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Introduction

Induction furnaces are widely used by metallurgical industry in several processes involving different
materials, such as metal hardening, casting or melting. Basically, these furnaces consist of an
electrically conducting inductor and a workpiece to be heated. An alternating current traversing
the conductor generates induction currents in the workpiece, which is then heated due to Ohmic
losses.

An efficient design of the induction furnace must take into account several parameters that can
affect its performance. These parameters include the geometrical properties, such as the size and
shape of the workpiece or its distance to the coil, the thermal and electromagnetic properties of
the materials in the furnace, and the properties of the alternating electric current supplied to the
coil. Numerical simulation is a very helpful tool to understand the influence of these parameters
in the behaviour of the furnace. It is also useful to test modifications on the furnace avoiding the
cost of real experiments.

The motivation of this work is the implementation of a computer code to simulate an induction
melting furnace. To this end an adequate mathematical model must be introduced and mathema-
tically analyzed. Due to the physical processes occurring in the furnace this model must take into
account thermal, electromagnetic and hydrodynamic phenomena. This leads to a coupled mathe-
matical model consisting of a system of partial differential equations with several non-linearities.
As we will see, the coupling and the nonlinear terms introduce some difficulties, not only in the
mathematical analysis of the equations but also in its numerical solving.

The outline of the thesis is the following:

In Chapter 1 we give a description of the induction furnace we want to simulate and explain
the involved physical phenomena. In this chapter we also introduce the mathematical models
describing the physics of the problem. However, these models will be modified in other chapters,
depending on whether we are interested in their analytical study or in their numerical approxima-
tion.

Chapter 2 is devoted to the analytical study of two mathematical models concerning a statio-
nary problem in magnetohydrodynamics, including Joule effect and viscous heating. The first one
uses the Boussinesq approximation and extends the results of [72] by including quadratic terms in
the heat sources. The second model is developed following an idea of [42] and permits us to prove
the existence of solution to the problem under less restrictive conditions.

In Chapter 3 we come back to the mathematical model of the furnace which is used for the
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2 Introduction

numerical simulation. Since the thermal and hydrodynamic submodels are very well known, we
focus our interest in the formulation of the electromagnetic model. The problem is formulated in
an axisymmetrical setting, hence substituting the helical coil by torus-shaped rings. In order to use
either the voltage or the current intensity as the given data, we introduce an hybrid formulation
in terms of the magnetic vector potential with the current voltages acting as Lagrange multipliers.
Finally, we give an integro-differential formulation of the electromagnetic problem with a mixed
boundary element/finite element discretization in view.

In the first section of Chapter 4 we explain the development of the computer code for the
numerical simulation of the furnace. The thermal and hydrodynamic problems are discretized
using Lagrange-Galerkin methods, in order to treat the convection terms of the equations, whereas
the electromagnetic problem is solved using a mixed boundary element/finite element method. We
also present the iterative algorithm designed to deal with the nonlinearities of the problem. In
the second section we present the results of some simulations. The first one is a simulation of a
thermal-hydrodynamic problem with phase change, which has been used for validation of the code.
The second is a simulation of a real industrial furnace designed for induction melting and stirring.

Finally, in Chapter 5 we present a different formulation of the electromagnetic model. This
formulation is intended to be used in full three-dimensional simulations of the furnace, thus main-
taining the helical geometry of the coil. The problem is written in terms of the electric field in the
conductor, and the magnetic field in the insulators. Either the current intensity or the voltage can
be given as data, in the latter case with the intensities acting as Lagrange multipliers. After the
analysis of the continuous formulation we present its finite element discretization and numerical
analysis. Then, two different problems are solved using a computer code written in Matlab.

The thesis also includes three appendices. In Appendix A we introduce some functional spaces
and notations that appear throughout the thesis. We also present some known results that will
be used in the mathematical analysis of some problems. In Appendix B we review the concept of
solution by transposition in the sense given by Stampacchia in [94], as it is going to be used in
Chapter 2. Finally, Appendix C is devoted to recall the cylindrical coordinates system, in order to
make easier the reading of Chapter 3.



Chapter 1

Motivation. The physical problem.

1.1 Motivation.

Induction heating is a non-contact method by which conducting materials subjected to an alterna-
ting electromagnetic field are heated. This method has been widely used in the last years in many
areas of metallurgical and semiconductor industry, such as metal hardening ([34, 95]), casting
([17]), melting([35, 39, 88]) and crystal growing ([37, 66]).

An induction heating system consists of one or several inductors supplied with alternating
electrical current and a conductive workpiece to be heated. The alternating current traversing the
inductor generates eddy currents in the workpiece, and through the Ohmic losses the workpiece is
heated (see Figure 1.1).

Figure 1.1: A simple induction heating device.

Different furnaces can be designed depending on its application. In our case we want to simulate
the behaviour of a coreless induction furnace designed for melting and stirring. A simple sketch
of this furnace is presented in Figure 1.2. It consists of an inductor coil and a workpiece, which is
formed by the crucible and the load within:

- The inductor is a helical copper coil, connected to a power supply and carrying an alternating
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4 Chapter 1. Motivation. The physical problem.

electrical current. Since Ohmic losses also take place in the coil, it is water-cooled to avoid
overheating.

- The load is the material we want to melt, which is usually an electrically conducting metal.

- The crucible is usually a refractory material designed to contain the material to melt and to
resist very high temperatures.

Figure 1.2: Sketch of the induction furnace.

It is well known that, due to the skin effect, the Ohmic losses are concentrated in the external
part of the workpiece, and this concentration is more important at high frequencies. In induction
heating it is crucial to control the distribution of Ohmic losses, since they could cause very high
temperatures in the crucible and the load which could harm the crucible, thus reducing its lifetime.
Moreover, the frequency and intensity of the alternating current also affects the stirring of the
molten bath. Since the stirring will determine some of the properties of the final product, it is
convenient to know accurately the influence of these parameters to achieve the desired stirring.

To control the stirring of the bath and the temperature profile in the furnace, it is possible to
adjust the power supplied to the furnace and the frequency of the alternating current traversing
the coil. Moreover, we are also interested in understanding the influence on the furnace perfor-
mance of certain geometrical parameters such as the crucible thickness or its distance to the coil,
or physical parameters, such as the thermal and electrical conductivity of the refractory layer.
Numerical simulation can be a good tool for this purpose, since it permits to introduce these chan-
ges in the simulation avoiding the high cost of experimentation with real processes. Many papers
have been published concerning the numerical simulation of induction heating devices, from some
pioneering articles published in the early eighties (see [68] and references therein) to more recent
works dealing with different coupled problems, such as the thermoelectrical problem appearing
in induction heating ([35, 88]), the magnetohydrodynamic problem related to induction stirring
([78]) and also a thermal-magneto-hydrodynamic problem ([57, 64]) but not fully coupled because
material properties are not supposed to depend on temperature. Some other related works include
mechanical effects in the workpiece ([12, 61]). A more extensive bibliographic review can be found
in [69].



1.2. The mathematical model. 5

1.2 The mathematical model.

In this section we introduce the mathematical model for the behaviour of an induction furnace.
The physical problem involves thermal, electromagnetic and hydrodynamic phenomena in the
molten region of the workpiece. Thus, the three submodels and the couplings among them must
be considered to achieve a realistic simulation of the furnace.

The electromagnetic submodel consists of Maxwell equations, and is described in Section 1.2.1.
In these equations velocity appears in Ohm’s law, and some electromagnetic properties may depend
on temperature.

The thermal submodel is presented in Section 1.2.2. We use a formulation in terms of enthalpy,
to take into account the change of state during melting. The thermal model is coupled with the
electromagnetic one, since the Joule effect is one of the source terms in the heat transfer equation.
Moreover, velocity is needed if we want to consider convective heat transfer.

The hydrodynamic submodel is described in Section 1.2.3. It consists of the compressible
Navier-Stokes equations, including buoyancy forces and Lorentz forces, which couple the hydrody-
namic model with the two other submodels. Furthermore, the physical properties of the fluid can
depend on temperature.

Throughout this chapter we do not mention either the domain of our problem or the boundary
conditions. These conditions will be made precise in the two following chapters and may change
depending on whether we are interested in mathematical analysis or in numerical simulation.

1.2.1 Electromagnetic submodel.

To model the electric current traversing the coil and the eddy currents inducted in the workpiece
by this current, we introduce an electromagnetic model which is described by Maxwell equations

∂D
∂t

− curlH = −J , (1.1)

∂B
∂t

+ curlE = 0, (1.2)

div B = 0, (1.3)
div D = q, (1.4)

where D denotes the electric displacement, H is the magnetic field, J is the current density, B is
the magnetic induction, E is the electric field and q is the electric charge density.

These equations must be completed with some constitutive laws,

B = µH, (1.5)
D = εE, (1.6)

and (Ohm’s law),
J = σ(E + u×B), (1.7)
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where µ is the magnetic permeability, ε denotes the electric permittivity, σ is the electrical con-
ductivity and u is the velocity field. We will only consider isotropic materials, in which case µ, ε
and σ are bounded scalar functions of the spatial variable x, and we will allow them to depend
on temperature T . Moreover, both ε and µ are strictly positive while σ is assumed to be strictly
positive in conductors and to be null in dielectrics.

In many physical applications, such as those involving molten metals, the size of the term
involving the displacement current, ∂D

∂t , is negligible with respect to the size of the other two
terms appearing in Maxwell-Ampère law (1.1) (see [77, p. 8]). By neglecting this term and leaving
aside equation (1.4) that will only be useful to compute the electric charge q, we obtain the so-called
eddy currents model

curlH = J , (1.8)
∂B
∂t

+ curlE = 0, (1.9)

div B = 0, (1.10)

that must be completed with equations (1.5) and (1.7).

In magnetohydrodynamics (MHD), it is very useful to consider magnetic induction, B, as the
main unknown and to compute all the other electromagnetic quantities by using Maxwell equations
and Ohm’s law. To do this, we assume that there is only one conductor, i.e. σ > 0, and that
magnetic permeability is constant. We replace J in (1.1) by its value given in (1.7) and, by
considering the constitutive law (1.5) we obtain

E =
1

µσ
curlB − u×B. (1.11)

Now, using this new expression for E in Faraday’s law (1.2), we obtain a formulation of the
electromagnetic problem in terms of the magnetic induction B which is usually called the induction
equation:

∂B
∂t

+ curl
(

1
µσ

curlB
)
− curl (u×B) = 0. (1.12)

The quasi-static time-harmonic model.

Next we are going to introduce some simplifications in the electromagnetic submodel, to attain
the equations that will be used for the numerical simulation.

The term curl (u × B) in equation (1.12) represents the influence of the fluid motion on the
magnetic field. This term is important in certain applications related to MHD, such as astrophysics
and plasma confinement. However, when working with molten metals in a laboratory scale this
term is negligible in comparison with the two other terms in the induction equation [77, p. 30].
This leads us to neglect velocity in Ohm’s law that simply becomes

J = σE . (1.13)
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Moreover, since the induction furnace works with an alternating current, we can consider that
all fields vary harmonically with time. Hence they all have the form

F(x, t) = Re [eiωt F(x)], (1.14)

where F is the complex amplitude corresponding to the F field and ω is the angular frequency,
ω = 2πf , f being the frequency of the alternating current.

Under these assumptions we arrive at the so-called eddy-currents model in the frequency do-
main

curlH = J, (1.15)
iωB + curlE = 0, (1.16)

div B = 0, (1.17)

with the constitutive laws

B = µH, (1.18)
J = σE. (1.19)

1.2.2 Thermal submodel.

The induction furnace we are considering is used to melt and stir a metal. To model the behaviour
of the molten metal, we will use the convective heat transfer equation. Moreover, since we are
interested in how the material melts and solidifies, the standard heat equation is modified by
introducing an enthalpy formulation allowing us to consider changes of state.

We consider the convective heat transfer equation in terms of the enthalpy

∂e

∂t
+ u · grad e− div (kgradT ) =

|J |2
σ

+
η

2

∣∣gradu + gradut
∣∣2 + ψ, (1.20)

e being the enthalpy density, T the temperature and k the thermal conductivity which is supposed
to be a scalar function depending on position x and temperature T . The first term in the right-
hand side represents the Joule effect whereas the second one accounts for viscous heating, η being
the dynamic viscosity and u the velocity field. The third term, ψ, is some given heat source as for
instance radiative heat transfer.

The enthalpy density e can be expressed in terms of the temperature by means of a multi-valued
function:

e(x, t) ∈ H(x, T (x, t)), (1.21)

where H(x, T ) is given by

H(x, T ) =





∫ T

0
ρ(x, s) c(x, s) ds, T < TS(x),

[∫ T

0
ρ(x, s) c(x, s) ds,

∫ T

0
ρ(x, s) c(x, s) ds + ρ(x, TS) L(x)

]
, T = TS(x),

∫ T

0
ρ(x, s) c(x, s) ds + ρ(x, TS) L(x), T > TS(x),

(1.22)
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L being the latent heat, i.e., the heat per unit mass necessary to achieve the change of state at
temperature TS , ρ being the mass density and c the specific heat.

1.2.3 Hydrodynamic submodel.

In a melting induction furnace, the movement of the molten region strongly influences the dis-
tribution of the temperature, due to convective heat transfer. Furthermore, in certain industrial
applications related to MHD, such as electromagnetic stirring, the objective is to control the fluid
motion via the electromagnetic forces, to attain certain qualities or patterns in the way the mate-
rial solidifies. Thus, a hydrodynamic submodel is crucial to understand the behaviour of the metal
in the furnace.

The movement of the fluid is governed by the motion equation, which reads as follows

ρ(x, T )
(

∂u
∂t

+ (gradu)u
)
− div (l(D)) + grad p = f0 + J ×B + ρg , (1.23)

where u is the velocity field, p is the pressure and ρ denotes mass density, which is supposed to
be a function of the spatial coordinate x and the temperature T . The term J ×B represents the
Lorentz force, ρg represents the buoyancy forces, and f0 is some other given force, e.g., a Coriolis
force. Moreover, l(D) denotes the viscous part of Cauchy stress tensor. In Newtonian fluids this
is given by

l(D) = 2η(x, T )D + ξ(x, T )tr(D)I , (1.24)

where D ≡ D(u) is the symmetric part of Cauchy stress tensor, and the physical parameters η
and ξ are the dynamic viscosity and the second viscosity coefficient, respectively.

Boussinesq approximation.

A usual simplification of thermal-hydrodynamic processes is the Boussinesq approximation. It
consists on assuming that the variations of the thermodynamical coefficients, such as dynamic
viscosity, specific heat and thermal conductivity, are negligible so they can be taken as constant
in equations (1.23) and (1.20). Mass density ρ is supposed to be constant except for the buoyancy
force term where the density is assumed to depend linearly on temperature. More precisely,
rewriting the heat equation in terms of the temperature, the Boussinesq approximation, in our
particular case, consists of the equations

ρ0c0

(
∂T

∂t
+ u · gradT

)
− k0∆T =

|J |2
σ

+
η0

2

∣∣gradu + gradut
∣∣2 + ψ, (1.25)

ρ0

(
∂u
∂t

+ (gradu)u
)
− η0∆u + grad p′ = J ×B − ρ0β0(T − Tr)g, (1.26)

div u = 0, (1.27)

where Tr is a constant reference temperature, ρ0, η0, k0 and c0 denote the physical properties at
the reference temperature Tr, and β0 is the coefficient of thermal expansion at temperature Tr.
Moreover, p′ represents the corrected pressure, which is given by p′ = p− ρ0g · x.
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1.2.4 Coupled models. The system of MHD equations.

Once we have introduced the equations for the three submodels, we are in a position to join
them together, and present the system of MHD equations. As usual in MHD, we write the
electromagnetic problem by means of the induction equation. Moreover, to avoid the use of other
electromagnetic properties, we write the Joule effect in the thermal equation in terms of B, by
using (1.8) and (1.5):

∂B
∂t

+ curl
(

1
µσ

curlB
)
− curl (u×B) = 0, (1.28)

div B = 0, (1.29)

ρ

(
∂u
∂t

+ (gradu)u
)
− div (2ηD(u)) + grad p′ = J ×B + ρg, (1.30)

div u = 0, (1.31)
∂e

∂t
+ u · grad e− div (kgradT ) =

1
σµ2

|curlB|2 +
η

2

∣∣gradu + gradut
∣∣2 + ψ, (1.32)

e(x, t) ∈ H(x, T (x, t)) . (1.33)

In steady state, by writing the heat equation in terms of the temperature and considering the
Boussinesq approximation, the MHD system becomes

curl
(

1
µσ

curlB
)
− curl (u×B) = 0, (1.34)

div B = 0, (1.35)
ρ0(gradu)u− η0∆u + grad p′ = J ×B − ρ0β0(T − Tr)g, (1.36)

div u = 0, (1.37)

−k0∆T + ρ0c0u · gradT =
1

σµ2
|curlB|2 +

η0

2

∣∣gradu + gradut
∣∣2 + ψ. (1.38)

We notice that this system of equations corresponds to a steady problem for the thermal and the
hydrodynamic models, and a magnetostatic problem as the electromagnetic model. Thus, when
using this model, induction effects cannot be taken into account as we are neglecting the term ∂B

∂t .

When working with alternating currents, it is also possible to write a stationary version of the
problem taking into account the induction effects. To do so, one assumes that the electromagnetic
fields are harmonic and have the form (1.14), and that the influence of the fluid motion on the
magnetic field is negligible. Since the electromagnetic fields vary in a time scale much smaller than
the one for the variation of temperature and velocity, it is possible to achieve a steady state for these
two fields, whereas the electromagnetic fields remain harmonic. In this case, the electromagnetic
model is written in its quasi-static time-harmonic version, given by equations (1.15)-(1.19). The
thermal and hydrodynamic problems are given by equations (1.36)-(1.38), but the Joule effect
term, 1

σµ2 |curlB|2, and the Lorentz force J ×B are replaced by their mean values on a cycle (see
Remark 3.6), namely,

ω

2π

∫ 2π/ω

0

1
σµ2

|curlB|2 ,



10 Chapter 1. Motivation. The physical problem.

and

ω

2π

∫ 2π/ω

0
J ×B .

In fact, this time harmonic approximation is used in Chapters 3 and 4 for the numerical simulation
of the induction furnace. The mathematical analysis of the steady MHD system of equations given
by (1.34)-(1.38) is carried out in Chapter 2. Our decision to analyze this problem, instead of the
one used for the numerical simulation, is that they share many of their features and difficulties,
such as the Joule effect and other coupling terms, and at the same time it avoids the change of
state, that would lead to a varying domain in the equations of the hydrodynamic model.



Chapter 2

Analysis of two stationary MHD
systems of equations.

This chapter is devoted to the analysis of two systems of stationary partial differential equations
in magnetohydrodynamics. In Section 2.1 we present a brief bibliographic review of some works
dealing with problems similar to ours. In Section 2.2 we analyze the stationary system of equations
given by (1.34)-(1.38), which has been obtained by considering the Boussinesq approximation. For
this model we prove the existence of solution under some smallness conditions on the boundary and
source data. Section 2.3 is devoted to the study of a quite similar model that does not come from
Boussinesq approximation. Instead of considering a linear approximation of the buoyancy force
term, as it is done in the Boussinesq approximation, we maintain its original expression assuming
some conditions on the density function. In this case it is possible to find an a priori bound for
the solution, and also to prove the existence of solution independently of the data size. Finally,
in Section 2.4 we present some results of uniqueness for both models. For the first one we can
only prove the uniqueness of solution in a small closed ball, under some hypotheses of small data.
For the second one we present a criterion of small data which guarantees the global uniqueness of
solution.

2.1 Bibliographic review.

In this section we present a brief review of several articles concerning the mathematical study
of some problems related to ours. The analytical study of a fully coupled thermal-magneto-
hydrodynamic problem is rather unusual, and not many works can be found in the subject. Thus,
we will also mention other interesting papers dealing with some of the couplings.

Articles on the thermoelectrical problem.

In the study of the thermoelectrical coupling the main difficult is the treatment of the Joule
effect in the heat equation, due to its quadratic nature. This coupling can be found in several

11
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articles devoted to the study of the so-called thermistor problem, in which the electromagnetic
phenomena are described by the equation of electrostatics, usually considering that the electrical
conductivity is temperature dependent. The study of the stationary thermistor problem is carried
out by Howison, Rodrigues and Shillor in [62] (see also references therein). A deeper review on
this subject can be found in the PhD thesis of Pena [85].

Another problem, very related to the thermistor, is the in situ vitrification problem. The
stationary formulation is studied by Gariepy, Shillor and Xu in [47], whereas in [96] Xu studies the
coupling of the transient heat equation, including phase change, with the equation of electrostatics,
considering temperature dependent properties.

Concerning induction heating the stationary problem is treated by Bermúdez and Muñoz in
[18] by considering cylindrical symmetry and seeking a solution in certain weighted Sobolev spaces.
The transient thermoelectrical problem including Joule effect is studied by Bossavit and Rodrigues
in [28]. In that paper, both thermal and electrical conductivity are assumed to be inhomogeneous
and temperature dependent. In [19] we find a similar problem, but in this case with an enthalpy
formulation of the thermal problem, taking the enthalpy as a multivalued function of temperature,
and assuming different dependencies (on spatial coordinates, on temperature or both) for each
physical property.

Finally, we also mention among these works the one of Hömberg [61], which considers a transient
model which couples a thermoelectrical problem with a mechanical one. The model includes
quadratic heat sources arising from Joule heating.

Articles on the thermal-hydrodynamic problem.

The study of the thermal-hydrodynamic coupling has been considered by many authors in a vast
number of papers. We just mention here some papers dealing with the Boussinesq approximation
that we have found interesting.

The stationary version of the Boussinesq approximation is treated by Boland and Layton in
[26]. The authors prove the existence of solution and its uniqueness under small data, using similar
techniques to the ones appearing in the study of Navier-Stokes equations. Moreover, they prove
there is an open and dense set of sources such that the number of solutions is finite. The paper also
includes the numerical analysis of a finite element method for the discretization of the problem.

Concerning the transient model, existence and uniqueness results for different kinds of solution
related to semigroups theory are presented by Hishida in [60] and Kagei in [63]. The analysis of a
generalized version of Boussinesq approximation can be found in the work by Díaz and Galiano [41].
The authors prove the existence of weak solution, which is seen to be unique in the two-dimensional
case.

We also mention here the work of Díaz, Rakotoson and Schmidt [42], which treats a particular
case of a transient thermal-hydrodynamic problem. The authors assume all physical properties are
constant, except for density in the buoyancy force term, which is considered to be strictly positive
and non-increasing. The authors state an existence result, but the proof is left for a forthcoming
paper.
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Articles on the magnetohydrodynamic problem.

Concerning the magnetohydrodynamic problem, without considering the heat transfer equation,
Gunzburger, Meir and Peterson [55] prove the existence and uniqueness of solution to the steady
state equations under smallness conditions on the data. The paper also includes the numerical
analysis of a finite element method. The result is improved by Alekseev in [2] for the case of a
tangential velocity boundary condition, in which case the smallness of the data is no longer needed.

Meir and Schmidt in [73] deal with a magnetohydrodynamic problem where the electromagnetic
phenomena are considered in the whole space. They propose two different mixed formulations:
the first one in terms of velocity and magnetic induction, and the second one in terms of velocity
and current density, which leads to an integro-differential formulation of the problem.

Several works on the subject have been published by Gerbeau and coauthors. The study of the
time-dependent problem can be seen in [50]. A further review on this subject can also be found
in this book. In [48] they propose a transient model with density dependent parameters. In [49]
they couple the transient hydrodynamic equations with a steady electromagnetic model, and prove
existence and uniqueness for small data and small time interval.

Finally, Rappaz and Touzani analyze in [89] a particular problem, coupling the steady incom-
pressible Navier-Stokes equations with the time harmonic eddy currents model in a particular
two-dimensional setting. The numerical analysis of a numerical method for solving the problem is
done in [90].

Articles on the thermal-magneto-hydrodynamic problem.

As we said before, not many papers are devoted to the mathematical analysis of a fully coupled
thermal-magneto-hydrodynamic problem.

Cimatti in [38] treats the stationary two-dimensional case. He assumes that velocity and
magnetic field have the same direction, which permits him to reduce the problem to a much
simpler formulation.

In [97] Xu and Shillor study a coupled thermal-magneto-hydrodynamic problem with phase
change. In that paper the thermal and hydrodynamic models are written in its transient version,
and the electromagnetic model is described by the equation of electrostatics with temperature
dependent properties. Lorentz’s force is neglected in this model.

In [72] we find the closest problem to the one we will study below. In that paper Meir treats
the stationary problem (1.34)-(1.38), but neglecting viscous heating and Joule heating. Existence
of solution is proved under certain restrictions on the boundary data, and uniqueness is proved
under more stringent conditions. The paper also includes the numerical analysis of a finite element
method for the discretization of the equations.

Finally, Meir and Schmidt propose in [74] the coupling of the mixed velocity-current density
formulation (presented in [73]) with the heat transfer equation, but neglecting viscous and Joule
heating. The authors prove the existence and uniqueness of solution under different smallness
conditions of the source and boundary data.
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2.2 Steady MHD equations using the Boussinesq approximation.

The first problem we analyze arises by considering that the domain is constituted by only one fluid
and that, in system (1.34)-(1.38), all physical properties are independent of temperature except
density in the buoyancy force which is treated using Boussinesq approximation. In this section we
present an existence result, which extends the one proved by Meir in [72] by including L1 sources
in the heat equation, corresponding to viscous and Joule heating.

2.2.1 Equations and non-dimensionalization.

Let Ω ⊂ R3 be either a bounded simply connected domain of class C1,1 or a Lipschitz polyhedron.
Considering that all physical properties are constant in system (1.34)-(1.38) (unless density in the
buoyancy force term, as it is given by Boussinesq approximation), we obtain the following system
of equations which holds in Ω:

1
µσ

curl (curlB)− curl (u×B) = 0, (2.1)

div B = 0, (2.2)

−η0∆u + ρ0(gradu)u + grad p′ − 1
µ

(curlB)×B = f0 − ρ0β0(T − Tr)g, (2.3)

div u = 0, (2.4)

−k0∆T + ρ0cp0u · gradT =
1

σµ2
|curlB|2 +

η0

2

∣∣gradu + gradut
∣∣2 + ψ. (2.5)

The notation is the one used throughout Chapter 1, except for the magnetic induction B which is
now denoted by B. We notice, however, that in this chapter B is not the complex magnitude ap-
pearing in equation (1.14). From this point we will drop the subscript 0 for the physical properties
at the reference temperature.

Let us now introduce some non-dimensional quantities,

Hartmann number Ha = BL
(

σ

η

)1/2

,

interaction parameter N = σB2 L
ρu

,

Reynolds number Re =
ρuL
η

,

magnetic Reynolds number Rm = µσuL,

Prandtl number Pr =
ηcp

k
,

Grashof number Gr =
βg∆T L3

ν2
,

Eckert number Ec =
u2

cp∆T .

where B, u, L and ∆T are typical values of magnetic induction, velocity, length and temperature
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difference, respectively. Moreover, ν = ρ/η is the kinematic viscosity and g = |g| is the magnitude
of gravity acceleration. See further details in [92], [72] and references therein.

We replace the temperature T by the temperature difference with respect to a reference tem-
perature Tr. From now on this difference will be also denoted by T . Then, we normalize equations
as follows: the magnetic induction B by B, the velocity u by u, the (corrected) pressure p by
σuB2L, the body force f0 by σuB2, the temperature difference T by ∆T , and the heat source ψ
by ρcpu∆T /L (see [72] and references therein). After this normalization we arrive at the following
non-dimensionalized system of equations, which holds in Ω:

1
Rm

curl (curlB)− curl (u×B) = 0, (2.6)

div B = 0, (2.7)

− 1
H2

a

∆u +
1
N

(gradu)u + grad p− 1
Rm

(curlB)×B = f0 − Gr

NR2
e

g
g
T, (2.8)

div u = 0, (2.9)

− 1
PrRe

∆T + u · gradT =
Ec

Re

[
H2

a

R2
m

|curlB|2 +
1
2

∣∣gradu + gradut
∣∣2

]
+ ψ. (2.10)

We denote by ∂Ω the boundary of Ω, and by n the unit outward-pointing normal vector to
∂Ω. For the hydrodynamic model we impose a Dirichlet boundary condition,

u|∂Ω = ud , (2.11)

where ud is a given vector function on ∂Ω.

For the electromagnetic model we impose the boundary conditions

(B · n)|∂Ω = l, (2.12)[(
1

Rm
(curlB)− (u×B)

)
× n

]

|∂Ω

= k, (2.13)

where the second equation arises from a condition of the form E × n = k, after an appropriated
non-dimensionalization. We notice that l and k must satisfy some compatibility conditions that
will be detailed below. For the temperature, we also impose a Dirichlet boundary condition:

T|∂Ω = Td. (2.14)

This problem, without the Joule heating and viscous heating terms, has been treated in [72].
The reason to neglect the Joule effect is the difficulty of its mathematical analysis, due to its
quadratic nature. However, in many real applications, the Joule heating is the main heat source,
so its mathematical study cannot be avoided. The treatment of the above system of equations
with quadratic source terms is the main contribution to the theoretical part of this work.

2.2.2 Function spaces.

In Appendix A we introduce most of the spaces and theoretical results that will be used throughout
this work. Nevertheless, some particular spaces and results will be only used in this chapter so we
introduce them in this section.
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First we recall the definition of the space X(Ω) := H(curl; Ω) ∩H(div; Ω), which is equipped
with the norm ‖D‖X := (‖D‖2

0 + ‖curlD‖2
0 + ‖div D‖2

0)
1/2, and its closed subspace X0(Ω) :=

H(curl; Ω)∩H0(div; Ω) for which the seminorm |D|X := (‖curlD‖2
0+‖div D‖2

0)
1/2 is an equivalent

norm to ‖·‖X. We also introduce the space

Y(Ω) := H(curl; Ω) ∩H(div; Ω) ∩ L3(Ω) ,

endowed with the norm

‖D‖Y :=
(
‖curlD‖2

0 + ‖div D‖2
0

)1/2
+ ‖D‖L3 .

For the coupled magnetohydrodynamic problem we need the product spaces

W(Ω) := H1(Ω)×X(Ω),
Y(Ω) := H1(Ω)×Y(Ω),
W0(Ω) := H1

0(Ω)×X0(Ω),
Z(Ω) := Z(Ω)×Y(Ω),
Z0(Ω) := Z0(Ω)×X0(Ω),

equipped with the usual product norms

‖(w,D)‖W :=
(‖w‖2

1 + ‖D‖2
X

)1/2
,

‖(w,D)‖Y :=
(‖w‖2

1 + ‖D‖2
Y

)1/2
.

Due to inequalities (A.8) and (A.10) the expression

|(v,C)|W :=
(
|v|21 + |C|2X

)1/2
,

defines a norm in W0(Ω), equivalent to the product norm ‖·‖W .

Besides the spaces defined above and in Appendix A, we will also need three results to ensure
that our functions have a proper regularity. These results involve the spaces Hδ(∂Ω) and W s,p(Ω),
with δ, s ∈ R. The definition of these spaces is classical, and can be found for instance in [54].

The first result is taken from [4, Th. 4.4]:

Theorem 2.1. Let Ω be a Lipschitz polyhedron. Then, for each δ ∈ (0, 1/2) the space

{C ∈ H(curl; Ω) ∩H(div; Ω) : C · n|∂Ω ∈ Hδ(∂Ω)} = {C ∈ X(Ω) : C · n|∂Ω ∈ Hδ(∂Ω)}

is continuously imbedded in H1/2+ε(Ω) for some ε ∈ (0, 1/2).

The proof of this theorem can be found in the aforementioned paper. The next result that we
need can be found, for instance, in [54, Th. 1.4.3.2]:

Theorem 2.2. Let r > s ≥ 0 and assume that Ω is a bounded open subset of RN with a Lipschitz
boundary. Then Hr(Ω) is compactly imbedded in Hs(Ω).
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Finally, we will also use the Sobolev imbeddings (see equation (1,4,4,5) and Theorem 1.4.3.1
in [54])

Theorem 2.3. Let Ω be a bounded open subset of RN with a Lipschitz boundary, then

W s,p(Ω) ⊂ W t,q(Ω) ,

for t ≤ s and q ≥ p such that s−N/p = t−N/q.

These three theorems allow us to affirm that, for any δ ∈ (0, 1/2)

{C ∈ X(Ω) : C · n|∂Ω ∈ Hδ(∂Ω)} ⊂ H1/2+ε(Ω) ⊂⊂ H1/2(Ω) ⊂ L3(Ω) ,

where ⊂⊂ denotes a compact imbedding, and there exists a constant κ, depending on δ and Ω,
such that

‖D‖L3 ≤ κ(‖D‖X + ‖D · n‖δ,∂Ω) ∀D ∈ {C ∈ X(Ω) : C · n|∂Ω ∈ Hδ(∂Ω)} , (2.15)

where ‖¦‖δ,∂Ω denotes the norm of Hδ(∂Ω).

As an immediate consequence of this result we have that X0(Ω) is compactly imbedded in
L3(Ω), and

‖D‖L3 ≤ κ ‖D‖X ∀D ∈ X0(Ω) . (2.16)

Finally, we remark that in this chapter we will make use of the tangential traces of H(curl; Ω)
as presented in Section A.1.1, along with the spaces defined there.

2.2.3 Compatibility and regularity conditions for source and boundary data.

In this subsection we specify the precise compatibility and regularity conditions for boundary
conditions and given sources, in order to obtain a weak formulation of the problem. First, for the
Navier-Stokes equations we assume

f0 ∈ H−1(Ω), (2.17)

ud ∈ H1/2(∂Ω) with
∫

∂Ω
ud · n dx = 0, (2.18)

the compatibility condition for the boundary data being needed because the velocity field is
divergence-free.

Next, for the electromagnetic data, we have the following conditions

l ∈ Hδ(∂Ω) with
∫

∂Ω
l dx = 0 and 0 < δ < 1/2 , (2.19)

k ∈ H−1/2
‖ (divΓ, ∂Ω) and divΓ k = 0 . (2.20)

The compatibility condition for l is a consequence of B being a divergence-free field. Furthermore,
we impose 0 < δ < 1/2 in order to obtain a magnetic induction field B ∈ L3(Ω). The first
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condition of (2.20) is a direct consequence of the boundary condition (2.13): if we define the non-
dimensionalized electric field E := 1

Rm
curlB− u×B, since we shall require u ∈ H1(Ω) ⊂ L6(Ω)

and B ∈ Y(Ω), we will have that E ∈ L2(Ω). Moreover, from (2.6) we also know that curlE = 0,
so E ∈ H(curl; Ω) and its tangential trace E× n = γτ (E) ∈ H−1/2

‖ (divΓ, ∂Ω). The second one is
a consequence of E being an irrotational field: for any ϕ ∈ H3/2(∂Ω) we consider any extension
ϕ̃ ∈ H2(Ω) such that ϕ̃|∂Ω = ϕ. From the definitions of the tangential divergence and of the
tangential gradient we have

〈divΓ k, ϕ〉∂Ω = −〈k,gradΓ ϕ̃〉∂Ω = −〈k, πτ (grad ϕ̃)〉∂Ω = −〈γτ (E), πτ (grad ϕ̃)〉∂Ω ,

and from Green’s formula (A.17) we conclude that divΓ k = 0, because curlE = 0.

Remark 2.1. If k ∈ H−1/2
‖ (divΓ, ∂Ω) and divΓ k = 0, it also holds that

〈k, πτ (gradψ)〉∂Ω = 0 ∀ψ ∈ H1(Ω) .

To prove this result we first use the definition of the surface divergence, which says that the equality
holds for any ϕ ∈ H2(Ω). Since H2(Ω) is dense in H1(Ω) there exists a sequence {ϕn} ⊂ H2(Ω)
such that ϕn → ψ in H1(Ω). Since the curl of any gradient is null, it holds that gradϕn → gradψ

in H(curl; Ω). As a consequence πτ (gradϕn) → πτ (gradψ) in H−1/2
⊥ (curlΓ , ∂Ω) and the equality

is true for any ψ ∈ H1(Ω).

For the heat transfer equation, the heat source and the boundary data must satisfy

ψ ∈ L1(Ω), Td ∈ H1/2(∂Ω) ∩ L∞(∂Ω). (2.21)

In what follows we are going to consider the thermal-magnetohydrodynamic problem (2.6)-
(2.14) along with the conditions (2.17)-(2.21).

To prove the existence of a solution for our coupled problem, we will first study two subproblems
separately: a pure magnetohydrodynamic problem, where the unknowns are u and B, and the
temperature is supposed to be known, and a thermal problem where the only unknown is the
temperature T . Moreover, during the study of the magnetohydrodynamic problem we will also
introduce a linearized problem, that will further help us. We will show the existence of a unique
solution for each subproblem and introduce bounds for these solutions in the spaces where they
are defined.

2.2.4 Magnetohydrodynamic problem.

This subsection is devoted to the study of the pure magnetohydrodynamic problem, where the
temperature is supposed to be known. We begin by introducing the weak formulation of the
problem and proving that it is equivalent to the strong formulation as partial differential equations
(understood in the sense of distributions), along with boundary conditions. Then we prove some
properties of the forms appearing in the weak formulation and finish analyzing a linearized version
of the problem that will help us to study the coupled problem.
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Weak formulation.

Before presenting the weak formulation of problem (2.6)-(2.14), we introduce some forms that
will allow us to simplify the notation. Let a0 : H1(Ω) ×H1(Ω) → R, a1 : X(Ω) × X(Ω) → R,
c0 : H1(Ω)×H1(Ω)×H1(Ω) → R, c1 : X(Ω)×Y(Ω)×H1(Ω) → R, b : H1(Ω)× L2(Ω) → R, be
given by

a0(u,v) :=
1

H2
a

∫

Ω
gradu : gradv dx ,

a1(B,C) :=
1

R2
m

∫

Ω
[(curlB) · (curlC) + (div B)(div C)] dx,

c0(u,v,w) :=
1
N

∫

Ω
(gradv)u ·w dx ,

c1(B,C,u) :=
1

Rm

∫

Ω
(curlB)×C · u dx ,

b(u, p) := −
∫

Ω
p(div u)dx,

and let F : H1
0(Ω)×X0(Ω) → R be given by

F ((v,C)) := 〈f0,v〉Ω +
1

Rm
〈k, πτ (C)〉∂Ω .

We remark that all the forms are well defined. Firstly, the integrals and duality pairings of the
forms a0(¦, ¦), a1(¦, ¦), and b(¦, ¦) are trivially well defined. The integral appearing in the trilinear
form c0(¦, ¦, ¦) also makes sense due to the Sobolev imbedding H1(Ω) ⊂ L6(Ω). Finally, the integral
in the trilinear form c1(¦, ¦, ¦) is also well defined due to the previous Sobolev imbedding and because
Y(Ω) ⊂ L3(Ω). Besides from being well defined, all the forms can be proved to be continuous in
a standard way.

We will also make use of the mapping G : L6/5(Ω) → H−1(Ω), defined as

G(T ) :=
Gr

NR2
e

g
g
T .

For any v ∈ H1
0(Ω) we have

〈G(T ),v〉Ω =
Gr

NR2
e

∫

Ω
T

g
g
· v dx = (G(T ),v)Ω ,

and the integral is meaningful because of the Sobolev imbedding H1(Ω) ⊂ L6(Ω).

We notice that, in the heat equation, the sources belong to L1(Ω). For the Poisson’s equation
with source in L1(Ω) and homogeneous Dirichlet boundary conditions, a result presented in [94]
states the regularity of the solution in the space W 1,q

0 (Ω) with q < N/(N−1) = 3/2. Thus, for the
heat equation we will require T ∈ W 1,q(Ω) with q < 3/2. In particular, when treating the coupled
problem we will work with T ∈ W 1,6/5(Ω).
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It will also be useful to define the bilinear form a : W(Ω)×W(Ω) → R given by

a((u,B), (v,C)) := a0(u,v) + a1(B,C) ,

which is obviously well defined and continuous. We can now introduce the weak formulation of
the magnetohydrodynamic problem.

Given f0, ud, l and k satisfying (2.17)-(2.20), and T ∈ L6/5(Ω) find

(u,B) ∈ Z(Ω) , (2.22)

satisfying

a((u,B), (v,C)) + c0(u,u,v)− c1(B,B,v) + c1(C,B,u)
= F ((v,C))− (G(T ),v)Ω ∀(v,C) ∈ Z0(Ω), (2.23)

u|∂Ω = ud, (B · n)|∂Ω = l, (2.24)

We now proceed to show that, for any given T ∈ L6/5(Ω), any pair (u,B) satisfying (2.22)-
(2.24) is also a solution of equations (2.6)-(2.9) along with boundary conditions (2.11)-(2.13). To
do that we will make use of the following lemma.

Lemma 2.4. Let B ∈ H(div; Ω) with (B ·n)|∂Ω = l, l satisfying (2.19). Then there exists a unique
scalar function χ ∈ H1(Ω) ∩ L2

0(Ω) such that

{
∆χ = div B ,

(gradχ · n)|∂Ω = 0 .
(2.25)

As a consequence, gradχ ∈ X0(Ω).

Proof. Since B ∈ H(div; Ω), we know that div B ∈ L2(Ω). Moreover, using Gauss’ theorem and
the compatibility condition (2.19) we get div B ∈ L2

0(Ω). Thus, there exists χ ∈ H1(Ω) ∩ L2
0(Ω)

being the unique solution of Neumann problem (2.25) in L2
0(Ω) (see [53, Prop. 1.2]). Furthermore,

since div (gradχ) = div B and curl (gradχ) = 0, and due to the Neumann boundary condition,
gradχ ∈ X0(Ω).

Proposition 2.5. Given T ∈ L6/5(Ω), if (u,B) is a pair satisfying (2.22)-(2.24) then there exists
a unique p ∈ L2

0(Ω) such that ((u,B), p) satisfy (2.6)-(2.9) and boundary conditions (2.11)-(2.13).

Proof. Taking C = 0 in (2.23) we get

1
H2

a

∫

Ω
gradu : gradv dx +

1
N

∫

Ω
(gradu)u · v dx− 1

Rm

∫

Ω
(curlB)×B · v dx

= 〈f0,v〉Ω − Gr

NR2
e

∫

Ω
T

g
g
· v dx ∀v ∈ Z0(Ω) . (2.26)
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The first task is to construct the pressure p. To do that let us introduce the linear form l ∈ H−1(Ω)
defined as

〈l,v〉Ω :=
1

H2
a

∫

Ω
gradu : gradv dx +

1
N

∫

Ω
(gradu)u · v dx− 1

Rm

∫

Ω
(curlB)×B · v dx

−〈f0,v〉Ω +
Gr

NR2
e

∫

Ω
T

g
g
· v dx ∀v ∈ H1

0(Ω) .

Since f0, G(T ) ∈ H−1(Ω) and the forms a0(¦, ¦), c0(¦, ¦, ¦) and c1(¦, ¦, ¦) are continuous, we have
l ∈ H−1(Ω). Now, as 〈l,v〉Ω = 0 ∀v ∈ Z0(Ω), we know (see [53, Lemma 2.1]) there exists a
unique p ∈ L2

0(Ω) such that
l = −grad p in H−1(Ω) ,

which is equivalent to say that

〈l,v〉Ω = −〈grad p,v〉Ω =
∫

Ω
p(div v) dx ∀v ∈ H1

0(Ω) .

Thus we also have

1
H2

a

∫

Ω
gradu : gradv dx +

1
N

∫

Ω
(gradu)u · v dx− 1

Rm

∫

Ω
(curlB)×B · v dx

−
∫

Ω
p(div v) dx = 〈f0,v〉Ω − Gr

NR2
e

∫

Ω
T

g
g
· v dx ∀v ∈ H1

0(Ω) .

Since the equation is valid for any test function v ∈ H1
0(Ω), it can also be written as

− 1
H2

a

〈∆u,v〉Ω +
1
N

∫

Ω
(gradu)u · v dx− 1

Rm

∫

Ω
(curlB)×B · v dx + 〈grad p,v〉Ω

= 〈f0,v〉Ω − Gr

NR2
e

∫

Ω
T

g
g
· v dx ∀v ∈ H1

0(Ω) .

Hence equation (2.8) is satisfied in H−1(Ω).

Now setting v = 0 in (2.23) we have

1
R2

m

∫

Ω
[(curlB) · (curlC) + (div B)(div C)] dx +

1
Rm

∫

Ω
(curlC)×B · u dx

=
1

Rm
〈k, πτ (C)〉∂Ω ∀C ∈ X0(Ω) . (2.27)

As B ∈ Y(Ω) ⊂ H(div; Ω) and (B · n)|∂Ω = l we are in the hypotheses of Lemma 2.4, so we can
take C = gradχ to obtain

1
R2

m

∫

Ω
(div B)(div B) dx =

1
R2

m

∫

Ω
(div B)(div gradχ) dx =

1
Rm

〈k,gradχ|∂Ω〉∂Ω , (2.28)

and since k ∈ H−1/2
‖ (divΓ, ∂Ω) and divΓ k = 0, from Remark 2.1 we can affirm that

∫

Ω
(div B)2 dx = 0 ,
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so that
div B = 0 a.e. in Ω , (2.29)

and equation (2.7) holds. Incorporating (2.29) into (2.27) and using that (curlC) × B · u =
−(u×B) · (curlC) we get

1
R2

m

∫

Ω
(curlB) · (curlC) dx− 1

Rm

∫

Ω
(u×B) · (curlC) dx

=
1

Rm
〈k, πτ (C)〉∂Ω ∀C ∈ X0(Ω) . (2.30)

Since H1
0(Ω) ⊂ X0(Ω) we also have

1
R2

m

〈curl (curlB),C〉Ω −
1

Rm
〈curl (u×B),C〉Ω = 0 ∀C ∈ H1

0(Ω) ,

that is
1

R2
m

curl (curlB)− 1
Rm

curl (u×B) = 0 in H−1(Ω) , (2.31)

and equation (2.6) holds. Incorporating this result into (2.30), we obtain

1
R2

m

∫

Ω
(curlB) · (curlC) dx− 1

Rm

∫

Ω
(u×B) · (curlC) dx

−
∫

Ω

(
1

R2
m

curl (curlB)− 1
Rm

curl (u×B)
)
·C dx =

1
Rm

〈k, πτ (C)〉∂Ω ∀C ∈ X0(Ω) .

If we define the electric field by E := 1
Rm

curlB−u×B we know that E ∈ L2(Ω) and, from equation

(2.31), we know that curlE = 0, so E ∈ H(curl; Ω) and E × n|∂Ω = γτ (E) ∈ H−1/2
‖ (divΓ, ∂Ω).

Using Green’s formula (A.17), from the previous equation we get

1
Rm

〈γτ (E), πτ (C)〉∂Ω =
1

Rm
〈k, πτ (C)〉∂Ω ∀C ∈ X0(Ω) , (2.32)

and from Lemma A.1 it follows that k = γτ (E) in H−1/2
‖ (divΓ, ∂Ω).

Finally, the equation of conservation of mass (2.9) and the boundary conditions (2.11) and
(2.12) are trivially satisfied.

Remark 2.2. The inverse result can also be proved. Assume that we have T ∈ L6/5(Ω), (u,B) ∈
Y(Ω) and p ∈ L2

0(Ω) satisfying (2.6)-(2.9), along with boundary conditions (2.11)-(2.13) and
compatibility conditions (2.17)-(2.20). Since equation (2.8) is valid in a distributional sense and all
its terms belong to H−1(Ω), it is also valid in H−1(Ω), so multiplying by a test function v ∈ Z0(Ω)
we obtain (2.26). Moreover, multiplying equation (2.6) by C ∈ X0(Ω), and using Green’s formula
(A.17), boundary condition (2.13) and equation (2.7) we get (2.27). Summing up the two equations
we obtain (2.23). Finally, since (u,B) ∈ Y(Ω) and u satisfies (2.9), then (u,B) ∈ Z(Ω).
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Reduction to homogeneous boundary conditions.

What we will do now is to split the unknowns into two parts, the first one satisfying the inhomo-
geneous boundary conditions, and the second one satisfying homogeneous boundary conditions.

If the domain Ω is a Lipschitz polyhedron, supposing that the boundary conditions ud and l
satisfy equations (2.18) and (2.19), respectively, there exist extensions u0 ∈ H1(Ω) and B0 ∈ Y0(Ω)
satisfying

u0|∂Ω = ud with div u0 = 0 and ‖u0‖1 ≤ Λ1 ‖ud‖1/2,∂Ω , (2.33)
(B0 · n)|∂Ω = l with div B0 = 0, curlB0 = 0 and ‖B0‖L3 ≤ Λ2 ‖l‖δ,∂Ω , (2.34)

where Λ1 and Λ2 are two constants that depend on Ω.

The construction of u0 is well known and can be found, for instance, in [55] or [53]. The
construction of B0 is the same as in [55] and is based on the solution of Neumann problem

{ −∆χ = 0 ,
(gradχ · n)|∂Ω = l .

Due to the compatibility condition (2.19) this problem has a unique solution χ ∈ H1(Ω) ∩ L2
0(Ω).

Taking B0 = gradχ it is clear that div B0 = 0 and curlB0 = 0, hence B0 ∈ X(Ω). Moreover,
(B0 · n)|∂Ω = l ∈ Hδ(Ω) and ‖B0‖X = ‖B0‖0 ≤ κ1 ‖l‖−1/2,∂Ω. As a consequence of Theorems 2.1,
2.2 and 2.3 we know that B0 ∈ Y(Ω) and taking into account that B0 is irrotational and divergence-
free we have ‖B0‖Y = ‖B0‖L3 ≤ κ(‖B0‖X +‖B0 · n‖δ,∂Ω) ≤ κ(κ1 ‖l‖−1/2,∂Ω +‖l‖δ,∂Ω) ≤ κ(κ1κ2 +
1) ‖l‖δ,∂Ω = Λ2 ‖l‖δ,∂Ω where κ is the constant introduced in (2.15) and κ2 is the constant of the
imbedding Hδ(∂Ω) ⊂ H−1/2(∂Ω). Both κ and κ2 depend on δ and Ω, and κ1 depends on Ω.

Remark 2.3. In the case of Ω being of class C1,1 we can require the compatibility condition l ∈
H1/2(∂Ω). The construction of B0 is analogous to that presented before, but in this case the field
χ is known to be in H2(Ω). Therefore, B0 ∈ H1(Ω) and we can find an estimate of the form
‖B0‖1 ≤ Λ̂2 ‖l‖1/2,∂Ω.

Once we have constructed these fields we can split the unknowns in the following way: u =
û + u0, with û ∈ Z0(Ω) and B = B̂ + B0 with B̂ ∈ X0(Ω). Using these splittings we can rewrite
problem (2.22)-(2.24) as follows:

Given u0 ∈ Z(Ω), B0 ∈ Y(Ω) satisfying (2.33)-(2.34), and T ∈ L6/5(Ω) find

(û, B̂) ∈ Z0(Ω) (2.35)

such that

a((û, B̂), (v,C)) + c0(û, û,v) + c0(û,u0,v) + c0(u0, û,v)
−c1(B̂, B̂,v)− c1(B̂,B0,v) + c1(C, B̂, û) + c1(C, B̂,u0) + c1(C,B0, û)

= F ((v,C))− (G(T ),v)Ω − a0(u0,v)− c0(u0,u0,v)− c1(C,B0,u0) ∀ (v,C) ∈ Z0(Ω) . (2.36)

We notice that, sinceX0(Ω) ⊂ Y(Ω) all the terms concerning the trilinear form c1(·, ·, ·) make sense.
It is easily seen that (û, B̂) is a solution of (2.35)-(2.36) if and only if (u,B) = (û, B̂) + (u0,B0)
is a solution of problem (2.22)-(2.24).
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Continuity and coerciveness properties.

Next we state some results about the properties of the forms appearing in our problem, which will
be needed to prove the existence result.

Lemma 2.6. The linear form F (¦), the bilinear forms a0(¦, ¦), a1(¦, ¦) and the trilinear forms
c0(¦, ¦, ¦) and c1(¦, ¦, ¦) are continuous in the spaces where they have been defined.

Proof. Most of the inequalities can be proved in a standard way as it is done in [2] and [55],
but we reproduce them here in detail because the continuity constants will be important in the
forthcoming results. The following inequalities are straightly obtained from the definitions of the
forms:

|a0(u,v)| ≤ 1
H2

a

|u|1 |v|1 ≤
1

H2
a

‖u‖1 ‖v‖1 ,

which holds for all u, v ∈ H1(Ω);

|a1(B,C)| ≤ 1
R2

m

(‖curlB‖0 ‖curlC‖0 + ‖div B‖0 ‖div C‖0) ≤
1

R2
m

|B|X |C|X ≤ 1
R2

m

‖B‖X ‖C‖X ,

which holds for all B, C ∈ X(Ω);

|c0(u,v,w)| ≤ 1
N
‖u‖L4 |v|1 ‖w‖L4 ≤ γ4

N
‖u‖L4 |v|1 ‖w‖1 ≤

γ2
4

N
‖u‖1 |v|1 ‖w‖1 ≤

γ2
4

N
‖u‖1 ‖v‖1 ‖w‖1 ,

which holds for all u,v,w ∈ H1(Ω), with γ4 being the constant of the Sobolev imbedding H1(Ω) ⊂
L4(Ω);

|c1(B,C,u)| ≤ 1
Rm

‖curlB‖0 ‖C‖L3 ‖u‖L6 ≤ 1
Rm

|B|X ‖C‖L3 ‖u‖L6 ≤ γ6

Rm
|B|X ‖C‖L3 ‖u‖1

≤ γ6

Rm
‖B‖X ‖C‖L3 ‖u‖1 ≤

γ6

Rm
‖B‖X ‖C‖Y ‖u‖1 ,

which holds for all B ∈ X(Ω), C ∈ Y(Ω) and u ∈ H1(Ω);

|F ((v,C))| ≤ ‖f0‖−1 ‖v‖1 +
1

Rm
‖k‖

H
−1/2
‖ (divΓ,∂Ω)

‖πτ (C)‖
H
−1/2
⊥ (curlΓ,∂Ω)

≤ ‖f0‖−1 ‖v‖1 +
1

Rm
‖k‖

H
−1/2
‖ (divΓ,∂Ω)

‖πτ‖L(H(curl;Ω),H
−1/2
⊥ (curlΓ,∂Ω))

‖C‖X

≤ C0 ‖f0‖−1 |v|1 +
C1

Rm
‖k‖

H
−1/2
‖ (divΓ,∂Ω)

‖πτ‖L(H(curl;Ω),H
−1/2
⊥ (curlΓ,∂Ω))

|C|X

≤
(

C2
0 ‖f0‖2

−1 +
C2

1

R2
m

‖k‖2

H
−1/2
‖ (divΓ,∂Ω)

‖πτ‖2

L(H(curl;Ω),H
−1/2
⊥ (curlΓ,∂Ω))

)1/2

|(v,C)|W ,

which holds for all (v,C) ∈ W0(Ω), with C0 and C1 the constants appearing in the inequalities
(A.8) and (A.10), respectively.
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Remark 2.4. In the case where Ω is C1,1 the boundary data k belongs to the space H−1/2
T (∂Ω)

and the continuity constant for the linear form F (¦) can be written in the following form:

|F ((v,C))| ≤ ‖f0‖−1 ‖v‖1 +
1

Rm
‖k‖

H
−1/2
T (∂Ω)

‖C‖1

≤
(

C2
0 ‖f0‖2

−1 +
C2

2

R2
m

‖k‖2

H
−1/2
T (∂Ω)

)1/2

|(v,C)|W ,

where C2 is the constant appearing in (A.11).

From the continuity of a0(¦, ¦) and a1(¦, ¦) it can be easily proved that the bilinear form a(¦, ¦)
is also continuous, and

|a((u,B), (v,C))| ≤ λa ‖(u,B)‖W ‖(v,C)‖W ∀(u,B), (v,C) ∈ W(Ω) ,

with λa := max{1/H2
a , 1/R2

m}. Finally, the following result will also be helpful:

|(G(T ),v)Ω| ≤ Gr

NR2
e

‖T‖L6/5 ‖v‖L6 ≤ Grγ6

NR2
e

‖T‖L6/5 ‖v‖1 ≤ C0
Grγ6

NR2
e

‖T‖L6/5 |v|1 ,

which holds for all T ∈ L6/5(Ω) and v ∈ H1
0(Ω).

For the sake of simplicity, in what follows we will use the notations λa0 := 1/H2
a , λa1 := 1/R2

m,
λc0 := 1/N , λc1 := 1/Rm and λG := C0Grγ6/(NR2

e). Furthermore, we shall denote λF :=(
C2

0 ‖f0‖2
−1 + (C2

1/R2
m) ‖k‖2

H
−1/2
‖ (divΓ,∂Ω)

‖πτ‖2

L(H(curl;Ω),H
−1/2
⊥ (curlΓ,∂Ω))

)1/2

in the case where Ω is

a Lipschitz polyhedron and λF :=
(

C2
0 ‖f0‖2

−1 + (C2
2/R2

m) ‖k‖2

H
−1/2
T (∂Ω)

)1/2

in the case where Ω

is a smooth domain.

Lemma 2.7. The bilinear forms a0(¦, ¦) and a1(¦, ¦) are coercive on H1
0(Ω) and X0(Ω), respectively.

As a consequence, the bilinear form a(¦, ¦) is coercive on W0(Ω).

Proof. For any û ∈ H1
0(Ω) we have

a0(û, û) =
1

H2
a

∫

Ω
|grad û|2 dx ≥ 1

H2
a

‖grad û‖2
0 =

1
H2

a

|û|21 ,

and, for any B̂ ∈ X0(Ω),

a1(B̂, B̂) =
1

R2
m

∫

Ω
(|curl B̂|2 + |div B̂|2) dx ≥ 1

R2
m

(
‖curl B̂‖2

0 + ‖div B̂‖2

0

)
=

1
R2

m

|B̂|2X .

Therefore, for any (û, B̂) ∈ W0(Ω) we have:

a((û, B̂), (û, B̂)) ≥ 1
H2

a

|û|21 +
1

R2
m

|B̂|2X ≥ min
{

1
H2

a

,
1

R2
m

}
|(û, B̂)|2W .
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Analogously to what we did with the continuity constants, we denote the coerciveness constants
by αa0 := 1/H2

a , αa1 := 1/R2
m and αa := min

{
1/H2

a , 1/R2
m

}
.

Lemma 2.8. Let u ∈ Z(Ω), v,w ∈ H1(Ω) and assume that one of the functions u,v,w belongs
to H1

0(Ω). Then the trilinear form c0(¦, ¦, ¦) is antisymmetric with respect to its second and third
arguments, i.e.,

c0(u,v,w) = −c0(u,w,v). (2.37)

Proof. The result is well known and a proof can be found in [55]. It relies on the fact that u is
divergence-free and uses a Green’s formula to state the result.

Remark 2.5. Under the assumptions of the previous lemma and, in particular, for any v ∈ H1
0(Ω),

we also have

c0(u,v,v) = 0. (2.38)

Linearized MHD problem.

We introduce now a linearized version of the MHD problem that will be helpful to prove the
existence of solution for the coupled problem via a fixed point theorem. The linearized problem
reads:

Given (ŵ, D̂) ∈ Z0(Ω), T ∈ L6/5(Ω) and (u0,B0) ∈ Z(Ω) with curlB0 = 0, find

(û, B̂) ∈ Z0(Ω) (2.39)

such that

a((û, B̂), (v,C)) + c0(ŵ, û,v) + c0(u0, û,v)− c1(B̂, D̂,v)− c1(B̂,B0,v)
+c1(C, D̂, û) + c1(C,B0, û) = F ((v,C))− (G(T ),v)Ω − a0(u0,v)

−c0(ŵ,u0,v)− c0(u0,u0,v)− c1(C,B0,u0)− c1(C, D̂,u0) ∀ (v,C) ∈ Z0(Ω) . (2.40)

Proposition 2.9. There exists a unique solution (û, B̂) to problem (2.39)-(2.40). Moreover,

|(û, B̂)|W ≤ 1
αa

(
λF + λG ‖T‖L6/5 + λa0 |u0|1 + λc0 ‖u0‖2

L4 + λc1 ‖B0‖L3 ‖u0‖L6

+ max
{

λ̃c0 ‖u0‖L4 , λ̃c1 ‖u0‖L6

}
|(ŵ, D̂)|W

)
,

where αa, λF , λG, λa0, λc0 and λc1 are the constants introduced above, λ̃c0 := γ4C0/N and λ̃c1 :=
κC1/Rm.

Proof. The result is a consequence of the continuity, coerciveness and antisymmetry properties
proved before. Since (u0,B0), (ŵ, D̂) and T are given, we can define the bilinear form

ã((u,B), (v,C)) := a((u,B), (v,C)) + c0(ŵ,u,v) + c0(u0,u,v)
−c1(B, D̂,v)− c1(B,B0,v) + c1(C, D̂,u) + c1(C,B0,u),
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and the linear form

F̃ ((v,C)) := F ((v,C))− (G(T ),v)Ω − a0(u0,v)
−c0(ŵ,u0,v)− c0(u0,u0,v)− c1(C,B0,u0)− c1(C, D̂,u0),

which act on Z0(Ω)×Z0(Ω) and on Z0(Ω), respectively.

Due to the continuity results proved in Lemma 2.6, it is clear that both ã and F̃ are continuous.
Moreover, since we are in the hypotheses of Lemma 2.8, and due to the coerciveness of a(¦, ¦) proved
in Lemma 2.7, the bilinear form ã(¦, ¦) is coercive. Hence, reminding the antisymmetry property
of c0(¦, ¦, ¦), the result is obtained by applying Lax-Milgram lemma. The bound for |(û, B̂)|W is
obtained from the continuity and coerciveness results mentioned before, and taking into account
that

| − c0(ŵ,u0, û)− c1(B̂, D̂,u0)| = |c0(ŵ, û,u0)− c1(B̂, D̂,u0)|
=

∣∣∣∣
1
N

∫

Ω
(grad û)ŵ · u0 dx− 1

Rm

∫

Ω
(curl B̂)× D̂ · u0 dx

∣∣∣∣

≤ 1
N
‖ŵ‖L4 |û|1 ‖u0‖L4 +

1
Rm

|B̂|X ‖D̂‖L3 ‖u0‖L6

≤ γ4C0

N
|ŵ|1 |û|1 ‖u0‖L4 +

κC1

Rm
|B̂|X |D̂|X ‖u0‖L6

≤ max
{

γ4C0

N
‖u0‖L4 ,

κC1

Rm
‖u0‖L6

}
|(ŵ, D̂)|W |(û, B̂)|W . (2.41)

Definition 2.1. Let us define the mapping

G1 : Z0(Ω)× L6/5(Ω) −→ Z0(Ω)
((ŵ, D̂), T ) 7−→ G1((ŵ, D̂), T ) = (û, B̂), (2.42)

where (û, B̂) is the solution of the MHD linearized problem (2.39)-(2.40) for a given pair (ŵ, D̂) ∈
Z0(Ω) and a given temperature T ∈ L6/5(Ω).

Lemma 2.10. Let (ŵn, D̂n) ⇀ (ŵ, D̂) weakly in Z0(Ω) and Tn → T strongly in L6/5(Ω). Then
G1((ŵn, D̂n), Tn) → G1((ŵ, D̂), T ) strongly in Z0(Ω).

Proof. Let us denote (ûn, B̂n) = G1((ŵn, D̂n), Tn) and (û, B̂) = G1((ŵ, D̂), T ). Writing equation
(2.40) of the MHD linearized problem for both solutions, and then subtracting the two equations
we have

a((ûn, B̂n)− (û, B̂), (v,C)) + c0(ŵn, ûn,v)− c0(ŵ, û,v) + c0(u0, ûn − û,v)− c1(B̂n, D̂n,v)
+c1(B̂, D̂,v)− c1(B̂n − B̂,B0,v) + c1(C, D̂n, ûn)− c1(C, D̂, û) + c1(C,B0, ûn − û)

= −(G(Tn − T ),v)Ω − c0(ŵn − ŵ,u0,v)− c1(C, D̂n − D̂,u0) ∀(v,C) ∈ Z0(Ω) .
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Now, by adding and subtracting the terms c0(ŵn, û,v), c1(B̂, D̂n,v) and c1(C, D̂n, û) the equation
reads as follows

a((ûn, B̂n)− (û, B̂), (v,C)) + c0(ŵn, ûn − û,v) + c0(ŵn − ŵ, û,v)
+c0(u0, ûn − û,v)− c1(B̂n − B̂, D̂n,v)− c1(B̂, D̂n − D̂,v)− c1(B̂n − B̂,B0,v)

+c1(C, D̂n, ûn − û) + c1(C, D̂n − D̂, û) + c1(C,B0, ûn − û)
= −(G(Tn − T ),v)Ω − c0(ŵn − ŵ,u0,v)− c1(C, D̂n − D̂,u0) ∀(v,C) ∈ Z0(Ω) .

If we choose as test function (v,C) = (ûn, B̂n)− (û, B̂), and take into account the antisymmetry
result stated in Lemma 2.8, we get

a((ûn, B̂n)− (û, B̂), (ûn, B̂n)− (û, B̂)) + c0(ŵn − ŵ, û, ûn − û)
−c1(B̂, D̂n − D̂, ûn − û) + c1(B̂n − B̂, D̂n − D̂, û)

= −(G(Tn − T ), ûn − û)Ω − c0(ŵn − ŵ,u0, ûn − û)− c1(B̂n − B̂, D̂n − D̂,u0) .

Then, using the coerciveness of a(¦, ¦), the continuity results for c0(¦, ¦, ¦), c1(¦, ¦, ¦) and the antisym-
metry property for c0(¦, ¦, ¦) we obtain

αa|(ûn, B̂n)− (û, B̂)|W ≤ λG ‖Tn − T‖L6/5 + λc0 ‖ŵn − ŵ‖L4 ‖û‖L4 + λc0 ‖ŵn − ŵ‖L4 ‖u0‖L4

+γ6λc1C0 |B̂|X ‖D̂n − D̂‖L3 + λc1‖D̂n − D̂‖L3 ‖û‖L6 + λc1‖D̂n − D̂‖L3 ‖u0‖L6 .

Due to the compact imbeddings H1(Ω) ⊂⊂ L4(Ω) and X0(Ω) ⊂⊂ L3(Ω), already introduced in
Section 2.2.2, and since (ŵn, D̂n) ⇀ (ŵ, D̂) in Z0(Ω) = Z0(Ω)×X0(Ω), we know that ŵn → ŵ and
D̂n → D̂ strongly in L4(Ω) and L3(Ω), respectively. Thus, considering also the strong convergence
Tn → T in L6/5(Ω), we obtain from the previous inequality |(ûn, B̂n)− (û, B̂)|W → 0, and due to
the equivalence of this seminorm to the usual norm in W0(Ω) the result follows.

We have proved the existence and uniqueness of the solution to the linearized MHD problem.
Moreover, we have proved, in the preceding lemma, that the mapping G1 is sequentially continuous
from Z0(Ω) − weak × L6/5(Ω) − strong into Z0(Ω) − strong. This property will be necessary to
prove the existence of solution for the coupled problem. In the next subsection we analyze the
thermal subproblem.

2.2.5 The thermal problem.

As we mentioned before, the main difficulty in the thermal problem are the quadratic source terms,
which belong to L1(Ω). For the treatment of this problem, we will make use of the concept of
solution by transposition, as studied by Stampacchia in [94]. For the ease of reading we will write
some of the results from that paper in the general case Ω ⊂ RN , with N ≥ 3, but we recall
that in our problem we are considering N = 3. Moreover, throughout this section we will seek a
temperature T ∈ W 1,q(Ω), with q < N/(N − 1), even if for the coupled problem we always work
with T ∈ W 1,6/5(Ω).

First of all, let us remind the equations of the thermal problem.
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Given (u,B) ∈ Z(Ω), and Td and ψ satisfying (2.21) find T such that

1
PrRe

∆T + u · gradT =
Ec

Re

[
H2

a

R2
m

|curlB|2 +
1
2

∣∣gradu + gradut
∣∣2

]
+ ψ , (2.43)

T|∂Ω = Td . (2.44)

Since u ∈ Z(Ω) and B ∈ X(Ω), from the definition of these spaces we know that gradu ∈
L2(Ω)3×3 and curlB ∈ L2(Ω) so that all the source terms in equation (2.43) belong to L1(Ω). Let
us consider the following problem, for any given source in L1(Ω):

Given u ∈ Z(Ω), f ∈ L1(Ω) and Td ∈ H1/2(∂Ω) ∩ L∞(∂Ω), find T satisfying



− 1

PrRe
∆T + u · gradT = f,

T|∂Ω = Td .
(2.45)

In our case f will be the sum of Joule heating, viscous heating and the given heat source ψ. We
notice that we have not made precise the functional space to which T belongs. We will seek our
solution T in W 1,q(Ω), 1 ≤ q < N/(N−1), as it is done in [94], but since in that paper the problem
was treated with homogeneous boundary conditions, we will first split the problem into two ones:
the first one with homogeneous boundary conditions and sources in L1(Ω), and the second one
with non-homogeneous boundary conditions and null sources, namely

T = T1 + T2, (2.46)

where T1 satisfies 


− 1

PrRe
∆T1 + u · gradT1 = f,

T1|∂Ω = 0,
(2.47)

and T2 is solution to 



T2 ∈ H1(Ω),

− 1
PrRe

∆T2 + u · gradT2 = 0,

T2|∂Ω = Td .

(2.48)

The analysis of problem (2.47) is based on the theory of solution by transposition (see [94]).
Instead, the mathematical analysis of problem (2.48) is standard. We will begin by presenting the
results for this second problem, and then we will show the results for problem (2.47).

Analysis of the thermal subproblem with inhomogeneous boundary conditions.

Let us introduce the forms e : H1(Ω)×H1(Ω) → R and d : H1(Ω)×H1(Ω)×H1(Ω) → R, defined
as

e(T, z) :=
1

PrRe

∫

Ω
gradT · grad z dx,

d(u, T, z) :=
∫

Ω
u · gradT z dx,
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where the integral appearing in d(¦, ¦, ¦) is well defined due to the imbeddings H1(Ω) ⊂ L6(Ω) and
H1(Ω) ⊂ L6(Ω). These two forms satisfy the following properties.

Lemma 2.11. The bilinear form e(¦, ¦) and the trilinear form d(¦, ¦, ¦) are continuous. Moreover

|e(T, z)| ≤ 1
PrRe

‖gradT‖0 ‖grad z‖0 =
1

PrRe
|T |1 |z|1 ≤

1
PrRe

‖T‖1 ‖z‖1 ,

|d(u, T, z)| ≤ ‖u‖L4 ‖gradT‖0 ‖z‖L4 ≤ γ2
4 ‖u‖1 |T |1 ‖z‖1 ≤ γ2

4 ‖u‖1 ‖T‖1 ‖z‖1 ,

and
|d(u, T, z)| ≤ ‖u‖L6 ‖gradT‖0 ‖z‖L3 ≤ meas(Ω)1/3 ‖u‖L6 |T |1 ‖z‖L∞ .

Lemma 2.12. The bilinear form e(¦, ¦) is coercive on H1
0 (Ω). More precisely,

e(T, T ) =
1

PrRe
‖gradT‖2

0 =
1

PrRe
|T |21 .

Lemma 2.13. Let u ∈ Z(Ω) and assume that either u ∈ H1
0(Ω) or one of the functions T or

z belongs to H1
0 (Ω). Then the trilinear form d(¦, ¦, ¦) is antisymmetric with respect to its last two

arguments, i.e.
d(u, T, z) = −d(u, z, T ) .

As a consequence, under the same hypotheses we have

d(u, T, T ) = 0 .

The proof of these three lemmas is straightforward from the definition of the forms. In order to
simplify the notation we denote λe := 1/(PrRe), λd := γ2

4 , λ̃d := meas(Ω)1/3 and αe := 1/(PrRe).

Now, as we did in the MHD problem, we construct a field that satisfies the inhomogeneous
boundary condition and that will allow us to rewrite the problem with homogeneous boundary
conditions. Since Td ∈ H1/2(∂Ω), it is known that there exists T0 ∈ H1(Ω) such that

T0|∂Ω = Td with ‖T0‖1 ≤ Λ3 ‖Td‖1/2,∂Ω , (2.49)

with Λ3 a constant depending on the domain Ω.

We can now take T2 = T̂2 + T0 and write problem (2.48) in the form
{

T̂2 ∈ H1
0 (Ω),

e(T̂2, z) + d(u, T̂2, z) = −e(T0, z)− d(u, T0, z) ∀z ∈ H1
0 (Ω).

(2.50)

With the three lemmas introduced above we can prove the existence of a unique solution to this
problem, in the following:

Proposition 2.14. There exists a unique solution T̂2 to problem (2.50). Moreover, the following
inequality holds

|T̂2|1 = ‖grad T̂2‖0 ≤
1
αe

(λe + λd ‖u‖1) ‖T0‖1 . (2.51)
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Proof. The result is a consequence of the continuity of d(¦, ¦, ¦) and e(¦, ¦), the inequalities appearing
in Lemma 2.11, the coerciveness of e(¦, ¦) proved in Lemma 2.12, and the antisymmetry property
for d(¦, ¦, ¦) stated in Lemma 2.13. With all these properties, the result is obtained just by applying
Lax-Milgram lemma.

As an immediate consequence of the previous proposition we obtain that there exists a unique
solution of problem (2.48). Moreover, due to Poincaré inequality, we have the following estimate

‖T2‖1 ≤
[
C0

αe
(λe + λd ‖u‖1) + 1

]
‖T0‖1 , (2.52)

where C0 is the constant appearing in inequality (A.7).

Another bound for T2 can be stated when the given boundary data Td is essentially bounded.

Proposition 2.15. If Td ∈ H1/2(∂Ω)∩L∞(∂Ω) and T0|∂Ω = Td, the solution T2 to problem (2.48)
satisfies

‖T2‖L∞(Ω) ≤ ‖Td‖L∞(∂Ω) . (2.53)

Proof. The result is a consequence of Theorems 3.6 and 3.7 in [94].

Definition 2.2. Let us now introduce the following mapping:

GD : Z(Ω) −→ H1(Ω)
u 7−→ GD(u) := T2 = T̂2 + T0 , (2.54)

T2 and T̂2 being the solutions of problems (2.48) and (2.50), respectively, for the velocity field u.

Lemma 2.16. The mapping GD is continuous.

Proof. Let un → u strongly in Z(Ω), we denote T̂2,n = GD(un) − T0 and T̂2 = GD(u) − T0. We
can write the equation of problem (2.50) for un, T̂2,n and for u, T̂2. Subtracting the two equations,
and adding and subtracting the term d(u, T̂2,n, z) we get,

e(T̂2,n − T̂2, z) + d(un − u, T̂2,n, z) + d(u, T̂2,n − T̂2, z) = −d(un − u, T0, z).

Taking z = T̂2,n − T̂2 as test function, and reminding the coerciveness property for e(¦, ¦), and the
continuity and antisymmetry properties for d(¦, ¦, ¦), we have

αe |T̂2,n − T̂2|1 ≤ λd

(
‖un − u‖1 ‖T̂2,n‖1 + ‖un − u‖1 ‖T0‖1

)
.

Since T̂2,n is bounded in H1(Ω) and un → u strongly in H1(Ω), the result holds.
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Analysis of the thermal subproblem with L1 source and homogeneous boundary con-
ditions.

For the mathematical analysis of (2.47), we shall make use of some of the results proved in [94],
which are summarized in Appendix B. First, let us write the problem in a more convenient way
to apply the theory of solution by transposition. Given the velocity u ∈ Z(Ω) ∩ LN (Ω) we define
the operator Lu by

LuT = − 1
PrRe

∆T + u · gradT, (2.55)

which is of the form (B.1), with A(x) = − 1
PrRe

I, I being the identity matrix, b(x) = u, d(x) = 0
and c(x) = 0. Thus, the assumptions (B.2)-(B.5) hold true.

Using this notation, the thermal subproblem with L1 source consists on finding T1 such that
{

LuT1 = f,

T1|∂Ω = 0.
(2.56)

We will prove the existence of a unique solution to this problem by transposition. First, we notice
that Lu, when considered as an operator from H1

0 (Ω) into H−1(Ω), is associated to the bilinear
form

au(T, z) :=
1

PrRe

∫

Ω
gradT · grad z dx +

∫

Ω
u · gradT z dx = e(T, z) + d(u, T, z). (2.57)

We can also define L∗u : H1
0 (Ω) −→ H−1(Ω) the adjoint operator of Lu, which is given by

L∗uT = − 1
PrRe

∆T − div (uT ) = − 1
PrRe

∆T − u · gradT, (2.58)

where the equality holds due to u being divergence free. In view of this last equation, it is clear that
L∗u = L−u. Moreover, the operator L∗u is associated to the bilinear form a∗(u, v) := au(v, u). As it
is explained in Appendix B, we can construct the Green operator G∗ = G−u : H−1(Ω) −→ H1

0 (Ω)
such that, for any g ∈ H−1(Ω), G−ug = w, where w is the unique solution to the problem

{
w ∈ H1

0 (Ω),
au(v, w) = 〈g, v〉H−1,H1

0
∀v ∈ H1

0 (Ω). (2.59)

In order to define the solution to problem (2.56) by transposition, we must check that our
operator Lu satisfies conditions (B.13) and (B.14). Since c = 0 and div b = div u = 0, condition
(B.13) is clearly satisfied. Moreover, for a given velocity u ∈ H1(Ω), the coerciveness of the bilinear
operator au(¦, ¦) is a consequence of the coerciveness of e(¦, ¦) on H1

0 (Ω), proved in Lemma 2.7, and
the antisymmetry property of d(¦, ¦, ¦) stated in Lemma 2.8.

The solution to problem (2.56) by transposition is defined as T1 = Gt−uf , where Gt−u is the
adjoint operator of G−u, and it is the unique solution of





T1 ∈ W 1,q
0 (Ω), 1 < q < N

N−1 ,∫

Ω
T1ϕ dx =

∫

Ω
f(G−uϕ) dx ∀ϕ ∈ D(Ω) .

(2.60)



2.2. Steady MHD equations using the Boussinesq approximation. 33

This problem is equivalent to




T1 ∈ W 1,q
0 (Ω), 1 < q < N

N−1 ,∫

Ω
T1(L−uψ)dx =

∫

Ω
fψ dx ∀ψ ∈ H1

0 (Ω) ∩ L∞(Ω) such that L−uψ ∈ D(Ω).
(2.61)

What we must do next is to find a bound for the solution T1 of problem (2.56), independent
of the velocity u.

Lemma 2.17. Assume N ≥ 3. Given u ∈ Z(Ω) ∩ LN (Ω), fi ∈ Lp(Ω), i = 1, . . . , N, p > N and
the operator L−u defined analogously to (2.55), then for the solution of the problem





w ∈ H1
0 (Ω),

L−uw = −
N∑

i=1

∂fi

∂xi
in D′(Ω),

(2.62)

the following inequality holds

‖w‖L∞ ≤ K1meas(Ω)
1
N
− 1

p

(
N∑

i=1

‖fi‖2
Lp

)1/2

,

with K1 = K1(N, p) a constant independent of the velocity u and the domain Ω.

Proof. The proof follows most of the steps of the proof of Theorem 4.2 in [94]. First we recall that
the problem is equivalent to





w ∈ H1
0 (Ω),

1
PrRe

∫

Ω
gradw · grad z dx−

∫

Ω
u · gradw z dx =

N∑

i=1

∫

Ω
fi

∂z

∂xi
dx ∀z ∈ H1

0 (Ω).
(2.63)

For any k ≥ 0, we take z = (w − k)+ as test function, which is defined by

(w − k)+(x) =
{

w(x)− k if w(x) > k,
0 if w(x) ≤ k,

It is well known that z ∈ H1
0 (Ω). Moreover, its partial derivatives are given by

∂z

∂xi
=





∂w

∂xi
if w(x) > k,

0 if w(x) ≤ k.

If we denote by A(k) = {x ∈ Ω : w(x) > k}, it is clear that for our choice of z we have

1
PrRe

∫

A(k)
gradw · grad z dx−

∫

A(k)
u · gradw z dx =

N∑

i=1

∫

A(k)
fi

∂z

∂xi
dx,
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then

1
PrRe

∫

Ω
grad z · grad z dx−

∫

Ω
u · grad z z dx

=
1

PrRe

∫

A(k)
grad z · grad z dx−

∫

A(k)
u · grad z z dx =

N∑

i=1

∫

A(k)
fi

∂z

∂xi
dx.

Since div u = 0, using the antisymmetry property already proved for d(¦, ¦, ¦) and the Cauchy-
Schwarz inequality, we obtain

αe ‖grad z‖2
0 =

N∑

i=1

∫

A(k)
fi

∂z

∂xi
dx ≤

(∫

A(k)

N∑

i=1

f2
i (x) dx

)1/2

‖grad z‖0 ,

and hence

‖grad z‖2
0 ≤

1
α2

e

∫

A(k)

N∑

i=1

f2
i dx.

We will make use of the following Sobolev inequality which states that H1
0 (Ω) ⊂ L2∗(Ω), with

1/2∗ = 1/2− 1/N :

‖z‖L2∗ ≤ S

(
N∑

i=1

∥∥∥∥
∂z

∂xi

∥∥∥∥
2

0

)1/2

= S ‖grad z‖0 , ∀z ∈ H1
0 (Ω), (2.64)

with S = S(N) a certain constant independent of Ω (see [29, Ch. IX]). Then, by applying this
result and Hölder inequality, we get

(∫

A(k)
(w(x)− k)2

∗
dx

)2/2∗

= ‖z‖2
L2∗ ≤ S2 ‖grad z‖2

0 ≤
S2

α2
e

∫

A(k)

N∑

i=1

f2
i dx

≤ S2

α2
e

N∑

i=1

‖fi‖2
Lp meas(A(k))1−2/p. (2.65)

Let h > k, then A(h) = {x ∈ Ω : w(x) > h} ⊂ A(k) and it holds
∫

A(k)
(w(x)− k)2

∗
dx ≥

∫

A(h)
(w(x)− k)2

∗
dx ≥

∫

A(h)
(h− k)2

∗
dx ≥ (h− k)2

∗
meas(A(h)) .

Using this inequality and (2.65) we obtain

(h− k)2meas(A(h))2/2∗ ≤ S2

α2
e

N∑

i=1

‖fi‖2
Lp meas(A(k))1−2/p,

or equivalently

meas(A(h)) ≤ 1
(h− k)2∗

(
S

αe

)2∗
(

N∑

i=1

‖fi‖2
Lp

)2∗/2

meas(A(k))β,
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with β = (2∗/2)(1− 2/p) = (1− 2/p)/(1− 2/N), and since N < p we have that β > 1.

If we apply Lemma B.1 (see Appendix B) with

ϕ(h) = meas(A(h)),

C =
(

S

αe

)2∗
(

N∑

i=1

‖fi‖2
Lp

)2∗/2

,

α = 2∗,

β =
2∗

2

(
1− 2

p

)
> 1,

k0 = 0,

we get
ϕ(d) = meas(A(d)) = 0,

with
dα = C(ϕ(0))β−12αβ/(β−1).

Thus, we have obtained meas(A(d)) = meas({x ∈ Ω : w(x) > d}) = 0, which implies

‖w‖L∞ ≤ d.

Since the constants will play an important role in the existence result for the coupled problem, we
will give a more precise bound for d. We must take into account that

ϕ(0) = meas(A(0)) ≤ meas(Ω),

β − 1 =
1− 2/p

1− 2/N
− 1 =

2/N − 2/p

1− 2/N
=

1/N − 1/p

1/2∗
,

β

β − 1
=

1/2− 1/p

1/2− 1/N

1/2− 1/N

1/N − 1/p
=

1/2− 1/p

1/N − 1/p
.

Using these results and the definitions of α, β, ϕ we obtain the inequality

‖w‖L∞ ≤ d = C1/α(ϕ(0))(β−1)/α2β/(β−1) ≤ meas(Ω)
1
N
− 1

p 2
1/2−1/p
1/N−1/p

S

αe

(
N∑

i=1

‖fi‖2
Lp

)1/2

,

and the result holds with K1 = S
αe

2
1/2−1/p
1/N−1/p .

Proposition 2.18. Given f ∈ L1(Ω), u ∈ Z(Ω) ∩ LN (Ω) and Lu the operator defined in (2.55),
then the solution to problem (2.61) satisfies

‖T1‖1,q ≤ K2 ‖f‖L1 , (2.66)

with K2 ≡ K2(q) a constant independent of the velocity u and of the right-hand side f .
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Proof. The idea of the proof is to use the previous Lemma to find a bound for the norm of the
Green operator G−u, and then, by a transposition argument, to obtain a bound for its adjoint
operator Gt−u.

To obtain the bound for G−u we first remind that for F ∈ W−1,q′(Ω) ⊂ H−1(Ω), with 1 < q <
N/(N − 1), w = G−uF is the unique solution to problem

{
w ∈ H1

0 (Ω),
L−uw = F in D′(Ω),

(2.67)

or equivalently




w ∈ H1
0 (Ω),

1
PrRe

∫

Ω
gradw · grad z dx−

∫

Ω
u · gradw z dx = 〈F, z〉H−1,H1

0
∀z ∈ H1

0 (Ω).
(2.68)

Since F ∈ W−1,q′(Ω) and Ω is bounded, we know that (see [29, Prop. IX.20])

F = −
N∑

i=1

∂fi

∂xi
, fi ∈ Lq′(Ω) ,

with
max

1≤i≤N
‖fi‖Lq′ = |F |−1,q′ , (2.69)

so equation (2.68) can be rewritten in the form

1
PrRe

∫

Ω
gradw · grad z dx−

∫

Ω
u · gradw z dx =

N∑

i=1

∫

Ω
fi

∂z

∂xi
dx ∀z ∈ H1

0 (Ω). (2.70)

Since q < N/(N − 1) we know that q′ > N . Then, from Lemma 2.17 and taking into account
the equality (2.69) we have

‖w‖L∞ = ‖G−uF‖L∞ ≤ K1meas(Ω)
1
N
− 1

q′

(
N∑

i=1

‖fi‖2
Lq′

)1/2

≤ K1meas(Ω)
1
N
− 1

q′
√

N |F |−1,q′ ,

with a constant independent of the velocity u, provided div u = 0. Thus,

‖G−u‖L(W−1,q′ (Ω),L∞(Ω)) ≤ K1meas(Ω)
1
N
− 1

q′
√

N.

Next step is to estimate, from the bound for the norm of G−u, a bound for
∥∥Gt−u

∥∥
L(L1(Ω),W 1,q

0 (Ω))
.

If we consider in W 1,q
0 (Ω) the norm |·|1,q, and in its dual space W−1,q′(Ω) the corresponding induced

norm | · |−1,q′ , we obtain
∥∥Gt

−u

∥∥
L(L∞(Ω)′,W 1,q

0 (Ω))
= ‖G−u‖L(W−1,q′ (Ω),L∞(Ω)) ,
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because W 1,q
0 (Ω) is reflexive.

As L1(Ω) is isometrically imbedded in L∞(Ω)′, we also have

∥∥Gt
−u

∥∥
L(L1(Ω),W 1,q

0 (Ω))
≤ ‖G−u‖L(W−1,q′ (Ω),L∞(Ω)) ≤ K1meas(Ω)

1
N
− 1

q′
√

N ,

so, if T1 is solution to problem (2.60), we have

‖T1‖1,q ≤ C(q)|T1|1,q ≤ C(q)
∥∥Gt

−u

∥∥
L(L1(Ω),W 1,q

0 (Ω))
‖f‖L1 ≤ C(q)K1meas(Ω)

1
N
− 1

q′
√

N ‖f‖L1 ,

with C(q) the constant appearing in (A.3), and the result is true with

K2(q) = C(q)K1meas(Ω)
1
N
− 1

q′
√

N,

a constant dependent on Ω, q and N .

Now we are going to prove the continuity of the operator Gt−u with respect to the velocity u
and the source f . To do that let us introduce the mapping

G̃ :
(
Z(Ω) ∩ LN (Ω)

)× L1(Ω) −→ W 1,q
0 (Ω)

(u, f) 7−→ G̃(u, f) := Gt
−uf , (2.71)

where Gt−uf is the solution by transposition to problem (2.56). We will first prove the continuity
of the mapping with respect to the velocity, for a fixed source f ∈ L2(Ω), and then prove the
general result of continuity with respect to the velocity and to the source in L1(Ω).

Lemma 2.19. Given un → u strongly in Z(Ω) ∩ LN (Ω) and g ∈ L2(Ω), it holds that G̃(un, g) →
G̃(u, g) strongly in W 1,q(Ω).

Proof. Since g ∈ L2(Ω), the solution by transposition G̃(u, g) coincides with the weak solution in
H1

0 (Ω) (see Appendix B). The convergence in H1
0 (Ω) is easily proved, with the arguments already

used in Lemma 2.16. Since q < N/(N − 1) < 2, we have H1
0 (Ω) ⊂ W 1,q

0 (Ω), which implies the
strong convergence in W 1,q(Ω).

Proposition 2.20. The mapping G̃ is continuous on
(
Z(Ω) ∩ LN (Ω)

)× L1(Ω).

Proof. Let un → u strongly in Z(Ω) ∩ LN (Ω) and fn → f strongly in L1(Ω). We have to prove
that G̃(un, fn) → G̃(u, f) converges strongly in W 1,q

0 (Ω). The proof will consist in using several
triangular inequalities.

First, we have

G̃(un, fn)− G̃(u, f) = G̃(un, fn)− G̃(un, f) + G̃(un, f)− G̃(u, f) , (2.72)

and using Proposition 2.18 there exists a constant C, independent of un, such that

‖G̃(un, fn)− G̃(un, f)‖1,q ≤ C ‖fn − f‖L1 , (2.73)
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which tends to zero, due to the convergence of fn to f in L1(Ω).

Now, for any k ≥ 0 we introduce the truncation function

τk(x) =





k, if x > k,
x, if − k ≤ x ≤ k,
−k, if x < −k.

(2.74)

Composing f with τk, we obtain the truncated function τkf . We can use this truncated function
to prove the convergence to zero of the remaining term, in the following way:

G̃(un, f)− G̃(u, f) = G̃(un, f)− G̃(un, τkf) + G̃(un, τkf)− G̃(u, τkf) + G̃(u, τkf)− G̃(u, f),

and using triangular inequalities and Proposition 2.18 we obtain

‖G̃(un, f)− G̃(u, f)‖1,q ≤ ‖G̃(un, f)− G̃(un, τkf)‖1,q + ‖G̃(un, τkf)− G̃(u, τkf)‖1,q

+‖G̃(u, τkf)− G̃(u, f)‖1,q ≤ 2C‖f − τkf‖L1 + ‖G̃(un, τkf)− G̃(u, τkf)‖1,q.

The first term converges to zero as k → ∞ by applying the Lebesgue dominated convergence
theorem, whereas for fixed k ≥ 0 the second one converges to zero as n → ∞ due to the result
proved in Lemma 2.19, as τkf ∈ L2(Ω). Joining these two convergence results with (2.72) and
(2.73), the desired result follows.

2.2.6 Coupled problem.

In order to prove the existence of a solution to our coupled problem via a fixed point theorem, a
mapping from Z0(Ω) into itself will be introduced, and then we will prove the existence of a fixed
point for that mapping. To do that, we first introduce the two following mappings:

G2 : Z0(Ω)× L1(Ω) −→ W 1,6/5(Ω)
(ŵ, f) 7−→ G2(ŵ, f) := G̃(w, f) + GD(w), (2.75)

where w = ŵ + u0 and mappings G̃ and GD have been introduced in the previous section;

G3 : Z0(Ω) → L1(Ω)

(ŵ, D̂) 7→ G3((ŵ, D̂)) :=
Ec

Re

[
H2

a

R2
m

|curl D̂|2 +
1
2

∣∣gradw + gradwt
∣∣2

]
+ ψ, (2.76)

where w is defined as above and ψ ∈ L1(Ω). Thus, the application maps any (ŵ, D̂) to its
correspondent heat source in the heat equation.

To find a solution of our problem it suffices to find a fixed point of the mapping

G : Z0(Ω) −→ Z0(Ω)

(ŵ, D̂) 7−→ G((ŵ, D̂)) := G1

(
(ŵ, D̂),G2

(
ŵ,G3((ŵ, D̂))

))
, (2.77)

recalling that G1 is the mapping introduced in Definition 2.1 at the end of Section 2.2.4.
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Lemma 2.21. If (u0,B0) ∈ Z0(Ω), with curlB0 = 0, Td ∈ H1/2(∂Ω) ∩ L∞(∂Ω) and ψ ∈ L1(Ω),
under the assumptions

‖u0‖L4 <
αa

λ̃c0

,

‖u0‖L6 <
αa

λ̃c1

,

Ee(u0,B0, Td,k, f0, ψ) ≤ (k1 − αa)2

4λGK2kf
,

there exists a constant R > 0 such that if |(ŵ, D̂)|W ≤ R then |G((ŵ, D̂))|W ≤ R.

In the assumptions, Ee(u0,B0, Td,k, f0, ψ) depends on the boundary and source data and it is
given by the expression

Ee(u0,B0, Td,k, f0, ψ) = λF + λG

(
8K2kf2 |u0|21 + K2 ‖ψ‖L1 + meas(Ω)5/6 ‖Td‖L∞(∂Ω)

)

+λa0 |u0|1 + λc0 ‖u0‖2
L4 + λc1 ‖B0‖L3 ‖u0‖L6 .

The constants have the expressions kf1 = EcH
2
a/(ReR

2
m), kf2 = Ec/(2Re), kf = max{kf1, 8kf2}

and
k1 = max

{
λ̃c0 ‖u0‖L4 , λ̃c1 ‖u0‖L6

}
.

The remaining constants have been already introduced in Lemmas 2.6 and 2.7, and in Propositions
2.9 and 2.18.

Proof. Let R > 0 be a real number and (ŵ, D̂) ∈ Z0(Ω) such that |(ŵ, D̂)|W ≤ R. According to
the definition of kf1, kf2 and kf , we have

‖G3((ŵ, D̂))‖L1

≤ kf1‖|curl D̂|2‖L1 + kf2‖|grad ŵ + grad ŵt + gradu0 + gradut
0|2‖L1 + ‖ψ‖L1

≤ kf1‖|curl D̂|2‖L1 + 8kf2‖|grad ŵ|2 + |gradu0|2‖L1 + ‖ψ‖L1

= kf1‖curl D̂‖2
0 + 8kf2(‖grad ŵ‖2

0 + ‖gradu0‖2
0) + ‖ψ‖L1

≤ kf |(ŵ, D̂)|2W + 8kf2 |u0|21 + ‖ψ‖L1 . (2.78)

Next, if we denote f = G3((ŵ, D̂)), then

‖G2(ŵ, f)‖L6/5 = ‖G̃(w, f) + GD(w)‖L6/5 ≤ ‖G̃(w, f)‖L6/5 + ‖GD(w)‖L6/5

≤ K2 ‖f‖L1 + meas(Ω)5/6 ‖Td‖L∞(∂Ω) , (2.79)

with K2 ≡ K2(6/5) = C(6/5)
√

3K1meas(Ω)1/6, as given in Proposition 2.18. The value meas(Ω)5/6

appears as a consequence of Proposition 2.15.

For the third step, if we denote T = G2(ŵ, f) and recall Proposition 2.9, we get

αa|G1((ŵ, D̂), T )|W ≤ λF + λG ‖T‖L6/5 + λa0 |u0|1 + λc0 ‖u0‖2
L4

+λc1 ‖B0‖L3 ‖u0‖L6 + k1|(ŵ, D̂)|W , (2.80)
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with k1 := max{λ̃c0 ‖u0‖L4 , λ̃c1 ‖u0‖L6}.
Joining the three inequalities we obtain

αa|G((ŵ, D̂))|W ≤ λF + λG ‖T‖L6/5 + λa0 |u0|1
+λc0 ‖u0‖2

L4 + λc1 ‖B0‖L3 ‖u0‖L6 + k1|(ŵ, D̂)|W
≤ λF + λG(K2‖f‖L1 + meas(Ω)5/6‖Td‖L∞(∂Ω)) + λa0 |u0|1

+λc0 ‖u0‖2
L4 + λc1 ‖B0‖L3 ‖u0‖L6 + k1|(ŵ, D̂)|W

≤ λF + λG

[
K2(kf |(ŵ, D̂)|2W + 8kf2 |u0|21 + ‖ψ‖L1) + meas(Ω)5/6‖Td‖L∞(∂Ω)

]

+λa0 |u0|1 + λc0 ‖u0‖2
L4 + λc1 ‖B0‖L3 ‖u0‖L6 + k1|(ŵ, D̂)|W

= k0 + k1|(ŵ, D̂)|W + k2|(ŵ, D̂)|2W , (2.81)

where we have defined the constants

k0 = λF + λG

(
K2(8kf2 |u0|21 + ‖ψ‖L1) + meas(Ω)5/6 ‖Td‖L∞(∂Ω)

)

+λa0 |u0|1 + λc0 ‖u0‖2
L4 + λc1 ‖B0‖L3 ‖u0‖L6

and k2 = λGK2kf . We notice that k0 = Ee(u0,B0, Td,k, f0, ψ), the expression appearing in the
statement of the theorem. We also notice that k0 and k1 depend on the given source and boundary
data, whereas k2 is independent of them. Moreover, we know that k2 > 0 and k0, k1 ≥ 0.

We have to prove that there exists a certain constant R > 0 such that |(ŵ, D̂)|W ≤ R implies
|G((ŵ, D̂))|W ≤ R. In view of the last inequality, it is enough to prove that there exists a constant
R > 0 such that

k0 + (k1 − αa)R + k2R
2 ≤ 0. (2.82)

The case k0 = 0 is trivial. Indeed, by the definition of k0 and k1, k0 = 0 implies that k1 must be
equal to zero. Thus, the roots of the quadratic equation are R− = 0 and R+ = αa/k2, and the
result holds for any R ∈ (0, αa/k2).

Let us now consider the case k0 > 0. The roots of the corresponding quadratic equation are
given by

R± =
αa − k1 ±

√
(k1 − αa)2 − 4k0k2

2k2
, (2.83)

and since R+R− = k0/k2 > 0, the two roots are either both positive, or both negative or complex.
In order to avoid complex roots, which prevent us from finding such an R, we must require
∆ = (k1 − αa)2 − 4k0k2 ≥ 0. Assuming this, we also know that

R− ≤ αa − k1

2k2
≤ R+, (2.84)

so, in order to find positive roots we must require αa − k1 > 0 too. Summarizing, we are able to
find a real constant R such that G(B(0, R)) ⊂ B(0, R) by requiring

k1 < αa, k0 ≤ (k1 − αa)2

4k2
, (2.85)
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and, recalling the values for constants k0, k1 and k2, this is equivalent to

‖u0‖L4 <
αa

λ̃c0

,

‖u0‖L6 <
αa

λ̃c1

,

λF + λG

(
8K2kf2 |u0|21 + K2 ‖ψ‖L1 + meas(Ω)5/6 ‖Td‖L∞(∂Ω)

)
+ λa0 |u0|1

+λc0 ‖u0‖2
L4 + λc1 ‖B0‖L3 ‖u0‖L6 ≤ (k1 − αa)2

4λGK2kf
.

Remark 2.6. The existence of solution for the case k0 = 0 is trivial. Indeed, if k0 = 0 all the
source terms are null, except maybe the lifting B0. Therefore, a fixed point of the mapping G is the
trivial solution, (û, B̂) = (0,0), and a solution to problem (2.6)-(2.14) is given by u = 0, B = B0

and T = 0.

Now we are in a position to prove the main result of this section:

Theorem 2.22. Under the hypotheses of Lemma 2.21 the mapping G has at least one fixed point.

Proof. The result is a consequence of applying Schauder fixed point theorem to the mapping G.
Under the given hypotheses we have already proved in Lemma 2.21 that there exists a constant
R > 0 such that G maps the ball B(0, R) ⊂ Z0(Ω) into itself. Moreover, the mapping G is
continuous, because of the continuity of the mappings G1, G2 and G3. In order to apply the
Schauder fixed point theorem, we must prove the compactness of G, i.e., that G maps bounded
sets into precompact sets.

Let B ⊂ Z0(Ω) be a bounded set. We must prove that for any sequence {(ŵn, D̂n)} ⊂ B,
{G((ŵn, D̂n))} has a convergent subsequence. Since Z0(Ω) is a reflexive Banach space, there exists
a subsequence still denoted by {(ŵn, D̂n)} such that (ŵn, D̂n) ⇀ (ŵ, D̂) weakly in Z0(Ω). Due
to the definition of G3, the sequence fn = G3((ŵn, D̂n)) is bounded in L1(Ω). Moreover, due to
Proposition 2.18 we also have that Tn = G2(ŵn, fn) is bounded in W 1,6/5(Ω). Hence, there is a
subsequence that we still denote by Tn such that Tn → T strongly in L6/5(Ω). Finally, due to the
result proved in Lemma 2.10, it holds that G1((ŵn, D̂n), Tn) = (ûn, B̂n) → G1((ŵ, D̂), T ) = (û, B̂)
strongly in Z0(Ω). Thus G(B) is relatively compact which ends the proof.

The previous theorem proves the existence of a solution for the coupled thermal-magneto-
hydrodynamic problem. Moreover, we know that the temperature T satisfies (see (B.21))

T ∈
⋂

1<q<3/2

W 1,q(Ω) . (2.86)
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2.3 Steady MHD equations without using the Boussinesq appro-
ximation.

In the previous section we have considered the stationary MHD equations using the Boussinesq
approximation. Under this approximation we were constrained to impose very strict conditions on
the boundary data to ensure the existence of a solution to our problem (see Lemma 2.21). As a first
step, in order to study a more complicated model and following some of the ideas appearing in [42],
we propose a different mathematical model for which, instead of using Boussinesq approximation,
we assume that the density appearing in the buoyancy force is a function of temperature satisfying
certain properties. For this density function we are able to obtain an a priori bound for the solution
of the model, which will lead to prove the existence of solution under less severe constraints on the
data.

2.3.1 Mathematical model.

For the mathematical model we consider the steady MHD equations along with the heat transfer
equation. Following some ideas appeared in [42], instead of the Boussinesq approximation we
consider that density is constant in the left-hand side terms and that it is a function of temperature
in the buoyancy force, ρ = ρ̂(T ). Moreover, we assume that function ρ̂ : (0,+∞) → (0, +∞) is
strictly positive, continuous and non-increasing. Notice that these assumptions do not hold for the
Boussinesq approximation.

The equations of the model read as follows:

1
µσ

curl (curlB)− curl (u×B) = 0, (2.87)

div B = 0, (2.88)

−η∆u + ρ(gradu)u + grad p− 1
µ

(curlB)×B = f0 + ρ̂(T )g, (2.89)

div u = 0, (2.90)

−k∆T + ρcpu · gradT =
1

σµ2
|curlB|2 +

η

2

∣∣gradu + gradut
∣∣2 + ψ. (2.91)

We can now introduce the dimensionless form of the equations. As we did in Section 2.2.1 let
us denote by B, u and L the typical values of magnetic induction, velocity and length, respectively.
Let us also denote by T the typical value of temperature. We normalize the equations as follows:
the magnetic induction B by B, the velocity u by u, the pressure p by σuB2L, the body force f0
by σuB2, the temperature T by T , the heat source ψ by ρcpuT /L and the density function ρ̃ by
σuB2. After this normalization, the buoyancy term is expressed in the form %̂(T̂ ) = 1

σuB2 ρ̂(T ) =
1

σuB2 ρ̂(T T̂ ). Now, maintaining the same notation for the normalized fields we arrive at the following
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non-dimensionalized system of equations, which holds in Ω:

1
Rm

curl (curlB)− curl (u×B) = 0, (2.92)

div B = 0, (2.93)

− 1
H2

a

∆u +
1
N

(gradu)u + grad p− 1
Rm

(curlB)×B = f0 + ρ̂(T )g, (2.94)

div u = 0, (2.95)

− 1
PrRe

∆T + u · gradT =
1
Re

u2

cpT
[

H2
a

R2
m

|curlB|2 +
1
2

∣∣gradu + gradut
∣∣2

]
+ ψ. (2.96)

This system of equations is completed with the same boundary conditions we introduced in Sec-
tion 2.2.1, which are given by

u|∂Ω = ud , (2.97)
(B · n)|∂Ω = l , (2.98)[(

1
Rm

(curlB)− (u×B)
)
× n

]

|∂Ω

= k , (2.99)

T|∂Ω = Td . (2.100)

The compatibility and regularity conditions for the given data are the same as those previously
introduced in Section 2.2.3, but we also assume the heat source ψ to be non-negative and the
temperature on the boundary to be strictly positive, i.e.

ψ ∈ L1(Ω), ψ(x) ≥ 0 ∀x ∈ Ω , (2.101)
Td ∈ H1/2(∂Ω) ∩ L∞(∂Ω), Td(x) ≥ Tmin > 0 ∀x ∈ ∂Ω . (2.102)

Moreover, as we mentioned above, the density response function ρ̂ : (0, +∞) → (0, +∞) is re-
quested to be strictly positive, continuous and non-increasing. Obviously, the same properties are
satisfied by the non-dimensionalized response function, also denoted by ρ̂.

Remark 2.7. In order to obtain the non-dimensionalized system, it is more usual to work with
the temperature difference with respect to a reference temperature rather than with the temperature
itself, as we did in Section 2.2.1. This would lead to express the sources in the heat equation in
terms of the Eckert number, as in (2.10), but at the cost of working with a density response function
ρ̂ defined on an interval different from (0,+∞). From the mathematical point of view the results
of existence and uniqueness are analogous for both non-dimensionalizations.

Remark 2.8. If we denote by ∆T a typical value for the temperature difference with respect to the
reference temperature, the constant appearing in the sources of the heat equation can be expressed
as

1
Re

u2

cpT =
Ec

Re

∆T
T .

Moreover, in the case of a perfect gas, this expression is known to be equal to (γ − 1)M2/Re (see
equation (12.25) in [92]).
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2.3.2 An a priori bound for the solutions.

In the equations considering the Boussinesq approximation it was not possible to obtain an a
priori bound for the solution, due to the buoyancy force term appearing in the right-hand side of
the Navier-Stokes equations. Now, since Joule effect and viscous heating are non-negative, due to
condition (2.101) and as a consequence of Theorem 3.7 in [94], we know that any temperature T
solution to (2.96) and (2.100) satisfies

ess inf
x∈Ω

T (x) ≥ ess inf
x∈∂Ω

Td(x) = Tmin > 0 . (2.103)

Hence, since ρ̂ is continuous and non-increasing, we have

0 < ρ̂(T (x)) ≤ ρ̂(Tmin) = ρ̂max , (2.104)

and the product ρ̂(T )g satisfies

‖ρ̂(T )g‖−1 ≤ g ‖ρ̂(T )‖L∞ meas(Ω)1/2 ≤ gρ̂maxmeas(Ω)1/2 ,

where g = |g| is the modulus of gravity acceleration.

Reasoning as in Proposition 2.5 it can be seen that (u,B) ∈ Z(Ω) is a solution to (2.92)-(2.95)
along with boundary conditions (2.97)-(2.99) if and only if it is a solution to the problem:

Given f0, ud, l and k satisfying (2.17)-(2.20) and T : Ω → R a measurable function such that
T (x) ≥ Tmin > 0 a.e. in Ω, find

(u,B) ∈ Z(Ω) , (2.105)

satisfying

a((u,B), (v,C)) + c0(u,u,v)− c1(B,B,v) + c1(C,B,u)
= F ((v,C)) + 〈ρ̂(T )g,v〉Ω ∀(v,C) ∈ Z0(Ω), (2.106)

u|∂Ω = ud, (B · n)|∂Ω = l . (2.107)

Using the splittings u = û + u0, B = B̂ + B0 the problem can be reduced to homogeneous
boundary conditions, and taking into account that B0 is irrotational it can be rewritten in the
form:

Given u0 ∈ Z(Ω), B0 ∈ Y(Ω) satisfying (2.33)-(2.34), and T : Ω → R a measurable function
such that T (x) ≥ Tmin > 0 a.e. in Ω, find

(û, B̂) ∈ Z0(Ω) (2.108)

such that

a((û, B̂), (v,C)) + c0(û, û,v) + c0(û,u0,v) + c0(u0, û,v)
−c1(B̂, B̂,v)− c1(B̂,B0,v) + c1(C, B̂, û) + c1(C, B̂,u0) + c1(C,B0, û) = F ((v,C))

+〈ρ̂(T )g,v〉Ω − a0(u0,v)− c0(u0,u0,v)− c1(C,B0,u0) ∀ (v,C) ∈ Z0(Ω) . (2.109)

The next proposition gives us an a priori bound for any solution of the MHD problem.
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Proposition 2.23. If u0 ∈ Z(Ω) is a lifting of the boundary condition ud satisfying

‖u0‖L4 <
αa

λ̃c0

, ‖u0‖L6 <
αa

λ̃c1

, (2.110)

with λ̃c0 and λ̃c1 defined as in Proposition 2.9, then, for any solution (û, B̂) to problem (2.108)-
(2.109) it holds

|(û, B̂)|W ≤ k0

αa − k1
, (2.111)

with k0 :=
(
λF + λĜ + λa0 |u0|1 + λc0 ‖u0‖2

L4 + λc1 ‖B0‖L3 ‖u0‖L6

)
, λĜ := Sgρ̂maxmeas(Ω)5/6,

and k1 := max
{

λ̃c0 ‖u0‖L4 , λ̃c1 ‖u0‖L6

}
.

Proof. Taking (û, B̂) as a test function in (2.109), by the antisymmetry property of c0(¦, ¦, ¦) we
have

a((û, B̂), (û, B̂)) + c0(û,u0, û) + c1(B̂, B̂,u0)
= F ((û, B̂)) + 〈ρ̂(T )g, û〉Ω − a0(u0, û)− c0(u0,u0, û)− c1(B̂,B0,u0) .

By the continuity results of Lemma 2.6 and reasoning as in (2.41) we obtain

|c0(û,u0, û) + c1(B̂, B̂,u0)| ≤ max
{

γ4C0

N
‖u0‖L4 ,

κC1

Rm
‖u0‖L6

}
|(û, B̂)|2W ,

= max
{

λ̃c0 ‖u0‖L4 , λ̃c1 ‖u0‖L6

}
.

Then, due to the coerciveness result for a(¦, ¦) proved in Lemma 2.7 we get

|a((û, B̂), (û, B̂)) + c0(û,u0, û) + c1(B̂, B̂,u0)|
≥ |a((û, B̂), (û, B̂))| − |c0(û,u0, û) + c1(B̂, B̂,u0)|

≥
(
αa −max

{
λ̃c0 ‖u0‖L4 , λ̃c1 ‖u0‖L6

})
|(û, B̂)|2W = (αa − k1)|(û, B̂)|2W . (2.112)

As a consequence of (2.110) we know that αa− k1 > 0, which gives us a coerciveness result for the
left-hand side of equation (2.112). Besides, we have

|〈ρ̂(T )g, û〉Ω| =
∣∣∣∣
∫

Ω
ρ̂(T )g · û dx

∣∣∣∣ ≤ g ‖ρ̂(T )‖L6/5 ‖û‖L6 ≤ Sgρ̂maxmeas(Ω)5/6 |û|1 .

Hence, using this inequality, the coerciveness result given by (2.112) and the estimates of Propo-
sition 2.6, we obtain

|(û, B̂)|W ≤ 1
αa − k1

(
λF + λĜ + λa0 |u0|1 + λc0 ‖u0‖2

L4 + λc1 ‖B0‖L3 ‖u0‖L6

)
=

k0

αa − k1
.

From this a priori bound for the term (û, B̂), and using Propositions 2.15 and 2.18, it is also
possible to find an a priori estimate for the temperature T ∈ W 1,q(Ω), with q < 3/2, and in
particular for q = 6/5.
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2.3.3 Linearized version of the MHD problem.

As in the previous model, to prove the existence of solution of the coupled problem it is convenient
to analyze the thermal and the MHD submodels uncoupled. The analysis of the thermal problem
is identical to that presented in Section 2.2.5, thus we will now focus on the analysis of the MHD
submodel. We are going to introduce the linearized version of the MHD problem. Then we will
prove the existence of a solution to this linearized problem, and find an estimate independent of
the temperature.

First of all, and due to the lower bound given in (2.103), it is convenient to introduce the set

L
6/5
min(Ω) := {θ ∈ L6/5(Ω) : θ(x) ≥ Tmin a.e. in Ω} ,

which is a closed convex subset of L6/5(Ω).

As we mentioned before, the difference of the current model and the one analyzed in Section
2.2 is the use of Boussinesq approximation, which leads to different buoyancy force terms in the
right-hand side of the Navier-Stokes equations. To simplify the notation let us introduce the
mapping

Ĝ : L
6/5
min(Ω) −→ H−1(Ω)

T 7−→ Ĝ(T ) := ρ̂(T )g .

Mapping Ĝ is continuous as an immediate consequence of the following lemma:

Lemma 2.24. The operator

L
6/5
min(Ω) −→ Lp(Ω)

T 7−→ ρ̂(T )

is continuous for any 1 ≤ p < +∞.

Proof. The proof is analogous to that of Nemytskii’s theorem, which can be found, for instance,
in [93, Th. II.3.2].

We can now introduce the linearized version of the MHD problem, which differs from the one
presented in 2.2.4 only in the buoyancy term. This linearized version of the problem reads:

Given (ŵ, D̂) ∈ Z0(Ω), T ∈ L
6/5
min(Ω) and (u0,B0) ∈ Z(Ω), with curlB0 = 0, find

(û, B̂) ∈ Z0(Ω) (2.113)

such that

a((û, B̂), (v,C)) + c0(ŵ, û,v) + c0(u0, û,v)− c1(B̂, D̂,v)− c1(B̂,B0,v)
+c1(C, D̂, û) + c1(C,B0, û) = F ((v,C)) + 〈Ĝ(T ),v〉Ω − a0(u0,v)

−c0(ŵ,u0,v)− c0(u0,u0,v)− c1(C,B0,u0)− c1(C, D̂,u0) ∀ (v,C) ∈ Z0(Ω) . (2.114)

In the following proposition we prove the existence of a unique solution to this problem, and
give an estimate for this solution independent of the temperature field T .
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Proposition 2.25. There exists a unique solution (û, B̂) to problem (2.113)-(2.114). Moreover,

|(û, B̂)|W ≤ 1
αa

(
λF + λĜ + λa0 |u0|1 + λc0 ‖u0‖2

L4 + λc1 ‖B0‖L3 ‖u0‖L6

+ max
{

λ̃c0 ‖u0‖L4 , λ̃c1 ‖u0‖L6

}
|(ŵ, D̂)|W

)
, (2.115)

where αa, λF , λa0, λc0, λc1, λ̃c0 and λ̃c1 are the same constants appearing in Proposition 2.9, and
λĜ the constant appearing in Proposition 2.23.

Proof. The proof is analogous to that of Proposition 2.9.

Definition 2.3. Let us define the mapping

Ĝ1 : Z0(Ω)× L
6/5
min(Ω) −→ Z0(Ω)

((ŵ, D̂), T ) 7−→ Ĝ1((ŵ, D̂), T ) = (û, B̂), (2.116)

where (û, B̂) is the solution of the MHD linearized problem (2.113)-(2.114) for a given pair
(ŵ, D̂) ∈ Z0(Ω) and a given temperature T ∈ L

6/5
min(Ω).

Lemma 2.26. Let (ŵn, D̂n) ⇀ (ŵ, D̂) weakly in Z0(Ω) and {Tn} ⊂ L
6/5
min(Ω) such that Tn → T

strongly in L6/5(Ω). Then T ∈ L
6/5
min(Ω) and Ĝ1((ŵn, D̂n), Tn) → Ĝ1((ŵ, D̂), T ) strongly in Z0(Ω).

Proof. The fact that T ∈ L
6/5
min(Ω) is clear, because L

6/5
min(Ω) is a closed set. The rest of the proof

is analogous to that of Lemma 2.10, but substituting the term (G(Tn − T ),v)Ω by 〈Ĝ(Tn) −
Ĝ(T ),v〉Ω =

∫
Ω (ρ̂(Tn)− ρ̂(T ))g · v dx. The result is obtained as a consequence of the continuity

of the operator considered in Lemma 2.24.

2.3.4 Coupled problem.

As we already mentioned, the thermal subproblem is identical to the one analyzed in Section 2.2.5.
Since we are dealing with positive heat sources, it is convenient to introduce the set

L1
+(Ω) := {f ∈ L1(Ω) : f(x) ≥ 0 a.e. in Ω} ,

which is a closed convex subset of L1(Ω). Analogously to what we did in (2.75), we introduce the
mapping Ĝ2, which maps a velocity ŵ and a heat source f into the corresponding solution of the
heat equation. Moreover, due to the result presented in (2.103), we know that for a positive f this
solution belongs to L

6/5
min(Ω), thus the mapping is defined as

Ĝ2 : Z0(Ω)× L1
+(Ω) −→ W 1,6/5(Ω) ∩ L

6/5
min(Ω)

(ŵ, f) 7−→ Ĝ2(ŵ, f) := G̃(w, f) + GD(w), (2.117)

where w = ŵ + u0 and the mappings G̃ and GD have been introduced in Section 2.2.5. We will
also make use of the mapping Ĝ3, which maps any pair (ŵ, D̂) to its correspondent heat source in
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the heat equation. It is given by

Ĝ3 : Z0(Ω) → L1
+(Ω)

(ŵ, D̂) 7→ Ĝ3((ŵ, D̂)) :=
1
Re

u2

cpT
[

H2
a

R2
m

|curl D̂|2 +
1
2

∣∣gradw + gradwt
∣∣2

]
+ ψ, (2.118)

where w is defined as above and ψ satisfies (2.101).

As in the previous case, we will prove the existence of a solution to our problem via a fixed
point result. It suffices to prove the existence of a fixed point for the mapping

Ĝ : Z0(Ω) −→ Z0(Ω)

(ŵ, D̂) 7−→ Ĝ((ŵ, D̂)) := Ĝ1

(
(ŵ, D̂), Ĝ2

(
ŵ, Ĝ3((ŵ, D̂))

))
. (2.119)

Lemma 2.27. If (u0,B0) ∈ Z0(Ω), with curlB0 = 0, ψ satisfies (2.101) and Td satisfies (2.102),
under the assumptions

‖u0‖L4 <
αa

λ̃c0

, (2.120)

‖u0‖L6 <
αa

λ̃c1

, (2.121)

there exists a constant R > 0 such that if |(ŵ, D̂)|W ≤ R then |Ĝ((ŵ, D̂))|W ≤ R. The constants
αa, λ̃c0 and λ̃c1 have been introduced in Lemma 2.7 and Proposition 2.9.

Proof. Let R > 0 and (ŵ, D̂) ∈ Z0(Ω) be such that |(ŵ, D̂)| ≤ R. From the result of Proposition
2.25 we have that

|Ĝ((ŵ, D̂))|W ≤ 1
αa

(k0 + k1|(ŵ, D̂)|W) ≤ 1
αa

(k0 + k1R) ,

where the constants k0 and k1 have the same expression that in Proposition 2.23. In order to obtain
|Ĝ((ŵ, D̂))|W ≤ R we must require k0 + k1R ≤ αaR, which is equivalent to R ≥ k0/(αa − k1) .
Since k0 > 0 and R > 0, the result holds whenever αa − k1 > 0 which is equivalent to conditions
(2.120) and (2.121).

Using the result of the previous lemma we can prove the existence of a solution to the coupled
problem:

Theorem 2.28. Under the assumptions of Lemma 2.27 the mapping Ĝ has at least one fixed point.

Proof. The proof is analogous to that of Theorem 2.22, using Lemmas 2.27 and 2.26 instead of
Lemmas 2.21 and 2.10.

Remark 2.9. We notice that conditions (2.120) and (2.121) have already appeared in Proposition
2.23. Moreover, let us take

R = R0 =
k0

αa − k1
.

Under the mentioned conditions and from the results of Proposition 2.23 and Lemma 2.27, we
know that any solution (û, B̂) ∈ Z0(Ω) of the problem belongs to B(0, R0), the closed ball centered
at the origin with radius R0, and that there exists at least one solution in the mentioned ball.
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2.3.5 Existence of solution without assuming smallness of the data.

The existence results of the two coupled problems analyzed above, given in Theorems 2.22 and
2.28, rely on some smallness of the given data. Following the ideas of [2] it is possible to prove that,
for a tangential boundary condition ud, it is always possible to construct a lifting u0 satisfying
(2.120) and (2.121), which leads to an existence result for the problem independently of the size
of the given data. The proof makes use of some definitions and results appearing in [46] that we
reproduce below.

Definition 2.4. Let Ω ⊂ RN , N ≥ 2, be a bounded domain with Lipschitz boundary. For 1 < q <
∞ we define the space

Hq(div; Ω) := {u ∈ Lq(Ω) : div u ∈ Lq(Ω)} .

We notice that the space Hq(div; Ω) is denoted in [46] by H̃q(Ω).

The following theorem can be found in [46, Th. III.2.1].

Theorem 2.29. Let Ω be a bounded domain with Lipschitz boundary in RN , N ≥ 2. Let Hq
0(div; Ω)

denote the completion of (D(Ω))N in the norm ‖¦‖Hq(div;Ω). Then

Hq
0(div; Ω) = {u ∈ Hq(div; Ω) : u · n = 0 on ∂Ω} .

The following result is a consequence of Theorem III.3.3 in [46].

Theorem 2.30. Let Ω ⊂ RN , N ≥ 2, be a bounded domain with Lipschitz boundary. Then, given

g ∈ Hq
0(div; Ω) ∩ Ls(Ω), 1 < q < +∞ , 1 < s < +∞ ,

there exists at least one v ∈ (W 1,q
0 (Ω))N ∩ Ls(Ω) such that

div v = div g , (2.122)
‖v‖1,q ≤ βq ‖div g‖Lq , (2.123)
‖v‖Ls ≤ κs ‖g‖Ls . (2.124)

Proof. According to [46, Th. III.3.3], for each g ∈ Hq
0(div; Ω), with 1 < q < +∞, it is possible to

construct v ∈ (W 1,q
0 (Ω))N satisfying (2.122), (2.123) and also

‖v‖Lq ≤ κq ‖g‖Lq , (2.125)

Moreover, it can be seen that the construction procedure in [46] is independent of q, and it holds
that v = Rg, where R is a linear and continuous operator, i.e. R ∈ L(Hq

0(div; Ω), (W1,q
0 (Ω))N).

Therefore, the result is clear for s ≤ q.

For q < s, let us consider the restriction of R to (D(Ω))3. Thanks to (2.125), this operator
is continuous from (D(Ω))3, endowed with the norm ‖·‖Lq , into Lq(Ω). Now we can define, in a
unique way, a linear and continuous operator Tq ∈ L(Lq(Ω),Lq(Ω)) such that Tqg = Rg for all
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g ∈ (D(Ω))3, and by the definition of Hq
0(div; Ω) (see Theorem 2.29), we have Tqg = Rg for all

g ∈ Hq
0(div; Ω).

In an analogous way, we define the operator Ts ∈ L(Ls(Ω),Ls(Ω)). Since q < s we can say
that Tq, Ts ∈ L(Ls(Ω),Lq(Ω)). By the way these operators have been constructed, we know that
Tsg = Tqg for all g ∈ (D(Ω))3, and as a consequence Tsg = Tqg for all g ∈ Ls(Ω).

Joining the two previous results, we find that Tsg = Tqg = Rg for all g ∈ Hq
0(div; Ω)∩Ls(Ω),

which implies
‖Rg‖Ls(Ω) = ‖Tsg‖Ls(Ω) ≤ κs ‖g‖Ls(Ω) ,

and the result is proved.

Lemma 2.31. Let Ω ⊂ RN , N ≥ 2, be a bounded domain with Lipschitz boundary, and let
ud ∈ H1/2

T (∂Ω). The two following results hold:

(i) Let 1 < p < 6. Then, for every number ε > 0 there exists a vector uε ∈ H1
T (Ω) such that

div uε = 0 in Ω , (2.126)
uε = ud on ∂Ω , (2.127)
‖uε‖Lp ≤ C(p)ε ‖ud‖1/2,∂Ω , (2.128)
‖uε‖1 ≤ Cε ‖ud‖1/2,∂Ω , (2.129)

where the constant C(p) depends on p and the domain Ω, and the constant Cε depends on ε
and Ω.

(ii) For every number ε > 0 there exists a vector uε ∈ H1
T (Ω) satisfying (2.126), (2.127) and

‖uε‖L6 ≤ ε . (2.130)

Proof. (i) The proof is analogous to the one of Lemma 2.2 in [2], but in that paper it is done for
p = 4. It is reproduced here because some steps are also used in the proof of (ii).

Let us denote by u0 the standard extension of ud to Ω satisfying ‖u0‖1 ≤ Λ1 ‖ud‖1/2,∂Ω, with Λ1

independent of ud. For each real number ε0 > 0 we introduce the truncation function θε0 ∈ C1(Ω)
defined as in [46, Lemma III.6.2] (see also [53, Lemma IV.2.4]), satisfying the following conditions:
|θε0(x)| ≤ 1 in Ω, θε0(x) = 1 in a neighborhood of ∂Ω and θε0(x) = 0 for dist(x, ∂Ω) ≥ 2δ(ε0),
with δ(ε0) = e−1/ε0 .

Setting wε0 = θε0u0 it is obvious that wε0 ∈ H1
T (Ω), wε0 = ud on ∂Ω and ‖wε0‖1 ≤

C ′
ε0
‖ud‖1/2,∂Ω, with C ′

ε0
a constant depending on ε0 and Ω. Moreover, using Hölder inequality we

obtain

‖wε0‖Lp ≤ ‖u0‖L6 ‖θε0‖Lq ≤ γ6 ‖θε0‖Lq ‖u0‖1 ≤ γ6Λ1 ‖θε0‖Lq ‖ud‖1/2,∂Ω , (2.131)

with γ6 the constant of the imbedding H1(Ω) ⊂ L6(Ω), and q = 6p/(6− p).
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Since wε0 ∈ H1
T (Ω), we can use Theorem 2.30 with q = 2 and s = p, hence for wε0 we can

construct a vector vε0 ∈ H1
0(Ω) such that div vε0 = div wε0 and

‖vε0‖Lp ≤ κp ‖wε0‖Lp ≤ κpγ6Λ1 ‖θε0‖Lq ‖ud‖1/2,∂Ω ,

‖vε0‖1 ≤ β2 ‖div wε0‖0 ≤
√

Nβ2 ‖wε0‖1 ≤
√

Nβ2C
′
ε0
‖ud‖1/2,∂Ω .

Now, setting uε = wε0−vε0 it is clear that uε ∈ H1
T (Ω), uε = ud on ∂Ω, and we have the estimates

‖uε‖1 ≤ (1 + β2C
′
ε0

) ‖ud‖1/2,∂Ω ,

‖uε‖Lp ≤ (1 + κp)γ6Λ1 ‖θε0‖Lq ‖ud‖1/2,∂Ω .

From the definition of θε0 it is clear that ‖θε0‖Lq → 0 as ε0 → 0. Therefore, choosing ε0 such that
‖θε0‖Lq ≤ ε, the result follows with C(p) = (1 + κp)γ6Λ1 and Cε = (1 +

√
Nβ2C

′
ε0

).

(ii) Let ε0 > 0 and construct wε0 = θε0u0 as we did before. Due to the properties of θε0 we
know that wε0(x) → 0 as ε0 → 0 a.e. in Ω, and |wε0(x)| ≤ |u0(x)| a.e. in Ω. As a consequence of
Lebesgue dominated convergence theorem, for any ε > 0 there exists ε1 > 0 such that

‖wε1‖L6 ≤ ε

1 + κ6
. (2.132)

Once again, since wε1 ⊂ H1
T (Ω) we can use Theorem 2.30 with q = 2 and s = 6 to construct a

vector vε1 ∈ H1
0(Ω) such that div vε1 = div wε1 and

‖vε1‖L6 ≤ κ6 ‖wε1‖L6 .

Setting uε = wε1 − vε1 it is clear that uε ∈ H1
T (Ω), uε = ud on ∂Ω and, from the two previous

inequalities, we have the estimate

‖uε‖L6 ≤ (1 + κ6) ‖wε1‖L6 ≤ ε .

Remark 2.10. We notice that in point (ii) of the previous lemma it is not possible to obtain an
estimate of the form (2.129). This is because for p = 6 we cannot use Hölder inequality to obtain
an estimate of the form (2.131), and we just have the estimate (2.132) instead. As a consequence,
the choice of ε1 depends not only on ε but also on the boundary data ud and this fact makes it
impossible to obtain something like (2.129), because the constant would also depend on ud.

The previous Lemma allows us to prove the existence of solution, for a tangential velocity
boundary condition, without assuming smallness of the data.

Theorem 2.32. Let f0, l, k, ψ and Td satisfying (2.17), (2.19), (2.20), (2.101) and (2.102),
respectively. Let ρ̂ : (0,+∞) → (0, +∞) be continuous and non-increasing and ud ∈ H1/2

T (∂Ω).
Then there exists at least one solution ((u,B), T ) to problem (2.92)-(2.100).
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Proof. It is well known that for any u ∈ L4(Ω) we have ‖u‖L4 ≤ meas(Ω)1/12 ‖u‖L6 . Since ud ∈
H1/2

T (∂Ω) we can apply Lemma 2.31 with ε = min
{

meas(Ω)−1/12αa/λ̃c0 , αa/λ̃c1

}
to construct a

field u0 ∈ H1
T (Ω) such that u0|∂Ω = ud and satisfying

‖u0‖L4 <
αa

λ̃c0

, ‖u0‖L6 <
αa

λ̃c1

.

The result follows from Theorem 2.28 and the fact that any fixed point of Ĝ is also a solution to
problem (2.92)-(2.100).

2.4 Results of uniqueness.

In the previous sections we have proved existence results for the two models presented in the
chapter. We are now going to prove uniqueness results under more severe restrictions on the given
data and on the domain. In particular, in the sequel we will assume that Ω is a bounded domain
of class C1,1.

2.4.1 Equivalence of the solution by transposition and the weak solution.

The technique we will use to prove the uniqueness under smallness of the data will require some
results of Lipschitz continuity on bounded sets for the mappings appearing in the definition of G
(see eqn. (2.77)). In particular we will make use of the Lipschitz continuity on bounded sets of
the mapping G̃ defined in (2.71) with respect to u and f . In order to prove this result it is not
convenient to write the thermal problem with L1 sources in the form of (2.61), because the test
functions depend on the velocity u. Instead, we will rewrite the problem in a weak formulation,
using a theorem presented in [51] to show that both formulations are equivalent. This theorem
requires a smooth domain, therefore from this point we are assuming that Ω is bounded and of
class C1,1. The result is proved for a general temperature T ∈ W 1,q(Ω) with q < N/(N −1) = 3/2,
but later on we will only require T ∈ W 1,6/5(Ω).

First of all, let us recall the definition of the bilinear form e : H1(Ω) ×H1(Ω) → R, which is
given by

e(T, z) :=
1

PrRe

∫

Ω
gradT · grad z dx .

Given a vector field u ∈ H1(Ω) and 6/5 ≤ q < 3/2, we introduce the bilinear forms a : H1(Ω) ×
H1(Ω) → R and aq : W 1,q(Ω)×W 1,q′(Ω) → R defined as

a(T, z) :=
1

PrRe

∫

Ω
gradT · grad z dx +

∫

Ω
u · gradT z dx ,

aq(T, z) :=
1

PrRe

∫

Ω
gradT · grad z dx +

∫

Ω
u · gradT z dx .

We notice that these two bilinear forms only differ in the spaces on which they are defined.
Moreover, it holds that a(T, z) = aq(T, z) ∀T ∈ H1(Ω) ∀z ∈ W 1,q′(Ω).



2.4. Results of uniqueness. 53

Finally, we remind the definition of the operator L−u : H1
0 (Ω) → H−1(Ω) and analogously

define the operator L0 : H1
0 (Ω) → H−1(Ω),

L−uT := − 1
PrRe

∆T − u · gradT ,

L0T := − 1
PrRe

∆T .

The following lemma is an immediate consequence of [51, Th. 9.15]:

Lemma 2.33. Let Ω ⊂ R3 be a bounded domain of class C1,1 and g ∈ Lp(Ω), with p ≥ (2∗)′ = 6/5.
Then, the unique solution to the problem





ψ ∈ H1
0 (Ω) ,

e(v, ψ) =
∫

Ω
gv dx ∀v ∈ H1

0 (Ω) (2.133)

satisfies ψ ∈ W 2,p(Ω) ∩W 1,p
0 (Ω).

Lemma 2.34. Let Ω ⊂ R3 be a bounded domain of class C1,1 and u ∈ Z(Ω). If ψ ∈ H1
0 (Ω) is such

that L−uψ ∈ D(Ω), then ψ ∈ C1(Ω).

Proof. Let us introduce the function g defined as

g = L−uψ = − 1
PrRe

∆ψ − u · gradψ , (2.134)

which is clearly in D(Ω). With this definition, ψ is solution to the problem
{

ψ ∈ H1
0 (Ω) ,

L0ψ = g + u · gradψ .

Denoting g̃ = g + u · gradψ, since u ∈ H1(Ω) ⊂ L6(Ω) and gradψ ∈ L2(Ω) we know that
g̃ ∈ L3/2(Ω) and, due to the previous lemma, ψ ∈ W 2,3/2(Ω) ∩ W

1,3/2
0 (Ω). Now, from Theorem

2.3 we know that W 2,3/2(Ω) ⊂ W 1,3(Ω) hence gradψ ∈ L3(Ω). Reasoning as before, g̃ ∈ L2(Ω).
Moreover, from the previous lemma we get ψ ∈ H2(Ω) ∩H1

0 (Ω), and due to Sobolev imbeddings
we get ψ ∈ W 1,6(Ω). Repeating the previous steps we get g̃ ∈ L3(Ω) and ψ ∈ W 2,3(Ω) ⊂ W 1,r(Ω)
for any r ∈ [1, +∞). Repeating the process once more with any r > 6 we obtain ψ ∈ C1(Ω), which
is the desired result.

Now we can prove that any solution by transposition is in fact a solution for the weak formu-
lation.

Lemma 2.35. Let Ω ⊂ R3 a bounded domain of class C1,1, u ∈ Z(Ω) and f ∈ L1(Ω). Then, T is
solution to





T ∈ W 1,q
0 (Ω), 1 < q < 3/2,∫

Ω
T (L−uψ) dx =

∫

Ω
fψ dx ∀ψ ∈ H1

0 (Ω) ∩ L∞(Ω) such that L−uψ ∈ D(Ω) ,
(2.135)
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if and only if it is solution to





T ∈
⋂

1≤q<3/2

W 1,q
0 (Ω),

1
PrRe

∫

Ω
gradT · gradϕ dx +

∫

Ω
u · gradT ϕ dx =

∫

Ω
fϕ dx ∀ϕ ∈ D(Ω) .

(2.136)

Proof. Since the solution to problem (2.135) is independent of q, we know that T ∈ ⋂
1≤q<3/2 W 1,q

0 (Ω),

and in particular T ∈ W
1,6/5
0 (Ω). As a consequence, we can apply Proposition B.3 with q = 6/5

to obtain that 



T ∈ W 1,q
0 (Ω),

aq(T, ϕ) =
∫

Ω
fϕ dx ∀ϕ ∈ D(Ω) ,

(2.137)

and as a consequence, T also satisfies (2.136).

The other implication is a consequence of the previous lemma. Let T be a solution of (2.136),
and ψ ∈ H1

0 (Ω) ∩ L∞(Ω) be such that L−uψ ∈ D(Ω). From the previous lemma we know that
ψ ∈ C1(Ω) and, in particular, ψ ∈ W 1,q′(Ω) ∀q < 3/2. Then, for any q ∈ [6/5, 3/2) we have

∫

Ω
(L−uψ)ϕ dx = 〈L−uψ, ϕ〉D′(Ω),D(Ω) = a(ϕ,ψ) = aq(ϕ,ψ) ∀ϕ ∈ D(Ω) . (2.138)

Now, since D(Ω) is dense in W 1,q
0 (Ω), L−uψ ∈ D(Ω) ⊂ L∞(Ω), ψ ∈ W 1,q′(Ω) and aq(·, ·) is a

bilinear and continuous form, the following Green’s formula holds:
∫

Ω
ϕ(L−uψ) dx = aq(ϕ,ψ) ∀ϕ ∈ W 1,q

0 (Ω) .

In particular, taking ϕ = T , since T is solution to (2.136) we have

∫

Ω
T (L−uψ) dx = aq(T, ψ) =

∫

Ω
fψ dx .

As the result is valid for any arbitrary ψ, we have proved that T is solution to (2.135).

Once we have proved the equivalence of both formulations, we can prove the Lipschitz continuity
result using the weak formulation.

Lemma 2.36. Let f ∈ L1(Ω) and u1, u2 ∈ Z(Ω). Let us consider the mapping G̃ defined in
(2.71). Then the following estimate holds

‖G̃(u1, f)− G̃(u2, f)‖1,q ≤ K3 |û1 − û2|1 ‖G̃(u2, f)‖1,6/5 , (2.139)

with K3 ≡ K3(q) a constant independent of the velocities u1, u2 and of the source term f .
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Proof. Let us denote T̃i = G̃(ui, f) for i = 1, 2. Lemma 2.35 states that the fields T̃i = G̃(ui, f)
are in fact solutions to





T̃i ∈
⋂

1≤q<3/2

W 1,q
0 (Ω),

1
PrRe

∫

Ω
grad T̃i · gradϕ dx +

∫

Ω
ui · grad T̃i ϕ dx =

∫

Ω
fϕ dx ∀ϕ ∈ D(Ω) .

(2.140)

Subtracting the two problems we get




T̃1 − T̃2 ∈
⋂

1≤q<3/2

W 1,q
0 (Ω),

1
PrRe

∫

Ω
grad (T̃1 − T̃2) · gradϕ dx +

∫

Ω
u1 · grad (T̃1 − T̃2) ϕ dx

= −
∫

Ω
(u1 − u2) · grad T̃2 ϕ dx ∀ϕ ∈ D(Ω) .

(2.141)

Since u1,u2 ∈ Z(Ω) ⊂ L6(Ω) and grad T̃2 ∈ Lq(Ω) for every 1 ≤ q < 3/2, and in particular for
q = 6/5, we have (u1 − u2) · grad T̃2 ∈ L1(Ω). Moreover, u1 ∈ Z(Ω) and as a consequence of
Lemma 2.35 we know that

T̃1 − T̃2 = G̃(u1,−(u1 − u2) · grad T̃2) .

Hence, we can apply Proposition 2.18 to obtain

‖T̃1 − T̃2‖1,q ≤ K2(q)‖(u1 − u2) · grad T̃2‖L1 ≤ K2(q) ‖u1 − u2‖L6 ‖grad T̃2‖L6/5

≤ SK2(q) |u1 − u2|1 ‖T̃2‖1,6/5 ,

where S and K2(q) = C(q)K1meas(Ω)
1
N
− 1

q′
√

N are the constants appearing in (2.64) and in
Proposition 2.18, respectively. The result holds with K3 = SK2(q).

2.4.2 Uniqueness result for the model with Boussinesq approximation.

We want to prove the uniqueness of solution in a certain closed ball B(0, R) contained in the space
Z0(Ω), with R > 0. The idea is to prove that, if (û1, B̂1), (û2, B̂2) ∈ B(0, R) are two fixed points
of mapping G defined in (2.77), then there exists a constant L < 1 such that

|(û1, B̂1)− (û2, B̂2)|W = |G((û1, B̂1))− G((û2, B̂2))|W ≤ L|(û1, B̂1)− (û2, B̂2)|W . (2.142)

In order to obtain the previous inequality, we must remind some of the estimates obtained
for the mappings appearing in the definition of G. Moreover, we must also prove some results of
Lipschitz continuity for those mappings.

First of all, we recall that for G3 defined in (2.76), we have the estimate in (2.78),

‖G3((û, B̂))‖L1 ≤ kf |(û, B̂)|2W + 8kf2 |u0|21 + ‖ψ‖L1 .
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Moreover, from its definition, the mapping G3 can also be written in the form

G3((û, B̂)) =
Ec

Re

(
b((û, B̂), (û, B̂)) + d(û) +

1
2
|gradu0 + gradut

0|2
)

+ ψ ,

with the bilinear map b : Z0(Ω) × Z0(Ω) → L1(Ω) and the linear map d : Z0(Ω) → L1(Ω)
respectively defined as

b((û, B̂), (ŵ, D̂)) :=
H2

a

R2
m

curl B̂ · curl D̂ +
1
2
(grad û + grad ût) : (grad ŵ + grad ŵt) ,

d(û) := (grad û + grad ût) : (gradu0 + gradut
0) .

Therefore, for G3 we have the following Lipschitz continuity

‖G3((û1, B̂1))− G3((û2, B̂2))‖L1

=
∥∥∥∥

Ec

Re

(
b((û1, B̂1), (û1, B̂1)) + d(û1)− b((û2, B̂2), (û2, B̂2))− d(û2)

)∥∥∥∥
L1

=
Ec

Re

∥∥∥b((û1, B̂1), (û1 − û2, B̂1 − B̂2)) + b((û1 − û2, B̂1 − B̂2), (û2, B̂2)) + d(û1 − û2)
∥∥∥

L1

≤ Ec

Re

(
max

{
H2

a

R2
m

, 2
} (

|(û1, B̂1)|W + |(û2, B̂2)|W
)
|(û1 − û2, B̂1 − B̂2)|W

+4|u0|1|û1 − û2|1
)

.

For the analysis of the mapping G2, we recall that it has been defined in (2.75). For the mapping
GD we have the bound given in Proposition 2.15, namely,

‖GD(u)‖L∞ ≤ ‖Td‖L∞(∂Ω) . (2.143)

To obtain a Lipschitz constant for GD we denote TD,i = GD(ui), with ui = u0 + ûi for i = 1, 2.
Reasoning as in Lemma 2.16 we obtain

e(TD,1 − TD,2, z) + d(u2, TD,1 − TD,2, z) = −d(u1 − u2, TD,1, z) ∀z ∈ H1
0 (Ω) .

Since TD,1 − TD,2 ∈ H1
0 (Ω) we can take it as test function and using the antisymmetry property

of Lemma 2.13 we find that

e(TD,1 − TD,2, TD,1 − TD,2) = d(u1 − u2, TD,1 − TD,2, TD,1) .

Then, the coerciveness of e(¦, ¦), the continuity of d(¦, ¦, ¦) and the estimate (2.143) yield

|TD,1 − TD,2|1 ≤ λ̃d

αe
‖TD,1‖L∞ ‖u1 − u2‖L6 ≤ λ̃d

αe
‖Td‖L∞(∂Ω) ‖u1 − u2‖L6 , (2.144)

with λ̃d = meas(Ω)1/3 as it was given in Lemma 2.11.

Next step is the study of G̃. We recall that in Proposition 2.18 we have already obtained the
estimate

‖G̃(u, f)‖1,6/5 ≤ K2 ‖f‖L1 , (2.145)
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with K2 = C(6/5)K1meas(Ω)1/6
√

3 a constant independent of the velocity u. To prove a result
of Lipschitz continuity for G̃ we first assume that fi ∈ L1(Ω), for i = 1, 2. Then we have

‖G̃(u1, f1)− G̃(u2, f2)‖1,6/5 ≤ ‖G̃(u1, f1 − f2)‖1,6/5 + ‖G̃(u1, f2)− G̃(u2, f2)‖1,6/5 . (2.146)

For the first term we can use Proposition 2.18 to obtain

‖G̃(u1, f1 − f2)‖1,6/5 ≤ K2 ‖f1 − f2‖L1 , (2.147)

with K2 the same constant appearing above, which is independent of the velocity u1. For the
second term we use Lemma 2.36 and get

‖G̃(u1, f2)− G̃(u2, f2)‖1,6!5 ≤ K3 |u1 − u2|1 ‖G̃(u2, f2)‖1,6/5 , (2.148)

with K3 = SK2.

Now let us assume that (û1, B̂1), (û2, B̂2) ∈ Z0(Ω) are two fixed points of the mapping G and
such that |(ûi, B̂i)|W ≤ R, i = 1, 2. Then, denoting fi = G3(ûi, B̂i) and Ti = G2(ûi, fi), we have

(ûi, B̂i) = G((ûi, B̂i)) = G1((ûi, B̂i), Ti) .

Since (ûi, B̂i), i = 1, 2, are the solutions to the corresponding linearized MHD problems, subtrac-
ting the equations of the two problems and reasoning as in Lemma 2.10 we arrive at

a((û1, B̂1)− (û2, B̂2), (û1, B̂1)− (û2, B̂2)) + c0(û1 − û2, û2, û1 − û2)
−c1(B̂2, B̂1 − B̂2, û1 − û2) + c1(B̂1 − B̂2, B̂1 − B̂2, û2)

= −(G(T1 − T2), û1 − û2)Ω − c0(û1 − û2,u0, û1 − û2)− c1(B̂1 − B̂2, B̂1 − B̂2,u0) .

For any (û, B̂), (v̂, Ĉ), (ŵ, D̂) ∈ Z0(Ω) we have

|c0(û, v̂, ŵ)− c1(Ĉ, B̂, ŵ) + c1(D̂, B̂, v̂)|
≤ λc0 ‖û‖L4 ‖v̂‖L4 |ŵ|1 + λc1 |Ĉ|X ‖B̂‖L3 ‖ŵ‖L6 + λc1 |D̂|X ‖B̂‖L3 ‖v̂‖L6

≤ λc0C
2
0γ2

4 |û|1 |v̂|1 |ŵ|1 + λc1C0γ6C1κ |B̂|X
(
|Ĉ|X |ŵ|1 + |D̂|X |v̂|1

)

≤ λc0C
2
0γ2

4 |û|1 |v̂|1 |ŵ|1 + λc1C0γ6C1κ |B̂|X |(v̂, Ĉ)|W |(ŵ, D̂)|W
≤ max

{
λc0C

2
0γ2

4 , λc1C0γ6C1κ
} |(û, B̂)|W

(
|v̂|21 |ŵ|21 + |(v̂, Ĉ)|2W |(ŵ, D̂)|2W

)1/2

≤
√

2max
{
λc0C

2
0γ2

4 , λc1C0γ6C1κ
} |(û, B̂)|W |(v̂, Ĉ)|W |(ŵ, D̂)|W . (2.149)

Using this last result, along with the inequality (2.41) and the coerciveness of the form a(·, ·), we
obtain

αa|(û1, B̂1)− (û2, B̂2)|W ≤ λG ‖T1 − T2‖L6/5 + max
{

λ̃c0 ‖u0‖L4 , λ̃c1 ‖u0‖L6

}
|(û1, B̂1)− (û2, B̂2)|W

+
√

2max
{
λc0C

2
0γ2

4 , λc1C0γ6C1κ
} |(û2, B̂2)|W |(û1, B̂1)− (û2, B̂2)|W .
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Then, using the estimates for G2 we get

αa|(û1, B̂1)− (û2, B̂2)|W ≤ λG

(
meas(Ω)2/3S |TD,1 − TD,2|1 + K2 ‖f1 − f2‖L1

+SK2 |û1 − û2|1 ‖G̃(u2, f2)‖1,6/5

)
+ max

{
λ̃c0 ‖u0‖L4 , λ̃c1 ‖u0‖L6

}
|(û1, B̂1)− (û2, B̂2)|W

+
√

2max
{
λc0C

2
0γ2

4 , λc1C0γ6C1κ
} |(û2, B̂2)|W |(û1, B̂1)− (û2, B̂2)|W

≤ λG

(
meas(Ω)2/3S2 λ̃d

αe
‖Td‖L∞(∂Ω) |û1 − û2|1 + K2 ‖f1 − f2‖L1

+SK2
2 |û1 − û2|1 ‖f2‖L1

)
+ max

{
λ̃c0 ‖u0‖L4 , λ̃c1 ‖u0‖L6

}
|(û1, B̂1)− (û2, B̂2)|W

+
√

2max
{
λc0C

2
0γ2

4 , λc1C0γ6C1κ
} |(û2, B̂2)|W |(û1, B̂1)− (û2, B̂2)|W .

Finally, using the Lipschitz continuity result and the estimate obtained for G3 we have

αa|(û1, B̂1)− (û2, B̂2)|W ≤ λG

[
meas(Ω)2/3S2 λ̃d

αe
‖Td‖L∞(∂Ω) |û1 − û2|1

+K2
Ec

Re

(
max

{
H2

a

R2
m

, 2
} (

|(û1, B̂1)|W + |(û2, B̂2)|W
)

+ 4 |u0|1
)
|(û1, B̂1)− (û2, B̂2)|W

+SK2
2 (kf |(û2, B̂2)|2W + 8kf2 |u0|21 + ‖ψ‖L1) |û1 − û2|1

]

+max
{

λ̃c0 ‖u0‖L4 , λ̃c1 ‖u0‖L6

}
|(û1, B̂1)− (û2, B̂2)|W

+
√

2max
{
λc0C

2
0γ2

4 , λc1C0γ6C1κ
} |(û2, B̂2)|W |(û1, B̂1)− (û2, B̂2)|W .

As we have assumed that |(ûi, B̂i)|W ≤ R for i = 1, 2, it is possible to find a constant L < 1
such that (2.142) is satisfied if

k̃2R
2 + k̃1R + (k̃0 − αa) < 0 , (2.150)

with

k̃2 = λGSK2
2kf , (2.151)

k̃1 = 2λGK2
Ec

Re
max

{
H2

a

R2
m

, 2
}

+
√

2max
{
λc0C

2
0γ2

4 , λc1C0γ6C1κ
}

, (2.152)

k̃0 = λG

(
meas(Ω)2/3S2 λ̃d

αe
‖Td‖L∞(∂Ω) + 4K2

Ec

Re
|u0|1

+SK2
2 (8kf2 |u0|21 + ‖ψ‖L1)

)
+ max

{
λ̃c0 ‖u0‖L4 , λ̃c1 ‖u0‖L6

}
. (2.153)

We are seeking a closed ball of radius R to ensure the uniqueness but, at the same time, we
must have a result of existence in that ball. We first consider the case k0 > 0, where k0 is the
constant appearing in Lemma 2.21. We recall that in this case, in order to affirm the existence of
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solution we assume conditions (2.85) are satisfied, and there exists a solution to our problem in
the closed ball B(0, R−), with R− the radius given in (2.84). We know that

R2
− =

−k0 + (αa − k1)R−
k2

,

with k1 and k2 the two other constants appearing in the proof of Lemma 2.21. Substituting R by
R− in equation (2.150) we obtain that R− should satisfy

(
k̃1 +

k̃2

k2
(αa − k1)

)
R− + k̃0 − αa − k̃2

k2
k0 < 0 . (2.154)

Now, on one hand we know that

R− =
(αa − k1)−

√
(αa − k1)2 − 4k0k2

2k2
=

2k0

(αa − k1) +
√

(αa − k1)2 − 4k0k2

≤ 2k0

(αa − k1)
,

and on the other hand, since R−R+ = k0/k2 > 0 and 0 < R− ≤ R+, we have

R− ≤
√

k0

k2
.

Using these two inequalities we obtain that (2.154) holds if

k̃1

√
k0

k2
+

k̃2

k2
2k0 + k̃0 − αa − k̃2

k2
k0 < 0 . (2.155)

Hence, we can prove that there exists a unique solution assuming certain smallness of the data:

Theorem 2.37. If (u0,B0) ∈ Z0(Ω), with curlB0 = 0, Td ∈ H1/2(∂Ω)∩L∞(∂Ω) and ψ ∈ L1(Ω),
under the assumptions

‖u0‖L4 <
αa

λ̃c0

, (2.156)

‖u0‖L6 <
αa

λ̃c1

, (2.157)

0 < Ee(u0,B0, Td,k, f0, ψ) ≤ (k1 − αa)2

4λGK2kf
, (2.158)

and
Eu(u0,B0, Td,k, f0, ψ) < αa , (2.159)

there exists a constant R > 0 such that there is only one fixed point of mapping G in the ball
B(0, R).

Both Ee and Eu depend only on the boundary and source data. The first one is defined as in
Lemma 2.21, whereas the second one has the expression

Eu(u0,B0, Td,k, f0, ψ) = k̃1

√
k0

k2
+

k̃2

k2
k0 + k̃0 ,

with k0 and k2 the constants appearing in Lemma 2.21, and k̃1, k̃2, k̃3 the constants defined in
(2.151)-(2.153).
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Proof. The existence has been proved in Theorem 2.22 under the hypotheses (2.156)-(2.158); in
particular, for a ball of radius

R− =
(αa − k1)−

√
(αa − k1)2 − 4k0k2

2k2
.

Under the assumption (2.159) we have proved that R− satisfies

k̃2R
2
− + k̃1R− + (k̃0 − αa) < 0 ,

and this implies that there exists a constant L < 1 such that, if (û1, B̂1), (û2, B̂2) ∈ B(0, R−) in
the space Z0(Ω) are two fixed points of the mapping G, then

|(û1, B̂1)− (û2, B̂2)|W = |G((û1, B̂1))− G((û2, B̂2))|W ≤ L|(û1, B̂1)− (û2, B̂2)|W ,

and as a consequence (û1, B̂1) = (û2, B̂2).

Summarizing, we have proved in the previous theorem that, assuming smallness of the boundary
and source data of the coupled problem and for a certain lifting (u0,B0) of the boundary data,
there exists a unique solution to the original MHD problem in a neighborhood of the lifting.

Remark 2.11. Concerning the case k0 = 0 we have already seen in Remark 2.6 that the trivial
solution is a fixed point of mapping G. We can prove that this solution is unique in a certain ball.
First of all, we notice that, due to their definitions, k0 = 0 yields k̃0 = 0 and the inequality (2.150)
becomes

k̃2R
2 + k̃1R− αa < 0 .

Since k̃2αa > 0, the corresponding quadratic equation has one real negative and one real positive
roots. In particular, the inequality is satisfied for any value R ∈ [0, R̃+), with

R̃+ =
−k̃1 +

√
k̃2

1 + 4k̃2αa

2k̃2

.

As a consequence, we know that the trivial solution is unique in the ball B(0, R̃+) of Z0(Ω).

2.4.3 Uniqueness result for the second model.

In the previous section we have proved a uniqueness result for the MHDmodel under the Boussinesq
approximation. Now we are going to prove a uniqueness result for the model introduced in Section
2.3. Once again we are going to prove, under smallness of the data, that there exists a closed ball
B(0, R) such that there is only one fixed point of the mapping Ĝ, defined in (2.119). The idea is
to obtain some results of Lipschitz continuity on bounded sets for the mappings appearing in the
definition of Ĝ.

In order to prove the Lipschitz continuity result, we must first assume that the response function
ρ̂ is Lipschitz continuous in the sense that

|ρ̂(θ1)− ρ̂(θ2)| ≤ Λρ|θ1 − θ2| ∀θ1, θ2 ∈ [Tmin, +∞) . (2.160)
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Now, we have to analyze one by one the mappings appearing in the definition of Ĝ. First of
all, for the mapping Ĝ3 we have

‖Ĝ3((û, B̂))‖L1 ≤ kf |(û, B̂)|2W + 8kf2 |u0|21 + ‖ψ‖L1 ,

with kf = max{kf1, 8kf2}, kf1 = u2H2
a/(cpT ReR

2
m), kf2 = u2/(2cpT Re), and also

‖G3((û1, B̂1))− G3((û2, B̂2))‖L1

≤ 1
Re

u2

cpT
(

max
{

H2
a

R2
m

, 2
} (

|(û1, B̂1)|W + |(û2, B̂2)|W
)
|(û1 − û2, B̂1 − B̂2)|W

+4|u0|1|û1 − û2|1
)

.

The definition of mapping Ĝ2 is identical to that of mapping G2, hence the same estimates proved
in the previous section for this mapping, or for the mappings GD and G̃, remain valid. However,
the result given in (2.144) can be improved in the sense that, instead of the norm ‖Td‖L∞(∂Ω), it
is the difference between the maximum and the minimum temperatures on the boundary what is
involved. To obtain the result, we first observe that the solution GD(u) indeed depends on the
boundary condition Td. Therefore, introducing a slight abuse of notation, we will refer to GD(u) as
GD(u, Td). Since problem (2.48) is linear, we know that GD(u, Td) = GD(u, Td − c) + GD(u, c) =
GD(u, Td − c) + c for every constant c ∈ R. In particular, taking c = Tmin the value defined in
(2.102), we get

GD(u1, Td)−GD(u2, Td) = GD(u1, Td − Tmin)−GD(u2, Td − Tmin) ,

and the result obtained in (2.144) is transformed into

|TD,1 − TD,2|1 ≤ λ̃d

αe
‖Td − Tmin‖L∞(∂Ω) ‖u1 − u2‖L6 . (2.161)

Finally, let us assume that (û1, B̂1) , (û2, B̂2) ∈ Z0(Ω) are two fixed points of the mapping Ĝ
and such that |(ûi, B̂i)|W ≤ R, i = 1, 2. We denote fi = Ĝ3((ûi, B̂i)) and Ti = Ĝ2(ûi, fi). With
this notation we know that

(ûi, B̂i) = Ĝ((ûi, B̂i)) = Ĝ1((ûi, B̂i), Ti) ,

which means that the fields (ûi, B̂i) are solution to their respective linearized MHD problems.
Reasoning as in Lemma 2.10 (see also Lemma 2.26), we obtain

a((û1, B̂1)− (û2, B̂2), (û1, B̂1)− (û2, B̂2)) + c0(û1 − û2, û2, û1 − û2)
−c1(B̂2, B̂1 − B̂2, û1 − û2) + c1(B̂1 − B̂2, B̂1 − B̂2, û2)

= −〈Ĝ(T1)− Ĝ(T2), û1 − û2〉Ω − c0(û1 − û2,u0, û1 − û2)− c1(B̂1 − B̂2, B̂1 − B̂2,u0) ,

with 〈Ĝ(T1)− Ĝ(T2), û1− û2〉Ω =
∫
Ω (ρ̂(T1)− ρ̂(T2))g · (û1 − û2) dx. For this term, we know that

∣∣∣∣
∫

Ω
(ρ̂(T1)− ρ̂(T2))g · (û1 − û2) dx

∣∣∣∣ ≤ Sg ‖ρ̂(T1)− ρ̂(T2)‖L6/5 |û1 − û2|1 ,
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being g the modulus of the gravity acceleration, and S the constant appearing in (2.64).

Using this inequality along with (2.41), (2.149), the coerciveness of a(¦, ¦) and the Lipschitz
continuity of ρ̂ stated in (2.160) we get

αa|(û1, B̂1)− (û2, B̂2)|W ≤ max
{

λ̃c0 ‖u0‖L4 , λ̃c1 ‖u0‖L6

}
|(û1, B̂1)− (û2, B̂2)|W

+SgΛρ ‖T1 − T2‖L6/5 +
√

2max
{
λc0C

2
0γ2

4 , λc1C0γ6C1κ
} |(û2, B̂2)|W |(û1, B̂1)− (û2, B̂2)|W .

Then, using the estimates for Ĝ2 and Ĝ3 and reasoning as in the previous section, we obtain

αa|(û1, B̂1)− (û2, B̂2)|W ≤ SgΛρ

[
meas(Ω)2/3S2 λ̃d

αe
‖Td − Tmin‖L∞(∂Ω) |û1 − û2|1

+K2
1
Re

u2

cpT
(

max
{

H2
a

R2
m

, 2
} (

|(û1, B̂1)|W + |(û2, B̂2)|W
)

+ 4 |u0|1
)
|(û1, B̂1)− (û2, B̂2)|W

+SK2
2 (kf |(û2, B̂2)|2W + 8kf2 |u0|21 + ‖ψ‖L1) |û1 − û2|1

]

+max
{

λ̃c0 ‖u0‖L4 , λ̃c1 ‖u0‖L6

}
|(û1, B̂1)− (û2, B̂2)|W

+
√

2max
{
λc0C

2
0γ2

4 , λc1C0γ6C1κ
} |(û2, B̂2)|W |(û1, B̂1)− (û2, B̂2)|W .

As we did in the previous section and since we have assumed that the fixed points (û1, B̂1), (û2, B̂2)
belong to the closed ball B(0, R) in Z0(Ω), we can prove that there exists a constant L < 1 such
that

|(û1, B̂1)− (û2, B̂2)|W = |Ĝ((û1, B̂1))− Ĝ((û2, B̂2))|W ≤ L|(û1, B̂1)− (û2, B̂2)|W , (2.162)

whenever R satisfies the inequality

k̃2R
2 + k̃1R + (k̃0 − αa) < 0 , (2.163)

with

k̃2 = SgΛρSK2
2kf , (2.164)

k̃1 = 2SgΛρK2
1
Re

u2

cpT max
{

H2
a

R2
m

, 2
}

+
√

2max
{
λc0C

2
0γ2

4 , λc1C0γ6C1κ
}

, (2.165)

k̃0 = SgΛρ

(
meas(Ω)2/3S2 λ̃d

αe
‖Td − Tmin‖L∞(∂Ω) + 4K2

1
Re

u2

cpT |u0|1

+ SK2
2 (8kf2 |u0|21 + ‖ψ‖L1)

)
+ max

{
λ̃c0 ‖u0‖L4 , λ̃c1 ‖u0‖L6

}
. (2.166)

As we have already noticed in Remark 2.9, under the conditions ‖u0‖L4 < αa/λ̃c0 and
‖u0‖L6 < αa/λ̃c1, and setting R0 = k0/(αa − k1), we know that every solution (û, B̂) ∈ Z0(Ω)
belongs to the closed ball B(0, R0) and there exists at least one solution in that ball. Thus, to
prove the uniqueness of solution in the mentioned ball we must give conditions to ensure that R0

satisfies (2.163).
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Theorem 2.38. Let (u0,B0) ∈ Z0(Ω), with curlB0 = 0, and let ψ ∈ L1(Ω) and Td ∈ H1/2(∂Ω)∩
L∞(Ω) satisfying (2.101) and (2.102), respectively. Under the assumptions

‖u0‖L4 <
αa

λ̃c0

, (2.167)

‖u0‖L6 <
αa

λ̃c1

, (2.168)

k̃2k
2
0 + k̃1(αa − k1)k0 + (k̃0 − αa)(αa − k1)2 < 0 , (2.169)

there exists a unique fixed point of the mapping Ĝ : Z0(Ω) → Z0(Ω). Moreover, it belongs to the
closed ball B(0, R0), with R0 = k0/(αa − k1).

The constants k1 and k0 have been introduced in Proposition 2.23, and k̃2, k̃1, k̃0 are given by
(2.164)-(2.166).

Proof. From Proposition 2.23 and Theorem 2.28 we know that, under the assumptions (2.167)-
(2.168), there exists at least one fixed point for the mapping Ĝ and every fixed point belongs to
the closed ball B(0, R0). Moreover, from the assumption (2.169) we easily deduce that R0 fulfills
(2.163). Thus, there exists a constant L < 1 such that (2.162) is satisfied for every couple of
fixed points (û1, B̂1), (û2, B̂2) ∈ B(0, R0). As a consequence, there is only one fixed point for the
mapping Ĝ in that ball.

The assumptions (2.167)-(2.168) clearly impose a condition of smallness on the lifting u0, and as
we have seen before, they are equivalent to the condition αa− k1 > 0. Concerning the assumption
(2.169), and recalling the definition of constants k0 and k̃0, we notice that this condition first
imposes smallness of the source data f ,k and ψ, and of the liftings u0 and B0. It also requires
a small difference between the minimum and maximum temperature on the boundary, and a
condition of smallness on the maximum density ρ̂max. If we assume that the density function ρ̂
tends to zero as the temperature tends to infinity, then these two conditions can be fulfilled at the
same time, and therefore the condition (2.169) can be also satisfied.

Remark 2.12. In Section 2.3.1 we have assumed that ρ̂ is continuous, strictly positive and non-
increasing. Hence, there exists a limit of ρ̂ as the temperature tends to infinity, but we cannot
assure that this limit is equal to zero. Anyway, the equations of the model can be modified to obtain
a result analogous to Theorem 2.38. Let us denote by ρ̂∞ the previous limit. Summing up and
subtracting the term ρ̂∞g in equation (2.94), denoting ρ̆ = ρ̂ − ρ̂∞ and introducing a modified
pressure p′ = p− ρ̂∞g ·x, as it is done in the Boussinesq approximation, we arrive at the equation

− 1
H2

a

∆u +
1
N

(gradu)u + grad p′ − 1
Rm

(curlB)×B = f0 + ρ̆(T )g,

with ρ̆ a function satisfying the same properties that ρ̂, and its limit is zero as temperature tends
to infinity.

Remark 2.13. In Section 2.3.5 we proved that it is always possible to construct a lifting u0

satisfying (2.167)-(2.168). We cannot affirm the same about condition (2.169) because, due to the
definitions of k0 and k̃0, this condition requires at the same time smallness of |u0|1 and ‖u0‖L6.
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According to Theorem 1.5.1.10 in [54] we know that there exists a constant K such that, for any
lifting u0 ∈ H1(Ω) of the boundary data ud, it holds

‖ud‖L2(∂Ω) ≤ K
(
ε1/2 |u0|21 + ε−1/2 ‖u0‖2

0

)
∀ε ∈ (0, 1) .

Using Lemma 2.31 we can construct u0(ε) satisfying ‖u0(ε)‖L6 ≤ ε, but taking the same ε in the
previous inequality, and by using Hölder inequality, it is easily seen that |u0(ε)|1 tends to infinity
as ε tends to zero.



Chapter 3

Mathematical model for the induction
furnace.

The mathematical results presented in the previous chapter correspond to a general MHD model.
However, that model is not the most convenient in order to carry out a numerical simulation of the
induction furnace. First, in a realistic setting the domain must be split into several subdomains,
which correspond to different materials in the furnace. Moreover, the hydrodynamic model is only
taken into account in the molten part and, in order to consider the melting of the region, the heat
equation should be rewritten in terms of the enthalpy.

This chapter is devoted to present the mathematical model that will be used to simulate the
induction furnace, considering some simplifications from the full MHD equations, but different
from those introduced in the previous chapter. The model is written in an axisymmetrical setting,
which simplifies the numerical simulation.

3.1 Statement of the problem.

We first recall the geometry description of the induction furnace given in Chapter 1. The induc-
tion furnace consists of a helical coil surrounding a cylindrical crucible. The electrically conducting
crucible contains the material to be melted, and is surrounded by refractory and insulating ma-
terials to avoid heat losses. An alternating low frequency current traversing the coil produces an
oscillating magnetic field, which generates eddy currents in the conducting materials within the
workpiece. These currents, due to the Joule effect, produce heat in the conducting crucible in such
a way that the metal is also heated until it melts.

In order to state the problem in an axisymmetric setting, the helical induction coil has to be
replaced by m rings having toroidal geometry. Let Ω0 be the radial section of the conducting
parts of the workpiece and Ω1,Ω2, . . . , Ωm be the radial sections of the turns of the coil, which
are assumed to be simply connected. Moreover, we denote by Ω the radial section of the set of

65
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Figure 3.1: Radial section of inductors and workpiece.

conductors, i.e., inductors and conducting materials in the workpiece, given by (see Figure 3.1),

Ω =
m⋃

k=0

Ωk .

Finally, we denote by Ωc the complementary set of Ω in the half-plane {(r, z) ∈ R2 : r ≥ 0}, and
notice that this is an unbounded set corresponding to the radial section of all the insulating regions
of the workpiece and the air surrounding the whole device.

Let ∆ ⊂ R3 be the bounded open set generated by the rotation around the z−axis of Ω and
∆c the complementary set of ∆ in R3, which corresponds to the set generated by rotation of Ωc

around the z−axis. Analogously, we denote by ∆k, k = 0, . . . , m the subset of R3 generated by the
rotation of Ωk, k = 0, . . . , m, respectively, around the z−axis (see Figure 3.2). In particular, ∆0 is
assumed to be simply connected. Moreover, from the way we have constructed ∆k, k = 1, . . . , m,
we know that the spaces of Neumann harmonic functions Hσ(∆k), introduced in (A.19), have
dimension equal to one.

We denote by Σ the boundary of ∆ and by Γ its intersection with the half-plane {(r, z) ∈ R2 :
r > 0}. We notice that Σ = ∪m

k=0Σk, where Σk denotes the boundary of ∆k. Moreover, we assume
that the boundary of Ω is the union of Γ and Γs, the latter being a subset of the symmetry axis
(see Figure 3.1).
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Figure 3.2: Sketch of a toroidal turn ∆k.

3.2 The electromagnetic model.

Since the furnace works with alternating currents, we will use the time harmonic eddy-currents
model, which was already introduced in Chapter 1. The equations of the model are the following

curlH = J in R3 , (3.1)
iωB + curlE = 0 in R3 , (3.2)

div B = 0 in R3 , (3.3)

which are completed with the constitutive laws

B = µH in R3 , (3.4)

J =

{
σE in ∆,
0 in ∆c.

(3.5)

Since the equations hold in R3, we also require for the fields a certain behaviour at infinity

E(x) = O(|x|−1), uniformly for |x| → ∞, (3.6)
H(x) = O(|x|−1), uniformly for |x| → ∞. (3.7)

Moreover, equations (3.1) and (3.5) force us to impose the following compatibility conditions

div J = 0 in ∆, J · n = 0 on Σ , (3.8)

where n is a unit normal vector to Σ outward from ∆.

We also assume that the current intensities traversing each coil section I = (I1, . . . , Im) are
given, and we add to the model the following constraints

∫

Ωk

J · ν = Ik, k = 1, . . . ,m, (3.9)

where ν denotes a unit normal vector to the sections Ωk.
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Remark 3.1. In order to add the constraints given in (3.9) to the model, we will have to relax
some of the equations (3.1)-(3.7). This need is due to the fact that problem (3.1)-(3.9) does not
admit solution unless all the prescribed intensities Ik are null. Indeed, multiplying the conjugate of
(3.2) by H, integrating in R3 and using (3.6)-(3.7) we have

∫

R3

curl Ē ·H + iω
∫

R3

µH̄ ·H =
∫

R3

Ē · curlH + iω
∫

R3

µH̄ ·H = 0 .

Now equations (3.1) and (3.5) allow us to replace E by σ−1curlH in ∆, and recalling that curlH =
0 in ∆c we obtain ∫

∆

1
σ
curl H̄ · curlH + iω

∫

R3

µH̄ ·H = 0 ,

hence H = 0 in R3 and curlH = 0 in ∆, which implies E|∆ = 0 and J = 0. As a consequence
the vector I also vanishes.

To overcome this difficulty, throughout this chapter we are going to relax equation (3.2) in the
sense that it will be imposed in conductor and insulator separately, i.e.,

iωB + curlE = 0 in ∆, (3.10)
iωB + curlE = 0 in ∆c. (3.11)

We are going to introduce a formulation in terms of a magnetic vector potential. To do that,
we will also need to introduce a suitable scalar potential, which will be a function of the space of
Neumann harmonic fields Hσ(∆). Firstly, from equation (3.3) we can affirm that there exists a
magnetic vector potential A such that

B = curlA, (3.12)

so equation (3.10) can be rewritten in the form

iωcurlA + curlE = 0 in ∆. (3.13)

Now, since curl (iωA + E) = 0 we can use the decomposition (A.23) considering each connected
component of ∆ separately, so that

(iωA + E)|Ωk
= −gradψk − Vk%k in ∆k , k = 0, . . . ,m , (3.14)

where ψk ∈ H1(∆k) and %k is the basis function of the space Hσ(∆k), as defined in (A.19). From
a physical point of view, the complex numbers Vk can be interpreted as voltage drops (see, for
instance, [59]). In our particular case, since the workpiece ∆0 is simply connected we know that
%0 = 0.

Taking into account that H = µ−1curlA and considering equations (3.1) and (3.5) we obtain

iωσA + curl (
1
µ
curlA) = −σ(

m∑

k=0

gradψk +
m∑

k=1

Vk%k). (3.15)

Notice, however, that the vector potential A is not unique because it can be altered by any
gradient. To ensure the uniqueness of A we also require some gauge conditions.
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In the conductor region ∆ we set div (σA) = 0 and the boundary condition σA · n = 0 on Σ.
From these gauge conditions, and from the compatibility conditions (3.8) we can infer that

div (iωσA + σE) = 0 , (iωσA + σE) · n = 0 on Σ , (3.16)

then recalling (3.13) and the definition of Hσ(∆k) we conclude that, in each connected component
(iωA + E)|∆k

∈ Hσ(∆k), which implies that functions ψk in (3.14) are null and equation (3.15)
can be rewritten as

iωσA + curl (
1
µ
curlA) = −σ

m∑

k=1

Vk%k in ∆ . (3.17)

In the air region ∆c we impose the gauge conditions

div A = 0 in ∆c and
∫

Σj

A · n = 0, j = 0, . . . ,m . (3.18)

We notice that A ∈ H(div;∆c), but we are not going to assume that A ∈ H(div;R3) so the
normal trace A · n on Σ may be discontinuous and hence the integral conditions in (3.18) are not
redundant.

Next, we obtain a weak formulation of equations (3.17) and (3.18) assigning the voltage drops
Vk. We will come back later to the assignment of the current intensities given by conditions (3.9).

3.2.1 Weak formulation.

In order to propose a weak formulation of the previous problem we introduce some functional
spaces and sets. Let Ωe ⊂ R3 be an open set, the complement of which is bounded in R3. We
define the Beppo-Levi space

W 1,−1(Ωe) :=

{
φ :

φ(x)√
1 + |x|2 ∈ L2(Ωe), gradφ ∈ L2(Ωe)

}
,

and its vectorial counterpart

W1,−1(Ωe) :=

{
Φ :

Φ(x)√
1 + |x|2 ∈ L2(Ωe), gradΦ ∈ (L2(Ωe))3×3

}
.

In our particular setting, we will also make use of the Beppo-Levi space

X =

{
G :

G(x)√
1 + |x|2 ∈ L2(R3), curlG ∈ L2(R3)

}
,

and its subset

Y =

{
G ∈ X : div G = 0 in ∆c,

∫

Σj

G · n = 0, j = 0, . . . ,m

}
.
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We assume, in a first step, that the complex numbers Vk are given for k = 1, . . . , m and try
to find the vector potential A. After that, we will show how to solve the problem by giving the
intensity vector I = (I1, . . . , Im) as data, and with the voltages Vk playing the role of Lagrange
multipliers.

Multiplying equation (3.17) by the complex conjugate of a test function G, integrating in R3

and using a Green’s formula we can easily obtain the following weak formulation:

Problem PV.- Given V = (V1, . . . , Vm) ∈ Cm, find A ∈ Y such that

iω
∫

R3

σA · Ḡ +
∫

R3

1
µ
curlA · curl Ḡ = −

m∑

k=1

Vk

∫

∆k

σ%k · Ḡ, ∀G ∈ Y . (3.19)

Remark 3.2. In order to impose the current intensities across the inductors and to avoid relaxing
the Faraday’s law as we did in previous sections, the authors of [9] propose to modify the Ohm’s
law as follows

J = σE− σ
m∑

k=1

Vk%k in ∆. (3.20)

Notice that, in this way, the current density is divided into two parts: σE and a source term which
is distributed in the coils ∆k. Then, we notice that, by using the Faraday’s law in R3, equation
(3.14) reads

iωA + E = −gradΦ in R3 . (3.21)

Imposing the same gauge conditions and arguing as in Section 3.2, we can arrive at the same weak
problem PV.

Theorem 3.1. Problem PV has a unique solution.

Proof. The proof is essentially similar to the one of Theorem 2.1 in [58] (see also [10]). We
reproduce it here for the sake of completeness and because some steps will also be used in the
proof of another result below. From now on, C denotes a generic positive constant.

The main task of the proof is to show the coerciveness of the sesquilinear form a(·, ·), defined
as

a(A,G) := iω
∫

R3

σA · Ḡ +
∫

R3

1
µ
curlA · curl Ḡ , (3.22)

on the subspace
Ỹ := {G ∈ X : div G = 0 in ∆c} . (3.23)

To do this we take G ∈ Ỹ and consider its restriction to the conductors G|∆ ∈ H(curl ;∆).
According to [58, Th. 3.2] we can construct G̃ ∈ H(curl ;R3) an extension of G|∆ to R3 satisfying

‖G̃‖H(curl ;∆c) ≤ C ‖G× n‖
H
−1/2
‖ (divΓ ,Σ)

.

Moreover, using the same technique described in [79, Th. 5.4.2] this extension can be divergence-
free. Defining w := G − G̃ ∈ Ỹ we notice that w has vanishing tangential components on the
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interface Σ. Next, we set uc := curlw|∆c , and from its definition and equation (A.16) we know
that

uc ∈ {Φ ∈ H(div ; ∆c) : div Φ = 0, Φ · n = 0 on Σ} . (3.24)

Denoting by u its extension by zero into the set of conductors ∆, we obtain u ∈ H(div ;R3) with
div u = 0. According to [52, Th. 2.5] we can find a unique vector potential Ψ ∈ W1,−1(R3) such
that curlΨ = u, div Ψ = 0 and

‖Ψ‖W1,−1(R3) ≤ C ‖u‖L2(R3) . (3.25)

By definition, curlΨ = 0 in ∆, and from (A.23) we obtain the orthogonal decomposition

Ψ|∆ = gradφ + %, φ ∈ H1(∆)/C, % ∈ H(∆) , (3.26)

where H(∆) is the finite dimensional space of Neumann harmonic vector-fields introduced in
(A.19), taking ε as the identity matrix. Now we solve the exterior problem

div (gradλ) = 0 in ∆c, λ = φ on Σ ,

in the Beppo-Levi space W 1,−1(∆c) and observe that

‖λ‖W 1,−1(∆c) ≤ C
∥∥φ|Σ

∥∥
1/2,Σ

≤ C ‖φ‖H1(∆) ≤ C ‖Ψ‖H1(∆) ≤ C ‖curlw‖L2(R3) . (3.27)

Now, defining ζ := Ψ− gradλ−w we have

curl ζ = 0 in ∆c, div ζ = 0 in ∆c . (3.28)

Moreover, the tangential components of ζ on Σ agree with those of % ∈ H(∆). Along with (3.28)
this implies that ζ belongs to the following space of harmonic vector fields in ∆c

N (∆c) :=
{
G ∈ L2(∆c) : curlG = 0, div G = 0, G× n = µ× n on Σ, for some µ ∈ H(∆)

}
.

This space can be easily seen to be finite dimensional, because the space of Dirichlet harmonic
fields in ∆c, already introduced in (A.24) and defined as

D(∆c) :=
{
G ∈ L2(∆c) : curlG = 0, div G = 0 in ∆c and G× n = 0 on Σ

}
,

and the space of Neumann harmonic fields in ∆, H(∆), are also finite dimensional.

Summing up, we get in ∆c

G = G̃ + w = q− ζ, q := G̃ + Ψ− gradλ ,

and using the estimates (3.25) and (3.27), the construction of the extension G̃ and the continuity
of the tangential trace operator, stated in Section A.1.1, we get

∥∥∥∥∥
q(x)√
1 + |x|2

∥∥∥∥∥
L2(∆c)

≤ C
(
‖Ψ‖W1,−1(∆c) + ‖G̃‖L2(∆c) + ‖λ‖W 1,−1(∆c)

)

≤ C
(
‖curlG‖L2(∆c) + ‖G̃‖H(curl ;∆c)

)
≤ C

(
‖curlG‖L2(∆c) + ‖G‖H(curl ;∆)

)
.
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We conclude that, for a constant c > 0 depending on the physical properties µ, σ and on the
conducting subdomain ∆, it holds

|a(G,G)| ≥ c




∥∥∥∥∥
(G + ζ)(x)√

1 + |x|2

∥∥∥∥∥
2

L2(∆c)

+ ‖G‖2
L2(∆) + ‖curlG‖2

L2(R3)


 .

Recalling that the norm on Ỹ agrees with the norm on X and that ζ belongs to a finite dimensional
space, the bilinear form a(·, ·) is seen to be Ỹ-elliptic modulo a compact perturbation, or coercive
in the sense of [71, Th. 2.34].

According to Theorem 2.34 in [71], existence of solutions of the weak problem follows from
uniqueness. In order to prove the uniqueness we are going to see that if the right hand side of
Problem PV is equal to zero, then the solution is A = 0. Indeed, if V = 0, by taking G = A
as the test function in (3.19) we get a(A,A) = 0, hence curlA = 0 in R3 and A|∆ = 0. The
latter yields A × n = 0 on Σ. Moreover, since A ∈ Y , we also have div A = 0 in ∆c, and as a
consequence A ∈ D(∆c).

Finally, from the definition of Y we also know that
∫

Σj

A · n = 0, j = 0, . . . , m ,

and as div A = 0 in ∆c, the result presented in (A.27) allows us to affirm that the vector field A
is orthogonal to the space D(∆c). Since A ∈ D(∆c), we conclude that A|∆c = 0.

The next Proposition is a straightforward adaptation to unbounded domains of results included
in Section 2 of [8]:

Proposition 3.2. Let A be the unique solution of problem PV. Then equation (3.19) also holds
for any G ∈ X .

Theorem 3.3. Given V = (V1, . . . , Vm) ∈ Cm, let A be the corresponding solution to Problem PV.
Let us define B := curlA, H := µ−1B, E := −iωA−∑m

k=1 Vk%k in ∆, J|∆ := σE and J|∆c := 0.
Then the following equalities hold true:

curlH = J in R3, (3.29)
iωB + curlE = 0 in ∆, (3.30)

div B = 0 in R3, (3.31)
J · n = 0 on Σ, (3.32)

and the gauge conditions for A

div (σA) = 0 in ∆, σA · n = 0 on Σ , (3.33)

are also satisfied.
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Proof. We notice that, from the previous Proposition we are allowed to take as test function G in
(3.19) any smooth function with compact support in R3. By doing so, we obtain,

iωσA + curl (
1
µ
curlA) + σ

m∑

k=1

Vk%k = 0 in R3 , (3.34)

in the sense of distributions. Hence, in particular, curl (µ−1curlA) belongs to L2(R3). Then, if
we define the magnetic induction B in R3 as

B := curlA,

and the electric field by

E := −iωA−
m∑

k=1

Vk%k in ∆, (3.35)

taking the curl operator in (3.35) we obtain that (3.30) is satisfied, because curl%k = 0. Moreover,
from the definition of B it is clear that (3.31) holds.

Then, if we define the magnetic field as H := µ−1B and the current density as J|∆ := σE and
J|∆c := 0, from equations (3.34) and (3.35) we clearly obtain (3.29).

Moreover, since curlH = J in L2(R3), we know that div J = 0 in R3. As a consequence
J ∈ H(div;R3) and the normal trace J · n is well defined on the interface Σ. Since J vanishes in
∆c we have J · n = 0 on Σ so equation (3.32) is also satisfied.

The first gauge condition for A in the conductors is easily obtained taking the divergence
operator in equation (3.34) and reminding that div (σ%k) = 0. The second gauge condition is a
consequence of equation (3.35), and the fact that σ%k ·n = 0 and σE ·n = J ·n = 0 on the interface
Σ. Finally, the gauge conditions in the insulator are trivially satisfied as A ∈ Y .

g
k

Wk

Xk

Figure 3.3: Cutting surfaces and loops for a torus.

Remark 3.3. If we define curl-free extensions of the functions %k to ∆c, denoted by %̃k, and set
Ẽ := −iωA −∑m

k=1 Vk%̃k, then the Faraday’s law also holds in this set. However, one can easily
show that there is no such extension belonging to the space X (see [59]). We notice that the radial
sections Ωk play the role of the surfaces Σk in Section A.2, and that the non-bounding cycles γk

introduced in that section can be chosen as γk = ∂Ξk, where Ξk is an orientable two-dimensional
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surface in ∆c and
∫
γk

%kdγ = 1 (see Figure 3.3). Hence using equations (3.2), (3.12) and the
definition of functions %k we get

0 =
∫

Ξk

curl (Ẽ + iωA) =
∫

γk

(Ẽ + iωA)dγ = −
∫

γk

Vk%̃kdγ = −Vk .

The conclusion is that one cannot define Ẽ in X so as to satisfy the eddy current model in the
whole space together with the conditions prescribing non-null intensities in the rings ∆k.

Remark 3.4. Under the modified Ohm’s law approach, the electric field E and the current density
J in Theorem 3.3 have to be redefined by

E = −iωA in R3, (3.36)

J = σE− σ

m∑

k=1

Vk%k in ∆, (3.37)

and (3.30) holds in R3.

3.2.2 Imposing the current intensities in a weak sense.

We recall that we are interested in finding a solution of the eddy current problem satisfying the
conditions for the intensities given in (3.9). To attain this goal, we start by writing these conditions
in a weak sense.

Firstly, we remind the definition of functions %k := g̃rad ηk, where ηk is the solution of problem
(A.20) in ∆k \ Ωk. Since the current density J = σE satisfies div J = 0 in ∆ and J · n = 0 on Σ,
we have

∫

∆k

J · %k =
∫

∆k\Ωk

J · g̃rad ηk = −
∫

∆k\Ωk

div J ηk +
∫

Σk

J · n ηk +
∫

Ωk

[ηk]J · ν

=
∫

Ωk

J · ν = Ik, (3.38)

for k = 1, . . . , m. Thus, we can impose the current intensities as follows:

m∑

k=1

W̄k

∫

∆k

σE · %k =
m∑

k=1

IkW̄k, ∀W = (W1, . . . , Wm) ∈ Cm,

and taking into account (3.35), we obtain the following weak form of constraint (3.9) which is well
defined for any vector function A ∈ Y :

−
m∑

k=1

W̄k

∫

∆k

iωσ%k ·A−
m∑

k=1

W̄k

∫

∆k

σVk|%k|2 =
m∑

k=1

IkW̄k ∀W ∈ Cm. (3.39)

Therefore, given the vector field of intensities I = (I1, . . . , Im), we are led to solve the following
mixed problem:
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Problem MPI.- Given I = (I1, . . . , Im) ∈ Cm, find A ∈ Y and V ∈ Cm, such that:

iω
∫

R3

σA · Ḡ +
∫

R3

1
µ
curlA · curl Ḡ +

m∑

k=1

Vk

∫

∆k

σ%k · Ḡ = 0 ∀G ∈ Y ,

m∑

k=1

W̄k

∫

∆k

iωσ%k ·A +
m∑

k=1

W̄k

∫

∆k

σVk|%k|2 = −
m∑

k=1

IkW̄k ∀W ∈ Cm.

From the solution (A,V), the vector fields H, E and B defined as in Theorem 3.3 would be the
solution of the full eddy current model (3.1)-(3.9), except that the Faraday’s law (3.2) does not
hold on the interface Σ separating the conducting and the dielectric domains.

Notice moreover, that the complex vector of potentials, V, can be interpreted as a Lagrange
multiplier introduced to impose the current intensities in a weak sense.

Remark 3.5. Considering the modified Ohm’s law approach, equation (3.38) also holds for J =
σE − σ

∑m
k=1 Vk%k and taking into account that E = −iωA, equation (3.39) is easily obtained.

Thus, by modifying the Ohm’s law, we also obtain the mixed problem MPI.

3.2.3 Analysis of the mixed problem.

An important feature of the mixed problem MPI is that the second equation allows us to obtain
the components of vector V in terms of I and A. Then, by replacing V in the first equation we
can obtain a weak problem with A being the only unknown, which can be analyzed in a classical
setting. To attain this goal, we start by introducing some notation.

Firstly, we remind the definition of the scalar product in L2(∆):

(F,G)σ =
∫

∆
σF · Ḡ,

and its corresponding induced norm denoted by ‖ ¦ ‖0,σ. We recall that {%k, k = 1, . . . ,m} is a
basis of the space Hσ(∆) which is orthogonal for the scalar product (¦, ¦)σ. In what follows we
will consider {ak, k = 1, . . . ,m}, an orthonormal basis of Hσ(∆) equipped with the norm ‖ ¦ ‖0,σ,
given by

ak =
%k

‖%k‖0,σ

.

Given a vector field F ∈ L2(∆), let us denote by P(F) its projection onto Hσ(∆) defined by

P(F) =
m∑

k=1

(F,ak)σ ak.

By using this notation, from the second equation of the mixed problem MPI, the components of
V can be written as:

Vk = − Ik

‖%k‖2
0,σ

− iω
(A,ak)σ

‖%k‖0,σ

, k = 1, . . . , m. (3.40)



76 Chapter 3. Mathematical model for the induction furnace.

By replacing this expression in the first equation of the mixed problem and taking into account
that σ = 0 in ∆c, we have:

iω
∫

∆
σA · Ḡ +

∫

R3

1
µ
curlA · curl Ḡ− iω

m∑

k=1

(A,ak)σ

∫

∆k

σak · Ḡ

=
m∑

k=1

Ik

‖%k‖0,σ

∫

∆k

σak · Ḡ, ∀G ∈ Y .

Thus, the mixed problem MPI is equivalent to the following one:

Problem PI.- Given I = (I1, . . . , Im) ∈ Cm, find A ∈ Y satisfying:

iω
∫

∆0

σA · Ḡ +
∫

R3

1
µ
curlA · curl Ḡ + iω

m∑

k=1

∫

∆k

(A−P(A)) · σḠ

=
m∑

k=1

Ik

‖%k‖0,σ

∫

∆k

σak · Ḡ, ∀G ∈ Y . (3.41)

Theorem 3.4. Problem PI has a unique solution.

Proof. We follow the same technique already used in the proof of Theorem 3.1. Firstly, we introduce
the sesquilinear form

a(A,G) = iω
m∑

k=0

∫

∆k

(A−P(A)) · σḠ +
∫

R3

1
µ
curlA · curl Ḡ,

taking into account that P(A) = 0 in ∆0.

Since P(A) is the projection of A onto Hσ(∆), from the σ−orthogonal decomposition of L2(∆)
we know that (A−P(A), P(G))σ = 0 for all G ∈ Y . Using this, and reasoning as in the proof
of Theorem 3.1, we obtain

|a(A,A)|+ ω√
2
‖P(A)‖2

0,σ ≥ C


‖A‖2

0,σ + ‖curlA‖2
L2(R3) +

∥∥∥∥∥
(A + ζ)(x)√

1 + |x|2

∥∥∥∥∥
2

L2(∆c)


 (3.42)

where ζ belongs to a finite dimensional space of harmonic fields in ∆c.

Taking into account that P(A) and ζ belong to finite dimensional spaces, we deduce that a(·, ·)
is Y-coercive, i.e., Y-elliptic modulo a compact perturbation (see again [58]). Then, existence of
solution of the weak problem follows from uniqueness.

In order to prove the uniqueness the reasoning is similar to that of Theorem 3.1. Let us suppose
that I = 0, and take G = A as the test function in (3.41). From the definition of a(·, ·) we deduce
that curlA = 0 in R3 and also that A|∆ = P(A), hence A ∈ Hσ(∆). The former yields,

A = −gradφ in R3 ,
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with φ ∈ W 1,−1(R3), and in particular

A|∆ = −gradφ, with φ ∈ H1(∆).

But then A|∆ = 0 because A belongs to Hσ(∆) which is L2(∆;Ω)-orthogonal to the gradients of
functions in H1(∆) as stated in Section A.2. As a consequence A× n = 0 on Σ. Moreover, since
A ∈ Y we get A ∈ D(∆c), the space of Dirichlet harmonic fields in ∆c.

Finally, from the definition of Y we know that div A = 0 in ∆c, and also
∫

Σj

A · n = 0, j = 0, . . . ,m .

The orthogonality result presented in (A.27) allows us to affirm that the vector field A is orthogonal
to the space D(∆c). Then, as A ∈ D(∆c), we conclude that A|∆c = 0.

3.2.4 An axisymmetric BEM/FEM formulation of problems PV and MPI.

In the previous section we have used the equivalence between problems MPI and PI to analyze
the mixed problem. However, for the numerical solution it is advisable to discretize problem MPI
since the term involving P(A) in problem PI leads to a full matrix.

In order to solve the problems PV and MPI by using a hybrid boundary elements/finite
elements method (in the sequel BEM/FEM), we are going to write the equations of these problems
in another form involving only the values of the magnetic vector potential A in ∆ and on its
boundary Σ. To attain this goal we first notice that the field µ−1curlA, which is the intensity
of the magnetic field, belongs to X , and then its tangential trace (µ−1curlA) × n is continuous
across Σ. Besides

curl
(

1
µ0

curlA
)

= curlH = 0 in ∆c, (3.43)

where µ0 denotes the vacuum magnetic permeability. Then, by using a Green’s formula in ∆c, we
have,

∫

R3

1
µ
curlA · curl Ḡ =

∫

∆

1
µ
curlA · curl Ḡ +

∫

∆c

1
µ0

curlA · curl Ḡ

=
∫

∆

1
µ
curlA · curl Ḡ +

∫

∆c

curl
(

1
µ0

curlA
)
· Ḡ

−
∫

Σ

(
1
µ0

curlA
)
× n · Ḡ =

∫

∆

1
µ
curlA · curl Ḡ−

∫

Σ

(
1
µ0

curlA
)
× n · Ḡ ∀G ∈ Y .

Thus, the equation of problem PV can be formally written as

iω
∫

∆
σA · Ḡ +

∫

∆

1
µ
curlA · curl Ḡ−

∫

Σ

(
1
µ0

curlA
)
× n · Ḡ

= −
m∑

k=1

Vk

∫

∆k

σ%k · Ḡ = 0 ∀G ∈ Y , (3.44)



78 Chapter 3. Mathematical model for the induction furnace.

and analogously, the first equation of problem MPI can be formally written as

iω
∫

∆
σA · Ḡ +

∫

∆

1
µ
curlA · curl Ḡ−

∫

Σ

(
1
µ0

curlA
)
× n · Ḡ

+
m∑

k=1

Vk

∫

∆k

σ%k · Ḡ = 0 ∀G ∈ Y . (3.45)

We notice that the value of µ−1
0 (curlA) × n on Σ can be determined by solving an exterior

problem in ∆c. In [58] the author analyzes a BEM/FEM eddy current formulation in terms of
the electric field involving the same boundary term. However, in this work we are more interested
in obtaining a numerical simulation of the induction furnace in a reasonable computational time,
and therefore we will focus in the analysis of the problem in an axisymmetrical domain. In order
to do so, we consider a cylindrical coordinate system (r, θ, z) with the z−axis coinciding with the
symmetry axis of the device. Hereafter we denote by er, eθ and ez the local unit vectors in the
corresponding coordinate directions. In Appendix C the reader can find the expression for these
vectors, along with the expression of several differential operators in cylindrical coordinates.

Now, cylindrical symmetry leads us to consider that no field depends on the angular variable
θ. We further assume that the current density field has non-zero component only in the tangential
direction eθ, namely,

J = Jθ(r, z) eθ.

From this condition, equations (3.1) and (3.2), and taking into account the expression of the
curl operator in cylindrical coordinates, we know that

B = Br(r, z)er + Bz(r, z)ez. (3.46)

We also notice that, since the conductors ∆k, k = 1, . . . , m are tori generated by rotation
around the z-axis, the functions %k have the form

%k =
1

2πr
eθ in ∆k, k = 1, . . . , m. (3.47)

Now, due to the assumed conditions on J, the expressions for B and %k, and recalling equations
(3.2), (3.5) and (3.12), only the θ-component of the magnetic vector potential, hereafter denoted
by Aθ, does not vanish, i.e.,

A = Aθ(r, z)eθ. (3.48)

Note that this A automatically satisfies (3.18), because in an axisymmetric geometry n = nrer +
nzez. Moreover, taking into account the expression for the curl operator in cylindrical coordinates
we have

curlA = −∂Aθ

∂z
er +

1
r

∂(rAθ)
∂r

ez. (3.49)
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Now let G = ψ(r, z)eθ be a test function. Thus, taking into account the cylindrical symmetry
and the expression for the functions %k, the axisymmetric version of problem PV writes formally
as follows:

Problem APV.- Given V = (V1, . . . , Vm) ∈ Cm, find Aθ : Ω −→ C satisfying,

iω
∫

Ω
σAθ · ψ̄r drdz +

∫

Ω

1
µr

∂(rAθ)
∂r

∂(rψ̄)
∂r

drdz +
∫

Ω

1
µ

∂Aθ

∂z

∂ψ̄

∂z
r drdz

−
∫

Γ

1
µ0

∂(rAθ)
∂n

ψ̄ dγ = − 1
2π

m∑

k=1

Vk

∫

Ωk

σψ̄ drdz ∀ψ , (3.50)

and the axisymmetric version of problem MPI is formally written:

Problem AMPI.- Given I = (I1, . . . , Im) ∈ Cm, find Aθ : Ω −→ C and V ∈ Cm, satisfying,

iω
∫

Ω
σAθ · ψ̄r drdz +

∫

Ω

1
µr

∂(rAθ)
∂r

∂(rψ̄)
∂r

drdz +
∫

Ω

1
µ

∂Aθ

∂z

∂ψ̄

∂z
r drdz

−
∫

Γ

1
µ0

∂(rAθ)
∂n

ψ̄ dγ +
1
2π

m∑

k=1

Vk

∫

Ωk

σψ̄ drdz = 0 ∀ψ , (3.51)

1
2π

m∑

k=1

W̄k

∫

Ωk

σAθ drdz +
1

4π2iω

m∑

k=1

W̄k

∫

Ωk

σ
Vk

r
drdz = − 1

2πiω

m∑

k=1

IkW̄k ∀W ∈ Cm . (3.52)

In order to apply a hybrid BEM/FEM for the numerical solution, the next step is to transform
the integral

∫
Γ µ−1

0 ∂(rAθ)/∂n ψ̄ dγ by using the single-double layer potentials. To do that we will
make use of some properties of Aθ in ∆c and on the interface Σ.

(i) Since A ∈ X we can ensure the continuity of the tangential component of A on the interface
Σ, i.e.,

[A× n] = 0 on Σ , (3.53)

where [·] denotes the jump of the function into the brackets and n is the unit normal vector
to Σ pointing to ∆c. Moreover, in the axisymmetrical case the normal vector has always the
form n = nrer + nzez, and from (3.48) we can infer the continuity of Aθ.

As it was mentioned before, µ−1curlA belongs to X , so its tangential trace is continuous
across Σ, namely [

1
µ

(curlA)× n
]

= 0 on Σ , (3.54)

and from the expression of the curl operator in cylindrical coordinates we get
[

1
µr

∂(rAθ)
∂n

]
= 0 on Σ. (3.55)

(ii) At infinity, Biot-Savart law implies the following expression for Aθ

Aθ = O

(
1

r2 + z2

)
as (r2 + z2)1/2 →∞ , (3.56)
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and as a consequence we also have

Aθ = O

(
1

(r2 + z2)1/2

)
as (r2 + z2)1/2 →∞ . (3.57)

(iii) Since µ0 is a constant, we can deduce from equation (3.43) and the first equation in (3.18)
that

∆A = 0 in ∆c . (3.58)

Moreover, from equation (3.48) and considering the expression in cylindrical coordinates of
the Laplacian operator for a vector field, we know that

∆Aθ − Aθ

r2
= 0 in ∆c , (3.59)

and from the expression of the Laplacian operator for a scalar field, we obtain

∆(Aθ cos θ) = 0 in ∆c . (3.60)

If we define A2(x) = Aθ(r, z) cos θ, from (3.60) and (3.57) we know that A2 can be expressed
by using a single-double layer representation formula on the interface Σ (see e.g. [79, p.111]),

A2(x)
2

=
∫

Σ
Gn(x,y)A2(y) dΓy −

∫

Σ
G(x,y)

∂A2

∂n
(y) dΓy on Σ, (3.61)

where G denotes the so-called fundamental solution of Laplace’s equation in R3 (see [67, p.68])
and Gn its normal derivative, namely

G(x,y) =
1

4π|x− y| , (3.62)

Gn(x,y) =
∂G(x,y)

∂ny
=

1
4π|x− y|3 (x− y) · ny , (3.63)

ny being the outward unit normal vector to Σ at point y and dΓy the differential surface element.

The axisymmetry of the problem leads to take in equation (3.61) the point x ∈ Γ, the radial
section of the boundary Σ. However, we note that since the integrals are computed on Σ, we are
constrained to take y ∈ Σ. Thus we have x = (r, 0, z) ∈ Γ and y = (r̃ cos θ̃, r̃ sin θ̃, z̃) ∈ Σ expressed
in cylindrical coordinates, therefore ny = (ñr cos θ̃, ñr sin θ̃, ñz). Straightforward computations
yield

|x− y| =
√

d2 − 2 r r̃(1 + cos θ̃), (3.64)

(x− y) · ny = r ñr cos θ̃ − r̃ñr + ñz(z − z̃), (3.65)

where d2 = (r + r̃)2 + (z − z̃)2. Taking into account that

∂A2

∂n
(y) =

(
∂Aθ

∂r
(r̃, z̃) ñr +

∂Aθ

∂z
(r̃, z̃) ñz

)
cos θ̃, (3.66)
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it is convenient to define the new variables

A
′
θ = rAθ (3.67)

λ(r, z) =
∂Aθ

∂r
nr +

∂Aθ

∂z
nz, (3.68)

λ
′
(r, z) =

∂A
′
θ

∂r
nr +

∂A
′
θ

∂z
nz. (3.69)

Note that
λ
′
(r, z) = Aθ(r, z) nr + r λ(r, z), (3.70)

and from equations (3.53) and (3.55) we deduce that λ
′ is continuous on Γ. Then (3.61) yields the

following integral equation relating Aθ and λ:

Aθ(r, z) =
1
2π

∫

Γ
Aθ(r̃, z̃) r ñr ω2,3/2(r, z, r̃, z̃)r̃ dγ(r̃,z̃)

+
1
2π

∫

Γ
Aθ(r̃, z̃) (ñz (z − z̃)− r̃ ñr) ω1,3/2(r, z, r̃, z̃) r̃ dγ(r̃,z̃)

− 1
2π

∫

Γ
λ(r̃, z̃) ω1,1/2(r, z, r̃, z̃) r̃ dγ(r̃,z̃), (3.71)

where we have used the notation

ωp,α(r, z, r̃, z̃) =
∫ 2π

0

cosp θ̃

[d2 − 2 r r̃(1 + cos θ̃)]α
dθ̃, p ∈ {1, 2}, α ∈ {1/2, 3/2}. (3.72)

Equation (3.71) can be rewritten in a more condensed form as

A
′
θ(r, z)

r
= (Gn A

′
θ)(r, z)− (G λ′)(r, z), (3.73)

where

(G ξ)(r, z) =
1
2π

∫

Γ
ξ(r̃, z̃) ω1,1/2(r, z, r̃, z̃) dγ(r̃,z̃) , (3.74)

(Gn υ)(r, z) =
1
2π

∫

Γ
υ(r̃, z̃) r ñr ω2,3/2(r, z, r̃, z̃) dγ(r̃,z̃)

+
1
2π

∫

Γ
υ(r̃, z̃) (ñz (z − z̃)− r̃ ñr) ω1,3/2(r, z, r̃, z̃) dγ(r̃,z̃)

+
1
2π

∫

Γ
υ(r̃, z̃)

ñr

r̃
ω1,1/2(r, z, r̃, z̃) dγ(r̃,z̃). (3.75)

Multiplying (3.73) by the conjugate of a test function ζ and integrating in Γ we get the weak
formulation

∫

Γ

1
µr

A
′
θ(r, z)ζ̄(r, z)dγ(r,z) =

∫

Γ

1
µ

(Gn A
′
θ)(r, z) ζ̄(r, z) dγ(r,z) −

∫

Γ

1
µ

(G λ
′
)(r, z) ζ̄(r, z) dγ(r,z).

(3.76)

We can now write the axisymmetric version of the two electromagnetic problems in the bounded
domain Ω:
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Problem WEPV.- Given V = (V1, . . . , Vm) ∈ Cm, find A
′
θ : Ω −→ C and λ

′
: Γ −→ C such

that

iω
∫

Ω

σ

r
A
′
θψ̄

′ drdz +
∫

Ω

1
µr

gradA
′
θ · grad ψ̄′ drdz −

∫

Γ

1
µr

λ
′
ψ̄′ dγ

= − 1
2π

m∑

k=1

Vk

∫

Ωk

σ

r
ψ̄′ drdz, ∀ψ

′
,

∫

Γ

1
µr

A
′
θ ζ̄ dγ −

∫

Γ

1
µ

(GnA
′
θ)ζ̄ dγ +

∫

Γ

1
µ

(Gλ
′
)ζ̄ dγ = 0 , ∀ζ.

Problem WEPI.- Given I = (I1, . . . , Im) ∈ Cm, find A
′
θ : Ω −→ C, V ∈ Cm and λ

′
: Γ −→ C

such that

iω
∫

Ω

σ

r
A
′
θψ̄

′ drdz +
∫

Ω

1
µr

gradA
′
θ · grad ψ̄′ drdz −

∫

Γ

1
µr

λ
′
ψ̄′ dγ

+
1
2π

m∑

k=1

Vk

∫

Ωk

σ

r
ψ̄′ drdz = 0, ∀ψ

′
,

1
2π

m∑

k=1

W̄k

∫

Ωk

σ

r
A
′
θ drdz +

1
4π2iω

m∑

k=1

W̄k

∫

Ωk

σ
Vk

r
drdz

= − 1
2πiω

m∑

k=1

IkW̄k, ∀W ∈ Cm,

∫

Γ

1
µr

A
′
θ ζ̄ dγ −

∫

Γ

1
µ

(GnA
′
θ)ζ̄ dγ +

∫

Γ

1
µ

(Gλ
′
)ζ̄ dγ = 0 , ∀ζ.

For the sake of simplicity in writing we introduce the following notations

a(ϕ,ψ) := iω
∫

Ω

σ

r
ϕψ̄ drdz,+

∫

Ω

1
µr

gradϕ · grad ψ̄ drdz,

b(ζ, ψ) := −
∫

Γ

1
µr

ζψ̄ dγ,

c(ϕ, ζ) := −
∫

Γ

1
µ

(Gnϕ)ζ̄(r, z) dγ,

d(ξ, ζ) :=
∫

Γ

1
µ

(Gξ)ζ̄(r, z) dγ,

g(ϕ,W) :=
1
2π

m∑

k=1

W̄k

∫

Ωk

σ

r
ϕ drdz,

p(V,W) :=
1

4π2iω

m∑

k=1

W̄k

∫

Ωk

σ
Vk

r
drdz,

l(W) := − 1
2πiω

m∑

k=1

IkW̄k,

so that the two previous problems can be written in the analogous form:
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Problem WEPV.- Given V = (V1, . . . , Vm) ∈ Cm, find A
′
θ : Ω −→ C and λ

′
: Γ −→ C such

that

a(A′θ, ψ
′) + b(λ′, ψ′) = −g(ψ′,V) ∀ψ′ ,

−b(ζ, A′θ) + c(A′θ, ζ) + d(λ′, ζ) = 0 ∀ζ .

Problem WEPI.- Given I = (I1, . . . , Im) ∈ Cm, find A
′
θ : Ω −→ C, V ∈ Cm and λ

′
: Γ −→ C

such that

a(A′θ, ψ
′) + g(ψ′,V) + b(λ′, ψ′) = 0 ∀ψ′ ,

g(A′θ,W) + p(V,W) = l(W) ∀W ∈ Cm ,

−b(ζ, A′θ) + c(A′θ, ζ) + d(λ′, ζ) = 0 ∀ζ .

In Chapter 4 we present the way to approximate problems WEPV and WEPI by a BEM-
FEM.

3.3 The thermal model.

The electromagnetic model must be coupled with the heat equation to study the thermal effects
of the electromagnetic fields in the workpiece. The mathematical analysis of the thermal equation
with phase change is beyond the scope of this work. We will focus on introducing the equations
of the model in an axisymmetric setting, paying attention to the terms which couple the thermal
problem with the electromagnetic one.

The computational domain for the thermal model in the axisymmetric setting is a radial section
of the whole furnace, that we shall denote by ΩT := Ω0∪Ω1∪ . . . Ωm∪Ωm+1, where Ωm+1 denotes
the radial section of the dielectric parts of the induction furnace. We notice that this domain
includes the radial section of the windings of the coil (see Figure 3.4), which are water-cooled.
Since the metal is introduced in solid state and then melted, we shall use the transient heat
transfer equation with change of phase, that is written in terms of the enthalpy. Furthermore,
since the molten metal is subject to electromagnetic and buoyancy forces, we also need to consider
convective heat transfer. Let us suppose that we already know the velocity field u which is null in
the solid part of the workpiece. Then the equation for energy conservation is

(
∂e

∂t
+ u · grad e

)
− div (k(x, T )gradT ) =

|J|2
2σ(x, T )

in ΩT , (3.77)

where e is the enthalpy, T is the temperature and k is the thermal conductivity, depending on
temperature as well. Hereafter, we also assume that other material properties, such as the electrical
conductivity σ and the magnetic permeability µ may also depend on temperature. The term
|J|2/(2σ) on the right-hand side of (3.77) represents the heat released by the electric current due
to the Joule effect. It is obtained by solving the electromagnetic problem introduced in Section
3.2.
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Metal
to heat

Symmetry axis

GC

GR

GR

GS

Figure 3.4: Computational domain for the thermal problem.

Remark 3.6. Notice that the time scale for the variation of the electromagnetic field is much
smaller than the one for the variation of temperature. Indeed, the physical parameters used in
a typical industrial situation give a time scale for temperature of the order of 1 second, whereas
the alternating current is at a frequency of several kHz, which means that the time scale for the
electromagnetic fields is of the order of 10−5 seconds. Thus, we may consider the time harmonic
eddy current model to compute the electromagnetic field, and then the heat source is determined by
taking the mean value on a cycle (see [39]), namely

ω

2π

∫ 2π/ω

0
J (x, t) · E(x, t) dt . (3.78)

Since J and E are harmonic fields of the form (1.14), we have

J (x, t) · E(x, t) = Re [eiωtJ(x)] · Re [eiωtE(x)] =
(cos(ωt)Re [J(x)]− sin(ωt) Im [J(x)]) · (cos(ωt)Re [E(x)]− sin(ωt) Im [E(x)]) ,

Since
ω

2π

∫ 2π
ω

0
cos2(ωt) dt =

ω

2π

∫ 2π
ω

0
sin2(ωt) dt =

1
2

,

and
ω

2π

∫ 2π
ω

0
cos(ωt) sin(ωt) dt = 0 ,

by considering Ohm’s law (3.5) we get

ω

2π

∫ 2π/ω

0
J (x, t) · E(x, t) dt =

Re [J(x)] · Re [E(x)] + Im [J(x)] · Im [E(x)]
2

=
|J(x)|2

2σ
. (3.79)

The enthalpy density e(x, T ) can be expressed as a function of temperature similar to that
used for Stefan problems (see [44]),

e(x, t) ∈ H(x, T (x, t)) . (3.80)
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Figure 3.5: Typical graph of the enthalpy.

If the change of state takes place at a constant temperature TS , and if we denote by L the latent
heat, i.e., the heat per unit mass necessary to achieve the change of state at temperature TS ,
H(x, T ) is represented as the following multi-valued function:

H(x, T ) =





∫ T

0
ρ(x, s)c(x, s) ds , T < TS(x)

[∫ T

0
ρ(x, s)c(x, s) ds ,

∫ T

0
ρ(x, s)c(x, s) ds + ρ(x, TS)L(x)

]
, T = TS(x) ,

∫ T

0
ρ(x, s)c(x, s) ds + ρ(x, TS)L(x) , T > TS(x) ,

(3.81)

ρ denoting the mass density and c the specific heat. Both of them are supposed to depend on the
temperature T . In Figure 3.5 one can see the graph of a typical function for the enthalpy.

We assume cylindrical symmetry so that T does not depend on the angular coordinate θ. Using
the expressions of the divergence and gradient operators in cylindrical coordinates, equation (3.77)
becomes

(
∂e

∂t
+ u · grad e

)
− 1

r

∂

∂r

(
rk(r, z, T )

∂T

∂r

)
− ∂

∂z

(
k(r, z, T )

∂T

∂z

)
=

|Jθ|2
2σ(r, z, T )

in ΩT . (3.82)

Note that, from equations (3.5), (3.35) and the expression for functions %k, we can infer that

Jθ = −iωσAθ in Ω0 , (3.83)

Jθ = −iωσAθ − Vk

2πr
in Ωk , k = 1, . . . , m , (3.84)

Jθ = 0 in Ωm+1 , (3.85)

and the heat source is easily computed from the solution of problem WEPI.
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3.3.1 Thermal boundary conditions.

Equation (3.82) must be completed with suitable boundary conditions on ΓT , the boundary of
ΩT . We shall denote by ΓS the intersection of the symmetry axis with ΓT , by ΓR the part of the
boundary in contact with the air, and by ΓC the internal boundary of the coil, which is in contact
with the cooling water (see Figure 3.4). In ΓC we consider a convection condition

k(x, T )
∂T

∂n
= α(Tw − T ) on ΓC, (3.86)

α being the coefficient of convective heat transfer and Tw the temperature of the cooling water.
In the boundary ΓR we impose the radiation-convection condition

k(x, T )
∂T

∂n
= α(Tc − T ) + γ(T 4

r − T 4) on ΓR, (3.87)

where Tc and Tr are the external convection and radiation temperature, respectively, and γ is the
product of emissivity by Stefan-Boltzmann constant (5.669e-8 W/m2K4). Finally, on the axis we
set the symmetry condition

k(x, T )
∂T

∂n
= 0 on ΓS. (3.88)

In Chapter 4 we present an appropriate discretization of the thermal model. Moreover, we also
describe in that section the algorithms proposed to deal with the non-linearities of the problem.

3.4 The hydrodynamic model.

As mentioned before, in order to achieve a realistic simulation of the overall process occurring in
the furnace, convective heat transfer must be taken into account. The hydrodynamic domain is the
molten region of the metal, which varies as the metal melts or solidifies, making our hydrodynamic
domain time dependent.

Let Ωl(t) be the radial section of the molten metal at time t. We assume that the fluid motion
is governed by the incompressible Navier-Stokes equations:

ρ(x, T )
(

∂u
∂t

+ (gradu)u
)
− div (2η(x, T )D(u)) + grad p = f in Ωl(t), (3.89)

div u = 0 in Ωl(t), (3.90)

where ρ denotes the density, u is the velocity field, η is the dynamic viscosity, p is the pressure
and D(u) denotes the symmetric part of gradu, namely

D(u) =
gradu + gradut

2
.

We remark that both density and viscosity are material properties which depend on tempera-
ture, i.e., ρ = ρ(x, T ) and η = η(x, T ). Moreover, the molten region at the time instant t must be
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computed from the temperature profile, so the solution of the thermal problem is needed to solve
the hydrodynamic problem. We will see below how the domain Ωl(t) is determined to carry out
the numerical simulation.

The right-hand side term f contains the forces supported by the fluid due to natural convection
(buoyancy forces, fg) and those due to the electromagnetic field (Lorentz forces, fl):

f = fg(x, T ) + fl(x) , (3.91)

where the buoyancy forces are given by

fg = ρ(x, T )g , (3.92)

g being the acceleration of gravity. As it was done in the thermal model, for the electromagnetic
forces we actually consider the mean value on a cycle, namely

fl =
ω

2π

∫ 2π/ω

0
J (x, t)×B(x, t) dt, (3.93)

where J and B are the current density and the magnetic induction fields, respectively. Arguing
as in Remark 3.6 (see also [89]) it is easily seen that

fl =
Re[J(x)]× Re[B(x)] + Im[J(x)]× Im[B(x)]

2
. (3.94)

Recalling that B = curlA, J = −iωσAθeθ −
∑m

k=1 σVk%k and the harmonic functions %k are null
in the workpiece, taking into account the expression in cylindrical coordinates of the curl operator
we obtain

Re[J(x)]× Re[B(x)] = ωσIm[Aθ]
(

Re
[
Aθ

r
+

∂Aθ

∂r

]
er + Re

[
∂Aθ

∂z

]
ez

)
,

Im[J(x)]× Im[B(x)] = −ωσRe[Aθ]
(

Im
[
Aθ

r
+

∂Aθ

∂r

]
er + Im

[
∂Aθ

∂z

]
ez

)
.

Thus, summing up the two equations, Lorentz force can be expressed in terms of Aθ as

fl =
ωσ

2

(
Im[Aθ]

(
Re

[
∂Aθ

∂r

]
er + Re

[
∂Aθ

∂z

]
ez

)
− Re[Aθ]

(
Im

[
∂Aθ

∂r

]
er + Im

[
∂Aθ

∂z

]
ez

))
,

=
ωσ

2

(
Im[Aθ] Re[gradAθ]− Re[Aθ] Im[gradAθ]

)
=

ωσ

2
Im[AθgradAθ] .

Equations (3.89)-(3.90) must be completed with suitable boundary conditions. Let us denote
by Γs(t) the intersection of the symmetry axis with the boundary of Ωl(t), and by Γd(t) and
Γn(t) the parts of the boundary next to a solid region (solid metal or crucible) or next to the air,
respectively (see Figure 3.6). We notice that since the computational domain is time dependent,
so are the boundary regions. In the solid parts we consider a non-slip boundary condition

u = 0 on Γd(t) , (3.95)

whereas in the symmetry axis and in the upper boundary we demand

Sn = 0 on Γn(t) , (3.96)
Sn = 0 on Γs(t) , (3.97)

where S denotes the Cauchy stress tensor, S = −pI + 2ηD(u), I being the identity tensor.
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Figure 3.6: Computational domain for the hydrodynamic problem.

Boussinesq approximation.

As the range of temperatures in the molten region is not very large, we can use the Boussinesq
approximation to model the fluid motion. Briefly, this approximation consists in considering that
the variations of density and viscosity are negligible, except for the mass density in the buoyancy
force fg appearing in the momentum equation. In this term it is assumed that density is a linear
function of temperature, of the form ρ(T ) = ρ0[1 − β0(T − T0)], where T0 denotes the reference
temperature, ρ0 is the mass density at the reference temperature and β0 is the coefficient of
thermal expansion, which is assumed to be constant. With this approximation, the buoyancy force
is written

fg = ρ0[1− β0(T − T0)]g . (3.98)

If we introduce the reference pressure p0(x) = ρ0g · x + c, for some constant c, and define the
modified pressure p′ = p− p0, our equations under the Boussinesq approximation read

ρ0

(
∂u
∂t

+ (gradu)u
)
− div (2η0D(u)) + grad p′ = −ρ0β0(T − T0)g + fl in Ωl(t) , (3.99)

div u = 0 in Ωl(t) , (3.100)

where η0 denotes the dynamic viscosity at the reference temperature.

The heat equation in the molten region is also modified in a similar form, considering that the
physical properties in the molten region are constant, to obtain

ρ0c0

(
∂T

∂t
+ u · gradT

)
− div (k0gradT ) =

|J|2
2σ(T )

, in Ωl(t) (3.101)

where c0 and k0 denote the specific heat and the thermal conductivity at the reference temperature,
respectively. We note that this equation is valid in the molten region of the metal, but in the rest
of the domain the thermal equation remains non-linear.
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Remark 3.7. Equation (3.101) is obtained by considering that the enthalpy density in the molten
part is given by

e(T ) = eS +
∫ T

TS

ρ0c0 ds = eS + ρ0c0(T − TS) ,

with eS =
∫ TS

0 ρ(T )c(T ) ds + ρ(TS)L. Substituting this expression for the enthalpy in (3.77) one
easily gets equation (3.101), which holds only in the molten region. However, even if the heat
equation in the molten region can be written in a linear form, it is more convenient to maintain
the equation in terms of enthalpy, in order to have the same equation in the whole domain.

3.4.1 An algebraic turbulence model: Smagorinsky’s model.

We recall that the Reynolds number is a dimensionless quantity which gives the ratio of inertial
to viscosity forces. It is expressed as

Re =
ρUL

η
, (3.102)

where U and L represent a characteristic velocity and a characteristic length (here taken as the
inner radius of the crucible), respectively. When this number goes beyond a threshold, the flow
becomes turbulent and then it is impossible to model its behaviour using the Navier-Stokes equa-
tions due to the big mesh that the computational domain would require. To deal with turbulent
flows, all the fields are decomposed into a mean part and an oscillating part which takes into
account the small variations due to turbulent flow. By rewriting the Navier-Stokes equations using
the decomposed fields and filtering the equations (see [76]) we arrive at the Reynolds-averaged
Navier-Stokes equations:

ρ0

(
∂û
∂t

+ (grad û)û
)
− div (2η0D(û))− ρ0div û′ ⊗ u′ + grad p̂ = f̂ in Ωl(t), (3.103)

div û = 0 in Ωl(t), (3.104)

where û denotes the mean velocity, p̂ the mean pressure, u′ the oscillating part of the velocity field
and ⊗ the tensor product. Hereafter, the symbol ˆ denotes the mean value of a variable or an
expression. The term R = ρ0(û′ ⊗ u′) is called the Reynolds tensor and represents the contribution
of the turbulent part to the mean flow.

Analogously, the averaged heat equation is written as

ρ0c0

(
∂T̂

∂t
+ û · grad T̂

)
+ ρ0c0div (T̂ ′u′)− div (k0grad T̂ ) =

|̂J|2
2σ

, (3.105)

being T̂ the mean temperature and T ′ its oscillating part. The tensor ρ0c0T̂ ′u′ takes into account
the contribution of the turbulent flow to the mean temperature profile.

The Boussinesq assumption consists in taking these two tensors as

−ρ0û′ ⊗ u′ = −1
3
tr(R)I + 2ηtD(û), (3.106)

ρ0c0T̂ ′u′ = −ktgrad T̂ , (3.107)
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where ηt is the turbulent viscosity, kt is the turbulent thermal conductivity and tr(·) denotes the
trace operator. Using these assumptions we can now rewrite equations (3.103) and (3.105) as

ρ0

(
∂û
∂t

+ (grad û)û
)
− div (2ηeffD(û)) + grad p̂∗ = f̂ , (3.108)

ρ0c0

(
∂T̂

∂t
+ û · grad T̂

)
− div (keffgrad T̂ ) =

|̂J|2
2σ

, (3.109)

where p∗ = p′ − 1
3tr(R) and ηeff is the effective viscosity, which is given by ηeff = η0 + ηt.

Analogously, keff represents the effective thermal conductivity, given by keff = k0 + kt. Different
models are obtained depending on the way in which the turbulent viscosity ηt and the turbulent
conductivity kt are computed. An efficient and easy to implement model is the one proposed by
Smagorinsky (see e.g. [76]), which consists in considering

ηt = ρ0 C h2 |D(û)|, C ∼= 0.01, kt = c0
ηt

Prt
(3.110)

where h(x) is the mesh size of the numerical method around point x and Prt is the turbulent
Prandtl number which is taken equal to 0.9 (see [76]).



Chapter 4

Model discretization and numerical
results.

4.1 Discretization and implementation.

The mathematical model presented in the previous chapter is rather complicated and its numerical
discretization and implementation are far from being straightforward due to the presence of seve-
ral non-linearities, different domains for each problem and the coupling of the three submodels.
Moreover, since a real process in the furnace takes place in several hours, the numerical simula-
tion must be done for several hours too, thus the problem becomes very large in time. In this
chapter we present the discretization techniques used to approximate the solution of the mathe-
matical model considered in the previous chapter, paying special attention to some issues about
the implementation which can help to reduce the computational time.

We notice that in the liquid region of the domain we are always considering equations (3.108)
and (3.109). Nevertheless, since most of the techniques presented here are independent of the
turbulence model, to simplify the notation we will refer to equations (3.99) and (3.82) instead.

4.1.1 Time discretization.

As it was said in Remark 3.6, the variations of the electromagnetic fields take place in a time scale
very small compared to the variations of temperature, which allows us to consider the time harmo-
nic model for the electromagnetic problem and perform a time discretization just of the thermal
and hydrodynamic problems. However, since electrical conductivity depends on temperature, the
electromagnetic problem must be solved at each time step.

To obtain a suitable time discretization of the problem one must consider the convective terms
appearing in the thermal and hydrodynamic models. In order to do that, we first rewrite equations
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(3.82) and (3.99) in terms of the material time derivative, obtaining

ė− 1
r

∂

∂r

(
rk(r, z, T )

∂T

∂r

)
− ∂

∂z

(
k(r, z, T )

∂T

∂z

)
=

|Jθ|2
2σ(r, z, T )

in ΩT , (4.1)

u̇− div (2η0D(u)) + grad p′ = −ρ0β0(T − T0)g + fl in Ωl(t) , (4.2)

where ė = ∂e/∂t + u · grad e, and u̇ = ∂u/∂t + (gradu)u. To approximate the material time
derivative we use the method of characteristics (see, for instance [87]). We will only explain the
discretization for the material time derivative of the enthalpy, since the same holds for the material
time derivative of the velocity u.

Given a velocity field u we define the characteristic curve going through point x at time t as
the solution of the following Cauchy problem

{ d
dτ

X(x, t; τ) = u(X(x, t; τ), τ) ,

X(x, t; t) = x ,
(4.3)

so X(x, t; τ) is the trajectory of the material point being at position x at time t. The material
time derivative of e can also be written as

ė(x, t) =
d

dτ
[e(X(x, t; τ), τ)]|τ=t. (4.4)

We consider a time interval [0, tf ] and a discretization time step ∆t = tf/N , to obtain a uniform
partition of the interval Π = {tn = n∆t, 0 ≤ n ≤ N}. Let en and un be the approximations of e
and u at time tn, respectively. We approximate the material time derivative of e at time tn+1 by

ė(x, tn+1) ' en+1(x)− en(χn(x))
∆t

, (4.5)

where χn(x) = Xn(x, tn+1; tn) represents the position at time tn of the material point being at
position x at time tn+1. The previous position χn(x) can be obtained as the solution of the
following Cauchy problem





d
dτ

Xn(x, tn+1; τ) = un(Xn(x, tn+1; τ), τ) ,

Xn(x, tn+1; tn+1) = x ,

(4.6)

backward in time. We notice that in the solid region, since u = 0, the solution of this Cauchy
problem is Xn(x, tn+1; τ) = x for any τ , and so equation (4.5) in the solid part is equivalent to
the standard Euler discretization without using the method of characteristics. Analogous to (4.5),
the material time derivative of the velocity at time tn+1 is approximated by

u̇(x, tn+1) ' un+1(x)− un(χn(x))
∆t

. (4.7)

The ordinary differential equation (4.3) must be solved for each node of the mesh with non-
null velocity. To compute these solutions we use the same method as the one introduced in
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[81], which relies on having a space discretization of the domain, i.e., a mesh. The position
χn(x) is approximated by χn

h(x), defined as the extremity of a polygonal curve of vertices {χ0 =
x, χ1, . . . , χm, χm+1 = χn

h(x)}, computed as follows:

(i) Every χi, i = 1, . . . ,m, belongs to an edge of the mesh.

(ii) From the known value of χi, the position χi+1 is computed as

χi+1 = χi − tiun(χi), ti ≥ 0 ,

with ti being such that (i) is also accomplished.

(iii) The time of the polygonal curve corresponds to the time step ∆t, namely

∆t = t0 + t1 + . . . + tm .

We remark that the problem is solved considering the velocity at the previous time step, namely
u = un.

4.1.2 Weak formulation.

Once we have introduced the time discretization, we are going to consider the space discretiza-
tion. We first recall the weak formulation of the electromagnetic problem introduced as problems
WEPV and WEPI in the previous chapter but now considering the dependence on temperature.
Moreover, for the thermal and hydrodynamic problems we introduce the weak formulation of the
semi-discretized equations.

Let us denote by Tn and un the temperature and velocity fields at time tn. We must compute
the azimuthal component of the magnetic vector potential An+1

θ , the temperature Tn+1 and the
velocity un+1 at time tn+1.

An approximation of An+1
θ at time tn+1 is determined from the solution A′θ of either Problem

WEPV or Problem WEPI, both defined at the end of Section 3.2.3:

(WEPV) Given V = (V1, . . . , Vm) ∈ Cm, find A
′
θ : Ω −→ C and λ

′
: Γ −→ C such that

iω
∫

Ω

σ(r, z, Tn+1)
r

A
′
θψ̄

′ drdz +
∫

Ω

1
µ(r, z, Tn+1)r

gradA
′
θ · grad ψ̄′ drdz

−
∫

Γ

1
µ(r, z, Tn+1)r

λ
′
ψ̄′ dγ = −

m∑

k=1

Vk

2π

∫

Ωk

σ(r, z, Tn+1)
r

ψ̄′ drdz,

∫

Γ

1
µ(r, z, Tn+1)r

ζ̄A
′
θ −

∫

Γ

1
µ(r, z, Tn+1)

(GnA
′
θ)ζ̄(r, z) dγ +

∫

Γ

1
µ(r, z, Tn+1)

(Gλ
′
)ζ̄(r, z) dγ = 0 ,

for all test functions ψ′ and λ′.
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(WEPI) Given I = (I1, . . . , Im) ∈ Cm, find A
′
θ : Ω −→ C, V ∈ Cm and λ

′
: Γ −→ C such that

iω
∫

Ω

σ(r, z, Tn+1)
r

A
′
θψ̄

′ drdz +
∫

Ω

1
µ(r, z, Tn+1)r

gradA
′
θ · grad ψ̄′ drdz

−
∫

Γ

1
µ(r, z, Tn+1)r

λ
′
ψ̄′ dγ +

m∑

k=1

Vk

2π

∫

Ωk

σ(r, z, Tn+1)
r

ψ̄′ drdz = 0,

1
2π

m∑

k=1

(
∫

Ωk

σ(r, z, Tn+1)
r

A
′
θ drdz)W̄k +

1
4π2iω

m∑

k=1

(
∫

Ωk

σ(r, z, Tn+1)
Vk

r
drdz)W̄k = − 1

2πiω

m∑

k=1

IkW̄k,

∫

Γ

1
µ(r, z, Tn+1)r

ζ̄A
′
θ dγ −

∫

Γ

1
µ(r, z, Tn+1)

(GnA
′
θ)ζ̄(r, z) dγ +

∫

Γ

1
µ(r, z, Tn+1)

(Gλ
′
)ζ̄(r, z) dγ = 0 ,

for all test functions ψ′, λ′ and for all W ∈ Cm.

Then we set An+1
θ = A′θ/r.

Now, let us multiply equation (4.1) discretized in time by a suitable test function and then
use a Green’s formula. We obtain the following weak formulation of the semi-discretized thermal
problem:

(WTP) For each n = 0, 1, . . . , N − 1, find a function Tn+1 such that
∫

ΩT

1
∆t

en+1 Z r drdz +
∫

ΩT

keff (r, z, Tn+1)gradTn+1 · gradZ r drdz

=
∫

ΓC

α(Tw − Tn+1)Z r dΓ +
∫

ΓR

(α(Tc − Tn+1) + γ(T 4
r − (Tn+1)4))Z r dΓ

+
∫

ΩT

1
∆t

(en ◦ χn) Z r drdz +
∫

ΩT

1
2σ(r, z, Tn+1)

|Jn+1|2 Z r drdz,

for all test function Z.

Finally, let us consider in equation (4.2) the discretization of the material time derivative u̇
introduced above, multiply this discretized equation and (3.100) by suitable test functions, and
integrate in the liquid domain Ωl. We obtain, after using a Green’s formula, the following weak
formulation of the semi-discretized hydrodynamic problem:

(WHP) For each n = 0, 1, . . . , N − 1, find functions un+1 and pn+1 such that un+1 = 0 on Γd

and
1

∆t

∫

Ωl

ρ0un+1 ·w r drdz +
∫

Ωl

ηeff (r, z, Tn+1)
(
gradun+1 : gradw

)
r drdz

+
∫

Ωl

ηeff (r, z, Tn+1)
(
(gradun+1)t : gradw

)
r drdz −

∫

Ωl

pn+1div w r drdz =

−ρ0β0

∫

Ωl

(Tn+1 − T0)g ·w r drdz +
∫

Ωl

ωσ

2
Im[An+1

θ gradA
n+1
θ ] ·w r drdz

+
1

∆t

∫

Ωl

ρ0(un ◦ χn) ·w r drdz,

∫

Ωl

div un+1 q r drdz = 0,
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for all test functions w null on Γd and q.

The term ωσ
2 Im[An+1

θ gradA
n+1
θ ] represents Lorentz’s force and it has been obtained computing

its mean value on a cycle (see Section 3.4).

Since we are assuming that the velocity field and the test function w are of the form un+1 =
un+1

r er + un+1
z ez and w = wrer + wzez, the equations of problem (WHP) can also be written in

cylindrical coordinates:

1
∆t

∫

Ωl

ρ0(un+1
r wr + un+1

z wz) r drdz

+
∫

Ωl

ηeff (r, z, Tn+1)
(

∂un+1
r

∂r

∂wr

∂r
+

∂un+1
r

∂z

∂wr

∂z
+

∂un+1
z

∂r

∂wz

∂r
+

∂un+1
z

∂z

∂wz

∂z
+

1
r2

un+1
r wr

)
r drdz

+
∫

Ωl

ηeff (r, z, Tn+1)
(

∂un+1
r

∂r

∂wr

∂r
+

∂un+1
r

∂z

∂wz

∂r
+

∂un+1
z

∂r

∂wr

∂z
+

∂un+1
z

∂z

∂wz

∂z
+

1
r2

un+1
r wr

)
r drdz

−
∫

Ωl

pn+1

(
1
r

∂(rwr)
∂r

+
∂wz

∂z

)
r drdz = −ρ0β0

∫

Ωl

(Tn+1 − T0)(grwr + gzwz) r drdz

+
∫

Ωl

ωσ

2

(
Im

[
An+1

θ

∂A
n+1
θ

∂r

]
wr + Im

[
An+1

θ

∂A
n+1
θ

∂z

]
wz

)
r drdz

+
1

∆t

∫

Ωl

ρ0[(un
r ◦ χn)wr + (un

z ◦ χn)wz)] r drdz,

∫

Ωl

(
1
r

∂(run+1
r )

∂r
+

∂un+1
z

∂z

)
q r drdz = 0.

We notice that in the previous formulations temperature Tn+1 appears in the physical pro-
perties of the three problems. Moreover, the magnetic potential An+1

θ is needed to compute the
Joule effect in the thermal problem and the Lorentz’s force in the hydrodynamic problem. On the
contrary the velocity un+1 does not appear in the electromagnetic problem and hence, in order to
compute the term en ◦ χn with the method of characteristics we use the velocity at time step n,
i.e., un. Thus, at each time step, the hydrodynamic problem is in fact uncoupled from the two
others and it can be solved separately.

4.1.3 Space discretization.

The main difficulty of the spatial discretization relies on the electromagnetic problem, since it
is written as an integro-differential equation. For the two other problems we just mention that
Problem (WTP) has been spatially discretized by a finite element method using triangular La-
grange elements of order one, and Problem (WHP) has been discretized by the finite element
couple P1 − bubble/P1, which is also called the "mini" element. This couple is known to satisfy
the inf -sup condition, so that it is stable (see, for instance, [53]).

For the discretization of problems (WEPV) and (WEPI) we use a hybrid technique, which
consists in approximating the field A′θ by a finite element method, and its normal derivative λ′
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by a boundary element method. More precisely, let Th be a family of regular triangulations of
Ω. We recall that it is formed by the radial sections of the conductor regions. Let us denote by
Fh the induced partitions on the boundary Γ, assumed to be polygonal. Associated with these
families of meshes we consider two complex-valued finite element spaces: the space Yh consisting
of continuous piecewise linear functions defined in Ω and the space Zh consisting of piecewise
constant functions defined on the boundary Γ. The discrete version of problem (WEPV) reads as
follows:

Problem PVh.– Find A′θh ∈ Yh and λ
′
h ∈ Zh such that

a(A′θh, ψ′h) + b(λ
′
h, ψ

′
h) = −g(ψ′

h,Vh) ∀ψ
′
h ∈ Yh, (4.8)

−b(ζh, A′θh) + c(A′θh, ζh) + d(λ
′
h, ζh) = 0 ∀ζh ∈ Zh. (4.9)

Moreover, the discrete version of problem (WEPI) has the form:

Problem PIh.– Find A′θh ∈ Yh, Vh ∈ Cm and λ
′
h ∈ Zh such that

a(A′θh, ψ′h) + g(ψ′
h,Vh) + b(λ

′
h, ψ

′
h) = 0 ∀ψ

′
h ∈ Yh, (4.10)

g(A′θh,W) + p(V,W) = l(W) ∀W ∈ Cm, (4.11)

−b(ζh, A′θh + c(A′θh, ζh) + d(λ
′
h, ζh) = 0 ∀ζh ∈ Zh. (4.12)

In matrix form, equations (4.8)-(4.9) become

(
A B

−Bt + C D

) ( {A′θh}
{λ′h}

)
=

(
G̃
{0}

)
, (4.13)

and equations (4.10)-(4.12)




A G B
Gt P 0

−Bt + C 0 D






{A′θh}
Vh

{λ′h}


 =



{0}
L
{0}


 , (4.14)
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where, recalling the notation introduced in Section 3.2.4,

Ajk = a(vk, vj) =
∫

Ω

1
µr

grad vk · grad vj drdz + iω
∫

Ω

σ

r
vkvj drdz,

Bjk = b(wk, vj) = −
∫

Γ

1
µr

wkvj dγ,

Cjk = c(vk, wj) = −
∫

Γ

1
µ

(Gn vk)wj dγ,

Djk = d(wk, wj) =
∫

Γ

1
µ

(G wk)wj dγ,

Gjk = g(vj , ek) = − 1
2π

∫

Ωk

σvj

r
drdz ,

Pjk = p(ek, ej) =
δjk

4π2iω

∫

Ωk

σ
1
r

drdz ,

G̃j = −g(vj ,V) = −
m∑

k=1

Vk
1
2π

∫

Ωk

σvj

r
drdz ,

Lj = l(ej) = − 1
2π

Ij ,

δjk being the Kronecker’s delta, and {vj , j = 1, . . . , Nv}, {wj , j = 1, . . . , Ne} and {ej , j =
1, . . . , m} being the canonical basis in Yh, Zh and Rm, respectively. We have denoted by Nv and
Ne the number of vertices and boundary edges of the mesh, respectively. We recall that vj is the
(unique) element of Yh which takes the value 1 at the j−th vertex and 0 at any other vertex of the
mesh. Similarly wj is the (unique) element of Zh which is equal to 1 on the j−th boundary edge
and 0 on the others. Finally, we notice that vector G̃ is in fact the matrix-vector product GVh.

Computation of the matrix.

To solve the electromagnetic problem with a BEM/FEM one has to construct the matrix of the
linear system (4.14). The computation of the submatrices A, B, G and P is not difficult, as they
have the same form that other matrices appearing in finite element methods. On the contrary, the
computation of the matrices C and D requires more complicated techniques, due to the expression
of G and Gn introduced in equations (3.74) and (3.75), respectively. According to these definitions,
one has to compute a double integral on the boundary Γ, along with the computation of ωp,α.
Therefore, one is in fact constrained to compute a double integral, the first one defined on Γ,
the boundary of the radial section, and the second one defined on Σ, the boundary of the three-
dimensional domain.

Arguing as in [86], functions ωp,α(r, z, r̃, z̃) with p ∈ {1, 2} and α ∈ {1/2, 3/2} can be written
in terms of complete elliptic integrals of the first and second kind, namely

K[κ] =
∫ π/2

0
(1− κ2 sin2 θ)−1/2 dθ, (4.15)

E[κ] =
∫ π/2

0
(1− κ2 sin2 θ)1/2 dθ , (4.16)
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and these integrals can be numerically evaluated using the method of the geometric-arithmetic
mean (see [1, Sect. 17.6]).

From the definition of ωp,α given in (3.72) a straightforward computation leads to

ω1,1/2(r, z, r̃, z̃) =
2 d

r r̃

{(
1− 2 r r̃

d2

)
K[κ]− E[κ]

}
,

with κ2 = 4 r r̃/d2 and d2 = (r + r̃)2 + (z − z̃)2. Similarly,

ω1,3/2(r, z, r̃, z̃) = − 2
d r r̃

K[κ] +
(

2
κ2
− 1

)
4
d3

(
1

1− κ2

)
E[κ],

and

ω2,3/2(r, z, r̃, z̃) =
2

d (d2 − 4 r r̃) (r r̃)2
{(−d4 + 6 d2 r r̃ − 8 r2 r̃2)K[κ]

+ (d4 − 4 d2 r r̃ + 2 r2 r̃2)E[κ]}.

Remark 4.1. We notice that some denominators are null when r = 0, r̃ = 0, d = 0 or d2 = 4rr̃,
which implies κ2 = 1. To avoid dividing by zero it is important to choose a quadrature formula
such that the nodes of the formula do not belong to the axisymmetry axis, thus the trapezoidal rule
cannot be used to numerically evaluate the integrals. Moreover, in the case (r, z) = (r̃, z̃) one gets
d = 4rr̃ = 4r2 and κ2 = 1. This enforces one to consider different integration formulas for the
first and the second integral defined on Γ.

It is also remarkable the fact that the integrals appearing in the forms b(·, ·), c(·, ·) and d(·, ·)
do not depend on the electrical conductivity σ. Hence, when considering a constant magnetic
permeability which is the case in most realistic applications, matrices B, C and D can be computed
only once. Of course, this is not valid in the case of a moving coil, since a change in the position
of the inductor means a change in the position of the boundary Γ, thus affecting the value of the
integrals.

4.1.4 Iterative algorithms to solve the couplings and the nonlinearities.

As it was already mentioned when we introduced the weak formulation (see Section 4.1.2), there are
several terms coupling the three problems. However, since we are neglecting the velocity in Ohm’s
law, and the method of characteristics is used with the velocity at the previous time step, the
hydrodynamic problem can be solved uncoupled from the two others. Nevertheless, the coupling
between the thermal and the electromagnetic models cannot be avoided: the heat source in the
thermal equation is the Joule effect and the solution of the electromagnetic problem varies with
electrical conductivity, which depends on temperature.

Moreover, the thermal problem (WTP) contains several nonlinearities. To treat the nonlinear
terms we are going to introduce several iterative algorithms. First of all, we summarize the
nonlinearities appearing in the problem:
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• The thermal conductivity k depends on temperature.

• The external convection temperature Tw may also depend on temperature. This is in fact
what happens in the coil of the furnace, because the temperature of the cooling water inside
the coil depends on the temperature of the coil.

• The enthalpy e depends on temperature and it is a multivalued function.

• The radiation boundary condition depends on T 4.

The dependence of the thermal conductivity k can be easily treated, just by taking in the
heat equation the thermal conductivity for the temperature at the previous time step (or at the
previous iteration of an outer loop). This can be done because the thermal conductivity is a very
smooth function. The other nonlinearities, instead, need other iterative algorithms to be solved. In
the next sections we will first describe these algorithms separately and then present the complete
algorithm for solving the whole coupled problem.

Iterative algorithms for the enthalpy and the radiation boundary condition.

To deal with the multi-valued nonlinear dependence of enthalpy with respect to temperature and
with the nonlinear radition boundary condition, which depends on T 4, we make use of an iterative
algorithm based on a fixed point procedure. The method was introduced in [16] and it takes into
account the following results:

Lemma 4.1. Let J be a (possibly multi-valued) maximal monotone operator, and define J β :=
J − βI, I being the identity operator. Then the following statements are equivalent:

(i) q ∈ J β(s) ,

(ii) q = J β
λ (s + λq) ,

where β and λ > 0 are real numbers such that λβ ≤ 1/2, and J β
λ is the Yosida approximation of

the operator J β, which is defined by

J β
λ (s) =

[s− (I + λJ β)−1(s)]
λ

, s ∈ R. (4.17)

Lemma 4.2. Let J be a maximal monotone operator and λ and β two real numbers such that
λβ ≤ 1/2. Then J β

λ , the Yosida approximation of J β, is a Lipschitz continuous function with
constant equal to 1/λ.

Proof. The proof easily follows from the results of [84, Lect. 4].

We recall that H denotes the enthalpy multi-valued operator introduced in (3.81), and define
the maximal monotone operator

G(T ) = |T |T 3 , (4.18)
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which coincides with T 4 for any T ≥ 0. For the time step n + 1 we introduce the new functions

qn+1 = en+1 − βTn+1 , (4.19)

sn+1 = |Tn+1|(Tn+1)3 − δTn+1 . (4.20)

According to the definition of the operators H and G we have

qn+1(r, z) ∈ H (
(r, z), Tn+1(r, z)

)− βTn+1(r, z) = Hβ
(
(r, z), Tn+1(r, z)

)
,

sn+1(r, z) = G(Tn+1(r, z))− δTn+1(r, z) = Gδ(Tn+1(r, z)) ,

and due to the result of Lemma 4.1, since both H and G are maximal monotone operators, we
know that

qn+1(r, z) = Hβ
λ

(
(r, z), Tn+1(r, z) + λqn+1(r, z)

)
, for 0 < λ ≤ 1

2β
, (4.21)

sn+1(r, z) = Gδ
κ(Tn+1(r, z) + κsn+1(r, z)) , for 0 < κ ≤ 1

2δ
. (4.22)

The idea of the method is to replace, in the discrete version of problem (WTP), the enthalpy
en+1 and the term (Tn+1)4 by the expressions given in (4.19) and (4.20), and then update the
multipliers q and s using the expressions (4.21) and (4.22).

At time step tn+1 we suppose that qn+1
0 and sn+1

0 are known. Then at each iteration k of the
iterative procedure we successively determine Tn+1

k , qn+1
k and sn+1

k by
∫

ΩT

1
∆t

βTn+1
k Z r drdz +

∫

ΩT

keff gradTn+1
k · gradZ r drdz +

∫

ΓC

αTn+1
k Z r dΓ

+
∫

ΓR

(α + γδ)Tn+1
k Z r dΓ =

∫

ΓC

αTw Z r dΓ +
∫

ΓR

(αTc + γT 4
r − γsn+1

k−1)Z r dΓ

+
∫

ΩT

1
∆t

(en ◦ χn − qn+1
k−1 ) Z r drdz +

∫

ΩT

1
2σ
|Jn+1|2 Z r drdz ∀Z ∈ Vh ,

qn+1
k = Hβ

λ

(
Tn+1

k + λqn+1
k−1

)
,

sn+1
k = Gδ

κ(Tn+1
k + κsn+1

k−1) .

where Vh is the space of finite element functions.

Computing the Yosida approximations Hβ
λ and Gδ

κ at each point requires the solution of the
nonlinear equation involved in (4.17). To evaluate Gδ

κ(s) first we have to compute y such that

y = (I + κGδ)−1(s) .

It is easily seen that y satisfies

y(1− δκ) + κy3|y| − s = 0 ,

and this nonlinear equation is solved by the Newton-Raphson method, as it was done in [91].
For the computation of Hβ

λ(s) we follow the method proposed in [80]: the multi-valued enthalpy
function H is replaced by a piecewise linear function with a very high slope at TS . Doing so also
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the Yosida regularization becomes piecewise linear, and the value of Hβ
λ(s) can be easily obtained

(see [80]).

The performance of the proposed algorithm is known to depend strongly on the choice of the
parameters β, λ, δ and κ. In [83] the authors propose to replace the constant parameters by
functions depending on x = (r, z), and introduce an automatic procedure for the computation of
the parameters which accelerates the convergence of the method. Following the ideas of that paper,
we impose β(r, z)λ(r, z) = 1/2 and δ(r, z)κ(r, z) = 1/2, so only the parameters β(r, z) and δ(r, z)
have to be chosen. Since G is a differentiable function for any T > 0 we take, as it is proposed in
[83],

δ(r, z) =
∂G(Tn+1(r, z))

∂T
= 4|Tn+1(r, z)|3.

Since the enthalpy function H is not differentiable we shall make use of the algorithm proposed
in [82] for the choice of a constant parameter β. For the ease of reading, in what follows we drop
the time step index n + 1. Moreover, to simplify the equation let us define the bilinear form

aT (T, Z) := ∆t

(∫

ΩT

keff gradT · gradZ rdrdz +
∫

ΓC

αTZ r dΓ +
∫

ΓR

(α + γδ)TZ r dΓ
)

,

and the linear form

fT (Z) := ∆t

( ∫

ΓC

αTw Z r dΓ +
∫

ΓR

(αTc + γT 4
r − γs)Z r dΓ +

∫

ΩT

1
∆t

(en ◦ χn)Z r drdz

+
∫

ΩT

1
2σ
|J |2 Z r drdz

)
.

Using these two definitions, the equations of the problem can be written in the form




∫

ΩT

βTZ r drdz + aT (T, Z) = fT (Z)−
∫

ΩT

qZ r drdz ∀Z ∈ Vh ,

q = Hβ
λ(T + λq) ,

(4.23)

and the equations of the iterative algorithm become




∫

ΩT

βTkZ r drdz + aT (Tk, Z) = fT (Z)−
∫

ΩT

qk−1Z r drdz ∀Z ∈ Vh ,

qk = Hβ
λ(Tk + λqk−1) .

(4.24)

Since H is a maximal monotone operator and λβ = 1/2, from Lemma 4.2 we know that Hβ
λ is

a Lipschitz function with constant 1/λ, thus subtracting the equations of the systems (4.23) and
(4.24), and substituting Z by T − Tk it holds

‖q − qk‖2
L2 = ‖Hβ

λ(T + λq)−Hβ
λ(Tk + λqk−1)‖

2

L2

≤ 1
λ2
‖T − Tk‖2

L2 +
2
λ

(T − Tk, q − qk−1) + ‖q − qk−1‖2
L2 ,

and

(T − Tk, q − qk−1) = −β ‖T − Tk‖2
L2 − aT (T − Tk, T − Tk) ,
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where the pairing (u, v) :=
∫
ΩT

uv r drdz is the scalar product in L2(Ω) expressed in cylindrical
coordinates and ‖·‖L2 is its corresponding induced norm. From the two previous equations we
obtain

‖q − qk‖2
L2 ≤ 1

λ2
‖T − Tk‖2

L2 − 2β

λ
‖T − Tk‖2

L2 − 2
λ

aT (T − Tk, T − Tk) + ‖q − qk−1‖2
L2

= − 2
λ

aT (T − Tk, T − Tk) + ‖q − qk−1‖2
L2 ,

where the last equality holds for any choice of parameters such that λβ = 1/2. Since the bilinear
form aT (·, ·) is coercive in H1(Ω), then

‖q − qk‖2
L2 ≤ −2αT

λ
‖T − Tk‖2

1 + ‖q − qk−1‖2
L2 , (4.25)

with αT the coerciveness constant. Moreover, subtracting again the first equation of the systems
and substituting Z by q − qk−1 we obtain

‖q − qk−1‖2
L2 = −β(T − Tk, q − qk−1)− aT (T − Tk, q − qk−1)

≤ β ‖T − Tk‖L2 ‖q − qk−1‖L2 + ‖aT ‖ ‖T − Tk‖1 ‖q − qk−1‖1

≤ (β + C(h) ‖aT ‖) ‖T − Tk‖1 ‖q − qk−1‖L2 ,

where C(h) is the constant appearing in the inverse inequality ‖uh‖1 ≤ C(h) ‖uh‖L2 , ∀uh ∈ Vh.
As a consequence

‖q − qk−1‖L2 ≤ (β + C(h) ‖aT ‖) ‖T − Tk‖1 , (4.26)

and using this last inequality in (4.25) we obtain

‖q − qk‖2
L2 ≤

(
1− 2αT

λ(β + C(h) ‖aT ‖)2
)
‖q − qk−1‖2

L2 . (4.27)

Following the steps in the proof of Theorem 1 of [82] we can prove that the algorithm converges
and

‖q − qk‖L2 ≤ (Cβ)k ‖q − q0‖L2 , with Cβ =

√
1− 4βαT

(β + C(h) ‖aT ‖)2 ,

and an easy computation yields that the minimum value of Cβ is obtained for β = C(h) ‖aT ‖,
which means that this is the optimal value.

To obtain the optimal value of the parameter β from the previous expression one must compute
the value of the constant C(h) and the norm ‖aT ‖. This can be done by solving an eigenvalue
problem. Let us suppose that the finite element space Vh has dimension Nh, equal to the number
of nodes of the mesh. Moreover, let us denote by wi, i = 1, . . . , Nh the shape functions of the finite
element method which form a basis of the space Vh.

Let us introduce a new scalar product in the discrete space Vh, which will be referred as ã(·, ·),
and denote its induced norm by ||| · |||1. Reasoning for this norm as we have done before, the
optimal value for the parameter is β = C̃(h)|||aT |||, with C̃(h) the constant of the inequality
|||uh|||1 ≤ C̃(h) ‖uh‖L2 . We consider the following spectral problem:
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Find Φ ∈ Vh and µ ∈ R such that

ã(Φ, v) = µ(Φ, v), ∀ v ∈ Vh . (4.28)

Let us denote by {Φi}Nh
i=1 the set of eigenvectors solution of the previous problem which form an

orthonormal basis in Vh, with respect to the scalar product (·, ·). Then any vector uh ∈ Vh can be
expressed as uh =

∑Nh
i=1 uiΦi and it holds

|||uh|||21 = ã(uh, uh) =
Nh∑

i=1

ã(uiΦi, uiΦi) =
Nh∑

i=1

u2
i µi(Φi, Φi) ≤ µmax ‖uh‖2

L2 ,

where µmax is the maximum eigenvalue. Clearly, C̃(h) =
√

µmax.

The scalar product ã(·, ·) can be chosen such that the shape functions of the finite element
method constitute an orthonormal basis of Vh, i.e.,

ã(wi, wj) = δij .

As the shape functions wj , j = 1, . . . , Nh form an orthonormal basis for the scalar product ã(·, ·),
the eigenvalue problem (4.28) can be written in terms of these functions, to obtain the equivalent
problem

Find Φ ∈ Vh and µ ∈ R such that
Φ = µMΦ , (4.29)

where M is the mass matrix of the finite element method. Solving this eigenvalue problem we
obtain C̃(h) =

√
µmax, and the norm |||aT ||| is easily computed from the matrix of the finite

element discretization, to obtain β = C̃(h)|||aT |||.
We notice that, since constant C̃(h) tends to infinity as h tends to zero, the constant of

convergence Cβ tends to one so refining the mesh would slow down the convergence of the method.
In the conclusions of [82] the authors suggest to choose the constant parameters computed above
in the non-regular regions and to use optimal functions in regular regions, as proposed in [83].
This is in fact what we have done: in the liquid and solid regions, where the enthalpy function is
regular, the parameter β is a function and in the mushy region, i.e., in the nodes at temperature
TS , we take the parameter β = C̃(h)|||aT |||.

Iterative algorithm for the temperature of cooling water.

As we said before, the induction coil of the furnace is water-cooled to avoid overheating. Thus in
the internal boundary of the coil we consider a convection boundary condition, of the form

k(x, T )
∂T

∂n
= α(Tw − T ) on ΓC, (4.30)

where α is the coefficient of convective heat transfer and Tw is the temperature of the cooling
water, which depends on the temperature of the coil. Hence the water temperature Tw depends
on the solution of our problem which introduces a nonlinearity in the equations.
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To deal with this nonlinearity we will seek the convergence of the heat flux from the coil to the
cooling water. From the solution of the thermal problem this heat flux is computed as

H = 2π

∫

ΓC

k
∂T

∂n
dΓ , (4.31)

where the integral is multiplied by 2π because ΓC is only a radial section of the boundary. The
heat flux is also equal to

H = ρwcwQ(To − Ti) , (4.32)

with ρw and cw the density and specific heat of water, respectively, Ti and To denote the inlet and
outlet temperature of the cooling water, and Q is the water flow rate.

To solve the problem, we assume that the water temperature Tw is constant along the coil.
This is a reasonable assumption, since the difference between the inlet and the outlet temperature
is seldom higher than 10 ◦C.

The temperature of the cooling water is computed using an iterative algorithm. Let us suppose
that Tw,j is known. Then, at iteration j+1 we compute Tj+1 as the solution of the thermal problem
(WTP) with Tw = Tw,j . Then, we compute the heat flux H from equation (4.31) and set

Tw,j+1 = Ti +
H

2ρwcwQ
,

i.e., Tw,j+1 is the mean value of the given inlet temperature and the computed outlet temperature.

Remark 4.2. One could be tempted to avoid the solution of this iterative algorithm by considering
an explicit method, just by taking, in the boundary condition (4.30), a temperature Tw computed
from the solution at the previous time step. This has been tried but the problem becomes unstable due
to a high rise of temperature in the first time steps. However, the iterations of the implicit method
can be merged with the iterations of the thermoelectrical coupling so the additional computational
cost of the method becomes very low.

4.1.5 Computation of the hydrodynamic domain.

As said before, the region occupied by the molten metal varies along the time and depends on
temperature. We consider a fixed mesh of the region occupied by the material to be heated, i.e., the
solid and molten metal in Figure 3.6. At each time step, in order to determine the hydrodynamic
domain, we need to compute the position of the boundary of the molten region. To do that, we
are obliged to solve the thermal problem previously. More precisely, the enthalpy profile given by
the solution of problem (WTP) allows us to choose those elements of the mesh belonging to the
liquid region. The hydrodynamic computational mesh is then updated. We notice that the mushy
region, i.e., the region where the melting temperature has been reached but the material is not
completely molten, is not considered as a part of the hydrodynamic domain.

Iterative algorithm for the whole problem.

Now we present the iterative algorithm to solve the three coupled models, along with the non-
linearities. Basically, it consists of three nested loops: the first one for the time discretization,
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the second one for the thermoelectrical coupling, and the third one for the Bermúdez-Moreno
algorithms for the enthalpy and the radiation boundary condition presented above. As we have
said before, the hydrodynamic problem is solved at each time step uncoupled from the two others.
Moreover, the nonlinearities of the thermal conductivity k and the cooling water temperature Tw

are also treated by iterative algorithms and their corresponding loops are in fact merged with that
of the thermoelectrical coupling. To make it easier to the reader we present in Figure 4.1 a sketch
of the algorithm with the three nested loops.

Algorithm. Let us suppose that the initial temperature, T 0, and velocity, u0, are known.
From T 0 determine the initial enthalpy e0 and set the temperature of cooling water T 0

w = Ti, with
Ti the inlet temperature. Then, at time step n, with n = 1, . . . , N we compute An

θ , Tn and un

doing the following steps:

1. If un−1 6= 0, compute χn−1(x), the solution of (4.6).

2. Calculate the turbulent viscosity ηn
t = ρ0ch

2|D(un−1)| and the turbulent thermal conducti-
vity kn

t = c0η
n
t /Prt.

3. Set Tn
0 = Tn−1, en

0 = en−1 and Tn
w,0 = Tn−1

w . Then compute An
θ , Tn, en and Tn

w as the limit
of An

θ,j , Tn
j and Tn

w,j , following the iterative procedure:

(a) For j ≥ 1 let us suppose that Tn
j−1 and Tn

w,j−1 are known. Then set An
θ,j = A′θ/r, with

A′θ, λ′ and V ∈ C the solution of

iω
∫

Ω

σ(r, z, Tn
j−1)

r
A
′
θψ̄

′ drdz +
∫

Ω

1
µ(r, z, Tn

j−1)r
gradA

′
θ · grad ψ̄′ drdz

−
∫

Γ

1
µ(r, z, Tn

j−1)r
λ
′
ψ̄′ dγ +

m∑

k=1

Vk

2π

∫

Ωk

σ(r, z, Tn
j−1)

r
ψ̄′ drdz = 0 ∀ψ′ test function,

1
2π

m∑

k=1

(
∫

Ωk

σ(r, z, Tn
j−1)

r
A
′
θ drdz)W̄k +

1
4π2iω

m∑

k=1

(
∫

Ωk

σ(r, z, Tn
j−1)

Vk

r
drdz)W̄k

= − 1
2πiω

m∑

k=1

IkW̄k ∀W ∈ Cm,

∫

Γ

1
µ(r, z, Tn

j−1)r
ζ̄A

′
θ dγ −

∫

Γ

1
µ(r, z, Tn

j−1)
(GnA

′
θ)ζ̄(r, z) dγ

+
∫

Γ

1
µ(r, z, Tn

j−1)
(Gλ

′
)ζ̄(r, z) dγ = 0 ∀λ′ test function .

(b) Set Jn
j = iωσ(r, z, Tn

j−1)A
n
θ,j − Vk/(2πr) in Ωk, with V0 = 0.

(c) Determine the optimal parameters δn
j (r, z) = 4|Tn

j−1(r, z)|3 and βn
j (r, z) with the method

described above.
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(d) Set Tn
j,0 = Tn

j−1 and also

qn
j,0 = en

j−1 − βn
j Tn

j−1 ,

sn
j,0 = |Tn

j−1|(Tn
j−1)

3 − δn
j Tn

j−1 .

Then compute Tn
j , qn

j and sn
j as the limit of the following iterative procedure:

i. For k ≥ 1 let us suppose that qn
j,k−1 and sn

j,k−1 are known. Then compute Tn
j,k as

the solution of the linear system

∫

ΩT

1
∆t

βn
j Tn

j,k Z r drdz +
∫

ΩT

(k(Tn
j−1) + kn

t )gradTn
j,k · gradZ r drdz +

∫

ΓC

αTn
j,kZ r dΓ

+
∫

ΓR

(α + γδn
j )Tn

j,kZ r dΓ =
∫

ΓC

αTn
w,j−1 Z r dΓ +

∫

ΓR

(αTc + γT 4
r − γsn

j,k−1)Z r dΓ

+
∫

ΩT

1
∆t

(en−1 ◦ χn−1 − qn
j,k−1)Z r drdz +

∫

ΩT

1
2σ(r, z, Tn

j−1)
|Jn

j |2 Z r drdz ∀Z test function ,

ii. Update multipliers qn
j,k and sn

j,k by the formulas

qn
j,k = Hβ

λ

(
Tn

j,k + λqn
j,k−1

)
,

sn
j,k = Gδ

κ(Tn
j,k + κsn

j,k−1) .

(e) Update the value of the enthalpy, and the value of the cooling water temperature by
computing

en
j = qn

j + βn
j Tn

j ,

H = 2π

∫

ΓC

k
∂Tn

j

∂n
dΓ , and Tn

w,j = Ti +
H

2ρwcwQ
.

4. Compute the hydrodynamic domain from the value of the enthalpy en.

5. Find un and pn solution of
1

∆t

∫

Ωl

ρ0un ·w r drdz +
∫

Ωl

(η0 + ηn
t ) (gradun : gradw) r drdz

+
∫

Ωl

(η0 + ηn
t )

(
(gradun)t : gradw

)
r drdz −

∫

Ωl

pndiv w r drdz =

−ρ0β0

∫

Ωl

(Tn − T0)g ·w r drdz

+
∫

Ωl

ωσ

2

(
Im

[
An+1

θ

∂A
n+1
θ

∂r

]
wr + Im

[
An+1

θ

∂A
n+1
θ

∂z

]
wz

)
r drdz

+
1

∆t

∫

Ωl

ρ0(un−1 ◦ χn−1) ·w r drdz, ∀w test function,

∫

Ωl

div un q = 0, ∀q test function.
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Remark 4.3. The initial value of the enthalpy, e0, can be computed assuming that the temperature
at every point is different from TS, the melting temperature. Otherwise, the enthalpy function for
the initial temperature becomes multivalued, and an initial value for e0 should be provided by the
user.

4.2 Numerical results.

As it was presented in the previous section, the method has been implemented in a computer code
using Fortran. We now present some numerical results which have been obtained with the use
of this code. Two different simulations are considered: the first one is a simulation of an ‘academic
problem’ with known analytical solution, that has been used to validate the computational code.
The second one is the numerical simulation of a real industrial melting furnace.

4.2.1 Analytical solution of a thermo-hydrodynamic problem with phase change.

The first simulation we consider consists of a simplified academic problem having an analytical
solution, and that has been used to validate the computational code. We notice that the thermoe-
lectrical model had been already implemented and validated in previous works (see [15, 14]). For
the present work we have implemented the thermo-electromagneto-hydrodynamic model, but for
the validation of the code, due to the difficulty of constructing a problem with analytical solution
for the whole system of coupled equations, and since we are neglecting the influence of the ve-
locity on the electromagnetic problem, we are just considering a thermal-hydrodynamic problem
with change of phase. This problem with analytical solution is a generalization of another one
introduced in [20] for the same purpose of validation.

We consider that our spatial domain is given, in cylindrical coordinates, by ∆ = (0, 1) ×
(0, 2π) × (−1, 1). Since we are in an axisymmetrical setting, our domain of computation will be
Ω = (0, 1)× (−1, 1). Concerning the time domain, all the computations will be carried out in the
time interval [0, 1].

For each time t we define the function

g(r, z, t) = r2 + z2 − h(t), (4.33)

where h(t) is a function of time that is solution of a certain ordinary differential equation, as will
be shown below. We suppose that the temperature is given by

T (r, z, t) =
{

C1g(r, z, t) + 1, if g(r, z, t) ≥ 0,
C2g(r, z, t) + 1, if g(r, z, t) < 0,

(4.34)

C1 and C2 being two positive constants. With this definition the temperature is a continuous
function. The phase change takes place at temperature T = 1, and so the free boundary between
the solid and the liquid is given by

S(t) =
{
x = (r, θ, z) : r2 + z2 = h(t)

}
, (4.35)
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Loop (iterations for
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Time step
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Program initialization

Resolution of the
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End
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Figure 4.1: Scheme of the algorithm.
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i.e., the solid region is the ball centered at the origin and radius
√

h(t). Moreover, since the
temperature is independent of θ, the solution is adequate for an axisymmetrical setting.

Concerning the thermophysical parameters, we suppose that density, thermal conductivity and
latent heat are constant, whereas the specific heat is constant in each region, and is given by

c(T ) =
{

c1, if T > 1,
c2, if T ≤ 1,

(4.36)

where c1 and c2 are two positive constants.

In order to obtain a solution of the thermal equation with phase change, the Stefan condition
on the interphase must be satisfied. This condition reads

[
k(T )

∂T

∂n

]
= ρLV · n, (4.37)

where [ϕ] denotes the jump of function ϕ across the interphase, n is the unit vector normal to the
interphase S(t) outward to the solid region and V is the velocity of the interphase advance.

For the first term of Stefan condition (4.37), using the definition of g and the fact that on the
interphase the normal vector is given by (r, z)/

√
r2 + z2 we have

[
k(T )

∂T

∂n

]
= k(C2grad g · n− C1grad g · n) = k(C2 − C1)

2(r2 + z2)√
r2 + z2

, (4.38)

and since the velocity of the interphase is given by

V =
∂

(
h(t)1/2

)

∂t
n =

h′(t)√
h(t)

n , (4.39)

we get that the Stefan condition can be rewritten in the form

k(C2 − C1)
2(r2 + z2)√

r2 + z2
= ρL

1
2

h′(t)√
h(t)

. (4.40)

From the values of function h(t) on the interphase S(t), the previous condition is modified to
obtain the following ordinary differential equation

h′(t) =
4k

ρL
(C2 − C1)h(t) . (4.41)

Hence, in order to have a solution satisfying the Stefan condition, function h must be of the form

h(t) = C3 e4k(C2−C1)t/(ρL) , (4.42)

where C3 is a given constant that allows us to control the velocity of the interphase advance.

Once we know the expression of function h, we can consider the heat equation in terms of the
enthalpy. Substituting the Joule effect by a given heat source f , the equation reads

(
∂e

∂t
+ u · grad e

)
− div (k gradT ) = f in Ω . (4.43)
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Since the analytical solution of our problem is given by (4.34), the enthalpy can be computed from
equation (3.81) and after some straightforward computations one obtains that the heat source f
must be

f(r, z, t) =
{ −c1h

′(t)− 6kC1 + 2c1(r, z) · u , if g(r, z, t) ≥ 0,
−c2h

′(t)− 6kC2, if g(r, z, t) < 0 ,

where u is the velocity field that will be introduced below.

For the boundary condition of the thermal problem we are only considering the radiation part,
namely,

k
∂T

∂n
= γ(T 4

r − T 4) . (4.44)

If we replace the value of the temperature given in (4.34) in this equation, we conclude that Tr

must be

Tr =





4

√
(C1g(r, z, t) + 1)4 + k

γn · (r, z) , if g(r, z, t) ≥ 0 ,

4

√
(C2g(r, z, t) + 1)4 + k

γn · (r, z) , if g(r, z, t) < 0 ,
(4.45)

where n is the outward unit normal vector to the boundary ∂Ω and k is the thermal conductivity
which is constant.

Finally, in order to have a solution of the thermo-hydrodynamical problem, we must define a
velocity field in the liquid region. We choose the Stokes’ flow around the sphere occupied by the
solid region, which is supposed to be centered at the origin and to have radius R. We recall that
this flow is the solution of the Stokes stationary equations

−η∆u + grad p = 0 in Ωl , (4.46)
div u = 0 in Ωl , (4.47)

where the liquid domain is given by Ωl = {(r, z) : r2 + z2 ≥ R} and equation (4.46) corresponds
to the motion equation for low Reynolds number. The velocity field we are interested in is the
solution of (4.46)-(4.47) together with conditions

u = 0 on S(t), (4.48)
u = uez, p = p∞ at r →∞ . (4.49)

To solve the problem, we suppose that the dynamic viscosity is constant and equal to one,
(η = 1). For symmetry reasons we suppose that the velocity field is independent of θ. Then
the velocity field solution of equations (4.46)-(4.49) can be expressed in cylindrical coordinates as
follows:

ur =
3u

4
rz

r2 + z2

(
R3

(r2 + z2)3/2
− R

(r2 + z2)1/2

)
,

uz =
3u

4
z2

r2 + z2

(
R3

(r2 + z2)3/2
− R

(r2 + z2)1/2

)

+u

(
1− 3R

4(r2 + z2)1/2
− R3

4(r2 + z2)3/2

)
. (4.50)
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In our case, since the domain occupied by the solid region varies with time, the radius of the ball
must be time dependent and we have R(t) =

√
h(t).

For computational reasons the hydrodynamic domain must be restricted to Ωl ∩ Ω. On the
boundaries of this domain we impose Dirichlet boundary conditions, with the velocity u given by
(4.50) in ∂Ω, and null on the interphase. We notice that the interphase is computed from the
numerical solution at each time step.

The problem has been considered with the following physical properties

k = 1, ρ = 1, L = 8, γ = 1, c =
{

6, in T > 1,
2, in T ≤ 1,

and the constants
C1 = 2, C2 = 1, C3 = 0.25 .

Since the velocity is now the solution of a stationary equation, the computer code has been
slightly modified to solve the correct problem. First of all, Lorentz and buoyancy forces have
been disabled. Moreover, the time discretization using the method of characteristics is no longer
considered, and at each time step the transient Stokes equations are solved until a steady solution
is achieved. We notice that even if this method is not the best to solve the steady Stokes equations,
it is good for our validation purposes.

Figure 4.2: Coarsest mesh for the academic problem.

The problem has been solved for four successively refined two-dimensional meshes, with a
corresponding reduction of the time step. The numerical results obtained have been compared
with the analytical solution. In Figure 4.2 we present the coarsest mesh used for the computation.
In Figure 4.3 we compare the temperature for the exact solution and for the finest mesh at the
last time step. In Figure 4.4 we present the value of the absolute error for the velocity in the
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coarsest and the finest meshes. To compare our numerical solution with the analytical one, we
have computed the error in L∞ − L2 norm (in time and space, respectively). In Table 4.1 we
present the values of these errors. Figure 4.5 shows the log-log plots of the errors for the computed
temperature T and velocity u, respectively, where we can observe a linear convergence of the
method.

Figure 4.3: Comparison of the temperature for the exact solution (left) and the computed solution
(right) in the finest mesh for the last time step.

Figure 4.4: Absolute error for the velocity in the coarsest (left) and the finest mesh (right).
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Figure 4.5: Error versus meshsize (log-log scale). Fields T (left) and u (right).

h ∆t L∞ − L2(T ) L∞ − L2(u)
h0 =

√
2/20 0.05 3.6851E-03 7.3276E-02

h0/2 0.025 1.8607E-03 3.5593E-02
h0/4 0.0125 9.3735E-04 1.7788E-02
h0/8 0.00625 4.7883E-04 8.6747E-03

Table 4.1: Errors varying the meshsize and the time step.

4.2.2 Simulation of an industrial furnace.

As explained in Chapter 1, the motivation of this work is the simulation of a real furnace used
for melting and stirring. A description of the induction furnace and a brief explanation of its
design and behaviour have been given in the aforementioned chapter. Now we present a more
detailed description of the furnace, considering several details that must be taken into account for
the numerical simulation.

Geometry of the furnace.

The inductor of the furnace is a copper helical coil of 12 turns. The coil contains a pipe inside
carrying cool water for refrigeration. The radius of the coil section is 16 mm, whereas the radius
of the refrigeration tube is 14 mm, which gives a section for the conductor of 1.885e-4 m2. The
radius of curvature of the coil is 260 mm. Finally, the distance between the turns is 12 mm.

Inside the coil a crucible is placed, which contains the metal to be melted. The dimensions of
the crucible and the amount of metal contained inside can be changed. For our simulations, we
are considering that the height of the crucible is 480 mm and its exterior diameter is 200 mm. The
thickness of the crucible is 35 mm in the sides, and 45 mm in the bottom. Moreover, the metal
does not completely fills the crucible, but occupies a height of 410 mm.
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The crucible is surrounded by an alumina layer to avoid heat losses. The reason to take alumina
for this layer is that it is not only a good refractory but also a good electrical insulator. Thus the
induction process in the crucible and in the metal is almost unaffected by the presence of alumina.
For the same purpose of thermal insulation, there is also placed a lid over the load. For safety
reasons, the induction coil is imbedded in the alumina layer. Above this alumina layer there is a
layer of another refractory material, called Plibrico.

Finally, the induction furnace rests on a base of concrete, which we shall also consider in our
computational domain. Moreover, for safety reasons there is a metal sheet surrounding the furnace,
which prevents from high magnetic fields outside the furnace.

The computational domain.

For our numerical simulation we will neglect the presence of the lid above the load, since it would
enforce us to solve an internal radiation problem, instead of imposing the convection-radiation
boundary condition given in (3.87). The same holds for the external metal sheet, but in this case
its influence on the results should be smaller, as it is not subjected to such high temperatures as
the lid. However, the internal radiation problem seems that would give more realistic results and
could be a possible improvement of the thermal model for future works.

The computational domain for the electromagnetic problem consists of the furnace (load, cru-
cible, refractory materials and coil), the cooling water and the surrounding air, as it is shown in
Figure 4.6. As already explained in Section 3.1, the helical coil is replaced by 12 rings to obtain
an axisymmetrical geometry. We notice, however, that in Chapter 3 the coil was replaced by rings
with toroidal geometry, i.e., by solid tori. Since we are now considering a refrigeration tube along
the coil, it would be replaced by hollow tori.

Remark 4.4. Replacing the coil by hollow tori enforces us to introduce a new assumption in our
model. Since the first Betti number of the hollow torus is equal to two, for each hollow torus the
space of harmonic functions Hσ(∆k), defined as in (A.19), has dimension two. In this case, the
‘cutting’ surfaces can be chosen as a vertical surface Σ1, perpendicular to eθ, and a horizontal
surface Σ2, perpendicular to ez. With this choice the solutions to problem (A.20) are η1 = θ/2π

and η2 = 1
2π arcsin

(
z−z0(

r2
0+r2+2r0r

√
1−z2

0/r2
)1/2

)
, with (r0, z0) the center of the hollow torus in the

radial section. Thus, an orthonormal basis for Hσ(∆k) is formed by {%1,k, %2,k}, with %1,k = 1
2πreθ

and %2,k = grad η2, which is a vector contained in the plane (r, z). Then, reasoning as in Section
3.2, we obtain that

iωA + E = −V1%1,k − V2%2,k in ∆k, k = 1, . . . , m.

Hence, assuming the current density is of the form J = Jθ(r, z)eθ does not imply the same for A,
due to the presence of the harmonic function %2,k. A further assumption we should do is that V2 is
equal to zero. This is reasonable, because a nonzero value for V2 would be like imposing a voltage
to generate a current around the refrigeration pipe.

The computational domain for the thermal problem is constituted by the metal, the crucible,
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Figure 4.6: Computational domain and materials of the furnace.

the refractory layers and the coil. The computational domain for the hydrodynamic problem is
the molten metal and it is computed at each time step, as it was described above.

Thermal boundary conditions.

As explained in Section 3.3.1, the boundary of the thermal domain is formed by the symmetry
axis, the inner part of the hollow coil, which is water cooled, and the exterior boundaries of the
furnace, which are in contact with air.

For the regions in contact with air we consider a convection-radiation boundary condition of
the form

k
∂T

∂n
= α(Tc − T ) + γ(Tr − T )4 .

We recall that γ is the product of the Stefan-Boltzmann constant by the emissivity. Thus, for
the radiation boundary condition we must know the emissivity of each material and the exter-
nal radiation temperature Tr. The emissivity is one of the physical properties provided by the
company as it will be mentioned in the next section. The external radiation temperature is the
temperature of the surfaces placed in front of the boundary. For the exterior boundaries, i.e, the
boundaries on concrete, alumina and the external Plibrico, we are taking Tr = 30◦, the ambient
temperature. For the interior boundaries, i.e., those corresponding to the metal, the crucible and
the internal Plibrico, we cannot set Tr as the ambient temperature, since the surfaces in front of
these boundaries are also in the interior of the furnace and they are heating up during the process.
To deal with this problem, we are taking Tr as an averaged value of the temperature of these
interior boundaries.

Concerning the convection boundary condition, α is the coefficient of convective heat transfer
and Tc is the external convection temperature, i.e., the temperature of the air surrounding the
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furnace. Again, we are taking this temperature equal to the ambient temperature for the exterior
boundaries and as an averaged value of the temperature of the interior boundaries. The coefficient
α determines the heat transfer rate between the boundary and the surrounding air. It depends on
several parameters such as the properties of the surrounding fluid, its velocity or the geometry of
the solid boundary. In general, the values of α are obtained by empirical formulas, which are often
expressed in terms of the non-dimensional form of the following convective coefficient, called the
Nusselt number:

Nu =
αL
kf

, (4.51)

where kf is the thermal conductivity of the fluid, and L is the characteristic dimension of the
surface.

In order to give an expression for the coefficient α we will also need Grashof and Prandtl
numbers, which were already introduced in Chapter 2:

Gr =
gL3β(T − Tc)

ν2
, Pr =

ν

ζ
, (4.52)

where g is the magnitude of gravity acceleration, β is the coefficient of thermal expansion, ν is
the kinematic viscosity and ζ = kf/ρc is the thermal diffusivity of the fluid. It is also useful to
introduce the Rayleigh number:

Ra = GrPr =
gβL3(T − Tc)

νζ
.

The empirical values of the Nusselt number recommended in [36, p. 381] for free convection
on a vertical plane surface are

NuL = 0.68 + 0.67Ra1/4

[
1 +

(
0.492
Pr

)9/16
]−4/9

, 0 < Ra < 109

NuL =



0.825 + 0.387Ra1/6

[
1 +

(
0.492
Pr

)9/16
]−8/27





2

, 109 < Ra < 1012 .

where NuL is an average value of Nu on the involved surface. The same values are recommended
for vertical cylinders, as long as

D
L >

35
Gr1/4

,

where D is the diameter of the cylinder and L is its length. Similar values but with simpler
formulas can also be found in [70].

For free convection past horizontal plates, in [36, p. 384] it is recommended to take, for a heated
plate facing up (or a cooled plate facing down):

NuL = 0.54(GrPr)1/4, if 105 ≤ GrPr ≤ 2 107

NuL = 0.15(GrPr)1/3, if 2 107 ≤ GrPr ≤ 3 1010 .
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and for a heated plate facing down (or a cooled plate facing down):

NuL = 0.27(GrPr)1/4, if 3 105 ≤ GrPr ≤ 3 1010 .

Then, from the previous expressions of the Nusselt number NuL and using (4.51) and the thermal
conductivity of air, one can easily compute the value of the coefficient α.

On the inner part of the coil, we consider a convection boundary condition

k
∂T

∂n
= α(Tw − T ) ,

Tw being the temperature of cooling water, which is determined as it was explained before. The
coefficient of convective heat transfer, α, is again computed by an empirical formula. In this case
we will make use of Reynolds number, which is defined by

Re =
vL
ν

,

where v is the mean fluid velocity, L is the characteristic dimension of the pipe, and ν is the
kinematic viscosity.

For turbulent heat transfer in a heated coil carrying water, in [56, 7-150] the following value
has been recommended:

Nu = 0.021Pr0.4 Re0.85
(rw

R

)0.1
,

where rw is the pipe radius and R is the radius of curvature of the coil. The value of Reynolds
number Re is easily computed from the radial section of the pipe rw, the water mass flow rate
Q and the physical properties of water. Then the value of the coefficient α is evaluated from the
Nusselt number using expression (4.51) and the thermal conductivity of water.

Physical properties.

The physical properties necessary to perform the numerical simulation are the following:

• Electromagnetic properties: magnetic permeability and electrical conductivity.

• Thermal properties: mass density, specific heat, thermal conductivity, emissivity, latent heat
and melting temperature of the metal.

• Hydrodynamic properties: dynamic viscosity.

The thermal and electromagnetic properties must be given for the materials appearing in the
induction coil, the crucible, the refractory materials and the metal to be melted. Electromagnetic
properties must also be given for air and water. The dynamic viscosity is only necessary for the
molten metal. All these properties may depend on temperature.

We consider in all the materials a constant magnetic permeability equal to the vacuum magnetic
permeability µ = µ0 = 4π10−7 Hm−1. The majority of the other physical properties have been
provided by the company.
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We will not give the values of the properties used for the simulation, except for the electrical
conductivity, because it plays a major role in the results. We notice that the electrical conducti-
vities of the crucible and of the material to be melted depend on temperature. This dependency
is really important in the second case, because the load is assumed to be an insulator when solid
and a good conductor when molten, as can be seen in Figure 4.7.
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Figure 4.7: Electrical conductivity for the crucible (left) and the load (right).

Working parameters.

In the electromagnetic model that we have presented two working parameters have to be chosen:
the first one is the frequency of the alternating current and the second one can be either the current
intensity or the voltage. However, when trying to simulate the real furnace, the main data provided
are the frequency, the intensity and the power supplied to the furnace. The given frequency can
be easily transformed to the angular frequency of our model, but more care has to be taken for
the intensity, as we explain below.

When introducing our mathematical model, we have defined the current intensity traversing a
surface S as

I =
∫

S
J(x) · ν ,

with J the complex magnitude of the current density and ν the normal vector to the surface S, as
it was done in equation (3.9). We must notice that I is in fact the complex magnitude of a time
harmonic intensity, which is defined from the time harmonic current density J in the form

I(t) =
∫

S
J (x) · ν =

∫

S
Re [eiωtJ(x)] · ν = Re

(
eiωt

∫

S
J(x) · ν

)
= Re [eiωtI] . (4.53)

Actually, in the real furnace the known data is the RMS intensity, namely, the time average of the
harmonic intensity during a cycle

IRMS =

(
ω

2π

∫ 2π
ω

0
I(t)2

)1/2

,
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Frequency (Hz) Power (kW)
Simulation 1 500 75
Simulation 2 2650 75

Table 4.2: Working parameters for each simulation.

and considering the expression of I given in (4.53), and reasoning as in Remark 3.6, we can infer
that

IRMS =
|I|√

2
,

where | · | denotes the modulus of a complex number. Therefore, from the known RMS intensity
and the phase differences at the current entrance areas, we obtain the intensities Ik, k = 1, . . . ,m.
For our furnace, since the rings represent the connected coil, the phase difference between the
current densities will be zero.

In the real application, however, the given data is the power and the intensity is adjusted to
obtain that power in the furnace. Moreover, since the electrical conductivity of the materials in
the furnace varies with temperature, the intensity is dynamically adjusted during the process. To
deal with this difficulty, the algorithm was slightly modified to provide the power as the known
data and then to compute the intensity to attain the given power.

Numerical results and discussion.

We have performed two numerical simulations of the furnace with different values of the frequency
but the same value for the power, to see how the frequency affects the heating and stirring of the
metal. The working parameters we have used are presented in Table 4.2.

In Figure 4.8 we represent the temperature in the furnace for each simulation. As it can be
seen the temperatures obtained in the furnace are very similar, but a little higher in the case of the
highest frequency. We notice the strong influence of the refrigeration tubes in the temperature:
the temperature in the copper coil and the surrounding refractory is about 50 ◦C, causing a very
large gradient in the temperature within the refractory layer. In Figure 4.9 we show a detail of the
temperatures in the crucible and in the load. As it can be seen, higher temperatures are reached
when working with high frequency. This fact is explained due to the distribution of Ohmic losses,
as we will explain below.

In Figure 4.10 we show the Joule effect in the load and the crucible after five minutes, when
the metal is still solid, and in Figure 4.11 the same field is represented after three hours, when the
metal has been melted. Comparing the results for different frequencies, we can see that for higher
frequencies the maximum values of Joule effect are also higher, but due to the skin effect they are
concentrated on the external wall of the crucible. Decreasing the frequency allows a better power
distribution, at the cost of using higher intensities, thus causing larger power losses in the coil (see
Figure 4.13).

Moreover, comparing the results when the load is solid and molten, we see how the high
conductivity of the molten metal affects the performance of the furnace. At low frequency the
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Figure 4.8: Temperature after three hours for Simulation 1 (left) and Simulation 2 (right).

Ohmic losses in the load become higher when the material melts, thus heating the load directly
and reducing the crucible temperature (see Figure 4.13 for the Ohmic losses and Figure 4.9 for the
crucible temperature). Moreover, the presence of molten material increases the skin effect on the
crucible wall. On the contrary, when working with high frequency the power distribution in the
furnace remains almost unaffected in the presence of molten material.

We also present in Figure 4.12 the velocity field for both frequencies. When working with low
frequency the depth of penetration is higher, and Lorentz’s force becomes stronger than buoyancy
forces. At high frequency, instead, the low skin depth makes Lorentz’s force almost negligible and
buoyancy forces become dominant. This can be seen in the figures: at high frequency the molten
metal is moving by natural convection, thus it tends to go up near the hot crucible, except in the
upper part, probably due to the boundary condition we are imposing. At low frequency magnetic
stirring enforces the metal to go down close to the crucible, and a new eddy comes up in the
bottom of the furnace.

Finally, in Figure 4.13 we represent the variation in time of the Joule effect in each material,
along with the heat losses through the refrigeration tubes. In order to attain the desired power,
higher intensities are needed working at low frequency, which causes stronger Ohmic losses in the
copper coil. Moreover, at low frequency the load begins to melt after 60 minutes, affecting the
performance of the furnace and enforcing to increase the intensity, consequently increasing the
power losses in the coil. When working with the high frequency the performance of the furnace
is almost unaffected by the presence of molten material. It is also remarkable that at the first
time steps the power losses in the coil match the heat losses through the water tubes. When time
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Figure 4.9: Metal temperature after three hours for Simulation 1 (left) and Simulation 2 (right).

increases the heat losses through the tubes become higher due to the heat conduction from the
crucible across the refractory layer.
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Figure 4.10: Joule effect after five minutes for Simulation 1 (left) and Simulation 2 (right).

Figure 4.11: Joule effect after three hours for Simulation 1 (left) and Simulation 2 (right).
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Figure 4.12: Velocity fields after three hours for Simulation 1 (left) and Simulation 2 (right).
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Figure 4.13: Joule effect and heat losses through the tubes, for Simulation 1 (left) and 2 (right).
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Chapter 5

A formulation of the eddy current
problem in the presence of electric ports.

In Chapter 3 and in the numerical results presented in Chapter 4 the helical coil of the induction
furnace was replaced by toroidal rings, in order to achieve a formulation in an axisymmetrical
setting. However, imposing the current intensities or the voltage drop in the axisymmetrical
geometry, where the coil is replaced by rings, is not compatible with the eddy-currents model, and
one of the equations (Ohm’s law or Faraday’s law) has to be violated, as we already mentioned in
Remark 3.1.

In order to impose the current intensity or the voltage drop in the coil without violating
any of the equations, one is constrained to maintain the helical geometry of the coil, hence to
consider a three-dimensional problem. In this chapter we present a formulation and a finite element
approximation of the eddy current model, that has been introduced in [5]. This is a suitable
formulation when the full field equations are coupled with circuits. In the domain of the eddy
current model, a part of the boundary acts as the interface with the circuit domain and either an
intensity current or a voltage drop can be imposed (see, e.g., [27, 43, 59, 65]).

The outline of this chapter is as follows: in Section 1 we recall the eddy currents model and
describe our domain. Section 2 is devoted to recall some notation and an orthogonal decomposition
presented in Appendix A, that is a key point for the formulation of the problem in the insulator.
In Section 3 we obtain the weak formulation of the voltage excitation problem and the current
excitation problem. In Section 4 we prove the existence and uniqueness of solution to both pro-
blems. In Section 5, we introduce the finite element discretization and obtain the error estimates.
Finally, in Section 6 we report some numerical results for two different problems: a test case with
a known analytical solution and an application to a metallurgical furnace.

5.1 The eddy currents model.

Throughout this chapter the computational domain will be a simply-connected bounded open set
Ω ⊂ R3, with a connected and Lipschitz boundary ∂Ω. It is split into two Lipschitz subdomains,

125
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a conducting region ΩC and a non-conducting region ΩD = Ω\ΩC ; the latter is assumed to be
non-empty and connected. The conducting region ΩC is assumed to be simply-connected and
not strictly contained in Ω, i.e., ∂Ω ∩ ∂ΩC 6= ∅. (For a more general geometrical situation, see
Section 5.3.1.) We shall denote the interface between the two regions by Γ and the different parts
of the boundary ∂Ω by ΓC = ∂Ω ∩ ∂ΩC and ΓD = ∂Ω ∩ ∂ΩD. Moreover, we will suppose that
ΓC = ΓE ∪ ΓJ , where ΓE and ΓJ are two disjoint and connected surfaces on ΓC (‘electric ports’).
Therefore, with these notations, we have ∂ΩC = ΓE ∪ ΓJ ∪ Γ, ∂ΩD = ΓD ∪ Γ (see Figure 5.1).

ΓJ

ΓE

Γ

ΓD

ΩC

ΩD

Figure 5.1: The computational domain.

The equations of the eddy-current problem consist of Faraday’s law

curlE = −iωµH in Ω , (5.1)

and Ampère’s law

curlH = σE in Ω , (5.2)

where E and H denote the electric and the magnetic field, respectively, and ω 6= 0 is a given
angular frequency. Throughout this chapter the magnetic permeability µ is assumed to be a
symmetric tensor, uniformly positive definite in Ω, with entries belonging to L∞(Ω). Concerning
the electrical conductivity σ, the same assumption holds for σ|ΩC

, while σ|ΩD
≡ 0 as ΩD is a

non-conducting medium. Equations (5.1)–(5.2) do not completely determine the electric field in
ΩD and it is necessary to demand the condition

div (εE|ΩD
) = 0, (5.3)

where ε is the electric permittivity, assumed to be a symmetric tensor, uniformly positive definite
in ΩD, with entries belonging to L∞(Ω).

Concerning the boundary conditions, we want to model the electromagnetic fields in the case
of an electric current passing along the ‘cylinder’ ΩC and impose this electric current as a certain
given intensity on ΓJ or as a potential difference between ΓE and ΓJ . Thus, following [27] we
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impose the following boundary conditions

µH · n = 0 on ∂Ω, (5.4)
EC × nC = 0 on ΓC = ΓE ∪ ΓJ , (5.5)
εED · nD = 0 on ΓD, (5.6)

where ES and HS denote E|ΩS
and H|ΩS

respectively, S = C, D, and nC and nD denote the unit
outward normal vectors to ΩC and ΩD, respectively. When considering the boundary of the whole
domain Ω the unit outward normal vector is denoted by n.

Moreover we impose either the current intensity traversing ΓJ

∫

ΓJ

curlHC · nC = I, (5.7)

or a potential difference. In this respect, the boundary condition (5.4) implies that the tangential
component of E is a gradient. By formal calculations, if we integrate iωµH on any surface S
contained in ∂Ω, by using (5.1) and Stokes theorem, we obtain

0 = iω
∫

S
µH · n = −

∫

S
curlE · n = −

∫

∂S
E · t = −

∫

∂S
n× (E× n) · t ,

with t a unit vector tangent to ∂S. Hence, since ∂Ω is simply connected there exists a surface
potential v such that E × n = grad v × n on ∂Ω (see [24]). Moreover, boundary condition (5.5)
implies that v is constant on ΓE and on ΓJ . Since v is defined up to a constant, we can take it
equal to zero on ΓE . The voltage V ∈ C will be the constant value on ΓJ of the surface electric
potential v that is null on ΓE :

E× n = grad v × n on ∂Ω with v|ΓJ
= V and v|ΓE

= 0 . (5.8)

Remark 5.1. The set of boundary conditions (5.4)–(5.6) allows us to assign either the current
intensity or the voltage. This is not the case for other boundary conditions such as

E× n = 0 on ∂Ω (5.9)

or
EC × nC = 0 on ΓC = ΓE ∪ ΓJ ,
εED · nD = 0 on ΓD ,
HD × nD = 0 on ΓD .

(5.10)

In fact, reasoning as in Remark 3.1 it can be proved that the unique solution of the eddy current
problem (5.1)–(5.3) with boundary conditions (5.9) or (5.10) is the null solution (see also [9]). 2

System (5.1)–(5.7), and its finite element approximation have been studied in [24]. The problem
is formulated in terms of the magnetic field and the input current intensity is imposed by means
of Lagrange multipliers. In [25] and in [75] the problem is described in terms of a current vector
potential and a magnetic scalar potential, using the so-called T − T0 − φ formulation. We want
also to mention the paper [23], where both problems of voltage and current excitation have been
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studied in terms of the electric field, but in a computational domain which reduces to the only
conductor ΩC .

In this work we deal with a new finite element approximation of system (5.1)–(5.6) either with
assigned current intensity or assigned voltage. A weak formulation of the problem (5.1)–(5.6) is
given considering as main unknowns the electric field in the conductor and the magnetic field
in the insulator. The latter is decomposed as the sum of the gradient of a function in H1(ΩD)
plus a harmonic field. When the input current intensity is given, this harmonic field is univocally
determined, hence the unknowns of the problem reduce to the electric field in the conductor and
a scalar magnetic potential in the insulator. On the other hand, when the voltage is given the
unknowns of the problem are the electric field in the conductor, a scalar magnetic potential in
the insulator and the current intensity. For the finite element approximation, the harmonic field
is replaced by the generalized gradient of a piecewise linear function that has a jump of height 1
across a particular surface in ΩD.

5.2 Notation and preliminaries.

The definition of all the spaces used in this chapter can be found in Appendix A, but in this section
we recall some of them that have not been used before. First, we remind thatH0,Λ(curl ; Ω) denotes
the set of functions in H(curl; Ω) with vanishing tangential traces on Λ, and in particular we will
make use of vC ∈ H0,ΓC

(curl ; ΩC), the set of functions in H(curl ; ΩC) such that their tangential
traces are null on the electric ports ΓC = ΓE ∪ ΓJ .

We also mention that the space of tangential traces for H(curl; Ω) has been introduced in
Section A.1.1, along with a Green’s formula which was valid for functions in H(curl; Ω). However,
for the ease of reading we will express the duality pairings by (surface) integrals. Moreover, for
any vC ∈ H0,ΓC

(curl ; ΩC) and wD ∈ H(curl ; ΩD) we have
∫

Γ
vC × nC ·wD :=

∫

ΩC

(vC · curlw − curl vC ·w) , (5.11)

where w is any continuous extension of the trace of wD, defined on ∂ΩD, to R3\ΩD. We notice
that the right hand side of (5.11) does not depend on the extension w considered, since, given any
other extension, w∗, we have (w − w∗)|ΩC

∈ H0,Γ(curl ; ΩC) and thus, using Proposition 3.5 in
[45], we know that

∫

ΩC

(vC · curl (w −w∗)− curl vC · (w −w∗)) = 0 .

In the following it will play a major role the space of Neumann harmonic fields, already intro-
duced in Section A.2, and which is defined as

Hµ(ΩD) := {vD ∈ L2(ΩD) : curl vD = 0, div (µvD) = 0, µvD · nD = 0 on ∂ΩD} .

We recall that this space has finite dimension equal to β1(ΩD), the first Betti number of ΩD. In
our particular setting, since the conductor ΩC is simply connected and ‘touches’ the boundary
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of the computational domain in the two contacts, we have β1(ΩD) = 1. Moreover, the ‘cutting’
surface Σ, with boundary ∂Σ ⊂ ∂ΩD, is such that ΩD \ Σ is simply connected (see Figure 5.2),
and the basis function can be constructed as %D = g̃rad η, where η is the solution (unique up to
a constant) of the following problem





div (µgrad η) = 0 in ΩD\Σ ,
µgrad η · nD = 0 on ∂ΩD \ ∂Σ ,
[η]Σ = 1 ,
[µgrad η · nD]Σ = 0 .

(5.12)

Furthermore, we can assume that %D is chosen such that
∫
∂ΓJ

%D · t = 1, where t is the tangential
vector counterclockwise oriented with respect to nC on ΓJ .

t
ΓJ

Σ

Figure 5.2: The cutting surface.

Finally, we recall that any vector function v ∈ L2(ΩD) such that curl vD = 0 can be decom-
posed into the following sum:

vD = gradψD + α%D , (5.13)

with ψD ∈ H1(ΩD)/C and
∫
∂ΓJ

vD · t = α. Moreover the decomposition is L2(µ; ΩD)-orthogonal,
in the sense of (A.22).

5.3 Coupled EC/HD formulation.

Our aim is to introduce and analyze a weak formulation of system (5.1)–(5.6) with assigned current
intensity or voltage, where the main unknowns are the electric field in the conductor EC and the
magnetic field in the insulator HD. Since curlHD = 0 we can write HD = gradψD + K%D with
ψD ∈ H1(ΩD) and K ∈ C.
Remark 5.2. Notice that, by formal calculations, from Stokes Theorem we deduce

I =
∫

ΓJ

curlHC · nC =
∫

∂ΓJ

HC · t =
∫

∂ΓJ

HD · t = K .

This means that, when the current intensity is assigned, the main unknowns in our formulation
are in fact EC and the magnetic scalar potential ψD. 2
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Computing the magnetic field from Faraday’s equation (5.1) and inserting it in Ampère’s law
(5.2), we obtain

curl (µ−1curlEC) + iωσEC = 0.

For each wC ∈ H0,ΓC
(curl ; ΩC), by formal integration by parts one finds

∫

ΩC

µ−1curlEC · curlwC + iω

∫

ΩC

σEC ·wC −
∫

Γ
µ−1curlEC × nC ·wC = 0 .

From Faraday’s equation and the matching condition

HC × nC + HD × nD = 0 on Γ

one has that
µ−1curlEC × nC = iωHD × nD on Γ ,

therefore,
∫

ΩC

µ−1curlEC · curlwC + iω

∫

ΩC

σEC ·wC − iω

∫

Γ
wC × nC ·HD = 0 . (5.14)

On the other hand, multiplying Faraday’s equation by a test function vD = gradφD with
φD ∈ H1(ΩD), by integration by parts one has

iω

∫

ΩD

µHD · gradφD = −
∫

ΩD

curlED · gradφD =
∫

∂ΩD

ED × nD · gradφD .

From (5.1) and (5.4) we know that curlE · n = 0 on ∂Ω, then by (A.16) we get divΓ (E× n) = 0
on ∂Ω. Denoting by φ any extension of φD in H1(Ω), we have

∫
∂ΩD

ED × nD · gradφD

=
∫
∂Ω E× n · gradφ +

∫
Γ ED × nD · gradφD −

∫
ΓC

EC × nC · gradφ

= − ∫
Γ EC × nC · gradφD

because divΓ (E× n) = 0 on ∂Ω and EC × nC = 0 on ΓC . Therefore

iω

∫

ΩD

µHD · gradφD = −
∫

Γ
EC × nC · gradφD . (5.15)

In a similar way, taking as test function %D one obtains

iω

∫

ΩD

µHD · %D = −
∫

ΩD

curlED · %D =
∫

∂ΩD

ED × nD · %D .

Denoting by % any extension of %D in H(curl ; Ω), we have
∫

∂ΩD

ED × nD · %D =
∫

∂Ω
E× n · % +

∫

Γ
ED × nD · %D ,
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and using that E× n = grad v × n on ∂Ω we get
∫

∂Ω
E× n · % =

∫

∂Ω
grad v × n · % = −

∫

∂Ω
%× n · grad v =

∫

∂Ω
curl% · n v .

Since curl% = 0 in ΩD, v = V on ΓJ and v = 0 on ΓE we obtain, using Stokes Theorem on ΓJ ,∫

∂Ω
curl% · n v = V

∫

ΓJ

curl% · nC = V

∫

∂ΓJ

%D · t = V .

Hence
iω

∫

ΩD

µHD · %D = V −
∫

Γ
EC × nC · %D . (5.16)

As we noticed before, HD ∈ H0(curl ; ΩD) can be decomposed as HD = gradψD +I%D where
ψD ∈ H1(ΩD) and I ∈ C is the current intensity. Moreover, as we have already remarked, this
decomposition of H0(curl ; ΩD) is L2(µ; ΩD)-orthogonal in the sense that

∫

ΩD

µ(gradϕD + K%D) · (gradφD + Q%D) =
∫

ΩD

µgradϕD · gradφD + KQ

∫

ΩD

µ%D · %D

for all ϕD, φD ∈ H1(ΩD) and K, Q ∈ C. Hence, from (5.14), (5.15) and (5.16), multiplying these
two last equations by −iω, we have that EC and HD = gradψD + I%D are such that for each
wC ∈ H0,ΓC

(curl ; ΩC) and for each φD ∈ H1(ΩD) and Q ∈ C it holds
∫
ΩC

(µ−1curlEC · curlwC + iωσEC ·wC)

−iω
∫
Γ wC × nC · gradψD − iωI

∫
Γ wC × nC · %D = 0

−iω
∫
Γ EC × nC · gradφD + ω2

∫
ΩD

µgradψD · gradφD = 0

−iωQ
∫
Γ EC × nC · %D + ω2IQ

∫
ΩD

µ%D · %D = −iωV Q .

(5.17)

When the voltage V is given and the current intensity I is unknown, these three equations
determine EC , ψD and I. On the other hand, when the current intensity I is given, the first two
equations are enough to determine the two unknowns of the problem EC and ψD. The voltage V
can be computed using the third equation.

In conclusion we have the following formulations:

Voltage excitation problem




Find (EC , ψD, I) ∈ H0,ΓC
(curl ; ΩC)×H1(ΩD)/C× C :

∫
ΩC

(µ−1curlEC · curlwC + iωσEC ·wC)

−iω
∫
Γ wC × nC · gradψD − iωI

∫
Γ wC × nC · %D = 0

−iω
∫
Γ EC × nC · gradφD + ω2

∫
ΩD

µgradψD · gradφD = 0

−iωQ
∫
Γ EC × nC · %D + ω2IQ

∫
ΩD

µ%D · %D = −iωV Q

for all (wC , φD, Q) ∈ H0,ΓC
(curl ; ΩC)×H1(ΩD)/C× C .

(5.18)
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Current excitation problem




Find (EC , ψD) ∈ H0,ΓC
(curl ; ΩC)×H1(ΩD)/C :

∫
ΩC

(µ−1curlEC · curlwC + iωσEC ·wC)− iω
∫
Γ wC × nC · gradψD

= iωI
∫
Γ wC × nC · %D

−iω
∫
Γ EC × nC · gradφD + ω2

∫
ΩD

µgradψD · gradφD = 0

for all (wC , φD) ∈ H0,ΓC
(curl ; ΩC)×H1(ΩD)/C .

(5.19)

If (EC , ψD) is the solution of the current excitation problem then the voltage can be computed
as

V =
∫

Γ
EC × nC · %D + iωI

∫

ΩD

µ%D · %D . (5.20)

5.3.1 Adaptation of the formulation to other geometrical settings.

These two formulations can be easily adapted to other cases with more complicated geometries.
In what follows we will make the same hypotheses used in [11]: assume that β1(ΩD) = q and that
there exist q mutually disjoint, orientable two-dimensional manifolds Σj ⊂ ΩD, j = 1, . . . , q such
that ∂Σj ⊂ ∂ΩD and the open set ΩD \ ∪q

k=1Σk is simply connected. These assumptions are valid
in most of the geometrical settings one can find in realistic applications and, at the same time, we
are preventing complicated topological settings in the conductor, such as knots or links.

First, let us consider a non-connected conductor ΩC with two connected components, the first
one denoted by ΩC,1 is a simply connected set with two electric ports ∂Ω∩∂ΩC,1 = ΓJ ∪ΓE , as the
one used in the previous section; and the second one, denoted by ΩC,2, is a torus shaped conductor
strictly contained in Ω, i.e., ∂Ω∩ ∂ΩC,2 = ∅, and consequently it has no ports (see Figure 5.3). In
this case the space Hµ(ΩD) has dimension β1(ΩD) = 2 and there are two ‘cutting’ surfaces, Σ1

and Σ2. Denote by ηk, k = 1, 2, the functions in H1(ΩD \ ∪2
j=1Σj) with a jump of magnitude one

on Σk, solution of the problem analogous to (A.20). Let us set %D,k = g̃rad ηk. Then {%D,1, %D,2}
is a basis of Hµ(ΩD). Moreover, the non-bounding and homologically independent cycles γk,
k = 1, 2, can be chosen such that γk = ∂ΞC,k, with ΞC,k an orientable two-dimensional surface
contained in ΩC,k, and

∫
γl

%D,k · t = δkl, k, l ∈ {1, 2}.
In this case the L2(µ; ΩD)−orthogonal decomposition of H0(curl ; Ω) still holds. Thus the

magnetic field can be decomposed as HD = gradψD +
∑2

k=1 Ik%D,k, with ψD ∈ H1(ΩD)/C and

Ik =
∫

∂ΞC,k

curlHC · ν .

where ν is the unit vector normal to ΞC,k such that t is counterclockwise oriented with respect to
ν on ΞC,k. Moreover, we have that E × n = grad v × n on ∂Ω, and v can be chosen such that
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WC,1

G
J

WC,2

G
E

G

Figure 5.3: A conductor with two ports (ΩC,1) and an internal conductor (ΩC,2), with β1(ΩD) = 2.

v|ΓJ
= V and v|ΓE

= 0. Multiplying Faraday’s equation by function %D,l we obtain

iω

∫

ΩD

µHD · %D,l = V

∫

∂ΓJ

%D,l · t−
∫

Γ
EC × nC · %D,l ,

but now
∫
∂ΓJ

%D,2 · t = 0. Thus EC and HD = gradψD +
∑2

k=1 Ik%D,k are such that, for each
wC ∈ H0,ΓC

(curl ; ΩC), φD ∈ H1(ΩD) and Q ∈ C2 it holds
∫
ΩC

(µ−1curlEC · curlwC + iωσEC ·wC)

−iω
∫
Γ wC × nC · gradψD − iω

∑2
k=1 Ik

∫
Γ wC × nC · %D,k = 0

−iω
∫
Γ EC × nC · gradφD + ω2

∫
ΩD

µgradψD · gradφD = 0

−iωQ1

∫
Γ EC × nC · %D,1 + ω2Q1

∑2
k=1 Ik

∫
ΩD

µ%D,k · %D,1

= −iωQ1V
∫
∂ΓJ

%D,1 · t ,

−iωQ2

∫
Γ EC × nC · %D,2 + ω2Q2

∑2
k=1 Ik

∫
ΩD

µ%D,k · %D,2 = 0 .

(5.21)

With this variational formulation one can impose the voltage drop in the conductor ΩC,1 and then
the current intensities in the internal conductor ΩC,2 are computed as part of the solution. It is
also possible to impose the current intensities in ΩC,1 and ΩC,2 by solving the first two equations of
(5.21) and then to compute the voltage V from the third equation. However, one cannot affirm that
the fourth equation in (5.21) is also satisfied, what would lead to a violation of the eddy-currents
model, analogous to the one explained in Remark 3.1.

For the second geometrical setting, let us consider a connected but not simply-connected con-
ductor ΩC with two electric ports ∂ΩC ∩ ∂Ω = ΓE ∪ ΓJ , as the one shown in Figure 5.4. In this
case the space Hµ(ΩD) has dimension q := β1(ΩD) > 1. We can construct a basis of this space as
{%D,1, . . . ,%D,q} with %D,k = g̃rad ηk, and ηk being the corresponding solution to problem (A.20).
Once again, the non-bounding cycles γ1, . . . , γq can be chosen such that γk = ∂ΞC,k, where ΞC,k

is an orientable two-dimensional surface contained in ΩC , and
∫
γl

%D,k · t = δkl, k, l ∈ {1, . . . , q}.
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ΓE
ΓJ

ΩC

Figure 5.4: A non simply-connected conductor, with β1(ΩD) = 2.

Since the L2(µ; ΩD)-orthogonal decomposition of the space H0(curl ; ΩD) is still valid, the
magnetic field in the insulator can be univocally decomposed as HD = gradψD +

∑q
k=1 Ik%D,k

and,

Ik =
∫

ΞC,k

curlHC · ν .

Multiplying Faraday’s equation by the function %D,l and proceeding as in the case of a simply-
connected conductor, we obtain

iω

∫

ΩD

µHD · %D,l = V

∫

∂ΓJ

%D,l · t−
∫

Γ
EC × nC · %D,l .

Hence EC and HD = gradψD +
∑q

k=1 Ik%D,k are such that for each wC ∈ H0,ΓC
(curl ; ΩC),

φD ∈ H1(ΩD)/C and Q ∈ Cq it holds

∫
ΩC

(µ−1curlEC · curlwC + iωσEC ·wC)

−iω
∫
Γ wC × nC · gradψD − iω

∑q
k=1 Ik

∫
Γ wC × nC · %D,k = 0

−iω
∫
Γ EC × nC · gradφD + ω2

∫
ΩD

µgradψD · gradφD = 0

−iωQl

∫
Γ EC × nC · %D,l + ω2Ql

∑q
k=1 Ik

∫
ΩD

µ%D,k · %D,l

= −iωQlV
∫
∂ΓJ

%D,l · t , ∀ l = 1, . . . , q .

(5.22)

The third geometrical setting is a generalization of the previous case for a domain with several
conductors with electric ports. Let us suppose that ΩC is a non-connected set that has p connected
components ΩC,j , j = 1, . . . , p, each one with two electric ports; then there are p different voltages
Vj . In fact, on ∂Ω we have E× n = grad v × n, and, setting ∂ΩC,j ∩ ∂Ω = ΓJ,j ∪ ΓE,j , with ΓJ,j

and ΓE,j disjoint and connected surfaces, we have v|ΓJ,j
= V 1

j and v|ΓE,j
= V 0

j , where V 1
j and V 0

j

are complex constants. Then the voltages are defined as Vj = V 1
j − V 0

j .

Multiplying Faraday’s equation by %D,l, a basis function of the space Hµ(ΩD), by a formal
integration by parts one has

iω

∫

ΩD

µHD · %D,l =
∫

∂ΩD

ED × nD · %D,l =
∫

∂Ω
E× n · %l −

∫

Γ
EC × nC · %D,l ,
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where %l is any extension of %D,l in H(curl ; Ω). Moreover
∫
∂Ω E× n · %l =

∫
∂Ω curl%l · n v =

∑p
j=1

(
V 1

j

∫
ΓJ,j

curl%l · nC + V 0
j

∫
ΓE,j

curl%l · nC

)

=
∑p

j=1

(
V 1

j

∫
∂ΓJ,j

%D,l · t + V 0
j

∫
∂ΓE,j

%D,l · t
)

=
∑p

j=1 Vj

∫
∂ΓJ,j

%D,l · t ,

since, denoting by Γj = ∂ΩC,j \ (ΓJ,j ∪ ΓE,j), from Stokes Theorem we have
∫

∂ΓJ,j

%D,l · t +
∫

∂ΓE,j

%D,l · t =
∫

∂Γj

%D,l · t =
∫

Γj

curl%D,l · nC = 0 .

Thus, the third equation in (5.22) becomes

−iωQl

∫
Γ EC × nC · %D,l + ω2Ql

∑q
k=1 Ik

∫
ΩD

µ%D,k · %D,l = −iωQl

∑p
j=1 Vj

∫
∂ΓJ,j

%D,l · t
for each l = 1, . . . , q.

In the voltage excitation problem the p voltages are given, and therefore the unknowns of
the problem are the electric field in the conductor, the function ψD appearing in the L2(µ; ΩD)-
orthogonal decomposition of HD and the q intensities, whereas in the current intensity problem
the q current intensities are given and the unknowns of the problem are the electric field in the
conductor and the function ψD. The p voltages can then be computed in the following way: for
each j = 1, . . . , p, let %D,l(j) be a basis function of Hµ(ΩD) corresponding to a non-bounding cycle
γl(j) = ∂ΓC,l(j) such that ΓC,l(j) ⊂ ΩC,j . Then

Vj =

(∫

∂ΓJ,j

%D,l(j) · t
)−1 (∫

Γ
EC × nC · %D,l(j) + iω

q∑

k=1

Ik

∫

ΩD

µ%D,k · %D,l(j)

)
,

and this value depends on j but not on the choice of l(j).

Remark 5.3. In order to carry out a simulation of our induction furnace, we recall its geometrical
description, sketched in Figure 1.2. The conductor consists of two connected components: the
inductor and the workpiece. The workpiece is a simply connected set formed by the crucible and
the metal to be melted, whereas the inductor is the helical coil, which can be thought of as a simply
connected set with two ports. Therefore, the geometrical setting for the furnace is similar to the
one presented in Figure 5.3, with ΩC,1 representing the induction coil and ΩC,2 representing the
workpiece, but in our case ΩC,2 being simply connected. Hence, the first Betti number of ΩD is equal
to one, and our formulation would be as (5.21) with %D,2 = 0. In fact, this leads to formulation
(5.18), but noticing that the conductor ΩC and the interface Γ are not connected. For the sake
of simplicity in the following we limit ourselves to the case of a connected and simply-connected
conductor with two electric ports, i.e., the case depicted in Figure 5.1.

5.4 Existence and uniqueness of the solution.

Let us define in H(curl ; ΩC)×H0(curl ; ΩD) the sesquilinear form

A(
(vC ,uD), (wC , zD)

)
:=

∫
ΩC

(µ−1curl vC · curlwC + iωσvC ·wC)
+ω2

∫
ΩD

µuD · zD − iω
[ ∫

Γ wC × nC · uD +
∫
Γ vC × nC · zD

]
.
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and the antilinear functionals

LV (zD) := −iωc0V
∫
ΩD

µ%D · zD

LI(wC) := iωI
∫
Γ wC × nC · %D ,

where V and I are given complex constants and c0 = (
∫
ΩD

µ%D · %D)−1. Recall that if zD ∈
H0(curl ; ΩD) it can be univocally decomposed as zD = gradφD + Q%D with φD ∈ H1(ΩD)/C
and Q ∈ C. Then LV (zD) = −iωV Q.

It is easy to see, using the L2(µ; ΩD)-orthogonal decomposition of H0(curl ; ΩD) presented in
(5.13), that problem (5.18) is equivalent to the following one





Find (EC ,HD) ∈ H0,ΓC
(curl ; ΩC)×H0(curl ; ΩD) :

A(
(EC ,HD), (wC , zD)

)
= LV (zD)

for all (wC , zD) ∈ H0,ΓC
(curl ; ΩC)×H0(curl ; ΩD) ,

(5.23)

whereas problem (5.19) is equivalent to





Find (EC , ψD) ∈ H0,ΓC
(curl ; ΩC)×H1(ΩD)/C :

A(
(EC ,gradψD), (wC ,gradφD)

)
= LI(wC)

for all (wC , φD) ∈ H0,ΓC
(curl ; ΩC)×H1(ΩD)/C .

(5.24)

The antilinear functionals F (wC) and LI(wC) are clearly continuous in H(curl ; ΩC), whereas
LV (zD) is continuous in H0(curl ; ΩD) (see (5.11)). Hence the existence and uniqueness of the
solution to these two problems follows from Lax-Milgram lemma once we prove that the sesqui-
linear form A(·, ·) is coercive. This result of coerciveness has been proved in [7]. For the sake of
completeness, we present the proof here below.

Proposition 5.1. The sesquilinear form A(·, ·) is coercive on H(curl ; ΩC)×H0(curl ; ΩD)

Proof. We have

|A((wC , zD), (wC , zD))|2 = (
∫
ΩC

µ−1curlwC · curlwC + ω2
∫
ΩD

µzD · zD)2

+ω2(
∫
ΩC

σwC ·wC − 2Re
∫
Γ wC × n · zD)2 .

Taking into account that curl zD = 0 in ΩD, from the continuity estimate

2
∣∣∣∣
∫

Γ
wC × n · zD

∣∣∣∣ ≤ k0

(∫

ΩD

|zD|2
)1/2 (∫

ΩC

(|wC |2 + |curlwC |2)
)1/2
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and the inequality (A + B)2 ≥ A2/2−B2 we find

(
∫
ΩC

σwC ·wC − 2Re
∫
Γ

wC × n · zD)2

≥ 1
2(

∫
ΩC

σwC ·wC)2 − k2
0

(∫
ΩD
|zD|2

)(∫
ΩC

(|wC |2 + |curlwC |2)
)

≥ 1
2(

∫
ΩC

σwC ·wC)2 − δ−1 1
2k2

0(
∫
ΩD
|zD|2)2

−δk2
0

(∫
ΩC
|wC |2

)2
− δk2

0

(∫
ΩC
|curlwC |2

)2
,

for each δ > 0. Finally, for each 0 < γ ≤ 1/2 we also have

ω2
(∫

ΩC
σwC ·wC − 2Re

∫
Γ wC × n · zD

)2

≥ 2γω2
(∫

ΩC
σwC ·wC − 2Re

∫
Γ wC × n · zD

)2
,

so that

|A((wC , zD), (wC , zD))|2 ≥ (ν2∗ − 2γω2δk2
0)

(∫
ΩC
|curlwC |2

)2

+(ω4µ2∗ − γω2δ−1k2
0)

(∫
ΩD
|zD|2

)2
+ γω2(σ2∗ − 2δk2

0)
(∫

ΩC
|wC |2

)2

for some positive constants ν∗, µ∗ and σ∗. The proof of the coerciveness of A(·, ·) follows by taking
at first δ small enough and then γ small enough. 2

Once we have obtained EC and HD, the magnetic field HC can be obtained directly from
Faraday’s law by setting

HC = (−iωµ)−1curlEC ,

while ED is the solution to the following problem:




curlED = −iωµHD in ΩD ,
div (εED) = 0 in ΩD ,
ED × nD = EC × nD on Γ ,
εED · nD = 0 on ΓD .

(5.25)

Proposition 5.2. System (5.25) has a solution, and it is unique.

Proof. Concerning the uniqueness, we notice that the space

H := {vD ∈ L2(ΩD)| curl vD = 0, div (εvD) = 0, εvD · nD = 0 on ΓD, vD × nD = 0 on Γ}

is trivial in the considered geometrical situation. In fact, given vD ∈ H, one has curl vD = 0
in ΩD\Σ, that is a simply connected subset. Hence there exists ψ∗ ∈ H1(ΩD\Σ) such that
gradψ∗ = vD and
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div (εgradψ∗) = 0 in ΩD\Σ ,
εgradψ∗ · nD = 0 on ΓD \ ∂Σ ,
ψ∗ = κ∗ on Γ \ ∂Σ ,
[ψ∗]Σ = c∗ ,
[εgradψ∗ · nD]Σ = 0 ,

(5.26)

κ∗ and c∗ being constants. Since Γ ∩ Σ 6= ∅ the constant c∗ must be zero; therefore the unique
solution of (5.26) is ψ = κ∗ and consequently vD = 0. The existence of the solution to (5.26) can
be proved as in [3]. 2

5.5 Finite element approximation.

The variational formulations (5.18) and (5.19) are not suitable for finite element numerical ap-
proximation. In fact, a conforming finite element approximation based directly on them requires
that %D is explicitly known. An alternative approach, that overcomes this difficulty, is based on a
different decomposition of HD.

Let λD be the generalized gradient of a function η ∈ H1(ΩD\Σ) such that [η]Σ = 1. Then
curlλD = 0 and

∫
∂ΓJ

λD · t = 1, but in general λD 6∈ H(div ; ΩD). From the geometrical
assumptions on ΩD we have that %D = λD + grad gλD for some gλD ∈ H1(ΩD). Hence HD =
gradψD + I%D = gradψD + I(λD + grad gλD) = grad ψ̂D + IλD, with ψ̂D ∈ H1(ΩD) that
depends on the choice of λD. This alternative decomposition is not L2(µ; ΩD)-orthogonal and as
a consequence some additional terms appear in the weak formulation. In fact the voltage excitation
problem now reads





Find (EC , ψ̂D, I) ∈ H0,ΓC
(curl ; ΩC)×H1(ΩD)/C× C :

∫
ΩC

(µ−1curlEC · curlwC + iωσEC ·wC)
−iω

∫
Γ wC × nC · grad ψ̂D − iωI

∫
Γ wC × nC · λD = 0

−iω
∫
Γ EC × nC · gradφD + ω2

∫
ΩD

µgrad ψ̂D · gradφD + ω2I
∫
ΩD

µλD · gradφD = 0

−iωQ
∫
Γ EC × nC · λD + ω2Q

∫
ΩD

µgrad ψ̂D · λD + ω2IQ
∫
ΩD

µλD · λD = −iωV Q

for all (wC , φD, Q) ∈ H0,ΓC
(curl ; ΩC)×H1(ΩD)/C× C ,

(5.27)
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while the current excitation problem reads




Find (EC , ψ̂D) ∈ H0,ΓC
(curl ; ΩC)×H1(ΩD)/C :

∫
ΩC

(µ−1curlEC · curlwC + iωσEC ·wC)− iω
∫
Γ wC × nC · grad ψ̂D

= iωI
∫
Γ wC × nC · λD

−iω
∫
Γ EC × nC · gradφD + ω2

∫
ΩD

µgrad ψ̂D · gradφD = −ω2I
∫
ΩD

µλD · gradφD

for all (wC , φD) ∈ H0,ΓC
(curl ; ΩC)×H1(ΩD)/C .

(5.28)

Here below we present two different possible choices of λD in the framework of finite element
approximation.

Let us now propose our finite element approximation schemes. We assume that ΩC and ΩD are
Lipschitz polyhedral domains, and that {T C

h }h and {T D
h }h are two families of tetrahedral meshes

of ΩC and ΩD respectively. We employ the Nédélec curl-conforming edge elements of degree k,
Nk

C,h, to approximate the functions in H(curl ; ΩC) and continuous nodal elements of degree k,
Lk

D,h, to approximate the functions in H1(ΩD). Let us denote Wk
C,h := Nk

C,h ∩H0,ΓC
(curl ; ΩC).

We consider two different approaches. The first one is a conforming method where the function
λD is chosen independently of the mesh, while in the second approach we consider a function λD

which is mesh dependent.

Let us start from the first approach. Let us assume that the family {T D
h }h is obtained by

refining a coarse mesh T D
h∗ . Then we can choose a set of faces of tetrahedra in T D

h∗ such that the
union is a ‘cutting’ surface Σ ⊂ ΩD. Let us denote η∗D the piecewise linear function taking value
1 at the nodes on one side of Σ, say Σ+, and 0 at all the other nodes including those on Σ−, the
other side of Σ. Then we choose λD := g̃rad η∗D (see [6]) that is independent of h.

The finite element approximation of the voltage excitation problem reads




Find (EC,h, ψ̂D,h, Ih) ∈ Wk
C,h × Lk

D,h/C× C :

C((EC,h, ψ̂D,h, Ih), (wC,h, φD,h, Q)) = −iωV Q

for all (wC,h, φD,h, Q) ∈ Wk
C,h × Lk

D,h/C× C ,

(5.29)

where C(·, ·) is the sesquilinear form, defined in H0,ΓC
(curl ; ΩC)×H1(ΩD)/C× C, associated to

problem (5.27), namely,

C((vC , ϕD,K), (wC , φD, Q) :=∫
ΩC

(µ−1curl vC · curlwC + iωσvC ·wC)
+ω2

∫
ΩD

µgradϕD · gradφD + ω2KQ
∫
ΩD

µλD · λD

−iω
[ ∫

Γ wC × nC · gradϕD +
∫
Γ vC × nC · gradφD

]
−iω

[
K

∫
Γ wC × nC · λD + Q

∫
Γ vC × nC · λD

]
+ω2

[
K

∫
ΩD

µgradφD · λD + Q
∫
ΩD

µgradϕD · λD

]
.
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Analogously, the finite element approximation of the current excitation problem reads




Find (EC,h, ψ̂D,h) ∈ Wk
C,h × Lk

D,h/C :

A((EC,h,grad ψ̂D,h), (wC,h,gradφD,h))
= iωI

∫
Γ wC × nC · λD − ω2I

∫
ΩD

µλD · gradφD

for all (wC,h, φD,h) ∈ Wk
C,h × Lk

D,h/C .

(5.30)

From the coerciveness of A(·, ·) it is easy to obtain the following result:

Proposition 5.3. The sesquilinear form C(·, ·) is coercive on H0,ΓC
(curl ; ΩC)×H1(ΩD)/C×C.

Proof. We notice that
∣∣C((wC , φD, Q), (wC , φD, Q)

)∣∣ =
∣∣A(

(wC ,gradφD + QλD), (wC ,gradφD + QλD)
)∣∣

≥ α(‖wC‖2
H(curl ;ΩC) + ‖gradφD + QλD‖2

(L2(ΩD))3) ,

since A(·, ·) is coercive on H(curl ; ΩC) × H0(curl ; ΩD). Moreover we know that %D = λD +
grad gλD , and we also have

∫
ΩD

µgradϕD · %D = 0 for each ϕD ∈ H1(ΩD). Since from the
assumptions on µ there exist two positive constants µ∗ and µ∗ such that µ∗‖vD‖2

(L2(ΩD))3 ≤∫
ΩD

µvD · vD ≤ µ∗‖vD‖2
(L2(ΩD))3 for all vD ∈ (L2(ΩD))3, it follows that

‖gradφD + QλD‖2
(L2(ΩD))3 = ‖grad (φD −QgλD) + Q%D‖2

(L2(ΩD))3

≥ 1
µ∗

∫
ΩD

µ
[
grad (φD −QgλD) + Q%D

] · [grad (φD −QgλD) + Q%D

]

= 1
µ∗

(∫
ΩD

µgrad (φD −QgλD) · grad (φD −QgλD) + |Q|2 ∫
ΩD

µ%D · %D

)

≥ µ∗
µ∗

(‖grad (φD −QgλD)‖2
(L2(ΩD))3 + |Q|2‖%D‖2

(L2(ΩD))3

)
.

Using that ‖f + g‖2
(L2(ΩD))3 ≥ (1− δ)‖f‖2

(L2(ΩD))3 + (1− 1
δ )‖g‖2

(L2(ΩD))3 for each δ > 0, we obtain

‖gradφD + QλD‖2
(L2(ΩD))3

≥ µ∗
µ∗ (1− δ)‖gradφD‖2

(L2(ΩD))3 + µ∗
µ∗ (1− 1

δ )|Q|2‖grad gλD‖2
(L2(ΩD))3 + µ∗

µ∗ |Q|2‖%D‖2
(L2(ΩD))3

= µ∗
µ∗ (1− δ)‖gradφD‖2

(L2(ΩD))3 + µ∗
µ∗

[
(1− 1

δ )‖grad gλD‖2
(L2(ΩD))3 + ‖%D‖2

(L2(ΩD))3

]|Q|2 .

Choosing δ such that

‖grad gλD‖2
(L2(ΩD))3

‖grad gλD‖2
(L2(ΩD))3

+ ‖%D‖2
(L2(ΩD))3

< δ < 1 ,

we have for some positive constant C

‖gradφD + QλD‖2
(L2(ΩD))3 ≥ C(‖gradφD‖2

(L2(ΩD))3 + |Q|2) ,

so the coerciveness of C(·, ·) follows. 2
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The optimality of the discrete solution of both problems is a consequence of Cea’s Lemma: for
the voltage excitation problem we have

‖EC −EC,h‖H(curl ;ΩC) + ‖grad ψ̂D − grad ψ̂D,h‖(L2(ΩD))3 + |I − Ih|
≤ C inf(wC,h,φD,h)∈Wk

C,h×Lk
D,h

(‖EC −wC,h‖H(curl ;ΩC) + ‖grad ψ̂D − gradφD,h‖(L2(ΩD))3
)
,

and for the current excitation problem we find

‖EC −EC,h‖H(curl ;ΩC) + ‖grad ψ̂D − grad ψ̂D,h‖(L2(ΩD))3

≤ C inf(wC,h,φD,h)∈Wk
C,h×Lk

D,h

(‖EC −wC,h‖H(curl ;ΩC) + ‖grad ψ̂D − gradφD,h‖(L2(ΩD))3
)
.

Therefore, by standard density results, we obtain the convergence of the approximation for both
problems. As usual, the precise order of convergence is related to the regularity of the solution
(EC , ψD).

In the second approach the function λD depends on h because it is the generalized gradient
of a piecewise linear function ηD,h with a jump of magnitude one on a discrete ‘cutting’ surface
Σh that depends on the mesh {T D

h }h. This choice will be denoted by λD = λh
D. Notice that now

we are not assuming that {T D
h }h is obtained by refining T D

h∗ . This approach is similar to the one
analyzed in [24] for the current excitation problem.

The sesquilinear form associated to Problem (5.27) now depends on h

Ch((vC , ϕD,K), (wC , φD, Q)) :=∫
ΩC

(µ−1curl vC · curlwC + iωσvC ·wC)
+ω2

∫
ΩD

µgradϕD · gradφD + ω2KQ
∫
ΩD

µλh
D · λh

D

−iω
[ ∫

Γ wC × nC · gradϕD +
∫
Γ vC × nC · gradφD

]
−iω

[
K

∫
Γ wC × nC · λh

D + Q
∫
Γ vC × nC · λh

D

]
+ω2

[
K

∫
ΩD

µgradφD · λh
D + Q

∫
ΩD

µgradϕD · λh
D

]
.

However Ch((vC , ϕD,K), (wC , φD, Q)) = A((vC ,gradϕD +Kλh
D), (wC ,gradφD +Qλh

D)). Hence
the finite element approximation of the voltage excitation problem with this second approach reads





Find (EC,h, ψ̂D,h, Ih) ∈ Wk
C,h × Lk

D,h/C× C :

A((EC,h,grad ψ̂D,h + Ihλh
D), (wC,h,gradφD,h + Qλh

D)) = −iωV Q

for all (wC,h, φD,h, Q) ∈ Wk
C,h × Lk

D,h/C× C .

(5.31)

Let us consider now the error estimate. Let us set HD,h := grad ψ̂D,h + Ihλh
D ∈ H0(curl ; ΩD).

From (5.27) and (5.31), we have the following equation for the error:

A((EC −EC,h,HD −HD,h), (wC,h,gradφD,h + Qλh
D)) = 0

for all wC,h ∈ Wk
C,h, φD,h ∈ Lk

D,h and Q ∈ C. Hence

‖EC −EC,h‖H(curl ;ΩC) + ‖HD −HD,h‖(L2(ΩD))3

= ‖EC −EC,h‖H(curl ;ΩC) + ‖HD − grad ψ̂D,h − Ihλh
D‖(L2(ΩD))3

≤ C inf(wC,h,zD,h)∈Wk
C,h×Zk

D,h

(‖EC −wC,h‖H(curl ;ΩC) + ‖HD − zD,h‖(L2(ΩD))3
)
,
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where
Zk

D,h := gradLk
D,h ⊕ span {λh

D} .

An error estimate for the intensity is obtained by noticing that, from (5.13),∫

ΩD

µ(HD −HD,h) · %D = (I − Ih)
∫

ΩD

µ%D · %D .

Hence
|I − Ih| ≤ C‖HD −HD,h‖(L2(ΩD))3 ,

where C = µ∗
µ∗ ‖%D‖−1

(L2(ΩD))3
.

Remark 5.4. It is worth noting that a suitable choice of the discrete function zD,h is easily
performed. In fact, let us denote by Nk

D,h the space of Nédélec curl-conforming edge elements of
degree k in T D

h , and ΠD,h the interpolation operator. If HD is so regular that ΠD,hHD is well
defined, then ΠD,hHD ∈ Zk

D,h. In fact, curl (ΠD,hHD−Iλh
D) = 0 and

∫
∂ΓJ

(ΠD,hHD−Iλh
D) ·t =

0. Consequently ΠD,hHD − Iλh
D = gradϕD for some ϕD ∈ H1(ΩD). Since ΠD,hHD − Iλh

D ∈
Nk

D,h, from Lemma 5.3, Chapter III in [53], ϕD|K is a polynomial of degree k for each K ∈ TD,h,
therefore ϕD ∈ Lk

D,h.

As a consequence, from standard interpolation estimates, for a regular solution (EC ,HD) it is
straightforward to specify the order of convergence of the approximation method.

If one has no information about the regularity of the solution, by a density argument it is possible
to prove the convergence of the finite element scheme provided that the permeability coefficient µ
is regular enough in ΩD (say, a constant as in the usual physical case) or if the family of meshes
{T D

h }h is obtained by refining a coarse mesh T D
h∗ .

In fact, when µ is constant, we know that the harmonic field %D is regular enough to define
the interpolation ΠD,h%D (see [11]). Since HD = gradψD + I%D, a density argument applied to
ψD permits to conclude the proof. In the other case, first we note that, as seen in Proposition 5.3,
we can write %D = grad gλD + λD. Then, knowing that {T D

h }h is a refinement of T D
h∗ , it follows

λD ∈ Nk
D,h. Therefore, as proved above, since curlλD = 0 in ΩD we have λD = ΠD,hλD ∈ Zk

D,h,
and a density argument for ψD + gλD gives the result. 2

For the current excitation problem the finite element approach reads




Find (EC,h, ψ̂D,h) ∈ Wk
C,h × Lk

D,h/C :

A((EC,h,grad ψ̂D,h), (wC,h,gradφD,h))
= iωI

∫
Γ wC,h × nC · λh

D − ω2I
∫
ΩD

µλh
D · gradφD,h

for all (wC,h, φD,h) ∈ Wk
C,h × Lk

D,h/C .

(5.32)

Recall that HD = grad ψ̂D + Iλh
D for some ψ̂D ∈ H1(ΩD) (that in fact depends on h). Setting

HD,h = grad ψ̂D,h + Iλh
D from (5.28) and (5.32) we have the following equation for the error

A((EC −EC,h,HD −HD,h), (wC,h,gradφD,h))
= A((EC −EC,h,grad ψ̂D − grad ψ̂D,h), (wC,h,gradφD,h)) = 0
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for each (wC,h, φD,h) ∈ Wk
C,h × Lk

D,h/C. Therefore, the coerciveness of A(·, ·) gives

‖EC −EC,h‖H(curl ;ΩC) + ‖HD −HD,h‖(L2(ΩD))3

= ‖EC −EC,h‖H(curl ;ΩC) + ‖grad ψ̂D − grad ψ̂D,h‖(L2(ΩD))3

≤ C
(‖EC −wC,h‖H(curl ;ΩC) + ‖grad ψ̂D − gradφD,h‖(L2(ΩD))3

)

for each (wC,h, φD,h) ∈ Wk
C,h × Lk

D,h. Therefore

‖EC −EC,h‖H(curl ;ΩC) + ‖HD −HD,h‖(L2(ΩD))3

≤ C inf(wC,h,zD,h)∈Wk
C,h×Zk

D,h(I)

(‖EC −wC,h‖H(curl ;ΩC) + ‖HD − zD,h‖(L2(ΩD))3
)
,

where
Zk

D,h(I) := gradLk
D,h + Iλh

D .

The convergence of the approximation scheme can be proved following the arguments presented in
Remark 5.4 (the only difference is that now we work with the space Zk

D,h(I) instead of Zk
D,h, and

this fact gives no problem to the procedure).

Once we have obtained EC,h and ψ̂D,h we can compute

Vh :=
∫

Γ
EC,h × nC · λh

D + iω

∫

ΩD

µHD,h · λh
D .

This quantity is an approximation of the voltage, that, from (5.16), can be written as

V :=
∫

Γ
EC × nC · %D + iω

∫

ΩD

µHD · %D .

In fact, let us introduce the auxiliary quantity

V̂h :=
∫

Γ
EC,h × nC · %D + iω

∫

ΩD

µHD,h · %D .

We easily have

|V − V̂h| ≤ C1(‖EC −EC,h‖H(curl ;ΩC) + ‖HD −HD,h‖(L2(ΩD))3) .

On the other hand, taking wC,h = 0 in (5.32), it is easy to see that

Vh =
∫

Γ
EC,h × nC (gradφD,h + λh

D) + iω

∫

ΩD

µHD,h · (gradφD,h + λh
D)

for all φD,h ∈ Lk
D,h. Thus

|V̂h − Vh| ≤ C2

(‖EC,h‖H(curl ;ΩC) + ‖HD,h‖(L2(ΩD))3
) ‖%D − (gradφD,h + λh

D)‖(L2(ΩD))3 ,

for all φD,h ∈ Lk
D,h. Therefore

|V − Vh| ≤ C1

(‖EC −EC,h‖H(curl ;ΩC) + ‖HD −HD,h‖(L2(ΩD))3
)

+C2

(‖EC,h‖H(curl ;ΩC) + ‖HD,h‖(L2(ΩD))3
)

inf
zD,h∈Zk

D,h(1)
‖%D − zD,h‖(L2(ΩD))3

≤
(
C1 + C2 inf

zD,h∈Zk
D,h(1)

‖%D − zD,h‖(L2(ΩD))3

)

× (‖EC −EC,h‖H(curl ;ΩC) + ‖HD −HD,h‖(L2(ΩD))3
)

+C2

(‖EC‖H(curl ;ΩC) + ‖HD‖(L2(ΩD))3
)

inf
zD,h∈Zk

D,h(1)
‖%D − zD,h‖(L2(ΩD))3 .
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If the permeability coefficient µ is constant in ΩD or if the family of meshes {T D
h }h is a refinement

of a coarse mesh T D
h∗ , the convergence can be proved as in Remark 5.4,

5.6 Numerical results.

The finite element method presented above has been implemented in Matlab, using Nédélec edge
elements of first order for the electric field in the conductor and scalar Lagrangian P1 elements for
the magnetic potential in the insulator.

The method has been tested by solving a problem with a known analytical solution. Since
this problem has been already presented in [22], we just give a brief description of it and refer the
reader to the quoted paper for details.

The conducting domain ΩC and the whole domain Ω are two coaxial cylinders of radii RC and
RD, respectively, with height L. An alternating current of intensity I(t) = I cos(ωt) is traversing
the conductor in the axial direction. Supposing that the physical parameters σ and µ are constant
scalars, the solution of the problem in cylindrical coordinates is given by

EC(r, θ, z) =
Iγ

2πRCσ

I0(γr)
I1(γRC)

ez in ΩC ,

HC(r, θ, z) =
I

2πRC

I1(γr)
I1(γRC)

eθ in ΩC ,

HD(r, θ, z) =
I

2πr
eθ in ΩD,

where I0 and I1 denote the modified Bessel functions of the first kind and order 0 and 1, res-
pectively, and γ =

√
iωµσ. Moreover, for this particular geometry it holds %D = 1

2πr eθ, so
HD = I%D.

Once the fields and the function %D are known, the value of V is computed from the expression
(5.20) to obtain

V =
γLI

2πσRC

I0(γRC)
I1(γRC)

+ iωµ
LI

2π
ln

(
RD

RC

)
.

For our particular case we have used the following geometry data

RC = 0.25 m,

RD = 0.5 m,

L = 0.25 m.

For the electromagnetic properties we have considered the values

σ = 151565.8 (Ωm)−1,

µ = 4π10−7 Hm−1,

ω = 50× 2π rad/s,
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and either assigned current intensity or voltage,

I = 104 A, or V = 0.08979 + 0.14680i,

where the value of V has been analytically computed for an intensity of 104 A.

Remark 5.5. We notice that the value of the voltage V depends on the size of the subdomain
ΩD. This fact is consistent with the expression of the energy conservation equation. To obtain this
equation we consider Ampére’s law, multiply it by the conjugate of E and integrate in Ω to get

∫

Ω
curlH ·E =

∫

Ω
σE ·E , (5.33)

then, using a Green’s formula, and considering Faraday’s law we have

−iω
∫

Ω
µH ·H +

∫

Ω
σE ·E =

∫

∂Ω
E× n ·H . (5.34)

Since EC × nC = 0 on ΓC and HD = gradψD + I%D, reasoning as in Section 5.3 we arrive at
the energy conservation equation

iω
∫

Ω
µH ·H +

∫

ΩC

σEC ·EC = V I , (5.35)

where the first integral represents the magnetic power and the second one gives the power of Ohmic
losses. After an easy computation it can be seen that the equation holds for the analytical solution
presented above, and since the value of the integral

∫
Ω µH ·H varies with the size of the domain

Ω, the voltage V depends also on it.

To test the order of convergence, the problem has been solved in four successively refined mes-
hes, for either assigned intensity or voltage. We notice that the only approximation implemented
in our program is that in which the function λh

D depends on the mesh, namely, problems (5.31)
and (5.32). We present in Tables 5.1 and 5.2 the relative errors of our numerical solutions against
the analytical one, that have been set as follows:

eE =
‖EC −EC,h‖H(curl ;ΩC)

‖EC‖H(curl ;ΩC)
, eV =

|V − Vh|
|V |

eH =
‖HD −HD,h‖(L2(ΩD))3

‖HD‖(L2(ΩD))3
, eI =

|I − Ih|
|I| .

Finally, Figures 5.5 and 5.6 show the plots in a log-log scale of the relative errors versus the degrees
of freedom. A linear dependence on the mesh size is obtained for the errors of electric and magnetic
fields, either for assigned intensity or voltage. This dependence turns out to be more than linear
for the errors of voltage and intensity.

The method has been also applied to a more realistic problem which was presented in [24].
In this case the domain is a cylindrical electric furnace with three electrodes equally distanced.
The dimensions of the furnace are the following: furnace height: 2 m.; furnace diameter: 8.88 m.;
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Elements DoF eE eH eV

2304 1684 0.2341 0.1693 0.0312
18432 11240 0.1132 0.0847 0.0089
62208 35580 0.0750 0.0567 0.0048
147456 81616 0.0561 0.0425 0.0018

Table 5.1: Relative errors for assigned intensity.

Elements DoF eE eH eI

2304 1685 0.2336 0.1685 0.0274
18432 11241 0.1132 0.0847 0.0085
62208 35581 0.0750 0.0566 0.0041
147456 81617 0.0561 0.0425 0.0024

Table 5.2: Relative errors for assigned voltage.

electrodes height: 1.25 m.; electrodes diameter: 1 m.; distance from the center of the electrodes to
the wall: 3 m.

The three electrodes inside the furnace are formed by a graphite core of 0.4 m. of diameter,
and an outer part of Söderberg paste. The electric current enters the electrodes through horizontal
copper bars of rectangular section (0.07 m. × 0.25 m.), connecting the top of the electrode with
the external boundary.

For the simulation we have considered the angular frequency ω = 50 × 2π rad/s, and the
electric conductivities σ = 106(Ωm)−1 for graphite, σ = 104(Ωm)−1 for Söderberg paste, and
σ = 5 × 106(Ωm)−1 for copper. The electrodes are supplied with one-phase current of intensity
7× 104A. Thus, we have imposed the current intensities Ij = 7× 104 using the approach that has
been explained in Section 5.3.1 for the case of several conductors with electric ports. With the
same notation used there, the boundaries ΓE,j correspond to the contacts of the copper bars on
the boundary of the furnace and ΓJ,j to the bottom of the electrodes.

In Figure 5.7 we present the modulus of the magnetic potential, i.e., |ψ̂D,h +
∑3

j=1 IjηD,j,h|,
where ηD,j,h are the piecewise linear functions with a jump of height 1 on the ‘cutting’ surfaces
Σj,h. In Figures 5.8 and 5.9 the modulus of the current density Jh = σEC,h on a horizontal and a
vertical section of one electrode is shown.
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Figure 5.5: Relative error versus number of d.o.f. (assigned intensity).
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Figure 5.6: Relative error versus number of d.o.f. (assigned voltage).

Figure 5.7: Magnetic potential in the dielectric.
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Figure 5.8: |Jh| on a horizontal section of one electrode.

Figure 5.9: |Jh| on a vertical section of one electrode.



Conclusions

The main objective of this work has been the numerical simulation of an induction heating furnace.
To this end, we have introduced a mathematical model, consisting of a nonlinear system of partial
differential equations.

In Chapter 2 we have analyzed two different versions of a system of equations concerning a
stationary magnetohydrodynamic problem, assuming homogeneous and temperature independent
physical properties. The two versions differ on the treatment of the buoyancy term in the hy-
drodynamic model: in the first one we consider the Boussinesq approximation, whereas in the
second we assume certain properties for the density function. When considering the Boussinesq
approximation we have proved the existence of solution for the coupled problem under some hy-
potheses of smallness for the boundary and source data, hence extending the results given in [72]
by considering Lipschitz domains and quadratic sources in the heat equation. For the second
stationary model, and following the ideas presented in [2], we have proved the result of existence
independently of the data size. We have also showed, for both models, the uniqueness of solution
under constraints of small source data.

We have introduced in Chapter 3 a mathematical model more suitable for the numerical si-
mulation of the furnace. The main task in this chapter has been the mathematical analysis of the
electromagnetic problem, which we have written in terms of the magnetic vector potential with
the current voltages acting as Lagrange multipliers. A result of existence and uniqueness of the
solution has been proved, with a simple adaptation of a similar result presented in [58].

The mathematical model has been discretized in Chapter 4 using Lagrange-Galerkin methods
for the thermal and hydrodynamic subproblems, and a mixed BEM/FEM method for the electro-
magnetic one. Moreover, we have also presented in this chapter several iterative algorithms to deal
with the coupling terms (Joule effect, temperature dependent properties) and the nonlinearities
(thermal boundary conditions, change of state). The resulting algorithm has been implemented in
Fortran and validated by solving a coupled thermal-hydrodynamic problem with phase change.
The computational code has been also used to simulate the behaviour of a real induction heating
furnace.

Finally, we have introduced and analyzed in Chapter 5 a new formulation of the electromagnetic
problem, taking as main unknowns the electric field in the conductor and the magnetic field in the
insulator. The main advantage of this formulation is that it permits to impose either the current
intensity or the voltage drop in an easy way. Moreover, imposing the electric field as the unknown
in the conductor, instead of the magnetic fields (as it is done in [24]) should lead to more accurate

149



150 Conclusions

calculations of the Joule effect after discretization.

From our point of view there are still many open problems. Concerning the mathematical
analysis of the problem, the results of Chapter 2 could be extended to a problem with material
dependent properties. Moreover, it seems also possible to consider a formulation of Maxwell equa-
tions in terms of the current density J, as it is done in [74], which would permit to introduce
more realistic boundary conditions. However, the main interest in this field would be the analysis
of the coupled mathematical model appearing in Chapter 3, considering the time harmonic elec-
tromagnetic model and including temperature dependencies of the material properties and phase
change.

About the numerical simulation of the furnace, it would be interesting to compare the nu-
merical results of the axisymmetric electromagnetic formulation presented in Chapter 3 and the
one introduced in Chapter 5, in order to know if the geometrical (and topological) modifications
necessary to perform the two-dimensional simulation in a cylindrical setting have any influence on
the numerical results.

Moreover, there are still some improvements that should be incorporated to the mathematical
model to obtain more realistic results. First of all, we should consider an internal radiation
boundary condition in the inner walls of the crucible and in the upper boundary of the load. It
would be also interesting to introduce a more sophisticated turbulence model, such as the k − ε
model, better than the Smagorinsky’s one we have used until now. A more challenging problem
seems to be the simulation of the displacement of liquid metal during the melting process. However,
this is crucial to obtain realistic simulations of the process, and in particular when the physical
properties vary at the melting point.

Finally, it should be carried out the numerical analysis of the BEM/FEM introduced in Chapter
4. At this respect, the numerical analysis of a finite element method for the same problem (in a
bounded domain) is presented in [21].



Appendix A

Notation and auxiliary results.

This appendix is devoted to introduce some well known definitions and results that are used
throughout this work. In Section 1 we introduce the notation for some commonly used function
spaces, along with some well known properties and Green’s formulas. In Section 2 we present
two orthogonal decompositions of the space L2(Ω), which depend on topological properties of the
domain Ω.

A.1 Function spaces.

Let Ω ⊂ R3 be a bounded simply connected domain either of class C1,1 or a Lipschitz polyhedron,
in both cases with connected boundary ∂Ω. In this section we introduce several spaces of functions
defined on Ω which will be used in different parts of this work.

For a real number p ≥ 1, Lp(Ω) denotes the Lebesgue space of (real or complex) scalar functions
the p-th power of which are integrable; its vectorial counterpart is denoted by Lp(Ω). These spaces
are equipped with the norms

‖θ‖Lp :=
(∫

Ω
|θ(x)|p dx

)1/p

,

‖u‖Lp :=
(∫

Ω
|u(x)|p dx

)1/p

.

For a non-negative integer m, we denote by Hm(Ω) the usual m-th order Sobolev space, i.e. the
space of (real or complex) functions belonging to L2(Ω) such that all their distributional derivatives
of order less or equal than m also belong to L2(Ω). We equip it with the usual norm

‖θ‖m :=


 ∑

0≤|α|≤m

‖Dαθ‖2
L2




1/2

.

We denote by Hm(Ω) := (Hm(Ω))3 its vector-valued counterpart, and again by ‖ ¦ ‖m its norm.
We use the convention H0(Ω) = L2(Ω) and H0(Ω) = L2(Ω). Moreover, for the space L2(Ω)
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(respectively, L2(Ω)) we denote its scalar product by (θ, ζ)Ω :=
∫
Ω θζ dx (respectively, (v,w)Ω :=∫

Ω v ·w dx).

We shall also make use of some subspaces of H1(Ω) and H1(Ω) satisfying certain boundary
conditions:

H1
0 (Ω) := {θ ∈ H1(Ω) : θ|∂Ω = 0},

H1
0(Ω) := {w ∈ H1(Ω) : w|∂Ω = 0},

H1
T (Ω) := {w ∈ H1(Ω) : (w · n)|∂Ω = 0}.

Since H1
0 (Ω) is a closed subspace of H1(Ω), and both H1

0(Ω) and H1
T (Ω) are closed subspaces of

H1(Ω), they are endowed with the corresponding norms ‖¦‖1 defined above.

To impose the divergence-free condition in the hydrodynamic problem, we will make use of the
following subspaces

Z(Ω) :=
{
w ∈ H1(Ω) : div w = 0

}
,

Z0(Ω) :=
{
w ∈ H1

0(Ω) : div w = 0
}

.

In the Navier-Stokes equations, the pressure belongs to a certain closed subspace of L2(Ω),
namely,

L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫

Ω
q dx = 0

}
.

For a real number p ≥ 1, we denote by W 1,p(Ω) the space of functions belonging to Lp(Ω)
such that their first order distributional derivatives also belong to Lp(Ω). It is endowed with the
norm ‖θ‖1,p := ‖θ‖Lp +

∑3
i=1

∥∥∥ ∂θ
∂xi

∥∥∥
Lp
. We define a certain closed subspace of W 1,p(Ω) consisting

of functions that satisfy homogeneous Dirichlet boundary conditions

W 1,p
0 (Ω) := {θ ∈ W 1,p(Ω) : θ|∂Ω = 0}.

We also recall the dual spaces

H−1(Ω) = (H1
0 (Ω))′,

H−1(Ω) = (H1
0(Ω))′,

W−1,p′(Ω) = (W 1,p
0 (Ω))′,

where 1/p′ = 1− 1/p, for any p > 1. Their respective norms are defined as follows:

‖f‖−1 := sup
θ∈H1

0 (Ω), θ 6=0

〈f, θ〉Ω
‖θ‖1

,

‖f‖−1 := sup
w∈H1

0 (Ω),w 6=0

〈f ,w〉Ω
‖w‖1

,

‖f‖−1,p′ := sup
θ∈W 1,p

0 (Ω), θ 6=0

〈f, θ〉Ω
‖θ‖1,p

.
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Here 〈¦, ¦〉Ω denotes the duality pairing between a function space V (Ω) defined on the domain
Ω and its dual (V (Ω))′. Analogously, we shall denote by 〈¦, ¦〉∂Ω the duality pairing between a
function space W (∂Ω) defined on the boundary ∂Ω and its dual (W (∂Ω))′.

We also need certain well known trace spaces

H1/2(∂Ω) := {θ|∂Ω : θ ∈ H1(Ω)},
H1/2(∂Ω) := {w|∂Ω : w ∈ H1(Ω)},

endowed with the norms

‖q‖1/2,∂Ω := inf
θ∈H1(Ω), θ|∂Ω=q

‖θ‖1 ,

‖q‖1/2,∂Ω := inf
w∈H1(Ω),w|∂Ω=q

‖w‖1 ,

and their respective dual spaces H−1/2(∂Ω) = (H1/2(∂Ω))′, H−1/2(∂Ω) = (H1/2(∂Ω))′, equipped
with the usual norms:

‖g‖−1/2,∂Ω := sup
w∈H1/2(∂Ω),w 6=0

〈g, w〉∂Ω

‖w‖1/2,∂Ω

,

‖g‖−1/2,∂Ω := sup
w∈H1/2(∂Ω),w 6=0

〈g,w〉∂Ω

‖w‖1/2,∂Ω

.

Let Γ ⊂ ∂Ω be an open subset of the boundary. We define the spaces (see, for instance, [45])

H
1/2
00 (Γ) :=

{
v ∈ L2(Γ) : ṽ ∈ H1/2(∂Ω)

}
,

H1/2
00 (Γ) :=

{
v ∈ L2(Γ) : ṽ ∈ H1/2(∂Ω)

}
,

where ṽ and ṽ are the extensions by zero to ∂Ω. Identifying each field v with its extension by
zero ṽ, we can write H

1/2
00 (Γ) ⊂ H1/2(∂Ω), and also H1/2

00 (Γ) ⊂ H1/2(∂Ω). Their dual spaces are
respectively denoted by H

−1/2
00 (Γ) and H−1/2

00 (Γ).

Next, we give some well known results about the norms. For any function θ ∈ W 1,p
0 (Ω), the

Poincaré inequality holds:

‖θ‖Lp ≤ C(Ω, p)
3∑

i=1

∥∥∥∥
∂θ

∂xi

∥∥∥∥
Lp

, (A.1)

where C(Ω, p) is some constant dependent on the domain Ω and p. This result states that the
seminorm

|θ|1,p :=
3∑

i=1

∥∥∥∥
∂θ

∂xi

∥∥∥∥
Lp

, (A.2)

is a norm in W 1,p
0 (Ω) equivalent to the usual norm ‖¦‖1,p. Moreover,

‖θ‖1,p ≤ (1 + C(Ω, p)) |θ|1,p = C(p) |θ|1,p . (A.3)
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We notice that this result implies the equivalence, in the dual space W−1,p′(Ω) = (W 1,p
0 (Ω))′, of

the usual norm ‖·‖−1,p′ and the dual norm of | ¦ |1,p, which is given by

|f |−1,p′ := sup
θ∈W 1,p

0 (Ω), θ 6=0

〈f, θ〉Ω
|θ|1,p

. (A.4)

In the particular case of spaces H1
0 (Ω) and H1

0(Ω), Poincaré inequality states the equivalence
of the usual norm ‖·‖1 and the seminorms |·|1, defined as

|θ|1 := ‖grad θ‖0 =

(
3∑

i=1

∥∥∥∥
∂θ

∂xi

∥∥∥∥
2

0

)1/2

, (A.5)

|w|1 := ‖gradw‖0 =




3∑

i=1

3∑

j=1

∥∥∥∥
∂wi

∂xj

∥∥∥∥
2

0




1/2

, (A.6)

i.e., there exists a constant C0 such that

‖θ‖1 ≤ C0 |θ|1 ∀ θ ∈ H1
0 (Ω) , (A.7)

‖w‖1 ≤ C0 |w|1 ∀w ∈ H1
0(Ω) , (A.8)

For the electromagnetic problem we will make use of the Hilbert spaces H(curl; Ω) and
H(div; Ω), which are defined by

H(curl; Ω) := {v ∈ L2(Ω) : curl v ∈ L2(Ω)},
H(div; Ω) := {w ∈ L2(Ω) : div w ∈ L2(Ω)},

and endowed with the norms

‖v‖H(curl;Ω) :=
(
‖v‖2

0 + ‖curl v‖2
0

)1/2
,

‖w‖H(div;Ω) :=
(
‖w‖2

0 + ‖div w‖2
0

)1/2
.

We will denote by H0(curl ; Ω) the closed subspace of functions in H(curl; Ω) such that its curl
is null, namely,

H0(curl ; Ω) := {v ∈ H(curl; Ω) : curl v = 0} .

We denote by H0(curl ; Ω) the subspace of H(curl; Ω) constituted by functions with vanishing
tangential trace on the boundary (see Section A.1.1 for a characterization of the tangential trace),
and by H0(div ; Ω) the subspace of H(div; Ω) constituted by functions with vanishing normal trace
on the boundary, namely,

H0(curl ; Ω) := {v ∈ H(curl; Ω) : v × n = 0 on ∂Ω} ,

H0(div ; Ω) := {v ∈ H(div; Ω) : v · n = 0 on ∂Ω} .
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Moreover, given an open subset Λ ⊂ ∂Ω we denote by H0,Λ(curl ; Ω) the space of functions in
H(curl; Ω) with vanishing tangential trace on Λ, i.e.,

H0,Λ(curl ; Ω) := {v ∈ H(curl; Ω) : v × n = 0 in H−1/2
00 (Λ)} .

To simplify the notation we introduce the spaces

X(Ω) := H(curl; Ω) ∩H(div; Ω) ,

X0(Ω) := H(curl; Ω) ∩H0(div; Ω) ,

equipped with the norm

‖w‖X :=
(
‖w‖2

0 + ‖curlw‖2
0 + ‖div w‖2

0

)1/2
.

It is known that if the domain Ω is bounded and simply connected with Lipschitz boundary,
then

‖w‖0 ≤ C̃1(‖curlw‖2
0 + ‖div w‖2

0)
1/2 ∀w ∈ X0(Ω) . (A.9)

The result is a consequence of Lemma 3.6 in chapter 1 of [53]. In fact, the previous result states
that the mapping w 7→ |w|X := (‖curlw‖2

0 + ‖div w‖2
0)

1/2 defines a norm in X0(Ω) equivalent to
the norm ‖¦‖X, through the inequality

‖w‖X ≤ C1 |w|X ∀w ∈ X0(Ω) , (A.10)

with C1 = (1 + C̃2
1 )1/2.

Remark A.1. In fact, if the domain Ω is bounded of class C1,1 or it is a bounded convex polyhedron,
for any function w ∈ X0(Ω) we have the following inequality

‖w‖1 ≤ C2(‖curlw‖2
0 + ‖div w‖2

0)
1/2, (A.11)

with C2 some constant dependent on Ω. This result states the equality H1
T (Ω) = H(curl; Ω) ∩

H0(div; Ω) = X0(Ω), and the equivalence of the norms ‖·‖1 and ‖·‖X in H1
T (Ω). Thus, it would

allow us to improve, in the case of regular domains, some of the results appearing in Chapter 2 of
this work. The result is presented in chapter 1 of [53]. It is a consequence of Theorem 3.8 and
Lemma 3.6 for the case of a bounded domain with C1,1 boundary, and of Theorem 3.9 and Lemma
3.6 for the case of a convex polyhedron.

Finally we remind two well known Green’s formulas, that will be used throughout this work
∫

Ω
u · grad v dx +

∫

Ω
(div u)v dx = 〈u · n, v〉∂Ω , ∀u ∈ H(div; Ω), ∀ v ∈ H1(Ω), (A.12)

∫

Ω
u · (curlw) dx−

∫

Ω
(curl u) ·w dx = 〈u× n,w〉∂Ω ∀u ∈ H(curl; Ω), ∀w ∈ H1(Ω). (A.13)
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A.1.1 Characterization of the tangential traces of H(curl; Ω).

We notice that the second of the previous Green’s formulas is not valid when both functions
belong to H(curl; Ω). In order to extend the use of this formula to a more general situation, it is
necessary to characterize the space of tangential traces of H(curl; Ω). If the domain Ω is smooth
this is done in [3]. The results are generalized to the case of Lipschitz polyhedra in [30, 31], and
to the case of general Lipschitz domains in [32]. We will first present some of the definitions and
results introduced in [3] for smooth domains, but following the notation of [2], and then report the
main results of [30, 31] for Lipschitz polyhedra.

Let Ω be a bounded domain either of class C1,1 or a Lipschitz polyhedron. We define the space

H1/2
T (∂Ω) := {w ∈ H1/2(∂Ω) : (w · n)|∂Ω = 0} .

In the case of Ω being of class C1,1 we can introduce its dual space, denoted by H−1/2
T (∂Ω), which

can be identified to {w ∈ H−1/2(∂Ω) : (w · n)|∂Ω = 0}. We also introduce the space H3/2(∂Ω)
defined as

H3/2(∂Ω) := {u|∂Ω : u ∈ H2(Ω)} ,

and its dual space is H−3/2(∂Ω). Moreover, given ϕ ∈ H3/2(∂Ω) we denote by ϕ̃ any lifting of ϕ
in H2(Ω).

We define the ‘tangential gradient operator’ gradΓ : H3/2(∂Ω) → H1/2
T (∂Ω) given by gradΓ ϕ :=

n × (grad ϕ̃|∂Ω × n) (see, for instance, [2]), and this definition can be seen to be independent
of the lifting ϕ̃. In the same paper (see also [3] and [13]) the ‘tangential divergence operator’
divΓ : H−1/2

T (∂Ω) → H−3/2(Ω) is defined by

〈divΓ λ, ϕ〉∂Ω := −〈λ,gradΓ ϕ〉∂Ω ∀ϕ ∈ H3/2(∂Ω),∀λ ∈ H−1/2
T (∂Ω) .

Following the notation in [2] we introduce the space

H−1/2
T (divΓ, ∂Ω) := {λ ∈ H−1/2

T (∂Ω) : divΓ λ ∈ H−1/2(∂Ω)} .

It is proved in [3] that the tangential trace operator γτ defined as γτ (u) := u × n, is linear,
continuous and surjective from H(curl; Ω) to H−1/2

T (divΓ, ∂Ω).

As said before, the definitions and results presented above are only valid when the domain Ω
is smooth. If Ω is a Lipschitz polyhedron some problems appear. In particular the scalar product
λ · n for λ ∈ H−1/2(∂Ω), and the tangential divergence operator are not meaningful anymore.
In order to define the space of tangential traces of H(curl; Ω), in [30, 31] some of the previous
definitions and results are generalized, considering the definitions of some spaces and operators
face by face, and imposing certain compatibility conditions at the edges of the polyhedron. In the
same papers, after giving a precise meaning to the traces of H(curl; Ω), the authors also introduce
a generalization of the Green’s formula which is valid for functions u, w ∈ H(curl; Ω). In the
following we present some of the main results of these papers, and refer the reader to the articles
for the full rigorous proofs.

Let Ω be a Lipschitz polyhedron such that its boundary ∂Ω is split into M open faces Γj , j =
1, . . . , M , so that ∂Ω = ∪M

j=1Γj . When Γi and Γj are two adjacent faces, we denote by eij their
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‘common’ edge. Moreover, for a given face Γi, Si will denote the set of indices j such that the
faces Γj have a ‘common’ edge with Γi. Finally, we denote by ui the trace u|Γi

, (in particular
ni = n|Γi

), by τ ij the unit vector in the direction of the edge eij , and set τ i = τ ij × ni so that
(τ i, τ ij ,ni) is an orthonormal basis of R3.

Let us introduce the spaces

L2
t (∂Ω) := {φ ∈ L2(∂Ω) : φ · n|∂Ω = 0} ,

H1/2
− (∂Ω) := {λ ∈ L2

t (∂Ω) : λj ∈ H1/2(Γj), 1 ≤ j ≤ M} .

We define the ‘tangential components trace’ mapping πτ : D(Ω)3 → H1/2
− (∂Ω) by πτ (u) :=

n× (u× n)|∂Ω, and the ‘tangential trace’ mapping γτ : D(Ω)3 → H1/2
− (∂Ω) as γτ (u) := u× n|∂Ω.

These mappings can be extended in a unique way to linear continuous mappings from H1(Ω) into
H1/2
− (∂Ω) (still denoted by πτ and γτ ). We have, for any u ∈ H1(Ω)

πτu(x) = uj(x)− (uj(x) · nj(x))nj(x), a.e. x ∈ Γj , 1 ≤ j ≤ M ,

γτu(x) = uj(x)× nj(x), a.e. x ∈ Γj , 1 ≤ j ≤ M .

Mappings πτ and γτ are not surjective. In order to characterize their respective ranges we
adopt the following notation: for ψi ∈ H1/2(Γi), ψj ∈ H1/2(Γj) we say that

ψi
1/2
= ψj on eij ⇔ C(ψi, ψj) :=

∫

Γi

∫

Γj

|ψi(x)− ψj(y)|2
‖x− y‖3 dσ(x) dσ(y) < ∞ .

Let us introduce the spaces

H1/2
‖ (∂Ω) := {φ ∈ H1/2

− (∂Ω) : φj · τ ij
1/2
= φi · τ ij on eij ∀j ,∀i ∈ Sj} ,

H1/2
⊥ (∂Ω) := {φ ∈ H1/2

− (∂Ω) : φi · τ i
1/2
= φj · τ j on eij ∀j , ∀i ∈ Sj} .

These spaces are not closed in H1/2
− (∂Ω). It can be proved that they are Hilbert spaces when

endowed with the norms

‖φ‖2
‖,1/2,∂Ω :=

M∑

j=1

‖φ‖2
1/2,Γj

+
M∑

j=1

∑

i∈Sj

C(φi · τ ij , φj · τ ij) ,

‖φ‖2
⊥,1/2,∂Ω :=

M∑

j=1

‖φ‖2
1/2,Γj

+
M∑

j=1

∑

i∈Sj

C(φi · τ i, φj · τ j) .

The mappings πτ : H1(Ω) → H1/2
‖ (∂Ω) and γτ : H1(Ω) → H1/2

⊥ (∂Ω) are linear continuous

and surjective. The dual spaces of H1/2
‖ (∂Ω) and H1/2

⊥ (∂Ω) will be denoted by H−1/2
‖ (∂Ω) and

H−1/2
⊥ (∂Ω), respectively.

To make precise the ranges of the mappings πτ and γτ extended to H(curl; Ω) we have to
introduce some surface operators. Since we are dealing with polyhedra, these operators can be
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defined face by face. First, let us define the ‘tangential gradient operator’ as grad Γju = gradu|Γj
−

(gradu|Γj
· nj)nj , for u ∈ H2(Ω), and in the same way let us define the ‘tangential curl operator’

face by face as curl Γju = gradu|Γj
×nj . We can define the operators corresponding to the whole

boundary ∂Ω as follows:

gradΓ : H2(Ω) → H1/2
− (∂Ω), gradΓ u(x) = grad Γju(x) , a.e. x ∈ Γj ,

curlΓ : H2(Ω) → H1/2
− (∂Ω), curlΓ u(x) = curl Γju(x) , a.e. x ∈ Γj ,

and these two operators are linear and continuous. Moreover, it is clear that

gradΓ u = πτ (gradu) ,

curlΓ u = γτ (gradu) .

For Lipschitz polyhedra we also define the space H3/2(∂Ω) as

H3/2(∂Ω) := {u|∂Ω : u ∈ H2(Ω)} .

Given ϕ ∈ H3/2(∂Ω) we define its ‘tangential gradient’ as gradΓ ϕ := gradΓ ϕ̃, where ϕ̃ ∈ H2(Ω)
is such that ϕ̃|∂Ω = ϕ. It can be proved that gradΓ ϕ is independent of the choice of ϕ̃, and that
gradΓ ∈ L(H3/2(∂Ω),H1/2

‖ (∂Ω)). In the same way the ‘tangential curl operator’ curlΓ can be

defined, and curlΓ ∈ L(H3/2(Ω),H1/2
⊥ (∂Ω)).

Remark A.2. In the case of Ω being a domain of class C1,1, the range of both operators γτ and
πτ is the space H1/2

T (∂Ω). Furthermore, operators gradΓ and curlΓ are defined from H3/2(∂Ω)
into H1/2

T (∂Ω).

We also define the ‘tangential divergence operator’ divΓ : H−1/2
‖ (∂Ω) → H−3/2(∂Ω), as the

adjoint operator of −gradΓ , so that

〈divΓ λ, ϕ〉∂Ω = −〈λ,gradΓ ϕ〉∂Ω ∀ϕ ∈ H3/2(∂Ω) ∀λ ∈ H−1/2
‖ (∂Ω) .

We can analogously define the operator curlΓ : H−1/2
⊥ (∂Ω) → H−3/2(∂Ω) as the adjoint of the

operator curlΓ ∈ L(H3/2(∂Ω),H1/2
⊥ (∂Ω)), namely,

〈curlΓ λ, ϕ〉∂Ω = 〈λ, curlΓ ϕ〉∂Ω ∀ϕ ∈ H3/2(∂Ω) ∀λ ∈ H−1/2
⊥ (∂Ω) .

Now let us set

H−1/2
‖ (divΓ , ∂Ω) := {λ ∈ H−1/2

‖ (∂Ω) : divΓ (λ) ∈ H−1/2(∂Ω)} , (A.14)

H−1/2
⊥ (curlΓ , ∂Ω) := {λ ∈ H−1/2

⊥ (∂Ω) : curlΓ (λ) ∈ H−1/2(∂Ω)} . (A.15)

In Section 3.2 of [30] it is proved that, for any u ∈ H(curl; Ω) the following relation holds

divΓ (γτu) = divΓ (u× n) = curl u · n . (A.16)
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In Theorems 3.9 and 3.10 of the same paper the authors prove that the mappings γτ : H(curl; Ω) →
H−1/2
‖ (divΓ , ∂Ω) and πτ : H(curl; Ω) → H−1/2

⊥ (curlΓ , ∂Ω) are linear and continuous. It is also
shown in [31, Th. 5.4] that these mappings are surjective. Moreover, in the same papers it is
proved that (H−1/2

⊥ (curlΓ , ∂Ω))′ = H−1/2
‖ (divΓ, ∂Ω). Thus for any u,w ∈ H(curl; Ω) it can be

defined the duality pairing 〈γτ (u), πτ (w)〉∂Ω, and the following Green’s formula holds:
∫

Ω
(curlw) · u−w · (curl u) dx = 〈γτ (u), πτ (w)〉∂Ω ∀u,w ∈ H(curl; Ω) . (A.17)

Remark A.3. As said before, in [31] it is proved that (H−1/2
⊥ (curlΓ , ∂Ω))′ = H−1/2

‖ (divΓ, ∂Ω).

However, from the result of that paper we can only affirm that the norms of H−1/2
‖ (divΓ, ∂Ω) and

(H−1/2
⊥ (curlΓ , ∂Ω))′ are equivalent, but not necessarily the same. In order to avoid the use of new

constants we will consider for H−1/2
‖ (divΓ, ∂Ω) the norm given by (H−1/2

⊥ (curlΓ , ∂Ω))′, which will
be denoted by ‖·‖

H
−1/2
‖ (divΓ,∂Ω)

.

Remark A.4. In the case where w ∈ H1(Ω) we have

〈γτ (u), πτ (w)〉∂Ω = 〈u× n,w〉∂Ω

where the angles in the left-hand side denote the duality pairing between H−1/2
‖ (divΓ , ∂Ω) and

H−1/2
⊥ (curlΓ , ∂Ω), and the ones in the right-hand side denote the duality pairing between H−1/2(∂Ω)

and H1/2(∂Ω). In fact, this will be the situation when the domain Ω is of class C1,1 or a convex
polyhedron, because our test functions will belong to X0(Ω) which is, in this case, contained in
H1(Ω).

Finally, we will also make use of the following lemma:

Lemma A.1. The space {πτ (u) : u ∈ X0(Ω)} is dense in H−1/2
⊥ (curlΓ , ∂Ω).

Proof. It is similar to the proof of Lemma 2.4 in [33]. Let us denote by Σ = ∪M
i,j=1eij the union of

all edges of the polyhedron, and by H1
S(Ω) the functions in H1(Ω) compactly supported in Ω \Σ.

The first step is to prove that the space of tangential traces for H1
S(Ω) is contained in the one for

H1(Ω) ∩ X0(Ω). Let v ∈ H1
S(Ω), its normal component belongs to H1/2(Γj) on each face, and

since v ∈ H1
S(Ω) it also belongs to H1/2(∂Ω), the space of traces for H1(Ω) (see [30, Th. 2.5]).

Hence, there exists w ∈ H1(Ω) such that its trace is equal to the normal component of v and, if
we define z := v −w, it holds that z ∈ H1(Ω) ∩X0(Ω) and πτz = πτv.

Now, we recall that H1
S(Ω) is dense in H1(Ω), and also H1(Ω) is dense in H(curl; Ω). Since

πτ is continuous and surjective from H(curl; Ω) into H−1/2
⊥ (curlΓ , ∂Ω) the result follows.

A.2 Two Hodge decompositions of L2(Ω).

It is known that in electromagnetism, and in particular in the eddy currents model, the topological
properties of the domain play a crucial role in the mathematical analysis of the model. In this
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work we present, in Chapters 3 and 5, two different formulations of the eddy currents model, also
with different domain configurations. We introduce here some definitions and results used in the
aforementioned chapters.

Let Ω ⊂ R3 be an open and connected set, but not necessarily simply connected, with a
Lipschitz-continuous boundary Γ. We denote by Γk, k = 1, . . . , p, the connected components of Γ,
and by n the outer normal vector to Γ.

We will denote by β1(Ω) = q the first Betti number of Ω. This number is equal to the dimension
of the first cohomology space, a topological invariant of the domain Ω. Roughly speaking, the first
Betti number measures the number of independent non-bounding cycles in Ω, and these non-
bounding cycles are closed loops that are not a boundary of a two-dimensional manifold contained
in Ω. It is known that there exist q orientable two-dimensional manifolds Σj ⊂ Ω, j = 1, . . . , q,
such that ∂Σj ⊂ ∂Ω and Ω \ ∪q

j=1Σj has a trivial cohomology space. Moreover, we will denote by
γj , j = 1, . . . , q, the aforementioned independent cycles.

Let ε be a symmetric tensor field, uniformly positive definite in Ω, and such that εij ∈ L∞(Ω)
for i, j = 1, 2, 3. For any functions u, v ∈ L2(Ω) let us define the scalar product

(u,v)ε :=
∫

Ω
εu · v dx , (A.18)

and by ‖·‖0,ε its corresponding induced norm, which is equivalent to the usual norm in L2(Ω),
due to the previous assumptions. The space L2(Ω) endowed with this norm will be denoted by
L2(ε; Ω).

We introduce the space of Neumann harmonic fields in Ω:

Hε(Ω) := {w ∈ L2(Ω) : curlw = 0, div (εw) = 0, εw · n = 0 on ∂Ω}. (A.19)

The dimension of this space is known to be equal to q = β1(Ω) (see, for instance, [11], [40, Ch.
IX]). Moreover, it is also possible to construct a basis of Hε(Ω) from the ‘cutting’ surfaces Σj

introduced above. Following the construction described in [45], let ηj , j = 1, . . . , q, be the solution
to 




div (εgrad ηj) = 0 in Ω \ ∪q
k=1Σk ,

εgrad ηj · n = 0 on ∂Ω \ ∪q
k=1∂Σk ,

[ηj ]Σk
= δjk , k = 1, . . . , q ,

[εgrad ηj · n]Σk
= 0 , k = 1, . . . , q ,

(A.20)

where [·]Σk
denotes the jump across Σk of the function between brackets, and δjk is the Kronecker’s

delta. Then %j := g̃rad ηj , j = 1, . . . , q form a basis of Hε(Ω), where g̃rad denotes the extension
of the gradient computed in Ω \ ∪q

k=1Σk to Ω. Giving a proper orientation for surfaces Σj and
cycles γj , we can assume that

∫
γj

%j ds = 1.

The following Hodge decomposition holds (see e.g. [6]): given a vector function v ∈ L2(ε; Ω),
it can be decomposed into the following sum

v = ε−1curl q + gradψ +
q∑

j=1

αj%j , (A.21)
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with q ∈ H(curl; Ω) and ψ ∈ H1(Ω)/C. Moreover, this decomposition is L2(ε; Ω)-orthogonal,
namely,

(ε−1curl q,gradψ)ε = 0 , (ε−1curl q,

q∑

j=1

αj%j)ε = 0 , (gradψ,

q∑

j=1

αj%j)ε = 0 . (A.22)

It is known that if curl v = 0 then q can be taken null, hence

v = gradψ +
q∑

j=1

αj%j , (A.23)

and
∫
γj

v ds = αj .

The second Hodge decomposition we present is based on the space of Dirichlet harmonic func-
tions in Ω, which is defined as

Dε(Ω) := {w ∈ L2(Ω) : curlw = 0, div (εw) = 0, εw × n = 0 on Γ} , (A.24)

and it is known to have finite dimension equal to p̃ = β2(Ω), with β2(Ω) the second Betti number
of Ω. It is also possible to construct a basis for it: let λj ∈ H1(Ω) be the solution to

{
div (εgradλj) = 0 in Ω ,
λj = δjk on Γk, k = 1, . . . , p ,

(A.25)

and denote πj := gradλj , j = 1, . . . , p. It is known that Dε(Ω) = span{πj , j = 1, . . . , p}.
Moreover, the functions πj can be reordered in such a way that the first p̃ of them, {πj}p̃

j=1, form
a basis of Dε(Ω).

In [10, Lemma 2.1] it is also presented the following Hodge decomposition: given a vector
v ∈ L2(ε; Ω) it holds that

v = ε−1curl q + gradφ +
p̃∑

j=1

αjπj , (A.26)

with q ∈ H(curl ; Ω) and φ ∈ H1
0 (Ω). Moreover, this decomposition is L2(ε; Ω)-orthogonal,

namely,

(ε−1curl q,gradφ)ε = 0 , (ε−1curl q,

p̃∑

j=1

αjπj)ε = 0 , (gradφ,

p̃∑

j=1

αjπj)ε = 0 .

It is also known that, for any w ∈ L2(ε; Ω), it holds (see [10, eqn. (2.10)])

w ⊥ grad (H1
0 (Ω))⊕Dε(Ω) ⇐⇒ div (εw) = 0 and

∫

Γj

εw · n = 0 ∀j = 1, . . . , p . (A.27)

We notice that the Hodge decompositions presented in this section can be easily generalized to
the case of Ω being a non-connected open set, by considering each connected component separately,
as it is done in [40].
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Appendix B

Solutions by transposition.

For the sake of completeness, we present here some of the results proved by Stampacchia in [94],
which are used to show the existence of a solution to the thermal problem with L1 sources in
Chapter 2. For the sake of simplicity we will restrict ourselves to the case Ω ⊂ RN , with N ≥ 3.
The case N = 2 can be treated in a similar way, but it would require small changes on the
hypotheses (B.3) and (B.4), since N = 2 represents a limit case for the Sobolev injections.

Let Ω be a bounded domain contained in RN , with N ≥ 3. We consider the elliptic operator

Lu = −
N∑

i=1

N∑

j=1

∂

∂xj

(
aij(x)

∂u

∂xi

)
+

N∑

i=1

bi(x)
∂u

∂xi
−

N∑

j=1

∂

∂xj
(dj(x)u) + c(x)u

= −div (At(x)gradu) + b(x) · gradu− div (d(x)u) + c(x)u. (B.1)

Let us suppose that

aij ∈ L∞(Ω), 1 ≤ i, j ≤ N, (B.2)
bi, di ∈ LN (Ω), 1 ≤ i ≤ N, (B.3)

c ∈ LN/2(Ω), (B.4)

and that there exists a constant ν > 0 such that
N∑

i=1

N∑

j=1

aij(x)ξiξj ≥ ν|ξ|2, ∀ξ ∈ RN , a.e. in Ω. (B.5)

Operator L acts from H1
0 (Ω) into H−1(Ω).

Let us consider the bilinear form a : H1
0 (Ω)×H1

0 (Ω) defined by

a(u, v) :=
∫

Ω




N∑

i=1

N∑

j=1

aij(x)
∂u

∂xi

∂v

∂xj
+

N∑

i=1

bi(x)
∂u

∂xi
v +

N∑

j=1

dj(x)
∂v

∂xj
u + c(x)uv


 dx, (B.6)

which is well defined and continuous due to the hypotheses (B.2)-(B.4). The form a(u, v) is said
to be associated to the operator L, and we have

〈Lu, v〉H−1,H1
0

= a(u, v) ∀u, v ∈ H1
0 (Ω) . (B.7)

163
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The operator L∗ associated with the form a∗(u, v) := a(v, u) is called the formal adjoint operator
of L and it is given by

L∗u = −
N∑

i=1

N∑

j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
−

N∑

i=1

∂

∂xi
(bi(x)u) +

N∑

j=1

dj(x)
∂u

∂xj
+ c(x)u

= −div (A(x)gradu)− div (b(x)u) + d(x) · gradu + c(x)u . (B.8)

Let us define the Green’s operator G : H−1(Ω) −→ H1
0 (Ω) which maps any f ∈ H−1(Ω) to

the unique element Gf ∈ H1
0 (Ω) such that L(Gf) = f in the sense of distributions, i.e., Gf = u,

where u is the unique solution to the problem
{

u ∈ H1
0 (Ω),

a(u, v) = 〈f, v〉H−1,H1
0

∀v ∈ H1
0 (Ω). (B.9)

Under the assumptions

c−
N∑

i=1

∂di

∂xi
≥ c0 > −∞, in the sense of distributions, (B.10)

a(¦, ¦) is coercive on H1
0 (Ω), (B.11)

it has been proved in [94, Th. 4.2], that

G ∈ L(W−1,p(Ω), L∞(Ω)), ∀p > N.

We can argue in the same way for the adjoint problem: first we define the Green’s operator for
the adjoint problem G∗ : H−1(Ω) −→ H1

0 (Ω), by L∗(G∗f) = f in the sense of distributions, i.e.,
G∗f = w, where w is the unique solution to problem

{
w ∈ H1

0 (Ω),
(a∗(w, v) =)a(v, w) = 〈f, v〉H−1,H1

0
∀v ∈ H1

0 (Ω). (B.12)

Next, if we make the analogous assumptions for the adjoint problem, i.e.,

c−
N∑

i=1

∂bi

∂xi
≥ c0 > −∞, in the sense of distributions, (B.13)

a(¦, ¦) is coercive on H1
0 (Ω), (B.14)

then it holds that
G∗ ∈ L(W−1,p(Ω), L∞(Ω)), ∀p > N.

Remark B.1. Given an elliptic operator L, and its associated Green operator G, we have defined
G∗ as the Green operator associated to L∗, the formal adjoint of operator L. It should be noticed
that, when a(¦, ¦) is coercive in H1

0 (Ω), the operator G∗ : H−1(Ω) → H1
0 (Ω) is indeed the adjoint

operator of G : H−1(Ω) → H1
0 (Ω).
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Our interest is focused on a problem of the form
{

Lu = f,
u|∂Ω = 0,

(B.15)

with f ∈ L1(Ω).

Under assumptions (B.13) and (B.14) we know that G∗ ∈ L(W−1,p(Ω), L∞(Ω)) ∀p > N , so we
know for its adjoint (see [94, Th. 4.5]),

G∗t : (L∞(Ω))′ −→ W 1,q
0 (Ω), ∀q = p′ <

N

N − 1
. (B.16)

Since L1(Ω) ⊂ (L∞(Ω))′, we can consider the restriction of G∗t to L1(Ω), namely

G∗t : L1(Ω) −→ W 1,q
0 (Ω), 1 < q <

N

N − 1
. (B.17)

By definition of the adjoint operator, it holds that
〈
G∗tf, ϕ

〉
W 1,q

0 ,W−1,q′ = 〈f, G∗ϕ〉L1,L∞ =
∫

Ω
f(G∗ϕ) dx ∀f ∈ L1(Ω), ∀ϕ ∈ W−1,q′(Ω).

Thus, given f ∈ L1(Ω), we can think of G∗tf = u as the unique solution to the problem




u ∈ W 1,q
0 (Ω), 1 < q < N

N−1 ,

〈u, ϕ〉
W 1,q

0 ,W−1,q′ =
∫

Ω
f(G∗ϕ) dx ∀ϕ ∈ W−1,q′(Ω).

(B.18)

It is also known that D(Ω), the space of indefinitely derivable functions with support contained in
Ω, is dense in W−1,q′(Ω), so the previous problem is equivalent to





u ∈ W 1,q
0 (Ω), 1 < q < N

N−1 ,∫

Ω
uϕ dx =

∫

Ω
f(G∗ϕ) dx ∀ϕ ∈ D(Ω),

(B.19)

which is also equivalent to




u ∈ W 1,q
0 (Ω), 1 < q < N

N−1 ,∫

Ω
u(L∗ψ) dx =

∫

Ω
fψ dx ∀ψ ∈ H1

0 (Ω) ∩ L∞(Ω) such that L∗ψ ∈ D(Ω).
(B.20)

A solution to this problem is called solution by transposition to problem (B.15). Moreover, since
we have constructed this solution from the linear operator G∗t, it follows that the solution by
transposition exists and it is unique.

Note that the solution of (B.19) is independent of q, for q ∈ (1, N/(N −1)). Hence the solution
by transposition satisfies

u ∈
⋂

1<q<N/(N−1)

W 1,q
0 (Ω) . (B.21)

In order to obtain an estimate for the solution by transposition, we use the following lemma,
which is also included in [94].
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Lemma B.1. Let ϕ(t) be a non-negative and non-increasing function, defined for all t ≥ k0, and
such that for h > k ≥ k0 it satisfies

ϕ(h) ≤ C

(h− k)α
[ϕ(k)]β,

with C, α, β being positive constants. If β > 1 it holds

ϕ(k0 + d) = 0,

with
dα = C[ϕ(k0)]β−12αβ/(β−1).

It is worth to note that, when the source data are regular enough, the solution by transposition
coincides with the standard weak solution, as it is proved in the following proposition.

Proposition B.2. Under the assumptions (B.2)-(B.5) and (B.13)-(B.14), for any f ∈ L2∗′(Ω)
the solutions to problems (B.9) and (B.20) coincide.

Proof. Let u be the unique solution to problem (B.9). From the definitions of the operator L∗ and
the bilinear form a(¦, ¦), we know that

a(u, v) = 〈L∗v, u〉H−1,H1
0

∀v ∈ H1
0 (Ω) ,

hence
〈L∗v, u〉H−1,H1

0
=

∫

Ω
fv dx ∀v ∈ H1

0 (Ω) ,

where the right-hand side can be written as a true integral, because f ∈ L2∗′(Ω) and H1(Ω) ⊂
L2∗(Ω). In particular,

∫

Ω
uL∗ψ dx =

∫

Ω
fψ dx ∀ψ ∈ H1

0 (Ω) ∩ L∞(Ω) such that L∗ψ ∈ D(Ω),

and so u is a solution to (B.20). Since the solution by transposition is unique, both solutions must
coincide.

We will now introduce the concept of weak solution when the second member belongs to L1(Ω),
and prove that the solution by transposition is, in this case, also a weak solution to the problem.

Let us suppose that, for an operator L of the form (B.1), we have

aij ∈ L∞(Ω), 1 ≤ i, j ≤ N, (B.22)
bi, di ∈ LN+ε(Ω), 1 ≤ i ≤ N, (B.23)
c ∈ L(N+ε)/2(Ω), (B.24)

for a certain ε > 0. We define the bilinear form

aq : W 1,q
0 (Ω)×W 1,q′

0 (Ω) → R

(u, v) 7→ aq(u, v) :=
∫

Ω
[At(x)gradu · grad v

+(b(x) · gradu)v + (d(x) · grad v)u + c(x)u v] dx .
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Under the assumptions (B.22)-(B.24) the bilinear form aq(¦, ¦) is well defined for any q such that
(1− 1

N+ε)
−1 ≤ q < N

N−1 . Moreover, under the same assumptions the bilinear form is continuous.

Let (1− 1
N+ε)

−1 ≤ q < N
N−1 . We say that u is a weak solution in W 1,q

0 (Ω) to problem (B.15) if

{
u ∈ W 1,q

0 (Ω),
aq(u, v) =

∫
Ω fv dx, ∀v ∈ D(Ω).

(B.25)

Note that the space of test functions in (B.25) can be replaced by W 1,q′
0 (Ω).

Proposition B.3. Under the hypotheses (B.5), (B.13)-(B.14) and (B.22)-(B.24), and for (1 −
1

N+ε)
−1 ≤ q < N

N−1 the solution to problem (B.20) also solves problem (B.25).

Proof. Let f ∈ L1(Ω) and u = G∗t
f its corresponding solution by transposition, i.e., the solution

to problem (B.20). Let {fn} ⊂ L2(Ω) such that fn → f strongly in L1(Ω). Let un be the
corresponding weak solution in H1

0 (Ω) of (B.9) for fn. By the result of Proposition B.2, un is also
the solution by transposition, i.e., un = G∗t

fn. Moreover, since G∗t ∈ L(L1(Ω),W 1,q
0 (Ω)) (see

eqn. (B.17)), we have un = G∗t
fn → G∗t

f = u strongly in W 1,q
0 (Ω), for any 1 ≤ q < N/(N − 1).

Since q < N/(N − 1), we have the inclusions W 1,q′
0 (Ω) ⊂ H1

0 (Ω)∩C(Ω) and H1
0 (Ω) ⊂ W 1,q

0 (Ω),
so

aq(un, v) = a(un, v) =
∫

Ω
fnv dx ∀v ∈ W 1,q′

0 (Ω) .

Hence, due to the continuity of the bilinear form aq(¦, ¦) we get

aq(u, v) =
∫

Ω
fv dx ∀v ∈ W 1,q′

0 (Ω),

and since u ∈ W 1,q
0 (Ω), we have proved that u is also a weak solution in W 1,q

0 (Ω), i.e., a solution
of (B.25).
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Appendix C

Cylindrical coordinates.

In this appendix we present a brief review of the cylindrical coordinate system, including the
expression of the most used operators in cylindrical coordinates.

Definition C.1. The system of cylindrical coordinates is defined as the mapping

f : Ω = (0,∞)× (0, 2π)× (−∞,∞) → R3 (C.1)
f(r, θ, z) = (r cos θ, r sin θ, z) . (C.2)

Definition C.2. A local unitary basis for the cylindrical coordinate system is given by




er(r, θ, z) = cos θe1 + sin θe2,
eθ(r, θ, z) = − sin θe1 + cos θe2,
ez(r, θ, z) = e3.

(C.3)

where {ei}, i = 1, . . . , 3 is the standard basis in the Cartesian coordinates system.

Differential operators in cylindrical coordinates.

• Gradient of scalar field

gradϕ =
∂ϕ

∂r
er +

1
r

∂ϕ

∂θ
eθ +

∂ϕ

∂z
ez. (C.4)

• Gradient of a vector field

gradw =
∂wr

∂r
er ⊗ er +

[
1
r

∂wr

∂θ
− 1

r
wθ

]
er ⊗ eθ +

∂wr

∂z
er ⊗ ez

+
∂wθ

∂r
eθ ⊗ er +

[
1
r

∂wθ

∂θ
+

1
r
wr

]
eθ ⊗ eθ +

∂wθ

∂z
eθ ⊗ ez

+
∂wz

∂r
ez ⊗ er +

1
r

∂wz

∂θ
ez ⊗ eθ +

∂wz

∂z
ez ⊗ ez. (C.5)
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• Curl of a vector field

curlw =
(

1
r

∂wz

∂θ
− ∂wθ

∂z

)
er

+
(
−∂wz

∂r
+

∂wr

∂z

)
eθ

+
(

1
r

∂

∂r
(rwθ)− 1

r

∂wr

∂θ

)
ez. (C.6)

• Divergence of a vector field

div w =
1
r

∂

∂r
(rwr) +

1
r

∂wθ

∂θ
+

∂wz

∂z
. (C.7)

• Divergence of a tensor field

div S =
1
r

[
∂

∂r
(rSrr) +

∂Srθ

∂θ
+ r

∂Srz

∂z
− Sθθ

]
er

+
[
∂Sθr

∂r
+

1
r

∂Sθθ

∂θ
+

∂Sθz

∂z
+

1
r
Srθ +

1
r
Sθr

]
eθ

+
1
r

[
∂

∂r
(rSzr) +

∂Szθ

∂θ
+ r

∂Szz

∂z

]
ez. (C.8)

• Laplacian of a scalar field

∆ϕ =
1
r

[
∂

∂r

(
r
∂ϕ

∂r

)
+

∂

∂θ

(
1
r

∂ϕ

∂θ

)
+

∂

∂z

(
r
∂ϕ

∂z

)]

=
1
r

∂

∂r

(
r
∂ϕ

∂r

)
+

1
r2

∂2ϕ

∂θ2
+

∂2ϕ

∂z2
. (C.9)

• Laplacian of a vector field

∆w =
[
∆wr − 1

r2
wr − 2

r2

∂wθ

∂θ

]
er +

[
∆wθ − 1

r2
wθ +

2
r2

∂wr

∂θ

]
eθ + ∆wzez. (C.10)
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