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ABSTRACT

The paper addresses the Karhunen-Loéve series representa-
tion in the tessarine domain. Based on augmented statistics,
a tessarine widely linear Karhunen-Loève expansion is de-
fined. Then, the impact of T-properness on this representa-
tion is analyzed, leading to a T-proper Karhunen-Loève ex-
pansion that means a dimensionality reduction. Furthermore,
this series representation serves as a versatile simulation tool,
valid for both stationary and non-stationary, Gaussian and
non-Gaussian random signals. Finally, the applicability of the
simulation technique proposed is examined numerically.

Index Terms— Karhunen-Loève expansion, simulation
techniques, tessarine algebra, T-properness.

1. INTRODUCTION

In recent decades, the field of neural networks has grown ex-
ponentially, becoming a key tool in a wide range of appli-
cations, from image processing to complex decision making
(see, e.g., [1] and references therein). However, despite their
ability to learn complex patterns, they are often faced with un-
predictable and variable environments. The ability to adapt to
unpredictable data and model the associated uncertainty is es-
sential for their effective application in fields such as finance,
biology, and telecommunications, among others. In this con-
text, stochastic process simulation techniques are an essential
component for enhancing the robustness and effectiveness of
neural networks. Not only do these techniques enable neural
networks to learn from deterministic data, but they also en-
able them to handle the variability inherent in real-world pro-
cesses, thereby enhancing their adaptability and performance
[2, 3, 4, 5].

The Karhunen-Loéve (KL) expansion has been satisfac-
torily used as a simulation tool due to its versatility and effi-
ciency in representing random signals. KL expansion decom-
poses the stochastic signal into a series of orthogonal func-
tions and random variables coefficients, with the advantage
that it is optimal in terms of minimizing the total mean square
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error resulting from the truncation of the series. An essen-
tial feature is its applicability to address stationary and non-
stationary, Gaussian and non-Gaussian signals, providing a
flexible framework for simulating a wide range of phenom-
ena. This problem has been broadly studied in the real field
(see, e.g., [6, 7, 8]), and extended to the complex [9] and
quaternion [10] domain.

Interestingly, not only do quaternions offer a suitable ar-
chitecture for processing signals describing the physical phe-
nomena of dimensions three and four, but they can also, under
certain signal properness conditions, lead to a dimensionality
reduction of the signals to be processed. Specifically, in the
context of quaternion signal processing, three main categories
are defined based on the cancellation of complementary func-
tions [11]: Q-proper (when all the complementary functions
are zero), Cη-proper (characterized by the vanishing of two
complementary functions), and improper (when none of the
complementary functions are cancelled). In general, in the
improper case, the optimal linear processing is the quaternion
widely linear processing (QWL), which amounts to operat-
ing on a four dimensional vector formed by the quaternion
signal and its three involutions [12]. Conversely, in the Q-
proper scenario, the most effective approach is the quaternion
strictly linear (QSL) processing, which operates solely on the
signal itself, resulting in a dimensionality reduction to a quar-
ter. In the Cη-proper case, the appropriate processing is the
semi-widely linear (QSWL) processing, which means to op-
erate on a two-dimensional vector formed by the signal and its
conjugate, thereby reducing the dimensionality by half when
compared to QWL processing [13]. Following this approach,
a QWL KL expansion was proposed in [14], and its repercus-
sions in the Cη-proper scenario were subsequently analyzed
[10], giving rise to a QSWL KL expansion that results in a
reduction of the computational burden.

Nevertheless, recent research suggests that quaternions
may not always be the best choice for processing 3D or 4D
signals, and there has been a growing interest in exploring
new hypercomplex algebras that, under certain property con-
ditions, lead to a dimensionality reduction [18]. Notably, the
tessarine algebra has gained special attention. Unlike quater-
nions, tessarines constitute a commutative algebra, which



facilitates the extension of numerous existing techniques de-
veloped in the real and complex domains to this new field
[15], [16]. Moreover, analogous to the Q and Cη properness
in the quaternion domain, [17] and [18] have introduced two
novel properness concepts in the tessarine domain, labeled
T-(or T1-) and T2- properness, respectively, and they have
established the basis of the corresponding tessarine strictly
linear (TSL) and the tessarine semi-widely linear (TSWL)
processing, which mean a reduction in dimensionality with
respect to the tessarine widely linear processing (TWL).

The purpose of this paper is twofold: Firstly, a TWL
KL series expansion is introduced and analyzed under T-
properness conditions. As a direct consequence, a T-proper
KL series expansion is derived on the basis of the second-
order information of the signal itself, which lead to a reduc-
tion in the computational load when compared to the TWL
KL series expansion. Secondly, the T-proper KL expansion is
applied to the simulation problem, demonstrating its efficacy
in addressing the simulation of T-proper random signals.

The rest of the paper unfolds as follows: Section II intro-
duces the reader to the basic notation and concepts essential
for understanding tessarine algebra. In Section III, a TWL
KL series expansion is derived and the implications of T-
properness on this representation are examined. Then, a sim-
ulation procedure based on the novel T-proper KL expansion
is proposed. Section IV presents a numerical example to il-
lustrate the benefits of the method presented here in a specific
context and Section V includes the conclusions of this paper.

2. PRELIMINARIES

The notation used in this paper is fairly standard. Specifi-
cally, scalar quantities, column vectors and matrices are de-
noted using lowercase lightface, lowercase boldface, and up-
percase boldface letters, respectively. Additionally, the fol-
lowing symbols are employed:

Symbols Description
R set of real numbers
T set of tessarine numbers
Tp set of all p-dimensional tessarine vectors
∗ tessarine conjugate
T transpose
H Hermitian transpose

E[·] expectation operator
diag(·) diagonal (block diagonal) matrix
0n×m n×m zero matrix
In×n n× n identity matrix
δij Kronecker delta function
⊗ Kronecker product

Moreover, throughout this paper, all random variables are
assumed to have zero-mean.

2.1. Review of the tessarine processing

In this section, the key concepts and properties within the tes-
sarine domain are revisited.

Let L be a compact interval of R, and let {x(t) ∈ Tp, t ∈
L} be a p-dimensional tessarine random signal, that can be
defined component-wise as [15]:

x(t) = a(t) + b(t)i + c(t)j + d(t)k, t ∈ L

where a(t), b(t), c(t), and d(t) are real-valued second-order
stochastic signals, and (i, j, k) are the imaginary units that sat-
isfy the following multiplication rules: i2 = k2 = −1, j2 = 1,
ij = k, jk = i, ki = −j.

For any two tessarine random signals x(t) ∈ Tp and
y(t) ∈ Tq , the corresponding pseudo autocorrelation and
pseudo cross-correlation functions are denoted by Γx(t, s) =
E[x(t)xH(s)] and Γxy(t, s) = E[x(t)yH(s)], respectively.

Note that, a complete description of the second-order sta-
tistical properties of x(t) ∈ Tp is obtained from the aug-
mented vector [17]:

x̄(t) =
[
xT(t),x∗

T

(t),xiT(t),xkT(t)
]T

t ∈ L

where x∗(t) = a(t)− b(t)i + c(t)j− d(t)k, xi(t) = a(t) +
b(t)i−c(t)j−d(t)k, and xk(t) = a(t)−b(t)i−c(t)j+d(t)k,
and whose pseudo autocorrelation function is, for t, s ∈ L,

Γx̄(t, s) = E[x̄(t)x̄H(s)]

=


Γx(t, s) Γxx∗(t, s) Γxxi(t, s) Γxxk(t, s)

Γ∗xx∗(t, s) Γ∗x(t, s) Γ∗xxk(t, s) Γ∗xxi(t, s)

Γi
xxi(t, s) Γi

xxk(t, s) Γi
x(t, s) Γi

xx∗(t, s)

Γk
xxk(t, s) Γk

xxi(t, s) Γk
xx∗(t, s) Γk

x(t, s)

 .

(1)

The augmented vector x̄(t) is related to the real vector
xr(t) = [aT(t),bT(t), cT(t),dT(t)]T as follows:

x̄(t) = 2T pxr(t), t ∈ L (2)

where T p = 1
2B ⊗ Ip×p, with

B =


1 i j k
1 −i j −k
1 i −j −k
1 −i −j k

 ,

and T H
p T p = I4p×4p.

Moreover, working with hypercomplex signals has the
advantage of potentially reducing the dimensionality of the
problem. This reduction is achieved by considering specific
signal properness characteristics that rely on the vanishing of
the pseudo correlation functions in (1). An interesting case is
the T-properness introduced in [17] as an extension of the Q-
properness from the quaternion domain to the tessarine field.
Essentially, T-properness entails a dimensionality reduction
to quater compared to optimal or widely linear processing.
This concept is detailed in the following definition.



Definition 1 Given the tessarine random signals x(t) ∈ Tp,
y(t) ∈ Tq , it is said that x(t) is T-proper if, and only if,
Γxxν (t, s)=0, for ν = ∗, i, k, and ∀t, s ∈ L. Moreover,
x(t) and y(t) are said to be cross T-proper if, and only if,
Γxyν (t, s)=0, for ν = ∗, i, k (similarly, ν = i, k), and ∀t, s ∈
L. Finally, x(t) and y(t) are said to be jointly T-proper, if,
and only if, they are T-proper and cross T-proper.

The following result established in [17] gives a character-
ization of T-properness.

Proposition 1 A tessarine random signal x(t) is T-proper, if
and only if, the following identities are satisfied:

Γa(t, s) = Γb(t, s) = Γc(t, s) = Γd(t, s)

−Γab(t, s) = Γba(t, s) = −Γcd(t, s) = Γdc(t, s)

Γac(t, s) = Γbd(t, s) = Γca(t, s) = Γdb(t, s)

−Γad(t, s) = Γbc(t, s) = −Γcb(t, s) = Γda(t, s)

Further details about the tessarine processing can be found
in [17]–[18] and references therein.

3. T-PROPER KARHUNEN-LOÈVE EXPANSION

In this section, the KL series expansion is analyzed in the tes-
sarine domain. Firstly, a KL series representation for the aug-
mented signal x̄(t) is introduced and then, the repercussion
of T-properness on this representation is investigated.

Consider a tessarine random signal {x(t), t ∈ L}, where
L is a compact interval of R. Assume that Γxr (t, s) is con-
tinuous. The following result can be obtained by similar rea-
soning to that used in the quaternion case developed in [14].

Theorem 1 The augmented vector x̄(t) ∈ T4p allows for the
following TWL KL expansion:

x̄(t) =

∞∑
i=1

θi(t)ςi, (3)

where the series converges in quadratic mean (q.m.) uni-
formly for t ∈ L. Additionally, ςi =

∫
L
θHi (t)x̄(t)dt (in q.m.)

are real-valued random variables with E[ςiςj ] = liδij , where
li and θi(t) are the eigenvalues and associated eigenfunctions
of Γx̄(t, s), given by∫

L

Γx̄(t, s)θi(s)ds = liθi(t).

From Theorem 1, a TWL KL representation for the tes-
sarine random signal x(t) ∈ Tp can be devised. This rep-
resentation is optimal in the sense that the total mean square
error resulting from the truncation of the series is minimized.

Our interest now is to investigate the impact of T-
properness on this representation. In this regard, it is note-
worthy that, under T-properness conditions, the augmented
pseudo autocorrelation function of x̄(t) adopts the form

Γx̄(t, s) = diag
(
Γx(t, s),Γ∗x(t, s),Γi

x(t, s),Γk
x(t, s)

)
.

This specific structure, in turn, leads to eigenfunctions and
eigenvalues of a particular form, as shown in the Lemma 1.

Lemma 1 Let x(t) ∈ Tp be T-proper. If Γx(t, s) has eigen-
values of the form τi = τi1 + jτi2 with associated eigenfunc-
tions fi(t), then Γx̄(t, s) has eigenvalues τi, τi, τ i

i , τ
k
i , and

the corresponding eigenfunctions are of the form

φi(t) = [fTi (t),0
T
p,0

T
p,0

T
p]
T, ψi(t) = [0Tp, f

∗T
i (t),0Tp,0

T
p]
T

κi(t) = [0Tp,0
T
p, f

iT

i (t),0Tp]
T, ϕi(t) = [0Tp,0

T
p,0

T
p, f

kT

i (t)]T

Furthermore, the tessarine random variables χi =∫
L
fHi (t)x(t)dt (in q.m.) are T-proper, whereE[χiχ

∗
j ] = τiδij

and E[χiχ
ν
j ] = 0, for ν = i, k, ∀ i, j.

Note that unlike (3), where the random coefficients are real-
valued, χi are tessarine random variables.

From Lemma 1, the following KL expansion under T-
properness conditions can be devised for x(t) ∈ Tp.

Theorem 2 Under conditions of Lemma 1, x(t) allows for
the T-proper KL expansion

x(t) =

∞∑
i=1

fi(t)χi (4)

where the series converges in q.m. uniformly in t ∈ L.

Remark 1 The series expansion (4) means a computational
saving in representing x(t) compared to the TWL KL series
expansion since, under T-properness conditions, only the in-
formation contained in Γx(t, s) needs consideration, reduc-
ing the dimensionality of the problem by a quarter.

3.1. Application to the simulation of Tk-proper signals

Series representation (4) can be used as a simulation tool to
obtain numerical realizations of T-proper tessarine signals.
The implementation of this simulation technique involves the
following steps:

1. Determine the pseudo autocorrelation function Γx(t, s)1.

2. Obtain the eigenvalues τi and eigenfunctions fi(t) cor-
responding to Γx(t, s) by solving the equation∫

L

Γx(t, s)fi(s)ds = lifi(t).

3. Truncate series expansion (4) at a finite number n
of terms. It is noteworthy that the choice of this
value n has a significant impact on the accuracy of
the simulated process as well as the computation

1In certain real-world applications, this function is known at first. Actu-
ally, it could be inferred from experimental data or formulated from mathe-
matical models.



load involved. A suitable approach to give an opti-
mal truncation level and avoid unnecessary computa-
tion, is to select the minimum value of n such that
n∑
i=1

(τi1 + τi2) ≥ 0.95
∞∑
i=1

(τi1 + τi2).

4. Use series expansion (4) truncated at a finite number n
of terms to generate approximate sample functions of
the signal x(t). In order to generate the values of the
tessarine T-proper vector [χ1, . . . , χn]T , we generate n
uncorrelated real random vectors χir , for i = 1, . . . , n,
each with pseudo autocorrelation function

Γχir =
1

4


τi1 0 τi2 0
0 τi1 0 τi2
τi2 0 τi1 0
0 τi2 0 τi1

 , i = 1, . . . , n.

Then, these values correspond to the real vectors of χi.

Remark 2 The derivation of the T−proper KL expansion is
based solely on the assumption that the pseudo autocorrela-
tion function Γx(t, s) is known. However, a particular pseudo
autocorrelation function does not specify a unique random
signal; in fact, it characterizes a broader class of signals with
shared second-order properties. To employ these series ex-
pansions effectively as a simulation tool, additional informa-
tion about the distribution of the signal is necessary.

4. NUMERICAL EXAMPLE

In order to analyze the effectiveness of the simulation tech-
nique proposed here, let us consider a tessarine random signal
{x(t), t ∈ [0, 1]} with the pseudo autocorrelation function

γx(t, s) = E[x(t)x∗(s)] =

2∑
i=1

τifi(t)f
∗
i (s),

with τ1 = 0.04 + j0.004, τ2 = 0.02− j0.008 and

fi(t) =

√
2

2

(
cos
(
(2i− 1)πt

)
+ i sin

(
(2i− 1)πt

)
+ j cos

(
2iπt

)
+ k sin

(
2iπt

))
, i = 1, 2

By using Monte Carlo simulation, 20000 trajectories for
the signal x(t) have been generated. They are denoted as
{x(t, i)}20000

i=1 . From these trajectories, the pseudo autocor-
relation and pseudo cross-correlation functions γx(t, s) and
γxxν (t, s) = E[x(t)xν

∗
(s)], for ν = ∗, i, k, have been simu-

lated as follows:

γ̂x(t, s) =
1

20000

20000∑
i=1

20000∑
j=1

x(t, i)x∗(t, j)

γ̂xxν (t, s) =
1

20000

20000∑
i=1

20000∑
j=1

x(t, i)xν
∗
(t, j).

(5)

The four components of the true pseudo autocorrelation
function γx(t, s) are depicted in Fig. 1 a)–d), respectively.
Similarly, the four components of simulated pseudo autocor-
relation function γ̂x(t, s) are shown in Fig. 1 e)–h), respec-
tively. As observed, the simulated components closely match
with their corresponding true counterparts.

Moreover, the real part of the squared modulus of γ̂xxν (t, s),
for ν = ∗, i, k, is represented in Fig. 2 a)–c), respectively. As
expected, these values are all closely approaching zero.

5. CONCLUSIONS

The KL series representation has been successfully extended
to the tessarine domain. Interestingly, this expansion enables
dimensionality reduction in T-proper scenarios. In [17] and
[18], statistical tests for experimentally determining whether
a signal is Tk-proper, k = 1, 2, have been provided. The ap-
plicability of this T-proper KL expansion has been examined
in the simulating random signals, where its computational
advantages have been exploited under T-properness condi-
tions. Future research will explore more general hypercom-
plex structures, such as the generalized Segre’s quaternions
or beta quaternions, offering the possibility to determine the
best proper conditions for each specific problem, if they exist.
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Fig. 1. a) First component of γx(t, s). b) Second component of γx(t, s). c) Third component of γx(t, s). d) Fourth component
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Fig. 2. Real part of the squared modulus of γ̂xxν (t, s), for
ν = ∗, i, k.


