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Resumen

El aumento de la esperanza de vida ha conllevado el desarrollo de nuevas tecnoloǵıas

médicas. Técnicas quirúrgicas, más eficientes y menos invasivas, o fármacos de diseño

son ejemplos de gran importancia hoy en d́ıa. Estos avances conducen a nuevas de-

mandas en investigación y, especialmente, a un nuevo perfil profesional que combine

aspectos de ingenieŕıa y medicina para consolidar una nueva disciplina: la Bioingenieŕıa.

La Bioingenieŕıa agrupa campos como la Tecnoloǵıa Biomédica, Biomateriales o

Biomecánica. Centrándonos en esta última, la biomecánica es la aplicación de los

principios de la mecánica a los sistemas vivos. Utilizando las leyes y conceptos de la

f́ısica, los mecanismos y estructuras biomecánicos pueden ser estudiados y simulados.

La biomecánica ayuda a entender el comportamiento de los organismos, la respuesta

de los órganos y tejidos desde el punto de vista mecánico, a predecir cambios debidos a

alteraciones en su entorno y a proponer métodos artificiales de intervención. Por tanto,

el diagnóstico, la ciruǵıa y el diseño de prótesis están directamente relacionados con la

biomecánica.

Muchos investigadores han tratado de estudiar la relación entre la estructura del

hueso y las fuerzas mecánicas que actúan sobre él desde, al menos, el siglo XVII. En

el siglo XIX, se describió la relación entre la forma del hueso y su función. El cirujano

alemán Julius Wolff estableció que no sólo existe una relación entre la estructura del

hueso y las cargas a las que es sometido, sino que además el hueso vivo se adapta

a las alteraciones en estas cargas cambiando su estructura interna. Este proceso es

9



10 Resumen

denominado remodelación ósea y esta afirmación es conocida como la ley de Wolff. La

investigación experimental ha confirmado a lo largo de los años la veracidad de esta

suposición, mostrando que incluso en la edad adulta el hueso puede adaptar su estruc-

tura en respuesta a las cargas a las que está siendo sometido.

El principal objetivo de esta tesis es realizar la simulación numérica y desarrollar

el análisis matemático de algunos modelos de remodelación ósea, con los cuales somos

capaces de predecir el comportamiento del tejido óseo y su capacidad de adaptarse a

las cargas aplicadas. Estos modelos son utilizados habitualmente para predecir la res-

puesta del hueso cuando se implanta una prótesis y se aplican cargas inusuales o para

diseñar mejores implantes cambiando la geometŕıa, el material o incluso la localización.

En lo que sigue, realizamos un resumen de los cuatro caṕıtulos que forman esta

memoria de tesis, resultado de la investigación llevada a cabo durante los últimos cinco

años en el Departamento de Matemática Aplicada de la Universidad de Santiago de

Compostela bajo la dirección de los profesores José Ramón Fernández Garćıa y Juan

Manuel Viaño Rey.

Caṕıtulo 1: El tejido óseo y su comportamiento.

En este caṕıtulo se explica como es la estructura interna de un hueso y como se pro-

duce el proceso de remodelación ósea, centrándonos en aquellos aspectos que serán

relevantes para entender los modelos que se plantean en los siguientes caṕıtulos.

El hueso es un órgano ŕıgido que forma el esqueleto de los vertebrados. Cumple fun-

ciones tan esenciales como proteger los órganos vitales del cuerpo humano o aportar la

estructura necesaria al sistema muscular. Cada hueso tiene una forma diferente y una

compleja estructura interna y externa. Los huesos son livianos aunque muy resistentes

y duros. En su interior podemos encontrar diferentes tejidos, como sangre, nervios,

venas, cart́ılagos, médula ósea o tejido óseo.
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Existen dos clases de tejido óseo: el cortical y el esponjoso. Los dos tejidos tienen

la misma estructura y composición pero el cortical es más denso. Este tejido es el que

recubre los huesos, proporcionándoles un aspecto sólido y continuo.

En el interior del órgano encontramos el hueso esponjoso o trabecular. Este tejido

se caracteriza por tener una densidad muy baja. Consiste en una estructura esponjosa

en cuyos huecos se encuentra la médula ósea y pequeños vasos sangúıneos. El 80% de

la masa ósea de un esqueleto adulto es hueso cortical pero, el volumen que ocupa el

hueso esponjoso es diez veces mayor.

El fluido en el cual se encuentra embolsado el hueso esponjoso está en contacto con

el plasma sangúıneo. En el plasma es donde se encuentran las células óseas, que son

las encargadas de regular las reacciones qúımicas que provocan la adición o pérdida de

masa del hueso trabecular, también denominado matriz ósea.

Dependiendo de la función que realicen, las células pueden ser clasificadas en cuatro

tipos: osteoblastos, osteoclastos, células de borde y osteocitos.

Las células generadoras de hueso son los osteoblastos. Cuando el hueso se está for-

mando rápidamente, como en la infancia o en la cura de una fractura, los osteoblastos

son predominantes y su forma es oval o cúbica. En los adultos encontramos menos

osteoblastos y con una forma alargada.

Las células de borde forman una capa que cubre la superficie de la matriz ósea. Son

osteoblastos inactivos y su forma es plana. Cuando son activados, como respuesta a

algún est́ımulo, se convierten en una capa de osteoblastos.

Los osteocitos son las células óseas más abundantes en el esqueleto adulto, más del
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90%, y su forma es estrellada. Estas células son osteoblastos que se han quedado

atrapados en la matriz ósea que han secretado y tienen la capacidad de secretar o re-

absorber la matriz ósea que las rodea.

Los osteoclastos son las células responsables de la reabsorción del tejido óseo. Cuando

son activados, se agrupan formando células multinucleadas y una vez terminada la ab-

sorción del hueso se dividen en células mononucleadas.

Estos cuatro tipos de células son las responsables de realizar el proceso de remode-

lado óseo. Es un proceso lento que ocurre durante toda la vida del ser humano, aunque

con más rapidez en la infancia. Normalmente, la formación y reabsorción del hueso se

mantienen en equilibrio, conservando la integridad y fuerza del esqueleto. En la reab-

sorción, los osteoclastos erosionan la superficie del hueso trabecular creando pequeñas

cavidades. Después, los osteoblastos reparan la superficie, generando hueso nuevo, y

una capa de células de borde cubren la nueva superficie. La transición entre la actividad

de los osteoblastos y los osteoclastos no es inmediata, en el ser humano puede durar

alrededor de treinta d́ıas, mientras que la fase de creación de hueso necesita alrededor

de 10 d́ıas. En el primer año de vida de un ser humano, casi el 100% del esqueleto es

renovado por este proceso. En los adultos, cada año se renueva alrededor del 10% del

hueso.

Existen dos tipos de remodelación ósea: la interna y la externa. En la remodelación

ósea externa, la forma del hueso cambia, mientras que en la interna se mantiene la

geometŕıa y las propiedades vaŕıan. En esta tesis nos centraremos en el segundo tipo.

Caṕıtulo 2: Un modelo de remodelación ósea en elasticidad adaptativa.

Cuando se intenta estudiar desde el punto de vista mecánico el comportamiento de

un hueso, es imposible modelar la estructura trabecular. Es por ello que se definen

propiedades continuas que nos permiten evitar trabajar con las propiedades reales del

hueso. Esto supone considerar el hueso como un material continuo. Sin embargo,
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cuando lo que nos interesa conocer es el comportamiento del hueso en una zona, y no

en un punto concreto, esta hipótesis no supone ninguna restricción. Habitualmente,

los modelos de remodelación ósea, como los estudiados en esta tesis, incorporan una

función que mide la porosidad de la matriz ósea.

En la primera sección de este caṕıtulo se explica el primer modelo matemático para

un problema de remodelación ósea planteado en 1976 por Cowin y Hegedus (véanse

[15, 46]). Para obtener este modelo se hacen las siguientes hipótesis:

• Las propiedades mecánicas del hueso son esencialmente las mismas que las de la

matriz ósea.

• La porosidad de la matriz ósea cambia con la adición o pérdida de masa. Esta

transferencia de masa ocurre como resultado de una reacción qúımica regulada

por las células óseas.

• Las proporciones de estas reacciones qúımicas dependen de la deformación y

son muy lentas. Se estima que el tiempo caracteŕıstico de estas reacciones es del

orden de meses. Por este motivo el modelo de remodelación ósea será considerado

cuasiestático.

• El hecho de que el hueso esté embolsado en un organismo vivo, se refleja en

el modelo considerando la estructura porosa en un baño de fluido perfusante.

Cuando sea necesario, se asumirá que el baño perfusante es una reserva de calor

isoterma.

• Cuando la porosidad de la matriz ósea cambia, el área de la superficie de contacto

entre la matriz y el perfusante, en el que se encuentran las células óseas, se

modifica. Puesto que no hay una relación directa entre la porosidad y esta área,

se consideran sólo cambios de porosidad y no se introduce el área de la superficie

de contacto como variable del modelo.

Aplicando estas hipótesis, Cowin y Hegedus obtuvieron las ecuaciones de equilibrio

para la masa, el momento y la enerǵıa y la desigualdad de entroṕıa, estableciendo la
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siguiente ley constitutiva para el tensor de tensiones:

σ = (ξ0 + e)C(e)ε(u),

donde ε denota el tensor de deformación y C(e) caracteriza las propiedades mecánicas

del hueso. La función e mide el cambio en la porosidad de la matriz ósea. Esta función

se define como e = ξ − ξ0, donde ξ es la fracción volúmica de material presente en la

matriz ósea y ξ0 es la fracción volúmica de referencia.

Para controlar el proceso de remodelado óseo, Cowin y Hegedus obtuvieron la ecuación

diferencial ordinaria:

ė = a(e) +A(e) : ε(u),

donde a(e) y A(e) son los coeficientes de remodelación. Esta ecuación determina la

tasa de cambio en la porosidad del hueso como una función dependiente de la fracción

volúmica y la deformación.

Cuando la tasa de cambio en la fracción volúmica es cero y la fracción volúmica de

referencia es uno, le ecuación constitutiva para el tensor de tensiones coincide con la ley

de Hooke. Sin embargo, en elasticidad adaptativa los coeficientes de proporcionalidad

entre la tensión y la deformación dependen de la fracción volúmica de material presente

en el hueso.

En la segunda sección de este caṕıtulo se obtiene la formulación variacional de este

problema. Aplicando el método de Euler para discretizar las derivadas temporales y el

método de elementos finitos para aproximar la variable espacial, se obtiene el problema

discretizado. A continuación, se prueba un resultado de estimación de error que, bajo

ciertas condiciones de regularidad adicional, nos permite deducir la convergencia lineal

del esquema. Por último, se describe el algoritmo numérico que hemos utilizado para

resolver el problema discreto, consistente en una ecuación variacional discreta que re-

solvemos aplicando el método de Cholesky y una ecuación en diferencias, y se presentan

algunas simulaciones numéricas en una, dos y tres dimensiones.
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En la tercera sección se supone que el hueso puede entrar en contacto con un sólido

ŕıgido o deformable.

Cuando suponemos que el obstáculo es ŕıgido, se utiliza la condición de Signorini

para modelar su comportamiento, es decir

uν ≤ s, σν ≤ 0, (uν − s)σν = 0,

donde uν denota el desplazamiento normal, σν la tensión normal y s la distancia entre

el hueso y el obstáculo, medida en la dirección de la normal exterior a la frontera del

hueso.

Para modelar el comportamiento del obstáculo deformable hemos utilizado la condi-

ción de respuesta normal; la tensión normal en la frontera del hueso que entra en

contacto con el obstáculo está dada por

−σν = pν(uν − s),

donde la función pν debe ser nula cuando los dos cuerpos no están en contacto.

Tomando

pν(r) =
1

µ
r+,

siendo µ el coeficiente de deformabilidad del obstáculo, se prueba la convergencia de

la solución del problema de contacto con respuesta normal a la solución del problema

de Signorini cuando el coeficiente de deformabilidad tiende a cero.

Aplicando el esquema de Euler para discretizar las derivadas temporales y el método

de los elementos finitos para aproximar la variable espacial, se obtienen los problemas

discretizados y las estimaciones del error que nos permiten establecer la convergencia

lineal del algoritmo. Por último se describe el algoritmo numérico que hemos utilizado

para obtener las simulaciones numéricas en una y dos dimensiones. Este algoritmo

consiste en resolver una ecuación variacional no lineal, en el caso de contacto con un
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sólido deformable, o una inecuación variacional eĺıptica para el problema de Signorini.

Ambas ecuaciones son resueltas aplicando un algoritmo de tipo penalización-dualidad.

Los resultados presentados en este caṕıtulo han sido publicados en [20, 26, 27, 28].

Caṕıtulo 3: Remodelación ósea inducida por un est́ımulo local.

En este caṕıtulo se analiza, desde el punto de vista numérico, el modelo estudiado en

[66] por Weinans, Huiskes y Grootenboer en 1992. Este modelo se basa en el principio

de que la remodelación ósea es inducida por una señal mecánica local que activa las

células reguladoras (osteoblastos y osteoclastos); es decir, el hueso tiene sensores que

detectan el estimulo mecánico y, dependiendo de su magnitud, causan adaptaciones

locales en el hueso. La idea principal de este modelo es utilizar la densidad aparente ρ

como caracterización de la morfoloǵıa interna del hueso.

Weinans et al. consideran el hueso como un material elástico, donde el coeficiente de

Poisson es constante y el módulo de Young depende de la densidad aparente del hueso:

E = Mργ,

donde M y γ son constantes positivas que caracterizan las propiedades mecánicas del

hueso.

En el modelo considerado en el caṕıtulo anterior, el cambio en la densidad ósea

se reǵıa por las desviaciones producidas en el tensor de deformación. Sin embargo,

las ideas de Wolff implicaban que la remodelación no sólo se produćıa en respuesta

a la deformación y, por ello, en este modelo se considera como est́ımulo mecánico la

densidad de enerǵıa de deformación:

U(σ(u), ε(u)) =
1

2
σ(u) : ε(u).
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Puesto que el hueso trabecular es una estructura porosa, la densidad de enerǵıa de

deformación para la matriz ósea es aproximada por U/ρ, que representa la enerǵıa de

deformación por unidad de masa. Por lo tanto, la variación en la densidad aparente

del hueso viene determinada por la siguiente ecuación diferencial ordinaria de primer

orden, no lineal:

ρ̇ = B

(
U(σ(u), ε(u))

ρ
− Sr

)
, ρa ≤ ρ ≤ ρb,

donde B y Sr son constantes que regulan el proceso de remodelación ósea. Además,

se impone que los valores de la densidad aparente no sobrepasen el valor ρb, corres-

pondiente a la densidad del hueso cortical, ni sean menores que la densidad mı́nima

permitida, ρa, correspondiente al hueso reabsorbido. Esta ecuación implica que en

los puntos en los cuales la densidad alcanza el valor máximo o mı́nimo, el proceso de

remodelación se detiene. En los otros puntos, el sistema está en equilibrio cuando el

est́ımulo alcanza el valor de referencia Sr.

La formulación variacional de este modelo consiste en una ecuación variacional para

el cálculo del campo de desplazamientos, y una inecuación variacional para el cálculo

de la densidad ósea. Esta inecuación se obtiene haciendo uso de las propiedades de la

subdiferencial de la función indicatriz del intervalo [ρa, ρb], lo que nos permite garanti-

zar que la solución que buscamos pertenece al intervalo.

Una vez obtenida la formulación variacional del problema, aplicando el esquema de

Euler y el método de los elementos finitos hemos obtenido un problema discretizado

y las estimaciones del error para el campo de desplazamientos y la densidad ósea.

Además, bajo ciertas hipótesis adicionales de regularidad, hemos obtenido la conver-

gencia lineal del algoritmo propuesto. Por último, se describe el algoritmo numérico

que ha sido implementado y se muestran las simulaciones numéricas realizadas en una

y dos dimensiones. La ecuación variacional para obtener el campo de desplazamientos

la resolvemos aplicando el método de Cholesky y la inecuación variacional para cal-
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cular la densidad ósea mediante el algoritmo de tipo penalización-dualidad utilizado

en el caṕıtulo anterior. La principal ventaja del método propuesto es que nos permite

obtener el campo de desplazamientos y la densidad ósea resolviendo dos problemas

desacoplados.

Los resultados correspondientes a este caṕıtulo pueden ser consultados en [23].

Caṕıtulo 4: Un modelo de remodelación ósea en piezoelectricidad.

Es un hecho aceptado en remodelación ósea que el hueso adapta su estructura interna

a las cargas mecánicas a las que está sujeto. Como ya hemos comentado, este proceso

de adaptación es realizado por las células óseas. Sin embargo, no está claro como estas

células son capaces de controlar la reabsorción y formación de hueso en función de las

condiciones mecánicas.

Fukada y Yasuda probaron en 1957 que el hueso es un material piezoeléctrico en

el sentido clásico, es decir, las cargas mecánicas aplicadas produćıan una polarización

en el hueso. Además, poco después se verificó el efecto inverso: la aplicación de un

potencial eléctrico produćıa una deformación (véanse [38, 39]). Desde entonces, las

propiedades eléctricas de los huesos han sido ampliamente estudiadas y se cree que las

señales eléctricas en el tejido óseo juegan un papel importante en el proceso de remo-

delado óseo (véanse [2, 42, 43]). Sin embargo, apenas existen modelos matemáticos

que justifiquen la remodelación ósea basada en el efecto piezoeléctrico ([61, 62, 63]).

En este caṕıtulo se propone utilizar el modelo analizado en el caṕıtulo anterior para

caracterizar las propiedades elásticas del hueso y considerar las leyes constitutivas

clásicas para materiales piezoeléctricos, con una pequeña variación en su acoplamiento.

Para regular la relación entre el campo eléctrico y el mecánico se introduce la función

α(ρ) = ργ dependiente de la densidad ósea. Esta función garantiza que el campo

eléctrico aumenta con la densidad del hueso. Por tanto, las ecuaciones constitutivas
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que consideraremos para el tensor de tensiones σ y el desplazamiento eléctrico D son

las siguientes:

σ = 2 µ(ρ)ε(u) + λ(ρ)Div (u)I − α(ρ)E∗E(ϕ),

D = Dε + DE = α(ρ)Eε(u) + α(ρ)βE(ϕ),

donde E(ϕ) = (Ei(ϕ))d
i=1 es el campo eléctrico, E∗ = (e∗ijk)

d
i,j,k=1 denota el adjunto del

tensor piezoeléctrico E = (eijk)
d
i,j,k=1 y β es el tensor de permitividad eléctrica.

Siguiendo los trabajos de Gjelsvik (véanse [42, 43]) trataremos de demostrar que el

modelo propuesto predice la formación y reabsorción de hueso, y que esta está regulada

por los valores del desplamiento eléctrico debidos a las cargas mecánicas (Dε).

El problema variacional para el modelo propuesto se escribe como un sistema acoplado

formado por dos ecuaciones variacionales no lineales para el campo de desplazamientos

y el potencial eléctrico y una inecuación variacional parabólica no lineal para la densi-

dad aparente.

Una vez obtenida la formulación variacional, aplicando el método de los elementos

finitos para aproximar la variable espacial y el esquema de Euler expĺıcito para dis-

cretizar la variable temporal, obtenemos un esquema discretizado y las estimaciones del

error para el campo de desplazamientos, el potencial eléctrico y la densidad aparente.

Además, bajo ciertas condiciones de regularidad adicional, deducimos la convergencia

lineal del algoritmo. Por último, se describe el algoritmo utilizado para resolver el

esquema discretizado. En este algoritmo se resuelve el sistema formado por las ecua-

ciones variacionales lineales para el campo de desplazamientos y el potencial eléctrico.

Este problema se escribe como un sistema lineal cuya matriz no es simétrica y, por ello,

lo resolvemos aplicando la factorización LU a la matriz del sistema. A continuación,

se resuelve la inecuación variacional para obtener la densidad aparente aplicando un

algoritmo de tipo penalización dualidad. Por último, se presentan algunas simulaciones
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numéricas en una, dos y tres dimensiones.

Conclusiones.

A lo largo de esta tesis se han presentado distintos modelos de remodelación ósea y

se han realizado simulaciones numéricas utilizando el método de los elementos finitos

para mostrar su comportamiento.

Los dos primeros modelos, estudiados en los caṕıtulos dos y tres, tienen como carac-

teŕıstica principal el considerar el hueso como un material elástico. Se ha realizado el

análisis numérico de estos dos modelos clásicos y se han propuesto algoritmos numéricos

para su resolución. Además se han implementado estos algoritmos en una, dos y tres

dimensiones.

En el último caṕıtulo de la tesis, se propone un modelo en el que el hueso es modelado

como un material piezoeléctrico. Hemos realizado el análisis numérico y propuesto un

algoritmo para su resolución que hemos implementado en una, dos y tres dimensiones,

mostrando que los resultados numéricos son acordes con las teoŕıas de otros autores.

En todos los modelos estudiados, la existencia y unicidad de solución para el proble-

ma variacional es un problema abierto. Si bien es cierto que existen resultados para

problemas similares, en lo que respecta al modelo de Cowin y Hegedus, las condiciones

de regularidad necesarias son muy restrictivas. Otros trabajos más recientes abordan

este estudio para el modelo propuesto por Weinans, Huiskes y Grootemboer, obte-

niendo el resultado de existencia y unicidad de solución para un problema regularizado.
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Summary

The increase in life expectancy causes the medical technologies development. The

new technical surgery, more efficient and less invading, as laser surgery, and designed

medicines are examples of great importance nowadays. These advances lead to new

demands in research and, specially, a new professional profile, combining medical and

engineering aspects to consolidate a new discipline: the Bioengineering.

Bioengineering gathers fields like Biomedical technology, Biomaterials or Biome-

chanics. We focus our attention in the last one: Biomechanics is the application of

mechanical principles to living organisms. By using the laws and concepts of physics,

biomechanical mechanisms and structures can be simulated and studied. Biomecha-

nics helps to understand how the organism works, to characterize the behavior of alive

organs and tissues from the mechanical point of view, to predict the changes that are

due to alterations and to propose artificial intervention methods. Hence, diagnosis,

surgery and prothesis design are directly related to Biomechanics.

Investigators have been studying the relationship between the structure of the bone

and mechanical forces since at least the seventeenth century. In the nineteenth cen-

tury, a number of authors described the relationships between the form and function

of bones in greater detail, and Julius Wolff made the critical observation that not only

there is a clear relationship between bone structure and loading but also living bone

adapts to alterations in loads by changing its structure in accordance to mathematical

laws. This is called bone remodeling. Experimental research verifies the existence of

23
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Wolff’s law, showing that as consequence of bone remodeling the bone can adapt its

structure to changes in the loads even in the adult age.

The main objective in this Ph.D. Thesis is to perform the numerical simulation and

to develop the mathematical analysis of some bone remodeling models, which are able

to predict the behavior of bone tissue and its capacity to adapt itself to applied loads.

These models are used to predict the response of the bone when a prothesis is im-

planted, unusual loads are applied or to design better implants changing the geometry,

the material or even the location.

In the following, we summarize the four chapters that comprise this Ph.D. Thesis.

This work has been developed during the last five years in the Department of Applied

Mathematics Universidad de Santiago de Compostela under the supervision of Profe-

ssors José Ramón Fernández Garćıa and Juan Manuel Viaño Rey.

Chapter 1: The bone tissue and its behavior.

In this chapter we explain how is the internal morphology of a bone and what is the

bone remodeling. We will focus our attention in those components that are the res-

ponsible of regulating the process, to understand the bone remodeling models that we

introduce in the next chapters.

Bones are rigid organs that form the skeleton of vertebrates. They are the respon-

sible of vital functions as to protect the organs of the body or to provide a frame to

keep the body supported. Each bone has a different shape and a complex internal and

external structure. Although they are lightweight, they are strong and hard. Making

the bone up, we can find different tissues like marrow, endosteum and periosteum,

nerves, blood vessels, cartilage and bone tissue.

There are two major classes of bone tissue: cancellous and cortical bone. Both have
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the same structure and composition, but cortical bone is more dense. This tissue gives

bones their smooth, white and solid appearance.

Filling the interior of the organ is the trabecular bone. It is a type of osseous tissue

with a low density and strength but very high surface area, that fills the inner cavity

of long bones. It consists of a network of hard, interconnected filaments interspersed

with marrow and a large number of small blood vessels. It accounts for the 20% of

total bone mass, but it has nearly ten times the surface area of compact bone.

The bone matrix (also called spongy, cancellous or trabecullar bone) is encased in

the extracellular fluid, which is always in contact with the blood plasma. Within the

plasma we can find the bone cells, which are responsible for regulating the chemical

reactions which imply the addition or loss of bone mass, causing a change in the poro-

sity of bone matrix.

The bone cells can be classified in four types, depending on their function: os-

teoblasts, osteoclasts, bone lining cells and osteocytes.

The bone generating cells are the osteoblasts. When the bone is forming quickly,

like in the growth or in the cure of a fracture, the osteoblasts are predominant and

their shape is oval or cubic. In adult bones we can find less osteoblasts and with an

elongated or flat shape.

Bone lining cells form a thin layer which covers all of the available bone surface

on the bone matrix. They are essentially inactive osteoblasts and their form is plane.

Usually they are inactive waiting to be stimulated and to become a layer of osteoblasts.

Osteocytes are the most abundant cells found in adult skeleton, more than 90%. An

osteocyte is a star-shaped cell. When osteoblasts become trapped in the matrix they
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secrete, they become osteocytes.

An osteoclast is the bone cell that removes bone tissue. When osteoclasts are stimu-

lated they merge together and form big osteoclasts with several nuclei. Once they

complete the absorption, they are divided into mono nuclei cells and in the future they

can be stimulated forming new multinucleated osteoclasts.

The bone cells are the responsible of develop the bone remodeling process. Bone

remodeling is a slow, lifelong process in which old bone is removed from the skeleton

and new bone is added. Usually, the removal and formation of bone are in balance and

maintain skeletal strength and integrity. During the resorption, the osteoclasts break

down bone to create small cavities in the surface of the bone matrix. Then, osteoblasts

repair the surface generating new bone and finally, the bone surface is covered by a

layer of lining cells which protect the new surface. The transition between the acti-

vity of osteoblasts and osteoclasts is not immediate, in the human being this time is

approximately 30 days. The activity of osteoclasts takes around 10 days. In the first

year of life, almost 100% of the skeleton is replaced. In adults, remodeling proceeds at

about 10% per year.

There are two kinds of bone remodeling: external, in which the geometry of the bone

changes along the time, and internal, in which the properties of the bone change with-

out modifying its form. In this thesis we will focus on the second one.

Chapter 2: A strain adaptive bone remodeling model.

When we try to study, from the mechanical point of view, the structure of a bone it

is impossible to model each trabecular structure. Because of that, we need to define

continuous properties and to avoid using real properties of bone tissue. This implies

to consider bone tissue as a continuum material. This hypothesis is justified because

we are interested on the bone response in a large enough area to obtain results about
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the properties of this area. Most bone remodeling theories are exposed in a similar

way, by using a continuous formulation. In fact, almost all models characterize the

surrounding of a point employing the apparent density, which is a mean value of the

real density in that point.

In the first section of this chapter, we introduce a bone remodeling model proposed

by Cowin and Hegedus in 1976 (see [15, 46]). To obtain this model, they make the

following assumptions:

• The mechanical properties of the whole bone are essentially the same as the bone

matrix.

• The porosity of the bone matrix is changed by the addition or the removal of

mass from the bone matrix. This mass transfer occurs as a result of a chemical

reaction which is mediated by the bone cells.

• The rates of these chemical reactions depend upon the strain and are very slow

(on the order of months). This justifies that the bone remodeling process is

considered quasistatic.

• The fact that living bone matrix is encased in a living organism is reflected in

the model by setting the porous structure in a bath of perfusant. We will assume

the perfusant bath to be an isothermal heat reservoir.

• As the porosity of the bone matrix changes, the area of the interface between the

porous structure and the fluid will also in general change. There is not a direct

relation between the porosity and the area of the interface. We will consider that

only porosity changes and we will not introduce the area of the interface into the

model as a variable.

Applying these hypotheses, Cowin and Hegedus obtained the equilibrium equations

for mass, momentum and energy and the entropy inequality, establishing the following
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constitutive law for the stress tensor:

σ = (ξ0 + e)C(e)ε(u),

where ε denotes the strain tensor and C(e) characterizes the mechanical properties of

the bone. The function e measures the change in the porosity of the bone and it is

defined as e = ξ − ξ0, where ξ is the volume fraction of material present in the bone

and ξ0 is a volume fraction of reference.

In order to control the bone remodeling process, Cowin and Hegedus obtained a

first-order ordinary differential equation:

ė = a(e) +A(e) : ε(u),

where a(e) and A(e) are the remodeling coefficients dependent upon the change in

volume fraction of the adaptive elastic material from the reference volume fraction.

This remodeling rate equation specifies the rate of change of the volume fraction as a

function of the volume fraction and strain.

When the change in volume fraction vanishes and the reference volume fraction is

one, the constitutive equation for the stress tensor coincides with the classical Hooke’s

law. In the theory of adaptive elasticity, however, the coefficients of proportionality

between stress and strain depend upon the volume fraction of elastic material.

In the second section of this chapter, we obtain a variational formulation for this

problem. Applying the Euler scheme to discretize the time derivatives and the finite

element method to approximate the spatial variable, we obtain a fully discrete scheme.

Next, we prove a main error estimates result and, under suitable regularity conditions,

we deduce the linear convergence of the algorithm. Finally, we describe a numerical

algorithm to solve the discrete problem and we perform some numerical simulations in

one, two and three dimensions.
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In the third section, we assume that the bone can come into contact with a rigid or

deformable obstacle.

When we assume that the contact is produced with a rigid obstacle the classical

Signorini contact conditions are employed; that is,

uν ≤ s, σν ≤ 0, (uν − s)σν = 0,

where uν denotes the normal displacement, σν the normal stress and s the distance

between the bone and the obstacle, measured along the outward unit normal vector ν.

When we assume that the contact is produced with a deformable obstacle, the well-

known normal compliance contact condition is employed; that is, the normal stress on

the part of the boundary that can come into contact with the obstacle is given by

−σν = pν(uν − s),

where the function pν must be zero if the two bodies are in contact. As an example,

one may consider

pν(r) =
1

µ
r+,

where µ is a deformability constant. We establish the convergence of the solution to the

contact problem with a deformable obstacle, when the deformability coefficient tends

to zero, to the solution to the Signorini’s problem.

Applying the Euler scheme to discretize the time derivatives and the finite element

method to approximate the spatial variable, we obtain the variational formulations and

some error estimates results. Finally, the linear convergence of the proposed algorithm

is deduced and numerical simulations in one and two dimensions are performed. This

algorithm consists in solving a nonlinear variational equation, for the problem with a

deformable obstacle, or an elliptic variational inequality for the Signorini’s problem.

Both equations are solved with a penalty-duality algorithm.
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The results presented in this chapter have been recently published in [20, 26, 27, 28].

Chapter 3: Bone remodeling induced by a local stimulus.

In this chapter we analyze, from the numerical point of view, the model studied in [66]

by Weinans, Huiskes and Grootenboer in 1992. This model is based on the principle

that bone remodeling is induced by a local mechanical signal which activates the regu-

lating cells (osteoblasts and osteoclasts); that is, the bone has sensors, which can detect

a mechanical stimulus, and, depending on its magnitude, cause local bone adaptations.

The main idea of this model is to use the apparent density as the characterization of

the internal morphology.

Weinans et al. consider the bone as an elastic material, in which the Poisson’s

modulus and Young’s ratio depend on the apparent density:

E = Mργ,

where M and γ are positive constants which characterize the bone behavior.

In the previous chapter it was assumed a relationship in which the adaptation of

the bone was coupled directly to deviations of the strain tensor. However, the original

ideas of Wolff implied more issues than just this notion of bone remodeling due to

deviations in its normal stress environment. Hence, in this model, they consider as

mechanical stimulus the Strain Energy Deformation:

U(σ(u), ε(u)) =
1

2
σ(u) : ε(u).

The strain energy deformation is approximated by U/ρ, which represents the strain

energy per unit of bone mass. Hence, the variation in the bone density is given by the
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following nonlinear first-order ordinary differential equation:

ρ̇ = B

(
U(σ(u), ε(u))

ρ
− Sr

)
, ρa ≤ ρ ≤ ρb,

where B and Sr are constants that regulate the bone remodeling process. Moreover,

the bone density can not exceed the value ρb, corresponding to the density of the corti-

cal bone, or being smaller than the minimal density allowed, ρa, corresponding to the

reabsorved bone. This equation means that the points in which the density reaches

the minimum or maximum value, the remodeling process stops. On the other points,

the system is in equilibrium when the stimulus reaches the reference value Sr.

The variational formulation of this model consists in a variational equation for the

displacement field and a variational inequality for the bone density. This equation is

obtained applying the properties of the subdiferential of the indicator function of the

interval [ρa, ρb], which guarantees that the solution belongs to the interval

Applying the Euler scheme and the finite element method we obtain a discrete pro-

blem and the error estimates for the displacement field and the bone density. Moreover,

under suitable regularity assumptions, the linear convergence of the algorithm is es-

tablished. Finally, we describe the numerical algorithm which is implemented and

show the numerical simulations performed in one and two dimensions. The variational

equation for the displacement field is solved applying the Cholesky method and the

variational inequality for the bone density by using the penalty-duality algorithm al-

ready used in the previous chapter. The main advantage of this algorithm is to obtain

the displacement field and the bone density solving two uncoupled problems.

The results corresponding to this chapter have been published in [23].



32 Summary

Chapter 4: A piezoelectric bone remodeling model.

It is widely accepted in bone remodeling that the bone adapts its internal structure to

the mechanical loads and this adaptation process is developed by the bone cells. How-

ever, it is unclear how actuator cells, osteoclasts and osteoblasts, are able to control

bone resorption and formation as a function of mechanical conditions.

Fukada and Yasuda showed in 1957 that dry bone is piezoelectric in the classic sense,

that is, mechanical stress produces polarization (direct effect) and application of an

electric field produces strain (converse effect) (see [38, 39]). Since then, the electrical

properties of bone tissue have been widely investigated. It is believed that electric sig-

nals play an important role in the bone remodeling process (see [2, 42, 43]). However,

it has not been normally used to understand bone remodeling and, currently, there

are not many models that justify bone remodeling based on bone piezoelectricity (see

[61, 62, 63]).

In this chapter, our aim is to use the bone remodeling model analyzed in the previ-

ous chapter to characterize the elastic properties of the bone and extend the classical

electro-mechanical dependence adding a function α(ρ) = ργ which regulates the cou-

pling between the mechanical and electric field. This function guarantees that the

electric field increases with the density of the bone. Hence, as a first approach, the

constitutive law for the stress tensor σ and the electric displacement D are the follo-

wing:

σ = 2 µ(ρ)ε(u) + λ(ρ)Div (u)I − α(ρ)E∗E(ϕ),

D = Dε + DE = α(ρ)Eε(u) + α(ρ)βE(ϕ),

where E(ϕ) = (Ei(ϕ))d
i=1 is the electric field, E∗ = (e∗ijk)

d
i,j,k=1 represents the transpose

of the third-order piezoelectric tensor E = (eijk)
d
i,j,k=1 and β is the electric permittivity

tensor.
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Following the works of Gjelsvik (see [42, 43]) we try to numerically show that bone

formation and resorption may be related to electrical charges in the bone surfaces due

to contributions produced by mechanical loading (Dε).

The variational problem for the proposed model is written as a coupled system of two

nonlinear variational equations for the displacement and the electric potential fields,

and a parabolic variational inequality for the apparent density.

Then, applying the finite element method to approximate the spatial variable and

the Euler scheme to discretize the time derivatives, we obtain a discrete scheme and

error estimates for the displacement field, the electric potential field and the apparent

density. Moreover, under suitable regularity conditions, we deduce the linear conver-

gence of the algorithm. Finally, we describe the algorithm applied to solve the discrete

scheme. In this algorithm the system composed by the linear variational equations for

the displacement field and the electric potential field is solved. This problem is written

as a linear system which matrix is not symmetric. Hence, we solve it using the LU

factorization. Then, the variational inequality to obtain the apparent density is solved

applying a penalty-duality algorithm. Finally, we perform some numerical simulations

in one, two and three dimensions.

Conclusions.

In the course of this Ph.D. thesis we studied several bone remodeling models and

numerical simulations have been performed to show its behavior.

The first two models, studied in chapters two and three, have in common to con-

sider the bone as an elastic material. We have developed the numerical analysis of

these classical models and numerical algorithms have been proposed to their resolution.

Moreover, these algorithms have been implemented in one, two and three dimensions.

In the last chapter, we proposed a new bone remodeling model in which we consi-
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dered the bone as an piezoelectric material. We developed the numerical analysis, we

proposed an algorithm to its resolution and we have implemented this algorithm in

one, two and three dimensions, showing that the numerical results are according to the

theories proposed by other authors.

The existence and uniqueness of weak solutions for the discrete problems were ob-

tained by using classical results on linear variational equations or elliptic variational

inequalities. However, we remark that the existence and uniqueness results of weak

solutions for the continuous variational formulations are open problems. In the Cowin

and Hegedus model, this result was obtained for a similar variational formulation in

which stronger assumptions were made over the data. Recently, Fernández and Kut-

tler dealt with the model proposed by Weinans, Huiskes and Grootenboer obtaining

an existence and uniqueness result for a regularized problem.
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Introduction

The increase in life expectancy causes the medical technologies development. The

new technical surgery more efficient and less invading, as laser surgery, and designed

medicines are examples of great importance nowadays. These advances lead to new

demands in research and, specially, a new professional profile, combining medical and

engineering aspects to consolidate a new discipline: the Bioengineering.

Bioengineering is the application of engineering principles to the full spectrum of li-

ving systems. This is achieved using existing methodologies in such fields as molecular

biology, biochemistry, microbiology, pharmacology, immunology or neuroscience and

applying them to the design of medical devices, diagnostic equipment, biocompatible

materials and other important medical needs.

Bioengineering gathers fields like Biomedical technology, Biomaterials or Biomecha-

nics. We focus our attention in the last one: Biomechanics is the application of me-

chanical principles to living organisms. By applying the laws and concepts of physics,

biomechanical mechanisms and structures can be simulated and studied.

Biomechanics helps to understand how the organism works, to characterize the be-

havior of alive organs and tissues from the mechanical point of view, to predict the

changes that are due to alterations and to propose artificial intervention methods.

Hence, diagnosis, surgery and prothesis design are directly related to biomechanics.
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Investigators have been studying the relationship between the structure of the bone

and mechanical forces since at least the seventeenth century. In the nineteenth century,

a number of authors described the relationships between the form and function of bones

in greater detail, and Julius Wolff made the critical observation that not only there is

a clear relationship between bone structure and loading but also living bone adapts to

alterations in loads by changing its structure in accordance with mathematical laws.

This is called bone remodeling. Experimental research verifies the existence of Wolff’s

law, showing that as consequence of bone remodeling the bone can adapt its structure

to changes in the loads even in the adult age.

The main objective in this Ph.D. Thesis is to perform the numerical simulation and

to develop the mathematical analysis of some bone remodeling models, which are able

to predict the behavior of bone tissue and its capacity to adapt itself to applied loads.

These models are used to predict the response of the bone when a prothesis is im-

planted, unusual loads are applied or to design better implants changing the geometry,

the material or even the location.

This work is structured as follows. In the first Chapter, in order to understand the

mathematical models that we analyze in this thesis, we explain how is the internal

structure of a bone and how a bone remodeling process occurs, and we make a brief

introduction to the models considered.

In Chapter 2 we study the first continuous mathematical formulation of a bone re-

modeling process already considered by Cowin et al (see [15, 16, 46]). We propose and

analyze a numerical method to solve the model and perform some numerical simula-

tions. In the second part of this chapter, we assume that the bone is in contact with

an obstacle, which can be deformable or rigid. We numerically study both problems

and establish a convergence result. Finally, we perform some numerical simulations in

one, two and three dimensions.



Introduction 37

In Chapter 3 we analyze, from the numerical point of view, the model proposed by

Weinans, Huiskes and Grootenboer (see [66]). The main characteristic of this model

is that, in spite of considering the bone as an isotropic material and model its beha-

vior with a continuous formulation, we can predict the discontinuities in the internal

morphology of the bone. We propose an algorithm to solve it, we analyze it and we

perform some numerical simulations.

In Chapter 4 we propose a bone remodeling model in which the bone is considered

as a piezoelectric material and a numerical method to solve it. We provide its nume-

rical analysis and we perform some numerical simulations which demonstrate that its

behavior is in agreement with the theoretical knowledge about bone remodeling.
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Chapter 1

The bone tissue and its behavior

In this chapter we explain how is the internal morphology of a bone, the different tis-

sues that make up these organs and how they work (see [10], [11] and [41]). In order

to understand the bone remodeling models that we introduce in the next chapters, we

will focus our attention in those components that are the responsible of regulating the

bone remodeling process.

1.1 Bone morphology

Bones are rigid organs that form the skeleton of vertebrates. Their function is to move,

to support, and to protect the organs of the body, to produce red and white blood cells

and to store minerals. Each bone has a different shape and a complex internal and

external structure. Although they are lightweight, they are strong and hard. Making

the bone up, we can find different tissues like marrow, endosteum and periosteum,

nerves, blood vessels, cartilage and bone tissue.

Bones have several essential functions:

• Some bones protect internal organs, such as the skull protects the brain or the

ribs protect the heart and lungs.

• They provide a frame to keep the body supported.
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• Bones, skeletal muscles, tendons, ligaments and joints function together to gene-

rate and to transfer forces so that individual body parts or the whole body can

be manipulated.

• They are important in the mechanical aspect of hearing.

• The marrow, located within the medullary cavity of long bones and interstices of

cancellous bone, produces blood cells.

• Bones act as reserve of minerals important for the body, most notably calcium

and phosphorus.

Bone tissue is an alive tissue which consist of three basic components: the bone cells,

extracellular fluid and the solid extracellular material which is called the bone matrix.

The bone matrix is a solid structure with interconnected pores (see Figure 1.1). This

bone matrix (also called spongy, cancellous or trabecullar bone) is encased in the ex-

tracellular fluid, which is always in contact with the blood plasma. Within the plasma

we can find the bone cells, which are the responsible of regulating the chemical reac-

tions which cause the addition or loss of bone mass, causing a change in the porosity

of bone matrix. These cells, which we describe in the following with more detail, are

osteoblasts, osteoclasts and osteocytes. Wrapping the bone matrix is the cortical or

compact bone. This bone tissue provides the bone its smooth and solid appearance.

Attending to its shape we can classify the bones in three types: long, short and flat.

• The long bones are those that are longer than they are wide, and grow primarily

by elongation of the diaphysis, with an epiphysis at the ends of the growing bone

(see Figure 1.2). The ends of epiphyses are covered with a hyaline cartilage.

The long bones include the femurs, tibias, the humeri, radii, metacarpals and

metatarsals of the hands and feet, and the phalanges of the fingers and toes.

Additionally, the outer shell of the long bone is compact bone. The interior part

of the long bone is the medullary cavity with the inner core of the bone cavity

being composed (in adults) of yellow marrow.
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Figure 1.1: Bone matrix.

Figure 1.2: Anatomy of a long bone.

• Short bones are defined as being approximately as wide as they are tall. These

consist of cancellous tissue enclosed within a thin layer of compact bone. To this

group belong the carpals (bones of hands and wrists) and tarsus (bones of feet

and ankles).

• Flat bones are those bones which are found where the principal requirement

is either extensive protection or the provision of broad surfaces for muscular

attachment, the bones are expanded into broad, flat plates, as in the skull, the
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pelvis, sternum, rib cage, and the scapula. These bones are composed of two thin

layers of compact tissue enclosing between them a variable quantity of cancellous

tissue, which is the location of red bone marrow.

As we said previously, there are two major classes of bone tissue which significantly

contribute to the structural strength of the skeletal system. They are called cancellous

and cortical bone. Both of them have the same structure and composition, but cortical

bone is more dense (see Figure 1.3).

Figure 1.3: Compact and cancellous bone.

The hard outer layer of bones is composed of cortical or compact bone tissue, so-

called due to its minimal gaps and spaces. This tissue gives bones their smooth, white

and solid appearance, and accounts for 80% of the total bone mass of an adult skele-

ton. It is extremely hard, formed of multiple stacked layers with few gaps and its blood

vessels are microscopically small. Its main function is to support the body, to protect

organs and to store minerals.
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Filling the interior of the organ is the trabecular bone. It is a type of osseous tissue

with a low density and strength but very high surface area, that fills the inner cavity

of long bones. It consists of a network of hard, interconnected filaments interspersed

with marrow and a large number of small blood vessels. This tissue runs mostly pa-

rallel to the long axis of the bone. The blood vessels lie in their own channels called

Haversian canals and bone is concentrically layered around each canal. Collectively,

the concentric layers of bone and the canal form a unit called a Haversian system or

osteon (see Figure 1.4). Between each concentric layer, or lamellae, a ring of dark ellip-

tical spots called lacunae is present where, normally, osteocytes are embedded. The

canaliculi are small channels that interconnect adjacent osteocytes. Each lamellae is

composed of collagen fibers with a high directionality. The fibers and adjoint lamellas

goes in different directions. The fibers of collagen are normally interconnected between

them and with other lamellas, increasing the resistance of the bone. Cancellous bone

is also where most of the arteries and veins of bone organs are found. It accounts for

the remaining 20% of total bone mass, but it has nearly ten times the surface area of

compact bone.

Periosteum is a membrane that lines the outer surface of all bones, except at the

joints of long bones. The cells that are in periosteum are able to remove or create

bone tissue as response to stimulus. The periosteum consist in two layers: the internal

layer contains cells that can become in osteoblast and the external one contains less

cells and more collagen. Periosteum is attached to bone by strong collagenous fibers.

It also provides an attachment for muscles and tendons.

The endosteum is a thin layer of connective tissue which lines the surface of the

bone tissue that forms the medullary cavity of long bones. This endosteal surface is

usually resorbed during long periods of malnutrition resulting in less cortical thickness.

To develop the several functions of a bone, the bone cells show different morphology,

function and location. There are four kinds of cells: osteoblast, osteoclast, bone lining
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Figure 1.4: Osteon or Haversian system.

cells and osteocytes.

The bone generating cells are the osteoblasts (see Figure 1.5). Their main function

is to synthesize and to secrete the bone matrix. When the bone is forming quickly,

like in the growth or in the cure of a fracture, the osteoblasts are predominant and

their shape is oval or cubic. In adult bones we can find less osteoblasts and with an

elongated or flat shape.

Bone lining cells form a thin layer which cover all of the available bone surface (see

Figure 1.6). They are essentially inactive osteoblasts. Its form is plane. Usually they

are inactive waiting to be stimulated and to become a layer of osteoblasts.
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Osteocytes are the most abundant cells found in adult skeleton, more than 90%.

An osteocyte is a star-shaped cell. When osteoblasts become trapped in the matrix

they secrete, they become osteocytes. Osteocytes are networked to each other via long

cytoplasmic extensions that occupy tiny canals called canaliculi, which are used for ex-

change of nutrients and waste. The space that an osteocyte occupies is called a lacuna.

Although osteocytes have reduced synthetic activity and, like osteoblasts are not capa-

ble of mitotic division, they are actively involved in the routine turnover of bone matrix.

Figure 1.5: Osteocytes, osteoblast and osteoclasts with several nuclei.

An osteoclast is the bone cell that removes bone tissue. When osteoclasts are sti-

mulated they merge together and form big osteoclasts with several nuclei. Usually,

osteoclasts have between three and twenty nuclei. They eliminate bone tissue by re-

moving its mineralized matrix. Once osteoclasts complete the absorption, they are

divided into mono nuclei cells and in the future they can be stimulated forming new

multinucleated osteoclasts.

Located in the canal are the osteoblasts. As we explained before, they are the bone

generating cells. They deposit a sequence of layers of lamellar bone on the inner wall of

the osteon, forming the lamellae sequentially, from the most external inward towards
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Figure 1.6: Layer of osteoblasts. When they are inactive are called bone lining cells.

the Haversian canal.

The cells in the cancellous bone remain between lamellas or over the surface of tra-

becullas, where they can be affected by the cells in the bone marrow. However, the

most bone cells in cortical bone are surrounded by bone matrix. Maybe, because of

this difference in the organization in each class of bone, the remodeling process is pro-

duced more quickly in cancellous bone. This difference can be observed, for example,

in the X-rays of long bones for a immobilized leg. In this situation, the density in

the cancellous bone diminishes, as a consequence of the absorption in the trabecullae,

earlier than in the cortical bone.

Bone tissue (cortical and cancellous) could be made of plexiform bone or laminar

bone. Plexiform bone forms the embryo of the skeleton and when it is growing up, this

tissue is replaced by laminar bone. The callus that appear in a fracture are made in

the same way. Small amount of plexiform bone can be part of tendons and ligaments.

Except in these cases, plexiform bone does not appear in the human skeleton after four

or five years old.

Plexiform and laminar bone are differentiated in its formation, composition, organi-
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zation and mechanical properties. In the plexiform bone, the resorption and formation

are produced with high velocity, whereas the laminar bone is not so active. Comparing

both types of tissue, plexiform bone does not present a stable relation of minerals to

collagen (in fact, it could be observed a huge variation in its mineral density) and

contains around four times more osteocites per volume unit. These osteocites are of

different sizes, orientation and distribution. Nevertheless, in laminar bone they are of

uniform size and their principal axis is oriented parallel to collagen fibers forming bone

matrix. The mineralization in plexiform bone is produced in a irregular way, crea-

ting an irregular appearance. On the other hand, in the laminar bone the diameter

of the fibers of collagen varies less and it remains parallel, forming the lamellas with

a uniform distribution. This organization gives an homogeneous aspect. Owe to this

organization, plexiform bone is more flexible and weaker than laminar bone. The irre-

gular structure in plexiform bone implies that the mechanical properties do not depend

on the applied loads, and it imposes an isotropic behavior. On the contrary, laminar

bone is anisotropic and its mechanical properties depend on the orientation of the loads.

1.2 The bone remodeling process

Bone remodeling is a dynamic, lifelong process in which old bone is removed from the

skeleton and new bone is added. There are two kinds of bone remodeling: external,

in which the geometry of the bone changes along the time, and internal, in which the

properties of the bone change without modifying its form. In this thesis we will focus

on the second one.

Bone remodeling consists of two distinct stages, resorption and formation, which

involve the activity of osteoclasts and osteoblasts. Usually, the removal and forma-

tion of bone are in balance and maintain skeletal strength and integrity. Remodeling

responds to functional demands and muscle attachments. As a result, bone is added

where needed and removed where it is not required. These changes are produced in
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the internal surface of bone matrix.

The remodeling process takes place in the following phases:

• Bone resorption: In this phase, the osteoclasts break down bone acting on the

cancellous bone surface to erode the mineral and matrix. This process is known

as bone resorption. Through a chemical process osteoblast reduce the ph from

a value of 7 to 4. This acid ph dissolves the mineral bone and diminishes the

organic part of bone matrix. Bone resorption is complete when small cavities are

created in the surface of the bone matrix (bone has been removed)(see Figure

1.7).

• Bone formation: Osteoblasts form new bone. They work to repair the surface

and fill the eroded cavities with new bone that then has to be mineralized (this

phase needs about 10 days). The transition between the activity of osteoclasts

and osteoblasts is not immediate. In the human being this time is approximately

30 days.

• Completion: The bone surface is restored and covered by a layer of lining cells

which protect the bone (see Figure 1.8). The new bone is calcified and the

remodeling process is completed.

The three phases described previously occur in a specific place and are developed

by a group of cells called Basic Multicellular Units (BMU). A BMU is a group of os-

teoblasts and osteoclasts which act in an specific place to develop a bone remodeling

cycle. There are several BMU acting in different parts of bone. The Bone Structural

Units (BSU) are the areas of new bone created by a BMU. Each BMU has a finite

lifetime, so new units are continuously forming as old units are finishing.

In the first year of life, almost 100% of the skeleton is replaced. In adults, remodeling

proceeds at about 10% per year. During childhood, bone formation exceeds resorption,
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but as the aging process occurs, resorption exceeds formation.

Figure 1.7: Bone resorption.

Figure 1.8: Bone formation.

The remodeling process is caused essentially by two regulating process. The first

one is a hormonal regulating process and the second one depends on the mechanical

charges that act on the body.

• In the hormonal mechanism takes part the parathormona: this hormone is se-

creted by the parathyroid glands. It acts to decrease the concentration of calcium

in the blood. This hormone stimulates the osteoclasts, which accelerate the bone

resorption. As a consequence, it produces a release of calcium from the blood

and bone matrix. The equilibrium is recovered and it finishes the release of

parathormone. In the case of an increase of blood calcium, calcitonin is secreted
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to inhibit bone resorption by the osteoclasts and it causes that calcium is accu-

mulated in bone matrix, reducing the concentration of calcium in blood. This

hormonal regulation is orientated to conserve the hemostatic equilibrium, keep-

ing the calcium concentration in blood, more than to preserve the bone resistance.

• In the second mechanism, a change in the forces acting on the body leads to the

adaptation of the bone tissue, which suffers morphology changes. Thus, bone

mass is added in the places with a strong charge and resorbed where the charge

is smaller. In spite of the minimum intensity and type or charge necessary to

keep the normal density of the bone have not been determined yet, experimental

research shows that a decrease in the charge leads to a decrease in the resistance

and in the bone mass. The opposite effect is known as well, that is, an increase

in the charge leads to an increase in the resistance of the bone.

Figure 1.9: Density of bone matrix.

These adaptation factors, unlike the first one, have a tendency to keep an optimum

skeleton for locomotion. In Figure 1.9 we can observe the bone matrix in a healthy

bone and in a bone which suffers from osteoporosis. In the second one, the porosity is

bigger than in the healthy bone, which produces the bone become weaker. This is an
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example in where the hormonal factor has an important role, but usually the second

factor is predominant over the first one. Because of this, the bone remodeling models

that we discuss in the next chapters only take into account the response of the bone

to the mechanical loads.

Finally, we introduce two important parameters to understand the internal structure

of a bone: the porosity and the specific surface. The porosity is defined as the empty

volume per unit of volume in the bone, or the proportional part of the bone occupied

by the bone marrow. The specific surface is the internal surface area per volume

unit in the bone. The importance of these values is evident, because the mechanical

properties of the bone depend on the porosity. As we said, the bone is an alive tissue

that is changing its internal structure along the time. These changes are regulated by

physiological process that always take place in the internal surface of the bone matrix

(see Figure 1.10). Only in these walls can be added or removed bone tissue and then,

the velocity of change in the porosity is affected by the amount of internal surface

available to the physiological activity.

Trabeculae

Space for red
bone marrow

Osteocyte

Osteoclast

Lamellae

Osteoblast aligned
along trabeculae

of new bone

Bone matrix Section of trabeculae

Figure 1.10: The remodeling process takes place in the surface of the trabeculae.
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1.3 Modeling the bone tissue

When we try to study, from the mechanical point of view, the structure of a bone it

is impossible to model each trabecular structure. Because of that, we need to define

continuous properties and to avoid using real properties of bone tissue. This implies

to consider bone tissue as a continuum material. This hypothesis is justified because

we are interested on the bone response in a large enough area to obtain results about

the properties of this area. Most bone remodeling theories are exposed in a similar

way, by using a continuous formulation. In fact, almost all models characterize the

surrounding of a point employing the apparent density, which is a mean value of the

real density in that point.

In the late 19th century, Julius Wolff proposed in [67] that trabecular bone oriented

itself in a direction that aligned with the principle stress experienced by the bone.

While Dr. Wolff largely focused on trabecular bone, the idea that bone is a dynamic

organ adaptive to its mechanical environment has been generalized, over time, to the

whole bone including compact portion of bone. This generalization has largely been

accepted by clinicians. For instance, they recognize that astronauts return with weaker

bone after a long mission, while weightlifters possess increased bone density in response

to their training.

Cowin and Hegedus proposed in 1976 the first continuous mathematical formulation

of bone remodeling (see [15, 46]). They considered the bone matrix as a porous elastic

solid encased in the extracellular fluid. The bone remodeling appears as a consequence

of chemical reactions between bone matrix and the extracellular fluid. In this model,

the evolution of bone remodeling process is characterized by using a function which

measures the changes in the porosity, assuming that the bone has an equilibrium state

in which there is not bone remodeling. As in many other models, Cowin and Hege-

dus proposed to consider that the bone matrix is an anisotropic and elastic material.

However, to develop the numerical simulations, they assume as other authors, that the
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anisotropic behavior of the bone is not relevant and therefore, they consider the bone

to be orthotropic or even isotropic. The values of the constants needed for the adap-

tive elastic model have been studied by many authors and we can find the values of

Young modulus and Poisson’s ratio for different bones (see [41]). However, each model

incorporates other constants to determine the remodeling rate. In [34], the remodeling

rate coefficients for Cowin and Hegedus model was determined for a cylindrical body

inhomogeneous along the axis of the cylinder, but homogenous in each transverse plane

of the cylinder. During the last ten years, some papers dealt with mathematical issues

of this bone remodeling model as the existence and uniqueness of weak solutions under

some quite strong assumptions (see, e.g., [57, 64]) or the analysis of an asymptotic rod

model (see [30, 31, 32, 33]). In the second chapter of this thesis we analyze this model

from the mathematical and numerical points of view, and we provide some numerical

results.

After this model, many authors tried to propose more complete models to reproduce

the behavior of bone tissue, most of them based on considering that the bone has sen-

sors, which can detect a mechanical stimulus, and, depending on its magnitude, cause

local bone adaptations. In the third chapter we analyze the model introduced in [66]

which is based on that theory. These models characterize the mechanical behavior of

the bone using the aparent density. The variation of density can be described by using

an objective function which depends on the strain energy and some bone remodeling

parameters, described there with more detail. The main restriction of this model is

that we consider the bone as an isotropic material.

How the bone is capable of responding to mechanical environment and specifically

how osteocytes and osteoblasts can perceive forces remain unanswered. In the 1960s,

collagen piezoelectricity was invoked as a potential mechanism by which osteocytes

could detect areas of greater stress. According to this theory, applied stress generated

local potential gradients along the collagen fiber and thus provided a local stimulus for
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bone-generating cells.

Currently, a renovated interest has appeared to show the importance of bone piezo-

electricity in bone responsiveness to mechanical environment (see [2, 63]). Two different

mechanisms are responsible for bone piezoelectricity: extracellular matrix piezoelec-

tricity, mainly due to the molecular asymmetry of collagen, and streaming potentials

generated by the flow of a liquid across charged surfaces. Hence, in the fourth chapter

we propose a hypothesis in which we demonstrate, through a computational approach,

that only bone matrix piezoelectricity is able to explain how bone is selectively de-

posited or removed at different periosteal surfaces. Moreover, such bone remodeling

piezoelectric model is numerically analyzed and several simulations are provided.



Chapter 2

A strain adaptive bone remodeling

model

In this chapter we present the results obtained in the study of a bone remodeling model

introduced in [15]. They have been recently published in [20, 26, 27, 28].

2.1 The model

In this section, we introduce a bone remodeling model proposed by Cowin and Hegedus,

following the original works [15], [16] and [46] (see also the recent review [14]). Our aim

is to model the bone as a porous elastic solid and to simulate the mechanical adapta-

tion process like if the rate of mass added or removed was controlled by the deformation.

In the previous chapter, we described the biological aspects of a bone remodeling

process. We turn now to present only the aspects that we take into account to obtain

the mathematical model:

• The mechanical properties of the whole bone are essentially the same as the bone

matrix, which is considered to be a porous elastic solid containing a fluid in its

pores.

55
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• The porosity of the bone matrix is changed by the addition or the removal of mass

from the bone matrix. This mass transfer occurs as a result of a chemical reaction

which is mediated by the bone cells. The rates of these chemical reactions depend

upon the strain and are very slow (on the order of months). This justifies that

the bone remodeling process is considered quasistatic.

• As the porosity of the bone matrix changes, the area of the interface between the

porous structure and the fluid will also in general change. There is not a direct

relation between the porosity and the area of the interface. We will consider

only porosity changes and we will not introduce the area of the interface into the

model as a variable.

• The fact that living bone matrix is encased in a living organism is reflected in

the model by setting the porous structure in a bath of perfusant. We will assume

the perfusant bath to be an isothermal heat reservoir.

• It is important to enhance that the equations in the model are applied only over

the porous matrix structure without perfusant. The effect of the internal perfu-

sant is accounted for by transfer terms in each equilibrium equations.

Applying these hypotheses, Cowin and Hegedus obtained in 1976 the first bone

remodeling model. In [16] and [46] they derived, as usual in continuum mechanics,

the equilibrium equations for mass, momentum and energy and the entropy inequality,

establishing the following constitutive law for the stress tensor:

σ = (ξ0 + e)C(e)ε(u),

where ε denotes the strain tensor (see the next section for more details) and C(e) cha-

racterizes the mechanical properties of the bone. The function e measures the change

in the porosity of the bone and it is defined as e = ξ−ξ0, where ξ is the volume fraction

of material present in the bone and ξ0 is a volume fraction of reference. By definition,
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e only has to verify −ξ0 < e < 1− ξ0, being 0 < ξ0 < 1. It seems reasonable to assume

that for healthy bone we can choose ξ such that |e| < 1; however, in some pathological

situations |e| can exceed this value.

In order to control the bone remodeling process, Cowin and Hegedus obtained a

first-order ordinary differential equation:

ė = a(e) +A(e) : ε(u),

where a(e) and A(e) are the remodeling coefficients dependent upon the change in vo-

lume fraction of the adaptive elastic material from the reference volume fraction. This

remodeling rate equation specifies the rate of change of the volume fraction as a func-

tion of the volume fraction and strain. A positive value of ė means the volume fraction

of elastic material is increasing while a negative value means the volume fraction is

decreasing.

When the change in volume fraction e vanishes and the reference volume fraction

ξ0 is one, the constitutive equation for the stress tensor coincides with the classical

Hooke’s law. In the theory of adaptive elasticity, however, the coefficients of propor-

tionality between stress and strain depend upon the volume fraction of elastic material.

This theory involves the functions a(e), Aij(e) and Cijkl(e) which characterize the

material properties. Because of the lack of experimental data about these functions,

Firoozbakhsh and Cowin (see [34]) proposed to consider approximations using Taylor’s

developments:

a(e) = a0 + a1e + a2e
2,

Aij(e) = A0
ij + A1

ije,

Cijkl(e) =
1

ξ0 + e
(ξ0C

0
ijkl + C1

ijkle),
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where a0, a1, a2, A0
ij, A1

ij, C0
ijkl and C1

ijkl are constants which represent the properties

of the bone. These parameters were determined considering an inhomogeneous cylin-

drical body that is loaded by a steady uniform stress directed along the cylindrical

axis. With this example, the values of the remodeling rate coefficients were estimated

by physical arguments, assuming that the time of remodeling increases along with the

compressive stress as well as the final homogeneous volume fraction. The elasticity

coefficients, which determine the mechanical properties of the bone, were estimated

by Cowin and Buskirk in [17]. These values can be seen in Section 2.2.3. Moreover,

Firoobakhsh and Cowin proved in [34] that the bone remodeling function e tends to

an homogeneous state. In the numerical simulations that we perform in this chapter

we can observe that this property is achieved.

2.2 Analysis of the bone remodeling model

Our aim in this section is propose and analyze a numerical method to solve the bone

remodeling model introduced in the previous section.

First, we introduce the mathematical problem which we are going to study and we

derive its variational formulation. Then, applying the Euler scheme to discretize the

time derivatives and the finite element method to approximate the spatial variable we

obtain a fully discrete scheme. Next, we prove a main error estimates result and, under

suitable regularity conditions, we deduce the linear convergence of the algorithm. Fi-

nally, we describe a numerical algorithm to solve the discrete problem and we perform

some numerical simulations which demonstrate its accuracy and its behavior.
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2.2.1 The mathematical problem and its variational formula-

tion

Let us denote by · the euclidean inner product in Rd and its corresponding norm by

| · |. Let Sd be the space of second order symmetric tensors on Rd or, equivalently, the

space of symmetric matrices of order d, and let : be its inner product and | · | its norm.

Denote by Ω ⊂ Rd, d = 1, 2, 3, an open bounded domain and denote by Γ = ∂Ω its

outer surface which is assumed to be Lipschitz continuous and it is divided into two

disjoint parts ΓD and ΓN . We denote by x = (xi)
d
i=1 a generic point of Ω = Ω∪Γ, and

for x ∈ Γ, ν(x) = (νi(x))d
i=1 denotes the outward unit vector, normal to Γ at point x

(see Figure 2.1).

The bone occupying the volume Ω is being acted upon by a volume force of density f ,

it is clamped on ΓD and surface tractions with density g act on ΓN . Finally, let [0, T ],

T > 0, be the time interval of interest and t ∈ [0, T ] any instant in this time interval.

Figure 2.1: A bone remodeling problem.

Let u : (x, t) ∈ Ω × (0, T ) → u(x, t) = (ui(x, t)) ∈ Rd be the displacement field,

σ : (x, t) ∈ Ω × (0, T ) → σ(x, t) = (σij(x, t)) ∈ Sd the stress field and ε(u) : (x, t) ∈
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Ω× [0, T ] → ε(u(x, t)) = (εij(u(x, t)))d
i,j=1 ∈ Sd the strain tensor given by

εij(u(x, t)) =
1

2

(
∂ui

∂xj

(x, t) +
∂uj

∂xi

(x, t)

)
, i, j = 1...d, x ∈ Ω.

To measure the change in volume fraction from a reference configuration we introduce

a function e : (x, t) ∈ Ω× [0, T ] → e(x, t) ∈ R, which we will name as bone remodeling

function.

As noticed in the previous section, according to [15, 46], the bone is assumed elastic

and the constitutive law is written as follows,

σ = (ξ0 + e)C(e)ε(u) in Ω× [0, T ],

where ξ0 represents the reference volume fraction and C(e) = (Cijkl(e))
d
i,j,k,l=1 is a cons-

titutive tensor depending on the bone properties.

The evolution of the bone remodeling function is obtained from the following first-

order ordinary differential equation (see [15, 46]),

ė = a(e) +A(e) : ε(u) in Ω× [0, T ],

where a(e) is a constitutive function and A(e) = (Aij(e))
d
i,j=1 denote the bone remode-

ling rate coefficients. A dot above a function denotes the time derivative of this func-

tion.

For a given constant L > 0, let us define the truncation operator ΦL : R→ [−L,L]

by

ΦL(r) =





−L if − L ≤ r,

r if − L ≤ r ≤ L,

L if r ≥ L.

Finally, the process is assumed quasistatic and therefore, the inertia effects are ne-
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glected. Moreover, let e0 denote the initial bone remodeling function.

The mechanical problem derived from the continuum mechanics law in the framework

of small displacements theory, is the following.

Problem P1. Find the displacement field u : Ω × [0, T ] → Rd, the stress field σ :

Ω×[0, T ] → Sd and the bone remodeling function e : Ω×[0, T ] → R such that e(·, 0) = e0

and

σ = (ξ0 + e)C(e)ε(u) in Ω× (0, T ), (2.1)

ė = a(e) +A(e) : ε(u) in Ω× (0, T ), (2.2)

−Divσ = γ(ξ0 + ΦL(e))f in Ω× (0, T ), (2.3)

u = 0 on ΓD × (0, T ), (2.4)

σν = g on ΓN × (0, T ). (2.5)

Here, γ > 0 is the density of the full elastic material which is assumed constant for

the sake of simplicity.

We turn now to obtain a variational formulation of Problem P1. We use the classical

spaces L2(Ω) and H1(Ω) equipped with the classical norms (see [1]):

L2(Ω) = {v : Ω → R; v measurable,

∫

Ω

v2dx < ∞},

and

H1(Ω) = {v ∈ L2(Ω);
∂v

∂xi

∈ L2(Ω), 1 ≤ i ≤ d},

where
∂v

∂xi

(1 ≤ i ≤ d) denotes the distributional derivatives of v with respect to the

variable xi.

Let us denote by Y = L2(Ω) and H = [L2(Ω)]d, and define the following spaces
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equipped with the product norms:

V = {w = (wi)
d
i=1 ∈ [H1(Ω)]d ; w = 0 on ΓD},

Q = {τ = (τij)
d
i,j=1 ∈ [L2(Ω)]d×d ; τij = τji, 1 ≤ i, j ≤ d},

(u,v)H =
d∑

i=1

∫

Ω

uividx, (σ, τ )Q =
d∑

i,j=1

∫

Ω

σijτijdx,

(u,v)V = (u,v)H + (ε(u), ε(v))Q,

and the associated norms ‖v‖V = (v,v)
1/2
V and ‖τ‖Q = (τ , τ )

1/2
Q .

We note that, since meas(ΓD) > 0, it follows from Korn’s inequality that there exists

a positive constant C such that |ε(u)|Q ≥ C‖v‖V . Thus, ‖ · ‖V and ‖ · ‖[H1(Ω)]d are

equivalent norms on V .

In order to obtain an existence and uniqueness result (see [57]) the following assump-

tions are done on the problem data.

The elasticity coefficients Cijkl are assumed to satisfy the following properties:

(a) There exists LC > 0 such that

|(ξ0 + r1)Cijkl(r1)− (ξ0 + r2)Cijkl(r2)| ≤ LC|r1 − r2|, ∀r1, r2 ∈ R.

(b) There exists MC > 0 such that |(ξ0 + r)Cijkl(r)| ≤ MC, ∀r ∈ R.

(c) Cijkl(r) = Cjikl(r) = Cklij(r) for i, j, k, l = 1, . . . , d, ∀r ∈ R.

(d) There exists mC > 0 such that

(ξ0 + r)C(r)τ : τ ≥ mC|τ |2, ∀τ ∈ Sd, ∀r ∈ R.

(2.6)

The constitutive function a and the bone remodeling rate coefficients Aij are Lips-
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chitz and bounded functions in R; that is, there exist La, LA, Ma and MA such that:

(a) |a(r1)− a(r2)| ≤ La|r1 − r2|, |a(r)| ≤ Ma, ∀r1, r2, r ∈ R,

(b) |A(r1)−A(r2)| ≤ LA|r1 − r2|, |A(r)| ≤ MA, ∀r1, r2, r ∈ R.
(2.7)

The reference volume fraction ξ0 satisfies the following conditions for some value

0 < ξm
0 < 1,

ξ0 ∈ C(Ω), 0 < ξm
0 ≤ ξ0(x) ≤ 1 for all x ∈ Ω. (2.8)

The density forces have the regularity,

f ∈ C([0, T ]; [C(Ω)]d), g ∈ C([0, T ]; [C(ΓN)]d), (2.9)

and the initial value of the bone remodeling function e0 verifies that

e0 ∈ C(Ω). (2.10)

For every e ∈ L∞(Ω), let us define the bilinear form c(e; ·, ·) : V × V → R,

c(e; u, v) =

∫

Ω

(ξ0 + e)C(e)ε(u) : ε(v) dx, ∀u, v ∈ V,

and the linear form L(e; ·) : V → R given by

L(e; v) =

∫

Ω

γ(ξ0 + ΦL(e))f · v dx +

∫

ΓN

g · v dΓ, ∀v ∈ V.

Throughout this work we systematically use the following identification

s(x, t) ≡ s(t)(x)

for every function s : Ω×[0, T ] → R. With this notation, applying the Green’s formula,

(σν, v)[L2(Γ)]d = (σ, ε(v))Q + (Divσ,v)H ∀v ∈ V,
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we derive the following variational formulation for the mechanical problem P1.

Problem VP1. Find a displacement field u : [0, T ] → V and the bone remodeling

function e : [0, T ] → L∞(Ω) such that e(0) = e0 and,

c(e(t); u(t),v) = L(e(t); v) ∀v ∈ V, a.e. t ∈ (0, T ), (2.11)

ė(t) = a(e(t)) +A(e(t)) : ε(u(t)) in D′(0, T ; L2(Ω)), (2.12)

e(0) = e0, (2.13)

where D′(0, T ; L2(Ω)) is the space of distributions valued on L2(Ω) (see [1]).

The following result, which states the existence of a unique weak solution to Problem

VP1, can be obtained proceeding as in [57].

Theorem 2.1 Let the assumptions (2.6)-(2.10) hold. Assume that, for any given func-

tion e ∈ C1([0, T ]; C(Ω)), the unique solution to the following problem:

u(t) ∈ V, c(e(t); u(t),v) = L(e(t); v) ∀v ∈ V,

has the regularity u ∈ C([0, T ]; [H3(Ω)]d) for d = 2, 3 or u ∈ C([0, T ]; H2(Ω)) for d = 1.

Then, there exists a unique solution to Problem VP1 with the following regularity:

u ∈ C([0, T ]; [C1(Ω)]d), e ∈ C1([0, T ]; C(Ω)).

In [57], the existence and uniqueness of a weak solution was proved for a regularized

problem in which the elasticity coefficients were defined using truncation and molli-

fication operators. The main idea of the proof is based on the application of the Cauchy-

Lipschitz-Picard theorem and Schauder lemma. In order to do this, a priori estimates

were obtained for problems (2.11) and (2.12), using the regularized coefficients and

stronger hypothesis over the data. All these conditions were used to prove an additional

regularity result for the solution of the problem:
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Given e ∈ L∞(Ω), find u ∈ V such that

c(e; u,v) = L(e; v) ∀v ∈ V. (2.14)

In particular, it is needed to prove that

u ∈ [H3(Ω)]d. (2.15)

The existence and uniqueness of solution to Problem VP1 is an open problem. In

particular, it is necessary to study the conditions over the data to obtain a unique

solution for the variational problem (2.14) with regularity (2.15).

2.2.2 Numerical analysis of a fully discrete scheme

We now introduce a finite differences scheme and a finite element algorithm for approxi-

mating solutions to Problem VP1 and we proof an error estimates result.

First, we consider two finite dimensional spaces V h ⊂ V and Bh ⊂ L∞(Ω) ⊂ Y ,

approximating the spaces V and L∞(Ω), respectively. Here, h > 0 denotes the spatial

discretization parameter.

Secondly, the time derivatives are discretized by using a uniform partition of the

time interval [0, T ], denoted by 0 = t0 < t1 < . . . < tN = T, where tj = jk, k being the

time step size defined as k = T/N and N ≥ 1. Moreover, for a continuous function

S(t) we let Sn = S(tn).

In this section, C denotes a positive constant which depends on the problem data

and the continuous solution, but it is independent of the discretization parameters h

and k.

Remark 2.1 In the numerical simulations presented in the next section, V h and Bh

consist of continuous and piecewise affine functions and piecewise constant functions,
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respectively; that is,

V h = {wh ∈ [C(Ω)]d ; wh
|Tr
∈ [P1(Tr)]d, T r ∈ T h, wh = 0 on ΓD}, (2.16)

Bh = {ξh ∈ L∞(Ω) ; ξh
|Tr
∈ P0(Tr), T r ∈ T h}, (2.17)

where Ω is assumed to be a polygonal domain, T h denotes a finite element triangulation

of Ω composed by d-symplex denoted by Tr, and Pq(Tr), q = 0, 1, represents the space

of polynomials of total degree less or equal to q in Tr.

Using the forward Euler scheme, we propose the following fully discrete approxima-

tion of Problem VP1:

Problem VP1hk. Find a discrete displacement field uhk = {uhk
n }N

n=0 ∈ (V h)N+1

and a discrete bone remodeling function ehk = {ehk
n }N

n=0 ∈ (Bh)N+1 such that

c(ehk
n ; uhk

n ,vh) = L(ehk
n ; vh), ∀vh ∈ V h (n = 0, 1, 2, . . . , N), (2.18)

ehk
n − ehk

n−1

k
= a(ehk

n−1) +A(ehk
n−1) : ε(uhk

n−1) (n = 1, 2, . . . , N), (2.19)

where ehk
0 ∈ Bh is an appropriate approximation of the initial condition e0.

In the following theorem we state the existence and uniqueness of the discrete solu-

tion.

Theorem 2.2 Let the assumptions (2.6)-(2.10) hold. Therefore, Problem VP1hk has

a unique solution (uhk, ehk) ∈ (V h ×Bh)N+1.

Its proof is directly obtained applying the well-known Lax-Milgram lemma (see [44]),

keeping in mind assumptions (2.6).

Below we focus our attention on deriving error estimates for the numerical errors

‖un−uhk
n ‖V and ‖en− ehk

n ‖Y . The following theorem is the main result of this section.
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Theorem 2.3 Let the assumptions of Theorem 2.1 hold and denote by (u, e) and

(uhk, ehk) the respective solutions to problems VP1 and VP1hk. Then, we have, for

all {vh
n}N

n=0 ∈ (V h)N+1:

max
0≤n≤N

{‖en − ehk
n ‖2

Y + ‖un − uhk
n ‖2

V

}

≤ C
(
‖e0 − ehk

0 ‖2
Y + k

N∑
j=1

[
‖ėj − δej‖2

Y + ‖uj − uj−1‖2
V

]

+k2 + max
0≤n≤N

‖un − vh
n‖2

V + ‖u0 − uhk
0 ‖2

V

)
,

(2.20)

where we use the notation δej = (ej − ej−1)/k for j = 1, . . . , N .

Proof First, let us obtain an error estimates on the bone remodeling function e. By

subtraction of equation (2.12) at time t = tn and equation (2.19) we find that

ėn −
ehk

n − ehk
n−1

k
= a(en)− a(ehk

n−1) +A(en) : ε(un)−A(ehk
n−1) : ε(uhk

n−1).

Integrating in Ω and using the norm in Y , we have,

‖en − ehk
n ‖Y ≤ ‖en−1 − ehk

n−1‖Y + k
(
‖a(en)− a(ehk

n−1)‖Y + ‖ėn − δen‖Y

+‖A(en) : ε(un)−A(ehk
n−1) : ε(uhk

n−1)‖Y

)
.

Now, using (2.7) we get

‖A(en) : ε(un)−A(ehk
n−1) : ε(uhk

n−1)‖Y

= ‖A(en) : ε(un)−A(ehk
n−1) : ε(un) +A(ehk

n−1) : ε(un)−A(ehk
n−1) : ε(uhk

n−1)‖Y

≤ C(‖un‖[C1(Ω)]d‖en − ehk
n−1‖Y + MA‖un − uhk

n−1‖V ),

and

‖a(en)− a(ehk
n−1)‖Y ≤ C(‖en − en−1‖Y + ‖en−1 − ehk

n−1‖Y ).

Taking into account the regularity e ∈ C1([0, T ]; C(Ω)) ⊂ C1([0, T ]; Y ) and applying

the mean value theorem we have ‖en − en−1‖Y ≤ k‖ė‖C([0,T ];Y ).
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Now, by an induction argument we conclude the following estimates on the bone re-

modeling function e,

‖en − ehk
n ‖Y ≤ ‖e0 − ehk

0 ‖Y + Ck + Ck

n∑
j=1

[
‖ej−1 − ehk

j−1‖Y

+‖ėj − δej‖Y + ‖uj−1 − uhk
j−1‖V + ‖uj − uj−1‖V

]
.

(2.21)

Next, let us estimate the numerical errors on the displacement field. Thus, we write

equation (2.11) for all v = vh ∈ V h ⊂ V and we subtract it to equation (2.18) to

obtain,

c(en; un, v
h)− L(en; vh)− c(ehk

n ; uhk
n ,vh) + L(ehk

n ; vh) = 0.

Therefore, we have, for all vh ∈ V h,

c(en; un, un − uhk
n )− L(en; un − uhk

n )− c(ehk
n ; uhk

n ,un − uhk
n ) + L(ehk

n ; un − uhk
n )

= c(en; un,un − vh)− L(en; un − vh)− c(ehk
n ; uhk

n ,un − vh) + L(ehk
n ; un − vh).

Keeping in mind that

c(en; un,un − vh)− c(ehk
n ; uhk

n ,un − vh) = c(ehk
n ; un − uhk

n ,un − vh)

+c(en; un, un − vh)− c(ehk
n ; un, un − vh) ∀vh ∈ V h,

c(en; un,un − uhk
n )− c(ehk

n ; uhk
n , un − uhk

n ) = c(ehk
n ; un − uhk

n ,un − uhk
n )

+c(en; un, un − uhk
n )− c(ehk

n ; un,un − uhk
n ),

we can write the previous equation as

c(ehk
n ; un − uhk

n ,un − uhk
n ) + c(en; un,un − uhk

n )− c(ehk
n ; un,un − uhk

n )

−L(en; un − uhk
n ) + L(ehk

n ; un − uhk
n )

= c(ehk
n ; un − uhk

n , un − vh) + c(en; un,un − vh)

−c(ehk
n ; un,un − vh)− L(en; un − vh) + L(ehk

n ; un − vh).
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Using (2.6)(d), we have

c(ehk
n ; un − uhk

n ,un − uhk
n ) ≥ mC‖un − uhk

n ‖2
V .

Then, we obtain the next inequality,

mC‖un − uhk
n ‖2

V

≤ L(en; un − uhk
n )− L(ehk

n ; un − uhk
n ) + c(ehk

n ; un, un − uhk
n )

−c(en; un,un − uhk
n ) + c(ehk

n ; un − uhk
n ,un − vh) + c(en; un,un − vh)

−c(ehk
n ; un,un − vh)− L(en; un − vh) + L(ehk

n ; un − vh).

From properties (2.6) and (2.9) it follows that

L(en; un − vh)− L(ehk
n ; un − vh)

=

∫

Ω

γ(ΦL(en)− ΦL(ehk
n ))fn · (un − vh)dx

≤ C‖fn‖[C(Ω)]d‖en − ehk
n ‖Y ‖un − vh‖V ∀vh ∈ V h,

c(ehk
n ; un,un − uhk

n )− c(en; un, un − uhk
n )

≤ C‖un‖[C1(Ω)]d‖en − ehk
n ‖Y ‖un − uhk

n ‖V ,

c(ehk
n ; un − uhk

n , un − vh) ≤ C‖un − uhk
n ‖V ‖un − vh‖V ,

c(en; un,un − vh)− c(ehk
n ; un,un − vh)

≤ C‖un‖[C1(Ω)]d‖en − ehk
n ‖Y ‖un − vh‖V ,

and therefore we can deduce that,

‖un − uhk
n ‖2

V

≤ C‖fn‖[C(Ω)]d‖en − ehk
n ‖Y ‖un − uhk

n ‖V

+C‖un‖[C1(Ω)]d‖en − ehk
n ‖Y ‖un − uhk

n ‖V + C‖un − uhk
n ‖V ‖un − vh‖V

+C‖un‖[C1(Ω)]d‖en − ehk
n ‖Y ‖un − vh‖V

+C‖fn‖[C(Ω)]d‖en − ehk
n ‖Y ‖un − vh‖V ∀vh ∈ V h.
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Using several times the inequality,

ab ≤ εa2 + (1/4ε)b2, a, b, ε ∈ R, ε > 0, (2.22)

taking ε small enough we find, for all vh ∈ V h,

‖un − uhk
n ‖2

V ≤ C
(‖en − ehk

n ‖2
Y + ‖un − vh‖2

V

)
n = 0, 1, . . . , N. (2.23)

Combining (2.21) and (2.23), we have

‖en − ehk
n ‖2

Y + ‖un − uhk
n ‖2

V

≤ C‖e0 − ehk
0 ‖2

Y + Ck2 + Ck

n∑
j=1

[
‖ej−1 − ehk

j−1‖2
Y

+‖ėj − δej‖2
Y + ‖uj−1 − uhk

j−1‖2
V + ‖uj − uj−1‖2

V

]
+ C‖un − vh

n‖2
V ,

for all vh
n ∈ V h.

Let us define the following quantities for n = 1, . . . , N :

En = ||un − uhk
n ||2V + ||en − ehk

n ||2Y ,

gn = ||e0 − ehk
0 ||2Y + k2 + k

n∑
j=1

[||ėj − δej||2Y + ||uj − uj−1||2V ] + ||un − vh
n||2V ,

and let us denote E0 = g0 = ||u0 − uhk
0 ||2V + ||e0 − ehk

0 ||2Y .

From the previous inequality we obtain

E0 ≤ g0,

En ≤ Cgn + Ck

n∑
j=1

Ej−1.
(2.24)

Han and Sofonea proved in [45] the following lemma which constitutes a discrete

version of Gronwall’s lemma.
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Lemma 2.1 Assume that {gn}N
n=0 and {en}N

n=0 are two sequences of nonnegative real

numbers satisfying

e0 ≤ Cg0,

en ≤ Cgn + C

n∑
j=1

kjej−1, n = 1, 2, . . . , N.

where {kj}N
j=1 is a sequence of positive numbers. Then,

max
0≤n≤N

en ≤ d max
0≤n≤N

gn,

where d = C(1 + CTeCT ) with T =
N∑

j=1

kj.

Finally, applying this result to the estimates (2.24) it leads to (2.20). ¤

Error estimates (2.20) are the basis for the analysis of the convergence rate of the

algorithm, presented below by using the finite element method.

Let Ω be a polyhedral domain and denote by T h a finite element triangulation of Ω

compatible with the partition of the boundary Γ = ∂Ω into ΓD and ΓN . Let V h and

Bh be defined by (2.16) and (2.17), respectively, and assume that the discrete initial

condition ehk
0 is given by ehk

0 = πhe0, where πh : C(Ω) → Bh is the standard finite

element interpolation operator (see, e.g., [13]).

Assume the following additional regularity conditions on the continuous solution:

u ∈ C1([0, T ]; V ) ∩ C([0, T ]; [H2(Ω)]d),

e ∈ C([0, T ]; H1(Ω)) ∩H2(0, T ; Y ).
(2.25)

The next result follows from estimates (2.20).

Corollary 2.1 Let the assumptions of Theorem 2.3 hold. Under the additional regu-

larity conditions (2.25), the fully discrete scheme is linearly convergent; that is, there
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exists a positive constant C, independent of h and k, such that

max
0≤n≤N

{
‖un − uhk

n ‖V + ‖en − ehk
n ‖Y

}
≤ C(h + k). (2.26)

Proof First, proceeding as in the proof of Theorem 2.3, we obtain the following:

‖u0 − uhk
0 ‖2

V ≤ C(‖e0 − ehk
0 ‖2

Y + ‖u0 − vh‖2
V ) ∀vh ∈ V h. (2.27)

From the definition of the interpolation operator πh we have (see [13]),

‖e0 − ehk
0 ‖Y ≤ Ch‖e‖C([0,T ];H1(Ω)). (2.28)

Using the well-known approximation property of the finite element space V h, it

follows that (see again [13]),

inf
vh

n∈V h
‖un − vh

n‖2
V ≤ Ch2‖u‖2

C([0,T ];[H2(Ω)]d), n = 0, 1, . . . , N. (2.29)

Taking into account that u0 = u(0) ∈ [H2(Ω)]d, we find that

inf
vh
0∈V h

‖u0 − vh
0‖2

V ≤ Ch2‖u‖2
C([0,T ];[H2(Ω)]d).

Then, from (2.27) and (2.28) we have:

‖u0 − uhk
0 ‖2

V ≤ Ch2. (2.30)

Using the mean value theorem, it is easy to check that

k

N∑
j=1

[‖ėj − δej‖2
Y + ‖uj − uj−1‖2

V

] ≤ Ck2
(
‖e‖2

H2(0,T ;Y ) + ‖u‖2
C1([0,T ];V )

)
. (2.31)

The estimate (2.26) is now concluded from (2.20) using (2.28), (2.29), (2.30) and

(2.31). ¤
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2.2.3 Numerical results

In this section we first describe shortly the numerical scheme implemented, and then

we present some numerical examples to exhibit its performance in one-, two- and three-

dimensional examples.

Numerical scheme

To approximate the spaces V and L∞(Ω) we use the finite element spaces V h and Bh

defined by (2.16) and (2.17), respectively.

First, the discrete displacement field uhk
n is obtained solving problem (2.18):

uhk
n ∈ V h, c(ehk

n ; uhk
n , vh) = L(ehk

n ; vh) ∀vh ∈ V h.

This is a linear problem equivalent to a linear system which is solved by using Cholesky’s

method.

Next, let n ∈ {1, . . . , N} and suppose that uhk
n−1 and ehk

n−1 are known. The discrete

bone remodeling function ehk
n is calculated from equation (2.19) as:

ehk
n = ehk

n−1 + ka(ehk
n−1) + kA(ehk

n−1) : ε(uhk
n−1).

The numerical scheme was implemented on a 3.2Ghz PC using MATLAB, and a

typical 1D run (h = k = 0.001) took about 3.5 seconds of CPU time. A run for the 2D

example spent about 6 seconds for each time iteration and for the 3D example took

about 2 minutes for each time iteration. In order to detect a stationary state (the

final time) we have introduced in the programs for two and three dimensions a test

which is activated when the maximum value between two consecutive bone remodeling

functions is smaller than 10−7 or 10−5, respectively.
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A one-dimensional example: the numerical convergence

As a one-dimensional example, the following problem is considered.

Problem P1-1D. Find a displacement field u : [0, 1]× [0, 1] → R and a bone remo-

deling function e : [0, 1]× [0, 1] → R such that

− ∂

∂x

(
e
∂u

∂x

)
(x, t) = 1740 (

1

2
+ e(x, t))

×−4xt e2t − 2e2t(2xt + 1)

870 + 1740et(2xt + 1)
x ∈ (0, 1), t ∈ (0, 1),

ė(x, t) = e(x, t) +
∂u

∂x
(x, t) x ∈ [0, 1], t ∈ [0, 1],

u(0, t) = 0 t ∈ (0, 1),

e(1, t)
∂u

∂x
(1, t) = 2 e2t(2t + 1) t ∈ (0, 1),

e(x, 0) = 1 x ∈ [0, 1].

Problem P1-1D corresponds to Problem P1 with the following data, keeping in mind

that the area of the cross-section is A = 1m2:

Ω = (0, 1), T = 1 day, ξ0 =
1

2
, γ = 1740 Kg/m3,

a(e) = e (days)−1, A(e) = 1 (days)−1, C(e) =
e

ξ0 + e
N/m2,

f(x, t) = 1740 (
1

2
+ e(x, t))

−4xt e2t − 2e2t(2xt + 1)

870 + 1740et(2xt + 1)
N/m x ∈ [0, 1], t ∈ [0, 1],

g(x, t) = 2 e2t(2t + 1) N for x ∈ [0, 1], t ∈ [0, 1].

The exact solution to Problem P1-1D is:

u(x, t) = x2et, e(x, t) = et(2xt + 1) for x ∈ [0, 1], t ∈ [0, 1].

We observe that functions C(e) and a(e) do not satisfy the boundedness assumptions

presented in (2.6) and (2.7). However, it is easily solved by using the truncation

function ΦL. Anyway, we use value L = 106, so it is large enough and we can assume

that this truncation does not modify the results.
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Since the exact solution is known, we can plot the pointwise errors for the displace-

ment and bone remodeling fields. Using the discretization parameters h = k = 0.001,

these errors are ploted in Figure 2.2 at several times. As it can be seen, the highest

pointwise errors are concentrated near the right end. In Figure 2.3, the evolution in

time of the errors of the displacement and bone remodeling fields at point x = 1 is

shown. As it was expected, the errors increase with respect to the time.
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Figure 2.2: Example P1-1D: Pointwise errors of the displacements and bone remod-
eling fields at several times (h = k = 0.001).
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Figure 2.3: Example P1-1D: Evolution in time of the error of the displacement and
bone remodeling fields at point x = 1.



76 Chapter 2. A strain adaptive bone remodeling model

h ↓ k → 0.1 0.05 0.01 0.005 0.001 0.0005 0.0001
0.1 1.200893 0.662375 0.339569 0.322338 0.315245 0.314803 0.314522
0.05 1.157869 0.592076 0.195785 0.168233 0.157710 0.157261 0.157046
0.01 1.143769 0.567737 0.117164 0.064651 0.033413 0.031921 0.031415
0.001 1.143326 0.566960 0.113821 0.058506 0.019353 0.016692 0.015738
0.001 1.143184 0.566711 0.112730 0.056395 0.011689 0.006449 0.003336
0.0005 1.143180 0.566703 0.112695 0.056330 0.011365 0.005844 0.001933
0.0001 1.143178 0.566700 0.112684 0.056306 0.011260 0.005636 0.001169

Table 2.1: Example P1-1D: Exact errors for some k and h.

The numerical errors, given by

Ehk = max
0≤n≤N

{
‖un − uhk

n ‖V + ‖en − ehk
n ‖Y

}

and obtained for different discretization parameters h and k, are depicted in Table 2.1.

Moreover, the evolution of the error depending on the parameter h + k is plotted in

Figure 2.4. We notice that the numerical convergence is clearly observed and the linear

convergence, stated in Corollary 2.1, is achieved.
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Figure 2.4: Example P1-1D: Asymptotic constant error.
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Numerical results for two-dimensional problems

First two-dimensional example: a linearly increasing compression force

As a first two-dimensional example, we consider a domain Ω = (0, 1.2) × (0, 6) which

is being acted by a linearly increasing compression force with respect to x on the

boundary part [0, 1.2]×{6}. Its maximum magnitude is 50 N/m. The lower horizontal

boundary remains clamped and no volume forces are given in Ω (see Figure 2.5). The

Ω

Γ
N

g

Γ
D

Figure 2.5: Example P1-2D-1: Physical setting.

following data have been employed in this example:

T = 105 days, C(e) =
1

ξ0 + e
(C0 + C1e), a(e) = a0 + a1e + a2e

2,

A(e) = A0 +A1e, ξ0 = 0.892, γ = 1740 Kg/m3, f = 0N/m2,

a0 = 1296× 10−4 (100 days)−1, a1 = −1296× 10−2 (100 days)−1,

a2 = 216× 10−2 (100 days)−1,

where the fourth-order tensors C0 = (C0
ijkl)

2
i,j,k,l=1 and C1 = (C1

ijkl)
2
i,j,k,l=1 and the

second-order tensors A0 = (A0
ij)

2
i,j=1 and A1 = (A1

ij)
2
i,j=1 have the following components
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(see [17]):

C0
1111 = 48 GPa, C0

2211 = 40 GPa, C0
2222 = 54 GPa,

C0
1211 = C0

1222 = 0 GPa, C0
1212 = 7 GPa,

C1
1111 = 90.816 GPa, C1

2211 = 75.68 GPa, C1
2222 = 102.17 GPa,

C1
1211 = C1

1222 = 0 GPa, C1
1212 = 13.244 GPa,

A0
11 = 216 (100days)−1, A0

22 = −216 (100days)−1, A0
12 = A0

21 = 0,

A1
11 = 216 (100days)−1, A1

22 = −216 (100days)−1, A1
12 = A1

21 = 0.

The initial bone remodeling function has the form,

e0(x, y) = 0.01 sin
π y

3
for (x, y) ∈ [0, 1.2]× [0, 6].

Using the time discretization parameter k = 0.01, in Figure 2.6 the displacements

are shown at initial time (left) and after 106 days (right). As can be observed, the dis-

placements decrease since the bone remodeling function is positive and so the stiffness

increases (see Figure 2.7). We have plotted the bone remodeling function at inicial

time, after one iteration and at final time. As can be also seen in the next examples,

after a few iterations the bone remodeling function takes a distribution similar to the

Figure 2.6: Example P1-2D-1: Initial configuration and displacements at initial time
(left) and after 106 days (right).
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last one.
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Figure 2.7: Example P1-2D-1: Bone remodeling function at initial time (left), after
one iteration, t=0.01, and after 106 days (right).

Second two-dimensional example: compression and extension loads

As a second two-dimensional example we consider a similar setting than in the previous

case (see Figure 2.8). The unique differences are: there is not initial bone remodeling

(e0 = 0), the final time is now T = 100 days and the compression force is supposed to

be linearly increasing with respect to x with the following form:

g(x, y, t) = (0,
−10

6
x + 10) N/m if y = 6.

This means that now, the right part of the bone is under compression loads and the

left part is subjected to a traction charge with the same intensity.

Taking k = 0.01 as the time discretization parameter, the displacements fields (mul-

tiplied by 10), at initial time and at final time, and the bone remodeling function after

one iteration and at final time are plotted in Figures 2.9 and 2.10, respectively. As we

can see, the body bends but there is not a recuperation along the time in the displace-

ments. However, the bone remodeling function is positive on the right part since the
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Ω

Γ
N g

Γ
D

Figure 2.8: Example P1-2D-2: Physical setting.

body is compressed there. Hence, the bone is more dense on the right part in order to

support the load over the time, but not stronger enough to reduce the displacements.

Moreover, on the left part the bone remodeling function is negative which means that

the bone is weaker in this area.

Figure 2.9: Example P1-2D-2: Initial configuration and displacements (×10) at initial
time (left) and after 100 days (right).
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Figure 2.10: Example P1-2D-2: Bone remodeling function after one iteration, t=0.01,
and after 100 days (right).

Third two-dimensional example: a compression force

As a final two-dimensional example, we consider a constant compression load of 10MPa

acting on the upper boundary and that the lower horizontal boundary remains clamped

(see Figure 2.11). We assume that the final time is now T = 80 days and the initial

bone remodeling function is e0 = 0.

Ω

Γ
N

g

Γ
D

Figure 2.11: Example P1-2D-3: Physical setting.

Using the time discretization parameter k = 0.01, in Figures 2.12 and 2.13 the
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displacements (multiplied by 10), at initial time and after 80 days, and the bone re-

modeling function at final time are shown. We can observe that there is a decrease

in the displacements because of the bone remodeling which is constant in almost the

whole bone because it is under a compressive load. The minimum values, reached on

the lower boundary, are a consequence of the Dirichlet condition.

Figure 2.12: Example P1-2D-3: Initial configuration and displacements (×10) at
initial time (left) and after 80 days (right).
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Figure 2.13: Example P1-2D-3: Bone remodeling function at final time.
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A three-dimensional example: a linearly compression force

As a first three-dimensional example, we consider the domain Ω = (0, 1.2)× (0, 1.2)×
(0, 6) which is clamped on its lower boundary [0, 1.2] × [0, 1.2] × {0} and acted upon

by a linearly increasing force on the boundary [0, 1.2] × [0, 1.2] × {6} with maximum

intensity P = 30Pa (see Figure 2.14). No volume forces act in the body and we assume

that the initial bone remodeling function is e0 = 0.

Figure 2.14: Example P1-3D-1: Physical setting.

The following data were employed in this example:

T = 114 days, C(e) =
1

ξ0 + e
(C0 + C1e)N/m2, a(e) = a0 + a1e + a2e

2(days)−1,

f = 0N/m3, g(x, y, z, t) = (0, 0, y)N/m2, A(e) = A0 +A1e(days)−1,

ξ0 = 0.892, γ = 1740 Kg/m3, a0 = 1296× 10−4 (100 days)−1,

a1 = −1296× 10−3 (100 days)−1, a2 = 216× 10−2 (100 days)−1,

where the fourth-order tensors C0 = (C0
ijkl)

3
i,j,k,l=1 and C1 = (C1

ijkl)
3
i,j,k,l=1 and the

second-order tensors A0 = (A0
ij)

3
i,j=1 and A1 = (A1

ij)
3
i,j=1 have the following components
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(see [34]):

C0
1111 = 48 GPa, C0

2211 = 40 GPa, C0
2222 = 48 GPa,

C0
3311 = 40 GPa, C0

3322 = 40 GPa, C0
3333 = 54 GPa,

C0
1211 = C0

1222 = C0
1233 = 0 GPa,

C0
1311 = C0

1322 = C0
1333 = C0

1312 = 0 GPa,

C0
2311 = C0

2322 = C0
2333 = C0

2312 = C0
2313 = 0 GPa,

C0
1212 = 4 GPa, C0

1313 = 4 GPa, C0
2323 = 7 GPa,

C1
1111 = 90.816 GPa, C1

2211 = 75.68 GPa, C1
2222 = 90.816 GPa,

C1
3311 = 75.68 GPa, C1

3322 = 75.68 GPa, C1
3333 = 102.17 GPa,

C1
1211 = C1

1222 = C1
1233 = 0 GPa,

C1
1311 = C1

1322 = C1
1333 = C1

1312 = 0 GPa,

C1
2311 = C1

2322 = C1
2333 = C1

2312 = C1
2313 = 0 GPa,

C1
1212 = 7.5680 GPa, C1

1313 = 7.5680 GPa, C1
2323 = 13.244 GPa,

A0
11 = 216 (100days)−1, A0

22 = 216 (100days)−1, A0
33 = −216 (100days)−1,

A1
11 = 216 (100days)−1, A1

22 = 216 (100days)−1, A1
33 = −216 (100days)−1,

A0
ij = A1

ij = 0 if i 6= j.

Taking k = 0.01 as the time discretization parameter, in Figures 2.15 and 2.16 we

plot the displacement field (multiplied by 103), at initial time and at final time, and

the bone remodeling function at final time. Again, we observe that the material is

stronger at final time, because of the bone remodeling, and the deformation decreases.

Moreover, as in the previous examples, the bone remodeling function takes the bigger

values where the body bends and the smaller ones where there is an extension.
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Figure 2.15: Example P1-3D-1: Initial configuration and displacements (×103) at
initial time (left) and after 114 days (right).

Figure 2.16: Example P1-3D-1: Bone remodeling function at final time.
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2.3 A contact problem in a bone remodeling model

Considering the constitutive laws described in the previous section to model the behav-

ior of a bone, a contact problem between a bone and an obstacle is numerically studied

in this section. We note that this situation could model, for instance, the case when

a bone like the femur is in contact with an orthopedic prosthesis. Thus, the so-called

obstacle would represent such prosthesis.

We will consider two different problems, in the first one the obstacle is deformable

and in the second one it is rigid. To model these two situations we use the normal

compliance condition and the classical Signorini condition, respectively.

Our aim in this final section is to prove the convergence of the solution to the problem

with normal compliance contact law to the solution to the Signorini problem, to provide

the numerical analysis of a fully discrete algorithm for both problems and to perform

some numerical simulations.

2.3.1 Mechanical and variational problems

Following the notation of the previous section, let us denote by Ω ⊂ Rd, d = 1, 2, 3,

an open bounded domain and let Γ = ∂Ω be its outer surface which is assumed to be

Lipschitz continuous and it is divided into three disjoint parts ΓD, ΓN and ΓC . The

body is being acted upon by a volume force of density f , it is clamped on ΓD and

surface tractions with density g act on ΓN . Finally, we assume that the body may

come in contact with an obstacle (deformable or rigid) on the boundary part ΓC which

is located at a distance s, measured along the outward unit normal vector ν (see Figure

2.17).

We turn now to the description of the contact conditions. First, we assume that the

contact is produced with a deformable obstacle, and the well-known normal compliance

contact condition is employed (see [52, 54]); that is, the normal stress σν = σν · ν on

ΓC is given by

−σν = pν(uν − s),
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Figure 2.17: A contact problem including bone remodeling.

where uν = u ·ν denotes the normal displacement in such a way that, when uν > s, the

difference uν − s represents the interpenetration of the body’s asperities into those of

the foundation. The normal compliance function pν is prescribed and satisfies pν(r) = 0

for r ≤ 0, since then there is no contact. As an example, one may consider

pν(r) =
1

µ
r+, (2.32)

where µ > 0 represents a deformability constant (that is, it denotes the stiffness of the

obstacle), and r+ = max {0, r}.

Secondly, we assume now that the contact is produced with a rigid obstacle, and the

classical Signorini contact conditions are employed (see [51]); that is,

uν ≤ s, σν ≤ 0, (uν − s)σν = 0.

We remark that the Signorini contact conditions can be understood as the limit of the

normal compliance contact condition when µ → 0 in expresion (2.32).

We also assume that the contact is frictionless for both problems, i.e. the tangential

component of the stress field, denoted στ = σν−σνν, vanishes on the contact surface.
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Again, the model is assumed quasistatic and therefore, the inertia effects are ne-

glected. Moreover, let e0
µ = eµ(t = 0) denote the initial bone remodeling function at

time t = 0 for the normal compliance problem and e0 = e(t = 0) for the Signorini

problem.

Keeping in mind the notation and constitutive laws presented in the previous sec-

tion for Problem P1, if we suppose that the obstacle is deformable, then the strong

formulation of the contact problem is the following.

Problem P1cont
µ . Find the displacement field uµ : Ω× (0, T ) → Rd, the stress field

σµ : Ω × (0, T ) → Sd and the bone remodeling function eµ : Ω × (0, T ) → R such that

eµ(0) = e0
µ and for a.e. t ∈ (0, T ),

σµ(t) = (ξ0 + eµ(t))C(eµ(t))ε(uµ(t)) in Ω, (2.33)

ėµ(t) = a(eµ(t)) +A(eµ(t)) : ε(uµ(t)) in Ω, (2.34)

−Divσµ(t) = γ(ξ0 + ΦL(eµ(t)))f(t) in Ω, (2.35)

uµ(t) = 0 on ΓD, (2.36)

σµ(t)ν = g(t) on ΓN , (2.37)

(σµ)τ (t) = 0, (σµ)ν(t) = −pν((uµ)ν(t)− s) on ΓC . (2.38)

We recall that γ > 0 is assumed to be constant, for the sake of simplicity, and it

represents the density of the full elastic material presented in the bone.

If we assume that the obstacle is rigid and within exactly the same framework of

the previous problem, the strong formulation of the problem with the Signorini contact

conditions is the following.

Problem P1cont. Find the displacement field u : Ω × (0, T ) → Rd, the stress field

σ : Ω × (0, T ) → Sd and the bone remodeling function e : Ω × (0, T ) → R such that
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e(0) = e0 and for a.e. t ∈ (0, T ),

σ(t) = (ξ0 + e(t))C(e(t))ε(u(t)) in Ω, (2.39)

ė(t) = a(e(t)) +A(e(t)) : ε(u(t)) in Ω, (2.40)

−Divσ(t) = γ(ξ0 + ΦL(e(t)))f(t) in Ω, (2.41)

u(t) = 0 on ΓD, (2.42)

σ(t)ν = g(t) on ΓN , (2.43)

στ (t) = 0, uν(t) ≤ s, σν(t) ≤ 0, (uν − s)σν = 0 on ΓC . (2.44)

We observe that in the two equilibrium equations (2.35) and (2.41) the truncation

operator ΦL was applied on the respective bone remodeling functions. This is done

from the mathematical point of view since these functions will be proved to be bounded

(see Theorems 2.4 and 2.5), and so we will can remove it.

We turn now to obtain a variational formulation of both problems P1cont
µ and P1cont.

First, recall that we denote by Y = L2(Ω) and H = [L2(Ω)]d, and the definition of the

variational spaces

V = {v ∈ [H1(Ω)]d ; v = 0 on ΓD},

Q = {τ = (τij)
d
i,j=1 ∈ [L2(Ω)]d×d ; τij = τji, 1 ≤ i, j ≤ d}.

Let U be the admissible mechanical displacement convex set given by

U = {w ∈ V ; wν = w · ν ≤ s on ΓC}.

Let assumptions (2.6)-(2.9) be hold, and assume that the initial values of the bone

remodeling functions e0 and e0
µ verify that

e0, e0
µ ∈ C(Ω), (2.45)



90 Chapter 2. A strain adaptive bone remodeling model

and moreover the normal compliance function pν : ΓC × R −→ R+ satisfies:

(a) There exists Lν > 0 such that

|pν(x, r1)− pν(x, r2)| ≤ Lν |r1 − r2| ∀ r1, r2 ∈ R, a.e. x ∈ ΓC .

(b) The mapping x 7→ pν(x, r) is Lebesgue measurable on ΓC ∀r ∈ R.

(c) (pν(x, r1)− pν(x, r2)) · (r1 − r2) ≥ 0 ∀ r1, r2 ∈ R, a.e. x ∈ ΓC .

(d) The mapping x 7→ pν(x, r) = 0 for all r ≤ 0.

(2.46)

Let us obtain the variational formulation of Problem P1cont
µ . Multiplying the equi-

librium equation (2.35) by a test function v ∈ V , integrating in Ω and applying the

Green’s formula we obtain

∫

Ω

σ : ε(v)dx =

∫

Ω

γ(ξ0 + ΦL(e))f · vdx +

∫

Γ

σν · vdΓ.

Keeping in mind the boundary conditions (2.36) and (2.37) we deduce the relation

∫

Ω

σ : ε(v)dx =

∫

Ω

γ(ξ0 + ΦL(e))f · vdx +

∫

ΓC

σν · vdΓ +

∫

ΓN

g · vdΓ.

Since on the contact boundary ΓC we have σν · v = σνvν (στ = 0), where vν = v · ν,

we obtain the following variational equation

∫

Ω

σ : ε(v)dx =

∫

Ω

γ(ξ0 + ΦL(e))f · vdx +

∫

ΓC

σνvνdΓ +

∫

ΓN

g · vdΓ.

When the normal compliance condition is assumed, we have −σν = pν(uν − s) and

then, we deduce ∫

ΓC

σνvνdΓ = −
∫

ΓC

pν(uν − s)vνdΓ.

Let us define the contact functional j : V × V → R as,

j(u, v) =

∫

ΓC

pν(uν − s) vν dΓ ∀u, v ∈ V.
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Keeping in mind the definition of the bilinear form c(e; ·, ·) : V × V → R,

c(e; u, v) =

∫

Ω

(ξ0 + e)C(e)ε(u) : ε(v) dx ∀u,v ∈ V,

and the linear form L(e; ·) : V → R,

L(e; v) =

∫

Ω

γ(ξ0 + ΦL(e))f · v dx +

∫

ΓN

g · v dΓ ∀v ∈ V

introduced in Section 2.2.1, we then derive the following variational formulation of

Problem P1cont
µ .

Problem VP1cont
µ . Find a displacement field uµ : [0, T ] → V and a bone remodeling

function eµ : [0, T ] → L∞(Ω) such that eµ(0) = e0
µ and for a.e. t ∈ (0, T ),

ėµ(t) = a(eµ(t)) +A(eµ(t)) : ε(uµ(t)), (2.47)

c(eµ(t); uµ(t),v) + j(uµ(t),v) = L(eµ(t); v) ∀v ∈ V. (2.48)

In order to obtain the variational formulation of Problem P1cont, we argue in the

same way but now, we multiply equation (2.41) by v−u, where v ∈ U , and we deduce

the equality

∫

Ω

σ : (ε(v)− ε(u))dx =

∫

Ω

γ(ξ0 + ΦL(e))f · (v − u)dx

+

∫

ΓN

g · (v − u)dΓ +

∫

ΓC

σν(v − u)dΓ.

Moreover, taking into account that στ = 0 on the contact boundary ΓC , we have

σν · (v − u) = σν(vν − uν). Hence, we obtain the following

∫

Ω

σ : (ε(v)− ε(u))dx =

∫

Ω

γ(ξ0 + ΦL(e))f · (v − u)dx

+

∫

ΓN

g · (v − u)dΓ +

∫

ΓC

σν(vν − uν)dΓ.
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Using the boundary conditions (2.44) we deduce

∫

ΓC

σν(vν − uν)dΓ ≥ 0,

and obtain the following variational problem.

Problem VP1cont. Find a displacement field u : [0, T ] → U and a bone remodeling

function e : [0, T ] → L∞(Ω) such that e(0) = e0 and for a.e. t ∈ (0, T ),

ė(t) = a(e(t)) +A(e(t)) : ε(u(t)), (2.49)

c(e(t); u(t), v − u(t)) ≥ L(e(t); v − u(t)) ∀v ∈ U. (2.50)

The following result states the existence of a unique solution to Problem VP1cont.

It can be proved by using similar arguments to those employed in [32] for the case of

an asymptotic bone remodeling rod model with Signorini contact conditions (see also

[57]).

Theorem 2.4 Let the assumptions (2.6)-(2.9) and (2.45) hold. Assume that, for any

given function e ∈ C1([0, T ]; C(Ω)), the unique solution to the following problem:

u(t) ∈ U, c(e(t); u(t), v − u(t)) ≥ L(e(t); v − u(t)) ∀v ∈ U, (2.51)

has the regularity

u ∈ C([0, T ]; [H3(Ω)]d) for d = 2, 3

or the regularity

u ∈ C([0, T ]; H2(Ω)) for d = 1.

Then, there exists a unique solution to Problem VP1cont with the following regularity:

u ∈ C([0, T ]; [C1(Ω)]d), e ∈ C1([0, T ]; C(Ω)).
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Arguing in an analogous way, we also have.

Theorem 2.5 Let the assumptions (2.6)-(2.9), (2.45) and (2.46) hold. Assume that,

for any given function eµ ∈ C1([0, T ]; C(Ω)), the unique solution to the following pro-

blem:

uµ(t) ∈ V, c(eµ(t); uµ(t), v) + j(uµ(t),v) = L(eµ(t); v) ∀v ∈ V, (2.52)

has the regularity

uµ ∈ C([0, T ]; [H3(Ω)]d) for d = 2, 3

or the regularity

u ∈ C([0, T ]; H2(Ω)) for d = 1.

Then, there exists a unique solution to Problem VP1cont
µ with the following regularity:

uµ ∈ C([0, T ]; [C1(Ω)]d), eµ ∈ C1([0, T ]; C(Ω)).

Remark 2.2 We notice that these two existence and uniqueness results, Theorems

2.4 and 2.5, are obtained by assuming that the variational inequality (2.51) or the

variational equation (2.52) have a unique solution with the required regularity u,uµ ∈
C([0, T ]; [H3(Ω)]d) for d = 2, 3 or u,uµ ∈ C([0, T ]; H2(Ω)) for d = 1. The proof of both

results, detailed in [60], is based on the existence and uniqueness result stated in [57]

in the study of bone remodeling problems without contact (see Theorem 2.1). Anyway,

the proof of both theorems, without such assumptions, is not done yet and it remains

as an open problem.

The aim of this section is to prove the convergence of the solution to Problem VP1cont
µ

to the solution to Problem VP1cont when the deformability coefficient µ tends to zero,

considering the normal compliance function pν given by (2.32). Notice that this func-

tion pν satisfies the properties (2.46). This convergence is established in the following
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theorem.

Theorem 2.6 Let the assumptions (2.6)-(2.9), (2.45) and (2.46) hold. Then, the so-

lution (uµ, eµ) to Problem V P1cont
µ converges to the solution (u, e) to Problem VP1cont,

in the space C([0, T ]; V × Y ), when the normal compliance function is given by (2.32)

and the deformability coefficient µ tends to zero; that is,

max
0≤t≤T

{‖uµ(t)− u(t)‖V + ‖eµ(t)− e(t)‖Y } → 0 when µ → 0. (2.53)

Proof In order to simplify the writing and the calculations we assume that s = 0

and that the initial conditions coincide (i.e. e0
µ = e0 for all µ > 0). Clearly, it is

straightforward to extend the results presented below to more general situations.

First, let us estimate the error on the bone remodeling function. Integrating in time

both differential equations (2.47) and (2.49) we have,

e(t) =

∫ t

0

[
a(e(s)) +A(e(s)) : ε(u(s))

]
ds + e0,

eµ(t) =

∫ t

0

[
a(eµ(s)) +A(eµ(s)) : ε(uµ(s))

]
ds + e0.

Subtracting both expressions we find that

‖e(t)− eµ(t)‖Y ≤
∫ t

0

(
‖a(e(s))− a(eµ(s))‖Y

+‖A(e(s)) : ε(u(s))−A(eµ(s)) : ε(uµ(s))‖Y

)
ds.

Using now properties (2.7) it follows that

‖a(e(s))− a(eµ(s))‖Y ≤ La‖e(s)− eµ(s)‖Y ,

‖A(e(s)) : ε(u(s))−A(eµ(s)) : ε(uµ(s))‖Y

≤ ‖A(eµ(s)) : ε(u(s))−A(eµ(s)) : ε(uµ(s))‖Y

+‖A(e(s)) : ε(u(s))−A(eµ(s)) : ε(u(s))‖Y

≤ C(‖u(s)− uµ(s)‖V + ‖eµ(s)− e(s)‖Y ),
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where C, in what follows, is a generic positive constant which depends on the problem

data and, here, it is linearly dependent on the norm ‖ε(u)‖[C(Ω)]d×d . Moreover, the

regularity provided in Theorem 2.4 has been used.

Thus, we obtain that

‖e(t)− eµ(t)‖Y ≤ C

∫ t

0

(
‖u(s)− uµ(s)‖V + ‖eµ(s)− e(s)‖Y

)
ds, (2.54)

where C is independent of µ, t and e.

We proceed now with the mechanical displacement fields. In what follows, we sup-

press the dependence on time to simplify the writing. Taking v = u− uµ ∈ V in the

nonlinear variational equation (2.48) we have

c(eµ; uµ,u− uµ) + j(uµ,u− uµ) = L(eµ; u− uµ),

and using c(e; u, v − uµ + uµ − u) instead of c(e; u,v − u) in (2.50), it follows that

c(e; u,uµ − u) ≥ L(e; v − u)− c(e; u, v − uµ) ∀v ∈ U.

We observe that we can not take v = u−uµ ∈ U in (2.50) because, in general, we can

not guarantee that uµ ∈ U .

Since uν ≤ 0 on ΓC it is easy to check that

j(uµ,u− uµ) = j(uµ,u)− j(uµ,uµ) ≤ 0,

and the previous equations can be rewritten as

c(eµ;−uµ,u− uµ) ≤ −L(eµ; u− uµ),

c(e; u,u− uµ) ≤ L(e; u− v) + c(e; u,v − uµ) ∀v ∈ U.
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Keeping in mind that

−L(eµ; u− uµ) + L(e; u− v) = L(e; u− uµ)− L(eµ; u− uµ)

+L(e; u− v)− L(e; u− uµ) ∀v ∈ U,

and

c(eµ;−uµ,u− uµ) + c(e; u,u− uµ) = c(eµ; u− uµ, u− uµ)

+c(e; u, u− uµ)− c(eµ; u,u− uµ),

adding the previous inequalities and using properties (2.6) and (2.9) we obtain

c(eµ; u− uµ, u− uµ) + c(e; u, u− uµ)− c(eµ; u,u− uµ)

≤ L(e; u− uµ)− L(eµ; u− uµ) + L(e; u− v)

−L(e; u− uµ) + c(e; u, v − uµ),

c(eµ; u− uµ, u− uµ) ≥ C‖u− uµ‖2
V ,

c(e; u, u− uµ)− c(eµ; u,u− uµ) ≤ C‖e− eµ‖2
Y ‖u− uµ‖2

V ,

L(e; u− uµ)− L(eµ; u− uµ) + L(e; u− v)− L(e; u− uµ)

≤ C
(
‖e− eµ‖Y ‖u− uµ‖H + ‖uµ − v‖[L2(ΓN )]d

)
.

Using the inequality (2.22) we find that

‖u− uµ‖2
V ≤ C

(
‖e− eµ‖2

Y + ‖v − uµ‖H + ‖v − uµ‖[L2(ΓN )]d

+c(e; u,v − uµ)
)

∀v ∈ U.

Therefore, we obtain the following estimates for the displacement field

‖u− uµ‖V ≤ C
(
‖e− eµ‖Y + ‖v − uµ‖1/2

H + ‖v − uµ‖1/2

[L2(ΓN )]d

+|c(e; u,v − uµ)|1/2
)

∀v ∈ U.
(2.55)

Combining now estimates (2.54) and (2.55) and using Gronwall’s inequality we conclude
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that

max
0≤t≤T

{
‖u(t)− uµ(t)‖V + ‖e(t)− eµ(t)‖Y

}
≤ C max

0≤t≤T

(
‖v(t)− uµ(t)‖1/2

H

+‖v(t)− uµ(t)‖1/2

[L2(ΓN )]d
+ |c(e(t); u(t), v(t)− uµ(t))|1/2

) (2.56)

for all v ∈ C([0, T ]; U).

Taking into account that j(uµ(t),uµ(t)) ≥ 0, using property (2.6)(d) we find that

mC‖uµ(t)‖2
V ≤ c(eµ(t); uµ(t), uµ(t)) ≤ L(eµ(t); uµ(t)) ≤ C‖uµ(t)‖V ,

and therefore, there exists M > 0, independent of µ, such that

‖uµ(t)‖V ≤ M ∀µ > 0.

Hence, there exists a subsequence of
(
uµ(t)

)
, denoted by

(
uµk

(t)
)
, which is weakly

convergent to an element ũ(t) belonging to V (since V is a closed space). Let us prove

that ũ(t) ∈ U , i.e. we shall verify that ũν(t) = ũ(t) · ν ≤ 0 on ΓC .

Using again properties (2.6) it follows that c(eµk
(t); uµk

(t),uµk
(t)) ≥ 0, and thus we

have,

0 ≤ j(uµk
(t), uµk

(t)) ≤ L(eµk
(t); uµk

(t)) ≤ C‖uµk
(t)‖V ≤ CM,

where C is a positive constant independent of t, µk, u and e.

Taking limits it follows that

0 ≤ lim
µk→0

1

µk

∫

ΓC

[(uµk
(t))ν ]+(uµk

(t))ν dΓ ≤ CM = constant,

and, by Fatou’s lemma, we have

0 ≤
∫

ΓC

lim
µk→0

{
[(uµk

(t))ν ]+(uµk
(t))ν

}
dΓ ≤ lim

µk→0

∫

ΓC

[(uµk
(t))ν ]+(uµk

(t))ν dΓ = 0.

Since uµk
(t) converges strongly to ũ(t) on ΓC (the trace operator from V into [L2(ΓC)]d
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is compact), we find that

∫

ΓC

[ũν(t)]+ũν(t) dΓ = 0, which implies that ũν(t) ≤ 0 on ΓC .

Therefore we have proved that ũ(t) ∈ U .

Keeping in mind that V is compactly embedded in H (Rellich-Kondrachov theorem)

and that the trace operator is also compact from V into [L2(ΓN)]d, the subsequence
(
uµk

(t)
)

is also strongly convergent to ũ(t) in H and its trace is strongly convergent

to the trace of ũ(t) in [L2(ΓN)]d. Moreover, since uµk
(t) ⇀ ũ(t) in V , we have

|c(e(t); u(t), ũ(t)− uµk
(t))|1/2 → 0 as µk → 0,

and taking again v(t) = ũ(t) in (2.56) for µ = µk we conclude that

max
0≤t≤T

{
‖u(t)− uµk

(t)‖V + ‖e(t)− eµk
(t)‖Y

}
→ 0 as µk → 0. (2.57)

Finally, for any other subsequence
(
uµi

(t)
)

of
(
uµ(t)

)
weakly convergent to another

element û(t) ∈ V , we can repeat these arguments and we again obtain that û(t) ∈ U

and so, the limits are equal to zero as in (2.57). Thus we can conclude that (2.57) is

verified for every sequence
(
uµ(t)

)
. ¤

In addition to the mathematical importance of this result, it is interesting to re-

mark that, in applications, from this theorem we can conclude that the solution to

the contact problem with a rigid obstacle may be then approached by the solution to

the contact problem with a deformable foundation, for small obstacle’s deformability

coefficients. This is very important for the applications, since contact problems with

normal compliance give much better results than Signorini problems due to the loss of

the regularity of its solution and they are easier to be solved.
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2.3.2 Numerical analysis of a fully discrete scheme

We now introduce a finite element algorithm for approximating solutions of both varia-

tional problems VP1cont and VP1cont
µ and derive an error estimate on them.

The discretization of the two variational problems is done in two steps. First, we

consider two finite dimensional spaces V h ⊂ V and Bh ⊂ L∞(Ω) ⊂ Y , approximating

the spaces V and L∞(Ω), respectively. Here, h > 0 denotes the spatial discretization

parameter. Moreover, we define the discrete admissible displacement convex set Uh =

U ∩ V h; that is,

Uh = {wh ∈ V h ; wh
ν = wh · ν ≤ sh on ΓC},

where sh is an appropriate approximation of the gap function s.

Secondly, the time derivatives are discretized by using a uniform partition of the

time interval [0, T ], denoted by 0 = t0 < t1 < . . . < tN = T , and let k be the time step

size, k = T/N . Moreover, for a continuous function f(t) we let fn = f(tn).

In this section, no summation is assumed over a repeated index, and C denotes a

positive constant which depends on the problem data, but it is independent of the

discretization parameters h and k.

Using the forward Euler scheme, the fully discrete approximations of problems

VP1cont and VP1cont
µ are as follows.

Problem VP1cont,hk. Find a discrete displacement field uhk = {uhk
n }N

n=0 ⊂ Uh and

a discrete bone remodeling function ehk = {ehk
n }N

n=0 ⊂ Bh such that ehk
0 = eh

0 and for

n = 1, . . . , N ,

c(ehk
n ; uhk

n ,vh − uhk
n ) ≥ L(ehk

n ; vh − uhk
n ) ∀vh ∈ Uh, (2.58)

ehk
n − ehk

n−1

k
= a(ehk

n−1) +A(ehk
n−1) : ε(uhk

n−1), (2.59)

where eh
0 is an appropriate approximation of the initial condition e0 and uhk

0 is defined
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as the solution to the following problem,

uhk
0 ∈ Uh, c(eh

0 ; u
hk
0 ,vh − uhk

0 ) ≥ L(eh
0 ; v

h − uhk
0 ) ∀vh ∈ Uh. (2.60)

Problem VP1cont,hk
µ . Find a discrete displacement field uhk

µ = {(uµ)hk
n }N

n=0 ⊂ V h

and a discrete function ehk
µ = {(eµ)hk

n }N
n=0 ⊂ Bh such that (eµ)hk

0 = eh
0 and for n =

1, . . . , N ,

c((eµ)hk
n ; (uµ)hk

n ,vh) + j((uµ)hk
n , vh) = L((eµ)hk

n ; vh) ∀vh ∈ V h, (2.61)

(eµ)hk
n − (eµ)hk

n−1

k
= a((eµ)hk

n−1) +A((eµ)hk
n−1) : ε((uµ)hk

n−1), (2.62)

where eh
0 is an appropriate approximation of the initial condition e0 (which we assumed,

as in the previous section, equal to the initial condition for the Signorini’s problem)

and (uµ)hk
0 is the solution to the following problem,

(uµ)hk
0 ∈ V h, c((eµ)h

0 ; (uµ)hk
0 ,vh) + j((uµ)hk

0 , vh) = L((eµ)h
0 ; v

h) ∀vh ∈ V h.

From the properties (2.6), using classical results on nonlinear variational equations and

elliptic variational inequalities (see [44]), it is straightforward to obtain the existence

and uniqueness of solution to both fully discrete problems.

The aim of this section is to derive a priori error estimates on the numerical errors

‖un − uhk
n ‖V and ‖en − ehk

n ‖Y , in the Problem VP1cont,hk, and ‖(uµ)n − (uµ)hk
n ‖V and

‖(eµ)n − (eµ)hk
n ‖Y in the Problem VP1cont,hk

µ . Therefore, we have first the following.

Theorem 2.7 Let assumptions (2.6)-(2.10) and (2.46) hold and denote by (u, e) and

(uhk, ehk) the respective solutions to problems VP1cont and VP1cont,hk. Then we have,

for all {vh
n}N

n=0 ⊂ Uh,

max
0≤n≤N

{‖en − ehk
n ‖2

Y + ‖un − uhk
n ‖2

V } ≤ C
(
‖e0 − eh

0‖2
Y + ‖u0 − uhk

0 ‖2
V
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+k

N∑
j=1

[
‖ėj − δej‖2

Y + ‖uj − uj−1‖2
V

]
+ k2 + max

0≤n≤N
‖un − vh

n‖V

+ max
0≤n≤N

‖un − vh
n‖2

V

)
, (2.63)

where the notation δej = (ej − ej−1)/k is employed.

Proof First, we recall that an error estimates on the function e were already esta-

blished in the previous section (see Theorem 2.3). It was proved the following:

‖en − ehk
n ‖Y ≤ ‖e0 − eh

0‖Y + Ck + Ck

n∑
j=1

[
‖ej−1 − ehk

j−1‖Y

+‖ėj − δej‖Y + ‖uj−1 − uhk
j−1‖V + ‖uj − uj−1‖V

]
.

(2.64)

Next, let us estimate the numerical errors on the displacement field. Thus, we write

variational inequality (2.50) at time t = tn for v = uhk
n ∈ Uh ⊂ U to obtain,

c(en; un,uhk
n − un) ≥ L(en; uhk

n − un). (2.65)

Then, we rewrite variational inequality (2.58) in the form,

c(ehk
n ; uhk

n , un − uhk
n ) ≥ L(ehk

n ; vh − uhk
n ) + c(ehk

n ; uhk
n ,un − vh) ∀vh ∈ Uh. (2.66)

Subtracting (2.65) and (2.66), we find that

c(en; un,un − uhk
n )− c(ehk

n ; uhk
n ,un − uhk

n ) ≤ L(en; un − uhk
n ) + L(ehk

n ; uhk
n − vh)

+c(ehk
n ; uhk

n ,vh − un).

Using property (2.6) it follows that

c(ehk
n ; un − uhk

n , un − uhk
n ) ≥ C‖un − uhk

n ‖2
V ,

c(en; un,un − uhk
n )− c(ehk

n ; uhk
n , un − uhk

n ) = c(ehk
n ; un − uhk

n ,un − uhk
n )

+c(en; un,un − uhk
n )− c(ehk

n ; un, un − uhk
n ),



102 Chapter 2. A strain adaptive bone remodeling model

c(en; un,un − uhk
n )− c(ehk

n ; un, un − uhk
n ) ≤ C‖en − ehk

n ‖Y ‖un − uhk
n ‖V ,

L(en; un − uhk
n ) + L(ehk

n ; uhk
n − vh) = L(en; un − uhk

n )− L(ehk
n ; un − uhk

n )

+L(ehk
n ; un − uhk

n ) + L(ehk
n ; uhk

n − vh)

≤ C‖en − ehk
n ‖Y ‖un − uhk

n ‖H + C‖un − vh‖H

c(ehk
n ; uhk

n , vh − un) = c(ehk
n ; un,vh − un) + c(ehk

n ; uhk
n − un,vh − un)

≤ C
(‖un − vh‖V + ‖un − uhk

n ‖V ‖un − vh‖V

)
,

and applying several times the inequality (2.22) it yields

‖un − uhk
n ‖2

V ≤ C
(‖en − ehk

n ‖2
Y + ‖un − vh‖V + ‖un − vh‖2

V

) ∀vh ∈ Uh. (2.67)

Combining (2.64) and (2.67) we have, for all vh
n ∈ Uh,

‖un − uhk
n ‖2

V + ‖en − ehk
n ‖2

Y ≤ C
(
‖un − vh

n‖V + ‖un − vh
n‖2

V + ‖e0 − eh
0‖2

Y

+k2 +
n∑

j=1

k
[‖ėj − δej‖2

Y + ‖ej−1 − ehk
j−1‖2

Y + ‖uj−1 − uhk
j−1‖2

V + ‖uj − uj−1‖2
V

] )
,

and using now a discrete version of Gronwall’s inequality (see Lemma 2.1) with

En = ‖un − uhk
n ‖2

V + ‖en − ehk
n ‖2

Y ,

E0 = g0 = ‖u0 − uhk
0 ‖2

V + ‖e0 − eh
0‖2

Y

gn = ‖e0 − eh
0‖2

Y + k2 +
n∑

j=1

k
[‖ėj − δej‖2

Y + ‖uj − uj−1‖2
V

]

+‖un − vh
n‖V + ‖un − vh

n‖2
V ,

we conclude error estimates (2.20). ¤

We prove now an error estimates result for the solutions to problems VP1cont
µ and

VP1cont,hk
µ .

Theorem 2.8 Let assumptions (2.6)-(2.9), (2.45) and (2.46) hold. Let ((uµ), (eµ))



2.3. A contact problem in a bone remodeling model 103

and ((uµ)hk, (eµ)hk) denote the respective solutions to problems VP1cont
µ and VP1cont,hk

µ .

Then we have, for all {vh
n}N

n=0 ⊂ V h,

max
0≤n≤N

{‖(eµ)n − (eµ)hk
n ‖2

Y + ‖(uµ)n − (uµ)hk
n ‖2

V } ≤ C‖(eµ)0 − (eµ)h
0‖2

Y

+C
(
k

N∑
j=1

[
‖(ėµ)j − δ(eµ)j‖2

Y + ‖(uµ)j − (uµ)j−1‖2
V

]

+k2 + max
1≤n≤N

‖(uµ)n − vh
n‖2

V + ‖(uµ)0 − (uµ)hk
0 ‖2

V

)
, (2.68)

where the notation δ(eµ)j = ((eµ)j − (eµ)j−1)/k is employed.

Proof Again, we recall that an error estimates on the function eµ were already

established:

‖(eµ)n − (eµ)hk
n ‖Y ≤ C‖(eµ)0 − (eµ)h

0‖Y + Ck + Ck

n∑
j=1

[
‖(eµ)j−1 − (eµ)hk

j−1‖Y

+‖(ėµ)j − δ(eµ)j‖Y + ‖(uµ)j−1 − (uµ)hk
j−1‖V + ‖(uµ)j − (uµ)j−1‖V

]
.

(2.69)

Next, let us estimate the numerical errors on the displacement field. Thus, we write

equation (2.48) at time t = tn for all v = vh ∈ V h ⊂ V and we subtract it to equation

(2.61) to obtain,

c((eµ)n; (uµ)n, v
h) + j((uµ)n, v

h)− L((eµ)n; vh)

−c((eµ)hk
n ; (uµ)hk

n , vh)− j((uµ)hk
n ,vh) + L((eµ)hk

n ; vh) = 0.

Therefore, we find that, for all vh ∈ V h,

c((eµ)n; (uµ)n, (uµ)n − (uµ)hk
n ) + j((uµ)n, (uµ)n − (uµ)hk

n )

−L((eµ)n; (uµ)n − (uµ)hk
n )− c((eµ)hk

n ; (uµ)hk
n , (uµ)n − (uµ)hk

n )

−j((uµ)hk
n , (uµ)n − (uµ)hk

n ) + L((eµ)hk
n ; (uµ)n − (uµ)hk

n )

= c((eµ)n; (uµ)n, (uµ)n − vh) + j((uµ)n, (uµ)n − vh)− L((eµ)n; (uµ)n − vh)

−c((eµ)hk
n ; (uµ)hk

n , (uµ)n − vh)− j((uµ)hk
n , (uµ)n − vh) + L((eµ)hk

n ; (uµ)n − vh).
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Since

c((eµ)n; (uµ)n, (uµ)n − vh)− c((eµ)hk
n ; (uµ)hk

n , (uµ)n − vh)

= c((eµ)hk
n ; (uµ)n − (uµ)hk

n , (uµ)n − vh) + c((eµ)n; (uµ)n, (uµ)n − vh)

−c((eµ)hk
n ; (uµ)n, (uµ)n − vh) ∀vh ∈ V h,

from assumption (2.6)(d) it follows that

c((eµ)hk
n ; (uµ)n − (uµ)hk

n , (uµ)n − (uµ)hk
n ) ≥ mC‖(uµ)n − (uµ)hk

n ‖2
V .

Moreover, taking into account that (see (2.46)),

j((uµ)n, (uµ)n − (uµ)hk
n )− j((uµ)hk

n , (uµ)n − (uµ)hk
n ) ≥ 0,

j((uµ)n, (uµ)n − vh)− j((uµ)hk
n , (uµ)n − vh) ≤ C‖(uµ)n − (uµ)hk

n ‖V ‖(uµ)n − vh‖V ,

keeping in mind properties (2.6) and (2.9) we obtain for all vh ∈ V h,

mC‖(uµ)n − (uµ)hk
n ‖2

V ≤ ‖fn‖[C(Ω)]d‖(eµ)n − (eµ)hk
n ‖Y ‖(uµ)n − (uµ)hk

n ‖V

+‖(uµ)n‖[C1(Ω)]d‖(eµ)n − (eµ)hk
n ‖Y ‖(uµ)n − (uµ)hk

n ‖V

+MC‖(uµ)n − (uµ)hk
n ‖V ‖(uµ)n − vh‖V

+‖(uµ)n‖[C1(Ω)]d‖(eµ)n − (eµ)hk
n ‖Y ‖(uµ)n − vh‖V

+‖fn‖[C(Ω)]d‖(eµ)n − (eµ)hk
n ‖Y ‖(uµ)n − vh‖V .

Using again several times the inequality (2.22), we have the following error estimates

for the displacement field,

‖(uµ)n − (uµ)hk
n ‖2

V ≤ C(‖(eµ)n − (eµ)hk
n ‖2

Y + ‖(uµ)n − vh‖2
V ) ∀vh ∈ V h. (2.70)
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Combining (2.69) and (2.70), we find that

‖(eµ)n − (eµ)hk
n ‖2

Y + ‖(uµ)n − (uµ)hk
n ‖2

V ≤ C‖(eµ)0 − (eµ)h
0‖2

Y + C‖(uµ)0 − (uµ)hk
0 ‖2

V

+Ck2 + Ck

n∑
j=1

[
‖(eµ)j−1 − (eµ)hk

j−1‖2
Y + ‖(uµ)j − (uµ)j−1‖2

V + ‖ ˙(eµ)j − δ(eµ)j‖2
Y

+‖(uµ)j−1 − (uµ)hk
j−1‖2

V

]
+ C‖(uµ)n − vh

n‖2
V ∀vh

n ∈ V h.

Finally, using a discrete version of Gronwall’s inequality (see Lemma 2.1), it leads to

(2.68). ¤

Error estimates (2.63) and (2.68) are the basis for the convergence rate of the algo-

rithm.

Let Ω be a polyhedral domain and denote by T h a triangulation of Ω compatible

with the partition of the boundary Γ = ∂Ω into ΓD, ΓN and ΓC .

Let V h and Bh consist of continuous and piecewise affine functions and piecewise

constant functions; that is,

V h = {vh ∈ [C(Ω)]d ; vh
|Tr
∈ [P1(Tr)]d, T r ∈ T h, vh = 0 on ΓD}, (2.71)

Bh = {ξh ∈ L∞(Ω) ; ξh
|Tr
∈ P0(Tr), T r ∈ T h}, (2.72)

and define the discrete initial condition by eh
0 = πhe0 and (eµ)h

0 = πh(eµ)0, where

πh : C(Ω) → Bh is the standard finite element interpolation operator (see, e.g., [13]).

Assume the additional regularity conditions

e, eµ ∈ C([0, T ]; H1(Ω)) ∩H2(0, T ; Y ),

u,uµ ∈ C1([0, T ]; V ) ∩ C([0, T ]; [H2(Ω)]d).

(2.73)

We have the following corollary which states the linear convergence of the solution

to Problem VP1cont,hk under adequate regularity conditions.
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Corollary 2.2 Let the assumptions of Theorem 2.7 hold. Under the additional regu-

larity condition (2.73), the solution to the discrete scheme VP1cont,hk verifies

max
0≤n≤N

{‖un − uhk
n ‖V + ‖en − ehk

n ‖Y } ≤ C(h1/2 + k), (2.74)

where C > 0 is a positive constant independent of h and k.

Moreover, if we also assume that

σν ∈ L∞(0, T ; L2(ΓC)), uν ∈ L∞(0, T ; H2(ΓC)),

the fully discrete scheme is linearly convergent; that is, we derive the optimal error

order estimate

max
0≤n≤N

{‖un − uhk
n ‖V + ‖en − ehk

n ‖Y } ≤ C(h + k). (2.75)

The proof of Corollary 2.2 is done taking into account the well-known approximation

properties of the finite element space V h (see [13]),

max
1≤n≤N

inf
vh

n∈V h
‖un − vh

n‖V ≤ Ch‖u‖C([0,T ];[H2(Ω)]d),

the straighforward estimates

k

N∑
j=1

[
‖ėj − δej‖2

Y + ‖uj − uj−1‖2
V

]
≤ Ck2

(
‖e‖2

H2(0,T ;Y ) + ‖u‖2
C1([0,T ];V )

)
,

and the definition of the discrete initial condition eh
0 ,

‖e0 − eh
0‖2

Y ≤ Ch2‖e‖2
C([0,T ];H1(Ω)).

Finally, proceeding as in (2.67) we easily find that

‖u0 − uhk
0 ‖2

V ≤ C
(‖e0 − eh

0‖2
Y + ‖u0 − vh‖V + ‖u0 − vh‖2

V

) ∀vh ∈ Uh,
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and, from the previous estimates, we deduce (2.74).

The second part of Corollary 2.2, the linear convergence stated in (2.75), is obtained

remaining the term on the contact boundary in the variational problem. Then, the

variational inequality (2.65) is replaced by

c(en; un,uhk
n − un) = L(en; uhk

n − un) +

∫

ΓC

σν((u
hk
n )ν − (un)ν)dΓ,

and taking into account the regularity σν ∈ L∞(0, T ; L2(ΓC)) we obtain

∫

ΓC

σν((u
hk
n )ν − (un)ν)dΓ ≤ ‖σν‖L2(ΓC)‖((uhk

n )ν − (un)ν) · ν‖L2(ΓC).

Finally applying the estimate (see again [13]),

max
1≤n≤N

inf
vh

n∈V h
‖(un − vh

n) · ν‖L2(ΓC) ≤ Ch2‖u‖L∞(0,T ;H2(ΓC))

we obtain (2.75). ¤

Arguing in a analogous way, we also have the following corollary for Theorem 2.8.

Corollary 2.3 Let the assumptions of Theorem 2.8 hold. Under the additional regu-

larity condition (2.73), the fully discrete scheme VP1hk
µ is linearly convergent, that is,

there exist a positive constant C, independent of h and k, such that

max
0≤n≤N

{‖(uµ)n − (uµ)hk
n ‖V + ‖(eµ)n − (eµ)hk

n ‖Y } ≤ C(h + k). (2.76)

Its proof is obtained proceeding as for Corollary 2.2.

2.3.3 Numerical results

In this section we first describe shortly the numerical scheme which we have imple-

mented to solve both contact problems, and then we present some numerical examples



108 Chapter 2. A strain adaptive bone remodeling model

to exhibit its accuracy and its performance in one, two and three dimensions.

Numerical scheme

To approximate the spaces V and L∞(Ω) we use the finite element spaces V h and Bh

defined by (2.71) and (2.72), respectively.

First, for Problem VP1cont,hk
µ , (uµ)hk

n is obtained solving the following nonlinear va-

riational equation,

(uµ)hk
n ∈ V h, c((eµ)hk

n ; (uµ)hk
n ,vh) + j((uµ)hk

n , vh) = L((eµ)hk
n ; vh) ∀vh ∈ V h.

This leads to a nonlinear variational equation which was solved by using a penalty-

duality algorithm introduced in [9] and already applied in other contact problems.

Next, let n ∈ {1, . . . , N} and assume that (uµ)hk
n−1 and (eµ)hk

n−1 are known. The

discrete bone remodeling function (eµ)hk
n is given by

(eµ)hk
n = (eµ)hk

n−1 + ka((eµ)hk
n−1) + kA((eµ)hk

n−1) : ε((uµ)hk
n−1).

Problem VP1cont,hk was solved in an analogous way. The discrete displacement field

uhk
n is obtained solving the following elliptic variational inequality,

uhk
n ∈ Uh, c(ehk

n ; uhk
n , vh − uhk

n ) ≥ L(ehk
n ; vh − uhk

n ) ∀vh ∈ Uh.

Again, the above penalty-duality algorithm was applied for solving it.

Next, let n ∈ {1, . . . , N} and assume that uhk
n−1 and ehk

n−1 are known. The discrete

bone remodeling function is given by

ehk
n = ehk

n−1 + ka(ehk
n−1) + kA(ehk

n−1) : ε(uhk
n−1).
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A one-dimensional example: the numerical convergence

As a first one-dimensional example, the following problem is considered.

Problem P1cont-1D. Find a displacement field u : [0, 1] × [0, 1] → R and a bone

remodeling function e : [0, 1]× [0, 1] → R such that

− ∂

∂x

(
e
∂u

∂x

)
(x, t) =

1740

2
(
1

2
+ e(x, t))

×−4xt e2t − 2e2t(2xt + 1)

870 + 1740et(2xt + 1)
x ∈ (0, 1), t ∈ (0, 1),

ė(x, t) = e(x, t) +
∂u

∂x
(x, t) x ∈ [0, 1], t ∈ [0, 1],

u(0, t) = 0 t ∈ (0, 1),(
e
∂u

∂x

)
(1, t) = −1000 max{u(1, t), 0} t ∈ (0, 1),

e(1, t)
∂u

∂x
(1, t) = 2 e2t(2t + 1) t ∈ (0, 1),

e(x, 0) = 1 x ∈ [0, 1],

which corresponds to consider Problem P1cont
µ with the following data:

Ω = (0, 1), ΓD = {0}, ΓN = ∅, ΓC = {1}, T = 1 s, C(e) =
e

ξ0 + e
,

a(e) = e, A(e) = 1, ξ0 =
1

2
, γ = 1740,

f(x, t) =
1740

2
(
1

2
+ e(x, t))

−4xt e2t − 2e2t(2xt + 1)

870 + 1740et(2xt + 1)
x ∈ [0, 1], t ∈ [0, 1],

pν(r) =
1

µ
max{r, 0}, µ = 10−3, s = 0 m.

We notice that coefficients C(e) and a(e) do not satisfy properties (2.6) and (2.7) since

they are not bounded. However, this is easily done by using truncation operator ΦL.

Anyway, we assume that constant L is large enough (L = 106), and the truncation

does not modify the results presented below.

Our aim here is to show the numerical convergence of the algorithm. Therefore,

several uniform partitions of both the time interval and the domain, dividing Ω =

(0, 1) into n segments, have been performed. We note that the spatial discretization
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parameter h equals to 1
n
, and we used the solution obtained with h = 1

4096
and k =

0.0001 as the “exact solution”.

The numerical errors, given by

Ehk = max
0≤n≤N

{
‖(uµ)n − (uµ)hk

n ‖V + ‖(eµ)n − (eµ)hk
n ‖Y

}

and obtained for different discretization parameters h and k, are depicted in Table

2.2. Moreover, the evolution of the error depending on h + k is plotted in Figure 2.18.

We notice that the convergence of the algorithm is clearly observed, and the linear

convergence, stated in Corollary 2.3, is also achieved.

n ↓ k → 0.1 0.05 0.01 0.005 0.001 0.0005 0.0001
2 0.954803 0.911805 0.899980 0.900148 0.900290 0.900192 0.900152
4 0.663977 0.599267 0.580571 0.580788 0.580943 0.580802 0.580754
8 0.505779 0.416137 0.388340 0.388659 0.388843 0.388636 0.388569
16 0.423963 0.306701 0.266201 0.266647 0.266883 0.266581 0.266486
32 0.382092 0.243081 0.185913 0.185691 0.185992 0.185558 0.185421
64 0.361165 0.206235 0.131184 0.130510 0.130847 0.130224 0.130028
128 0.352379 0.186833 0.093746 0.092400 0.092719 0.091829 0.091547

Table 2.2: Example P1cont-1D: Numerical errors for some h and k.

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.05

0.1

0.15
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0.25
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0.35

h+k

E
h

k

Numerical errors

Figure 2.18: Example P1cont-1D: Asymptotic constant of error.
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Numerical results in two-dimensional problems: a compression force

As a two-dimensional example, we consider the domain Ω = (0, 6) × (0, 1.2) which is

clamped on the boundary part ΓD = {0}×[0, 1.2]. No volume forces are supposed to act

in the body, a linearly increasing surface force acts on the boundary part [0, 6]×{1.2}
and, finally, the body is supposed to be in contact with a rigid obstacle on the contact

boundary ΓC = [0, 6]× {0} (see Figure 2.19).

Obstacle

Figure 2.19: Example P1cont-2D: Physical setting.

The following data were employed in this example:

T = 78 days, µ = 0, s = 0 m, γ = 1740 Kg/m3,

f = 0N/m3, g(x, y, t) = (0,−5x) N/m2.

The bone remodeling coefficients and elasticity parameters can be seen in Section 2.2.3.

Moreover, we assume that the initial bone remodeling function is given by

e0(x, y) = 0.01sin(
πy

3
) ∀(x, y) ∈ (0, 6)× (0, 1.2).

Taking k = 0.01 as the time discretization parameter, the displacements field (multi-

plied by 10) and the reference configuration are plotted in Figure 2.20 at initial time

(left) and after 78 days (right). We observe that the deformation has decreased and

that no penetration into the obstacle has been produced, because we are considering

a rigid obstacle. Moreover, in Figure 2.21 the bone remodeling function is shown at

initial time (left) and at final time (right). As can be seen, the bone remodeling func-
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Figure 2.20: Example P1cont-2D: Initial configuration and displacements at initial
time (left) and after 78 days (right).

tion is positive on the right part which caused that the stiffness increases and so the

displacements decrease there.

1 2 3 4 5 6 7 8 9

x 10
−3

0.02 0.04 0.06 0.08 0.1

Figure 2.21: Example P1cont-2D: Bone remodeling function at initial time (left) and
after 78 days (right).

In order to show the differences when the obstacle is assumed deformable or rigid, we

have plotted in Figure 2.22 the displacement field, multiplied by 10 (left), and the bone

remodeling function (right) for a deformable obstacle with a deformability coefficient

µ = 0.5 at final time. We notice that, if we assume that the obstacle is deformable,

a clear penetration is produced into the obstacle and the bone remodeling function

reaches smaller values on the left part.
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0 0.02 0.04 0.06 0.08 0.1

Figure 2.22: Example P1cont-2D: Displacements at final time (left) and the bone
remodeling function (right) for a deformable obstacle.

Moreover, the transverse mechanical displacement of the contact boundary is plotted

in Figure 2.23 at final time for different values of µ. As can be seen, the displacements

on the left node is zero because of the Dirichlet condition and on the others nodes

converges to zero when µ → 0.

0 1 2 3 4 5 6
−8

−7
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−4

−3

−2

−1

0

1
x 10

−3

x

u µ(x
,0

,T
)

µ=0.5

µ=0.25

µ=0.125

µ=0.0625

µ=0.03125
Signorini

Figure 2.23: Example P1cont-2D: Displacements of the contact boundary depending
on µ.

Finally, in Figure 2.24 we depict the convergence of the bone remodeling function,

assuming the contact with a deformable obstacle for different deformability coefficients.

For this function, the differences are located on the left part. As can be seen, if the

obstacle is assumed deformable, then the bone remodeling function has smaller values,

even negative. We can also observe the convergence to the solution of the Signorini
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problem.

0 1 2 3 4 5 6
−0.02

0

0.02
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µ=0.03125
Signorini

Figure 2.24: Example P1cont-2D: Bone remodeling function, on the contact boundary,
depending on µ.



Chapter 3

Bone remodeling induced by a local

stimulus

In this chapter, we use the bone remodeling model analyzed in [66] by Weinans, Huiskes

and Grootenboer in 1992, which is based on the principle that bone remodeling is in-

duced by a local mechanical signal which activates the regulating cells (osteoblasts and

osteoclasts); that is, the bone has sensors, which can detect a mechanical stimulus,

and, depending on its magnitude, cause local bone adaptations. The main idea of this

model is to use the apparent density as the characterization of the internal morphology.

Here, our aim is to continue [66], providing the numerical analysis of a fully discrete

algorithm, proving an error estimate result, establishing its linear convergence under

some regularity conditions and performing some numerical simulations. Moreover, we

notice that the results provided below have been published in [23] and, although we

did not include it in this Ph.D. thesis for the clarity of presentation, the numerical

analysis of a contact problem between a bone modeled with this law and a deformable

obstacle was recently submitted (see [29]).

115
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3.1 The model

According to [66], the rate of change of the apparent density in a bone, is given by

a function ρ = ρ(x, t) and described as an objective function which depends on a

particular stimulus at point x.

In the previous chapter it was assumed a relationship in which the adaptation of

the bone was coupled directly to deviations of the strain tensor. This implicates that

the normal stimulus distribution must be known or be determined from a normal

equilibrium density distribution. However, the original ideas of Wolff implied more

issues than just this notion of bone remodeling due to deviations in its normal stress

environment. Therefore, following the ideas of Fyhrie and Carter (see [40]), a different

definition for the mechanical stimulus is considered by Weinans et al. in [66]. They

postulate that this stimulus is related to the Strain Energy Density (SED) and the

bone would adopt its apparent density locally for any loading environment, in order to

normalize a predestined effective stress value.

The SED value in the trabeculae was approximated by U/ρ, where U is the apparent

SED in the bone when it is assumed continuous and ρ, as mentioned above, is the

apparent density. Hence, U/ρ represents the strain energy per unit of bone mass.

Moreover, since this function is a remodeling objective, it is assumed that this goal is

only valid for ρa ≤ ρ ≤ ρb, where ρa represents the minimal density corresponding to

the reabsorved bone and ρb is the maximal density of cortical bone. We notice that

in all the examples presented in Section 3.4, we have used the values ρa = 0.01 g/cm3

and ρb = 1.74 g/cm3 (see [66]). Thus, such a remodeling objective is incorporated into

the time-dependent equation for the apparent density and it leads to the following

nonlinear first-order ODE for the apparent density (see [8, 47, 49, 65]):

ρ̇ = B

(
U(σ(u), ε(u))

ρ
− Sr

)
, ρa ≤ ρ ≤ ρb,
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where B and Sr are given constants and U is the mechanical stimulus given by

U(σ(u), ε(u)) =
1

2
σ(u) : ε(u).

This equation means that the points in which the density reaches the minimum or

maximum value, the remodeling process stops. On the other points, the system is in

equilibrium when the stimulus reaches the reference value Sr.

According to [66], the bone is assumed elastic and the constitutive law is written as

follows,

σ = σ(u) = 2 µ(ρ)ε(u) + λ(ρ)Div (u)I,

where I denotes the identity operator in Sd, Div represents the divergence operator

and µ(ρ) and λ(ρ) are Lame’s coefficients of the material, which are assumed to depend

on the apparent density of the bone ρ. We recall that these coefficients are related to

Young’s modulus E(ρ) and Poisson’s ratio κ(ρ) through the relations:

µ(ρ) =
E(ρ)

2(1 + κ(ρ))
,

and

λ(ρ) =
κ(ρ)E(ρ)

1− κ2(ρ)

if the plane stress hypothesis is assumed, or

λ(ρ) =
κ(ρ)E(ρ)

(1 + κ(ρ))(1− 2κ(ρ))

if the plane strain hypothesis is used or if the three-dimensional case is considered.

Notice that we are using the constitutive law for elastic materials but, in this case, we

assume the Poisson’s ratio is independent of ρ, κ(ρ) = κ, and the following equation is

used for Young’s modulus depending on the apparent density:

E(ρ) = Mργ,



118 Chapter 3. Bone remodeling induced by a local stimulus

where M and γ are positive constants which characterize the bone behavior.

Finally, as usual in bone remodeling models, the process is assumed quasistatic and

therefore, the inertia effects are neglected. Moreover, let ρ0 denote the initial apparent

density function.

3.2 Mechanical and variational problems

From the constitutive laws introduced in the previous section, we obtain the following

mechanical problem, derived from the continuum mechanics laws in the framework of

the small displacements theory (see [66]).

Problem P2. Find a displacement field u : Ω× [0, T ] → Rd and an apparent density

function ρ : Ω× [0, T ] → [ρa, ρb] such that ρ(0) = ρ0 and,

ρ̇ = B

(
U(σ(u), ε(u))

ρ
− Sr

)
in Ω× (0, T ), (3.1)

−Divσ(u) = f in Ω× (0, T ), (3.2)

u = 0 on ΓD × (0, T ), (3.3)

σν = g on ΓN × (0, T ), (3.4)

where Lame’s coefficients λ(ρ) and µ(ρ) were defined above and the stress field σ(u) :

Ω× [0, T ] → Sd is given by

σ(u) = 2 µ(ρ)ε(u) + λ(ρ)Div (u)I in Ω× [0, T ]. (3.5)

We turn now to obtain a variational formulation of Problem P2. As in the previous

chapter, let us denote Y = L2(Ω) and H = [L2(Ω)]d, and define the following spaces
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equipped with the product norms derived from usual norms in Sobolev spaces:

V = {v = (vi)
d
i=1 ∈ [H1(Ω)]d ; v = 0 on ΓD},

Q = {τ = (τij)
d
i,j=1 ∈ [L2(Ω)]d×d ; τij = τji, 1 ≤ i, j ≤ d}.

The following assumptions are required on the problem data.

(i) The density forces have the regularity:

f ∈ C([0, T ]; [C(Ω)]d), g ∈ C([0, T ]; [C(ΓN)]d). (3.6)

(ii) The initial apparent density ρ0 satisfies the following conditions:

ρ0 ∈ C(Ω), ρa ≤ ρ0(x) ≤ ρb for all x ∈ Ω. (3.7)

For every ρ ∈ L∞(Ω), let us define the following bilinear form c(ρ; ·, ·) : V × V → R

given by

c(ρ; u, v) =

∫

Ω

2µ(ρ)ε(u) : ε(v) + λ(ρ)Tr(ε(u))Tr(ε(v)) dx, ∀u, v ∈ V,

where Tr denotes the trace operator defined as Tr(τ ) =
d∑

i=1

τii for all τ = (τij)
d
i,j=1.

Also we introduce the linear form L : V → R given by

L(v) =

∫

Ω

f · v dx +

∫

ΓN

g · v dΓ, ∀v ∈ V.

Applying Green’s formula, we derive the following variational equation for the dis-

placement field:

u ∈ V c(ρ(t); u(t),v) = L(v), ∀v ∈ V.

Now, we will try to obtain an equivalent expression for equation (3.1), incorporating
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the restriction ρa ≤ ρ ≤ ρb. In order to do so, we recall the following definition (see

[45]).

Definition 3.1 Let X be a Hilbert space and ψ : X → (−∞,∞]. The function ψ is

said to be subdifferentiable in u ∈ X if ψ(u) < +∞ and there exists G(u) ∈ X such

that

ψ(v) ≥ ψ(u) + (G(u),v − u)X ∀v ∈ X.

The element G(u) is known as the subgradient of ψ in u. The set of subgradients of ψ

in u ∈ X is named the subdifferential of ψ in u, and it is denoted by ∂ψ(u).

Denoting by ∂I[ρa,ρb] the subdifferential of the indicator function I[ρa,ρb] of the interval

[ρa, ρb] we can write equation (3.1) in the following weak form,

ρ̇−B

(
U(σ(u), ε(u))

ρ
− Sr

)
+ ∂I[ρa,ρb](ρ) 3 0.

In order to simplify the writing, we define the function Φ : Y ×Q×Q → Y given by

Φ(ρ, σ, τ ) = B

(
U(σ, τ )

ρ
− Sr

)
,

where we recall that U(σ, τ ) =
1

2
σ : τ .

Since this function has a quadratic behavior with respect to τ , a truncation operator

should be employed and therefore, this function must be redefined in the form,

Φ(ρ, σ, τ ) = B

(
U(σ,L(τ ))

ρ
− Sr

)
, (3.8)

where the truncation operator L : Sd → Sd is defined in the following form, where

L > 0 is a given positive constant,

(L(τ ))ij =





L if τij > L,

τij if τij ∈ [−L,L],

−L if τij < −L.
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Indeed, we need to control the bounds of ε(u) and this formulation does not pose

any practical limitations on the applicability of the model. Moreover, it seems to be

reasonable from the physical point of view because this problem is considered within

the small displacement theory.

Finally, let us define the convex set of admissible apparent density functions,

K = {ξ ∈ Y ; ρa ≤ ξ ≤ ρb, a.e. in Ω}.

From the definition of the subdifferential operator, we obtain the following elliptic

variational inequality:

ρ ∈ [ρa, ρb] (ρ̇(t), ξ − ρ(t))Y ≥ (Φ(ρ(t), σ(u(t)), ε(u(t))), ξ − ρ(t))Y ∀ξ ∈ K.

Gathering the variational equation obtained for the displacement field and the varia-

tional inequality for the apparent density function, we derive the following variational

formulation for the mechanical Problem P2.

Problem VP2. Find a displacement field u : [0, T ] → V and an apparent density

function ρ : [0, T ] → K such that ρ(0) = ρ0 and for a.e. t ∈ (0, T ),

c(ρ(t); u(t),v) = L(v), ∀v ∈ V, (3.9)

(ρ̇(t), ξ − ρ(t))Y ≥ (Φ(ρ(t),σ(u(t)), ε(u(t))), ξ − ρ(t))Y , ∀ξ ∈ K, (3.10)

where the function Φ is given in (3.8) and the stress field σ(u(t)) is obtained from

(3.5).

We notice that the existence of a unique solution to Problem VP2 has not been

proved yet. Although we observe that there is a clear similarity between this kind of

problems and the damage problem considered, for instance, in [12], we remark that

such result is not straightforward because of the absence of the diffusion term. This

makes the problem more difficult. We think that similar results to those applied in

[57] for another bone remodeling problem could be used here; however, this problem
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remains still open. Recently, Fernández and Kuttler proved in [24] an existence and

uniqueness result for a related problem, obtained by using convolution operators, but

the arguments applied there can not be extended to the analysis of Problem VP2.

3.3 Numerical analysis of a fully discrete scheme

In this section, we introduce a finite element algorithm for approximating solutions to

variational problem VP2. Its discretization is done in two steps. First, we consider the

finite element spaces V h ⊂ V , Qh ⊂ Q and Bh ⊂ Y given by

V h = {wh ∈ [C(Ω)]d ; wh
|T ∈ [P1(T )]d, T ∈ T h, wh = 0 on ΓD}, (3.11)

Qh = {τ h ∈ [L2(Ω)]d×d ; τ h
|T ∈ [P0(T )]d×d, T ∈ T h}, (3.12)

Bh = {ξh ∈ Y ; ξh
|T ∈ P0(T ), T ∈ T h}, (3.13)

where Ω is assumed to be a polyhedral domain, T h denotes a triangulation of Ω compa-

tible with the partition of the boundary Γ = ∂Ω into ΓD and ΓN , and Pq(T ), q = 0, 1,

represents the space of polynomials of global degree less or equal to q in T . Here, h > 0

denotes the spatial discretization parameter. Moreover, we define the discrete convex

set of admissible apparent density functions Kh = K ∩Bh; that is,

Kh = {ξh ∈ Bh ; ρa ≤ ξh ≤ ρb in Ω}.

Secondly, the time derivatives are discretized by using a uniform partition of the

time interval [0, T ], denoted by 0 = t0 < t1 < . . . < tN = T , and let k be the time step

size, k = T/N . Moreover, for a continuous function f(t) we denote fn = f(tn).

Using the forward Euler scheme, the fully discrete approximation of Problem VP2

is the following.

Problem VP2hk. Find a discrete displacement field uhk = {uhk
n }N

n=0 ⊂ V h and a

discrete apparent density function ρhk = {ρhk
n }N

n=0 ⊂ Kh such that for all vh ∈ V h and
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ξh ∈ Kh,

c(ρhk
n ; uhk

n , vh) = L(vh), n = 0, 1, . . . , N, (3.14)(
ρhk

n − ρhk
n−1

k
, ξh − ρhk

n

)

Y

≥ (
Φ(ρhk

n−1,σ
hk
n−1, ε(uhk

n−1)), ξ
h − ρhk

n

)
Y

, n = 1, 2, . . . , N, (3.15)

where ρhk
0 denotes an appropriate approximation of the initial condition ρ0 and the

discrete stress field σhk
n = (σhk

n )N
n=0 ⊂ Qh is given by

σhk
n = 2 µ(ρhk

n )ε(uhk
n ) + λ(ρhk

n )Div (uhk
n )I, n = 0, 1, . . . , N. (3.16)

Using classical results on elliptic linear variational inequalities (see [44]), the existence

of a unique solution to discrete problem VP2hk is deduced.

In this section, our aim is to provide an error estimate on the numerical errors

‖un − uhk
n ‖V and ‖ρn − ρhk

n ‖Y which we state in the following.

Theorem 3.1 Assume that Problem VP2 has a unique solution (u, ρ) with regularity

u ∈ C1([0, T ]; V ) ∩ C([0, T ]; [W 1,∞(Ω)]d), ρ ∈ C1([0, T ]; Y ), (3.17)

and denote by (uhk, ρhk) the solution to Problem VP2hk. Then, there exists a positive

constant C > 0, independent of the discretization parameters h and k but depending on

the continuous solution (u, ρ) and the problem data, such that, for all {vh
n}N

n=0 ⊂ V h

and {ξh
n}N

n=0 ⊂ Kh,

max
0≤n≤N

{‖un − uhk
n ‖2

V + ‖ρn − ρhk
n ‖2

Y

} ≤ C
(
k

N∑
j=1

{
‖ρj − ξh

j ‖2
Y

+

∥∥∥∥
ρj − ρj−1

k
− ρ̇j

∥∥∥∥
2

Y

+

∥∥∥∥Φj − ρj − ρj−1

k

∥∥∥∥
Y

‖ρj − ξh
j ‖Y

}
+ k2

+ max
0≤n≤N

‖ρn − ξh
n‖2

Y + max
0≤n≤N

‖un − vh
n‖2

V + ‖u0 − uhk
0 ‖2

V + ‖ρ0 − ρh
0‖2

Y

+
1

k

N−1∑
j=1

‖ρj − ξh
j − (ρj+1 − ξh

j+1)‖2
Y

)
. (3.18)
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Proof First, we will obtain an error estimate on the displacement fields. Subtracting

variational equation (3.9) at time t = tn for v = vh ∈ V h and variational equation

(3.14) we find that

c(ρn; un,v
h)− c(ρhk

n ; uhk
n , vh) = 0 ∀vh ∈ V h.

Therefore,

c(ρn; un, un − uhk
n )− c(ρhk

n ; uhk
n , un − uhk

n )

= c(ρn; un,un − vh)− c(ρhk
n ; uhk

n , un − vh) ∀vh ∈ V h.

Since ρhk
n ∈ Kh, we have ρhk

n ≥ ρa > 0 and we immediately get

c(ρn; un,un − uhk
n )− c(ρhk

n ; uhk
n ,un − uhk

n )

= c(ρhk
n ; un − uhk

n ,un − uhk
n )

+c(ρn; un,un − uhk
n )− c(ρhk

n ; un,un − uhk
n ),

c(ρn; un,un − vh)− c(ρhk
n ; uhk

n , un − vh)

= c(ρhk
n ; un − uhk

n ,un − vh)

+c(ρn; un,un − vh)− c(ρhk
n ; un, un − vh),

c(ρhk
n ; un − uhk

n , un − uhk
n ) ≥ α‖un − uhk

n ‖2
V .

From the regularity u ∈ C([0, T ]; [W 1,∞(Ω)]d×d), keeping in mind that ρn, ρhk
n ∈ [ρa, ρb]

it follows that

c(ρn; un,un − uhk
n )− c(ρhk

n ; un, un − uhk
n ) ≤ C‖ρn − ρhk

n ‖Y ‖un − uhk
n ‖V ,

c(ρn; un,un − vh)− c(ρhk
n ; uhk

n ,un − vh)

≤ C‖un − uhk
n ‖V ‖un − vh‖V + C‖ρn − ρhk

n ‖Y ‖un − vh‖V ,

c(ρhk
n ; un − uhk

n , un − vh) ≤ C‖un − uhk
n ‖V ‖un − vh‖V ,

where, here and in what follows, C denotes a generic positive constant which depends

on the continuous solution but it is independent of the discretization parameters h and

k, and whose value may change from line to line.
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Hence, using several times the inequality

ab ≤ εa2 +
1

4ε
b2, a, b, ε ∈ R, ε > 0, (3.19)

it leads to the following estimates for the displacement fields:

‖un − uhk
n ‖2

V ≤ C(‖un − vh‖2
V + ‖ρn − ρhk

n ‖2
Y ) ∀vh ∈ V h. (3.20)

Next, let us obtain an error estimate for the apparent density function. In order

to simplify the writing, we use the notations Φj = Φ(ρj,σ(uj), ε(uj)) and Φhk
j =

Φ(ρhk
j ,σhk

j , ε(uhk
j )). First, we rewrite the discrete variational inequality (3.15) in the

following form,

(
ρhk

n − ρhk
n−1

k
, ρn − ρhk

n

)

Y

≥ (Φhk
n−1, ξ

h − ρhk
n )Y +

(
ρhk

n − ρhk
n−1

k
, ρn − ξh

)

Y

for all ξh ∈ Kh. Taking now the variational inequality (3.10) at time t = tn and for

ξ = ρhk
n ∈ Bh ⊂ Y , by subtracting the two inequalities with ξh = ξh

n ∈ Kh we conclude

that

(
ρ̇n −

ρhk
n − ρhk

n−1

k
, ρn − ρhk

n

)

Y

≤ (Φn, ρn − ρhk
n )Y − (Φhk

n−1, ξ
h
n − ρhk

n )Y

−
(

ρhk
n − ρhk

n−1

k
, ρn − ξh

n

)

Y

∀ξh
n ∈ Kh,

and thus,

(
ρn − ρn−1

k
− ρhk

n − ρhk
n−1

k
, ρn − ρhk

n

)

Y

≤ (
Φn − Φhk

n−1, ξ
h
n − ρhk

n

)
Y

+ (Φn, ρn − ξh
n)Y

+

(
ρn − ρn−1

k
− ρ̇n, ρn − ρhk

n

)

Y

−
(

ρn − ρn−1

k
, ρn − ξh

n

)

Y

+

(
ρn − ρn−1

k
− ρhk

n − ρhk
n−1

k
, ρn − ξh

n

)

Y

.
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Taking into account that

(
ρn − ρn−1

k
− ρhk

n − ρhk
n−1

k
, ρn − ρhk

n

)

Y

≥ 1

k

(‖ρn − ρhk
n ‖2

Y − ‖ρn−1 − ρhk
n−1‖Y ‖ρn − ρhk

n ‖Y

)

≥ 1

2k

(‖ρn − ρhk
n ‖2

Y − ‖ρn−1 − ρhk
n−1‖2

Y

)
,

and, applying several times inequality (3.19), we find that for n = 1, 2, . . . , N ,

‖ρn − ρhk
n ‖2

Y ≤ Ck
{
‖Φn − Φhk

n−1‖2
Y + ‖ρn − ξh

n‖2
Y +

∥∥∥∥Φn − ρn − ρn−1

k

∥∥∥∥
Y

‖ρn − ξh
n‖Y

+‖ρn − ρhk
n ‖2

Y +

∥∥∥∥
ρn − ρn−1

k
− ρ̇n

∥∥∥∥
2

Y

}
+ ‖ρn−1 − ρhk

n−1‖2
Y

+C
(
ρn − ρn−1 − (ρhk

n − ρhk
n−1), ρn − ξh

n

)
Y

∀ξh
n ∈ Kh.

By induction in n, we then obtain

‖ρn − ρhk
n ‖2

Y ≤ Ck

n∑
j=1

{
‖Φj − Φhk

j−1‖2
Y + ‖ρj − ξh

j ‖2
Y +

∥∥∥∥Φj − ρj − ρj−1

k

∥∥∥∥
Y

‖ρj − ξh
j ‖Y

+‖ρj − ρhk
j ‖2

Y +

∥∥∥∥
ρj − ρj−1

k
− ρ̇j

∥∥∥∥
2

Y

}
+ ‖ρ0 − ρhk

0 ‖2
Y

+C

n∑
j=1

(
ρj − ρj−1 − (ρhk

j − ρhk
j−1), ρj − ξh

j

)
Y

∀{ξh
j }n

j=1 ⊂ Kh.

From the definition of Φj and Φhk
j (see also (3.8)) it follows that

‖Φj − Φhk
j−1‖2

Y ≤ C‖ρhk
j−1σj : L(ε(uj))− ρjσ

hk
j−1 : L(ε(uhk

j−1))‖2
Y

≤ C
(
‖ρhk

j−1σj : L(ε(uj))− ρjσj : L(ε(uj))‖2
Y

+‖ρjσj : L(ε(uj))− ρjσj : L(ε(uhk
j−1))‖2

Y

+‖ρjσj : L(ε(uhk
j−1))− ρjσ

hk
j−1 : L(ε(uhk

j−1))‖2
Y

)

≤ C
(
‖ρj − ρhk

j−1‖2
Y + ‖σj − σhk

j−1‖2
Q + ‖uj − uhk

j−1‖2
V

)
,

and, keeping in mind (3.5) and (3.16), it yields

‖Φj − Φhk
j−1‖2

Y ≤ C
(
‖ρj − ρj−1‖2

Y + ‖ρj−1 − ρhk
j−1‖2

Y + ‖uj − uj−1‖2
V

+‖uj−1 − uhk
j−1‖2

V

)
.
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After simple calculations we deduce the following relation

n∑
j=1

(
ρj − ρj−1 − (ρhk

j − ρhk
j−1), ρj − ξh

j

)
Y

= (ρn − ρhk
n , ρn − ξh

n)Y − (ρ0 − ρhk
0 , ρ1 − ξh

1 )Y

+
n−1∑
j=1

(ρj − ρhk
j , ρj − ξh

j − (ρj+1 − ξh
j+1))Y

≤ ε‖ρn − ρhk
n ‖2

Y + C
(
‖ρn − ξh

n‖2
Y + ‖ρ0 − ρhk

0 ‖2
Y + ‖ρ1 − ξh

1‖2
Y

+k

n∑
j=1

‖ρj − ρhk
j ‖2

Y +
1

k

n−1∑
j=1

‖ρj − ξh
j − (ρj+1 − ξh

j+1)‖2
Y

)
,

where we have used three times inequality (3.19) and ε > 0 is a parameter assumed

small enough.

Using the previous inequalities, we deduce the following estimates for the apparent

density function,

‖ρn − ρhk
n ‖2

Y ≤ Ck

n∑
j=1

{
‖uj − uhk

j ‖2
V + ‖ρj − ρhk

j ‖2
Y + ‖ρj − ξh

j ‖2
Y

+

∥∥∥∥Φj − ρj − ρj−1

k

∥∥∥∥
Y

‖ρj − ξh
j ‖Y + ‖ρj − ρj−1‖2

Y

+‖uj − uj−1‖2
V +

∥∥∥∥
ρj − ρj−1

k
− ρ̇j

∥∥∥∥
2

Y

}
+ C‖ρn − ξh

n‖2
Y

+
C

k

n−1∑
j=1

‖ρj − ξh
j − (ρj+1 − ξh

j+1)‖2
Y + C‖ρ1 − ξh

1‖2
Y

+C‖ρ0 − ρhk
0 ‖2

Y + C‖u0 − uhk
0 ‖2

V ∀{ξh
j }n

j=1 ⊂ Kh,

(3.21)

and combining estimates (3.20) and (3.21) we obtain the following estimates for the

numerical errors:

‖un − uhk
n ‖2

V + ‖ρn − ρhk
n ‖2

Y ≤ Ck

n∑
j=1

{
‖uj − uhk

j ‖2
V + ‖ρj − ρhk

j ‖2
Y

+

∥∥∥∥Φj − ρj − ρj−1

k

∥∥∥∥
Y

‖ρj − ξh
j ‖Y + ‖ρj − ρj−1‖2

Y
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+‖uj − uj−1‖2
V + ‖ρj − ξh

j ‖2
Y +

∥∥∥∥
ρj − ρj−1

k
− ρ̇j

∥∥∥∥
2

Y

}
+ C‖ρn − ξh

n‖2
Y

+C‖un − vh
n‖2

V +
C

k

n−1∑
j=1

‖ρj − ξh
j − (ρj+1 − ξh

j+1)‖2
Y + C‖ρ1 − ξh

1‖2
Y

+C‖ρ0 − ρhk
0 ‖2

Y + C‖u0 − uhk
0 ‖2

V ∀{ξh
j }n

j=1 ⊂ Kh, ∀vh
n ∈ V h.

From the previous estimates, keeping in mind the regularities u ∈ C1([0, T ]; V ) and

ρ ∈ C1([0, T ]; Y ) which implied the estimate

k

n∑
j=1

{‖ρj − ρj−1‖2
Y + ‖uj − uj−1‖2

V

} ≤ Ck2,

and using Lemma 2.1 with

en = ‖un − uhk
n ‖2

V + ‖ρn − ρhk
n ‖2

Y ,

g0 = e0 = ‖u0 − uhk
0 ‖2

V + ‖ρ0 − ρh
0‖2

Y

and gn the remaining terms, we obtain the result. ¤

We notice that the above error estimates are the basis for the analysis of the conver-

gence rate of the algorithm. Hence, under additional regularity assumptions we obtain

the linear convergence of the algorithm that we state in the following corollary.

Corollary 3.1 Let assumptions of Theorem 3.1 hold. Define the initial condition for

the apparent density function as follows,

ρhk
0 = Phρ0,

where Ph is the L2(Ω)-projection operator onto Bh. Under the additional regularity

conditions

u ∈ L∞(0, T ; [H2(Ω)]d), ρ ∈ H2(0, T ; Y ) ∩H1([0, T ]; H1(Ω)),
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the algorithm is linearly convergent; that is, there exists a positive constant C > 0,

independent of the discretization parameters h and k, such that

max
0≤n≤N

{‖un − uhk
n ‖V + ‖ρn − ρhk

n ‖Y

} ≤ c(h + k). (3.22)

Proof The proof of the above corollary is obtained in several steps. First, by using the

well-known result on the approximations by finite elements and the projection operator

Ph, we have (see [13]):

inf
vh

n∈V h
‖un − vh

n‖V ≤ ch‖un‖[H2(Ω)]d ≤ ch‖u‖C([0,T ];[H2(Ω)]d),

inf
ξh
n∈Kh

‖ρn − ξh
n‖Y ≤ ch‖ρn‖H1(Ω) ≤ ch‖ρ‖C([0,T ];H1(Ω)),

‖ρ0 − ρhk
0 ‖Y ≤ ch‖ρ0‖H1(Ω) ≤ ch‖ρ‖C([0,T ];H1(Ω)).

Using estimates (3.20) with n = 0 we find that

‖u0 − uhk
0 ‖2

V ≤ C
(‖u0 − vh‖2

V + ‖ρ0 − ρhk
0 ‖2

Y

) ∀vh ∈ V h,

and the previous result on the approximation of ρ0 leads to the following estimate,

‖u0 − uhk
0 ‖2

V ≤ Ch2(‖ρ‖2
C([0,T ];H1(Ω)) + ‖u‖2

C([0,T ];[H2(Ω)]d)).

An straightforward estimate implies that

k

N∑
j=1

∥∥∥∥
ρj − ρj−1

k
− ρ̇j

∥∥∥∥
2

Y

≤ Ck2‖ρ‖2
H2(0,T ;Y ),

and we also have

k

N∑
j=1

∥∥∥∥Φj − ρj − ρj−1

k

∥∥∥∥
Y

‖ρj − ξh
j ‖Y ≤ k

N∑
j=1

{
‖Φj − ρ̇j‖Y ‖ρj − ξh

j ‖Y

+

∥∥∥∥ρ̇j − ρj − ρj−1

k

∥∥∥∥
Y

‖ρj − ξh
j ‖Y

}



130 Chapter 3. Bone remodeling induced by a local stimulus

≤ C max
1≤j≤N

‖ρj − ξh
j ‖Y + C

N∑
j=1

k
{ ∥∥∥∥ρ̇j − ρj − ρj−1

k

∥∥∥∥
2

Y

+ ‖ρj − ξh
j ‖2

Y

}
.

Finally, applying the following estimate (see [5])

1

k

N−1∑
n=1

‖ρn − ξh
n − (ρn+1 − ξh

n+1)‖2
Y ≤ ch2‖ρ‖2

H1(0,T ;H1(Ω)),

and combining the previous results and error estimates (3.18), we conclude (3.22). ¤

3.4 Numerical results

In this section we first describe shortly the numerical scheme implemented, and then

we present some numerical examples to exhibit its accuracy and its performance in

one- and two-dimensional examples.

Numerical scheme

To approximate the spaces V , Q and B and the convex subset K, we use the finite

element spaces V h, Qh and Bh defined by (3.11), (3.12) and (3.13), respectively. More-

over, we recall that Kh = K ∩Bh.

We notice that, in (3.14), for n = 0 the discrete initial apparent density ρhk
0 is given

and, for n = 1, 2, . . . , N , ρhk
n is known. Hence, we obtain the discrete displacement

field uhk
n solving the discrete linear variational equation,

uhk
n ∈ V h, c(ρhk

n ; uhk
n ,vh) = L(vh) ∀vh ∈ V h.

This is a linear problem equivalent to a linear system and Cholesky’s method is em-

ployed for its resolution.
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Next, the discrete stress field is updated using the equation

σhk
n = 2 µ(ρhk

n )ε(uhk
n ) + λ(ρhk

n )Div (uhk
n )I.

Now, for n = 1, 2, . . . , N in (3.15) uhk
n−1, σhk

n−1 and ρhk
n−1 are known. The discrete

apparent density function ρhk
n is then obtained from (3.15),

ρhk
n ∈ Kh,

(
ρhk

n , ξh − ρhk
n

)
Y
≥ k

(
Φ(ρhk

n−1,σ
hk
n−1, ε(uhk

n−1)), ξ
h − ρhk

n

)
Y

+
(
ρhk

n−1, ξ
h − ρhk

n

)
Y

∀ξh ∈ Kh.

This leads to a discrete elliptic linear variational inequality which is solved using a

penalty-duality algorithm introduced in [9] and that can be also seen, for instance, in

[68].

The numerical scheme was implemented on a 3.2Ghz PC using MATLAB, and a

typical 1D run (h = k = 0.01) took about 3 seconds of CPU time and a run for the 2D

example spent about 17 seconds for each time iteration.

A one-dimensional example: the numerical convergence

As a one-dimensional example, the following problem is considered:

Problem P2-1D. Find a displacement field u : [0, 1] × [0, 1] → R and an apparent

density function ρ : [0, 1]× [0, 1] → [0.01, 1.74] such that

−∂σ

∂x
(x, t) = 0 x ∈ (0, 1), t ∈ (0, 1),

ρ̇(x, t) =

(
σ(x, t)∂u

∂x
(x, t)

2ρ(x, t)
− 0.25

)
x ∈ [0, 1], t ∈ [0, 1],

u(0, t) = 0 t ∈ (0, 1),

σ(1, t) = −10−7e10t t ∈ (0, 1),

ρ(x, 0) = 0.8 x ∈ [0, 1],
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where the stress field σ : [0, 1]× [0, 1] → R is given by

σ(x, t) = 100(ρ(x, t))2∂u

∂x
(x, t) x ∈ (0, 1), t ∈ (0, 1).

Problem P2-1D corresponds to Problem P2 with the following data, keeping in mind

that the area of the cross section is A = 1m2:

Ω = (0, 1), T = 1 day, E(ρ) = Mργ, M = 100 Nm2/kg2, γ = 2,

B = 1, ρa = 0.01 Kg/m, ρb = 1.74 Kg/m, Sr = 0.25 Kg/ms,

ρ0 = 0.8 Kg/m, f = 0 N/m, g(t) = −10−7e10t N for t ∈ [0, 1].

Our aim here is to show the numerical convergence of the algorithm. Therefore,

several uniform partitions of both the time interval and the domain, dividing Ω =

(0, 1) into n segments, have been performed. We note that the spatial discretization

parameter h equals to
1

n
, and we used the solution obtained with n = 212 and k =

0.0001 as the “exact solution”.

The numerical errors, given by

Ehk = max
0≤n≤N

{
‖un − uhk

n ‖V + ‖ρn − ρhk
n ‖Y

}
,

and obtained for different discretization parameters h and k, are depicted (multiplied

by 100) in Table 3.1. Moreover, the evolution of the error depending on h+k is plotted

in Figure 3.1. We notice that the convergence of the algorithm is clearly observed, and

the linear convergence, stated in Corollary 3.1, seems to be achieved.
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n ↓ k → 0.01 0.005 0.001 0.0005 0.0001
16 1.21145e-1 1.70817e-4 1.64500e-4 1.63712e-4 1.63081e-4
32 8.90414e-5 8.50916e-5 8.19398e-5 8.15464e-5 8.12317e-5
64 4.41993e-5 4.22266e-5 4.06524e-5 4.04559e-5 4.02987e-5
128 2.17794e-5 2.07936e-5 2.00069e-5 1.99087e-5 1.98302e-5
256 1.05697e-5 1.00769e-5 9.68371e-6 9.63467e-6 9.59540e-6
512 4.96499e-6 4.71853e-6 4.52201e-6 4.49752e-6 4.47781e-6
1024 2.16260e-6 2.03944e-6 1.94086e-6 1.92894e-6 1.91910e-6

Table 3.1: Example P2-1D: Numerical errors for some h and k.
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Figure 3.1: Example P2-1D: Asymptotic constant error.

Numerical results for two-dimensional problems

A plate model

As a first two-dimensional example, we consider a similar problem to that introduced

in [59, 66]. The two-dimensional body occupies a square domain Ω = (0, 100) ×
(0, 100) which is assumed to be fixed on its lower horizontal boundary ΓD = [0, 100]×
{0} (the left lower node is completely clamped, whereas the rest of the boundary

has only its vertical displacements fixed). Moreover, the body is being acted by a

linearly increasing compression force on the boundary part [0, 100]×{1} with maximum

magnitude 10 MPa. No volume forces are given in Ω (see Figure 3.2).
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g

Figure 3.2: Example P2-2D-1: Plate of 100x100mm.

The following data have been employed in this example:

T = 25 days, E(ρ) = Mργ, M = 100 Pa/(Kg m−3)2,

B = 1 (g cm−3)2, ρa = 0.010 g/cm3, ρb = 1.740 g/cm3,

Sr = 0.25 J/g, ρ0 = 0.8 g/cm3, γ = 0.5, κ = 0.3,

f = 0N/m2, g(x, y, t) =





(0, 0.1x− 10) MPa if y = 1,

0MPa otherwise.

Therefore, using the time discretization parameter k = 0.01, in Figure 3.3 the apparent

density function is plotted at final time and over the deformed mesh. As can be seen,

the apparent density concentrates on the left part, where maximum forces are applied,

and decrease from left to right. Moreover, since γ is less than one, the continuous

solution has become stable; that is, in this case, the stimulus U/ρ has reached exactly

the reference stimulus value of 0.25 J/g in all elements.

As a second example, we consider a similar situation than in the previous one.
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Figure 3.3: Example P2-2D-1: The apparent density at final time over the deformed
configuration.

Therefore, a plate model is used again with the following data:

T = 25 days, E(ρ) = Mργ, M = 100 Pa/(Kg m−3)2,

B = 1 (g cm−3)2, ρa = 0.01 g/cm3, ρb = 1.740 g/cm3,

Sr = 0.25 J/g, ρ0 = 0.8 g/cm3, γ = 2, κ = 0.3,

f = 0N/m2, g(x, y, t) =





(0, 0.1x− 10) MPa if y = 1,

0MPa otherwise.

The difference is that the power index γ is greater than 1, which makes the solution

unstable.

Using now the time discretization parameter k = 0.01, the evolution of the apparent

density is plotted in Figure 3.4 and over the deformed configuration. As expected, the

classical “checkerboard pattern” is clearly observed (like it was also shown in [66]). We

can observe that in the left boundary, where the compression force reaches its maxi-

mum intensity, the bone density also takes the biggest value, in order to increase the

resistance of the bone. As a consequence, the displacements in this area decrease with

respect to time and they increase in the right part where the compression load takes

small values.
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Figure 3.4: Example P2-2D-2: The evolution of the apparent density over the de-
formed configuration (t=5, 10, 15, 20 and 25).

Due to the construction of the finite element spaces, the discrete apparent density

is discontinuous (it is assumed constant for each element). However, this solution

is usually represented in a continuous way by using an interpolation post-processor



3.4. Numerical results 137

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.5: Example P2-2D-2: The evolution of the apparent density over the de-
formed configuration after an interpolation post-processing.

(see [59] for details). Therefore, in Figure 3.5 this continuous apparent density is also

depicted over the deformed mesh. We notice that, due to the interpolation process, its

values have changed although the behavior is very similar.
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A femur model

As a final two-dimensional example we have considered a proximal femur model like

that described in [19] or [66]. The setting is depicted in Figure 3.6 where, in order to

describe the bone dimensions, we have plotted some points. . The distance between

points A and B (the diameter of the diaphysis) is 30mm and the distance between

points C and D is 57.76mm. The finite element mesh of the proximal femur has 1144

nodes and 2139 elements. A clear limitation of this 2D model is the lack of connection

between the two cortical layers of the diaphysis. Here, we have followed the solution

used by several authors that included an additional side plate joining both layers (see

[8, 48]). This side plate is a new body which represents the cortical side of the femur,

it is determined by the four points A, B, C and D and its finite element mesh is made

by 1119 elements and 609 nodes. Moreover, in order to assure the rigidity of this part

of the femur, we assume that the Young modulus E for the side plate is 17000MPa

and that no bone remodeling takes place here.

Figure 3.6: Example P2-2D-3: Physical setting and finite element mesh.

We assume that the lower horizontal boundary is clamped (the left lower point is
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fixed whereas the rest of this boundary is fixed only through the vertical direction).

According to [50, 66], the daily load history was represented using three loading cases.

Each of them consists in two distributed loads acting on the femoral head plus the

reaction forces induced in the abductor muscle (Table 3.2). These loads are applied

sequentially (see Figure 3.7).

Load at the femoral head Reaction at the abductor
Case Load (N) Direction (◦) Load (N) Direction (◦)

1 2317 24 703 28
2 1158 -15 351 -8
3 1548 56 468 35

Table 3.2: Moduli and orientation of the resultant forces. Orientations are referred to
the vertical direction.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

lo
ad

load 1
load 2
load 3

Figure 3.7: Loads applied sequentially

The following data have been used in this simulation:

T = 310 days, E(ρ) = Mργ, M = 3790 Pa/(Kg m−2)2, γ = 3,

f = 0N/m2, B = 1 (g cm−3)2(MPa day)−1, Sr = 0.004 J/g, κ = 0.3,

ρa = 0.01 g/cm3, ρb = 1.740 g/cm3, ρ0 = 0.8 g/cm3.

We are assuming a plane strain hypothesis. The proximal femur has a uniform thickness
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of 10mm and the side plate 1mm. Using the time step k = 0.1, the evolution of the

apparent density is plotted in Figure 3.8. We can observe that the side plate plays the

role of the cortical bone in the diaphysis and how the model predicts the formation of

the marrow cavity from a initial homogeneous apparent density. The end configuration

also predicts a reasonably accurate density distribution with a intramedullary canal. As

it was also noticed in [66], Ward’s triangle and the typical cancellous density patterns

in this femoral head.
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Figure 3.8: Example P2-2D-3: The evolution of the apparent density at several times
(t=100, 150, 200 and 310).



Chapter 4

A piezoelectric bone remodeling

model

4.1 Piezoelectricity as responsible of bone forma-

tion and resorption

Although it is widely accepted that mechanical loading can regulate bone adaptation

and that osteocytes are the mechanosensor cells, it is unclear how actuator cells, osteo-

clasts and osteoblasts, are able to control bone resorption and formation in function of

mechanical conditions.

The problem that has been widely analyzed to understand bone adaptation capacity

is the self-straightening of a fractured bone, when it has healed in an angulated posi-

tion. This fact motivated that several authors (see [6, 7]) proposed that tensile stress

on the convex surface causes bone resorption, while compressive stress on the concave

surface produce bone formation. However, Frost (see [37]) proposed that bone response

on the surface depends on the relative curvature of the surface, where increased surface

convexity produces bone resorption, whereas a decreased surface convexity causes bone

formation.

141
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In spite of all the studies developed since Wolff proposed that the bone adapts its

structure in response to the mechanical loads, how cells are able to sense this mechani-

cal environment is a current research issue. One possible mechanism that could justify

that osteoclasts and osteoblasts tend to work in some bone surfaces instead of others,

could be the different electric charge in each surface. Fukada and Yasuda showed in

1957 that dry bone is piezoelectric in the classic sense, that is, mechanical stress pro-

duces polarization (direct effect) and application of an electric field produces strain

(converse effect) (see [38, 39]). Since then, the electrical properties of bone tissue have

been widely investigated. It is believed that electric signals play an important role in

the bone remodeling process and therefore, the piezoelectric properties of bone could

help to understand the behavior of the bone cells.

Recently, a renovated interest has appeared to show the importance of bone piezo-

electricity in bone responsiveness to mechanical environment (see [2, 63]). Although,

this interest appeared in the 1960s, when bone piezoelectricity was invoked as a po-

tential mechanism to explain mechanical bone adaptation (see [3, 6, 7]). However and

despite of piezoelectricity relevance, it has not been normally used to understand bone

remodeling and, currently, there are not many models that justify bone remodeling

based on bone piezoelectricity (see [61, 62, 63]).

In this chapter, our aim is to propose a hypothesis in which we demonstrate, through

a computational approach, that only bone matrix piezoelectricity is able to explain how

bone is selectively deposited or removed at different periosteal surfaces.

We propose to use the bone remodeling model analyzed in the previous chapter to

characterize the mechanical properties of the bone. Recall that in this model the bone

is considered as an elastic solid assuming that the Poisson’s ratio ν is independent of

the apparent density ρ whereas the Young’s modulus is given by E(ρ) = Mργ, where

M and γ are positive constants which characterize the bone behavior.
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Since no results are found in the literature, from the numerical tests, in order to

introduce the piezoelectricity in the model, we extend the classical electro-mechanical

dependence adding a function α(ρ) = ργ, which regulates the coupling between the

mechanical and electric field. This function guarantees that the electric field increases

with the density of the bone. Hence, as a first approach, the constitutive law for the

stress tensor σ and the electric displacement D are the following:

σ = 2 µ(ρ)ε(u) + λ(ρ)Div (u)I − α(ρ)E∗E(ϕ), (4.1)

D = Dε + DE = α(ρ)Eε(u) + α(ρ)βE(ϕ), (4.2)

where u is the displacement field, ε is the strain tensor, E(ϕ) = (Ei(ϕ))d
i=1 represents

the electric field defined by

Ei(ϕ) = − ∂ϕ

∂xi

, i = 1, . . . , d,

and E∗ = (e∗ijk)
d
i,j,k=1 denotes the transpose of the third-order piezoelectric tensor E =

(eijk)
d
i,j,k=1. We recall that

e∗ijk = ekij, for all i, j, k = 1, . . . , d.

Moreover, β is the electric permittivity tensor, I denotes the identity operator, Div

represents the divergence operator and µ(ρ) and λ(ρ) are Lame’s coefficients of the

material, assumed to depend on the apparent density of the bone.

Equations (4.1) and (4.2) can be written as a matrix expression, considering that

σ = {σxx, σyy, σzz, σyz, σzx, σxy} is the stress tensor, ε = {εxx, εyy, εzz, εyz, εzx, εxy}, is

the strain tensor, D = {Dx, Dy, Dz} is the electric displacement, E = {Ex, Ey, Ez} is

the electric field, E is the piezoelectric matrix and β is the permittivity matrix.

Assuming as several authors (see [35, 42, 61, 63]) that the bone behaves in the same

way as a crystal with hexagonal symmetry, the piezoelectric tensor E is defined with
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four values and the dielectric tensor β is represented as a diagonal matrix given by two

constants. These tensors take the following matrix expression:

E =




0 0 0 e14 e15 0

0 0 0 e15 −e14 0

e31 e31 e33 0 0 0


 and β =




β11 0 0

0 β11 0

0 0 β33


 ,

where we have assumed that the coordinate system is orientated in such a way that

the third axis coincides with the material direction.

Our aim is to numerically show that bone formation and resorption may be related

with electrical charges in the bone surfaces due to contributions produced by mechanical

loading Dε, following the works of Gjelsvik (see [42, 43]). The mechanical polarization

is related to the strain through a matrix equation:

(Dε)i = α(ρ)Eijεj(u) for i = 1, 2, 3 j = 1, 2, . . . , 6

According to [35] we consider the following piezoelectric and dielectric coefficients:

e31 = 1.50765× 10−9C/mm2, e33 = 1.87209× 10−9C/mm2,

e15 = 3.57643× 10−9C/mm2, e14 = 17.88215× 10−9C/mm2

β11 = 88.54× 10−12F/mm, β33 = 106.248× 10−12F/mm,

where C and F denote the units Coulomb and Faraday, respectively.

We have to keep in mind that the conclusions that we present along this chapter have

been obtained with the piezoelectric tensor provided above. We have to remark that

other authors consider that this piezoelectric tensor is defined by non-zero constants

in the normal components (see [2, 3]). However, shear components were not evaluated

in this study. Therefore and despite of having found some parameter values in the

literature, bone piezoelectricity is a research field that has hardly been considered rel-
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evant in bone adaptation and regeneration mechanisms. This fact has motivated that

the number of biomechanical works in this field has been reduced dramatically since

the 1960 to 2000, being really difficult to find experiments to validate models of the

electro-mechanical behavior of the bone. However, an increasing number of works deal-

ing with this topic has been published during the last ten years. Therefore, a strong

effort should be done in this direction in order to unravel the multiphysics character

of bone physiology. Moreover, the piezoelectric constants will need to be determined

accurately; otherwise, the model cannot be a useful tool to understand the effect of

piezoelectricity on bone mechanics.

We recall that the evolution of the apparent density function is obtained from the

following first-order ordinary differential equation (see the previous chapter for details),

where we still assume that the rate of bone remodeling is regulated by a mechanical-

based stimulus

ρ̇ = B

(
U(σ, ε(u))

ρ
− Sr

)
in Ω× (0, T ),

where B and Sr are experimental constants and U(σ, ε(u)) is the strain energy density

given by

U(σ, ε(u)) =
1

2
σ : ε(u).

In order to obtain a real apparent density we have to assume again that this function

is bounded as

ρa ≤ ρ ≤ ρb,

where value ρa represents the minimal density corresponding to the reabsorbed bone

and value ρb is the maximal density of cortical bone.

The parameters which characterize the mechanical properties of the bone matrix

and the experimental constants which determine the evolution of the bone density

were proposed by [66] and already employed in the previous chapter.
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In the next sections we study, from the mathematical point of view, this piezoelectric

bone remodeling model. We will write the variational problem as a coupled system

of a two non-linear variational equations for the displacement field and the electric

potencial and a nonlinear parabolic variational inequality for the apparent density.

Then, fully discrete approximations are provided by using the finite element method

to approximate the spatial variable and the explicit Euler scheme to discretize the

time derivatives. Error estimates are proved, from which, under adequate regularity

conditions, the linear convergence of the algorithm is derived. Finally, some numeri-

cal simulations, involving one, two and three dimensional examples, are presented to

demonstrate the accuracy of the approximation and the behavior of the solution. More-

over, we notice that the results presented in this chapter have been recently submitted

(see [21, 22]).

4.2 Mechanical and variational problem

Let us denote by Sd the space of second order symmetric tensors on Rd, or equivalently,

the space of symmetric matrices of order d, and let : be its inner product and | · | its

norm.

Denote by Ω ⊂ Rd, d = 1, 2, 3, an open bounded domain and let Γ = ∂Ω be its

boundary, assumed to be Lipschitz continuous and divided into two disjoint parts ΓD

and ΓN . Let [0, T ], T > 0, be the time interval of interest, denote by x = (xi)
d
i=1 a

generic point of Ω = Ω ∪ Γ, and for x ∈ Γ, let ν(x) = (νi(x))d
i=1 be the outward unit

normal vector to Γ at point x. Volume forces of density fB act in Ω× (0, T ), volume

electric charges of density qB are present in Ω×(0, T ), traction forces of density fN are

applied on ΓN×(0, T ) and surface electric charges of density qN are found on ΓN×(0, T ).

Finally, we assume that the body is clamped on ΓD × (0, T ) and a prescribed electric

potential ϕD is applied there (see Figure 4.1).
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Figure 4.1: A bone remodeling problem.

Remark 4.1 We notice that we have used the same decomposition of the boundary to

impose the boundary conditions for the displacements and the electric potential. It is

straightforward to extend the results presented in this section, and in the following one,

to more general situations.

As we explain in the previous section, the constitutive laws for the stress tensor σ

and the electric displacement D are written as follows,

σ = 2 µ(ρ)ε(u) + λ(ρ)Div (u)I − α(ρ)E∗E(ϕ) in Ω× [0, T ],

D = α(ρ)Eε(u) + α(ρ)βE(ϕ) in Ω× [0, T ].

Let us assume that the process is quasistatic and therefore, the inertia effects are

neglected. Moreover, let ρ0 denote the initial apparent density function. The mechani-
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cal problem, derived from the continuum mechanics laws in the framework of the small

displacements theory, is the following.

Problem P3. Find a displacement field u : Ω × [0, T ] → Rd, an electric potential

field ϕ : Ω× (0, T ) → R and an apparent density function ρ : Ω× [0, T ] → [ρa, ρb] such

that ρ(0) = ρ0 and,

ρ̇ = B

(
U(σ, ε(u))

ρ
− Sr

)
in Ω× (0, T ), (4.3)

−Divσ = fB in Ω× (0, T ), (4.4)

divD = qB in Ω× (0, T ), (4.5)

u = 0 on ΓD × (0, T ), (4.6)

ϕ = ϕD on ΓD × (0, T ), (4.7)

σν = fN on ΓN × (0, T ), (4.8)

D · ν = qN on ΓN × (0, T ), (4.9)

where λ(ρ) and µ(ρ) are the Lame’s coefficients and the stress field σ : Ω× [0, T ] → Sd

and the electric displacement field D : Ω× (0, T ) → Rd are given by

σ = 2 µ(ρ)ε(u) + λ(ρ)Div (u)I − ργE∗E(ϕ) in Ω× [0, T ], (4.10)

D = ργEε(u) + ργβE(ϕ) in Ω× (0, T ). (4.11)

We turn now to obtain a variational formulation of Problem P3. Let us denote

again Y = L2(Ω) and H = [L2(Ω)]d, and define the following spaces equipped with the

product norms derived from usual norms in Sobolev spaces:

W = {ψ ∈ H1(Ω) ; ψ = 0 on ΓD},
V = {v = (vi)

d
i=1 ∈ [H1(Ω)]d ; v = 0 on ΓD},

Q = {τ = (τij)
d
i,j=1 ∈ [L2(Ω)]d×d ; τij = τji, 1 ≤ i, j ≤ d}.

In order to develop the numerical analysis, the following assumptions on the problem
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data are required.

The density of mechanical and electrical forces have the regularity:

fB ∈ C([0, T ]; [C(Ω)]d), fN ∈ C([0, T ]; [C(ΓN)]d),

qB ∈ C([0, T ]; C(Ω)), qN ∈ C([0, T ]; C(ΓN)).
(4.12)

The initial apparent density ρ0 satisfies the following conditions:

ρ0 ∈ C(Ω), ρa ≤ ρ0(x) ≤ ρb for all x ∈ Ω. (4.13)

The piezoelectric tensor E(x) = (eijk(x))d
i,j,k=1 : τ ∈ Sd → E(x)(τ ) ∈ Rd satisfies:

(a) eijk = eikj for i, j, k = 1, . . . , d.

(b) eijk ∈ L∞(Ω) for i, j, k = 1, . . . , d.
(4.14)

The permittivity tensor β(x) = (βij(x))d
i,j=1 : w ∈ Rd → β(x)(w) ∈ Rd satisfies:

(a) βij = βji for i, j = 1, . . . , d.

(b) βij ∈ L∞(Ω) for i, j = 1, . . . , d.

(c) There exists mβ > 0 such that β(x)w ·w ≥ mβ |w|2

∀w ∈ Rd, a.e. x ∈ Ω.

(4.15)

For every ρ ∈ L∞(Ω), let us define the following bilinear form c(ρ; ·, ·) : V × V → R

given by, for all u,v ∈ V ,

c(ρ; u,v) =

∫

Ω

2µ(ρ)ε(u) : ε(v) + λ(ρ)Tr(ε(u))Tr(ε(v)) dx,

where Tr denotes the trace operator defined as Tr(τ ) =
d∑

i=1

τii for all τ = (τij)
d
i,j=1.
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Also we introduce the linear mappings f : [0, T ] → V and q : [0, T ] → W given by

(f(t), v)V =

∫

Ω

fB(t) · v dx +

∫

ΓN

fN(t) · v dΓ ∀v ∈ V,

(q(t),v)W =

∫

Ω

qB(t)ψ dx +

∫

ΓN

qN(t)ψ dΓ ∀ψ ∈ W.

Applying Green’s formula, we easily obtain the following variational equations for

the displacement and electric potential fields:

c(ρ(t); u(t),v) = (f(t),v)V − (ρ(t)γE∗∇ϕ(t), ε(v))Q ∀v ∈ V,

(ρ(t)γ[β∇ϕ(t)− Eε(u(t))],∇ψ)H = (q(t), ψ)W ∀ψ ∈ W.

Now, we need an equivalent expression for equation (4.3), incorporating the restric-

tion ρa ≤ ρ ≤ ρb. In order to do so, we write this equation in the following form (see

Chapter 3 for details),

ρ̇−B

(
U(σ, ε(u))

ρ
− Sr

)
+ ∂I[ρa,ρb](ρ) 3 0,

where ∂I[ρa,ρb] denotes the subdifferential of the indicator function I[ρa,ρb] of the interval

[ρa, ρb].

We recall the definition of the function Φ : Y ×Q×Q → Y given by

Φ(ρ, σ, τ ) = B

(
U(σ, τ )

ρ
− Sr

)
,

where U(σ, τ ) =
1

2
σ : τ .

Since this function has a quadratic behavior with respect to τ , a truncation operator

should be employed and therefore, this function must be redefined in the form:

Φ(ρ, σ, τ ) = B

(
U(σ,L(τ ))

ρ
− Sr

)
, (4.16)

where the truncation operator L : Sd → Sd is defined in the following form, where
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L > 0 is a given positive constant,

(L(τ ))ij =





L if τij > L,

τij if τij ∈ [−L,L],

−L if τij < −L.

Finally, let us recall the definition of the convex set of admissible apparent density

functions,

K = {ξ ∈ Y ; ρa ≤ ξ ≤ ρb, a.e. in Ω},

and, in order to simplify the calculations and the writing, we assume in this section,

and also in the following one, that ϕD = 0.

By definition of the subdifferential operator, we obtain the following parabolic va-

riational inequality:

ρ ∈ [ρa, ρb] (ρ̇(t), ξ − ρ(t))Y ≥ (Φ(ρ(t), σ(u(t)), ε(u(t))), ξ − ρ(t))Y ∀ξ ∈ K.

Gathering this variational inequality with the variational equations obtained for the

displacement and electric potential fields we derive the following variational formulation

for the mechanical Problem P3.

Problem VP3. Find a displacement field u : [0, T ] → V , an electric potential field

ϕ : [0, T ] → W and an apparent density function ρ : [0, T ] → K such that ρ(0) = ρ0

and for a.e. t ∈ (0, T ),

c(ρ(t); u(t),v) = (f(t),v)V − (ρ(t)γE∗∇ϕ(t), ε(v))Q ∀v ∈ V, (4.17)

(ρ(t)γ[β∇ϕ(t)− Eε(u(t))],∇ψ)H = (q(t), ψ)W ∀ψ ∈ W, (4.18)

(ρ̇(t), ξ − ρ(t))Y ≥ (Φ(ρ(t),σ(t), ε(u(t))), ξ − ρ(t))Y ∀ξ ∈ K, (4.19)

where function Φ and stress field σ(t) are given in (4.16) and (4.10), respectively.
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We notice that the existence of a unique solution to Problem VP3 has not been

proved yet. Although we observe that there is a clear similarity between this kind

of problems and the elasto-piezoelectric problem with damage considered in [25], we

remark that such result is not straightforward because of the absence of the diffusion

term. This makes the problem more difficult. However, we hope that related results

to those applied in [57] for another bone remodeling problem could be used here.

4.3 Numerical analysis

In this section, we introduce a finite element algorithm for approximating solutions to

variational problem VP3. Its discretization is done in two steps. First, we consider the

finite element spaces V h ⊂ V , Qh ⊂ Q, W h ⊂ W and Bh ⊂ Y given by

V h = {vh ∈ [C(Ω)]d ; vh
|T ∈ [P1(T )]d, T ∈ T h, vh = 0 on ΓD}, (4.20)

Qh = {τ h ∈ [L2(Ω)]d×d ; τ h
|T ∈ [P0(T )]d×d, T ∈ T h}, (4.21)

W h = {ψh ∈ C(Ω) ; ψh
|T ∈ P1(T ), T ∈ T h, ψh = 0 on ΓD}, (4.22)

Bh = {ξh ∈ Y ; ξh
|T ∈ P0(T ), T ∈ T h}, (4.23)

where Ω is assumed to be a polyhedral domain, T h denotes a triangulation of Ω compa-

tible with the partition of the boundary Γ = ∂Ω into ΓD and ΓN , and Pq(T ), q = 0, 1,

represents the space of polynomials of global degree less or equal to q in T . Here, h > 0

denotes the spatial discretization parameter. Moreover, we define the discrete convex

set of admissible apparent density functions as Kh = K ∩Bh; that is,

Kh = {ξh ∈ Bh ; ρa ≤ ξh ≤ ρb in Ω}.

Secondly, the time derivatives are discretized by using a uniform partition of the

time interval [0, T ], denoted by 0 = t0 < t1 < . . . < tN = T , and let k be the time step

size, k = T/N . Moreover, for a continuous function f(t) we denote fn = f(tn).
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Using the forward Euler scheme, the fully discrete approximation of Problem VP3

is the following.

Problem VP3hk. Find a discrete displacement field uhk = {uhk
n }N

n=0 ⊂ V h, a

discrete electric potential field ϕhk = {ϕhk
n }N

n=0 ⊂ W h and a discrete apparent density

function ρhk = {ρhk
n }N

n=0 ⊂ Kh such that for all vh ∈ V h, ψh ∈ W h and ξh ∈ Kh,

c(ρhk
n ; uhk

n ,vh) = (fn,v
h)V − ((ρhk

n )γE∗∇ϕhk
n , ε(vh))Q, n = 0, 1, . . . , N, (4.24)

((ρhk
n )γ[β∇ϕhk

n − Eε(uhk
n )],∇ψh)H = (qn, ψ

h)W , n = 0, 1, . . . , N, (4.25)(
ρhk

n − ρhk
n−1

k
, ξh − ρhk

n

)

Y

≥ (
Φ(ρhk

n−1, σ
hk
n−1, ε(uhk

n−1)), ξ
h − ρhk

n

)
Y

, n = 1, 2, . . . , N, (4.26)

where ρhk
0 denotes an appropriate approximation of the initial condition ρ0 and the

discrete stress field σhk = (σhk
n )N

n=0 ⊂ Qh is given by

σhk
n = 2 µ(ρhk

n )ε(uhk
n ) + λ(ρhk

n )Div (uhk
n )I

+(ρhk
n )γE∗∇ϕhk

n , n = 0, 1, . . . , N.
(4.27)

Using classical results on linear variational inequalities and nonlinear variational equa-

tions (see [44]), the existence of a unique solution to discrete problem VP3hk is easily

deduced.

In this section, our aim is to provide an error estimate on the numerical errors

‖un − uhk
n ‖V , ‖ϕn − ϕhk

n ‖W and ‖ρn − ρhk
n ‖Y . Thus, we have to make the following

assumption on the regularity of the continuous solution:

u ∈ C1([0, T ]; V ) ∩ C([0, T ]; [W 1,∞(Ω)]d), ρ ∈ C1([0, T ]; Y ),

ϕ ∈ C1([0, T ]; W ) ∩ C([0, T ]; W 1,∞(Ω)).
(4.28)

Theorem 4.1 Let assumptions (4.12)-(4.15) hold. Assume that Problem VP3 has a

unique solution (u, ϕ, ρ) with regularity (4.28) and denote by (uhk, ϕhk, ρhk) the unique

solution to Problem VP3hk. Then, there exists a positive constant C > 0, independent

of the discretization parameters h and k but depending on the continuous solution
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(u, ϕ, ρ) and the problem data, such that, for all {vh
n}N

n=0 ⊂ V h, {ψh
n}N

n=0 ⊂ W h and

{ξh
n}N

n=0 ⊂ Kh,

max
0≤n≤N

{‖un − uhk
n ‖2

V + ‖ϕn − ϕhk
n ‖2

W + ‖ρn − ρhk
n ‖2

Y

} ≤ C
(
k

N∑
j=1

{
‖ρj − ξh

j ‖2
Y

+

∥∥∥∥
ρj − ρj−1

k
− ρ̇j

∥∥∥∥
2

Y

+

∥∥∥∥Φj − ρj − ρj−1

k

∥∥∥∥
Y

‖ρj − ξh
j ‖Y

}
+ ‖ϕ0 − ϕhk

0 ‖2
W

+ max
0≤n≤N

‖ρn − ξh
n‖2

Y + max
0≤n≤N

‖un − vh
n‖2

V + ‖u0 − uhk
0 ‖2

V + ‖ρ0 − ρh
0‖2

Y

+k2 + max
0≤n≤N

‖ϕn − ψh
n‖2

W +
1

k

N−1∑
j=1

‖ρj − ξh
j − (ρj+1 − ξh

j+1)‖2
Y

)
. (4.29)

Proof First, the error estimates for the apparent density functions were already

derived in the previous chapter (see Theorem 3.1) for the case without piezoelectric

effects. Proceeding in an analogous way, the following estimates are proved for all

{ξh
j }n

j=1 ⊂ Kh:

‖ρn − ρhk
n ‖2

Y

≤ Ck

n∑
j=1

{
‖uj − uhk

j ‖2
V + ‖ρj − ρhk

j ‖2
Y + ‖ρj − ξh

j ‖2
Y + ‖ϕj − ϕhk

j ‖2
W

+

∥∥∥∥Φj − ρj − ρj−1

k

∥∥∥∥
Y

‖ρj − ξh
j ‖Y + ‖ρj − ρj−1‖2

Y + ‖uj − uj−1‖2
V

+‖ϕj − ϕj−1‖2
W +

∥∥∥∥
ρj − ρj−1

k
− ρ̇j

∥∥∥∥
2

Y

}
+ C‖ρn − ξh

n‖2
Y

+
C

k

n−1∑
j=1

‖ρj − ξh
j − (ρj+1 − ξh

j+1)‖2
Y + C‖ρ1 − ξh

1‖2
Y

+C‖ρ0 − ρhk
0 ‖2

Y + C‖u0 − uhk
0 ‖2

V + C‖ϕ0 − ϕhk
0 ‖2

W ,

(4.30)

where we used the notation Φj = Φ(ρj,σ(uj), ε(uj)) and, here and in what follows,

C denotes a generic positive constant which depends on the continuous solution but it

is independent of the discretization parameters h and k, and whose value may change

from line to line. Moreover, we note that these error estimates depend on the electric

potential because the stress field does it too.

Secondly, we turn to estimate the numerical errors on the electric potential and the
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displacement field simultaneously. Hence, subtracting variational equation (4.18) at

time t = tn for ψ = ψh ∈ W h and variational equation (4.25) we find that

(ργ
n[β∇ϕn − Eε(un)]− (ρhk

n )γ[β∇ϕhk
n − Eε(uhk

n )],∇ψh)H = 0 ∀ψh ∈ W h,

and therefore,

(ργ
n[β∇ϕn − Eε(un)]− (ρhk

n )γ[β∇ϕhk
n − Eε(uhk

n )],∇(ϕn − ϕhk
n ))H

= (ργ
n[β∇ϕn − Eε(un)]− (ρhk

n )γ[β∇ϕhk
n − Eε(uhk

n )],∇(ϕn − ψh))H

for all ψh ∈ W h.

Taking into account that

(ργ
n[β∇ϕn − Eε(un)]− (ρhk

n )γ[β∇ϕhk
n − Eε(uhk

n )],∇ψ)H

= ((ρhk
n )γ[β∇(ϕn − ϕhk

n )− Eε(un − uhk
n )],∇ψ)H

+((ργ
n − (ρhk

n )γ)[β∇ϕn − Eε(un)],∇ψ)H ∀ψ ∈ W,

we have

−((ρhk
n )γEε(un − uhk

n ),∇(ϕn − ϕhk
n ))H

= ((ργ
n − (ρhk

n )γ)Eε(un),∇(ϕn − ϕhk
n ))H

−((ργ
n − (ρhk

n )γ)β∇ϕn,∇(ϕn − ϕhk
n ))H

−((ρhk
n )γβ∇(ϕn − ϕhk

n ),∇(ϕn − ϕhk
n ))H

+((ρhk
n )γβ∇(ϕn − ϕhk

n ),∇(ϕn − ψh))H

+((ργ
n − (ρhk

n )γβ∇ϕn,∇(ϕn − ψh))H

−((ρhk
n )γEε(un − uhk

n ),∇(ϕn − ψh))H

−((ργ
n − (ρhk

n )γ)Eε(un),∇(ϕn − ψh))H ∀ψh ∈ W h. (4.31)

Next, subtracting variational equation (4.17) at time t = tn for v = vh ∈ V h and
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variational equation (4.24) we find that

c(ρn; un,vh)− c(ρhk
n ; uhk

n ,vh) + (ργ
nE∗∇ϕn − (ρhk

n )γE∗∇ϕhk
n , ε(vh))Q = 0,

for all vh ∈ V h. Therefore,

c(ρn; un,un − uhk
n )− c(ρhk

n ; uhk
n ,un − uhk

n )

+(ργ
nE∗∇ϕn − (ρhk

n )γE∗∇ϕhk
n , ε(un − uhk

n ))Q

= c(ρn; un, un − vh)− c(ρhk
n ; uhk

n ,un − vh)

+(ργ
nE∗∇ϕn − (ρhk

n )γE∗∇ϕhk
n , ε(un − vh))Q ∀vh ∈ V h.

From the regularity u ∈ C([0, T ]; [W 1,∞(Ω)]d×d) (which implies that ε(un) ∈ [L∞(Ω)]d×d)

and keeping in mind that ρn, ρhk
n ∈ [ρa, ρb], after easy algebraic manipulations it follows

that

c(ρn; un,un − uhk
n )− c(ρhk

n ; uhk
n ,un − uhk

n ) = c(ρn; un,un − uhk
n )

−c(ρhk
n ; un,un − uhk

n ) + c(ρhk
n ; un, un − uhk

n )− c(ρhk
n ; uhk

n , un − uhk
n )

c(ρhk
n ; un, un − uhk

n )− c(ρhk
n ; uhk

n , un − uhk
n ) ≥ C‖un − uhk

n ‖2
V

c(ρn; un,un − uhk
n )− c(ρhk

n ; un,un − uhk
n ) ≤ C‖ρn − ρhk

n ‖Y ‖un − uhk
n ‖V ,

c(ρn; un,un − vh)− c(ρhk
n ; uhk

n ,un − vh)

≤ C‖un − uhk
n ‖V ‖un − vh‖V + C‖ρn − ρhk

n ‖Y ‖un − vh‖V .

Keeping in mind that ρn, ρhk
n ∈ [ρa, ρb], properties (4.14)-(4.15) and equation (4.31),

taking into account that

(ργ
nE∗∇ϕn − (ρhk

n )γE∗∇ϕhk
n , ε(v))Q = ((ρhk

n )γE∗∇(ϕn − ϕhk
n ), ε(v))Q

+((ργ
n − (ρhk

n )γ)E∗∇ϕn, ε(v))Q,

((ρhk
n )γE∗∇(ϕn − ϕhk

n ), ε(un − uhk
n ))Q = ((ρhk

n )γEε(un − uhk
n ),∇(ϕn − ϕhk

n ))H ,

and the regularity ϕ ∈ C([0, T ]; W 1,∞(Ω)) (which implies that ∇ϕn ∈ [L∞(Ω)]d), using

several times the inequality (3.19), it leads to the following estimates for the electric
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potential and the displacement field, for all vh ∈ V h and ψh ∈ W h,

‖un − uhk
n ‖2

V + ‖ϕn − ϕhk
n ‖2

W

≤ C
(‖un − vh‖2

V + ‖ρn − ρhk
n ‖2

Y + ‖ϕn − ψh‖2
W

)
.

(4.32)

Combining now estimates (4.30) and (4.32) we obtain the following estimates for the

numerical errors:

‖un − uhk
n ‖2

V + ‖ρn − ρhk
n ‖2

Y + ‖ϕn − ϕhk
n ‖2

W

≤ Ck

n∑
j=1

{
‖uj − uhk

j ‖2
V + ‖ϕj − ϕhk

j ‖2
W + ‖ρj − ρhk

j ‖2
Y

+

∥∥∥∥Φj − ρj − ρj−1

k

∥∥∥∥
Y

‖ρj − ξh
j ‖Y + ‖ρj − ρj−1‖2

Y + ‖uj − uj−1‖2
V

+‖ϕj − ϕj−1‖2
W + ‖ρj − ξh

j ‖2
Y +

∥∥∥∥
ρj − ρj−1

k
− ρ̇j

∥∥∥∥
2

Y

}
+ C‖un − vh

n‖2
V

+
C

k

n−1∑
j=1

‖ρj − ξh
j − (ρj+1 − ξh

j+1)‖2
Y + C‖ρ1 − ξh

1‖2
Y + C‖ρn − ξh

n‖2
Y

+C‖ϕn − ψh
n‖2

W + C‖ρ0 − ρhk
0 ‖2

Y + C‖u0 − uhk
0 ‖2

V + C‖ϕ0 + ϕhk
0 ‖2

W

for all {ξh
j }n

j=1 ⊂ Kh, vh
n ∈ V h and ψh

n ∈ W h.

Keeping in mind the regularities u ∈ C1([0, T ]; V ), ϕ ∈ C1([0, T ]; W ) and ρ ∈
C1([0, T ]; Y ) we easily find that

k

n∑
j=1

{‖ρj − ρj−1‖2
Y + ‖ϕj − ϕj−1‖2

W + ‖uj − uj−1‖2
V

} ≤ Ck2.

Finally, using a discrete version of Gronwall’s inequality (see Lemma 2.1) with

e0 = g0 = ‖u0 − uhk
0 ‖2

V + ‖ρ0 − ρhk
0 ‖2

Y + ‖ϕ0 − ϕhk
0 ‖2

W ,

en = ‖un − uhk
n ‖2

V + ‖ρn − ρhk
n ‖2

Y + ‖ϕn − ϕhk
n ‖2

W

and gn the remaining terms, we obtain the desired result. ¤
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We notice that the above error estimates are the basis for the analysis of the conver-

gence rate of the algorithm. Hence, under additional regularity assumptions we obtain

the linear convergence of the algorithm that we state in the following corollary.

Corollary 4.1 Let assumptions of Theorem 4.1 hold. Define the initial condition for

the apparent density function as follows,

ρhk
0 = Phρ0,

where Ph is the L2(Ω)-projection operator onto Bh (see [13]). Under the additional

regularity conditions

u ∈ L∞(0, T ; [H2(Ω)]d), ϕ ∈ L∞(0, T ; H2(Ω)),

ρ ∈ H2(0, T ; Y ) ∩H1([0, T ]; H1(Ω)) ∩ C([0, T ]; H2(Ω)),

the algorithm is linearly convergent; that is, there exists a positive constant C > 0,

independent of the discretization parameters h and k, such that

max
0≤n≤N

{‖un − uhk
n ‖V + ‖ϕn − ϕhk

n ‖W + ‖ρn − ρhk
n ‖Y

} ≤ C(h + k). (4.33)

Proof Using the well-known result on the approximations by finite elements and the

projection operator Ph, we have (see [13]),

inf
vh

n∈V h
‖un − vh

n‖V ≤ Ch‖un‖[H2(Ω)]d ≤ Ch‖u‖C([0,T ];[H2(Ω)]d),

inf
ψh

n∈W h
‖ϕn − ψh

n‖W ≤ Ch‖ϕn‖H2(Ω) ≤ Ch‖ϕ‖C([0,T ];H2(Ω)),

inf
ξh
n∈Kh

‖ρn − ξh
n‖Y ≤ Ch‖ρn‖H1(Ω) ≤ Ch‖ρ‖C([0,T ];H1(Ω)),

‖ρ0 − ρhk
0 ‖Y ≤ Ch‖ρ0‖H1(Ω) ≤ Ch‖ρ‖C([0,T ];H1(Ω)).

Using estimates (4.32) with n = 0 we find that

‖u0 − uhk
0 ‖2

V + ‖ϕ0 − ϕhk
0 ‖2

W

≤ C
(‖u0 − vh‖2

V + ‖ρ0 − ρhk
0 ‖2

Y + ‖ϕ0 − ψh‖2
W

)
,
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for all vh ∈ V h and ψh ∈ W h, and the previous result on the approximation of ρ0 leads

to the following estimate,

‖u0 − uhk
0 ‖2

V + ‖ϕ0 − ϕhk
0 ‖2

W

≤ Ch2
(
‖ρ‖2

C([0,T ];H1(Ω)) + ‖u‖2
C([0,T ];[H2(Ω)]d) + ‖ϕ‖2

C([0,T ];H2(Ω))

)
.

An straightforward estimate implies that

k

N∑
j=1

∥∥∥∥
ρj − ρj−1

k
− ρ̇j

∥∥∥∥
2

Y

≤ Ck2‖ρ‖2
H2(0,T ;Y ),

and we also have

k

N∑
j=1

∥∥∥∥Φj − ρj − ρj−1

k

∥∥∥∥
Y

‖ρj − ξh
j ‖Y ≤ k

N∑
j=1

{
‖Φj − ρ̇j‖Y ‖ρj − ξh

j ‖Y

+

∥∥∥∥ρ̇j − ρj − ρj−1

k

∥∥∥∥
Y

‖ρj − ξh
j ‖Y

}

≤ C max
1≤j≤N

‖ρj − ξh
j ‖Y + C

N∑
j=1

k
{ ∥∥∥∥ρ̇j − ρj − ρj−1

k

∥∥∥∥
2

Y

+ ‖ρj − ξh
j ‖2

Y

}
.

Finally, applying the following estimate (proved in [5]):

1

k

N−1∑
n=1

‖ρn − ξh
n − (ρn+1 − ξh

n+1)‖2
Y ≤ Ch2‖ρ‖2

H1(0,T ;H1(Ω)),

taking into account that

inf
ξh
j ∈Kh

‖ρj − ξh
j ‖Y ≤ Ch2‖ρj‖H2(Ω) ≤ Ch2‖ρ‖C([0,T ];H2(Ω)),

and combining the previous results and error estimates (4.29), we conclude (4.33). ¤
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4.4 Numerical results

In this section we first describe shortly the numerical scheme implemented, and then

we present some numerical examples to exhibit its accuracy and its performance and

behavior in one-, two- and three-dimensional examples.

Numerical scheme

First, we recall that variational spaces V , Q, W and B are approximated using the

finite element spaces V h, Qh, W h and Bh defined by (4.20), (4.21), (4.22) and (4.23),

respectively. Moreover, the discrete convex set Kh is given by Kh = K ∩Bh.

We notice that, in (4.24) and (4.25), for n = 0 the discrete initial apparent density

ρhk
0 is given and, for n = 1, 2, . . . , N , ρhk

n is known. Hence, we obtain the discrete

displacement field uhk
n and the discrete electric potential ϕhk

n solving the equations:

uhk
n ∈ V h, c(ρhk

n ; uhk
n ,vh) = (fn,v

h)V − ((ρhk
n )γE∗∇ϕhk

n , ε(vh))Q ∀vh ∈ V h,

ϕhk
n ∈ W h, ((ρhk

n )γ[β∇ϕhk
n − Eε(uhk

n )],∇ψh)H = (qn, ψh)W ∀ψh ∈ W h.

These two coupled discrete linear variational equations lead to a nonsymmetric linear

system in terms of a product variable xn = (uhk
n , ϕhk

n ), which is solved by using the LU

decomposition method. Next, the discrete stress field is updated by using the equation,

σhk
n = 2 µ(ρhk

n )ε(uhk
n ) + λ(ρhk

n )Div (uhk
n )I + (ρhk

n )γE∗∇ϕhk
n .

Now, for n = 1, 2, . . . , N , in (4.26) uhk
n−1, σhk

n−1 and ρhk
n−1 are known. The discrete

apparent density function ρhk
n is then obtained from (4.26):

ρhk
n ∈ Kh,

(
ρhk

n , ξh − ρhk
n

)
Y
≥ k

(
Φ(ρhk

n−1,σ
hk
n−1, ε(uhk

n−1)), ξ
h − ρhk

n

)
Y

+
(
ρhk

n−1, ξ
h − ρhk

n

)
Y

∀ξh ∈ Kh.

This leads to a variational inequality of the first kind which is solved using a penalty-

duality algorithm that can be seen, for instance, in [68].
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A one-dimensional example: the numerical convergence

As a one-dimensional example, the following problem is considered.

Problem P3-1D. Find a displacement field u : [0, 1] × [0, 1] → R, an electric

potential field ϕ : [0, 1]× [0, 1] → R and an apparent density function ρ : [0, 1]× [0, 1] →
[0.01, 1.74] such that:

−∂σ

∂x
(x, t) = 0 x ∈ (0, 1), t ∈ (0, 1),

−∂D

∂x
(x, t) = 0 x ∈ (0, 1), t ∈ (0, 1),

ρ̇(x, t) =

(
σ(x, t)∂u

∂x
(x, t)

2ρ(x, t)
− 0.004

)
x ∈ [0, 1], t ∈ [0, 1],

u(0, t) = 0 t ∈ (0, 1),

ϕ(0, t) = 0 t ∈ (0, 1),

σ(1, t) = −10−4 et t ∈ (0, 1),

ρ(x, 0) = 0.8 x ∈ [0, 1],

where the stress field σ : [0, 1] × [0, 1] → R and the electric displacement field D :

[0, 1]× [0, 1] → R are given by

σ(x, t) = M(ρ(x, t))3∂u

∂x
(x, t)− 2× 10−9(ρ(x, t))3∂ϕ

∂x
(x, t) x ∈ (0, 1), t ∈ (0, 1),

D(x, t) = 2× 10−9(ρ(x, t))3∂u

∂x
(x, t)

+190× 10−15(ρ(x, t))3∂ϕ

∂x
(x, t) x ∈ (0, 1), t ∈ (0, 1).

Problem P3-1D corresponds to Problem P3 with the following data, keeping in mind

that the area of the cross-section is A = 1m2:

Ω = (0, 1), T = 1 day, E(ρ) = Mργ, M = 3790 Nm2/Kg2, γ = 3,

B = 1, Sr = 0.004 Kg/ms, β = 190× 10−15 F/mm E = 2× 10−9 C/mm2,
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ρa = 0.01 g/cm3, ρb = 1.740 g/cm3, ρ0 = 0.8 g/cm3,

f = 0 N/m, g(t) = −10−4et N for t ∈ [0, 1].

Our aim here is to show the numerical convergence of the algorithm. Therefore,

several uniform partitions of both the time interval and the domain, dividing Ω =

(0, 1) into n segments, have been performed. We note that the spatial discretization

parameter h equals to
1

n
, and we used the solution obtained with n = 212 and k = 10−4

as the “exact solution”.

The numerical errors, given by

Ehk = max
0≤n≤N

{
‖un − uhk

n ‖V + ‖ρn − ρhk
n ‖Y + ‖ϕn − ϕhk

n ‖W

}
,

and obtained for different discretization parameters h and k, are depicted (multiplied

by 100) in Table 4.1. Moreover, the evolution of the error depending on h+k is plotted

in Figure 4.2. We notice that the convergence of the algorithm is clearly observed, and

n ↓ k → 0.1 0.05 0.01 0.005 0.001 0.0005 0.0001
16 0.473426 0.473064 0.472774 0.472738 0.472709
32 157.9005 76.30889 0.235741 0.235561 0.235416 0.235398 0.235383
64 124.1726 0.117657 0.116933 0.116842 0.116771 0.116761 0.116754
128 0.058353 0.057899 0.057537 0.057492 0.057456 0.057451 0.057448
256 0.028249 0.028022 0.027841 0.027819 0.027801 0.027798 0.027797
512 0.013198 0.013084 0.012994 0.012983 0.012974 0.012972 0.012972
1024 0.005672 0.005615 0.005571 0.005565 0.005561 0.005559 0.005559

Table 4.1: Example P3-1D: Numerical errors (x100) for some h and k.

the linear convergence, stated in Corollary 4.1, seems to be achieved.

Numerical results for two and three dimensional problems: predicting bone

formation and resorption

Our aim here is to numerically show that bone formation and resorption may be related

to electrical charges in the bone surfaces due to contributions produced by the mecha-

nical loading Dε. Hence, we consider a diaphysis of a long bone and an osteon under
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Figure 4.2: Example P3-1D: Asymptotic constant error.

compressive and torsional loads, in order to understand its mechano-electric behavior.

For these two examples, we will only consider one time step, because our study reflects

the bone formation and resorption on bone surface.

Diaphysis of a long bone with a malaligned fracture

In the first example, we consider a diaphysis of a fractured long bone which is healed in

an angulated position, forming 10◦ with the vertical direction. It is known that in this

situation, the bone tends to become straighter and bone formation occurs on concave

surface while bone resorption takes place on convex surfaces.

We will assume that the length of the diaphysis is 150mm and the diameter 27mm

(see [18]). Moreover, it has an internal part formed by cancellous bone, with a density

of 0.8 g/cm3 and two layers of 7mm thickness of cortical bone with a higher density

of 1.6 g/cm3. We apply a compression force on the upper boundary, with a maximum

value of 5MPa. We have chosen this load in order to obtain a maximum deformation

between 2000 and 3000µε (see [53]). Finally we have fixed the potential and displace-

ment fields on the lower boundary (see Figure 4.3). As a first approach, we model this

example using a plane strain hypothesis. We consider that the horizontal direction is
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Figure 4.3: Diaphysis of a long bone.

the number 1 and the vertical direction number 3, according to the notation introduced

in Section 4.1. Then, considering the two dimensional case, on the piezoelectric tensor

only appear the components e31, e33 and e15.

In order to show the behavior of the electric displacement we have analyzed in

Figure 4.4 the normal electric displacement due to mechanical conditions (Dε · ν =

α(ρ)Eε(u) · ν) on the boundaries of both cortical layers. We have plotted in blue

the curves corresponding to the left cortical and in red for the right cortical. We can

observe that the concave surfaces, marked with circles, where the bone is forming,

takes positive electrical values, whereas the convex surfaces, marked with cross, takes

negative electrical values because the bone is resorbed. This result is obtained due

to the expression of the piezoelectric tensor E and the distribution of the strains in

the cortex. Since the normal vector to the surfaces is perpendicular to 3, then the

normal strains have no effect on the electrical displacement which is regulated by the

shear strains on the bone surfaces (see Figure 4.5) that occur as a consequence of the

inclination of the load with respect to the bone axis.
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Figure 4.4: The normal electric displacement due to mechanical effects (Dε).
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Figure 4.5: Shear strain distribution on the bone: (a) x-component (b) y-component
and (c) xy-component

Analysis of one osteon in progression

In the second example, we analyze the bone remodeling in an osteon. In Figure 4.6 we

can see the 3D finite element mesh of this osteon. The cylindrical tunnel and the sphe-

rical cutting cone have a diameter of 200µm, which is representative for a resorption

cavity in human cortical bone. The outer diameter of the piece of bone in the model

is 700µm. The bone is assumed to be loaded in compression along its longitudinal
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direction at maximum load during a walking cycle and a torsional load is also applied

(see [4]). Moreover, we have fixed the electric potential field on the outer boundary.

In order to simulate a piece of cortical bone, we assume that the density is 1.6 g/cm3.

Figure 4.6: Osteon under compressive and torsional loads.

It is known that bone remodeling occurs in local groups of osteoblasts and osteo-

clasts called bone multicellular units (BMU), where each unit is organized into “cutting

cone” of osteoclasts reabsorbing bone followed by osteoblasts refilling the bone defect

left by osteoclasts [36]. In order to understand this behavior in function of the electro-

mechanical behavior of the bone we have analyzed the normal electric displacement

due to mechanical effects (Dε) on the cylindrical tunnel and the spherical cutting cone.

In Figure 4.7 we can observe these values on a vertical section of the osteon. When we

apply the compressive and torsional loads we can observe that this value is positive in

the cylindrical part, where normally osteoblasts deposit bone matrix and is negative

at the tip of the cutting cone. Moreover, the normal vector to the surface coincides
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there with the direction 3 and therefore, the normal strains contribute to the electrical

displacement, mainly the strain in the direction 3 (z direction) (see Figure 4.8). How-

ever, in the cylindrical surface of the osteon, the normal to the surface is perpendicular

to the direction 3 and therefore, only the shear strains influence on the electrical dis-

placement. In the transition zone between the cutting zone and the cylindrical zone

the normal is changing and there is a coupled contribution of the normal and shear

strains.

z

x

Figure 4.7: Normal electric displacement due to mechanical effects under compressive
and torsional loads.

Then, we have to remark the importance of the torsional load, because if we only

consider the compressive load, we can see in Figure 4.9 how only negative electrical

displacements occur in the cutting cone. Meanwhile, in the cylindrical tunnel of the

osteon these electrical displacements are zero. It is due to the fact that, under com-

pression loads, shear strains are zero in this zone. However, with torsional loads, shear

strains are different from zero producing an electrical displacement perpendicular to

the bone surface.
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Figure 4.8: Strain distribution around the osteon: (a) x-component, (b) y-component,
(c) z-component, (d) xy-component, (e) xz-component and (f) yz-component

A femur model

As a final example, we will consider a complete bone remodeling process in a proximal

femur. Our aim here is, first, to reproduce the simulation performed in the previous

chapter considering the piezoelectric model. Hence, now we will obtain electrical effects
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z

x

Figure 4.9: Normal electric displacement due to mechanical effects under compressive
loads.

due to the mechanical loads that are acting on the bone. As we explain there, the daily

load history is represented using three loading cases acting sequentially. Each load con-

sists in one compressive load acting on the femoral head plus the reaction force induced

in the abductor muscle. In order to avoid the lack of connection between the cortical

layers of the diaphysis, we include a side plate joining both layers (see Section 3.4 for

more details). We assume that the lower horizontal boundary is fixed through the

vertical direction meanwhile the left point is clamped. Moreover, in this point the

potential field is equal to zero. We consider a plain strain hypothesis in which the

proximal femur has a uniform thickness of 10mm and the side plate 1mm.

The following data have been used in this simulation:

T = 300 days, E(ρ) = Mργ, M = 3790 Pa/(Kg m−2)2, γ = 3,

f = 0N/m2, B = 1 (g cm−3)2(MPaday)−1, Sr = 0.004 J/g,

κ = 0.3, ρa = 0.01 g/cm3, ρb = 1.740 g/cm3, ρ0 = 0.8 g/cm3,
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β11 = 88.54× 10−12F/mm, β33 = 106.248× 10−12F/mm,

e31 = 1.50765× 10−9C/mm2, e33 = 1.87209× 10−9C/mm2,

e15 = 3.57643× 10−9C/mm2.

In Figure 4.10 we can observe the final configuration of the bone density after 300

days. The end configuration predicts a reasonable accurate density distribution with

an intramedullary canal. As it was also noticed in the previous chapter, Ward’s triangle

and the typical cancellous density patterns in this femoral head are shown. Compa-

ring these results with those obtained in the previous chapter for the model without

piezoelectricity, we can observe that, in this example, the electrical field does not have

an important influence on the distribution of the bone density, maybe because the

potential field generated by these mechanical loads is small. In Figure 4.11 the electric

potential is plotted at different instants of the 215 day. We can observe several varia-
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Figure 4.10: Bone density after 300 days.

tions in the distribution of electric charges and in its values, caused by the application

of the different mechanical loads.

Then, we will assume that between day 300 and day 400 the physical activity is re-
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Figure 4.11: The potential field at several times (t=215, 215.2 and 215.4).

duced and the mechanical loads are applied one of each three days. As we can observe

in Figure 4.12, the bone density in the femoral head at time T=400 days is lower than

at time T=300 days.

Probably, the most important advantage of considering the piezoelectric effects in

bone remodeling is the ability to change the bone density applying electric charges.

As we explained along this Ph.D. thesis, the mechanical loads are the responsible of

the changes in the internal structure of the bone. Moreover, when we apply an electric

charge in a piezoelectric material, we obtain an associated mechanical displacement

and, in a bone, we obtain a change in the bone density. In the following simulations

we will try to show how an electrical charge can change the bone density distribution.
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Figure 4.12: Bone density after a period of reduce physical activity (T=400 days).

Then, we will assume the configuration obtained after 300 days and we will consider

that an electric charge is applied, on three different parts of the bone, during a period

of reduced physical activity (see Figure 4.13). Moreover, we will compare the bone

density corresponding to each case with that previously obtained when no electrical

forces were applied (Figure 4.12).

Greater trocanter

Femoral neck

Diaphysis

Figure 4.13: Boundaries for the electric charge.
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An electric charge on the greater trocanter.

In this first case, an electric load is applied in the greater trocanter (see Figure 4.13)

between days 300 and 400. During this time, the mechanical loads are applied only

one of each three days. Applying the electrical surface charge of 2 × 10−9C/mm2 we

obtain a negative potential field with a maximum intensity of −50V (see Figure 4.14).

In order to show the variation of the bone density, we have plotted in Figure 4.15 the

 

 

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

Figure 4.14: Electric potential after a period of reduced physical activity (T=400 days)
in which an electric charge is acting on the greater trocanter.

difference between the bone density, when an electric charge is applied and the bone

density when only the mechanical loads are acting. In spite of the small differences

obtained, we can observe that in the areas in red an increment in the bone density has

been produced. However, in the areas in blue the bone density has decreased when the

electric charge has been applied.

An electric charge on the diaphysis.

In the second example we will apply an electric load on the upper part of the diaphysis

(see Figure 4.13). In this case an electrical surface charge of 5×10−8C/mm2 is applied.
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Figure 4.15: Differences between the bone density when an electric charge is applied
and the bone density when only the mechanical loads are acting (T=400 days).

In Figure 4.16 we can see that the electric charge produces a potential field with a

maximum intensity of −40V .
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Figure 4.16: Electric potential after a period of reduced physical activity (T=400 days)
in which an electric charge is acting on the diaphysis.
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The differences between the bone density, when only the mechanical loads are ac-

ting, and when an electric charge is applied are plotted in Figure 4.17. In this case, the

electric charge affects, mainly, to the closer area of the application point, producing an

increase of the bone density near of the cortical bone.

 

 

−6

−4

−2

0

2

4

6

8

10

12

x 10
−8

Figure 4.17: Differences between the bone density when an electric charge is applied
and the bone density when only the mechanical loads are acting (T=400 days).

An electric charge on the femoral neck.

As a final example, we will consider an electrical charge of 2× 10−9C/mm2 acting on

the upper part of the femoral neck (see Figure 4.13). The potential field at 400 days is

plotted in Figure 4.18. In this case, the porosity decreases in several areas, remarking

those areas with higher density (see Figure 4.19).
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Figure 4.18: Electric potential after a period of reduced physical activity (T=400 days)
in which an electric charge is applied.
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Figure 4.19: Differences between the bone density when an electric charge is applied
and the bone density when only the mechanical loads are acting (T=400 days).



Conclusions

In the course of this Ph.D. thesis we studied several bone remodeling models, trying

to develop a complete study from the mathematical and physical points of view.

In Chapter 2, the Cowin and Hegedus model was introduced. In this model, the bone

is considered as an elastic material. A variational formulation was provided, obtaining

an elliptic variational equation for the displacement field and an ordinary differential

equation which describes the evolution of the bone density. Applying the finite ele-

ment method and an Euler scheme to approximate the spatial variable and the time

derivatives, respectively, we obtained a fully discrete problem and we proved an error

estimates result. Moreover, under additional regularity assumptions, we derived the

linear convergence of the algorithm. Numerical simulations in one, two and three di-

mensions were presented to show the accuracy and the behavior of the approximations.

In the second part of this chapter, we considered a similar problem assuming now

that the bone may come into contact with a rigid or a deformable obstacle. In order to

model these two contact conditions, we used the classical Signorini condition and the

normal compliance contact law, respectively. The variational formulation was obtained

for both problems and the convergence of the solution to the contact problem with a

deformable obstacle, when the deformability coefficient tends to zero, to the solution

of the Signorini’s problem was established. We introduced fully discrete aproximations

and we proved an error estimates result for both problems. Finally, under additional

regularity assumptions, we obtained the linear convergence of the algorithm and some

simulations were also presented.

177
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The third chapter dealt with the numerical analysis, including numerical simulations

in one and two dimensions, of a bone remodeling model introduced by Weinans, Huiskes

and Grootenboer in [66]. A numerical algorithm for the variational problem, based on

the finite element method to approximate the spatial variable and an Euler scheme to

discretize the time derivatives, was proposed, an error estimate on its solutions was

obtained and its linear convergence was established under suitable regularity assump-

tions. The numerical simulations demonstrated the accuracy of the approximations

and some properties related to the behavior of the solution.

Finally, in the last chapter, we proposed a new bone remodeling model in which we

considered the bone as an piezoelectric material. This property of the bone tissue was

suggested in 1957. However, it was not normally used to understand bone remodeling

and there are not many models that justify bone remodeling based on bone piezoelec-

tricity. We continued the work developed in the previous chapter, using this model

to characterize the evolution of the bone density and the mechanical properties of the

bone. Then, we extended the classical electro-mechanical dependence adding a func-

tion α(ρ) = ργ, which regulates the coupling between the mechanical and electric fields.

This function guarantees that the electric field increases with the density of the bone.

The variational formulation for this model was derived and a numerical algorithm was

proposed, coupling the electric and displacement fields. Finally, error estimates were

proved and the linear convergence was established under adequate regularity condi-

tions. Again, the numerical results shown the accuracy of the approximations as well

as the behavior of the solution, giving also a numerical justification of the electro-

mechanical bone remodeling model.

All the algorithms proposed in this Ph.D. thesis were implemented using MATLAB

code and a good number of examples were computed. First, the one-dimensional exam-

ples were chosen in such a way as to show the numerical convergence of the algorithms

and also their linear convergence. Then, two- or three-dimensional examples were per-
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formed in order to show the behavior of the models.

The existence and uniqueness of weak solutions for the discrete problems were ob-

tained applying classical results on linear variational equations or nonlinear variational

inequalities (see [44]). However, we remark that the existence and uniqueness results

of weak solutions for the continuous variational formulations are open problems. In the

Cowin and Hegedus model, this result was obtained for a similar variational formula-

tion in which stronger assumptions were made over the data. Recently, Fernández and

Kuttler dealt with the model proposed by Weinans, Huiskes and Grootenboer obtaining

an existence and uniqueness result for a regularized problem.
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[19] M. Doblaré and J.M. Garćıa-Aznar, Application of an anisotropic bone-

remodelling model based on a damage-repair theory to the analysis of the proximal

femur before and after total hip replacement, J. Biomech. 34 (9) (2001) 1157-1170.



Bibliography 183

[20] J.R. Fernández, I.N. Figueiredo and R. Mart́ınez, A convergence result in the

study of bone remodeling contact problems, J. Math. Anal. Appl. 343(2) (2008)

951–964.
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Ingr. 2 (1986) 63–86.


	NUMERICAL ANALYSIS ANDSIMULATIONS IN BONEREMODELING MODELS
	Agradecimientos
	Contents
	Resumen
	Summary
	Introduction

	The bone tissue and its behavior
	1.1 Bone morphology
	1.2 The bone remodeling process
	1.3 Modeling the bone tissue

	A strain adaptive bone remodelingmodel
	2.1 The model
	2.2 Analysis of the bone remodeling model
	2.2.1 The mathematical problem and its variational formula-tion
	2.2.2 Numerical analysis of a fully discrete scheme
	2.2.3 Numerical results

	2.3 A contact problem in a bone remodeling model
	2.3.1 Mechanical and variational problems
	2.3.2 Numerical analysis of a fully discrete scheme
	2.3.3 Numerical results


	Bone remodeling induced by a localstimulus
	3.1 The model
	3.2 Mechanical and variational problems
	3.3 Numerical analysis of a fully discrete scheme
	3.4 Numerical results

	A piezoelectric bone remodelingmodel
	4.1 Piezoelectricity as responsible of bone forma-tion and resorption
	4.2 Mechanical and variational problem
	4.3 Numerical analysis
	4.4 Numerical results

	Conclusions
	Bibliography



