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Abstract
This paper presents two approximations of the solution functions of
Abel’s integral equations belonging to classes Hα[0, 1), Hϕ[0, 1) by
(λk+1− 1,M)th partial sums of their second kind Chebyshev wavelet
expansion in the interval [0, 1), for λ > 1. These approximations
are E(1)

λk+1−1,M
(f), E(2)

λk+1−1,M
(f). Chebyshev wavelets of the second

kind were used to solve the Abel’s integral equations. The
Chebyshev wavelet of the second kind leads to a solution that is
almost identical to their exact solution. This research paper’s
accomplishment in wavelet analysis is noteworthy.
Keywords: Hα[0, 1) class, Hϕ[0, 1) class, Chebyshev wavelet of the
second kind and Abel’s integral equations.
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1 Introduction
In recent years, wavelets have become widely utilized across diverse fields

such as biology, mathematics, and engineering. These are primarily used for
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signal analysis tasks such as time-frequency analysis and waveform segmenta-
tion, provide quick results for straightforward performance. Additionally, they
utilize efficient organization of numerical data to compute solutions to integral and
differential equations effectively. This capability presents a significant advantage
in various scientific and engineering applications, where accurate and efficient
computation is paramount. This research study investigates the properties
associated with Hölder’s classes Hα[0, 1) and Hϕ[0, 1), presenting an innovative
concept in the fields of mathematical sciences and physics. Numerous esteemed
researchers have contributed to the understanding of functions within Hölder’s
class with order α (0 < α ≤ 1). Notable among them are Chui [1], Debnath [2],
Kumar et al. ([4], [9]) Lal and Yadav ([7], [8]), Lepik [10], Meyer [11], Pandey
et al. ([3], [12], [13], [14], [15], [16]), Ray and Sahu [17] and Sripathy et al.
[18], whose extensive studies have paved the way for advancements in function
approximation theory and related fields. Their work provides a solid foundation
upon which this study builds, extending the understanding of Hölder’s classes and
their applications. This paper explores solving integral equations by employing
the Chebyshev wavelet of the second kind within the interval [0,1), enhancing
efficiency and broadening the toolkit for mathematical and computational scien-
tists. For instance, the method for solving Abel’s integral equations of the form:

y(t)γ(t) = f(t) +

∫ t

0

y(x)√
t− x

dx (1)

has been introduced using second kind Chebyshev wavelet.
This research paper aims to achieve several objectives. Firstly, it seeks to

define the Chebyshev wavelet of the second kind within the interval [0,1),
providing a clear understanding of its properties and characteristics. Secondly, it
aims to define Hölder’s classes Hα[0, 1) and Hϕ[0, 1), portraying their
significance in mathematical analysis. Thirdly, the paper aims to assess the
approximation of function f within these classes, exploring the effectiveness of
wavelet-based techniques in function approximation. Additionally, the
procedure for solving Abel’s integral equations utilizing the Chebyshev wavelet of
the second kind have been discussed, offering insights into the
practical application of wavelet methods in solving integral equations. Lastly,
the paper intends to compare the exact solutions of Abel’s integral equations with
the approximate solutions obtained using various types of wavelets, including the
Legendre wavelet and both kinds of Chebyshev wavelets, shedding light on the
comparative efficacy of different wavelet approaches.

The subsequent sections of this paper are structured as follows: Section 2
outlines the definitions and properties of Hölder’s class, the Chebyshev wavelet of
the second kind, and their orthonormality. Section 3 examines the approximation
of solution functions of Abel’s integral equations using Chebyshev wavelets of
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the second kind. Theorems are presented in Section 4, with their proofs in Section
5. Section 6 presents the algorithm for solving Abel’s integral equations using
the Chebyshev wavelet of the second kind within the interval [0,1). Section 7
demonstrates the solutions of Abel’s integral equations using this wavelet. Finally,
the conclusions of this research paper are summarized in Section 8.

2 Definitions and Preliminaries

2.1 Function of Hölder’s class

A function f ∈ Hα[0, 1), 0 < α ≤ 1 if

f(x+ t)− f(x) = O(|t|α), ∀ x+ t, x, t ∈ [0, 1) (Titchmarsh[19]).

2.2 Function of Hölder’s class Hϕ[0, 1)

A function f ∈ Hϕ[0, 1), 0 < α ≤ 1 if

f(x+ t)− f(x) = O(ϕ(|t|)), ∀ x+ t, x, t ∈ [0, 1),

where ϕ(t) is a positive monotonic increasing function of t such that ϕ(|t|) → 0
as t→ 0. If ϕ(t) = |t|α then Hϕ[0, 1) class reduces to Hα[0, 1) class.

2.3 Chebyshev wavelet of the second kind

Chebyshev wavelet of the second kind is denoted by ψ(λ)
n,m and defined by

ψ(λ)
n,m(t) =

{
2√
π
λ

k+1
2 Um(2λ

k+1t− 2n− 1), if t ∈ [ n
λk+1 ,

n+1
λk+1 );

0, otherwise,
(2)

where n = 0, 1, 2, ..., λk+1−1,m = 0, 1, 2, ...,M−1 and k, λ are positive integer.
Um(t) are the second kind Chebyshev polynomial of degree m which are
orthogonal with respect to weight function ω(t) =

√
1− t2 on [-1,1] and satisfy

U0(t) = 1, U1(t) = 2t and Um+1(t) = 2tUm(t)− Um−1(t), m ∈ {1, 2, 3, ...}.

2.4 Orthonormality of the second kind Chebyshev wavelets

Proposition 2.1. {ψ(λ)
n,m(t), n = 0, 1, 2, ..., λk+1 − 1, m = 0, 1, 2, ...,M − 1}

forms an orthonormal set. i.e.

⟨ψ(λ)
n,m, ψ

(λ)
n′,m′⟩ωn,k

=

{
1, if n = n′ and m = m′;

0, otherwise.
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Proof. For m = 0 and n = n′,

⟨ψ(λ)
n,0, ψ

(λ)
n,0⟩ωn,k

=

∫ 1

0

ψ
(λ)
n,0(t)ψ

(λ)
n,0(t)ωn,k(t)dt

=

∫ 1

0

(ψ
(λ)
n,0(t))

2ωn,k(t)dt

=
4

π

∫ n+1

λk+1

n

λk+1

λk+1ωn,k(t)dt

=
2

π

∫ π

0

sin2 θdθ = 1, 2λk+1t− 2n+ 1 = cos θ.

For m ̸= 0,

1. For m = m′ and n = n′,

⟨ψ(λ)
n,m, ψ

(λ)
n,m⟩ωn,k

=

∫ 1

0

ψ(λ)
n,m(t)ψ

(λ)
n,m(t)ωn,k(t)dt

=

∫ 1

0

(ψ(λ)
n,m(t))

2ωn,k(t)dt

=
4

π

∫ n+1

λk+1

n

λk+1

λk+1U2
m(2λ

k+1t− 2n+ 1)ωn,k(t)dt

=
2

π

∫ π

0

U2
m(cos θ) sin

2 θdθ, 2λk+1t− 2n+ 1 = cos θ

=
2

π

∫ π

0

sin2(m+ 1)θdθ = 1.

2. For n ̸= n′,

⟨ψ(λ)
n,m, ψ

(λ)
n′,m⟩ωn,k

=

∫ 1

0

ψ(λ)
n,m(t)ψ

(λ)
n′,m(t)ωn,k(t)dt.

Since, ψ(λ)
n,m is defined in [ n

λk+1 ,
n+1
λk+1 ) ⊂ [0, 1) and ψ(λ)

n′,m is defined in [ n′

λk+1 ,
n′+1
λk+1 )

⊂ [0, 1), therefore if n ̸= n′, then the intervals [ n
λk+1 ,

n+1
λk+1 ) and [ n′

λk+1 ,
n′+1
λk+1 ) are

disjoint i.e. [
n

λk+1
,
n+ 1

λk+1

)
∩
[
n′

λk+1
,
n′ + 1

λk+1

)
= ϕ.

Therefore ⟨ψ(λ)
n,m, ψ

(λ)
n′,m⟩ωn,k

= 0 if n ̸= n′ ∀m,m′.
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3. For m ̸= m′,

⟨ψ(λ)
n,m, ψ

(λ)
n,m′⟩ωn,k

=

∫ 1

0

ψ(λ)
n,m(t)ψ

(λ)
n,m′(t)ωn,k(t)dt

= 0, by the orthogonality of Chebyshev polynomials.

3 Approximation of functions and Multiresolution analysis

This section contains the approximations of the solution functions of the Abel’s
integral equations and Multiresolution analysis by the second kind Chebyshev
wavelet.

3.1 Approximation of functions

Since {ψ(λ)
m,n} forms an orthonormal basis for L2[0, 1), therefore the solution

function f ∈ L2[0, 1) of the Abel’s integral equations can be expressed into
Chebyshev wavelet of second kind as

f(t) =
∞∑
n=0

∞∑
m=0

cn,mψ
(λ)
m,n(t), cn,m = ⟨f, ψ(λ)

m,n⟩ωn,k
. (3)

The (λk+1 − 1,M)th partial sum (Sλk+1−1,Mf)(t) of wavelet series (3) is given by

(Sλk+1−1,Mf)(t) =
λk+1−1∑
n=0

M−1∑
m=0

cn,mψ
(λ)
m,n(t) = CTψ(λ)(t), (4)

whereC = [c0,0, c0,1, ..., c0,M−1, c1,0, ..., c1,M−1, ..., cλk+1−1,0, ..., cλk+1−1,M−1]
T and

ψ(λ)(t) = [ψ
(λ)
0,0 (t), ψ

(λ)
0,1 (t), ..., ψ

(λ)
0,M−1(t), ψ

(λ)
1,0 (t), ..., ψ

(λ)
1,M−1(t), ..., ψ

(λ)

λk+1−1,0
(t), ...,

ψ
(λ)

λk+1−1,M−1
(t)]T .

The second kind Chebyshev wavelet approximation Eλk+1−1,M(f) of f by
(λk+1 − 1,M)th partial sum (Sλk+1−1,Mf) of the wavelet series (3) is defined by

Eλk+1−1,M(f) = min
(S

λk+1−1,M
f)
||f − (Sλk+1−1,Mf)||2 (Lal and Priya [5]). (5)

Eλk+1−1,M(f) is said to be best approximation of the function f ifEλk+1−1,M(f) →
0 as k → ∞, M → ∞ (Zygmund [20]).
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3.2 Multiresolution analysis

The sequence of subspaces {V (λ)
n }∞n=0 of L2[0, 1) is defined by

V (λ)
n =

n−1⊕
l=1

W
(λ)
l = W

(λ)
1 ⊕W

(λ)
2 ⊕ ...⊕W

(λ)
n−1;

where W (λ)
n = clos

L2[0,1)
⟨ψ(λ)

n,m : m ∈ N ∪ {0}⟩, n = 0, 1, 2, ..., λk+1 − 1,

then {V (λ)
n }∞n=0 is a multiresolution analysis of L2[0, 1) (Chui [1]).

4 Theorems

The following theorems have been proved in this section:

4.1 Theorem 4.1

If a function f ∈ Hα[0, 1) and its second kind Chebyshev wavelet expansion
be

f(t) =
∞∑
n=0

∞∑
m=0

cn,mψ
(λ)
n,m(t)

having (λk+1 − 1,M)th partial sums

(Sλk+1−1,Mf)(t) =
λk+1−1∑
n=0

M−1∑
m=0

cn,mψ
(λ)
n,m(t),

then the second kind Chebyshev wavelet approximation of f is given by

E
(1)

λk+1−1,M
(f) = min||f −

λk+1−1∑
n=0

M−1∑
m=0

cn,mψ
(λ)
n,m(t)||2 = O

(
1

λ(k+1)α
√
M

)
, M > 1.

4.2 Theorem 4.2

If a function f ∈ Hϕ[0, 1) class such that ϕ(|t|) → 0 as t→ 0 then the second
kind Chebyshev wavelet approximation of f by (Sλk+1−1,Mf) satisfies for M > 1

E
(2)

λk+1−1,M
(f) = min||f −

λk+1−1∑
n=0

M−1∑
m=0

c′n,mψ
(λ)
n,m(t)||2 = O

(
1

λk+1
√
M
ϕ

(
1

λk+1

))
.
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5 Proof of Theorems

5.1 Proof of Theorem 4.1

f(t) =
∞∑
n=0

∞∑
m=0

cn,mψ
(λ)
n,m(t).

cn,m = ⟨f, ψ(λ)
n,m⟩ωn,k

=

∫ n+1

λk+1

n

λk+1

f(t)ψ(λ)
n,m(t)ωn,k(t)dt

=

∫ n+1

λk+1

n

λk+1

(
f(t)− f

( n

λk+1

))
ψ(λ)
n,m(t)ωn,k(t)dt

+ f
( n

λk+1

)∫ n+1

λk+1

n

λk+1

ψ(λ)
n,m(t)ωn,k(t)dt

=

∫ n+1

λk+1

n

λk+1

(
f(t)− f

( n

λk+1

))
ψ(λ)
n,m(t)ωn,k(t)dt

|cn,m| ≤ N

(
1

λk+1

)α
∣∣∣∣∣
∫ n+1

λk+1

n

λk+1

ψ(λ)
n,m(t)ωn,k(t)dt

∣∣∣∣∣ , f ∈ Hα[0, 1)

= N

(
1

λk+1

)α ∣∣∣∣∫ π

0

2√
π
λ

k+1
2 Um(cos θ)ω(cos θ)

sin θ

2λk+1
dθ

∣∣∣∣
=

N

πλ(k+1)(α+ 1
2
)

∣∣∣∣∫ π

0

sin(m+ 1)θ sin θdθ

∣∣∣∣ , Um(cos θ) =
sin(m+ 1)θ

sin θ

=
N

2πλ(k+1)(α+ 1
2
)

∣∣∣∣∫ π

0

cosmθ − cos(m+ 2)θdθ

∣∣∣∣
≤ N

2πλ(k+1)(α+ 1
2
)

(∣∣∣∣∫ π

0

1

m

d

dθ
(sinmθ)dθ

∣∣∣∣+ ∣∣∣∣∫ π

0

1

m+ 2

d

dθ
(sin(m+ 2)θ)dθ

∣∣∣∣)
≤ N

2πλ(k+1)(α+ 1
2
)

(
1

m

(
max
0≤θ≤π

(sinmθ)

)
+

1

m+ 2

(
max
0≤θ≤π

(sin(m+ 2)θ)

))
=

N

πλ(k+1)(α+ 1
2
)(m+ 2)

. (6)

Now, f(t)− (Sλk+1−1,Mf)(t) =
∞∑
n=0

∞∑
m=0

cn,mψ
(λ)
n,m(t)−

λk+1−1∑
n=0

M−1∑
m=0

cn,mψ
(λ)
n,m(t)

=
λk+1−1∑
n=0

∞∑
m=M

cn,mψ
(λ)
n,m(t).

Then, (E
(1)

λk+1−1,M
(f))2 = ||f(t)− (Sλk+1−1,Mf)(t)||22
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=
λk+1−1∑
n=0

∞∑
m=M

|cn,m|2

≤
λk+1−1∑
n=0

∞∑
m=M

(
N

πλ(k+1)(α+ 1
2
)(m+ 2)

)2

=
N2

π2λ2(k+1)α

∞∑
m=M

1

(m+ 2)2

≤ N2

π2λ2(k+1)α

(
1

(M + 2)2
+

∫ ∞

M

dm

(m+ 2)2

)
≤ N2

π2λ2(k+1)α

(
1

M2
+

1

M

)
≤ 2N2

π2λ2(k+1)αM
.

Therefore, E(1)

λk+1−1,M
(f) ≤

√
2N

πλ(k+1)α
√
M

= O

(
1

λ(k+1)α
√
M

)
, M > 1.

This completes the proof of the Theorem 4.1.

5.2 Proof of Theorem 4.2

Following the proof of Theorem 4.1 and for f ∈ Hϕ[0, 1) class

|c′n,m| ≤ Nϕ

(
1

λk+1

) ∣∣∣∣∣
∫ n+1

λk+1

n

λk+1

ψ(λ)
n,m(t)ωn,k(t)dt

∣∣∣∣∣
= Nϕ

(
1

λk+1

) ∣∣∣∣∫ π

0

2√
π
λ

k+1
2 Um(cos θ)ω(cos θ)

sin θ

2λk+1
dθ

∣∣∣∣
=

N

πλ
k+1
2

ϕ

(
1

λk+1

) ∣∣∣∣∫ π

0

sin(m+ 1)θ sin θdθ

∣∣∣∣
=

N

2πλ
k+1
2

ϕ

(
1

λk+1

) ∣∣∣∣∫ π

0

cosmθ − cos(m+ 2)θdθ

∣∣∣∣
=

N

πλ
k+1
2 (m+ 2)

ϕ

(
1

λk+1

)
. (7)

(E
(2)

λk+1−1,M
(f))2 =

λk+1−1∑
n=0

∞∑
m=M

|c′n,m|2

≤
λk+1−1∑
n=0

∞∑
m=M

(
N

πλ
k+1
2 (m+ 2)

ϕ

(
1

λk+1

))2
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=
N2

π2λk+1
ϕ2

(
1

λk+1

) ∞∑
m=M

1

(m+ 2)2

≤ N2

π2λk+1
ϕ2

(
1

λk+1

)(
1

M2
+

1

M

)
≤ 2N2

π2λk+1M
ϕ2

(
1

λk+1

)
.

Therefore, E(2)

λk+1−1,M
(f) = O

(
1

λk+1
√
M
ϕ

(
1

λk+1

))
, M > 1.

This completes the proof of the Theorem 4.2.

6 Method for solving Abel’s integral equations by second kind Chebyshev
wavelet

Consider the Abel’s integral equation (1). Let us consider the wavelet series
expansion,

y(t) =
∞∑
n=0

∞∑
m=0

cn,mψ
(λ)
n,m(t) (8)

and (λk+1−1,M)th partial sum of series (8) which is the approximate solution of
(1) i.e.

y(t) =
λk+1−1∑
n=0

M−1∑
m=0

cn,mψ
(λ)
n,m(t) = CTψ(λ)(t). (9)

In Eqn. (9), CT contains λk+1M unknown coefficients cn,m. For determining
the values of λk+1M unknown coefficients cn,m, taking suitable collocation points
near ti = i−1

λk+1M
, i = 1, ..., λk+1M , the λk+1M system of algebraic equations are

obtained. By solving these λk+1M system of algebraic equations, the values of
cn,m have been obtained. Substituting these values in Eqn. (9), the second kind
Chebyshev wavelet solution of the integral equation (1) is obtained.

7 Results and Discussion

In this section, the second kind Chebyshev wavelet method has been used to
find the approximate solution of Abel’s integral equations. The exact solutions of
Abel’s integral equations are compared with the Legendre wavelet, first kind, and
second kind Chebyshev wavelet solutions (Sharma and Lal [6]). This is illustrated
in the following examples:
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7.1 Example 1

Consider the Abel’s integral equation of the first kind∫ t

0

y(x)√
t− x

dx =
2
√
t(8t2 + 10t+ 15)

15
(10)

It is obtained by taking γ(t) = 0, f(t) = −2
√
t(8t2+10t+15)

15
in Abel’s integral

equation (1). The exact solution of Eqn. (10) is y(t) = t2 + t+ 1.
The six basis function of the second kind Chebyshev wavelet for k = 0,
M = 3, λ = 2 are as follows:

If 0 ≤ t <
1

2
,

ψ
(2)
0,0(t) = 2

√
2

π

ψ
(2)
0,1(t) = 4

√
2

π
(4t− 1)

ψ
(2)
0,2(t) = 2

√
2

π
(4(4t− 1)2 − 1)



If
1

2
≤ t < 1,

ψ
(2)
1,0(t) = 2

√
2

π

ψ
(2)
1,1(t) = 4

√
2

π
(4t− 3)

ψ
(2)
1,2(t) = 2

√
2

π
(4(4t− 3)2 − 1)


By using the algorithm of the second kind Chebyshev wavelet method described in
Section 6, the first kind Abel’s integral equation has been solved. The approximate
solution y(t) will be

y(t) = c0,0ψ
(2)
0,0(t) + c0,1ψ

(2)
0,1(t) + c0,2ψ

(2)
0,2(t), t ∈

[
0,

1

2

)
= 2

√
2

π
c0,0 + 4

√
2

π
(4t− 1)c0,1 + 2

√
2

π
(4(4t− 1)2 − 1)c0,2. (11)

y(t) = c1,0ψ
(2)
1,0(t) + c1,1ψ

(2)
1,1(t) + c1,2ψ

(2)
1,2(t), t ∈

[
1

2
, 1

)
= 2

√
2

π
c1,0 + 4

√
2

π
(4t− 3)c1,1 + 2

√
2

π
(4(4t− 3)2 − 1)c1,2. (12)

For values of unknowns c0,0, c0,1, c0,2, c1,0, c1,1, and c1,2, we collocate equation
Eqn. (10) at t = 0.15, 0.3, 0.45, 0.6, 0.75, and 0.9, six system of algebraic equa-
tions are obtained. Solving these systems of algebraic equations, the values of the
unknowns are obtained as follows:

c0,0 = 0.832278919311074, c0,1 = 0.117498200373328,

c0,2 = 0.009791516697778, c1,0 = 1.458935987968824,

c1,1 = 0.195830333955546, c1,2 = 0.009791516697777. (13)
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Putting the values of c0,0, c0,1, c0,2, c1,0, c1,1, and c1,2 from Eqn. (13) into Eqns.
(11) and (12).

y(t) = 0.832278919311074

(
2

√
2

π

)
+ 0.117498200373328

(
4

√
2

π
(4t− 1)

)

+ 0.009791516697778

(
2

√
2

π
(4(4t− 1)2 − 1)

)
, t ∈

[
0,

1

2

)
,

y(t) = 1.458935987968824

(
2

√
2

π

)
+ 0.195830333955546

(
4

√
2

π
(4t− 3)

)

+ 0.009791516697777

(
2

√
2

π
(4(4t− 3)2 − 1)

)
, t ∈

[
1

2
, 1

)
.

The approximate solution of the first kind Abel’s integral equation (10) obtained
by the second kind Chebyshev wavelet method (SKCWM) for different values
of t in the interval [0,1) has been obtained. The comparison of exact solutions
(ES) of Abel’s integral equation with the Legendre wavelet method (LWM), first
kind Chebyshev wavelet method (FKCWM), and second kind Chebyshev wavelet
method are given in Table 1.

Table (1)
t ES LWM FKCWM SKCWM

0.1 1.11 0.929532564 1.0719999995 1.10999999999999
0.2 1.24 1.115745774 1.1546666661 1.23999999999999
0.3 1.39 1.309633163 1.2479999994 1.38999999999999
0.4 1.56 1.511194733 1.3519999994 1.56000000000000
0.5 1.75 1.720430483 1.4666666667 1.75000000000000
0.6 1.96 1.937340412 1.5919999994 1.96000000000000
0.7 2.19 2.161924522 1.7279999994 2.18999999999999
0.8 2.44 2.394182812 1.8746666661 2.44000000000000
0.9 2.71 2.634115282 2.0319999994 2.70999999999999

Table(1): Comparison between exact and approximate solutions of Eqn. (10).

The graphs of the exact solution and approximate solution of the Abel’s integral
equation (10) are shown in Figure 1.
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Fig.(1): The graphs of exact and approximate solutions of Eqn. (10).

7.2 Example 2

Consider the Abel’s integral equation of the second kind

y(t) = 4t
3
2 −

∫ t

0

y(x)√
t− x

dx (14)

It is obtained by taking γ(t) = −1, f(t) = −4t
3
2 in the Abel’s integral equation

(1). The exact solution of Eqn. (14) is y(t) = 3t+ 3
π
(1− 2

√
t− erfc(

√
πt)).

Following the procedure of example (1), the approximate solution y(t) will be

y(t) = 0.203127378663919

(
2

√
2

π

)
+ 0.1245710999898258

(
4

√
2

π
(4t− 1)

)

+ 0.007508790407423

(
2

√
2

π
(4(4t− 1)2 − 1)

)
, t ∈

[
0,

1

2

)
,

y(t) = 0.788695399256314

(
2

√
2

π

)
+ 0.159580510841338

(
4

√
2

π
(4t− 3)

)

+ 0.002685161812766

(
2

√
2

π
(4(4t− 3)2 − 1)

)
, t ∈

[
1

2
, 1

)
.
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The exact solution and approximate solutions of the second kind Abel’s integral
equation (14) are shown in Table 2.

Table (2)
t ES LWM FKCWM SKCWM

0.1 0.0914468358 0.0296708741 0.0772954668400 0.09087255103875016
0.2 0.2313248892 0.1868894237 0.1890183222312 0.23456458416817604
0.3 0.3928020550 0.3529379159 0.3135382389570 0.39359395601475531
0.4 0.5682530617 0.5278163507 0.4467872378730 0.56796066657848785
0.5 0.7538699265 0.7115247282 0.5858830996710 0.76212315618636044
0.6 0.9473720681 0.9040630482 0.7291945119710 0.95487673780814230
0.7 1.1472485450 1.1054313110 0.8762823974830 1.15311498926330412
0.8 1.3524303100 1.3156295160 1.0263605224509 1.35683791055184616
0.9 1.5621248430 1.5346576640 1.1786727537049 1.56604550167376791

Table(2): Comparison between exact and approximate solutions of Eqn. (14).

The graphs of the exact solution and approximate solution of the second kind Abel’s
integral equation (14) are shown in Figure 2.
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Fig.(2): The graphs of exact and approximate solutions of Eqn. (14).

7.3 Absolute Error

The absolute error in the approximate solution of the Abel’s integral equations (10)
and (14) are shown in Tables 3. This shows that absolute error is negligible by the second
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kind Chebyshev wavelet method as compared to Legendre wavelet method, and first kind
Chebyshev wavelet method.

Table (3)
Absolute error in solution of Example 1 Absolute error in solution of Example 2

t LWM FKCWM SKCWM LWM FKCWM SKCWM
0.1 0.18046 0.03800 0.222×10−15 0.06177 0.01415 0.00057
0.2 0.12425 0.08533 0.222×10−15 0.04443 0.04230 0.00323
0.3 0.08036 0.14200 0 0.03986 0.07926 0.00079
0.4 0.04880 0.20800 0 0.04043 0.12146 0.00029
0.6 0.02956 0.28333 0 0.04234 0.16798 0.00825
0.6 0.02265 0.36800 0 0.04330 0.21817 0.00750
0.7 0.02807 0.46200 0 0.04181 0.27096 0.00586
0.8 0.04581 0.56533 0 0.03680 0.32606 0.00441
0.9 0.07588 0.67800 0 0.02746 0.38345 0.00392

Table(3): Absolute error in approximate solutions of Eqns. (10) and (14).

8 Conclusions

1. The second kind Chebyshev wavelet approximations of Theorem 4.1 and 4.2 are
given by E

(1)

λk+1−1,M
(f) = O

(
1

λ(k+1)α
√
M

)
→ 0 as k → ∞ and M → ∞;

and E
(2)

λk+1−1,M
(f) = O

(
1

λk+1
√
M
ϕ
(

1
λk+1

))
→ 0 as k → ∞ and M → ∞.

Therefore, estimators E
(1)

λk+1−1,M
(f) and E

(2)

λk+1−1,M
(f) of the solution function of the

Abel’s integral equations are best possible in wavelet analysis.
2. From the tables 1, 2, 3 and figures 1, 2, it is observed that the solutions of the Abel’s

integral equations by the second kind Chebyshev wavelet method coincide with their exact
solution as compare to Legendre and first kind Chebyshev wavelet method. This shows
the validity and applicability of the proposed algorithm.
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