therefore,

PµOMT(E) = max
E

{

P SCT(E)
PLCT(E)

(5.25)

where P SCT(E) and PLCT(E) are the SCT and LCT probabilities evaluated within the CD-
SCSAG and LCG4 approximations, respectively.

5.3. Practical implementation of the LCG4 and LAG4 methods

One of the main problems for the applicability of LCG4 and LAG4 methods to large sys-
tems is their computational cost. Both methods use the harmonic approximation to build the
potential along the tunneling path in the adiabatic region from the information along the MEP.
In the nonadiabatic region, extrapolation from the MEP is not possible, so we have to compute
the values of the effective potential given by Eq. (5.14) in LCG4 and by Eq. (5.23) in LAG4,
respectively. The procedure for reducing the computer time is different for LCG4 than for
LAG4, so we discuss them separately.
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The LCG4 transmission coefficients are calculated by numerical integration of Eq. (5.2),
which involves the evaluation of about 80 tunneling energies; at every of these tunneling en-
ergies the calculation, also by numerical integration, of the imaginary action integral (and
therefore of the tunneling probability), requires about 180 single-point energy calculations of
the potential along the straight path, involving a total of 14400 points (hereafter we use ‘point’
as an abbreviated form of ‘single-point-energy’). Of that large amount of points, a number of
them, which in general may oscillate between 1000 and 5000 (depending on the system), are in
the nonadiabatic region. At every tunneling energy the nonadiabatic region along the straight
path has boundaries ξI(1) < ξ(1) < ξIII(1) as shown in Figure 5.1. One way of reducing the
computational cost is to evaluate the energies at selected values of ξ(1) along the nonadiabatic
region of the straight path and to interpolate the remaining energies. We have found that the
fitting of the calculated points to a spline-under-tension function [140, 141] gives very good
results, i.e., the calculation of 9 or 11 points at every tunneling energy leads to errors, when
compared to the full-LCG4 calculations, of about 3%. This algorithm is called interpolated
large curvature tunneling in one dimension (ILCT1D)[22] and it reduces the computer time
about 5 times compared to the full calculation.

A much cheaper and accurate way of evaluating LCG4 transmission coefficients is by inter-
polation, of not only the energies along the straight paths, but also of the tunneling energies,
i.e., all the energies are evaluated within a two-dimensional grid. As for the ILCT1D algorithm,
we perform interpolation in the progress variable ξ(1) at every tunneling energy, but we also
perform interpolation in the tunneling energies. We called this algorithm interpolated large
curvature tunneling in two dimensions (ILCT2D)[23]. The ILCT2D algorithm works as follows:
(i) Generation of a M ×N two-dimensional grid at M tunneling energies Ei, with i = 1, . . . , M ,
in such a way that Ei=1 is the lowest energy at which tunneling is possible, i.e., E0 and Ei=M

is the maximum of the vibrationally adiabatic potential, i.e., EM = V AG
a . For every of the Ei

tunneling energies we select ξj(1) points along the tunneling path, (j = 1, . . . , N), taking into
account that ξ1(1) = 0 and that ξN (1) = ξP (1), being ξP(1) the length of the straight path.
(ii) Calculation of each of the (Ei, ξj(1)) points of the grid. (iii) Transformation of the previous
grid with points (Ei, ξj(1)) in a unit-square grid (Ei, ξj(1)) by performing the scaling:

Ei =
Ei − E0

V AG
a − E0

and ξj(1) =
ξj(1)

ξP (1)
(5.26)

(iv) The grid of points is fitted to a two-dimensional spline under tension following the procedure
described by Renka and Cline [139]. (v) The effective potential of Eq. (5.14) is obtained from
the fit.

To illustrate how the ILCT2D method performs, we have apply it to the H+CH4 → H2+CH3

hydrogen abstraction reaction using the Jordan and Gilbert analytical potential energy surface
(JG-PES). [62] Figure 5.2 shows how the effective potential, which is delimited by the MEP
and the straight path at the lowest tunneling energy, is transformed into a unit-square grid.
The grid was built with M = 9 tunneling energies and N = 11 points along each tunneling
path; of these 99 points many of them fall in the adiabatic region, so additional calculations are
needed only for those points which are inside the nonadiabatic region. In general the ILCT2D
algorithm is about 30 times faster than the full LCG4 calculation. It should be noticed that the
top side of the square grid is the maximum of the vibrationally adiabatic potential, whereas the
left and right sides correspond to the MEP in the reactants and products sides, respectively.
The bottom side of the square corresponds to the lowest tunneling energy.
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Figure 5.2: (a) Plot of the effective potential for the H + CH4 → H2 + CH3 hydrogen abstraction
reaction; rC−H is the distance between the carbon atom and the abstracted CH4 hydrogen atom and
rH−H is the distance between the hydrogen atom and the abstracted CH4 hydrogen atom. The solid
yellow dotted-dashed line indicates the boundaries between the adiabatic and the non-adiabatic regions.
The cyan solid line represents the straight path at a given tunneling energy with classical turning points
given by s̃0 and s̃1 in the reactants and the products side, respectively. The reaction swath is partitioned
into the adiabatic region of reactants (labeled as I), adiabatic region of products (labeled as III), and
the nonadiabatic region (labeled as II and with boundaries given by a yellow dotted-dashed line). (b)
Unit-square effective potential surface obtained from the (a) PES. The bottom side of the square is the
unitary line given in (a) by the LCT path. The sides of the square represent the vibrationally adiabatic
potential along the MEP. The top side of the square is the maximum of the vibrationally adiabatic
potential.
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Table 5.1 lists both, the full-LCT and the ILCT2D transmission coefficients, at temperatures
in the interval 200–400 K. Comparison between both transmission coefficients shows, that even
at the lowest temperature the error is smaller than 1%. Taking into account that the grid was
built with M = 9 tunneling energies and N = 11 points along each tunneling path and that
some of these 99 points fall in the adiabatic region, the ILCT2D algorithm is about 30 times
faster than the full LCG4 calculation. This huge reduction in computer time shows that LCG4
calculations could became feasible for large systems.

Table 5.1: Several transmission coefficients obtained for the JG-PES

T (K) SCT LCG4 ILCT2D µOMT LAG4 ILAT1D

200.0 18.74 13.66 13.75 18.76 27.59 27.37
250.0 6.27 5.11 5.13 6.28 7.34 7.31
300.0 3.54 3.04 3.05 3.54 3.74 3.74
400.0 2.02 1.84 1.84 2.03 2.01 2.01

The evaluation of LAG4 transmission coefficients is much more expensive than that of
LCG4 transmission coefficients, since at each tunneling energy, the imaginary action has to be
evaluated until the optimum value is found. If the LCG4 calculations take about 80(tunneling
energies)×180(points along ξ(1)) = 14400, the LAG4 calculation needs that number of compu-
tations for each cycle of optimization of α (a close number is 3 × 105). It is possible to apply
modified versions of the previous algorithms to the LAG4 method, although the construction of
a two dimensional grid in this case involves to choose NA values αk, (k = 1, . . . , NA), with the
condition that α1 = 0 is the MEP and αNA

= 1 is the straight path. For each of those αk paths,
we have to select ξj(αk) points along the tunneling path, (j = 1, . . . , N), where ξ1(αk) = 0 and
ξN (αk) = ξP (αk) (the total length of the tunneling path). Therefore a point inside the grid has
coordinates (αk, ξj(αk)). The next step would be to transform this grid into a unit square and
search for the value of α which minimizes the action at this tunneling energy. The construction
of the two-dimensional grid and the search for α̃ has to be repeated for every of the tunneling
energies.

We find the above procedure very complicated, so instead we present here a different algo-
rithm. Initially a number M of tunneling energies Ei i = 1, . . . , M is chosen with the boundary
conditions that Ei=1 corresponds to the lowest tunneling energy E0, whereas Ei=M corresponds
to the latest tunneling energy for which there is a nonadiabatic region (here it is different than
for the ILCT2D method, for which EM = V AG

a ). At every of these tunneling energies a search
of α̃ is carried out as indicated in Section 5.2. The difference with the full calculation is that, in
this case, the progress variable is evaluated only at some selected ξj(α) points (j = 1, . . . , NB)
within the nonadiabatic region of the tunneling path, i.e., the boundaries are ξ1(α) = ξI(α) and
ξNB

(α) = ξIII(α). The effective potential at every value of α is obtained by a one-dimensional
fit to a spline under tension. This process is repeated for each of the Ei tunneling energies, so
we end up with a set of M values of α̃i and θ(α̃i). Now there is the possibility of fitting the α̃i

parameters or the imaginary actions θ(α̃i) to a one-dimensional spline under tension. We have
found out that the fitting of the imaginary actions to N = 7 number of tunneling energies gives
very good results. Figure 5.3 shows the very good agreement between the least imaginary ac-
tions obtained by the full-LAG4 calculation (depicted as a black line) and those obtained by the
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interpolated algorithm (depicted as a green line). The algorithm uses a one-dimensional inter-
polation, so we call the method interpolated least-action tunneling in one-dimension (ILAT1D).
In general the number of points that have to be evaluated is about 2000, which means a re-
duction of about 150 times regarding to the full-LAG4 calculation. A comparison between the
full calculation and the ILAT1D algorithm is carried out in Table 5.1. Although the ILAG1D
algorithm may need further testing, the difference between both methods is smaller than 1%,
which is a very encouraging result.
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Figure 5.3: Two-dimensional projection showing the variation of the imaginary action integral with
the α parameter at every of the tunneling energies. The red solid line indicates the values of α̃ at every
tunneling energy obtained by the full-LAG4 calculation, whereas the violet solid line corresponds to the
values of α̃ obtained by ILAT1D method. The vertical black dashed lines indicate the tunneling energies
at which the ILAT1D method computes the imaginary action prior to the interpolation procedure. The
white dotted line indicates the boundaries between the adiabatic and nonadibatic regions.
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5.4. Transmission coefficients and KIEs

In this Section we analyze the effect that the approximations used for computing tunneling
contributions have on the KIEs. As mentioned in the Introduction, this issue is of great
relevance because the KIEs are one of the most important parameters for the elucidation of
the reaction mechanisms in enzymes. Here we discuss a number of abstraction reactions with
several isotopic substitutions of the type CH3X + Y → CH3 + XY, where X = H or D and
Y = H, D or T, i.e.,

CH4 + H −−→ CH3 + H2 (R1)

CH3D + H −−→ CH3 + DH (R2)

CH4 + D −−→ CH3 + HD (R3)

CH3D + D −−→ CH3 + D2 (R4)

CH4 + T −−→ CH3 + HT (R5)

CH3D + T −−→ CH3 + DT (R6)

All the calculations are based on the JG-PES. Table 5.2 shows that the LAG4 transmission
coefficients are always the largest for the hydrogen transfer reaction independent of which is
the acceptor atom, whereas the SCT transmission coefficients are always the largest for the
deuterium transfer. In principle one would expect the LAG4 transmission coefficients to be
the largest for any isotope, although is difficult to decide which of the two methods (SCT or
LAG4) is more accurate if the curvature is not too large.

Table 5.2: Transmission coefficients computed with the SCT, LCG4 and LAG4 approximations for
reactions R1 to R6 using the JG-PES

κH(T ) κD(T )
T (K) SCT LCG4 µOMT LAG4 SCT LCG4 µOMT LAG4

CH4 + H CH3D + H
200.00 18.74 13.66 18.76 27.59 8.19 4.75 8.19 5.40
250.00 6.27 5.11 6.28 7.34 3.54 2.47 3.54 2.55
300.00 3.54 3.04 3.54 3.74 2.34 1.81 2.34 1.83
400.00 2.02 1.84 2.03 2.01 1.59 1.37 1.59 1.38

CH4 + D CH3D + D
200.00 6.71 9.82 9.82 16.06 6.23 4.03 6.23 5.14
250.00 3.36 4.25 4.25 5.70 3.12 2.29 3.12 2.51
300.00 2.33 2.74 2.74 3.32 2.18 1.73 2.18 1.80
400.00 1.61 1.77 1.77 1.96 1.54 1.34 1.54 1.36

CH4 + T CH3D + T
200.00 3.64 8.24 8.24 12.49 4.65 3.70 4.65 4.56
250.00 2.25 3.73 3.73 4.82 2.63 2.22 2.63 2.42
300.00 1.74 2.47 2.47 2.93 1.95 1.71 1.95 1.79
400.00 1.36 1.66 1.66 1.82 1.45 1.34 1.45 1.36
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The skew angles given by Eq. (5.9) range and listed in Table 5.3 from small curvature for
reaction R2 to large curvature for reaction R5. However, the LCG4 transmission coefficients al-
ways underestimate tunneling with respect to the LAG4 transmission coefficients independently
of the reaction path curvature, although the LCG4 values are larger than the SCT values for
the hydrogen abstractions. The µOMT transmission coefficient takes into account that LCG4
is larger for the hydrogen abstraction and that SCT is larger for the deuterium abstraction,
so it seems to solve the problem. However, the KIEs calculated by the different tunneling ap-
proximations, and listed in Table 5.4, show that the µOMT transmission coefficients seriously
underestimate tunneling when compared with the LAG4 ones, because SCT gives values which
are too large for the deuterium transfer and LCG4 gives values which are small for hydrogen
transfer. Thus, the µOMT KIEs give values which are between the calculated SCT and the
LCG4 KIEs. The SCT and µOMT KIEs only coincide when the acceptor is a hydrogen atom,
as the mass of the acceptor increases both KIEs get more different, i.e., the SCT KIEs become
to small. The LAG4 KIEs are always larger than KIEs obtained by the other approximations.
Although this example is not conclusive, from the LCG4, µOMT and SCT approximations,
it seems that the latter is the approximation which underestimates the quantum KIEs by the
largest amount. This result is disappointing taking into account that the SCT is the most
applied approximation for the study of enzymatic reactions.

Table 5.3: Reactions studied with the JG-PES. The skew angle given by Eq. (5.9) is given in the
second column. The largest transmission coefficients for each of the reactions at T=300 K is indicated
in the third column

Reaction β κ

CH4+H →CH3+H2 46.8 LAG4
CH3D+H →CH3+DH 57.2 µOMT(SCT)a

CH4+D →CH3+HD 37.8 LAG4
CH3D+D →CH3+D2 48.4 µOMT(SCT)
CH4+T →CH3+HT 33.1 LAG4

CH3D+T →CH3+DT 43.4 µOMT(SCT)
a The µOMT and the SCT transmission coefficients are equivalent.

In summary, the results obtained for this series of reactions show that SCT should be used
with care. A small transmission coefficient does not guarantee that tunneling is well handle by
the SCT approximation (see for instance reaction R5 in Table 5.2) Of course, there are reactions
for which SCT should work very well as it is the case for heavy atom reorganization reactions
at low temperatures [158, 159] or for hydrogen transfer reactions with very wide barriers. [160]
However, there are hydrogen transfer reactions presenting very large KIEs [161–164], for which
the results obtained with SCT are doubtful. We recommend the use of the ILAT1D algorithm
as alternative for the study of large systems.
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Table 5.4: KIEs due to tunneling (κH/κD) computed with different tunneling approximations using
the JG-PES

κH(T )/κD(T )

T (K) SCT LCG4 µOMT LAG4

CH4 + H / CH3D + H

200.00 2.29 2.88 2.29 5.11
250.00 1.77 2.07 1.77 2.88
300.00 1.51 1.68 1.51 2.04
400.00 1.27 1.34 1.27 1.46

CH4 + D / CH3D + D

200.00 1.08 2.44 1.58 3.12
250.00 1.08 1.86 1.36 2.27
300.00 1.07 1.58 1.26 1.84
400.00 1.05 1.33 1.15 1.45

CH4 + T / CH3D + T

200.00 0.78 2.23 1.77 2.74
250.00 0.85 1.68 1.42 1.99
300.00 0.90 1.45 1.27 1.64
400.00 0.94 1.24 1.14 1.33





Chapter 6

The CH3OH + H hydrogen
abstraction reaction

We report a detailed theoretical study of the hydrogen abstraction reaction from methanol
by atomic hydrogen. The study includes the analysis of thermal rate constants, branching
ratios and kinetic isotope effects. Specifically, we have performed high-level computations at
the MC3BB level together with direct dynamics calculations by canonical variational transition
state theory (CVT) with the microcanonically optimized multidimensional tunneling (µOMT)
transmission coefficient (CVT/µOMT) to study both the CH3OH + H −−→ CH2OH + H2 (R1)
reaction and the CH3OH+H −−→ CH3O+H2 (R2) reaction. The CVT/µOMT calculations show
that reaction R1 dominates in the whole range 298 ≤ T (K) ≤ 2500, and that anharmonic effects
on the torsional mode about the C–O bond are important, mainly at high temperatures. The
activation energy for the total reaction sum of R1 and R2 reactions changes substantially with
temperature and therefore the use of straight-line Arrhenius plots is not valid. We recommend
the use of new expressions for the total R1 + R2 reaction and for the R1 and R2 individual
reactions.

6.1. Introduction

The combustion of methanol is a complex process which is not completely understood, [165–
177] although the importance of the H and OH radicals in the early stages of the combus-
tion is well established; these radicals are formed mainly from unimolecular decomposition of
methanol. [175, 178–180] For instance, the hydrogen abstraction reaction by atomic hydrogen
consumes a significant fraction of the methanol, particularly under fuel-rich conditions, [169]
through the reactions:

CH3OH + H −−→ CH2OH + H2 (R1)

CH3OH + H −−→ CH3O + H2 (R2)

There is a third possible reaction, which could compete with the R1 and R2 hydrogen abstrac-
tion reactions, that leads to the formation of methyl radicals:

CH3OH + H −−→ CH3 + H2O (R3)

However, the experiments on the pyrolysis of methanol carried out by Aronowitz et al. [181]
in the temperature range 1070-1225 K and the discharge flow reactor experiments carried
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out by Hoyermann et al. [182] between 500 and 680 K, indicate that the disappearance of
methanol through this channel is only minor. This aspect has been also confirmed by theoretical
calculations. [183]

Reactions R1 and R2 involve the formation of the hydroxymethyl CH2OH and methoxy
CH3O radicals, respectively. The formation of these two radicals and the ratio between their
concentrations is of great importance in the of combustion of methanol, because the two species
are isomers that have different reactivities. Direct measurements of the total hydrogen abstrac-
tion (R1 + R2) thermal rate constants were carried out by Aders and Wagner, [184] Meagher et
al., [185] and by Hoyermann et al. [182] These experiments were performed in the temperature
range T = 295-680 K. At higher temperatures (between T = 1000 and 2740 K), the total ab-
straction rate constants were obtained from lean methanol flames [178] and from the pyrolysis
of methanol [180] –in both cases the measurement of the thermal rate constants is complicated
by side reactions. There is a significant discrepancy between the low-temperature experiments,
which yield activation energies about 5.4 kcal/mol, and the high-temperature activation en-
ergies reported by Vandooren and Tiggelen [178] and by Cribb et al. [180] with values of 2.6
and 14.1 kcal/mol, respectively.Tsang [186] gave a recommended expression in the temperature
range of T = 600 to 2000 K using bond-order bond-energy (BEBO) transition state calcula-
tions to fit the low-temperature experiments and those of Vandooren and Tiggelen [178]. To
our knowledge the latest review on the R1 + R2 hydrogen abstraction reactions was carried
out by Baulch et al. [187], who disregarded the low-temperature data of Meagher et al. [185]
obtained by electron spin resonance (ESR) and used the mean value of the results of Vandooren
and Tiggelen [178] and Cribb et al.[180] at T = 2000 K. The recommended expressions reported
by Tsang [186] and by Baulch et al. [187] give similar results at about T = 600 K, but they
disagree by more than a factor of 4 at T = 2000 K, as a consequence of including different
experimental results in their fits at high temperatures.

Another aspect about which there is very little information is the branching ratio between
R1 and R2, because the above experiments do not distinguish between the two reactions. For
instance, Held and Dryer [171] indicated that reaction R1 dominates at low temperatures and
that the ratio of the two reaction rate constants does not change with temperature. Tsang, [186]
using experimental data on methyl attack on methanol recommended a kR1/kR2 value of 4 with
an uncertainty factor of 3, where kR1 and kR2 are the thermal rate constants of reactions R1
and R1, respectively. Li and Williams [174] gave a temperature-dependent expression for the
ratio kR1/kR2 constants, but the accuracy of their result is difficult to assess, since it is based
on a methanol combustion mechanism that involves 92 elementary reactions.

As indicated above, both the values of the thermal rate constants for the hydrogen abstrac-
tion reactions from methanol and the branching ratios are uncertain mainly due to the large
number of side reactions that must be considered. In cases like this theoretical calculations
can be useful. Several authors have carried out electronic structure calculations at various
levels of theory [42, 183, 188–195] and have computed thermal rate constants. [42, 183, 190–
192, 195] We are concerned here only with gas-phase studies. The thermal rate constant
obtained by Lendvay et al. [183] and by Jodkowski et al. [190] were calculated by combining
conventional transition state theory [26] with one-dimensional tunneling corrections (Wigner
correction [52] in Ref. [183] and Eckart barrier correction [50] in Ref. [190]). Carvalho et al. [195]
performed zero-order interpolated variational transition state [196] with zero-curvature tunnel-
ing (ZCT) [73] corrections for tunneling. Kerkeni and Clary [191] applied a two-dimensional
reduced dimensionality quantum dynamics model to reactions R1 and R2 and pointed out
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the importance of including quantum effects for both reactions. In this context, it should be
noticed that both the one-dimensional and the ZCT models for tunneling seriously underesti-
mate those quantum effects, [70, 81, 82, 133, 197] so an approach based on multidimensional
tunneling paths is needed.

Variational transition state theory [63–67] with multidimensional corrections for tunneling
(VTST/MT) [16, 17, 29, 67–70, 132, 133] can yield accurate thermal rate constants [61, 82]
for reactions with important quantum effects. It can also account for recrossing effects, so,
the accuracy of the VTST/MT results depends largely on the accuracy of the potential energy
surface. For the hydrogen abstraction reaction R1, VTST/MT calculations have been carried
previously by Chuang et al. [42], but the results were handicapped by the low accuracy of
the electronic structure calculations, which yield a gas-phase classical barrier height of 7.8
kcal/mol, which differs considerably from benchmark calculations performed at the W1RO
level [198] that lead to a classical barrier height of 9.6 kcal/mol [199] and from a later estimate
of 9.7 kcal/mol. [193]

Nowadays, it is possible to use VTST/MT together with electronic structure calculations
that are very close to chemical accuracy. In this context, it is the main goal of this work to
provide reliable thermal rate constants for reactions R1 and R2, so in first place we perform
electronic structure calculations at one of the most accurate levels for reaction R1, as suggested
in a comprehensive examination [193] of R1, and in second place, we apply VTST/MT.

Another aspect of interest, which may help to identify the main channel for hydrogen
abstraction, is the evaluation of the kinetic isotope effects (KIEs).Meagher et al [185] have
reported experimental thermal rate constants for the reaction

CH3OH + D −−→ CH2OH + HD (R4)

in the temperature range 298 ≤ T (K) ≤ 575.
Hoyerman et al [182], in the temperature range 500 ≤ T (K) ≤ 680, prepared deuterated

methanol and reported values of the thermal rate constants for the reactions:

CD3OD + H −−→ CD2OD + HD (R5)

CD3OH + H −−→ CD2OH + HD (R6)

In the analysis of the products of reactions R5 and R6 those authors detected the presence
of CD2O, CDOH, and CD2HOH radicals, which can be obtained by fast reactions of the
radicals CD2OD, and CD2OH with atomic hydrogen. The products CDOH, and CD2HOH
can only be obtained from hydrogen abstraction reactions from the methyl group, whereas
the CD2O radical can also be obtained from the methoxy radical. Therefore, they could not
unambiguously conclude that reaction R1 dominates at those tempereratures.

From the theoretical point of view, the detailed analysis of KIEs can bring additional
information about the role played by quantum effects on these systems, so we include reactions
R4 and R5 in the present VTST/MT study.

6.2. Methodology

In this section, we first describe the method used to carry out the electronic structure
calculations to build the potential energy surface, and after that, we briefly describe canonical
variational transition state theory with multidimensional tunneling corrections.
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6.2.1. Electronic structure

Benchmark calculations of reaction energies, barrier heights, and transition state geometries
for reaction R1 were reported by Pu and Truhlar. [193] Those authors classified the methods
by their asymptotic computational scaling behaviors Nα (where N is the number of atoms,
and α is a parameter in the range 3–7), obtaining, for reaction R1, a consensus value from the
N7 methods for the forward barrier and reaction energy of 9.7 kcal/mol and −6.3 kcal/mol,
respectively. These values are very close to those obtained at the W1RO and W1BD levels which
lead to values of 9.6 kcal/mol for the barrier height and −6.1 and −6.0 kcal/mol, respectively,
for the reaction energy, as shown in Table 6.1. In this work we use one of the methods that
Pu and Truhlar [193] recommend for high-level dynamics calculations, i.e., the multicoefficient
three-parameters Becke88-Becke95 (MC3BB) method, [200] which yields a barrier height of
9.8 kcal/mol. This method also gives a very similar reaction energetics to the W1R0 and W1BD
methods for reaction R2. The experimental enthalpies of reaction [201] show that reaction R1
is exothermic whereas reaction R2 is almost thermoneutral (although most of the theoretical
methods listed in Table 6.1 predict a slight endothermicity). The CCSD(T,full)//MP2(full)/cc-
pVTZ and CCSD(T,full)/cc-pVTZ give similar results to the MC3BB methods, but the latter
is more suitable for dynamical calculations because it scales as N5, whereas CCSD(T, full)
methods scale as N7. On the other hand the G2 calculations carried out by Lendvay et al. [183]
and by Jodkowski et al. [190], which also scale as N7, yield to reaction barrier heights that are
probably too high by more than 0.5 kcal/mol.

Table 6.1: Energetic parameters (in kcal/mol) of reactions R1 and R2 obtained at different levels

of theory. V ‡ is the barrier height, ∆E is the classical energy of reaction, ∆H‡,o
0 is the enthalpy of

activation at 0 K, and ∆Ho
0 is the enthalpy of reaction at 0 K. Experimental values are also listed for

comparison

Method V ‡ ∆E ∆H‡,o
0 ∆Ho

0 Reference

R1
Estimate 9.7 -6.3 – – [193]
W1RO 9.6 -6.1 8.2 -8.5 [198]
W1BD 9.6 -6.0 8.2 -8.4 This work
MC3BB 9.8 -4.7 8.4 -7.2 [193]
G2 10.6 -5.6 9.0 -8.2 [183, 190]
CCSD(T,full)//MP2(full)/cc-pVTZ 9.9 -5.5 8.6 -7.9 [191]
CCSD(T,full)/cc-pVTZ 9.8 -6.1 7.8 -8.5 [195]
Exp. – – – -8.8 ± 0.4 [201]

R2
W1RO 15.3 3.7 13.3 0.7 This work
W1BD 15.2 3.7 13.3 0.6 This work
MC3BB 15.6 3.8 13.7 0.8 This work
G2 16.3 3.1 14.2 0.6 [183, 190]
CCSD(T)//MP2(full)/cc-pVTZ 14.9 2.8 13.3 0.2 [191]
CCSD(T,full)/cc-pVTZ 14.8 2.3 12.7 -0.7 [195]
Exp. – – – -0.3 ± 1.0 [201]
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The MC3BB method merges scaling-all-correlation (SAC) theory [202] with a modification
of the Becke88-Becke95 [203, 204] 1-parameter model for kinetics (BB1K) [205] with empirical
parameters to make the method more accurate than other methods scaling as N5. The MC3BB
energy is obtained by the expression:

E(MC3BB) = c2[E(HF/DIDZ) + c1∆E(MP2|HF/DIDZ)] + (1 − c2)E(BBX/MG3S) (6.1)

where the empirical coefficients c1 and c2 are equal to 1.332 and 0.205 respectively; BBX is
the same as BB1K except that the percentage of Hartree-Fock exchange is 39% instead of 42%;
DIDZ refers to the 6-31+G(d,p) basis set, [145] and MG3S [206] is a minimally augmented
polarized triple-ζ basis set.

6.2.2. Reaction rates

The thermal rate constants for the hydrogen abstraction reactions from methanol were
calculated by means of canonical variational transition-state theory with a multidimensional
treatment of tunneling (CVT/MT). [66, 77] All the electronic structure calculations were per-
formed at the MC3BB level using a direct dynamics approach, [137] i.e., the points to build
the potential energy surface needed for the dynamics were calculated “on the fly”. The canon-
ical variational version of transition state theory implies that the reactants are equilibrated
canonically (in a fixed-temperature ensemble) and that the transition state dividing surface
(the bottleneck for reaction) minimizes the one-way flux toward products by passing through
the point on the minimum energy path (MEP) [73, 76, 207] that presents a maximum in the
generalized free energy of activation. [66, 208, 209]

The MEP is the union of the paths of steepest descent in isoinertial coordinates from the
saddle point to the reactants and to the products, and the signed distance along this path
is labeled as s. The MEP was followed in mass-scaled Cartesian coordinates (mass-weighted
Cartesian coordinates divided by the square root of an arbitrary scaling mass µ) by the Page-
McIver method [210] using a stepsize of 0.005 a0 and a scaling mass µ = 1, and Hessians were
calculated each 9 steps. All the harmonic vibrational frequencies along the MEP were obtained
using redundant internal coordinates [211] and scaled by a factor of 0.9669. [200] The CVT/MT
expression to evaluate thermal rate constants, kCVT/X, at a given temperature, T , is given by:

kCVT/X(T ) = κCVT/X(T )kCVT(T ), (6.2)

where κCVT/X(T ) is the ground-state transmission coefficient computed with the multidimen-
sional method X, and kCVT(T ) is the quasiclassical canonical thermal rate constant:

kCVT(T ) = min
s

kGT(T, s) = σ
1

βh

QGT(T, sCVT
∗ )

ΦR(T )
exp

[

−βVMEP

(

sCVT
∗

)]

(6.3)

where kB is the Boltzmann constant; h is the Planck constant; σ is the symmetry number; [31,
78] VMEP

(

sCVT
∗

)

is the classical potential at point sCVT
∗ of the MEP. The value sCVT

∗ is chosen
as the point of the MEP in which the free energy of activation has a maximum, or similarly, as
the generalized transition (GT) at which is located the bottleneck for reaction. QGT(T, sCVT

∗ )
is the product of the rotational, vibrational and electronic partition functions of the generalized
transition state. ΦR(T ) is the partition function of reactants per unit volume and is given as the
product of the partition functions for the two reactants species and their relative translational
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motion. Note that we omit symmetry numbers from rotational partition functions and instead
accumulate these in an overall symmetry number σ, as discussed further below.

The term ‘quasiclassical’ means that, except for the reaction coordinate, which corresponds
to the mode with imaginary frequency at the transition state, all the remaining 3N − 7 vibra-
tional modes (3N − 6 modes for linear molecules; N being the number of atoms) are treated
quantally by using quantum vibrational partition functions in the rate constant expression of
Eq. (6.3). Quantum mechanical effects on the reaction-coordinate motion are incorporated by
the ground-state transmission coefficient [67, 128] which multiplies the rate constant of Eq. (6.2)
and is given by:

κCVT/X(T ) = κCVT/CAG(T )κX(T ) (6.4)

where κCVT/CAG(T ) corrects for the different thresholds which may have the CVT thermal
rate constant and the tunneling transmission coefficient κX(T ). [128] For reactions with tight
transition states, such as reactions R1 and R2, κCVT/CAG(T ) is usually very close, within 5%,
to unity. The tunneling transmission coefficient κX(T ) is given by:

κX(T ) = β exp(βV AG
a )

∫ ∞

E0

dEPX(E) exp(−βE) (6.5)

where PX(E) is the semiclassical ground-state reaction probability computed by approximation
X. The lower limit of the integral is the lowest energy at which it is possible to have tunneling,
i.e., it is the energy of the reactant zero-point level when the reaction is written in the exoergic
direction; V AG

a is the maximum of the vibrationally adiabatic potential which is given by:

V G
a (s) = VMEP(s) + ǫG

int(s), (6.6)

where ǫGint(s) denotes the zero-point energy of the vibrational modes transverse to the MEP.
In the present work, the semiclassical probability PX(E) at every tunneling energy E has

been calculated by the microcanonically optimized multidimensional tunneling (µOMT) ap-
proximation [24], which chooses the largest value between the small-curvature tunneling [19, 86–
88] (SCT) probability, P SCT(E), and the large-curvature tunneling [16, 17, 20, 21, 24, 87, 90–
92] (LCT) probability PLCT(E); the latter being evaluated with the version 4 of the LCT
method: [21]

PµOMT(E) = max
E

{

P SCT(E)
PLCT(E)

(6.7)

The LCT tunneling probabilities were evaluated using the interpolated large-curvature tun-
neling in two dimensions (ILCT2D) [23] algorithm. The electronic structure calculations were
performed with Gaussian03, [212] the thermal rate constants CVT/µOMT were calculated with
version 9.7 of the POLYRATE program. [213] A modified version of the GAUSSRATE9.7 [214]
program made the linkage between the two packages. Some data used in the next Section were
extracted from graphs made by the WinDig program [215], i.e., from: Figure 4 of Ref. [182],
Figure 13 of Ref. [191], and Figure 3 of Ref. [192].

6.3. Results and discussion

In this section, we first describe some important issues related to the stationary points of
the hydrogen abstraction reaction, which includes the anharmonic treatment of the torsional
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mode about the C–O bond, then we discuss the CVT/µOMT calculations carried out in this
work, initially in the context of previous theoretical calculations and secondly in the context of
the experiment. Finally, we discuss the results obtained in this work for the branching ratios
and KIEs.

Figure 6.1: Geometries of the stationary points for reactions R1 and R2. TS-R1 and TS-R2 are the
transition state geometries for reactions R1 and R2, respectively. Distances are in Å; bond and dihedral
angles are in degrees.

6.3.1. Stationary points

All electronic structure calculations needed for the dynamics calculations were carried out at
MC3BB level. [200] The optimized geometries of the stationary points are shown in Figure 6.1.
The equilibrium configuration of methanol has Cs point-group symmetry. The hydrogen atom
can be abstracted from the CH3 group or from the OH group, forming the hydroxymethyl
radical (reaction R1) or the methoxy radical (reaction R2) from the transition states TS-R1 and
TS-R2, respectively. For reaction R1 the hydrogen atom from the methyl group is abstracted in
a gauche conformation, forming a dihedral angle with the hydrogen atom of the hydroxyl of 74◦.
This transition state is chiral and therefore it has one enantiomer. The interconversion between
enantiomers is possible by rotation about the C−O bond. The top of the rotational barrier
is a second-order saddle point and corresponds to the eclipsed conformation. The calculated
barrier height at the MC3BB has a value of 2.9 kcal/mol with respect to the saddle point
energy. The interconversion is also possible through a second-order saddle point corresponding
to an anti conformation, but in this case the barrier is higher, i.e., 4.0 kcal/mol. Chuang et
al. [42] using a semiempirical method obtained similar barriers of 3.3 kcal/mol and 4.2 kcal/mol
for the eclipsed and anti conformations. Those authors pointed out that the barriers between
transition states (which are the minima along the torsion coordinate) are high enough, so they
can be treated as two independent reactive channels.
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Several theoretical works [190, 191, 195] ignored the chiral nature of the transition state and
pointed out that for reaction R1, because methanol has three reactive hydrogens, the symmetry
number entering the transition state theory expression (same as Eq. (6.3) but with the dividing
surface located at the transition state) should be three. It should be noticed that the symmetry
number is given by [31, 78]:

σ =
σRnTS

σTSnR
(6.8)

where nTS and nR are the number of enantiomers of the transition state and the reactants,
respectively; σR and σTS are the symmetry numbers of the rotational partition function of the
reactants and the transition state, respectively. Taking into account that the minimum-energy
configuration of methanol belongs to the Cs point-group symmetry (so σR = 1) and that the
transition state has two enantiomers, the symmetry number for reaction R1 is two. To our
knowledge, this issue was only correctly addressed by Chuang et al. [42]. Hereafter, all the
theoretical rate constants that included a factor of three [190, 191, 195] were multiplied by 2/3
to correct the symmetry number.

For reaction R2 the symmetry number is the unity.

6.3.2. Anharmonicity

The previous theoretical works [42, 190, 191, 195] have treated the torsional motion of the
methyl group of methanol as a harmonic-oscillator (HO) vibration, i.e., the partition function,
QHO,CH3OH

tor , of this normal mode is given by:

QHO,CH3OH
tor (T ) =

e−β~ω
CH3OH
tor /2

1 − e−β~ω
CH3OH
tor

(6.9)

This may not be a good approximation at high temperatures, so we have calculated the torsional
potential about the C–O bond by performing MC3BB calculations every 5 degrees, in which all
geometric parameters were optimized with the exception of the dihedral angle. The calculations
were carried out on methanol and on both transition states, TS-R1 and TS-R2. The results
are plotted in Figure 6.2. It should be noticed that the two chiral transition states of reaction
R1 are now connected by the torsional potential, so instead of using the HO partition function
and include the symmetry number of Eq. (6.8), which accounts for the two enantiomers, it is
better to consider a multiconformer harmonic-oscillator (MC-HO) partition function, which, in
general, is given by: [79]

QMC−HO
tor (T ) =

P
∑

j=1

e−β(Uj+~ωtor,j/2)

1 − e−β~ωtor,j
(6.10)

where Uj is the energy of well j relative to the lowest well of the torsional potential, ωtor,j is
the harmonic frequency of well j, and the sum runs over the P distinguishable conformers. If
there is only one conformer then Eq. (6.10) reduces to Eq. (6.9). For transtion state TS-R1,
P = 2, whereas for both TS-R2 and methanol P = 1 (so in this case e use either the HO or
the MC-OH expression).
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Figure 6.2: Torsional potentials (in cm−1) calculated at the MC3BB level about the C–O bond for
methanol (triangles), TS-R1 (circles), and TS-R2 (squares). The potentials were fitted to cosine Fourier
series given by Eqs. (6.12), (6.13), and (6.14) and shown in the plot as solid line, dashed line, and dotted
line for methanol, TS-R1 and TS-R2, respectively.

The one-dimensional hindered-rotor partition function can be calculated conveniently by
the torsional eigenvalue summation (TES) method, [79] and we simplify the calculations by
assuming that: (i) the reduced moment of inertia, I, is independent of the reaction coordinate,
and (ii) the potentials can be accurately fitted to a cosine Fourier series of the type:

V (φ) = b0 +

nmax
∑

n=1

bn cos(nφ) (6.11)

where b0, bn, n = 1 . . . nmax, are parameters.
We have calculated the reduced moments of inertia of methanol, TS-R1, and TS-R2 at

the equilibrium configurations using the scheme developed by Pitzer, [216] which allows the
calculation of a single asymmetric top attached to a rigid frame. The calculated reduced
moments of inertia (in atomic units) for methanol, TS-R1 and TS-R2 have values of 3956.3,
4439.8 and 12191, respectively. For the relaxed scans starting at each of the three stationary
points the largest variation of the reduced moment of inertia along the torsion coordinate with
respect to the equilibrium value was smaller than 3%, so approximation (i) is very good in this
case.

As shown in Figure 6.2, the cosine Fourier series potentials for methanol:

V (φ)CH3OH/cm−1 = 180.401 + 182.1 cos(3φ) + 1.8 cos(6φ), (6.12)

TS-R1:

V (φ)TS−R1/cm−1 = 632.053−317.0 cos(φ)+548.3 cos(2φ)+119.9 cos(3φ)+23.0 cos(4φ),
(6.13)

and TS-R2:

V (φ)TS−R2/cm−1 = 251.859 + 260.4 cos(3φ) + 11.5 cos(6φ) + 1.1 cos(9φ), (6.14)
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fit the MC3BB torsion potential accurately.
The TES partition function is simply obtained from eigenvalue summation of the torsional

coordinate, i.e.,

QTES
tor (T ) =

1

σtor

jmax
∑

j=0

e−βEj (6.15)

where Ej are the energies (eigenvalues) obtained from solving the Schrödinger equation (see
Ref. [79] for details), and jmax is the total number of eigenvalues, which should be large enough
that the calculated partition function is converged (usually jmax = 200 suffices); σtor is the
symmetry number due to torsion (number of indistinguishable minima due to internal rotation),
which is the unity for TS-R1 and 3 for both methanol and TS-R2. The lowest eigenvalue of the
TES method gives the zero-point energy of the torsional potential, and therefore the frequency
associated to it. The harmonic frequencies associated to the C–O bond torsion in methanol,
TS-R1 and TS-R2 are 290, 359, and 190 cm−1, respectively, whereas the anharmonic frequencies
obtained by the TES method are 250, 342, and 186 cm−1, respectively.

We denote as QMC−HO−Z
tor (T ) the zero-point energy (ZPE) corrected MC-HO partition func-

tion with the TES calculated frequencies. The total anharmonicity on the torsional mode is the
product of two effects: (1) that due to corrections in the ZPE, which is given by the quotient
QMC−HO−Z

tor (T )/QMC−HO
tor (T ), and (2) that due to the deviations from the HO approximation,

which is given by the quotient QTES
tor (T )/QMC−HO−Z

tor (T ). As shown in Table 6.2, in general
the anharmonicity is more important for the equilibrum configuration of methanol, when com-
pared with the transition states TS-R1 and TS-R2, because the former has the lowest torsional
barrier of the three of them. At low temperatures the ZPE effect is quite important, and at
T = 300 K there is an important ZPE effect in methanol that makes the MC-HO-Z partition
function 16% higher than the MC-HO partition function. As the temperature increases more
levels are populated, and the leading effect is the level separation, which remains constant in
the harmonic oscillator whereas it may decrease in the anharmonic treatment. As a conse-
quence the harmonic partition function increases faster than the TES partition function and
at T = 2500 K it is a 41% higher for the equilibrium configuration of methanol. This effect is
also important for TS-R2 and at T = 2500 K the MC-HO partition fuction is 28% higher than
the TES partition function. For TS-R1, which has the largest torsional barriers of the three
configurations considered here, the TES partition function is less than 10% higher than the
MC-HO partition function at 300 K and 2500 K (the discrepancy is larger at some intermediate
temperatures, i.e., about 20% at T = 1000 K), so in general the harmonic approximation is
better than for TS-R2 and for methanol.

6.3.3. Theoretical thermal rate constants

The thermal rate constants obtained by TST, CVT, CVT/ZCT and CVT/µOMT methods
for the hydrogen abstraction are listed in Table 6.3. Note that here we use the acronym TST,
or the superscript ‡, to denote conventional transition state theory results without tunneling
but with anharmonic treatment of the C–O bond torsion. In fact all the thermal rate constants
listed in Table 6.3 were obtained by multiplying the thermal rate constants obtained using
the harmonic approximation for all the degrees of freedom by the coefficient, α‡

tor(T ), which
includes the anharmonic effects on the torsional modes, i.e., for the TST thermal rate constant:

kTST
tor,TES(T ) = α‡

tor(T )kTST
tor,MC−HO(T ) (6.16)
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Table 6.2: Multiconformer harmonic-oscillator (MC-HO), and torsional eigenvalue summation (TES)
partition functions of methanol, TS-R1 and TS-R2, respectively

CH3OH TS-R1 TS-R2
T(K) MC-HO MC-HO-Z TES MC-HO MC-HO-Z TES MC-HO MC-HO-Z TES

300.00 0.664 0.788 0.793 1.031 1.092 1.134 1.061 1.082 1.183
400.00 0.916 1.078 1.070 1.448 1.527 1.623 1.436 1.463 1.615
500.00 1.164 1.363 1.322 1.855 1.952 2.121 1.808 1.841 2.024
700.00 1.652 1.929 1.763 2.653 2.787 3.128 2.546 2.593 2.771
1000.00 2.378 2.770 2.318 3.834 4.023 4.607 3.649 3.716 3.739
1500.00 3.582 4.168 3.069 5.786 6.068 6.876 5.483 5.583 5.071
2000.00 4.782 5.563 3.689 7.732 8.106 8.887 7.315 7.448 6.179
2500.00 5.982 6.957 4.226 9.674 10.142 10.683 9.146 9.312 7.141

where kTST
tor,TES(T ) and kTST

tor,MC−HO(T ) are the calculated TST thermal rate constants using the
TES and MC-HO partition functions for the torsion, respectively. The coefficient between them
is given by the following quotient between partition functions:

α‡
tor(T ) =

QTES,‡
tor (T )QMC−HO,CH3OH

tor (T )

QTES,CH3OH
tor (T )QMC−HO,‡

tor (T )
(6.17)

In Eq. (6.17) the symbol ‡ refers to TS-R1 or to TS-R2 depending whether we are discussing
reaction R1 or reaction R2, and CH3OH refers to methanol in its equilibrium configuration.

At T = 300 K the coefficients αTS−R1
tor and αTS−R2

tor are 0.93, because in both cases the an-
harmonicity is mainly due to the ZPE effect in methanol. At high temperatures both methanol
and TS-R1 show important deviations from the MC-HO partition functions. This is not the
case for TS-R1, so the quotient between partition functions deviates more from the harmonic
oscillator approximation for R1 than for R2. For instance, at T = 2500 K αTS−R1

tor and αTS−R2
tor

are 1.56 and 1.11, respectively. Since R1 is the dominant channel for the hydrogen abstraction
reaction, the anharmonic treatment of the torsional mode slightly lowers the total thermal
rate constants at room temperature and moderately rises them at high temperatures, when
compared to the harmonic oscillator values.

The ZCT and µOMT transmission coefficients are given in Table 6.4. The LCT transmission
coefficients are not listed because they were always smaller than the SCT ones; the latter
coincided at all temperatures in the interval of temperatures 300–2500 K with the µOMT
transmission coefficients. The barrier height for reaction R1 is much lower than that for reaction
R2, and the dynamics calculations confirm that reaction R1 is faster than reaction R2 between
300 and 2500 K and only at high temperatures does the contribution of R2 start to be important.
Tunneling is more important for reaction R2, with the µOMT transmission coefficient at T =
300 K being 29.8 (2.45 times larger than for reaction R1.) However, the variational effects
decrease the rate constants at T = 300 K by a factor of 0.67, and the CVT/µOMT rate
constant is just 19.9 times larger than the TST one. For reaction R1 tunneling is less important,
but variational effects are very small, and therefore at T = 300 K the CVT/µOMT rate
constant is 11.2 times larger than the TST result, with a µOMT transmission coefficient of
12.2. It is important to include the coupling between the reaction coordinate and the normal
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Table 6.3: Thermal rate constants (in cm3molecule−1s−1) obtained with TST, CVT and with CVT
with the ZCT and µOMT approximations for tunneling for reactions R1 an R2. All rate constants
include the anharmonicity parameter of Eq. (6.17)

R1 R2
T (K) TST CVT CVT/ZCT CVT/µOMT TST CVT CVT/ZCT CVT/µOMT

298 1.67(-17)a 1.53(-17) 4.71(-17) 1.93(-16) 2.47(-21) 1.64(-21) 1.72(-20) 5.16(-20)
300 1.84(-17) 1.68(-17) 5.11(-17) 2.05(-16) 2.89(-21) 1.92(-21) 1.95(-20) 5.74(-20)
400 7.17(-16) 6.73(-16) 1.23(-15) 2.79(-15) 1.04(-18) 7.83(-19) 2.48(-18) 4.50(-18)
500 7.09(-15) 6.74(-15) 9.88(-15) 1.68(-14) 3.82(-17) 3.08(-17) 6.20(-17) 8.99(-17)
600 3.51(-14) 3.36(-14) 4.37(-14) 6.36(-14) 4.44(-16) 3.74(-16) 6.00(-16) 7.74(-16)
700 1.16(-13) 1.12(-13) 1.35(-13) 1.79(-13) 2.66(-15) 2.31(-15) 3.25(-15) 3.92(-15)
1000 1.20(-12) 1.16(-12) 1.27(-12) 1.46(-12) 7.76(-14) 7.06(-14) 8.32(-14) 9.10(-14)
1500 9.80(-12) 9.50(-12) 9.90(-12) 1.05(-11) 1.37(-12) 1.28(-12) 1.38(-12) 1.43(-12)
2000 3.32(-11) 3.21(-11) 3.29(-11) 3.41(-11) 6.76(-12) 6.41(-12) 6.67(-12) 6.82(-12)
2500 7.59(-11) 7.31(-11) 7.43(-11) 7.59(-11) 1.93(-11) 1.84(-11) 1.89(-11) 1.92(-11)
a Powers of ten in parenthesis.

modes orthogonal to it, because the ZCT transmission coefficients seriously underestimate the
tunneling contribution for both reactions. It should be noticed that the ZCT transmission
coefficient is multidimensional, because it includes the variation of ǫG

int(s) with s, which is a
multidimensional effect, but it treats the MEP as if it were one-dimensional by neglecting its
curvature, although it is a multidimensional path.

The Wigner [52] and Eckart [50] tunneling contributions used by Lendvay et al [183] and
by Jodkowski et al. [190], respectively, are obtained from the second derivative of VMEP(s) at
the top of the potential, i.e., those are completely one-dimensional models based on the nor-
mal mode with imaginary frequency at the transition state. The imaginary frequencies at the
MC3BB level for reactions R1 and R2 are, respectively, 1466i cm−1 and 1718i cm−1, and with
values of the Wigner transmission coefficients at T = 300 K of 3.06 and 3.83. (The failure of the
Wigner model is not surprising when one considers that the value of 3.83 results from retaining
only the first two terms of a series that begins 1 + 2.83 + · · · .) The transmission coefficients
predicted by the Wigner expression are too small. However, the transmission coefficients re-
ported by Jodkowski et al. [190], which were based on the Eckart potential are unusually large
with values of 7.5 and 27.2 at T = 400 K for reactions R1 and R2, respectively, as compared
to the µOMT transmission coefficients of 4.1 and 5.7. Those authors obtained such a large
values because their calculations used imaginary frequencies with values of 1827i cm−1 and
2246i cm−1 for reactions R1 and R2, respectively. In one-dimensional models larger imaginary
frequencies lead always to narrower potentials and therefore to larger transmission coefficients
(see Figure 6.3). In multidimensional models, such as µOMT, this is not so straightforward,
because although very close to the transition state the reactive motion can be regarded as
one-dimensional (at that stage the reaction coordinate involves essentially the motion of the
atoms of the mode with imaginary frequency), as the reaction progresses toward reactants and
toward products more normal mode motions get involved and coupling between the reaction
coordinate and the other modes becomes important. As a consequence, the magnitude of the



6. The CH3OH + H hydrogen abstraction reaction 91

Table 6.4: Transmission coefficients computed with the ZCT and µOMT approximations for R1 and
R2 reactions

R1 R2
T(K) CVT/ZCT CVT/µOMT CVT/ZCT CVT/µOMT

300 3.03 12.2 10.1 29.8
400 1.83 4.14 3.17 5.74
500 1.47 2.50 2.01 2.92
700 1.21 1.60 1.41 1.69
1000 1.10 1.26 1.18 1.29
1500 1.04 1.11 1.07 1.12
2000 1.02 1.06 1.04 1.06
2500 1.02 1.04 1.03 1.04

tunneling effect does not depend exclusively on the magnitude of the imaginary frequency at
the transition state, although is still a useful but rough indication of the amount of tunneling.
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Figure 6.3: Vibrationally adiabatic potential for reaction R1 (solid line) compared to Wigner (inverse
parabola) and Eckart potentials that were obtained with the imaginary frequency reported in Ref. [190]
for reaction R1, i.e. 1827i cm−1. The three potentials are normalized to the same value at the saddle
point (s = 0).

Kerkeni and Clary [191] reported values for the imaginary frequencies calculated at the
MP2(full)/cc-pVTZ level which are 1802i cm−1 and 2158i cm−1 for reactions R1 and R2, re-
spectively. These large values are obtained because the MP2(full)/cc-pVTZ level yields barrier
heights which are too high in this case (i.e., 14.4 and 24.4 kcal/mol for reactions R1 and R2,
respectively), making the potential near to the top of the barrier too narrow. For this rea-
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son their tunneling calculations are a 42% larger than our µOMT transmission coefficients at
T = 300 K. (For reactions R1 and R2 the µOMT transmission coefficients are about 12 and
30, whereas those obtained by Kerkeni and Clary [191] are about 17 and 38.) At T = 700 K
the agreement is very good for reaction R1, but less satisfactory for reaction R2, with the
transmission coefficients reported by them being about 1.7 and 4.3, for reactions R1 and R2,
respectively. As we have mentioned previously, at high temperatures most of the tunneling (if
any) occurs near the top of the barrier and the magnitude of the transmission coefficient is
more sensitive to the value of the imaginary frequency, which in this case is too high.

The issues raised in this discussion point out the importance of choosing electronic structure
methods consistent not just with the energetics of the reaction (which can often be achieved
by performing very accurate single-point calculations on optimized geometries obtained at a
lower level), but also with other aspects of the potential energy surface, such as geometries
and vibrational frequencies, which may have an important impact on the dynamics. On the
other hand, the multidimensional methods for tunneling show the limited reliability of one-
dimensional methods, since the latter do not account for many of the features of the chemical
reaction.

6.3.4. Arrhenius parameters

Table 6.5 lists the Arrhenius parameters obtained by different experimental techniques or by
different theoretical methods for the R1 + R2 hydrogen abstraction process. The discharge flow
reactor experiments are available at temperatures ranging from 295 to 680 K, which is a temper-
ature region in which quantum effects are very relevant. To establish some difference between
these data and those obtained from high-temperature experiments (as for instance pyrolysis
and unimolecular decomposition), all data were divided into two sets, one ‘low-temperature’
(low T ) set for data between 295 and 700 K and one ‘high-temperature’ (high T ) set for data
which are roughly between 700 and 2000 K. Although we do not recommend two-parameter
Arrhenius fits in general, we made such fits in Table 6.5 simply as a convenient way to make
comparisons.

Whereas the activation energies in Table 6.5 represent averages over given temperature
intervals, it is also interesting to consider the temperature-dependent activation energy given
by the local slope of an Arrhenius plot as

Ea = −R
dlnk

d(1/T )
(6.18)

Figure 6.4 plots Ea as a function of temperature and shows that the anharmonicity in the
torsional mode increases the energy of activation regarding to the harmonic treatment. Besides,
Ea increases substantially with temperature, i.e., from 5.73 kcal/mol (5.67 kcal/mol with the
harmonic approximation) at T = 300 K to 17.7 kcal/mol (17.3 kcal/mol using the harmonic
approximation) at T = 2500 K. This behavior is not just due to the quantum effects, which
decrease both the preexponential factor and the activation energy at low T with respect to the
classical rate constant, because the TST activation energy also increases when going from low
T to high T in values averaged over intervals (see Table 6.5); using Eq. (6.18) with TST gives
8.6 kcal/mol at T = 300 K and 18.3 kcal/mol at T = 2500 K. The change of the activation
energy with temperature is typical of many bimolecular gas-phase reaction rate constants [217–
220], and it leads to curved Arrhenius plots. Figure 6.5 shows a concave Arrhenius plot even
at high T which is an indication of the rise of the activation energy with temperature.
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Table 6.5: Arrhenius parameters (activation energies Ea, in kcal/mol, and logarithm (to the base 10)
of the preexponencial factor, log(A/cm3s−1molecule−1) for the overall CH3OH + H reaction

Reference T (K) logA Ea Experimental technique/Theoretical method

Aders and Wagner [184] 295−653 -10.42 5.30 Discharge flow reactor
Meagher et al. [185] 298−575 -10.96 5.44 ESR
Warnatz [167] 300−700 -10.18 6.10 Combustion
Hoyermann et al. [182] 500−680 -10.66 5.29 Discharge flow reactor
Li and Williams [174] 300−700 -9.95 6.75 Laminar counterflow flame
Baulch et al. [187] 300−700 -10.40 5.60 Fit to values of Refs. [178, 180, 182, 184]
Chuang et al. [42] 300−700 -10.93 4.11 CVT/µOMT
Lendvay et al. [183] 300−700 -9.53 6.96 TST/Wigner
Jodkowski et al. [190] 300−700 -11.00 6.13 TST/Eckart
Carvalho et al. [195] 300−600 -10.66 6.59 IVTST-0/ZCT
Kerkeni and Clary [191] 320−680 -10.76 6.59 Reduced dimensionality QD
This work 300−700 -10.11 -9.17 TST
This work 300−700 -10.59 7.18 CVT/µOMT

Westbrook and Dryer [165] 1000−2180 -10.28 7.01 Pyrolysis
Vandooren and Tiggelen [178] 1000−2000 -10.25 2.61 Beam molecular sampling
Spindler and Wagner [179] 1600−2100 -10.28 5.25 Thermal unimolecular decomposition
Warnatz [167] 700−2000 -10.18 6.10 Combustion
Cribb et al. [180] 1800−2740 -9.32 14.06 Pyrolysis
Li and Williams [174] 700−2000 -9.02 9.90 Laminar counterflow flame
Held and Dryer [171] 633−2050 -10.52 6.10 Several experimental techniques
Tsang [186] 600−2000 -9.08 9.37 Fit to BEBO calculations
Baulch et al. [187] 700−2000 -9.88 7.36 Fit to values of Refs. [178, 180, 182, 184]
Chuang et al. [42] 700−2000 -9.75 7.34 CVT/µOMT
Lendvay et al. [183] 700−2000 -8.82 9.37 TST/Wigner
Jodkowski et al. [190] 700−2000 -9.38 11.19 TST/Eckart
Carvalho et al. [195] 800−2000 -9.31 11.18 IVTST-0/ZCT
Kerkeni and Clary [191] 680−2000 -9.97 9.11 Reduced dimensionality QD
This work 700−2000 -9.09 12.67 TST
This work 700−2000 -9.18 11.84 CVT/µOMT

On the basis of the rigorous definition given by Tolman [221, 222] in which the activation
energy is interpreted as the average energy over all reacting molecules minus the average en-
ergy over all reactant molecules (independently of whether they react or not), it is possible
to interpret the change of the activation energy with temperature. [218, 223, 224] Basically,
an activation energy that increases with temperature means that at higher temperatures the
average energy of reacting systems is increasing more rapidly than the average energy of all
possible reactants. From the point of view of TST, the variation of the activation energy with
temperature depends strongly on the magnitude of the transitional modes (the normal modes
at the transition state structure coming from the rotational and translational motions of re-
actants), [225] an issue that was already pointed out byMeagher et al. [185] for the overall
CH3OH + H reaction.
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Figure 6.4: Variation of the activation energy (in kcal/mol) with temperature for the total CH3OH
+ H reaction (R1 + R2). HO and TES refer, respectively, to the harmonic oscillator and the torsional
eigenvalue summation treatments given to the torsional mode.

From the experimental point of view only the measurements of Li and Williams [174] are
available at low T and high T and in this case a clear increase of the activation energy with
temperature is observed. With the exception of this work and that of Cribb et al. [180] the high
T experiments do not show a clear increase of the activation energy with respect to the low T
experiments, so we believe that those high T experiments deserve further checking. It should
be also noticed that most of the experimental data reported (listed in Table 6.5) were fitted
to Arrhenius expressions (the work of Li and Williams [174] is an exception). Some of these
Arrhenius parameters were later on used in the modeling of the mechanism of combustion and
oxidation of methanol; [172, 175] the approximation of uncurved Arrhenius plots could affect
the conclusions of those studies.

Figure 6.5 shows that the our CVT/µOMT results are very similar to the reduced dimen-
sionality quantum dynamics results of Kerkeni and Clary [191] till about T = 1000 K, and at
higher temperatures they are closer to the thermal rate constants calculated by Jodkowski et
al. [190]. In the interval of temperatures at which the discharge flow reactor experiments by
Aders and Wagner [184] were carried out and the ESR experiments by Meagher et al. [185]
were performed, the calculated CVT/µOMT thermal rate constants lay below those values
because the theoretical calculations lead to a much higher activation energy. The experimental
data of Hoyermann et al. [182] are about 6 and 3 times larger than the CVT/µOMT results at
T = 500 K and T = 680 K, respectively, indicating also that their results have a more nearly
constant slope. Actually, their results have the same slope as the values reported by Aders
and Wagner [184], which is surprising because the measurements by Hoyermann et al. [182]
start at temperatures about 200 K higher; therefore, a larger activation energy would be ex-
pected. Meagher et al. [185] pointed out that, since that their ESR experiments measure
the disappearance of the H atom radical (the discharge flow reactor experiments also mea-
sure that concentration) part of the hydrogen radical could be consumed by the side reaction
CH2OH + H −−→ CH3 + OH. However, both, the preexponential factor obtained, which is typ-
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ical of that for a hydrogen abstraction reaction, and the high linearity in the decay of the
hydrogen radical concentration, suggest that that side reaction is unimportant. This is still a
controversial issue, because some of the modeling involved in the study of the mechanism of
combustion of methanol [169, 171, 172] indicate its importance in the consumption of hydrogen
radical and in the generation of OH radicals.
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Figure 6.5: Arrhenius plot that compares the CVTµOMT total (R1 + R2) thermal rate constants
computed at the MC3BB level with experimental and theoretical works available in the literature. The
left-bottom corner of the figure is a zoom with the data at high temperatures.
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At high T reliable values of the thermal rate constants for reactions R1 and R2 are very
important because most of the modeling of the combustion of methanol is carried out at these
temperatures. The diversity of the values of the rate constants (see Table 6.5 and left corner
of Figure 6.5) indicate a great uncertainty in the experimental data. Because the energy
of activation changes with temperature the data are only comparable at the same interval of
temperatures; nevertheless most of the data are incongruent with the low T experiments. Thus,
the experiments of Westbrook and Dryer [165], Warnatz [167], Vandooren and Tiggelen [178],
Spindler and Wagner [179] and Held and Dryer [171] lead to activation energies which are
too low as compared to theory. Cribb et al. [180] reported a value for the activation energy
of 14.1 kcal/mol for the interval between T = 1800 and 2740 K that is in relatively good
agreement with the value of 16.7 kcal/mol obtained by CVT/µOMT for the same interval.

As mentioned above the large dependence of the activation energy on temperature discour-
ages the use of Arrhenius expression for the overall R1 + R2 reaction even in small temperature
ranges. One alternative to the equation of Arrhenius which is widely used in practice is:

k(T ) = A

(

T

300

)n

e−E/T (6.19)

where A, n and E are parameters and T is temperature. As shown in Refs. [225] and [226],
Eq. (6.19) fits perfectly the curved Arrhenius plot only if the activation energy increases linearly
with temperature, which is not the case here. However, at temperatures of combustion, as
shown in Figure 6.4, the dependence of Ea with temperature is almost linear, so in Table 6.6
we report values of the A, n and E fitting parameters for the total thermal rate constants
above T = 700 K. To reproduce well the whole interval between T = 300 K and 2500 K it is
necessary to use a more elaborate expression that reproduces the asymptotic behavior at low
temperatures, i.e., [226]

k(T ) = A

(

T

300

)n

exp

[−E(T + T0)

T 2 + T 2
0

]

(6.20)

This equation has four fitting parameters A, n, E and T0. The errors are calculated as the value
of the root mean square residual (RMSR), which is given by:

RMSR =







1

N

[

N
∑

i=1

ln

(

k(Ti)

kM (p1, ..., pK , Ti)

)

]2






1/2

(6.21)

where N is the number of temperatures, which in this case were taken every 10 K; k(Ti) is
the CVT/µOMT thermal rate constant at Ti, and kM (p1, ..., pK , Ti) are the fitted thermal rate
constants involving the K parameters given by Eq (6.19) (K = 3) or by Eq. (6.20) (K = 4).
All parameters are listed in Table 6.6. Since Eq. (6.19) is only used at high temperatures, the
RMSR values are vey small for both fits. We recommend Eq. (6.20) at low and mid-range T,
and either fit may be used at temperatures above T = 700 K.
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Table 6.6: Fitting parameters to the CVT/µOMT thermal rate constants for the total reaction R1 +
R2 and for R1 and R2 using Eqs. (6.19) and (6.20). The RMSR values are also given

Reaction
Parameter R1 + R2 R1 R2

Eq. (6.19) (700 ≤ T (K) ≤ 2500)
A(cm3s−1molecule−1) 1.170×10−12 1.713×10−12 1.898×10−12

n 2.612 2.351 2.147
E(K) 2850 2975 5603
RMSR 0.017 0.014 0.010
Eq. (6.20) (300 ≤ T (K) ≤ 2500)
A(cm3s−1molecule−1) 4.738×10−13 7.334×10−13 3.504×10−13

n 2.922 2.632 2.707
E(K) 2005 2128 4008
T0(K) 204.5 208.7 188.8
RMSR 0.017 0.016 0.011

6.3.5. Branching ratios

Reactions R1 and R2 obtained by CVT/µOMT were also fitted to Eqs. (6.19) and (6.20).
The results are given in Table 6.6. With the exception of the experiments of Li et al. [175], all
the theoretical and experimental data plotted in Fig. 6.6 show that reaction R1 dominates over
the whole range of temperatures 300–2500 K. All the theoretical works show some temperature
dependence of the branching ratio with temperature. The CVT/µOMT calculations with the
torsional mode treated within the harmonic approximation and the work of Lendvay et al. [183]
predict similar branching ratios, with percentages that never reach 30% even at T = 2000 K,
whereas the works of Kerkeni and Clary [191] and Jodkowski et al. [190] predict even smaller
percentages for reaction R2. When anharmonicity is included the branching ratio increases,
and at T = 2000 K R1 contributes about 80% to the total abstraction reaction. In this context,
the assumption of Held and Dryer [171] seems quite unrealistic, because they consider that the
branching ratio is independent of temperature, which is equivalent to assuming that both reac-
tions have the same activation energy. On the other hand, the results reported by Li et al. [175]
indicate that at T = 500 K, R2 contributes by more than 30% to the total abstraction reaction,
and at about T = 800 K reaction R2 starts to dominate. However, at temperatures between
500 and 680 K, Hoyermann et al. [182] by doing deuterium isotopic susbstitution of methanol
with the further analysis of the products showed, although not conclusively, that reaction R1
is the main channel for hydrogen abstraction from methanol. The theoretical calculations also
support that conclusion. The comparison of theory and experiment for the branching ratio
between reactions R1 and R2 brings into question the accuracy of the experimental results, so
we recommend the use of Eqs. (6.19) and (6.20) with the parameters of Table 6.6 for the study
of mechanisms related to the combustion of methanol.

6.3.6. Kinetic isotope effects

The KIE is an important tool to study reaction mechanisms and analyze tunneling effects.
We have calculated two KIEs at low temperatures (at which only R1 contributes significantly
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Figure 6.6: Branching ratio expressed as a percentage: kR1(T )
kR1(T )+kR2(T ) × 100. Several theoretical and

experimental data are plotted. HO and TES have the same meaning as in Figure. 6.4

to the total abstraction rate constant), i.e., the secondary KIE defined as the reaction rate
ratio between reactions R1 and R4, η1,4(T ), and the primary KIE given by the ratio between
reactions R1 and R5, η1,5(T ). We use the notation

η(T ) =
kH(T )

kD(T )
(6.22)

where kH(T ) is the rate constant for reaction R1, and kD(T ) is that for R4 or R5 reactions.

The KIEs are factorized into their quasiclassical, ηQC(T ), and tunneling, ηtun(T ) contribu-
tions, i.e.,

η(T ) = ηtun(T )ηQC(T ) (6.23)

where

ηtun(T ) =
κ

CVT/µOMT
H (T )

κ
CVT/µOMT
D (T )

(6.24)

and ηQC(T ) is given by

ηQC(T ) = ηvar(T )ηTST(T ) (6.25)

where ηvar(T ) is the variational contribution to the KIE, and ηTST(T ) is the TST contribution
to the KIE and is given by

ηTST(T ) = ηtransη
TST
rot ηTST

vib,tor(T ) (6.26)
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Figure 6.7: Values of η1,4 between T = 250 and 1000 K. The experimental data of Ref. [185] are
indicated with error bars. HO and TES have the same meaning as in Figure. 6.4

where ηtrans and ηTST
rot are the translational and rotational temperature-independent contri-

butions and ηTST
vib,tor(T ) is the temperature-dependent vibrational contribution in which the

torsional mode was treated using the TES method.

The experimental data of Meagheret al. [185] (see Figure 6.7) show that the secondary KIE
η1,4 is inverse (smaller than the unity). Both sets of theoretical results shown in Figure 6.7
also exhibit this tendency, although our CVT/µOMT results are in better agreement with the
experimental data. The contributions to the KIE are listed in Table 6.7. The product of
translational and rotational contributions does not change with temperature and equals 2.00.
The anharmonic contribution of the torsional mode to the KIE is quite modest and the largest
difference with respect to the harmonic oscillator treatment occurs at low-T and is about
7%. The vibrational and variational contributions are smaller than unity, and at T = 300 K
their product is 0.24, which gives a quasiclasical KIE of 0.47. The experimental KIEs have
significant error bars and are roughly between 0.4 and 1.2, with the data clustered between
0.5 and 0.7. The CVT/µOMT results show that tunneling increases the total KIE because a
multidimensional effect that greatly favors tunneling in reaction R1 over reaction R4 is that
the vibrationally adiabatic barrier height is larger for the former reaction, i.e., 8.48 kcal/mol,
whereas for reaction R4 is 7.72 kcal/mol. At T = 300 K this leads to µOMT transmission
coefficients which are 12.2 and 6.63 for reactions R1 and R4, respectively, increasing the KIE
by a factor of 1.84 and leading to a final predicted value for the KIE in good agreement with
experiment.



100 6.3. Results and discussion

Table 6.7: Contributions to the KIE η1,4 (see text) obtained at the MC3BB level and using the
CVT/µOMT thermal rate constants.a Both ηTST

vib,HO and ηTST
vib,tor are the vibrational contributions to the

KIE using, respectively, the harmonic oscillator and TES approximations to the torsional mode

T (K) ηTST
vib,HO(T ) ηTST

vib,tor(T ) ηTST(T ) ηvar(T ) ηQC(T ) ηtun(T ) η1,4(T )

300 0.24 0.26 0.47a 0.91 0.43 1.84 0.87
400 0.32 0.33 0.62 0.93 0.58 1.36 0.85
500 0.37 0.38 0.72 0.95 0.69 1.20 0.88
700 0.42 0.44 0.83 0.96 0.82 1.09 0.93
1000 0.46 0.48 0.90 0.96 0.91 1.04 0.98
1500 0.49 0.51 0.95 0.96 0.95 1.02 1.01

a ηtrans = 2.70; ηTST
rot = 0.74.

Table 6.8: Same as Table 6.7 but for η1,5

T (K) ηTST
vib,HO(T ) ηTST

vib,tor(T ) ηTST(T ) ηvar(T ) ηQC(T ) ηtun(T ) η1,5(T )

300 6.50 7.30 8.65a 0.78 7.29 2.24 20.99
400 3.95 4.45 5.27 0.83 4.64 1.70 9.45
500 2.92 3.29 3.89 0.87 3.52 1.44 5.83
700 2.08 2.33 2.77 0.90 2.56 1.22 3.46
1000 1.63 1.84 2.18 0.92 2.04 1.11 2.45
1500 1.40 1.57 1.86 0.93 1.75 1.05 1.97

a ηtrans = 1.01; ηTST
rot = 1.18.

The contributions to the calculated CVT/µOMT primary KIE η1,5 are listed in Table 6.8.
The final predicted KIE agrees quite well with the experimental data obtained by Hoyermann
et al. [182] (see Figure 6.8), although the KIEs obtained from their raw data may be unreliable
because the thermal rate constants reported by them have large error bars. They also fitted
the thermal rate constants for R5 and for R6 to the same Arrhenius expression. This looks
like a good approximation since our CVT/µOMT calculations for R6 deviate less than 2%
from those obtained for R5 in the temperature range 300-2500 K, so we do not report those
values here. The translational, rotational, and variational contributions are very close to unity,
and their product leads to a value of only 1.29 at T = 300 K, so the main contribution to
the quasiclassical KIE is due to vibration. For the factorization employed in Table 6.8, the
vibrational contribution to the KIE is given by:

ηTST
vib,tor(T ) =

QTS−R1
vib,tor (T )QCD3OH

vib,tor (T )

QTS−R5
vib,tor (T )QCH3OH

vib,tor (T )
(6.27)

where QTS−R1
vib,tor (T ) and QTS−R5

vib,tor (T ) are the vibrational partition functions of the conventional

transition states (saddle points) of the R1 and R5 reactions, respectively, and QCD3OH
vib,tor (T ) and

QCH3OH
vib,tor (T ) are the reactant vibrational partition functions of CD3OH and CH3OH, respec-

tively. All of them include the calculation of the torsional mode partition function by the TES
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Figure 6.8: Values of η1,5(T ) between T = 250 and 1000 K. HO and TES have the same meaning as
in Figure. 6.4

method. The vibrational KIE is larger than the unity because the quotient between reactants
partition functions is quite big due mainly to the difference in the value of the frequencies of
the C-D and C-H stretches. This mass effect largely compensates the quotient between the
vibrational partition function of the transition states, which is smaller than the unity. In the
case of the η1,4(T ) KIE, the latter is the only contribution to the vibrational KIE, because the
vibrational frequencies of reactants are the same. Moreover, the anharmonic treatment of the
torsional mode increases the vibrational contribution to the KIE by about 10%.

In this case it is also easy to understand that the tunneling contribution increases the KIE,
since the hydrogen atom is lighter than deuterium, and therefore it has a larger probability of
penetrating the barrier, if the barriers are the same. In the SCT and µOMT approximations,
the effective barriers are not the same, but still the expected trend holds.

This last section shows that, although most of the theoretical models discussed in this
paper predict similar thermal rate constants for the hydrogen abstraction reactions, a multi-
dimensional tunneling method is needed in order to obtain good agreement with some of the
KIEs.

6.4. Conclusions

In the present work we have performed high-level MC3BB direct-dynamics CVT/µOMT cal-
culations in the temperatures interval 300-2500 K for the two competing hydrogen abstraction
reactions R1 and R2 from methanol by atomic hydrogen. We have pointed out the importance
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of using multidimensional models for treating tunneling, which, with other factors being equal,
provide both more reliable absolute thermal rate constants and kinetic isotope effects. It turned
out that at high temperatures the anharmonicity of the torsional mode about the C–O bond
plays an important role, because it leads to thermal rate constants that deviate substantially
from those obtained by the harmonic oscillator approximation. On the other hand, our calcu-
lations and previous theoretical works clearly indicate that the activation energy for the overall
R1 + R2 process increases substantially with temperature; a conclusion not supported by the
high T experimental data (above T = 700 K), which do not show a clear trend. For this reason
for reactions R1 + R2, R1 and R2 we recommend the use of Eq. (6.20) in the whole range
of temperatures, although Eq. (6.19) can also be used at high T. We propose these equations
(in detriment of the Arrhenius equation) for further studies involving these reactions (as for
instance, combustion reactions). Reaction R1 dominates at all temperatures in the interval
300-2500 K, contributing 100% at room temperature and about 75% at T = 2500 K, so the
branching ratio R1/R2 changes with temperature. Our calculated KIEs are in quite good
agreement with experiment.



Chapter 7

The [1,7] hydrogen shift in
7-methylocta-1,3(Z),5(Z)-triene

Direct-dynamics canonical variational transition-state theory calculations with microcanon-
ically optimized multidimensional transmission coefficient (CVT/µOMT) for tunneling were
carried out at the MPWB1K/6-31+G(d,p) level to study the [1,7] sigmatropic hydrogen re-
arrangement in 7-methylocta-1,3(Z),5(Z)-triene. This compound has twenty four conformers,
of which only one leads to products, although all of them have to be included in the theoret-
ical treatment. The calculated CVT/µOMT rate constants are in good agreement with the
available experimental data. To try to understand the role of tunneling in the hydrogen shift
reaction, we have also calculated the thermal rate constants for the monodeuterated compound
in the interval T = 333.2−388.2 K. This allowed us to evaluate primary kinetic isotope effects
(KIEs) and make a direct comparison with experiment. Our calculations show that both the
large measured KIE and the large measured difference in the activation energies between the
deuterated and root compounds are due to the quantum tunneling. The tunneling contribution
to the KIE becomes noticeable only when the coupling between the reaction coordinate and
the transverse modes is taken into account. Our results confirm previous experimental and
theoretical works, which guessed that the obtained kinetic parameters pointed to a reaction
with an important contribution due to tunneling. The above conclusion would be essentially
valid for the case of the [1,7] hydrogen shift in previtamin D3 because of the similarity to the
studied model system.

7.1. Introduction

Sigmatropic hydrogen shifts are hydrogen transfer reactions that play an important role in
some biologically relevant processes. A clear example is the [1,7] hydrogen shift in previtamin
D3. [227] The vitamin is formed from 7-dehydrocholesterol in two well-defined steps. [228–230]
The first step is a photochemical process in which cholesterol is transformed into previtamin
D3 when irradiated with ultraviolet light. In the second step, this previtamin leads to vitamin
D3 by thermal isomerization, i.e., by antarafacial [1,7] hydrogen shift between carbons C9 and
C19, as indicated in Scheme 7.1.

The [1,7] hydrogen shift involves the transfer of a light particle between two heavy atoms;
tunneling through the barrier may be of importance. In this context, the measurement of
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kinetic isotope effects (KIEs) is a very useful tool in the understanding of the significance
of tunneling in hydrogen transfer reactions. [58] Usually, a large KIE indicates the presence
of tunneling because hydrogen tunnels through a classical barrier better than deuterium, so
the rate constant of the process for the former atom increases more than for the latter. This
would be always the case if tunneling were a one-dimensional effect. However, because of its
multidimensional nature, there are cases for which tunneling may be important even with low
KIEs. [150] One of the advantages of performing theoretical reaction dynamics studies is the
possibility of calculating separately the effect of different contributions to the KIE, i.e., the
classical (rotational, vibrational, and electronic) and the quantum (tunneling) contributions.
In particular, variational transition-state theory with multidimensional tunneling corrections
(VTST/MT) has proven to be a powerful and useful tool. [231]

Scheme 7.1: Thermal Isomerization of Previtamin D3 to Vitamin D3

Vitamin D3 is a big molecule to be treated with semiclassical direct-dynamics models, and
even if we use density functional theory (DFT) methods for the electronic structure calcula-
tions, these would be very expensive in computer time. Of course, one can use semiempirical
methods with specific reaction parameters (SRPs), [137] but in this case, we preferred to use
straight high-level direct dynamics, because it is easy to find good models to describe the main
features of the [1,7] hydrogen shift in the previtamin D3. One model system with these char-
acteristics is 1,3(Z),5(Z)-octatriene, because it contains the essence of the hydrogen transfer
active site. Kinetic isotope effects on the hydrogen shift of this system were measured by
Baldwin and Reddy [232] in the range of temperatures 333.2-388.2 K, although these authors
could not draw firm conclusions about the thermal dependence of the KIEs because of the
complexity of the kinetics and the difficulty to distinguish between primary and secondary
KIEs. In this aspect, an easier system to study, although slightly larger, is the hydrogen
shift in 7-methylocta-1,3(Z),5(Z)-triene, because the reaction leads to a single conformer called
2-methylocta-2,4(Z),6(Z)-triene. In this case, it is possible to deuterate only the transferred
hydrogen, so there are no contributions from secondary KIEs in the measurement. These mea-
surements of the primary KIEs in 7-methylocta-1,3-(Z),5(Z)-triene were also carried out by
Baldwin and Reddy [233] in the range of temperatures 333.2−388.2 K, and in this case, it was
possible to easily measure the temperature dependence of the rate constants. Those authors
obtained KIEs of 7.0 at T = 333.2 K and 4.6 at T = 388 K, respectively, and concluded that
tunneling effects for this reaction are substantial because the difference between the activa-
tion energies for the root and deuterated compounds is large. Jensen [234] and Hess [235]
independently corroborated this conclusion by carrying out electronic structure calculations.
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The former applied the conventional transition-state theory to the reaction after performing
B3LYP/6-31+G* calculations on the stationary points. Hess calculated a KIE of 3.89 at
333.2 K, which is about half the experimental value obtained by Baldwin and Reddy, [233]
concluding that the difference is due to the neglect of tunneling in his calculation.

The above KIEs are very similar to those measured by Okamura et al. [236] for the [1,7]-
sigmatropic hydrogen shift of previtamin D3 to vitamin D3, which range from 7.4 at T = 333.2 K
to 6.1 at T = 358.7 K. They used a pentadeuterio derivative of previtamin D3, but in this case, a
negligible secondary KIE is expected. The similarity between the KIEs indicates that tunneling
may also play an important role in this case and that 7-methylocta-1,3(Z),5(Z)-triene is a good
system to model the hydrogen shift process in previtamin D3. Therefore, the aim of this paper
is to use VTST/MT to get insight into the role played by tunneling in the [1,7] hydrogen shift of
7-methylocta-1,3(Z),5(Z)-triene by analyzing the calculated KIEs. Because of the similarities
between this molecule and previtamin D3, the conclusions obtained would be common to both
systems.

7.2. Computational details

All the electronic structure calculations have been performed at the MPWB1K level [237]
with the 6-31+G(d,p) basis set, [145] also called DIDZ. MPWB1K is a DFT method based on
the Perdew and Wang 1991 exchange functional [238] (MPW) and Becke’s 1995 meta correlation
functional (B95), [204] which has been optimized for kinetics calculations, so we also expect
a good performance of the method in this case. The geometry optimizations and frequency
calculations at the stationary points were performed with Gaussian03. [212]

All dynamics calculations were carried out by VTST/MT using the MPWB1K/DIDZ level
to build the potential energy surface. VTST/MT improves conventional transition-state theory
in two aspects: [16, 17] (a) it minimizes the recrossing by variationally locating the transition-
state dividing surface at an optimized position orthogonal to the minimum energy path (MEP);
and (b) it incorporates multidimensional tunneling effects into the reaction coordinate by a mul-
tiplicative transmission coefficient. The MEP was followed in redundant curvilinear (internal)
coordinates [211] by using the Page-McIver algorithm. [210] The advantage of using internal
coordinates along the MEP is that it provides more reliable normal-mode frequencies along the
MEP than rectilinear (Cartesian) coordinates. [239, 240] A converged MEP was obtained with
a step size of 0.01ao, scale mass µ = 1 amu, and Hessian calculations every nine steps. All
frequencies were scaled by the recommended factor of 0.9537. [241]

Variational effects were incorporated by the canonical variational transition-state theory
(CVT), [66, 242, 243] in which the flux is minimized for a canonical ensemble. The CVT rate
constant, kCVT(T ), at temperature T , can be obtained as the minimum of the generalized
transition-state theory rate constant, kGT(T, s), as a function of s, that is,

kCVT(TT ) = min
s

kGT(T, s) = σ
1

βh

QGT(T, sCVT
∗ )

QR(T )
exp

[

−βVMEP

(

sCVT
∗

)]

(7.1)

where s is the arc length along the MEP measured from the saddle point; sCVT
∗ is the value

of s at which kGT(T, s) has a minimum; σ is the symmetry number; β = (kBT )−1, where kB

is the Boltzmann’s constant; VMEP(sCVT
∗ ) is the classical MEP potential at s = sCVT

∗ ; and
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QGT(T, sCVT
∗ ) and QR(T ) are the internal (rotational, vibrational, and electronic) partition

functions of the generalized transition state at s = sCVT
∗ and reactants, respectively.

Tunneling effects were incorporated into the thermal CVT rate constants by a multiplicative
ground-state (G) transmission coefficient, κCVT/G(T ), so the final rate constant is given by

kCVT/G(T ) = κCVT/G(T )kCVT(T ), (7.2)

where

κCVT/G(T ) = β exp
[

βV AG
a (sCVT

∗ )
]

∫ ∞

E0

dEPG(E) exp(−βE) (7.3)

where V G
a is the vibrationally adiabatic potential, which is given by

V G
a (s) = VMEP(s) + ǫG

int(s), (7.4)

where ǫGint(s) is the internal energy (rotational and vibrational) at s, which in the ground-
state approximation equals the zero-point energy (ZPE) at s. The semiclassical ground-
state probability PG(E) was calculated over the vibrational adiabatic potential by optimiz-
ing microcanonically (at every energy) the largest probability between the small curvature
tunneling (SCT) probability, [244] P SCT(E), and the large curvature tunneling (LCT) prob-
ability, [16, 17, 20, 21, 245] PLCT(E), evaluated with the LCG4 version. [21] The resulting
probability is, therefore, given by

PµOMT(E) = max
E

{

P SCT(E)
PLCT(E)

(7.5)

where µOMT stands for microcanonically optimized multidimensional tunneling. [24] The semi-
clasical probability in the whole range of energies is given by

P SAG(E) =















0, E < E0

{1 + exp[2θ(E)]}−1, E0 ≤ E ≤ V AG
a

1 − P SAG(2V AG
a − E), V AG

a ≤ E ≤ 2V AG
a − E0

1, 2V AG
a − E0 < E

(7.6)

where E0 is the lowest energy at which it is possible to have tunneling, V AG is the top of the
vibrationally adiabatic potential, and θ(E) is the imaginary action integral. This integral in
the SCT approximation is given by

θ(E) =
1

~

∫ s1

s0

ds2µSC
eff (s){(V G

a (s) − E)}1/2 (7.7)

where s0 and s1 are the classical turning points and µSC
eff (s) is the effective mass, which is

a function of the couplings between the reaction coordinate and the transverse modes at a
given value of s. If this coupling is neglected, µSC

eff (s) equals the scaling mass and the approx-
imation is called zero-curvature tunneling (ZCT). The probabilities evaluated under the ZCT
approximation always underestimate the tunneling contribution, because the coupling curves
the tunneling trajectory toward the inside of the MEP (centrifugal effect), shortening the tun-
neling distance. [18] In fact, the SCT trajectory is not calculated explicitly, but it has been
shown that its effect can be incorporated in the effective mass, which decreases its value (de-
creasing the value of the imaginary integral and, therefore, increasing the tunneling probability)
in regards to the constant scaling mass.
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On the other hand, the evaluation of the µOMT transmission coefficients also requires the
calculation of the LCT probabilities. In this case, we need more information of the potential
energy surface and not just the MEP; in fact, the evaluation of PLCT(E) can be quite expensive
from the computational point of view. Recently one of us, together with Truhlar, developed
an algorithm, called ILCT2D (interpolated large-curvature tunneling with a two-dimensional
spline under tension), that allows the calculation of such probabilities with similar results to
the full LCT calculation but about 30 times faster. [23] We have used the ILCT2D algorithm
in this case.

It should be noticed that the µOMT transmission coefficient is an approximation to the
least-action path, which is the one that minimizes the action integral at each tunneling en-
ergy. [25] The least-action path is the best compromise between long but energetically favor-
able tunneling paths (like the MEP) and short but energetically unfavorable tunneling (like
the linear paths). Because the explicit evaluation of the least-action path, and therefore of the
least-action probability, is very difficult in systems with many degrees of freedom, the µOMT
probability represents a good compromise between longer paths closer to the MEP, which
are well-described by the SCT approximation, and shorter paths, which are well-described by
the LCT approximation. Actually, the µOMT tranmission coefficient was as accurate as the
least-action path transmission coefficient for triatomic systems when compared with quantum
dynamics calculations. [246]

With these prescriptions, the calculated rate constant obtained using the transmission co-
efficient from the µOMT probability, κCVT/µOMT(T ), is given by

κCVT/µOMT(T ) = κCVT/µOMT(T )kCVT(T ) (7.8)

On the other hand, the primary total KIEs, ηH/D(T ), were factorized by their classical,
ηcl(T ), and tunneling, ηtun(T ), contributions, that is,

ηH/D(T ) =
k

CVT/µOMT
H (T )

k
CVT/µOMT
D (T )

= ηtun(T )ηcl(T ) (7.9)

where

ηtun(T ) =
κ

CVT/µOMT
H (T )

κ
CVT/µOMT
D (T )

(7.10)

and ηcl is given by

ηcl(T ) = ηvar(T )ηint(T ) (7.11)

where ηvar(T ) and ηint(T ) are the variational and internal (rotational and vibrational) KIEs,
respectively. The variational KIE is given by the ratio

ηvar(T ) =
kCVT

H (T )kTST
D (T )

kCVT
D (T )kTST

H (T )
(7.12)

where kTST indicates conventional TST rate constant (i.e., with the dividing surface located
at the TS), whereas the KIE due to internal motions is given by
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ηint(T ) =
ηint,H(T )

ηint,D(T )
=

QTS
rot,H(T )QTS

rot,D(T )

QTS
rot,D(T )QTS

rot,H(T )

QTS
vib,H(T )QTS

vib,D(T )

QTS
vib,D(T )QTS

vib,H(T )
(7.13)

where Qrot and Qvib are the rotational and vibrational partition functions, respectively. The
subscripts R and TS stand for reactants and transition state, respectively.

All the rate constant calculations were performed with the program GAUSSRATE9.1, [214]
which is an interface between POLYRATE9.3 [213] and Gaussian03. [212]

7.3. Results and discussion

Figure 7.1 shows the thirteen possible conformers of the 7-methylocta-1,3(Z),5(Z)-triene
and their corresponding enantiomers (denoted with an asterisk). All the structures can be
characterized by specifying the value of the three different dihedral angles, φ1, φ2 and φ3,
defined as the torsions about the C2-C3, C4-C5, and C6-C7 atoms, respectively (see Figure 7.1
and Table 7.1). According to the value of the first two dihedral angles, all equilibrium structures
can be divided in four groups, and in each of those the rotation about the C6-C7 bond defines
the different conformers. The first group includes all the s-trans, s-trans structures, i.e. R1,
R10/R10* and R4. In this group the two dihedral angles (φ1 and φ2) are about 180◦.
The second group involves rotation about the first dihedral angle leading to the s-cis, s-trans
structures, R5/R5*, R11/R11*, R12/R12* and R3/R3*. In this group φ2 is about 170◦.
The third group of geometries arises when φ1 is kept constant and φ2 takes values from 56◦ to
98◦ (conformers R6/R6*, R9/R9*, and R2/R2*). The fourth group includes the R8/R8*,
R13/R13*, and R7/R7* conformations. They are obtained by rotation of both φ1 and φ2

with respect to the s-trans, s-trans group (the first group). According to the MPWB1K/DIDZ
calculations, the R1 conformer is the most stable, and has s-trans, s-trans configuration. This
is in agreement with the B3LYP/6-31G* calculations of Hess. [235]

Table 7.1 lists some of the key distances and angles of all the equilibrium conformations.
Some of the transition states for interconversion between equilibrium structures are also listed.
Conformer R7 has the most suitable configuration for the [1,7] hydrogen shift with a C1-
H17 distance of 3.253 Å, although the transfer is also possible from conformer R2. The direct
product of reaction from conformer R7 through TS7 is 2-methylocta-2,4(Z),6(Z)-triene (shown
as P1 in Figure 7.2), whereas the direct product od reaction of conformer R2 through TS2 is
2-methylocta-2,4(Z),6(E)-triene (shown as P2 in Figure 7.2). The energetically most probable
route for the hydrogen transfer is through conformer R7. This conformer has to surmount
a classical barrier of 18.98 kcal·mol−1 to lead to products. In the case of conformer R2, the
classical barrier is 42.59 kcal·mol−1, and although R2 is about 5 kcal·mol−1 more stable than
R7, the difference in the barrier heights shows that the hydrogen shift would take place only
through transition state TS7.
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Figure 7.1: The thirteen conformers of the 7-methylocta-1,3(Z),5(Z)-triene and their corresponding enantiomers (denoted by an asterisk).
Details about the geometries and relative energies of the stationary points are given in Table. 7.1
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Table 7.1: Relative classical potential energies (in kcal/mol) and main geometric (distances in Å
and angles in degrees) of the stationary points involved in the [1,7] hydrogen shift in 7-methylocta-
1,3(Z),5(Z)-triene calculated at the MPWB1K/6-31+G(d,p) level; numbering as for structure R1 in
Figure 7.1

Structure Energy(gas) φa
1 φa

2 φa
3 αa

1 αa
2 αa

3 d(C7 − H17) d(C1 − C7) d(C1 − H17)

R1 0.00 180.0 180.0 0.0 109.7 117.1 110.5 1.089 6.745 6.400
R2/R2* 2.78 -175.3 55.6 -8.0 109.1 117.1 110.2 1.088 4.302 3.519
R3/R3* 3.18 -39.9 171.3 0.0 109.6 117.3 110.5 1.089 5.612 5.530
R4 3.30 180.0 180.0 180.0 105.9 117.1 111.6 1.090 6.793 7.727
R5/R5* 6.41 -39.8 170.2 -173.3 106.0 117.3 111.6 1.090 5.616 6.374
R6/R6* 7.44 179.3 97.7 164.1 106.3 117.1 110.8 1.091 5.431 6.424
R7/R7* 7.70 36.9 58.8 -8.5 108.6 117.4 110.4 1.088 3.685 3.265
R8/R8* 11.58 29.9 74.0 128.0 105.1 117.3 110.8 1.094 4.017 5.089
R9/R9* 6.79 -176.5 67.7 126.6 104.2 117.0 110.9 1.094 4.805 5.891
R10/R10* 3.80 -179.9 -179.3 126.5 105.1 117.1 110.3 1.094 6.888 7.533
R11/R11* 6.79 -37.6 166.4 -124.5 105.0 117.3 110.5 1.094 5.586 5.912
R12/R12* 6.85 -37.8 166.5 127.4 105.7 117.3 110.2 1.094 5.588 6.393
R13/R13* 11.28 -24.5 82.9 -111.4 106.5 117.1 110.4 1.096 3.717 3.382
TS7/TS7* 26.68 10.3 22.0 -64.5 100.0 114.8 114.0 1.330 2.641 1.368
TS2/TS2* 45.38 -127.1 27.7 -80.8 103.0 114.8 114.3 1.434 2.756 1.382
P1/P1* 0.60 -0.1 4.1 -96.7 76.7 109.1 115.1 3.016 3.514 1.091
P2/P2* 0.67 176.8 4.7 -65.1 101.0 108.2 115.5 4.524 4.598 1.090
TS-1-2/TS-1*-2* 4.82 179.8 98.5 5.1 108.2 117.0 110.7 1.090 5.376 4.940
TS-1-3/TS-1*-3* 6.08 -98.1 -178.7 -0.2 109.7 117.3 110.5 1.089 6.191 6.019
TS-1-10/TS-1*-10* 4.55 179.7 177.6 89.1 107.3 117.1 109.5 1.095 6.857 7.211
TS-2-7/TS-2*-7* 10.37 104.2 59.6 -3.7 108.7 117.2 110.3 1.089 4.493 4.023
TS-2-10*/TS-2*-10 7.77 -179.1 96.8 -122.2 105.9 117.1 110.6 1.094 5.510 5.540
TS-3-7/TS-3*-7* 8.81 18.7 93.5 6.2 108.2 117.1 110.8 1.090 4.350 4.260
TS-3-11/TS-3*-11* 7.82 -38.9 167.1 -81.6 107.2 117.3 109.5 1.094 5.614 5.651
TS-3-12/TS-3*-12* 7.35 -36.7 166.5 94.7 107.3 117.3 109.6 1.095 5.557 6.247
TS-4-5/TS-4*-5* 9.36 -98.2 -179.0 179.7 106.0 177.3 111.6 1.090 6.219 7.063
TS-4-9/TS-4*-9* 7.64 -179.6 97.9 133.2 105.6 117.0 110.8 1.094 5.503 6.585
TS-4-10/TS-4*-10* 4.19 -179.7 -177.5 153.9 105.1 117.1 110.8 1.091 6.830 7.666
TS-5-11/TS-5*-11* 7.09 -37.1 166.9 -149.0 105.2 117.3 110.9 1.092 5.563 6.120
TS-5-12/TS-5*-12* 7.47 -39.2 168.2 160.5 105.4 117.3 110.6 1.091 5.618 6.435
TS-6-10/TS-6*-10* 7.47 179.2 105.4 164.9 106.5 117.1 110.7 1.091 5.605 6.602
TS-8-7/TS-8*-7* 11.65 9.0 83.6 125.1 105.6 117.4 110.6 1.094 4.011 5.088
TS-8-9/TS-8*-9* 11.65 7.2 88.9 122.2 105.8 117.3 110.4 1.094 4.115 5.186
TS-8-12/TS-8*-12* 11.65 8.2 91.8 125.8 105.8 117.2 110.4 1.094 4.199 5.262
TS-10-11*/TS-10*-11 9.75 97.9 178.7 125.4 105.3 117.3 110.3 1.094 6.280 6.752
TS-10-12/TS-10*-12* 9.76 -97.5 -178.0 125.2 105.3 117.3 110.3 1.094 6.283 6.992
TS-11-13/TS-11*-13* 11.36 -27.0 95.9 -119.3 105.9 117.3 110.7 1.096 3.976 3.812

aφ1 = φ(C1 − C2 − C3 − C4), φ2 = φ(C3 − C4 − C5 − C6), φ3 = φ(C5 − C6 − C7 − C17), α1 = α(C6 − C7 − H17), α2 = α(H10 − C1 − H11), α3 = α(C8 − C7 − C9).
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Figure 7.2: Structures of the two reactive conformers leading to products by [1,7] hydrogen shift. The HOMO orbitals of the reactants are also
displayed, showing that both reactions occurs via antafacial attack. Details about the geometries and relative energies are given in Table. 7.1
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Despite the fact that there is only one relevant channel for reaction, all conformers are
important for the dynamics calculations because the barriers of internal rotation around the
single bonds among the different conformers are much smaller than the barrier for reaction.
As a consequence, all the conformers can be easily reached and all the regions in phase space
related to reactants should be included. [247]

The CVT thermal rate constant in a case like this is given by [248]

kCVT(T ) =
1

βh

(

nTS/σTS
)

QGT
(

T, sCVT
∗

)

∑13
i=1 (nRi/σRi ) QRi (T ) exp−β∆ERi

exp
[

−βVMEP

(

sCVT
∗

)]

(7.14)

where the sum runs over the thirteen conformers (i = 1, ... , 13), nRi takes into account if
conformer Ri has enantiomers; QRi (T ) and ∆ERi

are the partition function and the relative
energy of conformer Ri , respectively, calculated with respect to the most stable conformer.
The rotational symmetry numbers, (σRi and σTS) are all unit. The number of the enantiomers
for the structures with C1 symmetry is two, that is nRi = 2 for i = 2 − 3, 5 − 10, just like in
the case of the transition state TS7 (nTS = 2); whereas for the structures R1 and R4, which
belong to the Cs point group of symmetry, nRi = 1.

The value of the MEP at s = sCVT
∗ is also referred to the most stable conformer, which

in this case is R1. On the other hand, the aspects related to tunneling are unaltered by the
number of conformers because the [1,7] hydrogen shift involves the participation of only one
of the conformers. Therefore, we still make use of Eq. (7.8), but using Eq. (7.14) instead
of Eq. (7.1) for the evaluation of the CVT thermal rate constants. This equation takes into
account the number of enantiomers of reactant and transition state which multiplies the number
of symmetry of each specie. The quotient between the number of enantiomers of the transition
state TS7 and of the most stable conformer of 7-methylocta-1,3(Z),5(Z)-triene, R1 (which
contribution to the denominator of Eq. (7.14) is the largest), is a factor of two.

The calculated thermal rate constants are listed in Table 7.2 and plotted in Figure 7.3. The
CVT/µOMT values are in good agrement with the experimental ones for both the hydrogen
and deuterium transfers. Variational effects are not very important; this is usually the case for
hydrogen transfer reactions with relatively large barriers, because these reactions present tight
transition states. As shown in Table 7.3, the calculated activation energies for the hydrogen
shift are a little bit larger than the experimental ones, whereas those for the deuterium shift
are slightly lower. These differences in the activation energies would affect the KIEs, although
the overall agreement between theory and experiment is good, considering the size of the model
system. Hess [235] calculated at the B3LYP/6-31+G* level a difference in activation energies
ED

a − EH
a = 0.9 kcal·mol−1. This value coincides with our calculated “classical” CVT value.

When tunneling through the reaction coordinate barrier is taken into account, the difference
ED

a − EH
a increases. When the contribution of the ZCT transmission coefficients is included,

the effect is almost negligible (0.06 kcal·mol−1), but when we use the µOMT transmission
coefficients, the difference increases to 0.41 kcal·mol−1. In any case, the difference ED

a − EH
a

(1.29 kcal·mol−1) is still small when compared with 2.0 kcal·mol−1 obtained by Baldwin and
Reddy, [233] but still within the 95% confidence interval proposed by those authors, which is
±0.9 kcal·mol−1. From the above numbers, although the ZCT transmission coefficients are
larger than 2 at 333.2 K (see Table 7.4), there is no increase in the difference ED

a − EH
a , and

only when the coupling between the reaction coordinate and the transverse modes is included,
the difference is noticeable with respect to the classical value. Another effect of the coupling
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Table 7.2: Calculated (columns 2, 3 and 4) and experimental (column 5) thermal rate constants (in
s−1) for the [1,7] hydrogen (and deuterium) shift in 7-methylocta-1,3(Z),5(Z)-triene

T (K) TST CVT CVT/µOMT Expa

kH(T )
298.2 1.48×10−7 1.45×10−7 1.09×10−6

333.2 1.02×10−5 1.00×10−5 4.80×10−5 5.6 ×10−5

348.2 4.82×10−5 4.72×10−5 1.96×10−4 2.14×10−4

368.2 3.12×10−4 3.06×10−4 1.08×10−3 1.16×10−3

388.2 1.67×10−3 1.63×10−3 5.03×10−3 5.51×10−2

400.0 4.13×10−3 4.05×10−3 1.16×10−2

kD(T )
298.2 3.23×10−8 3.20×10−8 1.55×10−7

333.2 2.60×10−6 2.60×10−6 8.72×10−6 8.0 ×10−6

348.2 1.30×10−5 1.29×10−5 3.84×10−5 3.3 ×10−5

368.2 9.03×10−5 8.94×10−5 2.33×10−4 2.21×10−4

388.2 5.13×10−4 5.08×10−4 1.19×10−3 1.21×10−3

400.0 1.31×10−3 1.30×10−3 2.89×10−3

a From Ref. [233]

is that the µOMT transmission coefficients are larger than the ZCT transmission coefficients,
although the former are essentially well-reproduced by the SCT values, as shown in Table 7.4.

As we mentioned in the previous section, the SCT transmission coefficients work better
than the LCT ones when the coupling is weak or intermediate, although in this case, the main
reason for the similarity between the SCT and the µOMT transmission coefficients is that, for
the range of temperatures studied, the energies that contribute mostly to tunneling are very
close to the top of the vibrationally adiabatic potential. Actually, at a given temperature,
there is an energy at which the integral of Eq. (7.3) has a maximum. This energy is called the
representative tunneling energy [249] (RTE) and at T = 333.2 K is 140.54 kcal·mol−1 and 140.00
kcal·mol−1 for the hydrogen and deuterium shifts, respectively. Taking into account that the
maximum of the vibrational adiabatic potential is 141.94 and 140.70 kcal·mol−1 for the root and

Table 7.3: Arrhenius parameters (activation energy, Ea, in kcal·mol−1, and logarithm of the preexpo-
nential factor, log(A/s−1)), for [1,7] sigmatropic hydrogen (and deuterium) shift reactionsa

[1,7] H shift [1,7] D shift
Ea logA Ea logA

CVT 23.83 10.63 24.71 10.62
CVT/ZCT 22.64 10.24 23.58 10.23

CVT/µOMT 21.60 9.86 22.89 9.96
Baldwin and Reddy8 21.5 9.8 23.5 1.3

a The fit to the calculated values included only temperatures in the interval 333.2-388.2 K to get a more reliable

comparison with the experimental data.
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Figure 7.3: Thermal rate constants calculated in this work by the CVT/µOMT method for the
hydrogen (solid line) and deuterium (dashed line) shift reactions of 7-methylocta-1,3(Z),5(Z)-triene.
The experimental values (squares) are also plotted for comparison.
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Table 7.4: Transmission coefficients, κ, evaluated by different approximations for [1,7] hydrogen (and
deuterium) shift in the 7-methylocta-1,3(Z),5(Z)-triene

κH(T ) κD(T )
T (K) ZCT SCT LCT µOMT ZCT SCT LCT µOMT

298.2 3.06 7.40 3.89 7.50 2.80 4.85 3.10 4.85
333.2 2.42 4.78 2.78 4.80 2.24 3.35 2.30 3.35
348.2 2.24 4.14 2.50 4.16 2.08 2.98 2.20 2.98
368.2 2.05 3.52 2.24 3.53 1.91 2.61 2.00 2.61
388.2 1.91 3.08 2.04 3.08 1.79 2.34 1.85 2.34
400.0 1.83 2.87 1.95 2.87 1.72 2.22 1.78 2.22
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Table 7.5: Factors in the KIEsa

T (K) ηvar(T ) ηint(T ) ηcl(T ) ηZCT
tun (T ) ηµOMT

tun (T ) ηcalc(T ) ηexp(T )

298.2 0.99 4.59 4.54 1.09 1.55 7.02

333.2 0.98 3.92 3.84 1.08 1.43 5.50 7.0+1.3
−0.8

348.2 0.99 3.70 3.67 1.08 1.40 5.11 6.5+0.7
−1.1

368.2 0.99 3.46 3.42 1.07 1.35 4.62 5.2+0.9
−0.6

388.2 0.99 3.25 3.22 1.07 1.32 4.23 4.6±0.6
400.0 0.99 3.14 3.11 1.06 1.29 4.02

a The classical, ηcl(T ), and total, ηcalc(T ), KIEs are given by Eq. (7.11) and Eq. (7.9), respectively. The

experimental KIEs, ηexp(T ), are taken from Baldwin and Reddy [233] considering a deviation of ED
a −EH

a = 0.1

kcal·mol−1. The factors ηZCT
tun (T ) and η

µOMT
tun (T ) are also listed for comparison.

deuterated species, respectively, the RTE is roughly only 1.40 and 0.70 kcal·mol−1 below the
top of the barrier for hydrogen and deuterium transfer, respectively, as shown in Figure 7.4. At
these energies, because of the proximity of the top of the barrier, the curvature of the reaction
path due to the coupling has to be small. However its influence is still important, and the
SCT transmission coefficients are substantially larger than the ZCT ones. In this context, this
study on the [1,7] hydrogen shift emphasizes the importance of treating tunneling phenomena
as multidimensional events.

We can obtain a similar conclusion from the analysis of the KIEs, which are listed in
Table 7.5. At T = 333.2, the classical KIE is only 3.84, which is quite close to the value of
3.89 calculated by Hess. Variational effects have a small impact in the calculated TST classical
KIEs. The ZCT transmission coefficients practically keep the classical KIE unaltered, and
therefore, the tunneling contribution to the reaction remains masked. This result may seem
awkward because, in the ZCT case, the RTE is also close to the top of the barrier and we
expect tunneling to be controlled by the curvature at the top of the barrier, which is given
by the imaginary frequency. Its value is ω‡

H = 1315i cm−1 for hydrogen transfer and ω‡
D =

1080i cm−1 for deuterium transfer. The ratio between both frequencies is only 1.21, which is
far from the expected value of

√
2, if we assume a pure hydrogen (deuterium) motion for this

normal mode. This result indicates that the imaginary frequency normal mode also involves
the motion of heavy atoms, so the ratio ω‡

H/ω‡
D is far from the ratio of the masses, mD/mH. At

the same time it should be noticed that the ZCT transmission coefficients are calculated along
the MEP, and that this path includes the displacement of all the internal degrees of freedom
and not only the hydrogen (deuterium) coordinate. The KIE due to tunneling increases when
the curvature along the reaction coordinate is included. The calculated KIEs are somewhat
smaller than the experimental values but clearly show the tendency that, in this case, the large
primary KIE is due to quantum tunneling.

The above conclusions can be extrapolated to the [1,7] hydrogen shift in previtamin D3,
because this molecule has similar characteristics to the model system studied here. The KIEs
measured by Okamura et al. [236] are similar to those obtained by Baldwin and Reddy for
the hydrogen shift in 7-methylocta-1,3(Z),5(Z)-triene. The former author also measured an
ED

a −EH
a difference of 1.2 kcal·mol−1, which is in very good agreement with our µOMT results

for the model system.
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Figure 7.4: Ground-state vibrationally adiabatic potential for the hydrogen (solid line) and deu-
terium (dotted line) shift reactions of 7-methylocta-1,3(Z),5(Z)-triene. The straight lines indicate the
representative tunneling energy at a temperature of T = 333.2 K.

7.4. Conclusions

The evaluation of thermal rate constants by high-level direct-dynamics CVT/µOMT calcu-
lations at the MPWB1K/DIDZ level has shown to be adequate to study the [1,7] sigmatropic
hydrogen shift in 7-methylocta-1,3(Z),5(Z)-triene, which can be considered a model system
for previtamin D3. The calculated activation energies and primary KIEs are in reasonable
agreement with the experimental data when quantum tunneling is taken into account. The
CVT/µOMT calculations also indicate that it is important to consider the coupling between
the reaction coordinate and the transverse modes to obtain KIEs comparable to the experi-
mental values.



Chapter 8

The isomerization reaction of
previtamin D3

The thermal isomerization reaction that converts previtamin D into vitamin D consists in
a intramolecular [1,7]-sigmatropic hydrogen shift with antarafacial stereochemistry. We have
studied the dynamics of this reaction by means of the variational transition state theory with
multidimensional corrections for tunneling in both gas phase and n-hexane environments. Two
issues that may have an important effect on the dynamics were analyzed in depth, i.e., the
conformational analysis of previtamin D and the quantum effects associated to the hydrogen
transfer reaction. The characterization of the conformers of both previtamin D and vitamin D
allowed us to calculate the thermal equilibrium constants of the process. Of the large number
conformers of previtamin D that were located, there are sixteen that have the right disposition
to react. The transition state structures associated to these reaction paths are very close
in energy, so an accurate study of both the thermal rate constants and the kinetic isotope
effects of the isomerization process should take them all into account. This issue is particularly
important because the contribution of each of the reaction paths to the total thermal rate
constant is quite sensitive to the environment. The dynamics results confirm that tunneling
plays an important role and that model systems that were considered previously to study
the hydrogen shift reaction cannot mimic the complexity introduced by the rings flexibility of
previtamin D.

8.1. Introduction

Vitamin D is found in phytoplankton, which is one of the oldest forms of life. These
organisms convert ergosterol (also called provitamin D2) to previtamin D2, when exposed to
sunlight. After that previtamin D2 isomerizes to vitamin D2. [227, 250] It seems that ergosterol
helps to protect the organism from ultra-violet (UV) radiation, which can be harmful for the
genetic code. From these early forms of life, vitamin D2 passed to fish and from there, through
the food chain to more evolved organisms, preserving most of its character. Of the two known
forms of vitamin D for most of the mammals, including humans, the most active form of vitamin
D is vitamin D3, which differs from vitamin D2 in the side chain of the sterol.

The deficiency of vitamin D leads to rickets, a common disease afflicting children during
the nineteenth and the beginning of the twentyteeth centuries. The first studies on the subject

117



118 8.1. Introduction

pointed out the importance of taking cod-liver oil to prevent rickets [251] but it was in the
1920s that scientists realized that sunlight was essential for the production of vitamin D3

by the body, [252, 253] and that it promotes calcium deposition in the bones. [254] Vitamin
D3 is produced from the 7-dehydrocholesterol, an sterol that is present in the skin of most
higher animals, so vitamin D3 is not really a vitamin, i.e., it is a substance that the body can
manufacture and, therefore, its intake is not essential in the diet.

For many years both forms of vitamin D were a puzzle to scientist until their structures
were determine in the 1930s. It is understandable that vitamin D was misidentified as a true
vitamin before the resolution of its structure, since it is the sunlight exposure and not the
compound, the one that is essential for the body. [255–257] The production of the two forms
of vitamin D follows the same mechanism, i.e., the sterol or provitamin D, which is already
present in the organism, is transformed in previtamin D (Pre) by the action of UV radiation,
which in turn thermally isomerizes to vitamin D (Vit), the thermodynamically most stable
form of the two of them (see Scheme 8.1).
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Scheme 8.1: Formation of Previtamin D3 from pro-vitamin D3

The action of the light not only affects the first step of the reaction, but also the thermal
isomerization to Vit, because some side reactions are possible, i.e. the closure of the B ring
leading to lumisterol or the rotation about the C6–C7 double bond (from Z to E) producing
tachysterol. The production of these side products is reversible and it is possible due to the
conformational flexibility of Pre. [258, 259] The thermal isomerization of Vit occurs by a [1,7]-
sigmatropic hydrogen shift when the C5–C6 and C7–C8 single bonds have s-cis conformations
(cZc). From the experimental point of view it is not known which is the most stable form of
Pre [260], although the theoretical calculations predict that the s-trans,s-cis conformer (tZc) as
the one with the lowest energy. [261, 262] The conformational analysis is complicated further
by the flexibility of the A and C rings.

Nowadays it is well-known that the thermal isomerization is an intramolecular [1,7]-
sigmatopic hydrogen shift [263] with antarafacial stereochemistry. [264, 265] However, there
are many cZc conformations because of the A and C cyclohexene rings, each of them with
two possibilities for antarafacial hydrogen exchange, i.e. the cis-10,6,8-triene can twist in a
right-handed sense, i.e., the dihedral angle about the bond C5–C6 is positive following the
rules of Klyne and Prelog [266] (the A ring is below the C ring), so we call this configuration
antarafacial(+), or it can be antarafacial(-), that is, the triene twistes in a left-handed sense
(the dihedral angle about the bond C5–C6 is negative), as shown in Scheme 8.2.

Sheves et al. [230] using 2H NMR and mass spectrometry techniques obtained that the
hydrogen shift prefers a right-handed disposition by a ratio of 2:1. Those authors also reported
a kinetic isotope effect (KIE) for the isomerization in isooctane of about 45 at 80 ◦C. A more
reliable value of the KIE was measured by Okamura et al. [236] using a pentadeuterio derivative
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Scheme 8.2: Antarafacial(-)(the A ring if above the C ring) and antarafacial(+) (the A ring is below
the C ring configurations of Pre.

of Pre in n-hexane, and at the same temperature of reaction obtained a KIE of 6.2. This
value is very similar to 6.5, which is the KIE obtained by Baldwin and Reddy [233] for the
[1,7] sigmatropic shift of the 7-methylocta-1,3(Z),5(Z)-triene (hereafter, we would refer to this
triene simply as Tri) at 75 ◦C in 2-methylpentane (see Scheme 8.3). This compound has the
same structure of single and double bonds as the Pre for the occurrence of the [1,7]-hydrogen
shift, so it was thought that it would be a good model to study the isomerization reaction. In
fact, not only the KIEs are very similar, the absolute value of the thermal rate constants for
the [1,7]-hydrogen shift are also relatively close in value; thus at 75 ◦C the reported values are
2.1 × 10−4 s−1 and 3.3 × 10−4 s−1 for Tri and for Pre, respectively.

Scheme 8.3: Structure of the 7-methylocta-1,3(Z),5(Z)-triene

The [1,7]-hydrogen shift is a hydrogen transfer reaction, so quantum mechanical tunneling
can be of importance. [59] The magnitude of the KIE gives an indication of the importance
of this quantum effect. In this context theoretical calculations are of great help because the
KIE can be splitted in several contributions. For hydrogen transfer reactions with large bar-
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riers, conventional transition state theory [26] (TST) calculations give us a good hint of the
importance of tunneling. TST ignores those effects, but we can evaluate the ‘quasiclassical’
contributions to the KIE, i.e. the rotational and vibrational contributions. It is called ‘quasi-
classical’ KIE because all the 3N − 7 (3N − 6 if the molecule is linear, where N is the number
of atoms) molecular vibrations perpendicular to the reaction coordinate are treated quantum
mechanically, so quantum effects due to both the discretization of the vibrational energy and
to the zero-point energy are included. TST calculations carried out at 60 ◦C on a compound
similar to Tri, i.e., the 1,3(Z),5(Z)-triene led to a KIE of 3.9. [235] The experimental KIE for Tri
at this temperature is 7.0, which is almost double the calculated quasiclassical KIE. Although
both trienes are slightly different, most of the large discrepancy between the experimental and
theoretical values can be ascribed to tunneling.

Variational transition state theory with multidimensional tunneling corrections [16, 17, 29,
63–65, 67–70, 82, 132, 133] (VTST/MT) can take into account the contribution that is missing
in the quasiclassical KIE, i.e., quantum effects due to the reaction coordinate. [It should be
noticed that VTST/MT also includes deviations from the TST due to classical recrossing of
trajectories, but in this case the large barrier height implies that those contributions to the
KIE would be the unity (no recrossing for any of the isotopes) or very close to unity.] Quantum
effects are included through a multiplicative transmission coefficient [51, 61, 72–74, 128] to the
calculated TST rate constant. A very successful and practical approach is to evaluate this
transmission coefficient semiclassically, so the calculated KIE is called ‘semiclassical’ KIE. The
semiclassical KIE calculated in this way can be readily compared to the experimental KIE and
it has proved to be a powerful tool for getting insight into reaction mechanisms of complex
systems. Four years ago we carried out VTST/MT calculations on Tri, [267] the calculated
quasiclassical KIE at 60 ◦C was 3.7 (a very close value to that obtained for the 1,3(Z),5(Z)-
triene), whereas the semiclassical KIE was 5.5. The latter is in much better agreement with
the experimental value, so there is strong evidence that tunneling plays an important role in
[1,7]-hydrogen shift reactions.

The similarities between Pre and Tri in both the KIEs and the thermal rate constants of
[1,7]-hydrogen shifts make it reasonable to assume that this triene could be a good model for the
study of the isomerization reaction in the Pre. However, we note that this apparent agreement
may hide important differences because both the KIEs and the thermal rate constants are
cumulative properties, which may be due to the contribution of one or of several reacting
structures. In the triene there are several equilibrium conformations, but only one has the
right structure to react, whereas in Pre we may expect to have many reactive configurations
due to the flexibility of the rings. In other words, should we expect a strong influence of the
A and C rings in the isomerization reaction? How is this flexibility going to affect the thermal
rate constants and the tunneling effect? How is the environment going to affect the reactive
configurations of Pre?

The objective of this work is to analyze in detail, from a theoretical point of view, the
dynamics of the isomerization reaction of Pre to give an answer to the above questions. The
rings bring complexity to the problem and, therefore, their incorporation is crucial for the
understanding of the isomerization reaction. This is a difficult task due to the large size of the
molecule, especially if the goal is to obtain accurate thermal rate constants and, thus, accurate
KIEs. It can be achieved by interfacing electronic structure calculations and VTST/MT. The
latter has proved to be a powerful tool for getting insight into reaction mechanisms of complex
systems, and the present work is pioneer in the use of this approach to study the isomerization
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reaction in the Pre. To take into account the effect of the environment, we make a comparison
of the gas-phase calculations with those obtained in n-hexane. The latter calculations also
allow us to make a direct comparison with experiment and to extrapolate our results to less
isotropic environments as it could be the isomerization reaction in the human skin.

8.2. Calculation method

All stationary points geometries (equilibrium configurations and transition state structures)
were optimized at the MPWB1K density functional method [144] with the 6-31+G(d,p) basis
set. [145] This level of theory was already used in the study of the [1,7]-hydrogen shift in Tri
with very good results. [267]

The lateral chain (R in Scheme 8.1) distinguishes between the two forms of Pre (i.e. D2 and
D3). It plays a major role in the transformation of Vit into a hormone, but at this stage of the
process the functionality of the lateral chain is irrelevant. Therefore, to reduce computational
time we have changed the lateral chain by a methyl group, although we still preserve the names
Pre and Vit to refer to these modified compounds.

All the VTST/MT calculations were performed using canonical variational transition state
theory (CVT), [66] and quantum effects were incorporated by the small-curvature tunneling
(SCT) approach, [19, 86–88] so hereafter, we refer to this methodology with the abbreviation
CVT/SCT. To obtain the CVT/SCT thermal rate constants we need information along the
minimum energy path (MEP), which is the union of the paths of steepest descent in isoinertial
coordinates from the transition state to the reactants and to the products. [73, 76, 84] The
signed distance along this path is labeled as s, being s = 0 the location of the transition state.
For each of the optimized transition state structures, that is, for each of the reaction paths, the
MEP was followed in mass-scaled Cartesian coordinates (a type of isoinertial coordinates in
which the mass-weighted Cartesian coordinates are divided by the square root of an arbitrary
scaling mass µ). The CVT/SCT thermal rate constants at temperatures between 25 and 95 ◦C
were obtained in two steps: (i) the MEP was followed by the Page-McIver algorithm [210] using
a stepsize of 0.01 a0 and a scaling mass µ = 1, and Hessians were calculated each 9 steps in
the interval [−0.63 a0, 1.53 a0] for each of the reactive channels, and for both the root and the
pentadeuterated compounds; (ii) the gradient and Hessian calculations carried out in step (i)
were used as input in the interpolation by mapping scheme. [268] This procedure allows the
calculation of converged CVT/SCT thermal rate constants using a small number of gradient
and Hessian calculations. All the calculated normal-mode frequencies were scaled by a factor
of 0.964. [241]

The CVT/SCT thermal rate constants are given by:

kCVT/SCT(T ) = κSCT(T )ΓCVT(T )kTST(T ) (8.1)

where kTST(T ) is the thermal rate constant calculated by TST, i.e.,

kTST(T ) =
σ

βh
exp

{

−β[G‡,0(T ) − GR,0(T )]
}

=
σ

βh
exp

{

−β∆G‡,0(T )
}

(8.2)

where β = 1/kBT , being kB the Boltzmann constant and T the temperature; h is the Planck
constant; σ is the symmetry number for reaction, [31, 78] which in this case is always the unity;
G‡,0(T ) is the standard-state free energy at the transition state; GR,0(T ) is the standard-state
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free energy of reactants, and the difference in free energy between the two structures is the free
energy of activation ∆G‡,0; κSCT(T ) is the tunneling transmission coefficient that takes into
account quantum effects due to the reaction coordinate and it is evaluated over the ground-state
vibrationally adiabatic potential, which is the sum of the classical potential plus the zero-point
energy at each point along the MEP; ΓCVT(T ) is a factor given by:

ΓCVT(T ) = κCVT/CAG exp
{

−β[GCVT,0(T ) − G‡,0(T )]
}

(8.3)

where κCVT/CAG is a factor that corrects for the different thresholds which may have the CVT
thermal rate constant and the tunneling transmission coefficient [128]. The exponent corrects
the TST expression by taking into account recrossing effects, i.e., the bottleneck for reaction
is variationally searched and given by the point along the MEP for which the free energy has
a maximum, i.e., GCVT,0(T ). This value may not coincide with the top of the classical barrier
height, in which case ΓCVT(T ) would be smaller than unity. For the system studied here
ΓCVT(T ) is very close to unity in all cases (deviations from unity are smaller than 3%). We
note that:

GX,0(T ) = V (RX) + GX
RV(T ) (8.4)

where X = R (in Pre structures), ‡ (in TS structures), P (in Vit structures) or CVT; V (RX) is
the potential energy at the geometry RX and GX

RV(T ) is the internal free energy of the molecule.
The experimental measurements on the isomerization reaction of Pre were carried out

in n-hexane, [236] and in order to take into account the effect of the solvent, we have
used the separable equilibrium solvation (SES) approximation. [269]. Specifically, we have
performed SM5.43R continuum solvation model [270] single-point calculations on the gas-
phase MPWB1K/6-31+G(d,p) geometries at the MPW1K/6-31+G(d,p) level, [271] i.e., at
the SM5.43R/MPW1K/6-31+G(d,p)//MPWB1K/6-31+G(d,p) level. Therefore, all gas-phase
energies, including those along the MEP were corrected by the interpolated single-point energies
(ISPE) algorithm [272] to take into account the solvation of Pre. This procedure allowed us to
calculate CVT/SCT thermal rate constants in solution. Hereafter, we denote as CVT/SCT(g)
and CVT/SCT(s) the thermal rate constants calculated in gas-phase and in n-hexane, respec-
tively. It should be noticed that in solution Eq. (8.4) is given by:

GX,0(T ) = V (RX) + GX
RV(T ) + ∆GX,0

S (T ) (8.5)

where ∆GX
S (T ) is the standard-state free energy of solvation at the gas-phase geometry RX.

Finally we carried out SM5.43R/MPW1K/6-31+G(d,p)//MPWB1K/6-31+G(d,p) calcula-
tions in n-hexane for Tri, so we could directly compare the [1,7] hydrogen shift in Pre and in
Tri in this solvent.

All the electronic structure calculations were performed with Gaussian03, [212] the ther-
mal rate constants were calculated with version 9.7 of the POLYRATE program. [213] The
GAUSSRATE9.7 [214] program made the linkage between the two packages. Free energies of
solvation with the SM5.43R model were computed by a modified version of Gaussian03 called
Minnesota Gaussian Solvation Model (MN-GSM) version 2009. [273]

8.3. Results and discussion

There are several aspect of the thermal isomerization reaction of Pre that need careful
consideration, so we have divided the Section in several parts. In the first place we discuss
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aspects related to the search and characterization of the conformers of both Pre and Vit.
With this information at hand it is straightforward to calculate the equilibrium constants. In
the second place we discuss some aspects related to the rings configurations at the transition
state structures, since the rings have a major influence on the energetics of the process, and
therefore on the contribution of those transition states to the total thermal rate constants.
Finally we perform the dynamics calculations and obtain thermal rate constants and KIEs for
the isomerization reaction in both gas phase and n-hexane. The results are also compared with
those obtained for the [1,7] hydrogen shift reaction in Tri. We analyze some important aspects
of the statics and the dynamics of the isomerization reaction of Pre, and give some qualitative
hints of how the process may occur in human skin and in other anisotropic environments.

8.3.1. Conformations of Pre and Vit

We have carried out an exhaustive conformational study of all the relevant equilibrium
configurations for the isomerization reaction. In the case of Pre, a complete conformational
analysis involves to take into account both the torsions about the C5–C6 and C7–C8 single
bonds and the flexibility of the A and C rings.

For a given configuration of the rings we use the notation given by Dauben and Funhoff [261]
in which the dihedral angles about the C5–C6 and C7–C8 single bonds can be in s-cis or s-trans
dispositions, so they are labeled as (±)c for dihedral angles between 0◦ and ± 90◦, and (±)t for
dihedral angles between ± 91◦ and ± 180◦. The sign of the torsional angle is assigned following
the rules of Klyne and Prelog. [266] In Pre the C6–C7 double bond is always in Z configuration
and the dihedral angle about the C7–C8 can only be (±)c due to steric impediments. For each
of the configurations of the rings (with one exception described later on) we have found five
conformations, of which the (+)cZ (+)c and the (-)cZ (-)c are the equilibrium conformations for
the antarafacial(+) and for the antarafacial(-) [1,7]-hydrogen shifts, respectively. In the case of
Vit the C5–C6 and C7–C8 double bonds are in Z and E configurations, respectively, whereas
the C6-C7 single bond is labelled as (±)c or (±)t as in the Pre single bonds.

The A and C rings in Pre are partially substituted cyclohexenes. In free cyclohexene the two
stable configurations are half-chair and twist-boat and the conversion between two half-chair
configurations occurs in three stages: [274] (i) from half-chair to twist-boat with a substantial
barrier height of about 5.5 kcal/mol; (ii) from twist-boat to twist-boat through a CS boat
configuration and with an almost barrierless process; (iii) from twist-boat to half-chair with
the same release in energy that was needed in step (i). In the Pre the situation is different
because the substituents break the symmetry. The hydroxyl group in the 3-position is bonded to
an asymmetric carbon with S configuration, and it can be in pseudoaxial or in pseudoequatorial
positions, and the interconversion between different structures is shown in Scheme 8.4. This
shows that for the A ring there are four possible configurations, which together with the two
configurations of the C ring make a total of eight different configurations.

OH HO
HO

HO

Scheme 8.4: The four different conformations of the A ring
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In total there are sixteen reacting conformations because there are eight conformations
for the antarafacial(+) attack, and other eight conformations for the antarafacial(-) attack.
Taking into account the position of the OH group there four Prea(+) [antarafacial(+) with the
OH in pseudoaxial (a)], four Pree(+) [antarafacial(+) with the OH in pseudoequatorial (e)], four
Prea(−) [antarafacial(-) with the OH in pseudoaxial (a)], and four Pree(−) [antarafacial(-) with
the OH in pseudoequatorial (e)]. Therefore, the previous eight first configurations correspond
to (+)cZ (+)c conformations, whereas the eight last ones correspond to (-)cZ (-)c conformations.
For instance, as shown in Scheme 8.5, a reacting conformation, which is antarafacial(+), with
the OH in pseudoaxial configuration, with a half-chair (HC) conformation for the A ring and
with a twist-boat (TB) conformation for the C ring, is denoted as Prea(HC,TB)(+)cZ(+)c or
shortly as Prea(+)(HC,TB).

Scheme 8.5: The conformation Prea(HC,TC)(+)cZ(+)c.

To uniquely describe a non-reacting conformation, the information on the C5–C6 and C7–
C8 single bonds should be always specified. Thus, for instance, a conformation in which the
OH is in a pseudoaxial configuration, with a half-chair (HC) conformation for the A and C
rings, with a dihedral angle about the C5-C6 bond of 120◦, and with a dihedral angle about
the C7–C8 bond of −60◦, is denoted as the Prea(HC,HC)(+)tZ(-)c conformation. If there
are more than one conformation with these characteristics, then the first one is denoted as
Prea(HC,HC)(+)tZ(-)c(1), the second as Prea(HC,HC)(+)tZ(-)c(2), etc. The combination of
five conformations due to the C5–C6 and C7–C8 single bonds with the eight configurations of
the rings makes a total of 40 conformations, although we could only locate 35, because none of
the five equilibrium conformations of Prea(HB,HC) was obtained.

Table 8.1 lists all the conformers of Pre(HC,HC), and among them are the most stable con-
formers of the reactants. A complete account of the equilibrium conformations of Pre and some
of Vit is given in the Appendix B. From the energetics point of view the Prea(HC,HC)(+)tZ(-
)c conformer is the global minimum among all the conformations of Pre, so we use it as the
reference of energy. The cZc configurations of Pre do not lead to the most stable configura-
tions of Vit, since it is well known that ZtE conformations of Vit are more stable than ZcE
ones. [275, 276] Those ZtE conformations of Vit were also calculated, and listed in Table 8.1,
since they are needed for the evaluation of the thermodynamic equilibrium constants. It should
be noticed that in Vit the sign of the antarafacial attack is given by the sign of the torsion
about the C6–C7 single bond.
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Table 8.1: Some energetic (in kcal/mol) and geometric (in degrees) parameters of the lowest conformers
of Pre and Vit. The differences in the classical energy (∆E), and in the free energies (at T = 37◦C) in
gas phase (∆Gg) and in n-hexane (∆Gs) are relative to the Prea(HC,HC)(+)tZ(-)c conformer

Conformer ∆E φ1
a φ2

b φ3
c ∆G0

g ∆G0
s

Prea(HC,HC)(+)cZ(+)c 1.50 58.8 1.9 45.4 0.72 0.63
Prea(HC,HC)(+)cZ(-)c 3.25 73.3 -0.5 -11.7 2.83 2.50
Prea(HC,HC)(+)tZ(-)c 0.00 121.9 -7.2 -44.5 0.00 0.00
Prea(HC,HC)(-)tZ(+)c 1.43 -151.3 10.3 43.4 0.19 -0.05
Prea(HC,HC)(-)cZ(-)c 1.48 -55.8 -2.4 -26.2 1.86 2.07
Vita(T,CH)Z(-)cE 5.91 -2.1 -57.0 0.4 6.70 7.15
Vita(CH,CH)Z(+)cE 1.83 -0.2 54.2 -0.5 2.32 2.74
Vita(CH,CH)Z(-)tE -1.99 1.4 -173.8 1.7 -1.78 -1.60

Pree(HC,HC)(+)cZ(+)c 1.73 53.2 2.3 44.7 1.80 1.77
Pree(HC,HC)(+)cZ(-)c 3.52 90.0 -2.1 -37.2 2.36 2.06
Pree(HC,HC)(+)tZ(-)c 2.06 152.7 -10.2 -42.1 0.67 0.48
Pree(HC,HC)(-)tZ(+)c 1.72 -127.8 6.9 35.0 0.08 -0.17
Pree(HC,HC)(-)cZ(-)c 2.87 -59.1 -0.4 -20.0 2.54 2.47
Vite(CH,CH)Z(-)cE 2.57 -2.8 -58.1 0.7 3.07 3.61
Vite(T,CH)Z(+)cE 7.83 1.3 53.6 -0.9 7.16 7.65
Vite(CH,CH)Z(+)tE -0.94 -2.6 172.7 -3.5 -1.35 -1.33

a φ1 = φ(C10 − C5 − C6 − C7);
b φ2 = φ(C5 − C6 − C7 − C8);

c φ3 = φ(C6 − C7 − C8 − C9).

Table 8.2 lists the energetics of the stationary points for each of the sixteen reaction paths.
Figure 8.1 relates the configurations of the A and C rings in Pre with those in Vit. For the
A and C rings twist-boat conformations in Pre always lead to twisted (T) conformations in
Vit, whereas half-chair conformations of the C ring in Pre always lead to chair conforma-
tions (CH) in Vit. However, the four half-chair conformations of the A ring in Pre lead to
two chair conformations and to two twisted conformations in Vit, due to the characteristics
of the reaction (this issue is explained in the Subsection dealing with the transition state
structures). The electronic structure calculations carried out at the HF/3-21G level on the
1,2-dimethylencyclohexane [277] show that after the chair configurations the twisted configu-
rations are the next most favorable configurations with a difference in energy with respect to
the chair conformations of 4.3 kcal/mol.

In general the relative stability of the equilibrium conformations are a consequence of the
differences in energy between the half-chair and twist-boat conformations in Pre and between
the chair and twisted conformations in Vit. Thus the Pre(HC,HC) and Vit(CH,CH) con-
figurations are roughly about 8 to 12 kcal/mol more stable than Pre(TB,TB) and Vit(T,T)
configurations and about 4 to 6 kcal/mol than the Pre(HC,TB), Pre(TB,HC), Vit(T,CH) and
Vit(CH,T) configurations.
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Table 8.2: Relative values with respect to the Prea(HC,HC)(+)tZ(-)c conformer of classical energies
(∆E), classical energies including zero-point energy (∆E(ZPE)), standard-state free energies at 37◦C
in gas phase (∆GX

g ) and in n-hexane (∆GX
s ); X = R (in Pre), ‡ (in TS), and P (in Vit). All values are

in kcal/mol

Reaction Conformer ∆E ∆E(ZPE) ∆GX
g (T = 37◦C) ∆GX

s (T = 37◦C)

R1
Prea(+)(HC,HC) 1.50 1.44 0.72 0.63

TSa(+)(HC,HC) 27.97 25.42 26.38 26.46

Vita(+)(CH,CH) 1.83 2.24 2.32 2.74

R2
Prea(−)(HC,HC) 1.48 1.83 1.86 2.07

TSa(−)(HC,HC) 29.61 27.32 28.25 28.38

Vita(−)(T,CH) 5.91 6.38 6.70 7.15

R3
Prea(+)(HC,TB) 6.02 6.16 5.25 5.26

TSa(+)(HC,TB) 31.32 28.79 29.63 29.70

Vita(+)(CH,T) 7.32 7.09 6.43 6.88

R4
Prea(−)(HC,TB) 5.61 6.07 5.90 6.04

TSa(−)(HC,TB) 29.63 27.30 28.36 28.46

Vita(−)(T,T) 9.76 10.65 10.98 11.18

R5
Pree(+)(HC,HC) 1.73 1.92 1.80 1.77

TSe(+)(HC,HC) 28.35 25.48 26.31 26.21

Vite(+)(T,CH) 7.83 7.70 7.16 7.65

R6
Pree(−)(HC,HC) 2.87 2.93 2.54 2.47

TSe(−)(HC,HC) 30.28 27.60 28.39 28.31

Vite(−)(CH,CH) 2.57 2.81 3.07 3.61

R7
Pree(+)(HC,TB) 6.85 6.83 6.30 6.15

TSe(+)(HC,TB) 31.60 29.07 29.89 29.77

Vite(+)(T,T) 13.41 13.21 12.01 12.43

R8
Pree(−)(HC,TB) 6.99 7.10 6.56 6.48

TSe(−)(HC,TB) 30.47 28.07 29.09 28.98

Vite(−)(CH,T) 6.20 6.67 6.76 7.17

R9
Pree(+)(TB,HC) 6.64 6.37 5.14 5.20

TSe(+)(TB,HC) 29.60 27.15 28.05 28.11

Vite(+)(T,CH) 7.22 7.59 7.29 7.71

R10
Pree(−)(TB,HC) 7.54 7.33 6.22 6.27

TS e(−)(TB,HC) 31.73 29.41 30.38 30.52

Vite(−)(T,CH) 7.27 7.85 7.92 8.49

R11
Pree(+)(TB,TB) 11.42 10.52 7.73 7.92

TSe(+)(TB,TB) 33.10 30.39 30.85 30.89

Vite(+)(T,T) 12.40 12.37 11.57 11.97

R12
Pree(−)(TB,TB) 11.61 11.72 10.68 10.68

TSe(−)(TB,TB) 32.02 29.32 29.98 30.09

Vite(−)(T,T) 10.42 10.61 9.98 10.52

R13
Prea(+)(TB,HC) – – – –

TSa(+)(TB,HC) 28.60 26.22 27.22 27.30

Vita(+)(T,CH) 5.77 5.85 1.02 1.25

R14
Prea(−)(TB,HC) – – – –

TSa(−)(TB,HC) 29.46 27.10 28.02 28.20

Vita(−)(T,CH) 5.55 6.23 6.40 6.65

R15
Prea(+)(TB,TB) 11.02 11.12 10.05 9.76

TSa(+)(TB,TB) 31.99 29.26 29.79 29.81

Vita(+)(T,T) 10.59 10.86 10.51 11.11

R16
Prea(−)(TB,TB) 10.01 10.03 8.93 9.08

TSa(−)(TB,TB) 29.72 27.03 28.00 28.17

Vita(−)(T,T) 8.79 9.45 9.29 9.59
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Figure 8.1: Correspondence between the initial (Pre) and final (Vit) configurations of the A and C
rings for each of the reactive paths.
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In the Vita(−) conformations there is an stabilizing interaction between the hydroxyl group
and the π orbitals of the C10-C19 double bond, which is not present in the rest of conformers
(See Scheme 8.6). Thus, the Vita(−)(T,T) conformer of reaction R16 is 1.67 kcal/mol more
stable than the Vite(−)(T,T) conformer of reaction R12. This interaction is also reflected in the
value of the OH stretching frequency, which decreases by 25 cm−1 for the former conformer.

Scheme 8.6: Conformation of the A ring in Vit showing the interaction between the hydroxyl group
and the π orbitals of the C10–C19 double bond.

8.3.2. Thermodynamics equilibrium constants

The thermodynamics equilibrium constants using n-hexane as solvent can be easily calcu-
lated from the standard-state free energies of the conformers of Pre and Vit. We define the
coefficient NR that takes into account the relative free energies of all conformations of Pre,
nPre, with respect to the global minimum, independently if those conformations are reactive or
not, i.e.,

NR =

nPre
∑

j=1

exp [−β∆GR,0
j (T )] (8.6)

being ∆GR,0
j (T ) the difference in free energy between a given conformer j of Pre and the free

energy of the global minimum of Pre. Similarly,

NP =

nVit
∑

k=1

exp [−β∆GP,0
k (T )] (8.7)

being ∆GP,0
k (T ) the difference in free energy between a given conformer k of Vit and the free

energy of the global minimum of Vit; nVit is the number of conformations of Vit.
The equilibrium constants at every temperature for the isomerization reaction are simply:

Keq(T ) =
NP

NR
exp [−β∆GRP,0(T )] (8.8)

where ∆GRP,0 is the standard-state free energy difference between the global minima of Vit
and Pre. The equilibrium constants in n-hexane are obtained when the free energies of
Eqs. (8.6), (8.7), and (8.8) also include the free energies of solvation.
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Table 8.3: Calculated (in both gas phase Keq,g and in n-hexane Keq,s), and experimental, Kexp,
equilibrium constants for the root species, Pre(d0), and for the pentadeuterated compound, Pre(d5)

Molecule T (◦C) Keq,g Keq,s Kexp
a

Pre(d0) 37.0 7.14 4.48 6.14b , 6.22c

60.0 5.42 3.49 4.12b

60.1 5.42 3.49 5.37 ± 0.41
69.35 4.89 3.19 4.53 ± 0.35
74.35 4.64 3.04 4.17 ± 0.32
79.9 4.38 2.88 3.82 ± 0.28
85.5 4.13 2.74 3.51 ± 0.25

Pre(d5) 60.5 6.12 3.98 5.42 ± 0.17
69.7 5.54 3.64 4.66 ± 0.19
74.1 5.29 3.49 4.36 ± 0.23
80.4 4.96 3.29 3.99 ± 0.25
85.5 4.72 3.15 3.72 ± 0.28

a From Ref. [236] if not indicated otherwise.b From Ref. [278]. c From Ref. [279].

Table 8.3 lists the calculated and experimental [236] equilibrium constants for the isomer-
ization of the root species [Pre(d0)] and of the pentadeuterio derivative [Pre(d5)] that has been
isotopically substituted in the 9,14,19,19,19-positions. The experimental equilibrium constants
have been measured in n-hexane [236, 278] and the comparison with the calculated values in
the same solvent show that the stability of the Vit conformers is underestimated, although
the calculations correctly predict the exoergicity of the isomerization reaction. The sums of
Eqs. (8.6) and (8.7) run over all possible conformers, but the equilibrium constants are com-
pletely determined by the Pre(HC,HC) conformers and by the two Vit(HC,HC)ZtE conformers
listed in Table 8.1. The differences between the calculated gas-phase and n-hexane solvent
equilibrium constants show that there is a high sensibility of the isomerization reaction to the
environment.

The above calculations and the conformational study of the equilibrium configurations of
both Pre and Vit may be useful to qualitative described the magnitude of the equilibrium
constants obtained by Holick and coworkers [278, 279] in different anisotropic media. Those
authors observed that at 37 ◦C the equilibrium constant varies from 1.76 in β−cyclodextrins
to 11.44 in human skin. The large value of the equilibrium constant in human skin is similar to
that obtained in DPPC liposomes. [280] Holick and coworkers [278] pointed out that in the lipids
there would be interactions that stabilize more the cZc conformers than the tZc conformers.
These interaction would be a result of the amphipathic (with both hydrophilic and hydrophobic
parts) nature of both phospholipids and Pre. The OH group of Pre would form a hydrogen
bond with the hydrophilic part of the lipid and the hydrophobic part of Pre would interact with
the acyl chain of the lipid. However, to our understanding it is difficult to find a reason why
these interactions should favor the cZc conformers over the tZc ones, and why this additional
stabilization of the cZc form, if present, should increase the equilibrium constant. An easier
explanation would be that the most stable conformers of Vit (see Table 8.1) would be stabilized
further by these amphipathic interactions. When the isomerization reaction takes place in the
presence of β−cyclodextrins the equilibrium constant is near the unity. Cyclodextrins are a
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family of compounds made up of sugar molecules bound together in a ring, and in the case of
β−cyclodextrins the diameter of the cavity is about 6.2 Å. The isomerization reaction takes
place inside of a cavity formed by the complexation of two β−cyclodextrins molecules. This
cavity may not be large enough to allow rotations about the C5–C6 (in the case of Pre) or the
C6–C7 (in the case of Vit) single bonds. The disappearance of the tZc conformers of Pre and of
the ZtE conformers of Vit would decrease the value of the equilibrium constant substantially.
We note that the equilibrium constant is a thermodynamics parameter that depends exclusively
on the stability of the initial and final states and, therefore, it does not provide information
about the kinetics of the process.

All these results show that the environment plays a very important role in the relative
stabilities of the equilibrium structures of Pre and Vit, and that from the thermodynamics
point of view the formation of Vit is not favored by solvation in nonpolar organic solvents as
n-hexane.

8.3.3. Transition state structures

We use the same notation for the transition states as for Pre, although the conformation
of the rings would be intermediate between Pre and Vit. The differences in energy due to
conformational changes are smaller in the transition state structures than in the equilibrium
configurations and they are mainly related to the disposition of the C ring. The antarafacial(+)
attack is favored by the HC conformation of Pre, whereas the antarafacial(-) is favored by the
TB conformation of Pre, being of great importance in the stability of the transition states the
final configuration of the C ring in Vit. Figure 8.1 shows that the HC conformation of Pre leads
to CH conformation in Vit when the C13 carbon atom is above of the plane formed by the C8,
C11, C12, and C14 carbon atoms, and the C9 carbon atom (the acceptor atom in the hydrogen
transfer) is below that plane. The antarafacial(+) attack in which the A ring is below the C
and D rings favours the formation of the chair in Vit, whereas the antarafacial(-) attack puts
some stress on the C ring because the transfer forces the acceptor to move above the C and
D rings. Thus the dihedral angles about the C8–C9 and C9–C11 bonds have values of −19◦

and −23◦, respectively, in the case of TSa(+)(HC,HC), but they are closer to planarity in the
TSa(−)(HC,HC) transition state, with values of 5◦ and −3◦, respectively (see Scheme 8.7).

If the C ring conformation in Vit is twisted, the C8 and C12 are the lateral carbon atoms
and the C9 and C13 are apical atoms pointing above the plane formed by the two lateral atoms
and the point at half-distance between the C9–C11 bond. As a consequence, the antarafacial(-)
attack requires a smaller distorsion of the C ring than the antarafacial(+) attack, favoring the
transition states with the A ring above the C and D rings (see Scheme 8.8). In this context,
the hydrogen shift reaction in Pre is different to that in Tri, because for the latter the two
antarafacial attacks are equivalent and the two resulting transition states are enantiomers.

The interaction between the OH and the π orbitals of the forming C10–C19 double bond is
also present in some of the transition state structures, i.e., in the TSa(−) configurations. Thus,
when both the C and D rings are removed, the optimization of the TSa(−)(HC) and TSa(+)(HC)
structures with single-point calculations carried out with the SM5.43R model shows that the
former structure is more stable than the latter by 0.60 kcal/mol. In the case of the TSa(−)(TB)
conformers the difference regarding to the TSa(+)(TB) conformers increases to 1.06 kcal/mol.
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Scheme 8.7: Structural change of the C ring in half-chair configuration depending of the attack
antarafacial(+) or antarafacial(-).

Scheme 8.8: Same as Scheme 8.7 but for the twist-boat conformation of the C Ring of Pre.
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8.3.4. Thermal rate constants

The calculation of the thermal rate constants was carried out at several temperatures in
the interval between 25◦C to 95◦C, but here we limit the analysis of the thermal rate constants
to mainly two temperatures: T = 37◦C (the normal body temperature), and T = 60◦C, one
of the temperatures at which there are experimental results of thermal rate constants for the
hydrogen shift reaction of both Tri and Pre. The results at other temperatures can be found
in the Appendix B.

The total CVT/SCT thermal rate constant for the isomerization reaction can be obtained
as a weighted sum the individual constants:

kCVT/SCT(T ) =

nR
∑

i=1

Wi(T )k
CVT/SCT
i (T ) (8.9)

Hereafter the subscript i = 1, . . . , nR would always refer to the ith reaction listed in Table 8.2.
The sum of Eq. (8.9) runs over all the nR = 16 reactive paths, with each of the individual

thermal rate constants k
CVT/SCT
i (T ) given by Eq. (8.1), i.e.,

k
CVT/SCT
i (T ) = κSCT

i (T )ΓCVT
i (T )kTST

i (T ) (8.10)

The weighting factor Wi(T ) is the statistical probability at a given temperature T for the
reaction occurring through path i and it is given by,

Wi(T ) =
exp [−β∆GR,0

i (T )]

NR
(8.11)

being ∆GR,0
i (T ) the difference in free energy between the reactant of reaction i and the free

energy of the global minimum of Pre. The coefficient NR is given by Eq. (8.6).
The contribution in percentage of each of the reaction paths to the total thermal rate

constants can be calculated as:

%kY
i (T ) =

kW,Y
i (T )

kY(T )
× 100 (8.12)

where Y = TST or CVT/SCT, and

kW,Y
i (T ) = Wi(T ) kY

i (T ) (8.13)

We note that the calculated thermal rate constants in n-hexane were readily obtained from
the gas-phase ones, because we assume that the variational and quantum effects are the same
in n-hexane and in the gas phase. We expect this approximation to work well because the
differences in the free energies of activation between gas-phase and solution are quite modest
(always smaller than 1 kcal/mol). Specifically, we use the gas-phase information along the
reaction path but correcting the free energy of activation with an additional term which is the
free energy of solvation (i.e., we use the values of ∆G‡

s(T ) instead of ∆G‡
g(T ) of Table 8.2).

Figure 8.2 plots the contribution in percentage of each of the reaction paths at 37 ◦C and
Table 8.4 lists the total thermal rate constants for the isomerization reaction. The incorporation
of the solvent has the effect of lowering the total CVT/SCT thermal rate constants by 30%. It
also has an important effect on reactions R1 and R5, because the solvent favors reaction R5 over
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Figure 8.2: Histogram plotting the contributions of each of the individual reaction paths (Y=TST or
CVT/SCT) to the total total rate constant in both gas-phase and n-hexane solution at T = 37◦C.
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R1. These two reactions are the ones with the lowest classical barriers, so it is understandable
that they contribute the most since the two transition states are reached from two of the most
stable conformations of the A and C rings, and the antarafacial(+) attack favors the transfer.
The TST thermal rate constant is larger for R5 than for R1 but tunneling is more important
for R1 so the contribution of both reactions to the total CVT/SCT rate constant is practically
the same in n-hexane. As shown in Figure 8.3 the total CVT/SCT thermal rate constants are
in quite good agreement with the experimental data from Ref. [236].

At 37 ◦C the SCT transmission coefficient for R1 is 12.0, whereas for R5 is only 8.06 (see
Figure 8.4). The reason for this disparity in the transmission coefficients can be traced to the
difference in stability between the chair and twisted conformations of Vit. The Vite(+)(T,CH)
conformer of R5 is 5 kcal/mol less stable than the Vita(+)(CH,CH) conformer of R1 and,
therefore, the MEP for R5 is wider than that for R1. This can be confirmed by evaluating the
zero-curvature tunneling transmission coefficients [73] (ZCT), which are calculated considering
that the tunneling trajectory of the particle follows the MEP. The ZCT transmission coefficients
are 4.49 and 3.39 for R1 and R5, respectively, confirming a narrower MEP for R1. We note
that the ZCT transmission coefficients are discussed here for illustrative purposes only, since
it is well-known that they underestimate quantum effects. [81, 197]

If we were to consider only these two channels the transmission coefficient would be 10.1,
but when all the 16 channels for reaction are included it has a value of 10.8. The two values
are not very different, but the total contribution of those additional channels to the CVT/SCT
thermal rate constant increases to 27% (7% due to tunneling plus 20% from the TST rate
constants). This percentage is not negligible and it shows that is important to seek for transition
states coming from highly energetic (low populated) reactive conformers. For instance, the
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Figure 8.3: Arrhenius plot that compares experimental and CVT/SCT thermal rate constants in
n-hexane for both Pre(d0) and Pre(d5).
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Table 8.4: Calculated and experimental thermal rate constants (in s−1) for the [1,7] hydrogen shifts
in Pre an in Tri. The deuterated derivatives have been isotopically substituted in the 9,14,19,19,19-
positions in Pre, and in the 7-position in Tri

Pre (T = 37◦C) Pre (T = 60◦C) Tri (T = 60◦C)
H D H D H D

Rate constant Gas phase
kTST 1.18×10−6 3.46×10−7 1.87×10−5 5.91×10−6 1.02×10−5 2.60×10−6

kCVT 1.18×10−6 3.42×10−7 1.85×10−5 5.84×10−6 1.00×10−5 2.60×10−6

kCVT/SCT 1.27×10−5 1.67×10−6 1.39×10−4 2.21×10−5 4.80×10−5 8.72×10−6

Solution
kTST 9.09×10−7 2.67×10−7 1.44×10−5 4.59×10−6 1.10×10−5 2.80×10−6

kCVT 9.00×10−7 2.64×10−7 1.42×10−5 4.54×10−6 1.08×10−5 2.80×10−6

kCVT/SCT 1.05×10−5 1.27×10−6 1.04×10−4 1.69×10−5 5.17×10−5 9.37×10−6

kexp 6.8 ×10−6,a — 9.72(± 0.03) ×10−5,b 1.32(± 0.034)×10−5,b 5.6×10−5,c 8.0×10−6,c

6.76 ×10−5,a

a From Ref. [278]. From Ref. [236]. From Ref. [233]
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Figure 8.4: Histogram plotting the SCT transmission coefficients of all the reactive channels at T =
37◦C.
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contribution of the Prea(−)(TB,TB) conformer to the total population of reactants is negligible,
but this reactive channel contributes 4% to the total rate constant.

A comparison between Figure 8.4 and Table 8.2 shows that the transition states with a
favorable conformation of the C ring, so the [1,7] hydrogen shift is aided (i.e., the antarafa-
cial(+) attack for the HC conformation of the C ring, and the antarafacial(-) for the TB
conformation of the C ring) have larger transmission coefficients, besides of having larger TST
thermal rate constants. In n-hexane the antarafacial(+) attack contributes about 90%. This
value is in agreement with experimental measurements of Sheves et al. [230] that showed that
the antarafacial(+) attack is preferred, although our percentage is somewhat larger than the
67% predicted by those authors. Tian et al. [278] pointed out that a possible reason for the
isomerization to be more than 10 times faster in the human skin than in n-hexane is, that
within the amphipathic environment of the phospholipids, there would be a larger participa-
tion of the antarafacial(-) attack. We agree that this may be the case because anisotropic
microenvironments as the skin may accommodate better some of the conformers of Pre and
their corresponding transition states than isotropic environments (as n-hexane). Pre itself has
some anisotropy with a hydrophilic hydroxyl group in the A ring when the rest of the molecule
is hydrophobic, and if this additional stabilization favors some of the antarafacial(-) transition
states the thermal rate constants would increase in value.

Further stabilization of those highly energetic antarafacial(-) reactants with the C ring in
twisted-boat form would not modify the contribution of reactants to the final rate constants,
since that is dominated by the half-chair conformations, which are 5 or more kcal/mol more
stable than the twisted-boat conformations. However, it may involve a substantial increase
of the contribution of the transition states. For instance, an additional stabilization of these
reactants and transition states with respect to the antarafacial(+) stationary points by about
1.7 kcal/mol would increase the thermal rate constants by roughly a factor of 3. This is not the
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only possibility for increasing the thermal rate constants, since it may also happen that, in this
environment, the most stable conformations of Pre would be less stabilized than the transition
states. This may also happen in β−cyclodextrins, which catalyze the isomerization reaction
becoming almost 5 times faster than in human skin at 37 ◦C. In this case the disappearance
of the tZc conformers of Pre and the ZtE conformers of Vit due to steric hindrance would aid
even more the reaction. This would lead to lower values of the equilibrium constants than
in human skin, but to higher thermal rate constants, because in β−cyclodextrins the lowest
conformations of Pre would be cZc, which are higher in energy than the tZc ones, so the barrier
heights for reaction would decrease.

From the quassiclassical point of view, the [1,7] hydrogen shift reaction in n-hexane at 60 ◦C
is 23% faster in Pre than in Tri, but this value increases to 50% when tunneling is included. The
tunneling contribution is smaller in Tri than in Pre as a result of a wider MEP for the former
compound. This difference can be illustrated as indicated earlier by looking at the magnitude
of the ZCT transmission coefficients, which are 2.42 and 4.23 for Tri and Pre, respectively. It
is also illustrative to note that for both Tri and Pre the energies that contribute the most to
tunneling are very close to the top of the vibrationally adiabatic ground-state barrier, and in
that region we expect the widthness of the MEP to be controlled by the normal mode with
imaginary frequency at the transition state. Its magnitude accounts for the curvature at the
top of the barrier, and in this case have values of 1315i cm−1 and 1420i cm−1 for the transition
state of Tri and for TSa(+)(HC,HC) of Pre, respectively.

Another important difference between Pre and Tri is that for the latter the two possible
antarafacial attacks lead always to transition states that are enantiomers and, therefore, each
of them contributes 50%. In Pre this percentage may fluctuate depending on the environment.
Tri is a hydrophobic isotropic molecule and, therefore, the incorporation of a nonpolar isotropic
organic solvent favors slightly the [1,7] hydrogen shift with respect to gas phase, although even
in this case, the total thermal rate constants of the process are larger for the Pre system. On
the other hand, we expect Tri to be much less efficient than Pre in anisotropic media, as for
instance the human skin, since the latter would be able to interact with both the hydrophobic
and hydrophilic parts of the lipids due to its amphipathic character.

8.3.5. Kinetic isotope effects

The evaluation of KIEs by theoretical methods allow the independent analysis of the qua-
siclassical and tunneling contributions to the final result. We use the notation

η(T ) =
k

CVT/SCT
H (T )

k
CVT/SCT
D (T )

(8.14)

where η(T ) is the total KIE and k
CVT/SCT
H (T ) and k

CVT/SCT
D (T ) are the isomerization thermal

rate constants for the hydrogen and pentadeuterio compounds, respectively. The pentadeuterio
derivative has been isotopically substituted in the 9,14,19,19,19-positions and, therefore, the
total value of the KIE is a mixture of primary and secondary contributions, although the
secondary KIE will be very close to unity. The total KIE is factorized into their quasiclassical,
ηqc(T ), and tunneling, ηtun(T ), contribution are given by

η(T ) = ηtun(T )ηqc(T ) (8.15)
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where

ηtun(T ) =
κSCT

H (T )

κSCT
D (T )

(8.16)

and ηqc(T ) is given by

ηqc(T ) = ηvar(T )ηTST(T ) (8.17)

where ηvar(T ) and ηTST(T ) are the variational and TST contributions to the KIE, respectively.
The variational contribution is very close to unity (within a 1%), and therefore the quasiclassical
contribution is that of the TST.

It is also interesting to analyze the contribution in percentage %ηi(T ) of each of the indi-
vidual reaction paths to the total KIE. It is given by:

%ηi(T ) =
%ki,D

η(T )
× ηi,qc(T )ηi,tun(T ) (8.18)

where %ki,D is the percentage contribution of each reaction path to the total thermal rate
constant of the pentadeuterated compound, and ηi,qc(T ) and ηi,tun(T ) are the quasiclassical
and tunneling contributions to the KIE of reaction path i, respectively. The contributions are
divided in the same fashion as those for the total KIE. The derivation of Eq. (8.18) is given in
the Appendix B.

The KIEs of each of the reaction paths (in n-hexane) with their contribution to the total KIE
are plotted in Figure 8.5 at 37 ◦C. The gas-phase KIEs (not plotted) are quite similar to those
in n-hexane but slightly larger, i.e. 7.62 versus 7.39. Even when the tunneling transmission
coefficients in n-hexane are considered to be the same as in the gas phase the KIE decreases
because the contribution of reaction R5, which has a low KIE due to tunneling, is higher in
n-hexane than in gas-phase. A comparison between Figure 8.4 and Figure 8.5 shows that
transmission coefficients and the KIEs change in the same fashion, because the quasiclassical
contribution to the individual KIEs varies much more uniformly (from 3.01 for R2 to 3.57 for
R16) than the tunneling contribution (from 1.53 for R2 to 3.44 for R16). As indicated in the
percentages of Figure 8.5 the two reaction paths that contribute the most to the final KIE are
R1 and R5 and the individual KIES are 7.50 and 6.17, respectively. The total KIE (7.18) is
somewhat larger than the average of these two values (6.84) due to the contribution of the other
reaction paths (mainly R13 and R16), that have larger tunneling contributions to the KIE than
these two reaction paths. In general, environments like n-hexane, that stabilize reaction path
R5, would lead to lower KIEs than environments that preferentially stabilize R1, R13 or R16.
From these data we point out that a good low-limit for the total KIE for the isomerization
reaction is the individual KIE of reaction R5.

The comparison between the KIEs for the [1,7] hydrogen shifts in Pre and Tri are interesting
because there are experimental data for both systems at 60 ◦C in organic solvents. In the case
of Pre the solvent was n-hexane and in the case of Tri the solvent was 2-methylpentane. Both
solvents are very similar, so we use this value of the experimental KIE of Tri as if it were obtained
in n-hexane. The experimental KIEs are 7.4 and 7.0 for Pre and Tri, respectively, whereas the
theoretical calculations in n-hexane are 6.15 and 5.52, respectively. Both theoretical KIEs are
underestimated by about a 20% when compared to the experimental values and it is probable
that the discrepancy is due to the same source of error for both systems. Despite both systems
have quite similar KIEs, the partial contributions to the total KIE are quite different. Thus,
the quasiclassical and tunneling contributions are 3.14 and 1.96 in Pre and 3.93 and 1.40 in
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Figure 8.5: Histogram plotting the quasiclassical, ηqc, and quantum, ηqc, contributions of each of the
isomerization reaction paths of Pre to the total KIE at T = 37◦C. The contribution in percentage, %ηi,
of each of the paths to the final KIE is indicated next to the bars. The resulting quasiclassical, quantum
and total KIEs are plotted in the last three rows.
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Tri, respectively, and therefore the quasiclassical contribution is larger in Tri, but the tunneling
contribution is larger in Pre. In this case, the quasiclassical contribution to the KIE would
be mainly due to vibration, so this contribution would be more important when the difference
between the free energies of activation for the root and isotopically substituted species is large.
As to the tunneling contribution to the KIE, it was expected to be larger for Pre than for Tri,
because ηtun(T ) increases when the tunneling transmission coefficients are larger.

Finally, we note that the R8, R12 and R16 reaction paths have large KIEs due to the
tunneling contribution. Therefore, if in human skin the thermal rate constants are larger than
in n-hexane due to an increase in the contribution of the antarafacial(-) attack, an experiment
including measurements of the isotopically substituted Pre would display larger KIEs than
those measured in n-hexane.

8.4. Concluding remarks

We have carried out an exhaustive variational transition state theory theoretical study using
the CVT/SCT approach on the [1,7] hydrogen shift reaction (or isomerization reaction) of Pre
in both gas-phase and n-hexane environments. The conformational analysis of the equilibrium
structures led to a total of 35 conformers of Pre and to 24 conformers of Vit. Those structures
were used to obtain the equilibrium constants, and we have obtained that the reaction is
exoergic, in good agreement with experimental findings. From the energetics point of view, the
configuration of the A and C rings is more relevant for the equilibrium structures than for the
saddle points. In particular, due to the characteristics of the [1,7] hydrogen shift, the C ring
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regulates the antarafacial attack in the transition state structures. Thus, the antarafacial(+)
attack is preferred when the C ring has half-chair configuration, whereas the antarafacial(-)
attack is preferred when the C ring has twisted-boat configuration. In both gas-phase and
n-hexane environments the reaction occurs about 90% through antarafacial(+) attack.

The great flexibility of the A and C rings led to sixteen reaction paths for isomerization
and, although the contribution of the two of reaction paths obtained from the most stable
configurations of Pre to the thermal rate constants and to the KIEs is substantial (about 70%
at 37 ◦C), the contributions from some of the other reaction paths are relatively important and
cannot be neglected. Besides, the contribution of these less important reaction paths increases
the tunneling contribution as well as the KIE. The narrow energy window in which the transition
states were located makes the hydrogen shift reaction quite sensitive to the environment, and
we suggest that a further stabilization of some of the transition states may be the reason for the
isomerization reaction to be faster in human skin (anisotropic environment) than in n-hexane
(isotropic environment). In fact, both equilibrium and thermal rate constants reduce their value
in the presence of n-hexane with respect to the gas-phase values. The comparison between Pre
and Tri shows that, although the trienic system is identical for both systems, their dynamics
is quite different. Tunneling is more important in Pre than in Tri and for the former, in both
gas phase and n-hexane environments, there is preference for the antarafacial(+) attack; a
preference that cannot exist in Tri.





Chapter 9

Conclusions

This Dissertation highlights that VTST/MT is a powerful tool for studying the dynamics
of proton transfer reactions. In the present work, it has been successfully improved and applied
to the study of different chemical reactions.

It describes how to calculate rotational symmetry numbers for various molecular configura-
tions and how to apply them within the context of the transition state theory. Several examples
have been included for calculating symmetry numbers for reaction rate constants that are both
intuitive and nonintuitive. For most reactions, the overall symmetry number is given by the
ratio of the reactant and transition state rotational symmetry numbers. Many of the typical
problems that arise when using symmetry numbers have been highlighted. Even complicated
scenarios are treated systematically by properly calculating rotational symmetry numbers and
differentiating between distinguishable and indistinguishable reaction paths.

The least-action tunneling (LAT) approach for computing the transmission coefficient has
been extended to polyatomic reactions. The new method is more complete than the simpler mi-
crocanonically optimized multidimensional tunneling (µOMT) approximation, and in the tests
presented, the LAT method is slightly more accurate. The detailed analysis of kinetic isotope
effects (KIE) of six hydrogen/deuterium/tritium abstraction reactions shows that the least-
action transmission coefficient should be used instead of the more inexpensive, but probably
less accurate, small-curvature transmission coefficient.

Two algorithms have been presented for efficient direct dynamics evaluation of the LAT
transmission coefficients for polyatomic reactions: the interpolated least-action tunneling
method based on one-dimensional interpolation algorithm (ILAT1D), and the double inter-
polated least-action tunneling algorithm (DILAT). The former employs one-dimensional inter-
polations of the effective potential along nonadiabatic portions of the tunneling paths, and the
latter also makes use of those interpolations besides of the interpolations of the values of the
action integrals at different tunneling energies. The ILAT1D algorithm is 5 to 10 times faster
than the full calculation and the DILAT algorithm can be from 3 to 5 times faster than the
ILAT1D algorithm, depending on the characteristics of the nonadiabatic region, but with an
error of less than 5%.

High-level MC3BB direct-dynamics CVT/µOMT calculations in the temperatures interval
300-2500 K have been performed for the two competing hydrogen abstraction reactions R1
and R2 from methanol by atomic hydrogen. The results show that, with other factors being
equal, multidimensional tunneling models provide both more reliable absolute thermal rate
constants and kinetic isotope effects. It turns out that at high temperatures the anharmonicity
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of the torsional mode about the C–O bond plays an important role, because it leads to ther-
mal rate constants that deviate substantially from those obtained by the harmonic oscillator
approximation. On the other hand, these calculations and previous theoretical works clearly
indicate that the activation energy for the overall hydrogen abstraction process increases sub-
stantially with temperature. Therefore, equations that include this dependency should be used
(in detriment of the Arrhenius equation) for further studies involving these type of reactions.
Reaction R1 dominates at all temperatures in the interval 300-2500 K, contributing 100% at
room temperature and about 75% at T = 2500 K, so the branching ratio R1/R2 changes with
temperature.

The dynamics of the [1,7] sigmatropic hydrogen shift in 7-methylocta-1,3(Z),5(Z)-triene,
considered as a model system of previtamin D3, has been studied by high-level direct-dynamics
CVT/µOMT calculations at the MPWB1K/DIDZ level. All the conformations of 7-methylocta-
1,3(Z),5(Z)-triene have being included in the theoretical treatment. The calculated thermal rate
constants, the activation energies and primary KIEs are in reasonable agreement with the ex-
perimental data when quantum tunneling is taken into account. The CVT/µOMT calculations
also indicate that it is important to consider the coupling between the reaction coordinate and
the transverse modes to obtain KIEs comparable to the experimental values.

In this Dissertation it has been carried out an exhaustive variational transition state theory
theoretical dynamics study of the [1,7] hydrogen shift reaction (or isomerization reaction) of
previtamin D3, in both gas-phase and n-hexane environments. The conformational analysis
of the equilibrium structures led to a total of 35 conformers of previtamin D3 and to 24 con-
formers of vitamin D3. Those structures were used to obtain the equilibrium constants, and
it has been found that the reaction is exoergic, in good agreement with experimental findings.
From the energetics point of view, the configuration of the A and C rings is more relevant for
the equilibrium structures than for the saddle points. In particular, due to the characteris-
tics of the [1,7] hydrogen shift, the C ring regulates the antarafacial attack in the transition
state structures. Thus, the antarafacial(+) attack is preferred when the C ring has half-chair
configuration, whereas the antarafacial(-) attack is preferred when the C ring has twisted-boat
configuration. In both gas-phase and n-hexane environments the reaction occurs about 90%
through antarafacial(+) attack.

The great flexibility of the A and C rings led to sixteen reaction paths for isomerization and,
although the contribution two of the reaction paths obtained from the most stable configura-
tions of previtamin D3 to the thermal rate constants and to the KIEs is substantial (about 70%
at 37 ◦C), the contributions from some of the other reaction paths are relatively important and
cannot be neglected. Besides, the contribution of these less important reaction paths increases
the tunneling contribution as well as the KIE. The narrow energy window in which the transi-
tion states were located makes the hydrogen shift reaction quite sensitive to the environment,
and it has been suggested that a further stabilization of some of the transition states could be
the reason for the isomerization reaction to be faster in human skin (anisotropic environment)
than in n-hexane (isotropic environment). In fact, both equilibrium and thermal rate constants
reduce their value in the presence of n-hexane with respect to the gas-phase values. The com-
parison between previtamin D3 and the 7-methylocta-1,3(Z),5(Z)-triene shows that, although
the trienic system is identical for both systems, their dynamics is quite different. Tunneling
is more important for previtamin D3 than for the 7-methylocta-1,3(Z),5(Z)-triene. For the
former compound, in both gas phase and n-hexane environments, there is a preference for the
antarafacial(+) attack; a preference that cannot exist in the 7-methylocta-1,3(Z),5(Z)-triene.
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The ILAT1D algorithm has been tested against full-LAT calculations for the following
reactions:

O + HCl −−→ OH + Cl (R1)

Cl + HBr −−→ ClH + Br (R2)

O + CH4 −−→ OH + CH3 (R3)

Cl + CH4 −−→ ClH + CH3 (R4)

OH + CH4 −−→ H2O + CH3 (R5)

Table A.1: Number of single-point calculations (NSP) in the nonadiabatic region needed for the
evaluation of the transmission coefficients by the full-LAT (taken as reference) and ILAT1D methods
for reactions R1 to R5. The latter are given as function of NS. N̄II is the number (on average) of single
point calculations carried out in the nonadiabatic region for each tunneling path. The total number of
points along each tunneling path is N = 180.

NS

Reaction N̄II reference 5 7 9 11 13

R1 42 36585 4336 6050 7740 9410 11043
R2 40 42838 5263 7331 9391 11431 13449
R3 63 153042 12075 16873 21647 26395 31121
R4 57 128089 11085 15450 19791 24101 28378
R5 31 27282 4071 5605 7115 8587 10026
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Table A.2: Transmission coefficients, κ, evaluated at T = 200, 300 and 400 K by the full-LAT (taken
as reference) and ILAT1D methods for reactions R1 to R5. The latter are given as function of NS.

NS

Reaction reference 5 7 9 11 13

T = 200 K
R1 56.02 56.08 56.08 56.07 56.03 56.07
R2 3.12 3.12 3.12 3.12 3.12 3.12
R3 117.4 118.6 119.0 118.9 117.7 118.8
R4 10.20 10.33 10.19 10.18 10.16 10.20
R5 16.44 16.46 16.45 16.45 16.44 16.45

T = 300 K
R1 4.23 4.23 4.23 4.23 4.23 4.23
R2 1.62 1.62 1.62 1.62 1.62 1.62
R3 7.68 7.61 7.64 7.68 7.62 7.71
R4 3.66 3.69 3.66 3.66 3.65 3.66
R5 3.36 3.36 3.36 3.36 3.36 3.36

T = 400 K
R1 2.11 2.11 2.11 2.11 2.11 2.11
R2 1.31 1.31 1.31 1.31 1.31 1.31
R3 3.02 2.99 2.99 3.00 2.99 3.02
R4 2.28 2.29 2.28 2.28 2.28 2.28
R5 1.96 1.96 1.96 1.96 1.96 1.96

The next figure plots the MUPEs in the calculation of the transmission coefficients by the
ILAT1D algorithm for reactions R1 to R5 as a function of NS in the temperatures interval
200–400 K with calculations of the transmission coefficients every 25 K.
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B.1. Derivation of Equation (8.18)

The total KIE is given by:

η(T ) =
k

CVT/SCT
H (T )

k
CVT/SCT
D (T )

=
1

k
CVT/SCT
D (T )

∑

i

WH
i (T )k

CVT/SCT
i,H (T ) (B.1)

The substitution of Eqs. (8.10) and Eq. (8.11) into Eq. (B.1) leads to:

η(T ) =
1

k
CVT/SCT
D (T )

∑

i

exp [−β∆GR,0
i,H (T )]

NH
R

κSCT
i,H (T )ΓCVT

i,H (T )kTST
i,H (T ) (B.2)

It should be noticed that

kTST
i,H (T ) =

1

βh
exp

{

−β∆G‡,0,∗
i,H (T )

}

(B.3)

and that
kW,TST

i,H (T ) = WH
i (T )kTST

i,H (T ) (B.4)

where ∆G‡,0,∗
i,H (T ) is the difference between the standard-state free energy at the transition state

and that of the reactant of reaction path i, taking as reference the latter. Taking as reference
the global minimum of the classical potential the standard-state free energy of activation is
given by

∆G‡,0
i,H(T ) = ∆G‡,0,∗

i,H (T ) + ∆GR,0
i,H (T ) (B.5)

Eq. (B.2) can be written as

η(T ) =
1

k
CVT/SCT
D (T )

∑

i

1

NH
R

κSCT
i,H (T )ΓCVT

i,H (T )kW,TST
i,H (T ) (B.6)

Multiplying and dividing each term of the sum of Eq. (B.6) by k
W,CVT/SCT
i,D (T ) =

WD
i (T )k

CVT/SCT
i,D (T ) the following expression is obtained:

η(T ) =
∑

i

WD
i (T )k

CVT/SCT
i,D (T )

k
CVT/SCT
D (T )

κSCT
i,H (T )

κSCT
i,D (T )

ΓCVT
i,H (T )

ΓCVT
i,D (T )

kTST
i,H (T )

kTST
i,D (T )

(B.7)
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Now each of the contributions can be easily separated:

ηW,TST
i (T ) =

kW,TST
i,H (T )

kW,TST
i,D (T )

=
ND

R

NH
R

exp
{

−β[∆G‡,0
i,H(T ) − ∆G‡,0

i,D(T )]
}

(B.8)

ηi,var(T ) =
ΓCVT

i,H (T )

ΓCVT
i,D (T )

(B.9)

ηi,tun(T ) =
κSCT

i,H (T )

κSCT
i,D (T )

, (B.10)

and

P
CVT/SCT
i,D (T ) =

k
W,CVT/SCT
i,D (T )

k
CVT/SCT
D (T )

(B.11)

The quasiclassical contribution is

ηi,qc(T ) = ηTST
i (T )ηCVT

i,var (T ) (B.12)

The total KIE can be expressed as:

η(T ) =
∑

i

P
CVT/SCT
i,D (T )ηi,qc(T )ηi,tun(T ) (B.13)

The contribution in percentage of each reaction path is given by Eq. (8.18) and it can be readily
obtained by multiplying Eq. (B.13) by 100 and dividing it by η(T ), i.e.

%ηi(T ) =
%k

CVT/SCT
i,D (T )

η(T )
× ηi,qc(T )ηi,tun(T ) (B.14)

where
%k

CVT/SCT
i,D (T ) = P

CVT/SCT
i,D (T ) × 100 (B.15)

B.2. Tables
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Table B.1: Calculated properties (energies in kcal/mol and dihedral angles in degrees) of the stationary points for the isomerization reaction
in gas-phase. The differences in the classical energy (∆E), classical energy plus the zero-point energy (∆E(ZPE)), and in the free energies
(∆Go

310 K.∆Go
333 K) are relative to the Prea(HC,HC)(+)tZ(-)c conformer. The difference in the classical energy ∆E(TS) is relative to the

TSa(HC,HC)(+)cZ(+)c; ω‡ (in cm−1 is the imaginary frequency at the transition state

Structure Structure ∆E ∆E(ZPE) ∆E(TS) ω‡ Φ1 Φ2 Φ3 ∆Go
310 K ∆Go

333 K

Prea(+)(HC,HC) Prea(HC,HC)(+)cZ(+)c 3.25 3.42 73.3 -0.5 -11.7 2.83 2.78

Prea(HC,HC)(+)cZ(-)c 0.00 0.00 121.9 -7.2 -46.5 0.00 0.00
Prea(HC,HC)(+)tZ(-)c 1.43 1.39 -151.3 10.3 43.4 0.19 0.09
Prea(HC,HC)(-)tZ(+)c 5.01 21i -147.4 4.1

Prea(−)(HC,HC) Prea(HC,HC)(-)cZ(-)c 1.48 1.83 -55.8 -2.4 -26.2 1.86 1.87

TSa(−)(HC,HC) TSa(HC,HC)(-)cZ(-)c 29.61 27.32 1.64 1348i -24.3 -20.5 -1.9 28.25 28.37

TSa(+)(HC,HC) TSa(HC,HC)(+)cZ(+)c 27.97 25.42 0.00 1420i 21.6 22.2 3.7 26.38 26.50

Vita(−)(T,CH) Vita(T,CH)Z(-)cE 5.91 6.38 -2.1 -57.0 0.4 6.70 6.74

Vita(+)(CH,CH) Vita(CH,CH)Z(+)cE 1.83 2.24 -0.2 54.2 -0.5 2.32 2.34

Vita(CH,CH)Z(-)tE -1.99 -1.21 1.4 -173.8 1.7 -1.78 -1.80

Prea(+)(HC,TB) Prea(HC,TB)(+)cZ(+)c 6.02 6.16 59.5 2.1 50.7 5.25 5.18

Prea(HC,TB)(+)cZ(-)c 5.59 4.97 97.9 -5.1 -35.9 3.66 3.54
Prea(HC,TB)(+)tZ(-)c 5.77 6.06 130.5 -8.3 -22.4 5.38 5.33
Prea(HC,TB)(-)tZ(+)c 6.04 5.90 -152.8 10.7 43.5 3.67 3.48

Prea(−)(HC,TB) Prea(HC,TB)(-)cZ(-)c 5.61 6.07 -61.0 -2.4 -7.5 5.90 5.89

TSa(−)(HC,TB) TSa(HC,TB)(-)cZ(-)c 29.63 27.30 1.67 1426i -26.6 -18.7 -0.9 28.36 28.49

TSa(+)(HC,TB) TSa(HC,TB)(+)cZ(+)c 31.32 28.79 3.35 1421i 23.7 19.1 2.7 29.63 29.74

Vita(−)(T,T) Vita(T,T)Z(-)cE 9.76 10.65 -4.9 -48.9 2.9 10.98 11.03

Vita(+)(CH,T) Vita(CH,T)Z(+)cE 7.32 7.09 -0.2 68.0 -1.0 6.43 6.38

Vita(CH,T)Z(-)tE 1.70 2.34 1.0 -175.9 2.1 1.76 1.73

Φ1 = C10 − C5 − C6 − C7, Φ2 = C5 − C6 − C7 − C8, Φ3 = C6 − C7 − C8 − C9.
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Table B.1: (cont.)

Structure Structure ∆E ∆E(ZPE) ∆E(TS) ω‡ Φ1 Φ2 Φ3 ∆Go
310 K ∆Go

333 K

Pree(+)(HC,HC) Pree(HC,HC)(+)cZ(+)c 1.73 1.92 53.2 2.3 44.7 1.80 1.79

Pree(HC,HC)(+)cZ(-)c 3.52 3.33 90.0 -2.1 -37.2 2.36 2.27
Pree(HC,HC)(+)tZ(-)c 2.06 1.84 152.7 -10.2 -42.1 0.67 0.56
Pree(HC,HC)(-)tZ(+)c 1.72 1.32 -127.8 6.9 35.0 0.08 -0.03

Pree(−)(HC,HC) Pree(HC,HC)(-)cZ(-)c 2.87 2.93 -59.1 -0.4 -20.0 2.54 2.51

TSe(−)(HC,HC) TSe(HC,HC)(-)cZ(-)c 30.28 27.60 2.32 1373i -23.2 -21.4 -1.9 28.39 28.48

TSe(+)(HC,HC) TSe(HC,HC)(+)cZ(+)c 28.35 25.48 0.38 1401i 23.7 21.1 3.0 26.31 26.41

Vite(−)(CH,CH) Vite(CH,CH)Z(-)cE 2.57 2.81 -2.8 -58.1 0.7 3.07 3.10

Vite(+)(T,CH) Vite(T,CH)Z(+)cE 7.83 7.70 1.3 53.6 -0.9 7.16 7.12

Vite(HC,CH)Z(-)tE -0.94 -0.56 -2.6 172.7 -3.5 -1.35 -1.41

Pree(+)(HC,TB) Pree(HC,TB)(+)cZ(+)c 6.85 6.83 59.4 1.8 10.5 6.30 6.25

Pree(HC,TB)(+)cZ(-)c 7.37 7.11 81.8 -1.2 -28.4 6.39 6.32
Pree(HC,TB)(+)tZ(-)c 6.79 5.90 133.0 -8.8 -27.3 4.89 4.75
Pree(HC,TB)(-)tZ(+)c 6.17 6.32 -129.6 7.2 33.6 4.26 4.11

Pree(−)(HC,TB) Pree(HC,TB)(-)cZ(-)c 6.99 7.10 -60.6 -3.1 -12.7 6.56 6.51

TSe(−)(HC,TB) TSe(HC,TB)(-)cZ(-)c 30.47 28.07 2.50 1444i -24.8 -19.7 -1.1 29.09 6.78

TSe(+)(HC,TB) TSe(HC,TB)(+)cZ(+)c 31.60 29.07 3.63 1435i 24.6 18.9 2.9 29.89 11.90

Vite(−)(CH,T) Vite(CH,T)Z(-)cE 6.20 6.67 -4.3 -51.8 2.5 6.76 29.21

Vite(+)(T,T) Vite(T,T)Z(+)cE 13.41 13.21 0.4 65.7 -1.0 12.01 30.00

Vite(T,T)Z(-)tE 2.67 2.93 -2.6 172.7 -2.2 2.14 2.08
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Table B.1: (cont.)

Structure Structure ∆E ∆E(ZPE) ∆E(TS) ω‡ Φ1 Φ2 Φ3 ∆Go
310 K ∆Go

333 K

Pree(+)(TB,HC) Pree(TB,HC)(+)cZ(+)c 6.64 6.37 51.4 3.9 43.4 5.14 5.03

Pree(TB,HC)(+)cZ(-)c 6.64 6.14 127.7 -4.2 -41.2 4.38 4.23
Pree(TB,HC)(+)tZ(-)c 5.74 5.12 145.7 -9.2 -39.6 2.91 2.71
Pree(TB,HC)(-)tZ(+)c 9.79 9.86 -163.0 1.5 -85.9 9.41 9.36

Pree(−)(TB,HC) Pree(TB,HC)(-)cZ(-)c 7.54 7.33 -51.1 -3.9 -24.9 6.22 6.12

TS e(−)(TB,HC) TSe(TB,HC)(-)cZ(-)c 31.73 29.41 3.77 1423i -21.5 -22.9 -2.8 30.38 30.50

TSe(+)(TB,HC) TSe(TB,HC)(+)cZ(+)c 29.60 27.15 1.63 1459i 21.9 22.7 4.3 28.05 28.16

Vite(−)(T,CH) Vite(T,CH)Z(-)cE 7.27 7.85 -2.8 -58.5 2.5 7.92 7.95

Vite(+)(T,CH) Vite(T,CH)Z(+)cE 7.22 7.59 5.2 52.7 -2.3 7.29 7.28

Vite(T,CH)Z(-)tE 3.41 3.38 7.2 -169.1 3.6 2.10 1.99

Pree(+)(TB,HB) Pree(TB,TB)(+)cZ(+)c 11.42 10.52 50.9 3.9 46.7 7.73 7.49

Pree(TB,TB)(+)cZ(-)c 13.06 12.27 83.8 -0.4 -34.1 9.69 9.46
Pree(TB,TB)(+)tZ(-)c 10.82 10.20 143.9 -10.2 -25.9 7.72 7.50
Pree(TB,TB)(-)tZ(+)c 10.05 9.77 -144.6 8.5 38.6 8.43 8.30

Pree(−)(TB,HB) Pree(TB,TB)(-)cZ(-)c 11.61 11.72 -52.8 -6.1 -12.5 10.68 10.59

TSe(−)(TB,HB) TSe(TB,TB)(-)cZ(-)c 32.02 29.32 4.05 1448i -22.6 -21.4 -2.3 29.98 30.07

TSe(+)(TB,HB) TSe(TB,TB)(+)cZ(+)c 33.10 30.39 5.13 1434i 23.6 20.1 3.6 30.85 30.92

Vite(−)(T,T) Vite(T,T)Z(-)cE 10.42 10.61 -6.4 -55.1 3.9 9.98 9.94

Vite(+)(T,T) Vite(T,T)Z(+)cE 12.40 12.37 3.9 63.1 -2.2 11.57 11.50

Vite(T,T)Z(-)tE 7.09 7.10 6.6 -169.7 3.4 5.80 5.69
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Table B.1: (cont.)

Structure Structure ∆E ∆E(ZPE) ∆E(TS) ω‡ Φ1 Φ2 Φ3 ∆Go
310 K ∆Go

333 K

Prea(+)(HB,HC) Prea(TB,HC)(+)cZ(+)c

Prea(TB,HC)(+)cZ(-)c
Prea(TB,HC)(+)tZ(-)c
Prea(TB,HC)(-)tZ(+)c

Prea(−)(HB,HC) Prea(TB,HC)(-)cZ(-)c

TSa(−)(HB,HC) TSa(TB,HC)(-)cZ(-)c 29.46 27.10 1.49 1429i -22.9 -21.9 -2.8 28.02 28.13

TSa(+)(HB,HC) TSa(TB,HC)(+)cZ(+)c 28.60 26.22 0.63 1438i 19.9 23.1 4.3 27.22 27.35

Vita(−)(T,CH) Vita(T,CH)Z(-)cE 5.55 6.23 -6.6 -55.7 2.2 6.40 6.44

Vita(+)(T,CH) Vita(T,CH)Z(+)cE 5.77 5.85 1.9 55.5 -2.9 1.02 0.96

Vita(T,CH)Z(-)tE 1.83 2.31 4.1 -168.8 3.3 5.38 5.32

Prea(+)(TB,TB) Prea(TB,TB)(+)cZ(-)c 11.02 11.12 51.9 4.4 11.7 10.05 9.97

Prea(TB,TB)(+)cZ(+)c 9.89 10.08 76.6 1.0 -27.7 9.62 9.59
Prea(TB,TB)(+)tZ(-)c 10.57 10.49 165.1 -10.2 -32.8 9.21 9.10
Prea(TB,TB)(-)tZ(+)c 8.66 8.41 -149.6 9.3 41.2 6.63 6.47

Prea(−)(TB,TB) Prea(TB,TB)(-)cZ(-)c 10.01 10.03 -52.9 -6.3 -11.3 8.93 8.85

TSa(−)(TB,TB) TSa(TB,TB)(-)cZ(-)c 11.89 64i -56.8 -4.5 -1.8 28.00 28.12

TSa(+)(TB,TB) TSa(TB,TB)(+)cZ(+)c 29.72 27.03 1.75 1492i -24.7 -20.1 4.2 29.79 29.88

Vita(−)(T,T) Vita(T,T)Z(-)cE 31.99 29.26 4.03 1429i 20.8 21.1 4.4 9.29 9.30

Vita(+)(T,T) Vita(T,T)Z(+)cE 8.79 9.45 -9.9 -50.0 -2.6 10.51 10.49

Vita(T,T)Z(-)tE 5.54 5.77 3.7 -169.5 4.44 4.44 4.34
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Table B.2: Total rate constants of the isomerization reaction of Pre(d0) and Pre(d5) in gas-phase

T(K) kTST
tot (T ) kVTST

tot (T ) kµOMT
tot (T ) kexp(T )

H

298.00 2.34(-07) 2.32(-07) 3.18(-06)
298.15 2.39(-07) 2.37(-07) 3.24(-06)
300.00 3.09(-07) 3.06(-07) 4.02(-06)
309.65 1.11(-06) 1.10(-06) 1.21(-05)
310.15 1.19(-06) 1.18(-06) 1.27(-05)
333.25 1.87(-05) 1.85(-05) 1.39(-04) 0.972(-04)±0.03
333.65 1.96(-05) 1.93(-05) 1.45(-04)
342.50 5.08(-05) 5.02(-05) 3.34(-04) 2.12(-04)±0.08
342.85 5.27(-05) 5.21(-05) 3.45(-04)
347.25 8.31(-05) 8.21(-05) 5.15(-04)
347.50 8.52(-05) 8.42(-05) 5.27(-04) 3.34(-04)±0.17
348.20 9.15(-05) 9.04(-05) 5.61(-04)
353.05 1.49(-04) 1.47(-04) 8.62(-04)
353.55 1.56(-04) 1.54(-04) 9.00(-04) 5.02(-04)±0.37
351.50 1.28(-04) 1.26(-04) 7.52(-04)
353.10 1.50(-04) 1.48(-04) 8.65(-04)
358.65 2.56(-04) 2.53(-04) 1.40(-03) 7.91(-04)±0.33
368.20 6.24(-04) 6.16(-04) 3.08(-03)
388.20 3.49(-03) 3.44(-03) 1.44(-02)
400.00 8.88(-03) 8.75(-03) 3.33(-02)

5D

298.00 6.49(-08) 6.43(-08) 3.72(-07)
298.15 6.63(-08) 6.57(-08) 3.79(-07)
300.00 8.63(-08) 8.55(-08) 4.80(-07)
309.65 3.23(-07) 3.20(-07) 1.58(-06)
310.15 3.46(-07) 3.42(-07) 1.67(-06)
333.25 5.91(-06) 5.84(-06) 2.21(-05)
333.65 6.18(-06) 6.12(-06) 2.31(-05) 0.132(-04)±0.0134
342.50 1.65(-05) 1.63(-05) 5.68(-05)
342.85 1.72(-05) 1.70(-05) 5.88(-05) 0.328(-04)±0.096
347.25 2.74(-05) 2.71(-05) 9.06(-05) 0.483(-04)±0.128
347.50 2.82(-05) 2.78(-05) 9.28(-05)
348.20 3.03(-05) 3.00(-05) 9.93(-05)
353.05 5.00(-05) 4.94(-05) 1.58(-04)
353.55 5.26(-05) 5.20(-05) 1.65(-04)
351.50 4.27(-05) 4.22(-05) 1.36(-04)
353.10 5.03(-05) 4.97(-05) 1.58(-04) 0.886(-04)±0.643
358.65 8.76(-05) 8.66(-05) 2.65(-04) 1.29(-04)±0.374
368.20 2.19(-04) 2.17(-04) 6.19(-04)
388.20 1.29(-03) 1.28(-03) 3.23(-03)
400.00 3.38(-03) 3.34(-03) 7.96(-03)
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Table B.3: Calculated η(T ) and experimental ηexp(T ) KIEs for the isomerization reaction of Pre in
gas-phase

T (K) η(T ) ηexp(T )

298.00 8.55
298.15 8.53
300.00 8.38
309.65 7.66
310.15 7.62
333.25 6.29 7.36
333.65 6.27
342.50 5.88 6.46
342.85 5.87
347.25 5.69
347.50 5.68 6.92
348.20 5.65
353.05 5.47
353.55 5.45 5.67
351.50 5.53
353.10 5.47
358.65 5.27 6.13
368.20 4.97
388.20 4.45
400.00 4.19
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Table B.4: Equilibrium constants for isomerization reaction of Pre(d0) in gas-phase

T (K) Keq(T ) Exp.

298.00 8.38
298.15 8.36
300.00 8.15
309.65 7.19
310.15 7.14
333.25 5.42 5.37
333.65 5.39
342.50 4.89 4.53
342.85 4.87
347.25 4.65
347.50 4.64 4.17
348.20 4.60
353.05 4.38
353.55 4.35 3.82
351.50 4.45 3.51
353.10 4.37
358.65 4.13
368.20 3.77
388.20 3.14
400.00 2.84



154 B.2. Tables

Table B.5: Equilibrium constants for isomerization reaction of Pre(d5) in gas-phase

T (K) Keq(T ) Exp.

298.00 9.47
298.15 9.45
300.00 9.22
309.65 8.13
310.15 8.08
333.25 6.15 5.42
333.65 6.12
342.50 5.56 4.66
342.85 5.54
347.25 5.29
347.50 5.28 4.36
348.20 5.24
353.05 4.99
353.55 4.96 3.99
351.50 5.07 3.72
353.10 4.98
358.65 4.72
368.20 4.31
388.20 3.61
400.00 3.27
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Table B.6: Calculated properties (energies in kcal/mol and dihedral angles in degrees) of the stationary points for the isomerization reaction
in n-hexane. The differences in the classical energy (∆E), classical energy plus the zero-point energy (∆E(ZPE)), and in the free energies
(∆Go

310 K.∆Go
333 K) are relative to the Prea(HC,HC)(+)tZ(-)c conformer. The difference in the classical energy ∆E(TS) is relative to the

TSa(HC,HC)(+)cZ(+)c; ω‡ (in cm−1 is the imaginary frequency at the transition state

Structure Structure ∆E ∆E(ZPE) ∆E(TS) ω‡ Φ1 Φ2 Φ3 ∆Go
310 K ∆Go

333 K

Prea(+)(HC,HC) Prea(HC,HC)(+)cZ(+)c 1.26 1.19 58.8 1.9 45.4 0.63 0.58

Prea(HC,HC)(+)cZ(-)c 2.92 3.09 73.3 -0.5 -11.7 2.50 2.45
Prea(HC,HC)(+)tZ(-)c 0.00 0.00 121.9 -7.2 -46.5 0.00 0.00
Prea(HC,HC)(-)tZ(+)c 1.19 1.14 -151.3 10.3 43.4 -0.05 -0.15

Prea(−)(HC,HC) Prea(HC,HC)(-)cZ(-)c 1.70 2.04 -55.8 -2.4 -26.2 2.07 2.08

TSa(−)(HC,HC) TSa(HC,HC)(-)cZ(-)c 29.73 27.44 1.69 1348i -24.3 -20.5 -1.9 28.38 28.50

TSa(+)(HC,HC) TSa(HC,HC)(+)cZ(+)c 28.04 25.50 0.00 1420i 21.6 22.2 3.7 26.46 26.57

Vita(−)(T,CH) Vita(T,CH)Z(-)cE 6.37 6.83 -2.1 -57.0 0.4 7.15 7.20

Vita(+)(CH,CH) Vita(CH,CH)Z(+)cE 2.26 2.66 -0.2 54.2 -0.5 2.74 2.77

Vita(CH,CH)Z(-)tE -1.81 -1.03 1.4 -173.8 1.7 -1.60 -1.62

Prea(+)(HC,TB) Prea(HC,TB)(+)cZ(+)c 6.04 6.18 59.5 2.1 50.7 5.26 5.19

Prea(HC,TB)(+)cZ(-)c 5.34 4.72 97.9 -5.1 -35.9 3.41 3.29
Prea(HC,TB)(+)tZ(-)c 5.61 5.90 130.5 -8.3 -22.4 5.22 5.17
Prea(HC,TB)(-)tZ(+)c 5.81 5.67 -152.8 10.7 43.5 3.44 3.25

Prea(−)(HC,TB) Prea(HC,TB)(-)cZ(-)c 5.75 6.21 -61.0 -2.4 -7.5 6.04 6.03

TSa(−)(HC,TB) TSa(HC,TB)(-)cZ(-)c 29.73 27.40 1.69 1426i -26.6 -18.7 -0.9 28.46 28.59

TSa(+)(HC,TB) TSa(HC,TB)(+)cZ(+)c 31.39 28.85 3.34 1421i 23.7 19.1 2.7 29.70 29.80

Vita(−)(T,T) Vita(T,T)Z(-)cE 9.96 10.86 -4.9 -48.9 2.9 11.18 11.23

Vita(+)(CH,T) Vita(CH,T)Z(+)cE 7.77 7.54 -0.2 68.0 -1.0 6.88 6.83

Vita(CH,T)Z(-)tE 1.84 2.47 1.0 -175.9 2.1 1.89 1.86

Φ1 = C10 − C5 − C6 − C7, Φ2 = C5 − C6 − C7 − C8, Φ3 = C6 − C7 − C8 − C9.
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Table B.6: (cont.)

Structure Structure ∆E ∆E(ZPE) ∆E(TS) ω‡ Φ1 Φ2 Φ3 ∆Go
310 K ∆Go

333 K

Pree(+)(HC,HC) Pree(HC,HC)(+)cZ(+)c 1.70 1.90 53.2 2.3 44.7 1.77 1.76

Pree(HC,HC)(+)cZ(-)c 3.23 3.03 90.0 -2.1 -37.2 2.06 1.97
Pree(HC,HC)(+)tZ(-)c 1.87 1.65 152.7 -10.2 -42.1 0.48 0.37
Pree(HC,HC)(-)tZ(+)c 1.46 1.07 -127.8 6.9 35.0 -0.17 -0.29

Pree(−)(HC,HC) Pree(HC,HC)(-)cZ(-)c 2.80 2.86 -59.1 -0.4 -20.0 2.47 2.44

TSe(−)(HC,HC) TSe(HC,HC)(-)cZ(-)c 30.21 27.52 2.17 1373i -23.2 -21.4 -1.9 28.31 28.40

TSe(+)(HC,HC) TSe(HC,HC)(+)cZ(+)c 28.84 25.98 0.80 1401i 23.7 21.1 3.0 26.21 26.31

Vite(−)(CH,CH) Vite(CH,CH)Z(-)cE 3.11 3.35 -2.8 -58.1 0.7 3.61 3.64

Vite(+)(T,CH) Vite(T,CH)Z(+)cE 8.32 8.19 1.3 53.6 -0.9 7.65 7.61

Vite(HC,CH)Z(-)tE -0.92 -0.54 -2.6 173.9 -3.5 -1.33 -1.39

Pree(+)(HC,TB) Pree(HC,TB)(+)cZ(+)c 6.70 6.68 59.4 1.8 10.5 6.15 6.10

Pree(HC,TB)(+)cZ(-)c 7.21 6.95 81.8 -1.2 -28.4 6.23 6.15
Pree(HC,TB)(+)tZ(-)c 5.96 5.69 133.0 -8.8 -27.3 4.75 4.61
Pree(HC,TB)(-)tZ(+)c 6.65 6.18 -129.6 7.2 33.6 4.05 3.90

Pree(−)(HC,TB) Pree(HC,TB)(-)cZ(-)c 6.91 7.02 -60.6 -3.1 -12.7 6.48 6.43

TSe(−)(HC,TB) TSe(HC,TB)(-)cZ(-)c 30.36 27.97 2.32 1444i -24.8 -19.7 -1.1 28.98 7.19

TSe(+)(HC,TB) TSe(HC,TB)(+)cZ(+)c 31.48 28.94 3.43 1435i 24.6 18.9 2.9 29.77 12.33

Vite(−)(CH,T) Vite(CH,T)Z(-)cE 6.61 7.08 -4.3 -51.8 2.5 7.17 29.10

Vite(+)(T,T) Vite(T,T)Z(+)cE 13.83 13.64 0.4 65.7 -1.0 12.43 29.87

Vite(T,T)Z(-)tE 2.66 2.92 -2.6 172.7 -2.2 2.13 2.07
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Table B.6: (cont.)

Structure Structure ∆E ∆E(ZPE) ∆E(TS) ω‡ Φ1 Φ2 Φ3 ∆Go
310 K ∆Go

333 K

Pree(+)(TB,HC) Pree(TB,HC)(+)cZ(+)c 6.70 6.43 51.4 3.9 43.4 5.20 5.09

Pree(TB,HC)(+)cZ(-)c 6.65 6.15 127.7 -4.2 -41.2 4.39 4.24
Pree(TB,HC)(+)tZ(-)c 5.58 4.96 145.7 -9.2 -39.6 2.75 2.55
Pree(TB,HC)(-)tZ(+)c 9.67 9.74 -163.0 1.5 -85.9 9.29 9.24

Pree(−)(TB,HC) Pree(TB,HC)(-)cZ(-)c 7.59 7.38 -51.1 -3.9 -24.9 6.27 6.18

TS e(−)(TB,HC) TSe(TB,HC)(-)cZ(-)c 31.88 29.55 3.83 1423i -21.5 -22.9 -2.8 30.52 30.64

TSe(+)(TB,HC) TSe(TB,HC)(+)cZ(+)c 29.66 27.21 1.62 1459i 21.9 22.7 4.3 28.11 28.22

Vite(−)(T,CH) Vite(T,CH)Z(-)cE 7.83 8.41 -2.8 -58.5 2.5 8.49 8.51

Vite(+)(T,CH) Vite(T,CH)Z(+)cE 7.64 8.01 5.2 52.7 -2.3 7.71 7.69

Vite(T,CH)Z(-)tE 3.38 3.35 7.2 -169.1 3.6 2.07 1.97

Pree(+)(TB,HB) Pree(TB,TB)(+)cZ(+)c 11.60 10.71 50.9 3.9 46.7 7.92 7.67

Pree(TB,TB)(+)cZ(-)c 12.92 12.12 83.8 -0.4 -34.1 9.54 9.31
Pree(TB,TB)(+)tZ(-)c 10.61 9.99 143.9 -10.2 -25.9 7.51 7.29
Pree(TB,TB)(-)tZ(+)c 10.05 9.76 -144.6 8.5 38.6 8.42 8.29

Pree(−)(TB,HB) Pree(TB,TB)(-)cZ(-)c 11.62 11.73 -52.8 -6.1 -12.5 10.68 10.60

TSe(−)(TB,HB) TSe(TB,TB)(-)cZ(-)c 32.13 29.43 4.08 1448i -22.6 -21.4 -2.3 30.09 30.18

TSe(+)(TB,HB) TSe(TB,TB)(+)cZ(+)c 33.14 30.44 5.10 1434i 23.6 20.1 3.6 30.89 30.96

Vite(−)(T,T) Vite(T,T)Z(-)cE 10.96 11.15 -6.4 -55.1 3.9 10.52 10.48

Vite(+)(T,T) Vite(T,T)Z(+)cE 12.80 12.77 3.9 63.1 -2.2 11.97 11.91

Vite(T,T)Z(-)tE 7.06 7.07 6.6 -169.7 3.4 5.77 5.66
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Table B.6: (cont.)

Structure Structure ∆E ∆E(ZPE) ∆E(TS) ω‡ Φ1 Φ2 Φ3 ∆Go
310 K ∆Go

333 K

Prea(+)(HB,HC) Prea(TB,HC)(+)cZ(+)c

Prea(TB,HC)(+)cZ(-)c
Prea(TB,HC)(+)tZ(-)c
Prea(TB,HC)(-)tZ(+)c

Prea(−)(HB,HC) Prea(TB,HC)(-)cZ(-)c

TSa(−)(HB,HC) TSa(TB,HC)(-)cZ(-)c 29.64 27.29 1.60 1429i -22.9 -21.9 -2.8 28.20 28.32

TSa(+)(HB,HC) TSa(TB,HC)(+)cZ(+)c 28.68 26.30 0.63 1438i 19.9 23.1 4.3 27.30 27.43

Vita(−)(T,CH) Vita(T,CH)Z(-)cE 5.80 6.48 -6.6 -55.7 2.2 6.65 6.69

Vita(+)(T,CH) Vita(T,CH)Z(+)cE 6.38 6.45 1.9 55.5 -2.9 1.25 1.19

Vita(T,CH)Z(-)tE 2.07 2.55 4.1 -168.8 3.3 5.98 5.93

Prea(+)(TB,TB) Prea(TB,TB)(+)cZ(-)c 10.73 10.83 51.9 4.4 11.7 9.76 9.68

Prea(TB,TB)(+)cZ(+)c 9.33 9.51 76.6 1.0 -27.7 9.06 9.02
Prea(TB,TB)(+)tZ(-)c 10.57 10.49 165.1 -10.2 -32.8 9.22 9.10
Prea(TB,TB)(-)tZ(+)c 8.27 8.01 -149.6 9.3 41.2 6.23 6.07

Prea(−)(TB,TB) Prea(TB,TB)(-)cZ(-)c 10.16 10.18 -52.9 -6.3 -11.3 9.08 9.00

TSa(−)(TB,TB) TSa(TB,TB)(-)cZ(-)c 29.89 27.20 1.85 1492i -24.7 -20.1 -1.8 28.17 28.29

TSa(+)(TB,TB) TSa(TB,TB)(+)cZ(+)c 32.00 29.27 3.96 1429i 20.8 21.1 4.2 29.81 29.89

Vita(−)(T,T) Vita(T,T)Z(-)cE 9.08 9.74 -9.9 -50.0 4.4 9.59 9.60

Vita(+)(T,T) Vita(T,T)Z(+)cE 11.19 11.47 0.9 69.2 -2.6 11.11 11.10

Vita(T,T)Z(-)tE 5.76 6.00 3.7 -169.5 3.4 4.66 4.56
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Table B.7: Total rate constants of the isomerization reaction of Pre(d0) and Pre(d5) in n-hexane

T(K) kTST
tot (T ) kVTST

tot (T ) kµOMT
tot (T ) kexp(T )

H

298.00 1.79(-07) 1.77(-07) 2.34(-06)
298.15 1.83(-07) 1.81(-07) 2.38(-06)
300.00 2.36(-07) 2.33(-07) 2.96(-06)
309.65 8.52(-07) 8.44(-07) 8.93(-06)
310.15 9.09(-07) 9.00(-07) 9.44(-06)
333.25 1.44(-05) 1.42(-05) 1.04(-04) 0.972(-04)±0.03
333.65 1.50(-05) 1.49(-05) 1.09(-04)
342.50 3.92(-05) 3.87(-05) 2.52(-04) 2.12(-04)±0.08
342.85 4.06(-05) 4.02(-05) 2.60(-04)
347.25 6.42(-05) 6.34(-05) 3.90(-04)
347.50 6.58(-05) 6.50(-05) 3.99(-04) 3.34(-04)±0.17
348.20 7.07(-05) 6.99(-05) 4.25(-04)
353.05 1.15(-04) 1.14(-04) 6.54(-04)
353.55 1.21(-04) 1.19(-04) 6.83(-04) 5.02(-04)±0.37
351.50 9.86(-05) 9.74(-05) 5.70(-04)
353.10 1.16(-04) 1.14(-04) 6.57(-04)
358.65 1.99(-04) 1.96(-04) 1.06(-03) 7.91(-04)±0.33
368.20 4.85(-04) 4.79(-04) 2.35(-03)
388.20 2.73(-03) 2.69(-03) 1.11(-02)
400.00 6.97(-03) 6.87(-03) 2.59(-02)

5D

298.00 5.01(-08) 4.97(-08) 2.83(-07)
298.15 5.12(-08) 5.08(-08) 2.88(-07)
300.00 6.67(-08) 6.60(-08) 3.65(-07)
309.65 2.50(-07) 2.48(-07) 1.20(-06)
310.15 2.67(-07) 2.65(-07) 1.28(-06)
333.25 4.59(-06) 4.54(-06) 1.70(-05)
333.65 4.80(-06) 4.75(-06) 1.78(-05) 0.132(-04)±0.0134
342.50 1.29(-05) 1.27(-05) 4.39(-05)
342.85 1.34(-05) 1.32(-05) 4.55(-05) 0.328(-04)±0.096
347.25 2.14(-05) 2.11(-05) 7.01(-05) 0.483(-04)±0.128
347.50 2.20(-05) 2.17(-05) 7.18(-05)
348.20 2.36(-05) 2.34(-05) 7.69(-05)
353.05 3.90(-05) 3.86(-05) 1.22(-04)
353.55 4.11(-05) 4.06(-05) 1.28(-04)
351.50 3.33(-05) 3.29(-05) 1.06(-04)
353.10 3.92(-05) 3.88(-05) 1.23(-04) 0.886(-04)±0.643
358.65 6.85(-05) 6.77(-05) 2.06(-04) 1.29(-04)±0.374
368.20 1.72(-04) 1.70(-04) 4.83(-04)
388.20 1.02(-03) 1.01(-03) 2.54(-03)
400.00 2.68(-03) 2.64(-03) 6.28(-03)
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Table B.8: Calculated η(T ) and experimental ηexp(T ) KIEs for the isomerization reaction of Pre in
n-hexane

T (K) η(T ) ηexp(T )

298.00 8.26
298.15 8.24
300.00 8.10
309.65 7.42
310.15 7.39
333.25 6.13 7.36
333.65 6.12
342.50 5.74 6.46
342.85 5.73
347.25 5.56
347.50 5.55 6.92
348.20 5.52
353.05 5.35 5.67
353.55 5.33
351.50 5.40
353.10 5.35 6.13
358.65 5.16
368.20 4.88
388.20 4.37
400.00 4.12
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Table B.9: Equilibrium constants for isomerization reaction of Pre(d0) in n-hexane

T (K) Keq(T ) Exp.

298.00 5.18
298.15 5.17
300.00 5.05
309.65 4.51
310.15 4.48
333.25 3.49 5.37
333.65 3.48
342.50 3.19 4.53
342.85 3.18
347.25 3.04
347.50 3.04 4.17
348.20 3.02
353.05 2.88
353.55 2.87 3.82
351.50 2.92 3.51
353.10 2.88
358.65 2.74
368.20 2.52
388.20 2.14
400.00 1.96
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Table B.10: Equilibrium constants for isomerization reaction of Pre(d5) in n-hexane

T (K) Keq(T ) Exp.

298.00 5.92
298.15 5.91
300.00 5.78
309.65 5.15
310.15 5.13
333.25 4.00 5.42
333.65 3.98
342.50 3.65 4.66
342.85 3.64
347.25 3.49
347.50 3.48 4.36
348.20 3.46
353.05 3.31
353.55 3.29 3.99
351.50 3.36 3.72
353.10 3.31
358.65 3.15
368.20 2.90
388.20 2.47
400.00 2.27
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