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Abstract. Reservoir computing is a framework which uses the non-
linear internal dynamics of a recurrent neural network to perform com-
plex non-linear transformations of the input. This enables reservoirs to
carry out a variety of tasks involving the processing of time-dependent or
sequential-based signals. Reservoirs are particularly suited for tasks that
require memory or the handling of temporal sequences, common in areas
such as speech recognition, time series prediction, and signal process-
ing. Learning is restricted to the output layer and can be thought of as
“reading out” or “selecting from” the states of the reservoir. With all but
the output weights fixed they do not have the costly and difficult train-
ing associated with deep neural networks. However, while the reservoir
computing framework shows a lot of promise in terms of efficiency and
capability, it can be unreliable. Existing studies show that small changes
in hyperparameters can markedly affect the network’s performance. Here
we studied the role of network topologies in reservoir computing in the
carrying out of three conceptually different tasks: working memory, per-
ceptual decision making, and chaotic time-series prediction. We imple-
mented three different network topologies (ring, lattice, and random)
and tested reservoir network performances on the tasks. We then used
algebraic topological tools of directed simplicial cliques to study deeper
connections between network topology and function, making compar-
isons across performance and linking with existing reservoir research.

Keywords: reservoirs, recurrent neural networks, network topologies,
directed simplicial cliques

1 Introduction

The link between structure and function in networks of complex systems has
been demonstrated theoretically and empirically, but a clear and comprehensive
understanding of it is nevertheless elusive [2]. Networks have many applications,
but wherever they are applied, their structure has important consequences for
their function or behaviour. In reservoir computing [7], the structure and con-
nectivity of the reservoir — a recurrent neural network — has received much
interest, as it impacts upon task performance [8, 24, 15]. The parameters of the
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reservoir network components have vital implications for the performance of
the reservoir. These parameters include input signal scaling factor, connection
sparsity of the reservoir, spectral radius of the weight matrix (the maximum
of the absolute values of its eigenvalues), and the choice of non-linear activa-
tion function in the network nodes. However, even very small changes in the
hyperparameters can markedly affect the network’s performance [12, 24]. The
performance differences even with similar distributions of parameters indicate
that the heart of the matter may lie in the topology of the network [8].

Answers to the structure-function question in reservoir networks could lead to
increased computational ability and efficiency. Knowing a priori which network
features might optimise functionality would reduce a large amount of the uncer-
tain, inefficient, and costly “groping in the dark” for suitable networks, and post
hoc adjustments to fine-tune the setup. A better knowledge of the structure-
function relationship in reservoir computing would not only be of theoretical
interest, but also of great potential practical use.

2 Review: Reservoir Computing and Network Structure

In reservoir computing a recurrent neural network (RNN) is used as a fixed,
random, large-scale dynamical system, called the reservoir, which is used to
process time-dependent or sequential-based signals. It is particularly suited for
tasks that require memory or the handling of temporal sequences, common in
areas such as speech recognition, time series prediction, and signal processing
[7, 13]. The key elements of the framework (see Fig. 1) are: the input layer with
randomised fixed weights W in; the reservoir with fixed internal weights W of
a desired sparsity and/or node degree, with weights often uniformly sampled
between -1 and 1 and scaled by the spectral radius; and the output layer with
weight matrix W out, which is typically trained by regularised linear regression.

Fig. 1: Adapted [24] illustration of a reservoir setup, with fixed input weights
Win, fixed reservoir W , and trained output layer Wout.
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The recurrent neural networks in reservoirs have rich dynamics allowing com-
plex non-linear transformations of their input. The dynamics are driven by the
equation

x(t+ 1) = (1− α)x(t) + αf(Wx(t) +W ini(t))

where α is the leaky coefficient, f is the non-linear activation function, x is the
state vector, and i is the input data. By non-linearly embedding the input into
a higher dimensional feature space, the problem is more likely to be linearly
separable and therefore solvable (Cover’s theorem [6]). Since the training of the
system is restricted to the output layer, reservoirs do not have the costly and
challenging training associated with deep neural networks. This makes them
particularly desirable from an efficiency point of view. However, as mentioned
above, it is not fully known how the connectivity and layout of nodes within the
reservoir affect performance. Reservoirs with ostensibly equivalent characteristics
can show drastically varied performance depending on their initialisations.

There is a connection between reservoir performance and general architec-
tural factors such as modularity [27], small-world qualities [15], scale-free char-
acteristics [10], and even specific topologies [8]. For instance, node degree k
(the number of in and out connections a node within the network has) has been
studied and shown to be related to the reservoir behaviour. A common suggested
heuristic is that low-connectivity of node degree promotes a richer reservoir re-
sponse [4]. On the other hand, while greater sparsity and low-connectivity has
been linked with greater richness of response, it is also the case that lowering
the average degree of connectivity shows decreased sensitivity, network strength,
and persistence of the signal [18]. The modularity of a network’s architecture has
also been linked to reservoir performance [27], specifically in the case of mem-
ory capacity and recall tasks. An optimal modularity is found with a balance
between local cohesion and global connectivity (Fig. 2), which optimises neural
dynamics and memory performance. However, this is in the case of threshold
neurons.

Fig. 2: Illustration (adapted from [27]) where reservoir performance increases
when a balance between the local cohesion of communities and the global con-
nectivity of bridges is met.
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Another general network property that has been studied in relation to reser-
voirs is that of small-world characteristics. Small-world characteristics are those
which possess high degrees of clustering, and low average shortest path length
[31]. Their properties have been linked with better performance in feed-forward
[11] and Hopfield [3] networks, as well as the reservoir computing context [15].
Small-world qualities in reservoir networks often increase task performances and
provide greater robustness in parameter selection [15, 8]. Specifically, the small-
world topology appears to enhance reservoir learning performance in non-linear
time-series prediction compared to networks with random topologies, due to its
promotion of efficient signal propagation and enhancement of the echo state
property.

Fig. 3: Different topologies used in reservoirs [8] within the CHARC framework.

Some previous work has studied the general performance properties of sev-
eral explicit topologies — including ring and lattice (Fig. 3) — for computing
substrates using a CHARC (CHAracterisation of Reservoir Computers) frame-
work [8]. This study examines the theoretical qualities of these topologies across
different network sizes (from 16 to 400 nodes), and consistently finds that, while
the fully-connected structure performs with the highest quality of dynamical
behaviour (and the ring performs poorest), the lattice and torus achieve com-
parably high performances to the fully-connected network. Their results demon-
strate that networks with specific topologies and nuanced connectivity exhibit
similar quality of behaviours to larger and higher connected structures. How-
ever, they only investigated three generic and theoretical properties of reservoirs
in these topologies, namely, the separation property, the generalisation prop-
erty, and the echo state property. These characteristics are highly important
for reservoir dynamics, but do not fully capture all dynamical properties and
functional capacities of a reservoir. Thus they do not specifically address the
potential performances of reservoir in defined tasks. Furthermore, the topology
implementations in this study [8] meant that the reservoir networks had differ-
ing sparsities; this is a quality that has a direct effect upon performance [7, 13].
Therefore it remains to be seen how differing topologies with equivalent sparsities
perform in specific task scenarios.

A further aspect of network property and structure which is connected to
the characteristics outlined above — but which remains to be explored in the
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context of reservoir computing — is that of directed simplicial complexes [1,
21]. These are concepts from algebraic topology which extend the notion of con-
nectivity beyond pairwise interactions to higher-order relationships, allowing for
the modelling of more complex, multi-dimensional connectivity patterns within
a network [21]. These structural motifs have been seen to play a crucial role in
a network’s functioning, influencing its synchronisation and dynamics [20]. Fur-
thermore, higher-than-random proportions of high dimensional directed simpli-
cial cliques have been identified in biological neural networks [25] (Fig. 4). These
are suggested to guide the emergence of correlated network activity, and are cru-
cial to the processing and integration of information in the brain [25]. However,
despite recent work uncovering the abundance and importance of simplicial com-
plexes in network performance, there remains a gap in research studying these
characteristics in the case of reservoir computing.

Fig. 4: The number of simplices in each dimension in the biological neural net-
work and in three types of random control networks (adapted from [25]).

Here in this work we examine the roles of network connectivity and topology
on the performance of reservoir networks in specific performance contexts. We
identify topological fingerprints of reservoir networks in three conceptually and
practically different tasks: working memory, perceptual decision making, and
chaotic time-series prediction. The working memory task measures the degree
to which the reservoir can reproduce sequential random input data after time
delay; the perceptual decision making task tests the capacity to process mo-
tion data and discern direction coherence; and the time series prediction task
measures how long the reservoir can accurately predict the Lorenz system. We
first use reservoirs of differing explicit network topologies (ring, lattice, and ran-
dom) and test their performances on the three tasks mentioned above. We then
make use of concepts from algebraic topology to more deeply probe into the
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roles of higher-dimensional connectivity in reservoir function. This involves de-
veloping reservoirs with differing dimensions of directed simplicial cliques [1] and
analysing resulting task-performances.

3 Methodology

Here we outline the specifics of the three tasks on which we test reservoir per-
formance, followed by the various topological concepts and tools which will be
implemented.

3.1 Reservoir Tasks

Working Memory This working memory task is inspired by other reservoir
work [9, 14, 27]. In this task paradigm, a random input sequenceX(t) is presented
to the network through an input neuron. The network independently learns de-
layed versions of the input, producing multiple outputs. Each output Yτ predicts
the input X(t) delayed by τ time steps, i.e., Yτ (t) = X(t− τ). The input values
are randomly drawn from a uniform distribution, X(t) ∼ Uniform(−0.5, 0.5).
The networks are trained for 4000 time steps and tested on the subsequent
1000. Each output is trained independently, and the performance, referred to
as Working Memory Capacity, is calculated as the cumulative squared Pearson
correlation coefficient (ρ) across all outputs:

Working Memory Capacity =
∑
τ

ρ2(yi, ŷi)

where yi and ŷi denote the true and predicted values, respectively. Although
such a simple input-output delay is a trivial task from an engineering point of
view, we consider it a valuable benchmark task for reservoir networks, because
any complicated task on time series data will need to be able to temporarily
store information from the past in order to combine it with the present input.

Fig. 5: Working memory task; the left indicates the true/target data, the right
shows the reservoir’s output. Notice the blurring of reservoir performance.
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Perceptual Decision Making The random dot motion task is a widely used
paradigm in perceptual decision-making experiments involving human and ani-
mal participants [29, 28]. In this task, participants are presented with a display
consisting of randomly moving dots on a screen. The dots move in different di-
rections and speeds, creating a noisy visual stimulus. The task is typically to
detect or discriminate the overall direction of motion among the dots, which
may be either coherent (moving in the same direction) or incoherent (moving
randomly). By varying the parameter of coherence level (the proportion of dots
moving coherently), we manipulate the difficulty of the task. The random dot
motion task provides insight into how systems integrate sensory information
to make perceptual decisions amidst uncertainty, making it a valuable tool for
studying visual perception and decision-making processes [16, 29]. In this task,
we create dot motion data, where a specified number of dots move left or right
with a certain degree of coherence. The reservoir must learn the coherence level
and “decide” the correct direction of the dot motion, providing this as output.
We use the reciprocal mean squared error as a measure of performance:

Decision Making Performance =

(
1

N

N∑
i=1

(yi − ŷi)
2

)−1

where N is the number of data points, yi the true value, and ŷi predicted value.

Fig. 6: Example reservoir performance on the perceptual decision-making task;
the yellow line indicates correct coherence, while the blue indicates the reservoir’s
output.

Chaotic Time-Series Prediction The system is described by the equations

dx

dt
= σ(y − x) (1)

dy

dt
= x(ρ− z)− y (2)

dz

dt
= xy − βz (3)
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Fig. 7: Illustration of the true and reservoir prediction of the Lorenz system.

The canonical example of a reservoir computing task is prediction of the
chaotic time-series data from the Lorenz system [22, 8, 7]. The Lorenz system
is notable for having chaotic solutions for certain parameter values and initial
conditions. We train the reservoir on a set of Lorenz data, and then provide the
system with a random point on the Lorenz trajectory, and measure the valid time
for which the reservoir can accurately predict the true trajectory. We calculate
the normalised mean squared error [22],

NMSE =
∥u(t)− ũ(t)∥√

⟨∥u(t)∥2⟩

where u(t) is the true value and ũ(t) is the predicted value. We measure, in
Lyapunov time, the valid time of the predicted trajectory, that is, the point at
which the predicted trajectory exceeds a specified NMSE threshold, set at 0.4
in this study.

3.2 Topological Tools

Fig. 8: Three topologies used in reservoir networks.

Explicit Network Topologies We studied networks with three distinct topolo-
gies: ring, lattice, and random (Fig. 8). The ring topology has the lowest degree
of complexity. It connects each node to a fixed number of nearest neighbours
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in a circular arrangement, with a random subset of nodes also having recurrent
connections to themselves. The lattice topology has a greater connection com-
plexity. With this structure, we arrange nodes in a square grid where each node
is connected to its immediate neighbouring nodes, with a randomised subset
of nodes also having recurrent connections to themselves. These two networks,
along with the random network, were all initialised with the same number of
nodes, equivalent sparsity, and equal spectral radius. The three types of network
structure were implemented in the reservoir framework on the three tasks defined
above. The means and standard deviations of the performance on the three tasks
using each type of network were used to compare between the three topologies’
capacities. With three groups for comparison, we conducted a non-parametric
Kruskal-Wallis rank sum test due to lack of homogeneity in data variance. This
was to determine if there were statistically significant differences in the means
of performances. Post-hoc pairwise tests were used to find pairwise comparisons
in significantly different measures.

Directed Simplicial Cliques A simplex is the generalisation of a tetrahedron
to higher dimensions [21]; in a directed simplex the direction of transmission is
taken into account [1]. Directed simplices are network cliques containing a single
source neuron and a single sink neuron (Fig. 9), reflecting a specific motif of
connectivity [30, 23]. The presence of simplicial cliques and cavities correlates
with functional roles of the network, such as the processing and integration
of information in the brain [25]. The activity of nodes within the network is
dependent on the number and dimension of the cliques that the nodes belongs
to, and their specific positions in directed cliques. This concept has been useful
in analysing and modelling networks [20, 25]; however, little has been done to
study the implication these properties have for reservoir function.

Fig. 9: Example directed simplices (with a source and a sink) of 3 different di-
mensions.

We constructed enhanced networks with higher-than-average numbers of high
dimensional directed simplicial cliques. This process involved initialising a graph
with a specified number nodes and creating dense, highly interconnected sub-
graphs (cliques) by systematically connecting the nodes in these subgraphs with
structured edges. Subsequently, the graph is pruned to achieve a desired level
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of sparsity. Fig. 10 demonstrates the difference in numbers of directed simplicial
cliques between a random network and our enhanced networks.

Fig. 10: Comparison of number of directed simplicial cliques of various dimen-
sions in a random and enhanced network.

As in the case of the explicit topologies, we examined the differences in
performance across the three tasks. In this case, we only had two groups for
comparison, where data variance was non-homogenous. We therefore carried
out a non-parametric Wilcoxon Signed-Rank test to determine if there was a
statistically significant difference between the performances.

Eigenspectral Analyses In addition to the topological concepts employed
in this work, we also studied the eigenspectra of the various networks used as
reservoirs, calculating spectral measures such as spectral gap and participation
ratio. The spectral gap is the difference between the moduli of the two largest
eigenvalues. This measure gives information about a graph’s potential for infor-
mation propagation, resilience to disruptions, and overall efficiency in various
network dynamics [5, 19]. A large spectral gap may be associated with high net-
work performance, such as facilitated synchronisation and rapid convergence.
The participation ratio formula used is:

Participation ratio =
(
∑

i λi)
2∑

i λ
2
i

where λi are the eigenvalues of the weight matrix. Participation ratio is a measure
of dimensionality; it provides a quantitative measure of how broadly or narrowly
the network’s connectivity or activity is distributed. It helps assess the extent
to which certain nodes dominate or share influence within the network, offering
insights into the heterogeneity of timescales in the network dynamics [17].
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3.3 Parameters

Following parameter sweeps on baseline random reservoirs, we set the following
parameters constant throughout the study: reservoir size = 400; spectral radius
= 0.9; input scaling = 0.1; sparsity = 0.9; regularisation coefficient = 1× 106. A
reservoir size of 400 nodes ensures a balance between computational efficiency
and the ability to capture complex dynamics; prior experimentation indicates
that reservoirs of this size provide sufficient representational capacity for a va-
riety of tasks. The spectral radius, set to 0.9, is a crucial parameter related to
the echo state property of the reservoir [7]. A spectral radius close to but less
than 1 has been suggested to promote stability while ensuring that the reservoir
retains memory of past inputs, a characteristic that is essential for effective tem-
poral processing [14]. An input scaling factor of 0.1 was chosen to control the
magnitude of the inputs entering the reservoir and to avoid the saturation of the
activation functions. The sparsity, set at 0.9 — which mimics the sparse con-
nectivity found in biological neural networks — ensures a diversity of dynamical
responses while keeping computational costs manageable [26].

It is important to note that while these parameter choices are informed by
existing literature and empirical evidence from experience, our findings in this
study are inherently limited to this specific set of parameters. Therefore, the
conclusions drawn from this work should be interpreted within the context of
these settings. Future work could explore variations in these parameters to assess
their impact on the performance and robustness of the reservoir models.

4 Results

4.1 Ring, Lattice, and Random Topologies

The performance of the reservoirs with different topologies varied across the
tasks (Fig. 11).

Fig. 11: Performances (means and standard deviations) of different topologies on
3 tasks.



12 James McAllister et al.

Interestingly, the only significant difference (at the < 1% confidence level) in
performance is seen in the working memory task, where the ring topology was
outperformed by both the lattice and random topologies. The other two tasks
showed no statistically significant differences (at the < 1% confidence level).
Post-hoc tests confirmed that the ring topology performance was significantly
different to the other two, but that there was no significant difference between
the lattice and randomised topology performances (not shown).

The unique feature of the working memory task is its requirement of a longer
term memory. The decision making (dot motion) and time-series prediction
(Lorenz) tasks do not require the ability to remember far into the past; they
primarily require only current and very recent historical data to accurately com-
pute the next output. The performance of the ring topology in the working
memory task indicates that the simplicity and naivety of its structure make it
less suitable for long-term memory. For the other tasks, however, the simple ring
topology appears to perform equally well.

Fig. 12: Eigenspectra of different topologies.

Spectral Gap Participation Ratio

Ring 5.36 0.0229

Lattice 400.00 0.2506

Random 34.12 0.0033

Table 1: Spectral measures of networks with differing topologies.

Examining the eigenspectra (Fig. 12), along with the spectral gap and partic-
ipation ratio measures (Table 1) of the different topologies gives a clearer picture
and insight into their underlying differences. The ring topology stands out for its
very small spectral gap, indicating a weaker graph modularity, and lower degree
of expansion and information transmission. The other two topologies (especially
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the lattice) exhibit higher spectral gaps, indicating stronger modularity and con-
comitant network synchronisability. These are possibly important features when
it comes to the ability to internalise longer term historical inputs, as in the case
of the working memory task.

4.2 Directed Simplicial Clique Enhancement

In the resulting performances we found that across the three different tasks, as
in the case of the three explicit topologies, a significant difference (at 1% level)
was found in the memory task, where random reservoirs outperform those with
higher degrees of simplicial cliques (Fig. 13).

Fig. 13: Performances (means and standard deviations) of random and enhanced
networks.

Examining the eigenspectra of the random and “enhanced” topologies reveals
an interesting fact: the eigenspectrum of the enhanced topology closely resembles
that of the ring topology in the preceding section (Fig. 14 ). It furthermore
also demonstrates a smaller spectral gap (Table 2), indicating that the same
potential issues inherent to the ring topology may be present with the simplicially
enhanced networks.

Fig. 14: Eigenspectra of networks with differing directed simplicial dimensions.



14 James McAllister et al.

Spectral gap Participation ratio

Random networks 34.06 0.0028

Enhanced networks 8.83 0.0028

Table 2: Spectral measures across simplicially differing networks.

5 Discussion

We examined the role of explicitly defined network topologies and enhanced
topological features on specific computational tasks in reservoir computing. Our
primary finding is that reservoir performance can be surprisingly robust to topo-
logical differences in the reservoir connectivity.

Indeed, we found that the only statistically significant difference between the
network architectures lies with the ring topology and in the memory task. The
lack of significant difference between the lattice and random graph may simply be
due to the fact that they both have higher degrees of recurrent connections, de-
spite their eigenspectra being qualitatively different. The ring topology is highly
regular and simple, with the correspondingly smallest spectral gap. As indicated
previously, the decision making and time-series prediction require only a rela-
tively little degree of memory, whereas the working memory task by definition
requires longer term storage of historical input. This kind of task may place de-
mands upon the internal recurrent dynamics of the reservoir, which are highly
dependent on the network connectivity. The simple and regular connectivity of
the ring topology perhaps make it unsuitable for producing the complex, non-
linear, recurrent dynamics required for internalising long-term memory. The ring
topology has been previously identified as exhibiting more linear and ordered
dynamics, and theoretically possessing limitations of memory [8]. Our work has
corroborated this in a particular use-case. However, the fact that this previous
work [8] implemented topologies with differing sparsities may indicate that per-
formance differences they found may be linked to the sparsity of their networks,
rather than entirely the explicit topology chosen. Our work has indicated that
different topologies with equivalent sparsity may have an impact on specific task
scenarios.

In order to probe deeper into the question of network topology and specific
task performance, we developed a framework for constructing “enhanced” net-
works with high-dimensional directed simplices. In comparison with randomly
initialised networks, these enhanced networks possess greater amounts of high
dimensional topological features: characteristics which have been observed in
complex network data, and posited to be important for network function [25].
However, the findings of our research indicate that simple enhancement of higher
dimensional directed simplices does not significantly improve the performance of
reservoirs on the three specific computational tasks of interest to this study. The
only statistically significant outcome was that the random reservoirs outperform
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the enhanced networks in the memory task. Once again, this can possibly be
traced to the much larger spectral gap of the random reservoirs, indicating a
higher degree of network synchronisation, and information transmission. This
may be vital for the internal dynamics necessary for longer term memory.

Our work carries some limitations. First, we implemented the topological
and simplicial features within a very narrow context. A greater investigation of
how these network features vary with contexts is necessary, such as how their
roles develop over different reservoir sizes, spectral radii, sparsities, etc. Second,
we did not expand upon the possibilities of defining particular distributions of
simplicial dimensions; the specificity and complexity of these directed simplicial
cliques could be extended. Therefore how distinct higher simplicial dimensions
and motifs impact performance and network efficiency is yet to be understood.

6 Conclusion

Here we tested the network-function relationship question using topology and
reservoir computing. The promise of effective and efficient computation through
reservoir networks is to be made more certain through a better understand-
ing of the underlying topological features of recurrent neural networks internal
to the reservoir. This work has studied the role of three explicit topologies on
performance in three tasks. It demonstrated that, in the context of the param-
eter and task choices in this work, the specific network topologies of ring and
lattice do not have significant impact on task performance in comparison with
random network topologies. However, the ring topology significantly underper-
formed in the memory task. This indicates that certain topological features may
underpin performance in tasks requiring longer-term memory. This work further
developed a “directed simplicial clique” enhanced framework for implementing
reservoirs with higher-dimensional connectivity, which also produced a signifi-
cant difference from randomly initialised networks in the working memory task,
but not in the other two. Overall this suggests that, apart from memory-based
use cases, the reservoir computing framework may be highly robust to high-level
topological alterations in the internal reservoir.

Acknowledgements: The first author would like to thank the Faculty of En-
gineering, University of Bristol, for a visiting scholarship and the Northern Ireland
Department for the Economy for a PhD studentship.
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