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Abstract: One of the most challenging aspects of agricultural pest control is accurate detection of
insects in crops. Inadequate control measures for insect pests can seriously impact the production
of corn and soybean plantations. In recent years, artificial intelligence (AI) algorithms have been
extensively used for detecting insect pests in the field. In this line of research, this paper introduces a
method to detect four key insect species that are predominant in Brazilian agriculture. Our model
relies on computer vision techniques, including You Only Look Once (YOLO) and Detectron2, and
adapts them to lightweight formats—TensorFlow Lite (TFLite) and Open Neural Network Exchange
(ONNX)—for resource-constrained devices. Our method leverages two datasets: a comprehensive
one and a smaller sample for comparison purposes. With this setup, the authors aimed at using these
two datasets to evaluate the performance of the computer vision models and subsequently convert
the best-performing models into TFLite and ONNX formats, facilitating their deployment on edge
devices. The results are promising. Even in the worst-case scenario, where the ONNX model with
the reduced dataset was compared to the YOLOv9-gelan model with the full dataset, the precision
reached 87.3%, and the accuracy achieved was 95.0%.

Keywords: Spodoptera frugiperda; Diceraeus ssp.; Dalbulus maidis; Diabrotica speciosa; deep learning;
computer vision; pest control; agronomy; grain production; ONNX; TFLite

1. Introduction

Securing enough food to satisfy the growing needs of the global population will be
one of the most critical challenges facing humanity in the future. The world population
is expected to reach 9 billion by 2050 [1], imposing on global leaders the challenge of
increasing agricultural production sustainably. However, there are several factors that have
impacted food production to meet global demand, such as forest preservation, scarcity of
productive areas, soil degradation in cultivated areas [2,3], decrease in water resources [4],
resistance to agricultural pesticides [5] and attack by insect pests [6].

In Brazil, agriculture contributed 25% to the gross domestic product (GDP) [7], with
a production in the 2022/2023 harvest season of 320 million tons of grains [8]. Notably,
soybean and corn production plays a pivotal role, and they are cultivated across several
regions [7]. Historically, soybean production in the 2000s was 41.9 million tons, but
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currently, these numbers have more than tripled, reaching 154.6 million tons. Meanwhile,
corn production during the same period increased from 35.2 to 131.9 million tons [8].

For example, agribusiness in Mato Grosso state represents 56.6% of the state’s GDP,
and so, it is crucial to maintain or increase productivity. The 2022/2023 corn harvest
yielded 50,731.2 tons [9], while during the same period, soybean production reached
45,316,887 tons [10]. The production of these grains is important for the state’s economy
and the entire production chain.

Given the above figures, it is evident that Brazil has established itself in the interna-
tional market as one of the largest producers and exporters of agricultural products [11,12].
Therefore, it is necessary to invest in new technologies to maintain productivity and maxi-
mize profits. The major challenge is to achieve higher production per planted hectare and
reduce the use of agricultural inputs for weed and pest control [13].

To maintain Brazil’s status as one of the world’s leading agricultural producers and
enhance profitability for farmers, the integration of computing technology in agriculture
is essential. Leveraging such technology can provide valuable information to support
informed decision making and drive efficiency in farming practices [14–16]. Within the
technological realm, computer vision is a highly promising technology [17] that has been
applied in various areas of the production process to solve different problems, such as
yield prediction [18–22], disease detection [23–26], weed detection [27–29], pest insect
detection [30–37], species recognition [38–40], crop improvement [41,42], water resource
utilization [43–45] and soil management [46,47].

In recent years, studies have advanced in the use of deep-learning techniques in
conjunction with computer vision technologies applied to agriculture [48–51]. Among the
available systems, You Only Look Once (YOLO) and Detectron2 stand out, with advanced
capabilities for real-time target detection, efficiency, accuracy and speed [52–54]. These
technologies have been utilized for pest control, which can result in decreased production
and increased prices of the product and its derivatives [55–57]. Using such technologies to
develop automated systems or platforms toward detecting and identifying insect species in
crops in real time, before populations escalate, could offer significant advantages.

Deep learning (DL)-based solutions excel at object detection and identification with
high precision and speed. These solutions leverage the knowledge gained from previously
trained neural networks to expedite the training process for new applications [58–61].
To achieve this, however, a proper, structured dataset containing images of the objects
to be detected is essential, which demands a great deal of effort and knowledge to be
accomplished [62].

Driven by the need for more shared and categorized datasets for agricultural research,
Yuzhen Lu et al. [48] address a significant gap in the precision agriculture literature by
compiling publicly available image datasets used in computer vision applications since
2015. A total of 34 public image datasets were identified and categorized into three groups
based on their purposes: 15 datasets related to weed control, 10 dedicated to fruit detection
and the remaining 9 for other applications.

Considering effective approaches that use computer vision to detect insects in crops,
YOLO versions 3, 4 and 5 were used by S. Verma et al. [49] for the detection of five other
insect species (distinct from the ones addressed here) that also attack soybeans. They
concluded that YOLO v4 and YOLO v5 can be applied for the automatic identification of
insects in different agricultural crops. Park et al. [30] developed a deep-learning prediction
platform on unmanned ground vehicles with three different models for object detection:
MRCNN, YOLO v3 and Detectron2. All models achieved satisfactory results in detecting
Riptortus pedestris (R. pedestris). The three models showed a mean average precision (mAP)
performance of 0.95797, 0.97541 and 0.94435, respectively.

A two-stage classification model, named MaizePestNet, was developed based on
EfficientNet-B0 and the Grad-CAM algorithm to locate targets and minimize background
interference, thus achieving improved classification performance [50]. A dataset was
created that includes 36 common maize pests, such as Spodoptera frugiperda, covering both
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adult and larval stages. The models proposed by the authors achieved the lowest average
accuracy of 83.18%, while the highest average accuracy was 94.22%. This performance
surpassed that of the control models ResNet101 and DenseNet161, which had average
accuracies of 88.2% and 84.81%, respectively.

Another key issue in this area is the deployment of the aforementioned computer
vision models on resource-constrained (edge) devices. This is crucial because such devices
offer advantages like lower costs, reduced energy consumption and portability. However,
deploying insect detection systems on resource-constrained devices poses a significant
challenge due to the limited computational capacity of the equipment and the complexity
of the application scenarios. Rustia et al. [40] developed a remote system for continuous
monitoring of insect pests in an outdoor mango orchard. The proposed deep-learning
algorithm succeeded in recognizing pest insects of various sizes, achieving an F1-Score of
0.96% and an average processing time of 10.93 s on a Raspberry Pi Zero W.

To enable the deployment of large computer vision models on edge devices, frame-
works such as ONNX and TFLite [63] have been developed. These frameworks optimize
the mathematical functions of the models to fit the constraints of limited hardware. For
instance, Lim et al. [64] utilized ONNX to effectively convert models for compatibility with
specific frameworks. An integrated framework was developed that allows for exploring
and customizing the inference operations of various convolutional neural network (CNN)
models on embedded edge devices.

Although the above studies show promising results, there is still a gap to be ad-
dressed regarding the size of the dataset required for training the models and the detection
capabilities of models converted to ONNX and TFLite formats [63].

In this paper, we created a dataset called AgroInsect, which includes existing images
of the following insect species: Diabrotica speciosa, Dalbulus maidis, Diceraeus spp. and
Spodoptera frugiperda. From this image collection, we derived a Reduced dataset containing
100 images of each such species. To assess the detection capability of the models according
to the dataset size, we utilized Detectron2 and YOLO models (versions v5, v7, v8 and v9
(c and gelan)). The best results from each model combined with the dataset were converted
to ONNX and TFLite formats to evaluate detection performance. Effective detection with
these converted models paves the way for their use in devices with limited computational
resources, such as smartphones and microcontrollers, and facilitates the development of
low-cost applications capable of autonomous operation. Compared to previous studies, our
research delves into the challenges of testing models with reduced datasets, allowing for the
incorporation of new insect species into detection models with a limited number of samples.
This study is expected to advance the development of insect detection applications on
resource-constrained devices.

The remainder of this paper is organized as follows. The Section 2 details the develop-
ment process, including dataset creation, model selection, model conversion and evaluation
metrics. Section 3 provides the evaluation results. In Section 4, we present and discuss the
main findings. Finally, the Section 5 outlines the key insights and suggests directions for
future research.

2. Materials and Methods
2.1. Dataset Acquisition

Four economically significant pest insects found in corn and soybean crops in the State
of Mato Grosso were selected for this study, as presented in Figure 1:
Diabrotica speciosa [65–67], Dalbulus maidis [68,69], Diceraeus spp. [67,70–73], Spodoptera
frugiperda [55,67,74–76].

To ensure the reliability of the data used and the four evaluated species, a total of
1510 images were gathered. One part of these images was sourced from the iNaturalist
database (inaturalist.org) [77,78], and another part was captured in the field by the authors
themselves and validated by entomology experts.
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Figure 1. Insects selected for the dataset. (a) Diabrotica speciosa; (b) Dalbulus maidis; (c) Diceraeus ssp.;
(d) Spodoptera frugiperda.

Compilation of the AgroInsect Dataset

The object detection methods used in the experiments conducted in this work require
image annotations for supervised learning. These annotations include information about
the region of interest (ROI), classification target and class information [79,80].

To test the efficiency of Detectron2 and the YOLO family, the AgroInsect dataset was
created, encompassing 1510 images. From this dataset, a subset of images for training was
extracted and is referred to in this work as the Reduced dataset. Many existing works use
random selection of the images in the dataset for training, validation and test images [38,49,67].
However, one of the goals of this work was to measure the detection capability of different
models. To ensure that all models were trained under the same conditions, the first one
hundred images from each class were selected for use in all training sessions with the Reduced
dataset. Training with the AgroInsect dataset was performed using all available images, except
those selected for validation and testing. The same predetermined selection criterion was
applied to the choice of the fifteen validation images and the twenty-five test images. All
models trained with both datasets were tested with the same images to avoid any results
being influenced by image complexity or other factors. All the evaluated models were able to
make successful inferences on images featuring multiple insects or different classes. However,
to simplify the interpretation of test results for each class in the confusion matrix, we used
only images containing a single insect. Table 1 presents the number of images and annotations
for each class in the AgroInsect and Reduced datasets, respectively. The difference between
the number of images and annotations is due to some images containing more than one insect
of the same species (one annotation per insect); however, this situation did not occur with the
images and annotations used for validation and testing, since we chose here only images with
a single insect.

Table 1. Division of datasets for each insect class and their annotations for training and evaluation of
deep-learning models.

Dataset
Classes

Diabrotica
speciosa

Dalbulus
maidis Diceraeus ssp. Spodoptera

frugiperda Total

AgroInsect Image 591 177 248 334 1350
Annotation 599 280 257 358 1496

Reduced
Image 100 100 100 100 400

Annotation 100 156 104 102 462

Validation
Image 15 15 15 15 60

Annotation 15 15 15 15 60

Test
Image 25 25 25 25 100

Annotation 25 25 25 25 100

Annotations for the 1510 images were created using Label Studio version 0.9.1, an open-
source software that stores annotations in JSON format within an SQLite or PostgreSQL
database. The software allows exporting to different formats [81]. After annotating and
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labeling all images, they were exported to the YOLO format with the configuration [class_id
x, y, w, h]. These parameters are used to represent an object in a computer vision system.
The annotation files were saved with the same names as the images, and the configurations
for the file paths that feed the model (training/validation/test) were saved in a YAML file.

2.2. Training Methods

The Detectron2 used in this research is an updated version of the original Detectron
framework, developed and presented by Facebook AI Research on 9 October 2019. This
new version focuses primarily on object detection and instance segmentation tasks. The
deep-learning library used was PyTorch, enabling integration with other neural network
architectures. Detectron2 utilizes pretrained models with large image datasets [82,83].

YOLO emerges as an innovative model for object detection, offering a unified and
efficient solution for use in computer vision. Its simplicity in construction and direct
training on complete images set it apart from traditional approaches, making it ideal for
real-time applications. Unlike classifier-based methods, which operate in separate stages,
YOLO stands out with its unique architecture. The model is trained on a single loss function
directly related to detection performance, optimizing the process and ensuring accurate
results. It is recognized as the fastest general-purpose object detector in the literature,
paving the way for a range of innovative applications. Its ability to operate in real time and
adapt to different scenarios makes it ideal for a wide range of applications in areas such as
security, industry, medicine, agriculture and transportation [52].

The models were tested using the two datasets created (AgroInsect and Reduced) and
included YOLO models (v5, v7, v8 and v9, both c and gelan versions). The models that
demonstrated the best precision were then converted to ONNX and TFLite formats, which
are optimized for deployment on devices with limited computational resources. As the
algorithms to convert YOLO version 9 (c and gelan) to the TFLite and Detectron2 to ONNX
and TFLite are not yet publicly available, they were not converted.

The training of the models was conducted using Google Colab [84,85], a cloud-based
notebook service provided by Google, which allows writing and executing Python code
directly in the browser and provides graphics processing units (GPUs) and tensor process-
ing units (TPUs) to accelerate machine-learning and deep-learning tasks. Using Google
Colab enables researchers to conduct evaluations without the need to purchase acceleration
hardware. The configuration used for training and inference in this research included a T4
GPU accelerator (Nvidia, Santa Clara, CA, USA), with data integration saved in Google
Drive.

2.3. Conversion Methods to ONNX and TFLite

The conversion of YOLO models to ONNX or TFLite formats offers several advan-
tages, including portability, efficiency and integration with a wide range of platforms
and devices [64,86,87]. Given these benefits, the models were converted to ONNX and
TFLite formats after the initial training with the selected datasets. It is noteworthy that
version 7 required more effort during the conversion process, as it did not have a standard
implementation in the file available on the GitHub repository. Additionally, versions 9 were
converted only to ONNX, as TFLite was not available at the time of this research work.

2.4. Models’ Parameters and Evaluation Metrics

The models used in this paper involve numerous hyperparameter settings. However,
the aim of the research was not to evaluate the effectiveness of different configurations but
to assess the model’s ability to correctly detect pest insects. To this end, some adjustments
were made to the default settings of the models, as detailed in Table 2, which also provides
information on several important parameters for the networks. It is worth noting that
Detectron2 works with a very small learning rate to converge efficiently.
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Table 2. Some important hyperparameters for configuring the Detectron2 and YOLO models.

Model Detectron2 YOLOv5n YOLOv7 YOLOv8 YOLOv9-c YOLOV9-
gelan

Layers 50 168 106 25 70 42

Activation
Function ReLu 1 ReLu ReLu Leaky R 4 Leaky R ReLu

Loss Function Cross-entropy BCE 3 Cross-entropy Combined loss DFL DFL 5

Optimizer SGD 2 Adam SGD Adam Adam SGD

Learning Rate 0.00005 0.01 0.01 0.001 0.01 0.01

Batch Size 2 16 16 16 16 8

Epochs 10.000 300 300 300 300 300

Regularization L2 L2 L2 L2 L2 L2
1 Rectified Linear Unit, 2 Stochastic Gradient Descent, 3 Binary Cross-Entropy, 4 Leaky Rectified Linear Unit, 5

Distillation-Augmented Feature Loss.

In this research, precision (P), accuracy (A), recall (R), F1-Score (f1) and confusion ma-
trix are used to measure the model’s performance [88–90]. Python scripts were developed
in Colab to collect the data resulting from inferences on the 100 test images. These data
were saved in a CSV file, which was then exported to a Windows machine and processed
with additional Python scripts in Visual Studio Code. The metric results were saved in
spreadsheets for discussion.

To understand the results, it is important to understand the variables: true positive
(TP) represents what was correctly predicted; true negative (TN) indicates that the model
correctly predicted that a class is not present; false positive (FP) occurs when the model
makes an incorrect detection; false negative (FN) occurs when the model fails to predict an
object in the image.

The model’s precision is calculated by Equation (1), which is the ratio of the number of
true positive examples predicted to the total of true positive and false positive predictions.

Precision (P) = TP/TP + FP (1)

The model’s accuracy is the product of all true predictions divided by the total number
of predictions, as follows:

Accuracy = (TP + TN)/(TP + FN + TN + FP) (2)

Equation (3) presents the recall, which measures the proportion of true positives
correctly identified.

Recall = TP/TP + FN (3)

The F1-Score is a metric that combines precision and recall, expressed in Formula (4).

F1 = 2 × (P × R)/(P + R) (4)

In addition to the metrics presented above, an important tool used in this work to
visualize and analyze the performance of neural network models in object detection is the
confusion matrix [91–94]. According to Markoulidakis et al. [95] and Farhadpour et al. [96],
this is a powerful tool for analyzing the performance of classification algorithms. Figure 2a,b
show the confusion matrix used for binary and multiclass classification problems. Figure 2a
displays a confusion matrix for binary classification with dimensions of 2 × 2, having
the actual class labels ‘Positive’ and ‘Negative’, and the predicted elements (positive and
negative) compared with the actual class labels, resulting in true positives (TPs), true
negatives (TNs), false positives (FPs) and false negatives (FNs). On the other hand, the
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multiclass confusion matrix (Figure 2b) is a structure with dimensions N × N, where N
is the number of classes. The predicted values are compared with the actual values and
summed at the position (actual class, predicted class). The higher the values of Xn = Yn,
the more efficient the model.
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3. Results
3.1. Evaluation of the Detectron2 Model in Insect Detection

Figure 3 presents the loss function of Detectron2 trained with both datasets. The value
of the loss function gradually decreased as the iterations progressed.
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Reduced dataset (a) and on the AgroInsect dataset (b).

Despite different amounts of data, both models showed a sharp decline in error rate
before 2000 epochs, with a less pronounced decline starting around epoch 4000. Figure 3a,
which represents training on the Reduced dataset, exhibited a more continuous decline
compared to the graph of the AgroInsect dataset.

The decrease in loss score with increasing iterations indicates that the model is learning
and improving its object detection performance. The point where the decline slows down
signals a decrease in the model’s generalization ability.

The results of the inferences made with the Detectron2 model are presented in Table 3.
The consistency in these values (94.23% for precision, recall and F1-Score) suggests

that the model is well balanced in its ability to correctly identify positive and negative
classes. The high accuracy of 97.69% indicates that, in addition to being good at correctly
predicting the positive class, the model also classifies samples from the negative classes
correctly. The decrease from 94.23% to 94.17% in precision, recall and F1-Score metrics was
minimal, indicating that the model’s performance remained almost unchanged even with
the dataset reduction. Similarly, the accuracy variation was also very small, decreasing
from 97.69% to 97.67%.
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Table 3. Metrics per class after inference of test images using the Reduced and AgroInsect datasets
with the Detectron2 model.

Dataset Classes Precision Recall F1-Score Accuracy

AgroInsect

Diabrotica speciosa 92.31 96 94.12 97.12
Dalbulus 96.15 100 98.04 99.04
Diceraeus 100 96 97.96 99.04
Spodoptera
frugiperda 96.15 100 98.04 99.04

General 94.23 94.23 94.23 97.69

Reduced

Diabrotica speciosa 92.31 96 94.1176 97.0874
Dalbulus 96.15 100 98.0392 99.0291
Diceraeus 100 92 95.83 98.06
Spodoptera
frugiperda 100 100 100 100

General 94.17 94.17 94.17 97.67

Figure 4 illustrates the performance of the inference conducted using the Detectron2
model applied to the four types of insects investigated in this study. The figure clearly
demonstrates the model’s ability to accurately identify and classify the insects in the images
from the datasets used. It was observed that the model was able to accurately predict
the presence of insects in both training datasets, highlighting its robustness and reliability.
Additionally, the analysis revealed that the model performed consistently across all variations
in these insect images. These observations suggest that Detectron2 is effective for insect
detection tasks, underscoring its utility for practical applications in pest monitoring.
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Figure 4. Prediction with Detectron2 and custom dataset. (a) contains the resulting images from the
model trained with the Reduced dataset, and in (b), the images are from the AgroInsect dataset.

The confusion matrix (Figure 5) for Detectron2 with the two datasets shows high per-
formance. The model had no difficulty in locating the insects; however, the best results were
obtained for the Dalbulus and Spodoptera frugiperda classes, with all samples being detected.
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3.2. Evaluation of the YOLO Model for Insect Detection

Table 4 presents the versions of the YOLO model used in this study along with the sizes
of the original model and the sizes after training with the datasets (AgroInsect/Reduced).
The reduction in model complexity, fewer parameters to adjust, more effective regulariza-
tion and reduction in data diversity contribute to the model size reduction. After training
with the Reduced dataset, the YOLOv5, YOLOv8 and YOLOv9-c versions showed a de-
crease in size compared to the original model. The increase in the size of the YOLOv7
and YOLOv9-gelan models following training may be due to a combination of factors,
including modifications to the model architecture, more detailed storage of weights and
parameters and the complexity of the training data. The models might have stored weights
with higher precision or in different formats, leading to a larger file size. When models use
higher precision for weight representation, this can significantly contribute to increasing
the final model size.

Table 4. Different versions of YOLO and the size of each model after training with specific datasets.

YOLO Version Model Dataset Original Size (MB) Training Size (MB)

YOLOv5 YOLOv5n
Reduced

3.9
3.7

AgroInsect 13.8

YOLOv7 YOLOv7
Reduced

72.1
284.7

AgroInsect 284.7

YOLOv8 YOLOv8n
Reduced

6.2
6

AgroInsect 35

YOLOv9
YOLOv9-c

Reduced
98.4

98
AgroInsect 98

YOLOv9-gelan Reduced
49.1

195.2
AgroInsect 195.2

Table 5 shows the performance metrics, including precision, recall, F1-Score and
accuracy, for different versions of YOLO models evaluated on the two distinct datasets.

Table 5. Comparison of model performance metrics based on different training datasets and YOLO
versions.

YOLO Version Dataset Precision % Recall % F1-Score % Accuracy %

YOLOv5
Reduced 85.58 85.58 85.58 94.23

AgroInsect 98.04 98.04 98.04 99.22

YOLOv7
Reduced 86.67 86.67 86.67 94.67

AgroInsect 96.12 96.12 96.12 98.45

YOLOv8
Reduced 86.54 86.54 86.54 94.62

AgroInsect 96.08 96.08 96.08 98.43

YOLOv9-c
Reduced 97.03 97.03 97.03 98.81

AgroInsect 97.06 97.06 97.06 98.82

YOLOv9-gelan Reduced 96.08 96.08 96.08 98.43
AgroInsect 98.04 98.04 98.04 99.22

The results show that the YOLOv5 model achieved precision, recall and F1-Score of
85.58% with the Reduced dataset. However, with the AgroInsect dataset, these metrics
significantly improved to 98.04%. Accuracy specifically increased from 94.23% to 99.22%
when using the complete dataset. YOLOv7 showed similar performance, with precision,
recall and F1-Score of 86.67% on the Reduced dataset and 96.12% on the AgroInsect dataset.
Accuracy also increased from 94.67% to 98.45% on the AgroInsect dataset. YOLOv8 ob-
tained values of 86.54% for precision, recall and F1-Score with the Reduced dataset and
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96.08% with the AgroInsect dataset. The accuracy for this model increased from 94.62% to
98.43% between the two datasets.

The YOLOv9-c model exhibited a slight variation in accuracy from 98.81% to 98.82%,
with precision, recall and F1-Score of 97.03% on the Reduced dataset, improving slightly to
97.06% on the AgroInsect dataset.

Finally, YOLOv9-gelan achieved 96.08% in precision, recall and F1-Score with the
Reduced dataset and 98.04% with the AgroInsect dataset, with accuracy increasing from
98.43% to 99.22%. Overall, the performance metrics for all YOLO models showed a signifi-
cant improvement when evaluated with the AgroInsect dataset compared to the Reduced
dataset. However, it is important to note that the smaller dataset also yielded satisfactory
results, paving the way to its use in resource-constrained devices.

Figure 6 shows the learning curves that outline the training processes of the models
over epochs. The optimizer updated the model weights, reducing losses and improving
their performances. It is possible to see the model’s learning capacity and potential over-
fitting or underfitting. Figure 6(a-1) presents the learning curves (total loss) for all YOLO
models trained with the Reduced dataset, while Figure 6(a-2) highlights the class loss.
Similarly, Figure 6(b-1) illustrates the box loss, and Figure 6(b-2) shows the class loss for the
models trained with the AgroInsect dataset. It can be observed that box, class and objectiv-
ity loss decreased over the training time (epoch) as the model learned to locate, identify
and detect insects with greater confidence. The YOLOv8, YOLOv9-c and YOLOv9-gelan
versions experienced early stopping, halting training when the model showed no sign of
improvement in the last epochs with the AgroInsect dataset, and with the Reduced dataset,
only the YOLOv9 versions experienced this early stopping. This early stopping parameter
can be configured, but in this research, the versions used the default setting, considering
the last 100 epochs. With the AgroInsect dataset, the selected models performed well
in training/learning with faster convergence, without reaching the 300 epochs used in
training, except for the YOLOv5s and YOLOv7 models, which went up to the end of the
300 epochs for the insect datasets.

Figure 7a,b present the precision curve during the training of the YOLO models used
in this research. The YOLOv7 model, during training on both datasets, showed a later
convergence; however, before 100 epochs, it managed to stabilize the precision result. The
other models had a faster convergence around epoch number 40, with the result stabilizing
until the end of the training, which is very similar to the results presented by Badgujar
et al. [62] in a study on insect identification.

Figure 8 illustrates the training graph of the YOLOv5 model over 300 epochs with
the Reduced dataset. Despite showing the lowest Precision value among all the values in
Table 5, it is observed that the model converged without much fluctuation in box_loss and
cls_loss. The Recall values, which measure the model’s ability to find all objects present in
the image, reached 80% before 100 epochs.

The YOLOv9-gelan achieved the highest precision among all models and datasets.
Figure 9 presents the training results of the model, with a significant drop in box_loss,
reaching an mAP@[0.50] above 90% and a Recall metric above 80%. The mAP@[0.50] and
Recall are important metrics for evaluating the performance of object detection models, as
they measure precision and coverage of detection, respectively.

Figure 10 illustrates the confusion matrix for five YOLO models used in the experi-
mental study, trained with a Reduced dataset to classify four insect classes. It is observed
that even in YOLOv5, YOLOv7 and YOLOv8 versions, which did not achieve a precision
higher than 90% (Table 5), the false negatives in the last column of each model and false
positives in the last row were low.
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The YOLOv5s model had the lowest overall precision; however, it correctly classified
22 out of 25 Diabrotica speciosa images used in the test, 1 image as Dalbulus, and it failed to
detect 2 images. In the Dalbulus class, 24 images were correctly classified, with four false
positives and one false negative, while the other two classes followed a similar pattern
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with good precision. The standout among the models using the Reduced dataset was the
YOLOv9-gelan version, which, out of 100 images used for testing, failed to predict only 2
images and had two false positives for the Dalbulus and Diceraeus classes.

The confusion matrix presented in Figure 11 was used to demonstrate the excellent
capability of the YOLO models trained with the AgroInsect dataset. During the evaluation
of the YOLOv5s and YOLOv9-gelan models on a test set, a low error rate was observed,
with only two false positives recorded. The Dalbulus class presented greater difficulty for
all tested models, with two false positives in each case. In summary, the visualization of
the confusion matrix provides a more comprehensive understanding of the performance
of the object detection models, highlighting the areas of success and opportunities for
improvement. Identifying specific error patterns, such as those observed in the Dalbulus
class, is crucial for guiding future adjustments and refinements in detection algorithms.
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Figure 12 illustrates the performance of YOLOv9-gelan in insect detection, showcasing
inference results on eight images from the AgroInsect dataset. Each insect class is repre-
sented by two images, highlighting YOLOv9-gelan’s ability to accurately identify insects
across various colors and textures.
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Table 6 presents a detailed comparison of the performance parameters for five YOLO
models after conversion to ONNX and TFLite formats. The models were trained on the
two datasets used in this work. The table shows the comparison of precision, recall, F1-
Score and accuracy for each model and format combination across both datasets. This
comparison highlights variations in model performance based on the dataset and conversion
format. Understanding these variations is essential for evaluating the effectiveness of each
YOLO version.



Agronomy 2024, 14, 2194 14 of 22

Table 6. Comparison of performance parameters for models converted to ONNX and TFLite.

Model Dataset Conversion Precision % Recall % F1-Score % Accuracy %

YOLOv5
Reduced

ONNX 94.23 94.23 94.23 97.69
TFLite 94.23 94.23 94.23 97.69

AgroInsect ONNX 96.15 96.15 96.15 98.46
TFLite 96.15 96.15 96.15 98.46

YOLOv7
Reduced

ONNX 94.23 94.23 94.23 97.69
TFLite 94.23 94.23 94.23 97.69

AgroInsect ONNX 96.15 96.15 96.15 98.46
TFLite 96.15 96.15 96.15 98.46

YOLOv8
Reduced

ONNX 86.54 86.54 86.54 94.62
TFLite 86.54 86.54 86.54 94.62

AgroInsect ONNX 96.12 96.12 96.12 98.45
TFLite 96.12 96.12 96.12 98.45

YOLOv9-c
Reduced ONNX 96.97 96.00 96.48 98.25

AgroInsect ONNX 97.09 97.09 97.09 98.84

YOLOv9-gelan Reduced ONNX 97.03 97.03 97.03 98.81
AgroInsect ONNX 98.04 98.04 98.04 99.22

The results presented in Table 6 demonstrate that for the Reduced dataset, both
YOLOv5 and YOLOv7 achieve consistent performance, with precision, recall and F1-Score
of 94.23% and accuracy of 97.69% across ONNX and TFLite formats. In contrast, YOLOv8
shows reduced metrics, with precision, recall and F1-Score of 86.54% and accuracy of 94.62%
in the same formats. For the AgroInsect dataset, all models perform better, with YOLOv5
and YOLOv7 reaching 96.15% in precision, recall and F1-Score and accuracy of 98.46%.
YOLOv8 also maintains high metrics at 96.12% for precision, recall and F1-Score, with an
accuracy of 98.45%. Notably, YOLOv9-c and YOLOv9-gelan exhibit superior results, with
YOLOv9-gelan achieving the highest metrics of 98.04% for precision, recall and F1-Score
and accuracy of 99.22% on the AgroInsect dataset.

The results of the inferences made with the converted models applied to the test data
are presented in Table 6. It is important to note that all metrics for the model/dataset
combinations achieved results above 94%, except for the YOLOv8 model applied to the
Reduced dataset, which reached 86.54% precision, recall and F1-Score and 94.62% accuracy.

The results for the YOLOv5s model trained with the Reduced dataset and converted to
TFLite, and the YOLOv9-gelan model with the AgroInsect dataset and converted to ONNX,
can be observed in the confusion matrix (Figure 13).
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Figure 14 displays a selection of detection results from the YOLOv5s–TFLite and
YOLOv9-gelan–ONNX models, illustrating successful detection across all four challenging
categories.
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4. Discussion

Data processing is a critical step in supervised deep learning, as feeding irrelevant or
incorrect data can significantly affect model performance, as noted by Badgujar et al. [62].
Y. Lu and S. Young [48] reported the scarcity of public image datasets, describing this
situation as a crucial bottleneck for rapid prototyping and evaluation of computer vision
and machine-learning algorithms applied to agriculture, thus justifying the need for evalua-
tions with smaller datasets, which could facilitate the development of applications without
requiring a large dataset. Good precision and accuracy using a dataset with few images
pave the way for incorporating new insects into the model without the need for extensive
efforts to collect many images and annotations.

During the development of this work, no other dataset with the same insect classes
evaluated here was found in the literature. However, to get an idea of the performance
of YOLO and Detectron2 algorithms, we compared our results with other papers that
we found sufficiently close to our approach, and we summarized them in Table 7. The
approach by S. Verma et al. [49] used YOLO versions 4 and 5 for detecting five insects and
achieved precisions of 99% and 93.20%, respectively. Considering that our best results were
achieved with YOLOv5s and YOLOv9-gelan versions with a precision of 98.04% in both
cases, the 0.96% difference between the two evaluations may be associated with the number
of images used in training. They used 3710 images, while we only used 1510 images.

The authors Zhang et al. [97], using the YOLOv7 model and the Adam optimizer,
achieved a precision of 99.95% for the classification of Diabrotica virgifera, Zea mays, Spodoptera
frugiperda and Helicoverpa zea, which is higher than the 98.04% precision obtained by the
best models proposed in this study.

As mentioned, good efficiency using a reduced dataset paves the way for incorporating
new insects into the model without the need for many samples. The results achieved with
the models using the Reduced dataset were superior to those obtained by Yang et al. [98],
who achieved a precision of 73.30%, recall of 77.30% and F1-Score of 75.10% in detecting 13
insects. YOLO models (v5, v7, v8) combined with the Reduced dataset achieved precision
results close to the 86.8% obtained by Kumar et al. [99] and Slim et al. [102].

Among the training combinations with YOLO versions and the AgroInsect dataset,
YOLOv8 provided the worst results, with 96.08% precision, recall and F1-Score and an accu-
racy of 98.43%. However, these values are higher than those achieved by
Bjerge et al. [100], who, among ten models, achieved the best precision at 92.7%, recall at
93.9% and F1-Score at 93.2%.
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Table 7. Comparison of results obtained with the models proposed in this work and those available
in the literature, including the number of classes, dataset and metrics.

Model Classes Dataset Precision Recall F1-Score Accuracy

YOLOv5s 4 AgroInsect 98.04% 98.04% 98.04% 99.22%

YOLOv5s 4 Reduced 85.58% 85.58% 85.58% 94.23%

YOLOv7 4 Reduced 86.67% 86.67% 86.67% 94.67%

YOLOv8 4 Reduced 86.54% 86.54% 86.54% 94.62%

YOLOv9-gelan 4 AgroInsect 98.04% 98.04% 98.04% 99.22%

Detectron2 4 AgroInsect 94.23% 94.23% 94.23% 97.69%

YOLOv5s [49] 5 - 93.20% 99.60% 96% -

YOLOv4s [49] 5 - 99% 93% 96% -

YOLOv7-Adam [97] 3 - 99.95% - - -

Maize-YOLO [98] 13 - 73.30% 77.30% 75.10% -

New Version-5x [99] 7 - 86.80% 88.60% 87.80% -

YOLOv3/5 [100] 6 - 92.70% 93.90% 93.20% -

EfficientNet-Br [50] 36 - 93.51% 97.14% 94.68% -

YOLOv3 [67] 12 - 95.15% 75.79% 84.35% 72.96%

YOLO-MPNET—OSW [101] 3 - 94.14% 91.99% 93.05% -

YOLOv5-Modificado [102] 2 - 86.84% 84.58% 85.69% -

CNN [51] 5 - 97.00% - - -

InceptionV3 [51] 5 - 97.00% - - -

YOLOv5 [51] 5 - 98.75% - - -

The results generated with the models applied in this work are consistent with the
values from a study on corn earworm (Spodoptera frugiperda) in Chinese cornfields for
detection from larval to adult stages presented by Zhang et al. [50], who achieved a good
balance between precision and cost, with a precision of 93.51%, recall of 97.14% and F1-Score
of 94.68%.

This study is relevant compared to other studies on pest insects attacking soybean
crops. In a recent work published by Tetila et al. [67], which aimed to identify 12 different
classes, including 2 at two stages (nymph and adult) in the State of Mato Grosso do Sul in
Brazil, the best precision achieved was 95.15%.

Another insect detection study with three classes achieved the best precision of 94.14%,
recall of 91.99% and F1-Score of 93.05% for the C. medinalis class using YOLO-MPNET with
OSW, as reported by Sun et al. [101]. Using the YOLOv5 model, they achieved the best
precision of 71.26%, while our work achieved a precision of 85.58% using the same model
with a reduced dataset.

With a precision of 94.23% for Detectron2 and 98.04% for YOLOv5s, the models evalu-
ated here demonstrated more consistent results than those presented by Slim et al. [102],
who achieved a precision of 86.84% in detecting the Mediterranean fruit fly Ceratitis capitata
and the peach fruit fly Bactrocera zonata.

A study conducted for the detection of five classes of insects that attack soybeans
in India yielded excellent results, with an accuracy of 97% using CNN and Inceptionv3
models and 98.75% using YOLOv5 in the work presented by Trikey et al. [51]. However, the
results achieved in our studies were superior, with YOLOv5s and YOLOv9-gelan models
achieving 98.04% accuracy.

The equal value observed in this paper regarding the precision, recall and F1-Score
metrics can be explained by the presence of a balanced test set, coupled with the model’s
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ability to generalize consistently across all classes. This pattern reflects a robust and
balanced model performance, suggesting an absence of bias toward any specific class and
the ability to make accurate predictions across all categories.

As presented in Figure 5, the confusion matrix demonstrates the models’ ability to
correctly detect classes with few false positives and negatives.

To run on edge devices with limited computational resources, the model size can be a
determining factor. After analyzing the results of the research published by Ye et al. [103]
with a 12 MB model and the data in Table 4, it is evident that there is room for improvement
in reducing our model sizes, as our results showed that the YOLOv9-gelan model had a
size of 195.2 MB.

As shown in Table 6, with the conversion of the models, YOLO v5, v7 and YOLO
9-gelan with a reduced dataset showed improved accuracies, while v8 maintained results
for the smaller dataset and improved with the full dataset. The YOLO 9-c model did not
show much variation. Once converted to standard formats, such as ONNX or TFLite,
the models can be run on a variety of platforms and devices, including mobile devices,
embedded systems and servers. This provides greater flexibility for deploying YOLO
models in different environments.

5. Conclusions

This paper presents an approach based on deep-learning models to detect four species
of insects found in corn and soybean crops. Our technique evaluates various setups with
YOLO and Detectron2 models. In order to render our method deployable in resource-
constrained devices, we compared the two mentioned computer vision models on a
full (AgroInsect) and a smaller subset (Reduced) dataset and finally converted the best-
performing models into TFLite and ONNX formats.

The Detectron2 and YOLO models demonstrated strong performance in detecting and
classifying insect species, even when trained with the Reduced dataset. As anticipated, the
models performed better with the AgroInsect dataset, but the results with the Reduced
dataset were still notable. YOLOv5 achieved an accuracy of 85.58%, YOLOv7 86.67%,
YOLOv8 86.54%, YOLOv9-gelan 96.08% and YOLOv9-c 97.03%. For the YOLOv9-c and
YOLOv9-gelan models, the accuracy difference between the AgroInsect and Reduced
datasets was just 0.03% and 1.96%, respectively. A key finding of this study is that even
with a limited number of images for a specific insect, a model can maintain high efficiency
and accuracy.

Additionally, YOLOv5 models with a Reduced dataset performed better when con-
verted to TFLite, with a 2.19% decrease in accuracy in comparison to the results with the
AgroInsect dataset. For YOLOv7, there was an improvement with the Reduced dataset,
while YOLOv8 showed no significant variations. Similarly, the YOLOv9-c and YOLOv9-
gelan versions also exhibited minimal variations in results. These outcomes demonstrate
that converting YOLO results into TFLite and employing a reduced dataset is a practical
and effective approach for deploying insect pest detection on resource-constrained devices.

For future work, we plan to further investigate the effects of varying reduced dataset
sizes on model performance and tailor our approach for effective deployment and evalu-
ation on mobile devices. This will involve optimizing our method to perform efficiently
on mobile platforms and evaluating its effectiveness in practical, real-world scenarios. We
also intend to integrate images from yellow traps, light traps and pheromone traps into
our datasets toward evaluating the models’ ability to detect and classify in visually noisier
images with other insects.
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