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Abstract

Division and square root functions are the basic functions in many floating point

applications. The uses of these functions are segmented. For example, they are

frequent in 3D graphics animation, virtual reality (especially lighting effects),

view port transformation, motion synthesis, signal processing, scientific comput-

ing applications etc. These types of applications are suitable for the high perfor-

mance computing market.

Division and square root functions are used less in internet applications, busi-

ness applications such as audio and video streaming, charting, presentation, snap

shot viewing, day to day accounting etc. Most of these applications are suitable

for the mobile computing market such as PDA, UPC, tablet PC.

In both of these markets, the silicon area is crucial and in the high performance

market speed is the challenge.

In state-of-the-art processors, the silicon area may be regarded as expensive

and the speed is to some extent acceptable. Most designers are willing to sacrifice

the speed in favor of low cost and complexity.

We therefore aim to develop efficient algorithms both in terms of area and the

speed.

We propose a modified Newton-Raphson reciprocation algorithm for single

precision computation, without using a look-up table. We regard this algorithm as

the best silicon efficient algorithm and the speed is average compared to the state-

of-the-art processors. This algorithm could be suitable for the mobile computing

market.

xi
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It is a variable latency algorithm, requiring a maximum of 22 iterations, which

provide a linear convergence. Multiplying with the dividend, results in division.

Our method requires a cycle for each iteration, performing multiply add and Booth

recoding in one cycle. Initial approximation is a two’s complement of the divisor,

which can be performed during partial products summation. Multiples of the di-

visor are constant throughout iteration and are generated only once, in the second

iteration.

To evaluate the proposed method, we used a radix-4 multiplier and a radix-8

multiplier. We then compared it with conventional processors. The comparison

shows that it offers a good trade-off between performance and area, making it

suitable for mobile computing applications such as PDA, UPC, mobile phones,

tablet PC, etc.

We also propose a division algorithm using a modified Accurate Quotient Ap-

proximation Method for double precision computation and this is extended to a

square root algorithm, with a look-up table. It is a better silicon efficient algorithm

with a significantly higher performance than the state-of-the-art processors. This

algorithm can be suitable for both mobile and scientific computing markets.

The proposed method employs a second degree minimax approximation to

obtain an initial 15 bits estimate of reciprocal and inverse square root values. This

is then passed through an iteration of Goldschimdt reciprocal and inverse square

root algorithms, to enhance the initial approximation to 30 bits and to make the

initial approximation more silicon efficient. Following this, we perform an itera-

tion of the Accurate Quotient Approximation method to obtain double precision

results. To speed-up these functions, a high seed 30 bits is used and intermediate

results are computed in carry-save form.

To evaluate the proposed method, we used a radix-4 multiplier and a radix-8

multiplier and then compared it with conventional processors. This comparison

shows that there is a significant improvement in performance, with better sili-

con efficiency. It offers some advantages over N-R method, GLD algorithm,

SRT method and Cyrix algorithm, if an iteration algorithm is considered. It is
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expected that, with the proposed method, processor architects will have an option

for their next generation processors.
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Objectives

Modern applications comprise several floating point operations, among them ad-

dition, multiplication, division and square root. The division and square root

functions are less frequent than the two basic arithmetic operations (+/-,×) - only

somewhat less than 0.8% of the total number of instructions executed [?] in gen-

eral purpose applications. The poor performance of many processors when com-

puting these operations can cause an overall execution time that is comparable

to the time spent performing addition and multiplication. While the methodol-

ogy for designing efficient high-performance adders and multipliers is well un-

derstood, the design of division and square root still remains a serious challenge,

often viewed as a Black Art among system designers [?].

They are frequent in 3D graphics animation, virtual reality [?, ?, ?, ?, ?, ?, ?,

?, ?, ?] (especially lighting effects), view port transformation, motion synthesis,

digital signal processing applications and scientific computations. The cost in time

of the division and square root function depends on how smartly the compiler can

schedule, in order to maximize the distance between the production of the results

of other functions and the dependency with respect to division/square root.

These functions can be expressed as the product of the dividend and recipro-

cal of the divisor, Q = X × (1/Y ) and Q = Y × (1/
√

Y ). There are several

techniques described in the literature [?] and carried out in state-of-the-art proces-

sors such as N-R method, GLD algorithm [?, ?, ?], SRT algorithm [?, ?]. The

performance of these functions depends on the precision; the precision depends

on the market targeted. For example, in 3D graphics single precision is used and

1
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in scientific computing applications double precision is used.

To speed-up the division and the square root functions, somewhat more than

ten bits of initial approximation of reciprocal and inverse square root are used.

The values of the reciprocal and the inverse square root are stored in ROM also

called LUT in terms of bits.

Another option to obtain the initial approximation is, storing the coefficient

values of linear/quadratic approximation algorithms of reciprocation and inverse

square root in the LUT’s. Then, the values of the coefficients are added together

or the coefficient values are multiplied by the respective input operands of the

approximation algorithms and then added. The linear/quadratic approximation

algorithms reduce the area for the LUT size.

To obtain the required precision, the LUT’s or linear/quadratic approximation

algorithms are coupled with the N-R method, GLD algorithm or SRT method.

The N-R and GLD methods are quadratic convergence in character and the

SRT method linear convergent. On average, the speed of these operations is

more than 20 cycles in either single precision or double precision computation in

state-of-the art processors.

To enhance performance according to market demands, there is a trade-off be-

tween the performance and silicon area. The area for these functions accumulates

from LUT’s. The more bits of initial approximation that are used, the more silicon

area is required to speed-up these functions. This means that the silicon area is di-

rectly proportional to the market demands. Most designers are willing to sacrifice

the speed in favor of low cost and design complexity.

In the state-of-the-art processors such as Intel, AMD, IBM, the silicon area

for the initial approximation may be regarded as expensive and the performance

of these functions is to some extent acceptable. These processors are targeted

at various markets such as the mobile computing market, the desktop computing

market, the scientific computing market etc.

In this thesis, we therefore aim to develop an algorithm that is: a) a best sil-

icon efficiency algorithm and b) a better silicon efficient and best performance
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algorithm:

1. A modified N-R reciprocation/division algorithm without using a LUT for

single precision computation is proposed. It is a best silicon efficient algo-

rithm and the performance is about the same as the average performance of

the state-of-the-art processors.

2. The double precision computation of AQA method for both division and

square root, using a LUT is proposed. It is a better silicon efficient algo-

rithm and the performance is significant better compared to the state-of-the-

art processors.

We have chosen this approach to provide an option for processor architects

that suits their target market.

The modified N-R algorithm is suitable for the mobile computing market. In

this market area is crucial. Most architects look for a division algorithm with a

low cost, a reduced area with acceptable performance that can run internet ap-

plications, business applications (such as audio and video streaming), charting,

presentations, snapshot viewing, day to day accounting etc.

The modified AQA method is suitable for the high performance market. In this

market the performance is the key. Most architects look for high performance di-

vision and square root algorithms with acceptable cost and complexity that can be

applied to scientific computing applications, 3D graphics, signal processing appli-

cations etc. The modified AQA method is also suitable for the mobile computing

market.

In the modified N-R algorithm, we achieve our objective by taking an initial

approximation as a two’s complement of the divisor and modifying some steps of

the N-R algorithm [?]. This initial approximation can be performed during partial

products summation of the multiplicand (divisor) and it is silicon efficient.

The average performance is maintained by executing a multiply add operation

and Booth recoding in the same cycle and keeping the divisor multiples constant in
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each iteration. Multiples are generated only once, in the second cycle with respect

to the radix-4 multiplier and third cycle with respect to the radix-8 multiplier. This

leads to a reduction of a cycle in each of the iterations and each of the iterations is

a cycle, which is unlikely to be found in a conventional processors. Furthermore,

intermediate results are computed in carry-save form.

The modified N-R method offers some advantages over the N-R method1 and

the SRT method:

• In the modified N-R method multiples of the divisors are constant through-

out iteration, it is generated only once, in the second iteration.

• In the modified N-R method, the number of dependent operation is a multi-

plication, where as in the N-R method it is two dependent multiplications.

• In the modified N-R method, each iteration is a cycle, whereas in the N-R method

it is two multiplication cycles, i.e. about 6 cycles.

• The performance gain of the modified N-R method and N-R method are

about the same.

• With respect to the SRT method, the modified N-R method does not require

a quotient digit selection hardware to select the next quotient digits, which

increases the cycle time with respect to the radix.

A similar approach can be extended to perform the square root, but will ad-

versely affect performance because it requires the squaring of the quotient in each

of the iterations. Therefore, it requires more than 50 cycles and average perfor-

mance cannot be maintained. More research on the modified N-R square root

algorithm without a LUT is encouraged.

In the modified AQA method, the tactic we used was the taking of a 15 bit ini-

tial approximation from the Minimax method [?], which we then passed through

1The GLD algorithm is similar to the N-R method but the arrangement of the equations in
the hardware differs. In the modified N-R method, we modified one of the equations in the
N-R method and explained its significance.
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an iteration of the GLD algorithm to obtain a 30 bit initial approximation, this

method is less complex. Some steps of the Cyrix algorithm [?, ?] were modified.

Iteration is required to obtain the double precision results, after a 30 bits initial

approximation.

To enhance the performance, we used a high seed 30 bits initial approximation

that is silicon efficient. Furthermore, intermediate results are computed in carry

save form.

The modified AQA method sidelines the state-of-the-art algorithms:

• With respect to the SRT method, a large number of bits are retired in an iter-

ation and the complexity of the circuit is less than that of the SRT method,

if the SRT method uses a high seed 30 bits initial approximation. In the

SRT method the complexity of the circuit increases as the radix increases,

unlike the proposed AQA method.

• The N-R method, to obtain the double precision results of the division/square

root, requires the whole 53 bit accuracy of reciprocal/inverse square root of

the divisor and is then multiplied by the respective dividend. The modified

AQA method, requires only an initial approximation to obtain the double

precision results.

• With respect to GLD algorithm [?], the proposed method is similar if the 30

bit initial approximation was used. But the way of computations (equations)

in the hardware are different. In the proposed method, intermediate results

are computed in CS form and used as a multipliers, moreover, the proposed

method offers more parallelism with respect to the GLD algorithm. These

features increase performance, which is deficient in the GLD algorithm [?].

• The Cyrix processor AQA algorithm requires two iterations to obtain the

double precision results. There are four dependent operations if the same

30 bit initial approximation is assumed. In our method, it requires an iter-

ation to obtain the double results with three dependent operations. Unlike
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Cyrix algorithm the proposed method can be performed in fixed point com-

putation.

To evaluate the proposed algorithms, we used a radix-4 MAF of IBM 603eTM

FPU [?] targeted at mobile computing applications and a radix-8 multiplier of

IBM G5, FPU [?, ?] which is targeted at high performance applications. We then

compared them with the state-of-the-art processor algorithms. The comparison

shows: the modified N-R offers average performance with the best silicon effi-

ciency. The modified AQA method offers the best performance with better silicon

efficiency.

In Chapter 1, we give an introduction of the floating point format and in Chap-

ter 2, we discuss the algorithms in the conventional processors. In Chapter 3, we

propose a modified N-R reciprocation algorithm without a LUT for single pre-

cision computation. In Chapter 4, we propose a modified AQA method for both

division and square root using a LUT for double precision computation. We then

summarize and, finally, we propose ideas for future study.

Our research emphasizes on single precision and double precision computa-

tion for commercial applications.



Chapter 1

Introduction

In this chapter we describe number formats used in computer arithmetic with spe-

cial attention to floating point arithmetic. It includes floating formats, rounding,

special values and exceptions. We then discuss the role of floating point division

and square root in the field of computer arithmetic and floating point computation.

1.1 Number Representation

In a computer a number can be represented in terms of bits, it can be classified into

two representations: fixed point representation and floating point representation.

A number can be represented by the following equations [?, ?, ?]:

x = X0 +
n−1∑
i=0

Xi.r
i (1.1)

. . . fixed point representation

where X0 is a sign bit, Xi is a bit vector having i bits with a base also called

radix r. The r is usually represented by power of 2, such as 20, 21, 22, 23, 24 . . . 2n−1.

Mx = (1)sxXβEx (1.2)

7
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. . . floating point representation

Where Mx is a number represented using a sign bit sx, X is a normalized

significand, and an exponent Ex of base β.

The purpose of using floating point representation is to increase the dynamic

range with respect to fixed point representation. The dynamic range is a ratio of

the largest and smallest number (non zero and positive) that can be represented.

For a fixed point representation using n radix-r digits for the magnitude, the

dynamic range is

DRfxp = rn − 1 (1.3)

for the floating point representation,

DRflp =
XmaxβEmax

XminβEmin

(1.4)

For instance, if the n bits are portioned so that m bits are used for the signifi-

cand and n − m bits for the exponent with β = r we get

DRflp = (rm − 1)r(rn−m−1) (1.5)

For example n = 32, m = 24, r = 2

DRfxp = 232 − 1 ≈ 4.3 × 109

DRflp = (224 − 1)228−1 ≈ 9.7 × 1083

A large dynamic range is required in many applications to avoid overflows and

underflows. If the dynamic range of the fixed point representation is not sufficient,

complicated scaling operations have to be performed in the program. Therefore,

in many applications, the floating point system is preferable.



1.2. Rounding 9

In IEEE standard-754 [?] floating point arithmetic, β = 2 and four for-

mats are specified. As shown in eqn.1.2, the significand can be represented in

sign-and-magnitude notation. There are two basic formats, single-precision and

double-precision, but there is also an extended format corresponding to each: sin-

gle and double-precision. The extended precision is intended to be used in situa-

tions where it is desirable to perform computation with a higher precision than the

one in which results are displayed (signal processing, 3D graphics require single-

precision). The number of bits representing the exponent, significand, and other

characteristics of the formats are summarized in Table 1.1. In division and square

root, the sign and the exponent can be computed in parallel with the significand.

At the end of the iteration, a multiplier cycle for rounding is used to obtain an

exactly rounded result.

Parameter single single extended double double extended

width 32 ≥ 43 64 ≥ 79
precision 24 ≥32 53 ≥ 64

exponent width 8 ≥11 11 ≥15
max.exponent 127 ≥1023 1023 ≥16383
min.exponent -126 ≤-1022 -1022 ≤-16382
exponent bias 127 1023

Table 1.1: IEEE Standard-754 floating point formats

1.2 Rounding

The result of a floating point operation (such as addition, multiplication, division

and square root), to be represented exactly, might require a significand with an

infinite number of digits. Since the representation of the siginificand has only f

fractional digits, it is necessary to obtain a representation that is close to the exact

result.

From the eqn.1.2, Mx a number can be represented as the set of triple (sx, X, Ex)

with X normalized. The X can be infinite precision but it might not be a floating
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point number. On the other hand, the X is inside the range of the floating point

number, which is 1 ≤ X < 2 for the IEEE standard. We decompose X into two

parts Xf and Xd such that

X = Xf + Xd × r−f (1.6)

with 0 ≤ Xd < 1. Xf has the precision of the significand in the floating point

system and Xd represents the rest.

IEEE standard-754 defines four different rounding modes, which must be

supported:

� Rounding to Nearest (RNE) (Unbiased, Tie to even) value and to

the even number when the result is exactly halfway between two

machine numbers.

In the RNE mode the value represented is the closest possible to

the exact value (infinite precision represented by X), it produces

the smallest absolute error.

In terms of the operation on the infinite precision significand,

RNE can be described as follows:

RNE(X) =

⎧⎨
⎩

Xf + r−f if Xd ≥ 1
2

Xf if Xd < 1
2

(1.7)

The RNE consists of adding r−f/2 to the infinite precision sig-

nificand and keeping the resulting f fractional digits. i.e.

RNE(X) = (�(X +
r−f

2
)rf�)r−f (1.8)

For Xd ≥ 1
2
, the addition of r−f can produce a significand that

cannot be represented (significand overflow). In such a case,

the resulting significand is multiplied by β−1 and the exponent
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incremented by 1.

The absolute error is

ABRE[RNE] =

⎧⎨
⎩
−Xdr

−f × βE if Xd < 1
2

(1 − Xd)r
−f × βE if Xd ≥ 1

2

The maximum absolute error occurs when Xd = 1
2
, resulting in

MABRE[RNE] =
r−f

2
× βEmax (1.9)

We now consider the bias. As indicated above, the absolute error

for Xd = a and for Xd = 1 − a (for a < 1
2
) have the same

magnitude, but different sign. Consequently, with respect to the

bias, these errors cancel each other out. The only remaining

case is for a = 1
2
, which produces a positive error. To have a

bias equal to 0, is a case to be treated in a special manner. The

IEEE standard specifies this case, as rounding is done to even1.

i.e, the unbiased round to nearest is

RNE(X) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Xf if Xd < 1
2

Xf + r−f if Xd > 1
2

Xf if Xd = 1
2

and Xf =even

Xf + r−f if Xd = 1
2

and Xf =odd

Consequently, for this mode

RB[RNE] = 0 (1.10)

The bias (RB). This is defined as the average absolute error

1Rounding to odd in the tie case also has a bias of zero. However, round to even is preferable
because it leads to less error when the result is divided by 2–a common computation.
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considering an unsigned significand (if the signed significand is

used, the bias would be zero for most rounding modes) and mea-

sures the tendency toward error of a particular sign. To compute

this average, it is necessary to consider a frequency distribution

of the values of unsigned significand. The usual assumption is

a uniform frequency distribution (this may not occur in typical

applications), in which case

RB = lim
t→∞

∑
X∈{Xm+t}(Rmode(X) − X)

#X
(1.11)

where {Xm+t} is the set of all unsigned significands with m + t

bits, and #X is the number of significands in the set.

The RNE (unbiased) produces the smallest possible absolute er-

ror and has zero bias.

� Rounding towards 0 (RZ) (truncation), in which the result should

be the value closest to and no greater in magnitude than the exact

value.

In terms of the operation on the infinite precision significand,

the rounding significand is obtained by discarding Xd. I.e.

RZ(X) = (�X × rf�)r−f = Xf

The absolute error is

ABRE[RZ] = −Xdr
−f × βE

Since Xd < 1 the maximum absolute error is

MABRE[RZ] ≈ r−f × βEmax

This absolute error is larger than the RNE. Furthermore, for an
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unsigned significand, the absolute error is always negative and

the bias is significant. Its value is

RB[RZ] ≈ −1

2
r−f

� Rounding towards+∞ RP or upwards, in which the result should

be the value closest to and no less than the exact value.

� Rounding towards-∞RM or downwards, in which the result should

be the value closest to and no greater than the exact value.

These two directed modes are useful in interval arithmetic, in

which the operands and the result of an operation are intervals.

This permits the monitoring the accuracy of the result.

In terms of the infinite precision siginificand and the sign,

RP (X) =

⎧⎨
⎩

Xf + r−f if Xd > 0 and s = 0

Xf if Xd = 0 or s = 1

RM(X) =

⎧⎨
⎩

Xf + r−f if Xd > 0 and s = 1

Xf if Xd = 0 or s = 0

By default RNE is the active rounding mode for IEEE standard. More infor-

mation on the rounding can be obtained from [?].

1.3 Special values

The exponents in the floating point formats have a biased representation. The

bias representation is preferred because it simplifies the comparison of floating

point numbers by making it a fixed point comparison and the minimum exponent

is represented by 0, so that the representation of the floating point value 0 is all

zeros (0 sign, 0 exponent, 0 significand).
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In a biased representation with bias B, the signed integer Ex is represented by

the positive integer denoted by EB such that

EB = Ex + B (1.12)

To represent the minimum exponent by EB = 0, we obtain

B = −Emin (1.13)

For a symmetric range

−B ≤ Ex ≤ B (1.14)

resulting in

−0 ≤ EB ≤ 2B (1.15)

If e is the number of bits of the binary representation of EB, then

2B ≤ 2e − 1 (1.16)

Consequently, for B integer we obtain

B ≤ 1

2
(2e − 2) (1.17)

for example e = 8 (single precision computation) we can make B = 127 and

EB = Ex + 127 (1.18)

for a symmetric exponent range of −127 ≤ Ex ≤ 127. Note that the max-

imum value of EB is 255, so that this value can be used to represent Ex = 128
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(non-symmetric range) or as a singularity condition.

Two values are not used for real numbers, these special values correspond to

the smallest possible exponent, Emin which is used for +0, −0 and denormalized

numbers, and the largest possible exponent, Emax which is reserved for −∞, +∞
and NaNs. The interpretations of a floating point value are the following:

• A maximal exponent and a non-zero significand represents NaN. The value

in the siginificand may be set according to the machine representation al-

lowing different NaNs.

• A maximal exponent and a zero significant represents −∞ or +∞ accord-

ing to the sign bit.

• A minimal exponent and a non-zero signinficand represent a denormalized

number.

• A minimal exponent and a zero significand represents +0 or −0 according

to the sign bit.

• The remaining exponent values and significands represents normal num-

bers.

The uses of the special values are: the overflow operation or division of a

real number by zero is −∞ or +∞ according to the sign of the intermediate re-

sult or the dividend. The IEEE standard 754 calls for two NaNs: signaling and

quiet. The signaling NaN is intended to provide for uninitialized variables and

arithmetic-like enhancements not included in the standard. The quiet NaN is in-

tended to provide retrospective diagnostic information for invalid or unavailable

operands and results. The result of an under flowing operation is +0 or −0, ac-

cording to the sign of the intermediate result. Denormalized numbers are intended

to support gradual underflow [?, ?].
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1.4 Exceptions

There are five types of exception that must be signaled when detected (i.e. a status

flag must be set or a trap routine is called):

• Invalid operation, when an operand is not valid for the operation to be per-

formed. The result is a quiet NaN.

• Division by zero, if the dividend is a finite non-zero number and the divisor

is zero. The result is a +∞ or −∞.

• Overflow, if the magnitude of a result exceeds the largest finite number rep-

resentable in the floating point format of the operation. The delivered result

may be +∞ or −∞ or plus or minus the largest representable number in

the floating point format, depending on the rounding mode.

• Inexact result, if the rounded result of an operation is not exact or if overflow

occurs but there is no overflow trap.

1.5 Importance of Division and Square root Func-

tions

Use of the division and square root functions are segmented. They are frequent in

3D graphics animation, virtual reality (especially lighting effects), view port trans-

formation, motion synthesis, signal processing, scientific computing applications

etc. These types of applications one may call high computing applications.

These functions are less intense in internet applications, business applications

(such as audio and video streaming), charting, presentation, snap shot viewing,

day to day accounting etc. One may distinguish these types of applications as low

computing applications.

In early days, computing division and square root functions were carried out

in software emulations. However, most recent processors [?, ?, ?, ?] complying
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with IEEE-754 standard are equipped with FPU’s performing FP addition, sub-

traction, multiplication, division and square root functions in VLSI. We encourage

readers to obtain FP addition, subtraction, and multiplication algorithms from [?].

In the next chapter we discuss division and square root algorithms.

A survey performed on FPU’s [?] reveals that while the majority of the mi-

croprocessors surveyed carry out both FP addition and multiplication in 3 cycles,

FP division consumes about 60 cycles and usually FP square root slower than

FP division. The survey shows that the designers have put their emphasis on

the development of faster FP adders and multipliers. This negligence intention-

ally widens the performance gap by downplaying FP division and square root

functions. Software developers take advantage of FP addition and multiplication

algorithms to avoid these complex operations.

Another investigation performed by Oberman [?] reveals the relationship be-

tween the latency of FP division/square root and the system performance. The

study shows that FP adders and multipliers are the consumers for 27% and 18%

of FP divider/square root results respectively. This means that if an inefficient

FP divider and square root is used in the FPU, the processor interlock period

generally increases, because the FP divider/square root result consumers have to

wait longer for the data.

Now days, there is a trend towards using addition operation in a multiplica-

tion. This is also called multiply add fused operation for division and square

root functions, such as is found in IBM 603eTM microprocessor FPU [?]. The

multiply-add fused operation can increase the performance of division and square

root functions. Dealing with the division and square root more seriously and the

better balancing of performance among other FP units, is more reasonable than

compromising the overall performance of the whole processor.
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Chapter 2

Classification of Hardware Methods

In this chapter we discuss hardware methods for the division and square root

functions. They can be classified into two groups: non-iterative methods and

iterative methods, we briefly discuss these methods. The non-iterative methods

are limited to single precision computation, due to prohibitive area requirements,

leading to its use as an initial approximator for the iterative methods. The methods

we discuss in this chapter are incorporated in most state-of-the-art processors.

The main types of techniques used for approximating division and square root

in hardware can be classified in two groups:

Non-iterative Methods [?, ?, ?, ?, ?, ?, ?, ?]

� Direct table look-up.

� Polynomial or rational approximations.

� Table-based methods.

Iterative Methods [?, ?, ?, ?, ?, ?]

� Functional iterative methods.

� Digit-recurrence and on-line algorithms.

In the first group are direct table look-up, polynomial and rational approxima-

19
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tions, and table based methods. In the second group are hardware implementa-

tions of functional iterative methods such as N-R, GLD. The first group is usually

suitable for low precision computations up to single-precision floating point or

32-bit fixed point computations, while the iterative methods are used for both

low precision and high precision computations, i.e. double precision or double

precision-extended floating point operations or fixed-point 64 bit computations.

2.1 Non-iterative Methods

Direct table look-up is suitable for very-low precision calculations, but the huge

area requirements of such a technique makes it an inefficient method for even

single-precision computations: tables of (224 × 24)-bits, i.e. 50 MB would be

required.

Another option is approximating elementary functions by polynomial approx-

imation [?]. The polynomial approximation uses addition and multiplication in

the processor. The degree of the polynomial employed is usually high and a

large number of additions and multiplications must be performed, which results

in longer execution times.

2.1.1 Table-based methods

Table-based methods are a mixture of direct table look-up and polynomial approx-

imations. Using a table look-up, allows the use of a low-degree polynomial and

the low-degree polynomial produces a significant reduction in the size of the look-

up tables that, in turn, reduces the number of arithmetic operations. This results

in low hardware requirements for polynomial approximations, together with the

speed of direct table look-up. There is a trade-off among these parameters, which

results in the formulation of three types of table-driven algorithms, divided into:

compute-bound methods [?, ?], table-bound methods [?, ?, ?, ?, ?] and in-between

methods [?, ?, ?, ?].
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� Compute-bound methods-these methods are suitable for both soft-

ware and hardware implementation. They are more suitable for

software, because there is a significant amount of addition and

multiplication involved. It requires a fused multiply-add, such

as that found in Power PC and the Intel IA64 [?, ?, ?]. The

compute-bound methods use table look-up in a very small table

to obtain parameters that are used afterwards in intermediate-

degree polynomial (or rational) approximations. This method is

a slow approach for double precision computations, equivalent

to 9 multiplications and 7 additions/subtractions.

� Table-bound methods-use large tables and few additions, such as

those found in Partial Product Arrays [?] and bipartite table

methods [?]. Symmetric bipartite table methods [?] and mul-

tipartite methods [?] employ more than two look-up tables and

a few additions. These generalizations do not suggest using a

large number of tables, since the performance of many addi-

tions to avoid multiplications is not reasonable. These methods

are very fast, but their use is limited to less than 20 bits with

current VLSI technology, due to the size of the tables needed to

assure the required precision of the result.

� In-between methods-use medium size tables and reduced compu-

tation, possibly one or two multiplications or several small / rect-

angular multiplications. The intermediate size of the look-up ta-

bles makes them suitable for performing single-precision com-

putations, achieving fast execution times with reasonable hard-

ware requirements. This type of methods can be further subdi-

vided into linear approximations [?, ?] and second degree inter-

polation methods [?, ?], depending on the degree of the polyno-

mial employed. Cubic approximations belong to the Compute-

bound methods. They require the evaluation of a degree-3 poly-

nomial, which results in many multiplications and additions.
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Method Table size (bits) Multiplier Adder Others
Direct 2n × n - - -
Bipartite
tables [?]

(22n/3 × n) +
(22n/3 × n/3)

- n -

SBTM [?] (22n/3 × n) +
(22n/3−1 × n/3)

- n Booth
rec

Piecewise lin-
ear approx [?]

2n/2−2×(2(n/2−
2)+4)+2n/2−2×
(n + 3)/3

(n+5)×(n+3)/3 2n + 4 -

Linear in-
terpolation
[?]

2n/2 × (n + 2) (n/2+3)×(n/2+
3)

n Booth
rec

2nd-degree in-
terp. [?]

2n/3×(n+2n/3+
n/3 + n/3)

2 of (n × n) 2 of n -

2nd-degree in-
terp. [?, ?]

2n/3×(n+2n/3+
n/3)

2 of (n × n) ≈ 5 of n -

Table 2.1: Comparison of different table-driven methods to obtain n = 24 bit accuracy

The In-between methods can be subdivided, depending upon

the type of values stored in the tables. The common practice

is to store the polynomial coefficients for each subinterval. In

this case, instead, the function values are stored by calculating

the polynomial coefficients on-the-fly, resulting in hybrid imple-

mentations [?].

Table 2.1 summarizes the hardware requirements for the type of table-driven

methods described for performing single-precision reciprocal and inverse square

root functions. Booth recoding (Booth rec) [?, ?] is a part of the method.

Bipartite tables

In the bipartite table methods [?, ?], the n bit input operand Y is split into three

parts, Y = Y1 + Y2 + Y3 corresponding to the higher, medium, lower significant

fields:

Y = Y1 + Y22
−k + Y22

−2k (2.1)
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Each part is composed of k = n/3 bits

The general expression for a bipartite table method is

f(Y ) ≈ f(Y1 + Y22
k) + Y32

2kf ′(Y1) (2.2)

which corresponds to approximating f(Y ) by the addition of two functions

C2(Y1, Y2) and C1(Y1, Y3):

C2(Y1, Y2) = f(Y1 + Y22
−k) (2.3)

C1(Y1, Y3) = Y32
−2kf ′(Y1) (2.4)

The coefficients C2 and C1 are read from look-up tables addressed by Y1, Y2

and Y1, Y3 respectively and the n bit adder assimilates the two words to obtain the

function approximation f(Y ). Advantage is taken of some of the symmetry prop-

erties of the look-up tables [?]. It requires (2n/3 × n) + (22n/3−1 × n/3) look-up

table size, which is about 928Kbits in single precision floating-point format. It

could be considered as expensive for silicon area. Therefore, the bipartite meth-

ods are only suitable for very low precision computations of less than 16 bits of

accuracy.

The expression of the bipartite method is an addition and the underlying ap-

proximation is a linear polynomial, since the term C1 encloses a multiplication.

The result of this multiplication is stored in a look-up table, in order to avoid

multiplication operations in the hardware. However, this is done at the expense of

significantly increasing the size of the look-up tables for storing the C1 and it must

be addressed by both Y1 and Y3. The critical path of these methods is composed of

the look-up tables and the n bit addition or booth recoding, the main contribution

to the area accumulates from the look-up tables.

Linear approximations
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In the piecewise linear approximations, the input operand Y is split into two

fields, Y = Y1 + Y2, the upper and lower parts each having around n/2 bits.

An approximation to the function f(Y ) in the range Y1 ≤ Y < Y1 +2−n/2 can

be obtained by a first-degree Talyor approximation at the mid-point, (Y1+2−n/2−1)

[?]:

f(Y ) ≈ C1(Y1).Y2 + C0(Y1) (2.5)

The coefficients C1 and C0 depend only on Y1 and are stored in look-up ta-

bles addressed by n/2 bit word. After reading the table look-up coefficients, a

multiplication and an addition must be performed to evaluate the polynomial.

The input interval is divided into 2n/2 subintervals and a linear approxima-

tion of the function is performed at the centre of each subinterval. The linear

approximation is evaluated in terms of the lower part Y2 by a multiplication and

an addition.

The size of the tables to be employed is about 2n/2−2 × (2(n/2 − 2) + 4) +

2n/2 × 5(n + 3)/3 bits for single precision floating point format. This is about

75Kbits. The size of the multiplication is about (n + 5) × (n + 3)/3 bits and the

final 2n + 4 bit adder.

Second-degree approximations

In the piecewise quadratic approximation, the input operand Y is split into two

parts, as in piecewise linear approximations: Y = Y1 +Y2. In this case Y1 is about

n/3 bits wide, while Y2 has a word length of 2n/3 bits and the function f(Y ) is

approximated by a degree-2 polynomial:

f(Y ) ≈ C2(Y1).Y
2
2 + C1(Y1).Y2 + C0(Y1) (2.6)

The coefficients C2, C1 and C0 depend only on Y1 and are stored in look-

up tables addressed by n/3 bit word. The size of the tables employed is therefore

smaller than in piecewise linear approximations, which is about 2n/3×(n+2n/3+
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n/3) resulting in around 15Kbits for single precision computations.

The quadratic polynomial is usually evaluated in a two step process [?, ?]:

g = C2Y2 + C1 (2.7)

f(Y ) = gY2 + C0 (2.8)

The advantage of using second degree approximations is a smaller table size.

In most functional iterative methods, these approximations are used as an ini-

tial seed for the quadratic or linear convergent algorithms. The functional iterative

methods are discussed in the following section.

2.2 Iterative methods

Functional iterative methods are based on the multiplication operation and typi-

cally have quadratic convergence, which results in low latency algorithms, espe-

cially for high precision computations.

Because multiplication is the fundamental operation, these methods can be

implemented in software by reusing the existing multiplier with some extra logic.

This produces an important reduction in area, but may lead to performance degra-

dation.

2.2.1 Goldschimdt algorithm

Let us assume two n bits1 inputs Y and X satisfying 1 ≤ Y, X < 2. The GLD al-

gorithm [?, ?, ?, ?, ?] for computing the division operation (Q= X/Y) consists of

1n = 24 for single precision and n = 53 for double precision.
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finding a sequence K1, K2, K3, . . . such that

ri = Y K1K2 . . .Ki −→ 1 (2.9)

and therefore

qi = XK1K2 . . .Ki −→ X

Y
(2.10)

The reciprocal (Q=1/Y) can be computed as specific case of the division:

qi = K1K2 . . . Ki −→ 1

Y
(2.11)

The first factor K1 is usually obtained as a low precision approximation of the

reciprocal. If ri = Y
∏

i Ki has the form ri = 1 − α, then it is possible to obtain

Ki+1 = 1 + α, by a simple two’s complementing ri, leading to ri+1 = 1 − α2,

which guarantees the convergence of the algorithm.

In summary, the steps to be performed are the following:

• The first factor K1 is a low-accuracy approximation of the reciprocal 1/Y ,

and can be obtained by a table-based method, such as direct table look-up,

bipartite table algorithms or polynomial approximation. Let this value have

m-bit accuracy, i.e.:

1 − 2−m < K1Y < 1 + 2−m (2.12)

• Define v = 1 − K1Y . |v| < 2−m.

-Computation of r1 = Y K1 = 1 − v.

-Computation of q1 = XK1 (this multiplication is not necessary for the

reciprocal computation).

• By 2’s complementing r1, K2 = 1 + v is obtained.
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-Computation of r2 = r1K2 = 1 − v2.

-Computation of q2 = q1K2.

• By 2’s complementing r2, K3 = 1 + v2 is obtained.

-Computation of q3 = q2K3. At this point, q3 < X/Y < q3(1 + 2−8m).

The number of iterations required to obtain a result, accurate to a certain pre-

cision, is a function of the accuracy of an initial approximation (seed) value. By

using a more accurate seed value, the total number of iterations can be reduced.

Square root/inverse square root computation-Let us assume an n-bit input

operand Y satisfying 1 ≤ Y < 2. In this case a sequence K1, K2, K3, . . . should

be found such that:

K1, K2, . . .Ki −→ 1√
Y

(2.13)

and therefore

qi = Y K1, K2, . . .Ki −→
√

Y (2.14)

The steps to be performed in the square root or inverse square root computation

are:

� Let Y = 1.d1, d2 . . . dn−1 and define Ŷ = 1.d1, d2 . . . dm where

m << n. Two look-up tables can be employed to obtain both

K1r = 1/Ŷ and K1 = 1/
√

Ŷ with m-bit accuracy. These tables

must be designed so that each table look-up value K1r corre-

sponds at full target accuracy to the square pf the table look-up

value K1. Another way of computing K1r and K1 is obtaining

K1 with a table driven method (which leads to an important area

reduction regarding direct table look-up) and then computing the

squaring operation K1r = (K1)
2.

� The low precision approximations K1r and K1 are then employed
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in some calculations:

-Computation of r1 = Y K1r.

-Computation of q1 = Y K1 (only for the square root computa-

tion; for inverse square root computation, q1 = K1).

� v1 = 1 − r1 and compute the independent multiplications:

-Computation of q2 = (1 + v1

2
)q1.

-Computation of (1 + v1

2
)2 = (1 + v1

2
)(1 + v1

2
).

-Computation of r2 = (1 + v1

2
)2r1.

� Define v2 = 1 − r2 and compute the independent multiplications:

-Computation of q3 = (1+ v2

2
)q2. At this point, q3 =

√
Y (1+α),

when computing the square root function, and q3 = (1+α)/
√

Y ,

when computing inverse square root, with |α| < 28m−2.

The total number of iterations to be performed again depends on both the

target precision and on the accuracy of the initial approximation. One of the main

drawbacks of using the functional iterative method is the difficulty in obtaining a

correctly rounded result.

2.2.2 Newton-Raphson Algorithm

In the N-R algorithm [?], a primitive function is chosen that has a root at the

reciprocal or inverse square root, depending on the function to be computed. The

selection of this primitive function is based on the convenience of the resulting

iterative form.

Division/Reciprocal computation, the most widely used target root, is the di-

visor reciprocal 1/Y, which is the root of the primitive function.

f(q) =
1

q
− Y = 0 (2.15)
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The well known quadratically converging N-R equation is

qi+1 = qi − f(qi)

f ′(qi)
(2.16)

Applying this equation to the primitive function 2.15, gives the resulting iter-

ative formula used to compute the reciprocal:

qi+1 = qi × (2 − Y × qi) (2.17)

with quadratically converging error:

εi+1 = Y ε2
i (2.18)

Each iteration involves two multiplications and a subtraction, which is com-

monly replaced by a two’s complement operation. The computation of the divi-

sion requires a final multiplication by the dividend (X/Y = X × (1/Y )). The

multiplications to be performed are dependent operations and therefore cannot be

computed in parallel, which leads to performance degradation.

Square root/inverse square root computation- Applying the Newton-Raphson

equation to the primitive function:

f(q) =
1

q2
− Y = 0 (2.19)

the following iteration formula is obtained

2qi+1 = qi × (3 − Y × q2
i ) (2.20)

with quadratically converging error:

2εi+1 = (3
√

Y ε2
i + Y ε3

i ) (2.21)
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Each iteration involves three multiplications and the computation of the square

root requires a multiplication by the operand Y , since the N-R algorithm con-

verges to an inverse square root.

2.3 Digit-recurrence Algorithm

The algorithm belongs to the same type of initial approximation of the functions in

the hardware, usually known as digit-by-digit iterative methods due to their linear

convergence. This means that a fixed number of bits of the result are obtained in

each of the iterations. Implementation of this type of algorithm, typically of low

complexity, utilizes a small area and relatively large latencies. The fundamen-

tal choices in the design of a digit-by-digit algorithm are the radix, the allowed

coefficients or digits and the representation of the partial remainder (residual).

2.3.1 Digit-recurrence division

Digit-recurrence algorithms use subtractive methods to calculate quotients, one

digit per iteration. SRT division is the name of the most common digit-recurrence

division algorithm [?, ?]. The quotient is defined to comprise N radix-r digits, with

r = 2b (2.22)

and

N = �n/b� (2.23)

Such a division algorithm requires N iterations to compute the final n-bit re-

sult, since b bits of quotient are retired per iteration.

The following recurrence is used in every one of the iterations of the SRT

algorithm:

W [i + 1] = rW [i] − Y qi+1, (2.24)
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where qi+1 is the (i + 1)th digit of quotient, q[i] is the quotient in step i, and

W[j] is the partial remainder in step i, with an initial value of W [0] = X .

In each of the iterations, one digit of the quotient is determined by the selection

function

qi+1 = SEL(W [i], Y ) (2.25)

The final quotient after N iterations is then

Q =
N∑

i=1

qir
−i (2.26)

Choice of radix-The fundamental method for decreasing the overall latency of

the algorithm is to increase the radix r, typically chosen as a power of 2 in order to

perform the products by r as shifts of the operands. To achieve the same precision,

the number of iterations required to compute the final result will be reduced. How-

ever, the reduction has some side effects, such as increasing the complexity of the

selection function, increasing the area and, in most cases, also increasing the cycle

time. Therefore, an analysis of trade-offs between area and speed is necessary for

determining the values of the radix r, which results in efficient implementation.

Choice of digit set-In the digit-by-digit algorithm, some range of digits must be

chosen for the allowed values of the quotient in each of the iterations. The simplest

case is where, for radix r, there are exactly r allowed values (non-redundant digit-

set). However, to increase the performance of the algorithm, a redundant digit-set

is usually employed. Such a digit-set can be composed of symmetric signed-digit

consecutive integers, where the maximum digit is a:

qi ∈ {−a,−a + 1, . . . ,−1, 0, 1 . . . , a − 1, a} (2.27)

Thus, to make a digit-set redundant, it must contain more than r consecutive
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integer values including zero and a must satisfy

a ≥ �r/2� (2.28)

The redundancy of a digit set is determined by the value of the redundancy

factor ρ which is defined as

ρ =
a

r − 1
, ρ >

1

2
(2.29)

When a = �r/2� the representation is called minimally redundant, while that

with a = r − 1 is called maximally redundant, with ρ = 1. A representation is

known as non-redundant if a = (r − 1)/2, while a representation a > r − 1 is

called over-redundant.

For the next residual W[i+1] to be bounded when a redundant digit-set is used,

the value of the quotient digit must be selected so that:

| W [i + 1] |< ρ × Y (2.30)

By using a large number of allowed digits a (a large value of ρ), the com-

plexity and latency of the selection function can be reduced. However, choosing

the smaller number of allowed digits simplifies the generation of multiples of the

divisor Y. Multiples that are a power of two can be generated by simply shifting.

If a multiple is required that is not a power of two (e.g. three), an extra operation,

such as addition, may be required, adding to the complexity and latency of gener-

ating the divisor multiple. The complexity of digit selection and that of generating

multiples of the divisor Y must be balanced.

After the redundancy factor ρ is chosen, it is possible to derive the selection

function. A containment condition determines the selection intervals. A selection

interval is the region in which a particular quotient digit can be chosen. These
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expressions are given by

Uk = (ρ + k)X

Lk = (−ρ + k)X, (2.31)

where Uk(Lk) is the largest (smallest) value of residual W [i], such that it is pos-

sible for qi+1 = k to be chosen while still keeping the next partial remainder

bounded.

However, when a high radix is used, the only practical method is selection

by rounding [?, ?, ?, ?]. Two alternatives have been used to allow selection by

rounding: performing a scaling of recurrence [?, ?] and performing selection by

table in the first iteration until the convergence conditions are met [?].

Choice of residual representation-The residual can be represented in two dif-

ferent forms, either redundant or non-redundant. A conventional two’s comple-

ment is an example of the non-redundant form, while CS two’s complement

and SD binary representation are examples of the redundant form. Additions

and subtractions are involved in digit-recurrence algorithms. If these operations

are performed in non-redundant form, they require a full width adder with carry

propagation, increasing the cycle time. If the residual is computed in redundant

form, a carry free adder, such as a CSA, can be used in recurrence, minimizing

the cycle time. However, the complexity of the selection function increases and

so, additionally, twice as many registers are required to store the residual between

iterations.

It is possible to convert the quotient digits as they are produced, in order to

avoid the extra cycle required to perform addition. This scheme is known as on-

the-fly conversion [?]. It can also be extended to perform on-the-fly rounding of

the result [?].

Combined Division and Square root Computation: for computing the square

root, the employed recurrence is
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W [i + 1] = rW [i] − f [i]qi+1 (2.32)

By defining f [i] = 2q[i] + qi+1r
−(i+1) for the square root and f [i] = Y for

the division, a single unit for both recurrences can be obtained. A common set of

selection constraints must be valid for both operations, and f [i] must be generated

without adding extra delay to the critical path of the division recurrence.

2.3.2 Accurate Quotient Approximation method

Digit recurrence algorithms are applicable to low radix division and square root

implementation, as radix increases the quotient digit selection hardware becomes

complex, increasing the cycle time, area or both. AQA is a variant of a digit

recurrence algorithm, for achieving a very high radix division/square root with an

acceptable increase in cycle time, area and precise rounding with simpler quo-

tient digit selection hardware. The term ”very high radix” is applied when large

numbers of bits are retired in the iteration.

The high radix algorithm was independently proposed by: Wong and Flynn

[?, ?], and Matula [?, ?]-it is carried out in Cyrix processor. Both these algorithms

are identical.

The algorithm is as follows:

1. Initially, set the quotient Q = 0, P = X for the division (Q′
i = X/Y ) and

P = Y for the square root (Q′
i = Y/

√
Y ). Then, obtain an approximation

of 1/Yh, 1/
√

Yh from a look-up table, using the top m bits of Y , returning

an h bit approximation. Only m − 1 bits are actually required to index into

the table, as the guaranteed leading bit can be assumed.

2. Scale the truncated divisor by the reciprocal approximation and inverse

square root approximation and obtain the partial quotient for the square
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root. Similarly, scaling the dividend by the reciprocal approximation partial

quotient can be used for the division.

Y ′ = (1/Yh) × Y q1 = P × 1/
√

Yh

qi = P × 1/Yh . . . (i ≥ 1) qi = P/2 × 1/
√

Yh . . . (i ≥ 2) (2.33)

. . . division . . . square root

The Y ′ is invariant across the division iterations, therefore, only needs to be

performed once. Subsequent iterations use only one multiplication:

Y ′ × P,

The product P × 1/Yh and P × 1/
√

Yh can be viewed as the next partial

quotient bits.

3. Perform the general recurrence to obtain the next partial remainder:

P ′
i = P − P × Y ′ . . . for division (2.34)

P ′
i = P − qi × (2Q + qi) . . . for square root (2.35)

4. Compute the new quotient as

Q′
i = Q + qi . . . for division (2.36)

Q′
i = Q + qi . . . for square root (2.37)

The new quotient is then developed by forming the product P×(1/Yh), P×
(1/

√
Yh) and adding the result to the old quotient Q.

5. The new partial remainder P ′
i is normalized by left shifting to remove any

leading 0s.

6. Variables are adjusted such that Q = Q′
i, and P = P ′

i .
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Initialization Y = 1.546949120382167. 1/
√

Y19 = 0.804010. Q0 = 0, P = Y ,
q1 = P × 1/

√
Y19 for i = 1. qi = P/2 × 1/

√
Y19 for i ≥ 2.

P ′
i = P − qi × (2Q + qi), Q′

i = Q + qi

i = 1 q1 = 1.2437625622784660, P ′
1 = 3.8090566717 × 10−6,

Q′
1 = 1.2437625622784660

Q = Q′
1, P = P ′

1

i = 2 q2 = 1.5312598273 × 10−6, P ′
2 = 7.0342 × 10−12,

Q′
2 = 1.2437640935382933

Q = Q′
2, P = P ′

2

i = 3 q3 = 2.827783571 × 10−12, P ′
3 = 2.165453955401 × 10−16,

Q′
3 = 1.243764093541121083571

Q = Q′
3, P = P ′

3

i = 4 q4 = 8.705233115169 × 10−17, P ′
4 = 2.6280490 × 10−21,

Q′
4 = 1.2437640935411212

Table 2.2: An example of Cyrix processor square root algorithm

7. Repeat steps 2 through 6 of the algorithm for i ≥ 2 iterations.

In this manner, the quotient bits are generated in series along with intermedi-

ate partial quotients and exact remainders. At the end of the process, the exact

remainder of a full precision partial quotient is available for the rounding process.

This scheme guarantees h − 2 bits in each iteration.

An example of Cyrix processor square root algorithm is depicted in Table 2.2

(for h = 19 bit initial approximation) in radix-10. It requires four iterations to

obtain a double precision result. The Cyrix processor multiplier only produces

limited precision result of 19 bits. Because of a specially chosen 19 bit reciprocal,

along with the 19 bit quotient digit and 18 bit accumulated partial remainder, it

guarantees 17 bits of the quotient in every iteration.

To guarantee an exactly rounded result, most of the discussed algorithms pro-

vide an accuracy of ±0.5ulp, as does the proposed method. The details of the

rounding operation can be obtained in section 3.3 of the next chapter or in section

4.5 of Chapter 4.



Chapter 3

Modified N-R Algorithm without a

LUT

In this chapter we propose a modified Newton-Raphson reciprocation algorithm

without using LUT, a linear convergence algorithm (N-R quadratic convergence)

for single precision computation. The proposed method requires a maximum of

22 iterations, the number of iterations depends on the input operand leading to

a variable latency algorithm. Initial approximation is a two’s complement of the

divisor, which can be performed during partial products summation. Each iter-

ation is a cycle, performing multiply-add and Booth recoding in the same cycle

of partial products summation. Multiples of the divisors are constant throughout

iteration. It is only generated once, in the second iteration. To evaluate the pro-

posed method, we used a radix-8 multiplier of G5 FPU and a radix-4 MAF of

IBM 603eTM FPU, and we then compared it with state-of-the-art processors. The

comparison shows that it requires minimum hardware requirements with aver-

age performance. To maintain the average performance, intermediate results are

computed in CS form. The proposed method offers some advantages over the

N-R method and SRT method. This is detailed in this chapter.

37
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3.1 N-R Algorithm

In the N-R algorithm [?], a primitive function is chosen that has a root at the

reciprocal or inverse square root, depending on the function to be computed. The

selection of this primitive function is based on the convenience of the resulting

iterative form. The N-R algorithm could also be used as a GLD algorithm, both

algorithms are similar but the arrangement of the equations in the hardware differs.

Division/Reciprocal computation, the most widely used target root, is the di-

visor reciprocal 1/Y, which is the root of the primitive function. The following

recurrences are performed

t =
1

Y

t[0] =
1

ŷ
. . . initial approximation (3.1)

W [i] = Y × t[i] (3.2)

S = 1 − W [i] (3.3)

t[i + 1] = t[i] + S × t[i] (3.4)

with quadratically converging error:

εt[i+1] = Y.ε2
i (3.5)

Each iteration involves a multiplication, a subtraction and a multiply-add op-

eration. The computation of the division requires a final multiplication by the

dividend (X/Y = X × (1/Y )). The multiplications to be performed are depen-

dent operations and therefore cannot be computed in parallel.

By modifying a step in the above eqn.3.4, the multiply-add operation is re-

placed by just an addition operation, recalling the above equations
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W [i] = Y × t[i] (3.6)

S = 1 − W [i] (3.7)

t[i + 1] = t[i] + S (3.8)

with linear converging error (discussed in section 3.3):

εt[i+1] = Y.εi (3.9)

The significance of this modification is discussed in section 3.4.

3.1.1 Algorithm

The proposed method uses the following steps for performing reciprocation:

t =
1

Y
t[0] = 2 − Y . . . initial approximation (3.10)

W [i] = Y × t[i] (3.11)

S = 1 − W [i] (3.12)

t[i + 1] = t[i] + S (3.13)

1. Initialization for approximator (t[0]). To initialize we need to subtract the

operand from 2 (two’s complement in binary)-t[0].

2. Multiply the operand with the approximator-W [i] and subtract the result

from 1 (one’s complement in binary)-S. This gives the position of the num-

ber to be added to the approximator.
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t = 1/Y X = 0.8123462 Y = 0.5649120
t[0] = 2 − Y . . . . . . initial ap-
proximation

t[0] = 1.4350880

W [i] = Y × t[i] W [0] = 0.8106984
S = 1 − W [i] S = 0.1893016
t[i + 1] = t[i] + S t[1] = 1.435088 + 0.1893016 =

1.6243896
W [1] = 0.9176371
S = 0.0823628
t[2] = 1.7067524
.
t[3] = 1.7425875
.
t[4] = 1.7581789
.
.
t[22] = 1.7701872
Q = X × t[22]
Q = 0.8123462 × 1.7701872 =
1.4380048

Table 3.1: Proposed Reciprocation algorithm without a LUT

3. Add this result to that of the approximator (t[i] + S) and convert CS to

Booth digit representation (discussed in next section).

4. Repeating steps 2 to 3 i.e. eqn.3.11 to eqn.3.13 twenty two times (t[i + 1])

produces the reciprocal function.

To obtain division, multiply the reciprocal of the divisor by the dividend. As

mentioned, the sign and the exponent can be computed in parallel with the man-

tissa of the quotient. We have focused on the mantissa computation in this thesis.

An example is depicted in Table 3.1. The IEEE standard requires inputs

in the range 1 ≤ X, Y < 2. The proposed method operates within the range

0.5 ≤ X, Y < 1, which is a right shift of the operands from the most significant

bit to the least significant bit of the input operands. To obtain an IEEE mandated
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result in the range 0.5 < t ≤ 1 for reciprocal, a right shift in the final iteration

(before normalization) is required. Note that a right shift is not required for the

division function to obtain a IEEE mandated result in the range 0.5 < Q < 2.

3.2 CS Booth digit representation

In our design t[i] is used as the multiplier. In the radix-8 multiplier [?], we gen-

erate 10 PP’s of Y , they are accumulated in four levels of 3:2CSA and in an-

other level of 3:2CSA, t[i] + S operation is performed. It requires five levels of

3:2CSA’s out of six levels. Using the t[i] operand as a CS multiplier, the final

sixth level of CSA tree [?] is unused and we use this final level of CSA tree to

convert CS–Booth-3 digit representation for radix-8 multiplier.

In the radix-4 [?] multiplier, using t[i] as a multiplier we generate 15 PP’s of

Y , it requires three levels of 4:2CSA and an additional 4:2CSA is required for

adding t[i] + S. It consumes all levels of 4:2CSA in the radix-4 multiplier. An

extra level of 3:2CSA is required to convert CS–Booth-2 digit representation.

The t[i] multiplier in CS form can maintain the average performance of the

division with respect to the state-of-the-art processors.

To avoid the general increase in hardware size due to redundant binary input,

attention has been focused on the redundant input to the multiplier recoder input

[?, ?]. We used the technique of [?] because it requires minimal circuitry for

redundant binary output for forwarding and feedback.

Compression from CS–redundant Booth-digit representation

Let t′ = t′n−1:0 = (t′n−1, . . . t
′
0) ∈ {0, 1}n. We denote then by 〈t′〉 =

∑n−1
i=0 t′i.2

i

the value represented by t′. Looking at the multiplier input of a radix-4 multiplier

each Booth digit t′2i is computed from three consecutive bits t′2i+1, t
′
2i, t

′
2i−1 by the

formula

t′2i = −2t′2i+1 + t′2i + t′2i−1 (3.14)
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If each tripel t′2i+1, t
′
2i, t

′
2i−1 substituted by a tripel (rt′3i, rt

′2i, t
′y1i), the value

of the multiplier changes to

〈t〉 =
m′−1∑
i=0

(−2.rt′3i + rt′2i + rt′1i).4
i (3.15)

Therefore, one can define the set of tripels (rt′3i, rt
′2i, rt

′1i), with 0 ≤ i < m′

to be a redundant Booth-2 digit representation of 〈t′〉, iff 〈t〉 = 〈t′〉. Where m′

is a PP’s reduction factor for multiples of the multiplicand with b bit multiplier

(b = 29 bit in our case discussed in the next section) having t′m+1 = t′m = t′−1 = 0

then m′ = �(b+1)/2�. Thus, it does not change the product if fed to the multiplier

or the set of tripels t′2i+1, t
′
2i, t

′
2i−1 based on the non-redundant representation of

〈t〉 or a redundant Booth-digit representation (rt′3i, rt
′2i, rt

′1i) of 〈t〉.
Initial approximation is a two’s complement of the divisor Y . To obtain t[1],

first making a one’s complement of the divisor and thereafter performing a one’s

complemented multiple generation of t[0]. Then, performing a PP’s summation

of t[0] using Y as the multiplier, during the PP’s summation, the constant 1 can

be added. During 21 iterations (i.e. to generate t[i + 1]), the divisor Y is used

as a multiplicand and t[i] as a multiplier. Truncating the intermediate result, t[i],

at the 29th position, deletes the fraction portion t30, t31 . . ., keeping a value in the

fraction range (-1/2,1/2)ulp.

We assume to have a carry-save representation of 〈t〉 + const, that already

includes the additive constant const =
∑m′−1

i=0 2.4i. The const is required to

obtain t in eqn.3.15 form.

Looking at bit windows with a width of 2 in this carry-save representation of

the number 〈t〉 + const, each window contains 4 bits (see Figure 3.1); two with a

weight of one and two with a weight of two. The binary value wj of the part of the

number within a window i is in the range wi ∈ {0, . . . 6}. The number 〈t〉+ const

can then be written by:
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  S’      S       S’          S           S’           S           S’       S        S’          S           S’          S         S’        S
2i+7  2i+6   2i+5      2i+4      2i+3       2i+2       2i+1     2i        2i-1      2i-2        2i-3       2i-4     2i-5     2i-6

C
2i-6

C
2i

C
2i-2

C
2i-4

C
2i+2

C
2i+4

C
2i+6

2 bit

adder

2 bit
adder

2 bit
adder

2 bit
adder

2 bit

adder adder
2 bit

2 bit windows

carry- save number representation of <t>+ const

2-bit adder row

redundant Booth digit representation of <t>

c s
(t  , t )

Figure 3.1: Compression from carry-save to redundant Booth-digit representation

(a) 2 bit addition in CSA (b) 3 bit addition in CSA

Figure 3.2: CS-Booth digit representation in a CSA cell
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〈t〉 + const =

m′−1∑
i=0

wi.4
i (3.16)

If we input the 4 bits of a window i into a 2-bit adder, we get three output bits

c2i+2, s2i+1 and s2i, that represent the value of the window by

wi = 4.c2i+2 + 2.s2i+1 + s2i (3.17)

〈t〉 + const =

m′−1∑
i=0

(4.c2i+2 + 2.s2i+1 + s2i)4
i, (3.18)

Subtract the additive constant const on both sides, and obtain the value of 〈t〉

〈t〉 + const −
m′−1∑
i=0

2.4i =
m′−1∑
i=0

(4.c2i+2 + 2(s2i+1 − 1) + s2i)4
i, (3.19)

As x − 1 ≡ −x for x ∈ {0, 1}, then one can substitute s2i+1 − 1 by −s2i+1

and we can get

〈t〉 =

m′−1∑
i=0

(4.c2i+2 − 2s2i+1 + s2i)4
i (3.20)

In radix-4 recoding [?, ?, ?, ?, ?] the multiplier is recoded with s2m′+1 =

s2m′ = c0 = 0, then we have
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〈t〉 + const =

m′∑
i=0

(2.s2i+1 + s2i + c2i)4
i (3.21)

Subtracting the additive constant const on both sides, and obtain the value of

〈t〉

〈t〉 + const −
m′−1∑
i=0

2.4i =
m′∑
i=0

(2.(s2i+1 − 1) + s2i + c2i)4
i (3.22)

〈t〉 =
m′∑
i=0

(−2s2i+1 + s2i + c2i)4
i (3.23)

Therefore, the set of triples (s2i+1, s2i, c2i) is a redundant Booth-2 digit rep-

resentation of 〈t′〉 and the sequence of operations described before is a partial

compression from a carry-save representation of 〈t〉+ const to a redundant Booth

2 digit representation of 〈t′〉. The implementation of this partial compression is

depicted in Figure 3.1.

In the radix-4 multiplier [?], the const can be introduced by replacing the

fourth level of 3:2CSA with 5:2CSA as shown in Figure 3.5 (on the right hand

side). In the proposed method, performing CS-Booth-2 digit representation is just

wire crossing in adjacent CSA cells. Figure 3.2 (a) depicts the CS–Booth-2 digit

representation in a CSA for radix-4 multiplier.

Where tsi, tci are the intermediate sums and carries of t′. We assumed a

3:2CSA consisting of a combination of X-or’s, OR’s and AND gates, however

it can be built with NAND or NOR gates.

In the radix-8 multiplier, the constant is const =
∑m′−1

i=0 4.(8)i, the addition

of const to t (i.e. 〈t〉 + const) can be performed by replacing the fifth level
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CS-Redundant Booth digit representation

S
2i+2

S2i+1 S2i C
2i

Select:   4M           2M               3M           M

S

Figure 3.3: CS-Booth recoding

of 3:2CSA with 4:2CSA (the 3:2CSA requires two sums and a carry from the

previous level, by replacing 3:2CSA with 4:2CSA we introduce another input

which is const). A row of 3 bit adders are required for partial compression from

CS representation of 〈t〉 + const to redundant Booth-3 digit representation of

〈t′〉, which is a wire crossing in an adjacent CSA cell, Figure 3.2(b) depicts the

redundant Booth-3 digit representation in the final sixth level of 3:2CSA. An

extra radix-8 recoder is required at the end of the CSA tree, in order to recode in

the same pipe line stage of PP’s summation. In the radix-8 multiplier, the recoder

is coupled with a 3M multiple generation, which is another pipe line stage [?].

Figure 3.3 depicts CS-radix-8 Booth recoder. The results of this recoder can be

directly applied to the multiplexer to select the multiplicands.

In the radix-4 multiplier, an extra radix-4 recoder [?] is not required, because

the radix-4 recoder of the multiplier is placed in the same pipe line stage of the

PP’s summation. More details on the proposed method of architecture can be

obtained in Section 3.4.

Note that, the multiplexers in Figure 3.2 (a)& (b) may not add additional delay

in the cycle time, because they can be selected before the start of the PP’s sum-

mation. In the case of the radix-4 multiplier, it can be selected at the start of the

first stage and in the case of the radix-8 multiplier; it can be selected at the start of
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the second stage.

This partial compression can easily be extended to the carry-save representa-

tion to higher radix Booth recoding multipliers. For compressions to redundant

radix-2k Booth digits, const has to change to const =
∑m′−1

i=0 2k−1.(2k)i and a row

of k-bit adders has to be used for partial compression.

3.3 Error Computation

For single precision computation, an estimate accurate to n + 3 bits before round-

ing must be obtained. In principle, a result accurate to n + 1 bits before rounding

would suffice to guarantee exact rounding. However, when a multiplier and adder

are used in the iterations, performing either truncation or rounding at (n + 1)th

position of the intermediate result, returns less than n bits of precision. In this

case, an accuracy of n + 3 bits of the estimate is required instead of n + 1.

In order to guarantee an exactly rounded result, we performed exhaustive sim-

ulation of the reciprocation algorithm for all 224 arguments. We obtained an ac-

curacy of ±0.5ulp (for 22 iterations). Under the described conditions, the result

before rounding t satisfies:

− 2−n−3 < t < 2−n−3 (3.24)

−2−n−3 < Q < 2−n−3 (3.25)

Rounding is performed by adding 2−n−3 to t and then truncating the resulting

value to n + 2.

Therefore, we must guarantee εti+1n+2 ≤ 2−26, since the range of results is

0.5 < t ≤ 1. Error computation for reciprocation can be set as:

εt[0] = t[0] + ε0 (3.26)
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εs = (t[i] + εi).Y + εsr (3.27)

εt[i+1]n+2
= t[i] + εi + t[i].Y + εi.Y + εsr + εtr (3.28)

where εsr and εtr are the error introduced by S and the t[i+1] operation due to

finite word length at n=29, εsr, εtr < 2−29. ε0 is the error introduced by the initial

approximation at n=4. ε0 < 2−4, therefore for i iterations εi < 2−26. Therefore,

the error bound for S (for i iterations), with respect to truncation, is εs ≤ 2−26.

The error in the final result must be bounded by:

εt[i+1]n+2
= εi + εi.Y + εsr + εtr

≤ 2−26 + 2−26 + 2−29 + 2−29 (3.29)

The result before rounding Q must satisfy eqn.3.25. Rounding can be per-

formed by computing a corresponding remainder: rem = X − Y × Q. By ob-

serving the sign and magnitude of rem and the value of n+1, all IEEE rounding

modes can be implemented by selecting either Q, Q+2−n or Q−2−n. The action

table for correctly rounding Q is shown in Table 3.2 [?].

Guard Bit Remainder RN RP(+/-) RM(+/-) RZ
0 = 0 trunc trunc trunc trunc
0 - trunc trunc/dec dec/trunc dec
0 + trunc inc/trunc trunc/inc trunc
1 = 0 RNE inc/trunc trunc/inc trunc
1 - trunc inc/trunc trunc/inc trunc
1 + inc inc/trunc trunc/inc trunc

Table 3.2: Action table for rounding

For directed rounding modes RP and RM, the action depends on the sign of

estimate: those entries that contain two operations such as pos/neg correspond to

the final result being positive or negative respectively. Most industrial multipliers
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incorporate these modes.

3.4 Architecture and Performance

The architecture of the proposed method is, simply to introduce a radix-8 Booth

recoder at the end of CSA tree in the radix-8 multiplier and an extra 3:2CSA is re-

quired for CS–Booth-2 representation in the radix-4 multiplier. We used a radix-4

multiplier of IBM Power PC 603eTM FPU [?], which is targeted at the mobile

computing market and a radix-8 multiplier of IBM G5 FPU [?] which is targeted

at high performance applications.

The radix-8 multiplier (64 × 56 bit) is pipelined in three stages: in the first

stage, generating 3X multiplicand and Booth recoding, in the second stage, 19

PP’s summation in 6 levels of 3:2CSA, and the third and final stage is for carry

propagate addition (see Figure 3.4).

The proposed method requires 24(Y )×29(t[i]) bit multiplication and 10 PP’s

are accumulated out of 19 PP’s. It requires 4+1 levels of CSA tree for the multiply

add operation:

� The first 3 levels of 3:2CSA’s for 9 PP’s summation.

� In the 4th level, 4:2CSA summation for 10th PP, a carry, a sum

and a carry from previous 3:2CSA’s.

� That plus 1 level of 3:2CSA for adding t[i] + S (not shown in

Figure 3.4).

As mentioned, in the sixth level, CS–Booth-3 digit representation is performed

with an extra radix-8 recoder at this sixth level. The results for this recoder can

be directly applied to the 4:1 multiplexer to select the multiplicands. The two’s

complement for the initial approximation can be done by first making a one’s

complement of the multiplicand and then adding 1 during the PP’s summation.

Note that, in the case of the radix-4 MAF (i.e. 24(B)+ 24(A)× 24(C) multi-

plied result added to another 24 bit operand say, B (B + A × C)) [?], commonly
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multiplier reg.multiplicand reg.

3X reg. X reg. Booth select reg.

Booth decode

4:1 multiplexer
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120−bit adder

Radix−8
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19−to−2, 6 level 3:2 CSA tree

1M               4M
partial products

1M            4M

Figure 3.4: Proposed architecture in the radix-8 multiplier

implemented in industry due to its simplicity and ease in creating multiples of the

multiplicand, a similar architecture and performance can be obtained to that of the

radix-8 multiplier. This is an architecture with a three stage pipeline.

In the first stage, Booth recoding and 14 PP’s summation in three levels of

4:2CSA tree. The CS result is added to the aligned B operand in the final fourth

level 3:2CSA as shown in the first stage of Figure 3.5. The CS result is passed to

the second stage, to obtain the result in non redundant form. The third stage is for

normalization and rounding. The C is 28 bits, it can be made by concatenating

four 0’s for a single precision multiplier. It can also support double precision

MAF . More details of this architecture are discussed in the next chapter.
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Figure 3.5: Proposed architecture in the MAF

With the 24(Y ) × 29(t[i]) bit multiplication in the proposed method, the first

stage is for Booth recoding and 15 PP’s summation in three levels of 4:2CSA tree

and in the final fourth level t[i] + S is performed (see Figure 3.5 on the right hand

dashed lines) by replacing 3:2CSA with 5:2CSA. To obtain the t[i] in CS–Booth-

2 representation, an extra 5th level of 3:2CSA is required at the end of 5:2CSA of

the fourth level in the first stage, as shown in Figure 3.5 with dashed lines. An

extra 3 bit Booth-2 recoder to 14 bit Booth-2 recoder and an extra row of 5:1

multiplexer is required during multiplexing of the multiplicands to generate 15

PP’s.

The advantages of the proposed method with respect to N-R method are that
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the multiples of the divisor are constant in each iteration, it is generated only once,

in the second cycle with respect to radix-4 multiplier and in the third cycle with

respect to radix-8 multiplier, i.e. in the second iteration. The eqn.3.10-eqn.3.13

can be performed in one stage of the multipliers, which is a PP’s summation

stage. In a standard radix-4 multiplier, the eqn.3.10-eqn.3.13 are performed in the

first stage and in a standard radix-8 multiplier they are performed in the second

stage. The modification t[i + 1] = t[i] + S leads to each iteration of a cycle. The

eqn.3.10-eqn.3.13 could be considered as a one equation in hardware terms, we

can consider this as a multiplication. In the N-R method, the number of required

operations are: a multiplication and multiply add operation-follow the eqn.3.2-

eqn.3.4 and each of the iterations requires two cycles. To perform the multiply

add operation (eqn.3.4), the multiplicand (S) should be in non-redundant form, it

is possible to use the redundant multiplicand, but the data width will double. One

could consider that the N-R method without a LUT similar to the proposed method

but the performance is about the same. The N-R method requires 4 iterations to

compute a single precision result. Each iteration requires two multiplications,

which is about 6 cycles for each iteration (we assumed a multiplier latency of

three cycles).

The proposed method without LUT is a variable latency algorithm. Variable

latency algorithms are useful in speed independent design, they are also called self

timed dividers, and self timed dividers execute the power according to the task at

hand without sacrificing performance.

The proposed method with respect to the SRT method, does not require quo-

tient digit selection hardware to select the next quotient digits, which increases

the cycle time with respect to the radix.

Performance: The reciprocation/division operation is depicted in Figure 3.6:

� In the radix-8 multiplier [?], the first cycle is for Booth-3 recoding

of the divisor (Y) and the generation of the one’s complemented

3M multiple.

� In the second cycle, multiplexing of multiplicands and 10 PP’s
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Figure 3.6: Timing Diagram

summation for t[1] is performed i.e. passing through eqn.3.10-

eqn.3.13.

� From the third cycle onwards, iterations through eqn.3.11-eqn.3.13

are performed until the twenty second cycle is reached. In the

same twenty second cycle, an independent instruction for gen-

erating ±3X multiples for the division operation is performed.

This independent instruction can be performed because the radix-

8 multiplier has a throughput of 1.

� In the twenty third cycle, a CS of Q = X/Y is obtained and

thereafter, another two cycles are used for rounding.

Thus, the result can be obtained in 25 cycles. Note that, during cycle four

to twenty-one, we do not need to generate 0,±1Y,±2Y,±3Y,±4Y multiples as

they are generated in the third cycle and can be stored. Thus, we can say that it is

a constant.

In the case of the radix-4 multiplier, 24 cycles were required. It was reduced by

one cycle, because the Booth recoding was performed during the PP’s summation.

To use t[i] as the multiplier, one has to replace the fourth level of 3:2CSA with

5:2CSA to add the t + const in the radix-4 multiplier (see Figure 3.5)–following

eqn.3.15-eqn.3.23. This can introduce delay in the cycle time. Similarly in the

radix-8 multiplier, one has to replace the fifth level of 3:2CSA with 4:2CSA (not

shown in Figure 3.4), this 4:2CSA can introduces delay in the cycle time. How-

ever, as the technology is scaling down, in the future the delay of 5:2CSA and

4:2CSA may be equivalent to that of 3:2CSA.
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Note that to generate 15 PP’s in the radix-4 multiplier, as mentioned, requires

an extra 3 bit Booth recoder and an extra 5:1 multiplexer to the 14 bit Booth-2

recoder and a row of 5:1 multiplexers. This hardware can be introduced without

additional delay in the cycle time.

The proposed method requires a maximum of 22 iterations. Note that in Figure

3.6 the CS of quotient is obtained in the 23rd cycle. This is due to the fact that the

radix-8 recoding of the multiplier is the first stage of the multiplier (first cycle). In

the radix-4 multiplier, the CS of quotient Q is obtained in 22 cycles. The number

of iterations depends on the divisor Y . For example, if the divisor is in the range

0.5 ≤ Y < 0.5999999 the iterations required are between 22 and 18. If the divisor

is in the range 0.6 ≤ Y < 0.6999999, the iterations required are between 17 and

13. If the divisor is in the range 0.7 ≤ Y < 0.7999999, the iterations required are

between 12 and 8, and so on. One can detect the exit of the loop eqn.3.11-eqn.3.13

by looking at the eqn.3.11. If the product of the divisor Y and approximator t[i]

is 0.9999999, which is a W [i], then exit the loop. The approximator at this point

has an accuracy of ±0.5ulp. In hardware terms, a comparator is required in the

PP’s summation stage, for comparing W [i] with 1111 . . .1︸ ︷︷ ︸
24 bits

(0.9999999) during

the iteration.

3.5 Modified N-R square root algorithm without a

LUT

This modified N-R reciprocation algorithm can be extended to inverse square root.

The t[i] has to be squared in eqn.3.11 and a right shift for S in eqn.3.13. The

modified equation for the inverse square root is shown below:
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t = 1/
√

Y Y = 0.5649120
t[0] = 2 − Y . . . . . . initial ap-
proximation

t[0] = 1.4350880

W [i] = Y × (t[i])2 W [0] = 1.1634236
S = 1 − W [i] S = −0.1634236
t[i + 1] = t[i] + S/2 t[1] = 1.435088 + (−0.1634236/2) =

1.3533762
W [1] = 1.0347082
S = −0.0347082
t[2] = 1.3360221
.
t[3] = 1.3318508
.
t[4] = 1.3308229
.
.
t[22] = 1.3304838
Q = Y × t[22]
Q = 0.5649120 × 1.3304838 =
0.7516063

Table 3.3: Proposed Square root algorithm without a LUT

t =
1√
Y

t[0] = 2 − Y . . . initial approximation (3.30)

W [i] = Y × (t[i])2 (3.31)

S = 1 − W [i] (3.32)

t[i + 1] = t[i] + S/2 (3.33)

An example is depicted in Table 3.3. The IEEE standard requires input within

the range 1 ≤ Y < 4, the proposed method operates within the range 0.5 ≤ Y <

1. For the proposed method, dividing the range 1 ≤ Y < 4 into two intervals:

1 ≤ Y < 2 and 2 ≤ Y < 4. That is, a right shift is required, operands within the
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range 1 ≤ Y < 2 and two right shifts are required the operands within the range

2 ≤ Y < 4 for the proposed method to operate within the range 0.5 ≤ Y < 1.

To obtain an IEEE mandated result 0.5 < t ≤ 1 for the inverse square root,

multiply the constant 1/
√

2 for the range 1 ≤ Y < 2 and a right shift for the

range 2 ≤ Y < 4 in the final iteration (before normalization). To obtain an

IEEE mandated result 1 ≤ Q < 2 for the square root, multiply this scaled inverse

square root result with the unscaled dividend Y (the scaling is not shown in Table

3.3).

It requires the same maximum of twenty two iterations. Furthermore, the

architecture is similar but the performance is adversely affected. It requires more

than 50 cycles, because t[i] has to be squared in each iteration. Each iteration

requires at least 3 extra cycles compared to the reciprocal: one of the cycles is

to obtain the t[i + 1] in non-redundant form and the remaining two cycles for the

(t[i])2, to obtain the result in CS form. In these two cycles, one cycle is for the

Booth recoding and 3t[i] multiple generation, and the other cycle is to obtain t[i] in

CS form, with respect to the radix-8 multiplier. In the radix-4 multiplier, a cycle

can be reduced due to the Booth recoding in the same cycle of PP’s summation.

This square root algorithm requires some more research.

3.6 Comparisons

We compare the proposed method with the conventional processors for single

precision computation of division in Table 3.4. The rough model we used for area

estimates was taken from [?]. The unit employed is the size of 1-bit fa (full adder),

since the area of the main blocks, adders and multipliers can be easily expressed

by this unit. A standard 1-bit full-adder has a hardware complexity equivalent to

9 nand/nor gates.

Look-up-tables: Estimates for the look-up table can be found in [?]. We as-

sumed a pessimistic model. Our model assumes 40fa/Kbit rate for tables ad-

dressed up to 6 bits, a 35fa/Kbit rate for 7-11 input bit tables, 30fa/Kbit rate for
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State-of-the-art Processors Area estimates (fa ) Latency/Throughput

Intel Itanium [?, ?, ?] Implemented in software 30/–
IBM G5 FPU[?, ?] ≈ 90 27-30/27-30

AMD K-7 [?] ≈ 824 16/13
IBM 603eTM [?] – 18

Proposed Method (radix-8 [?]) ≈ 6 25/23
Proposed Method(radix-4 [?]) ≈ 31 24/22

Table 3.4: Comparison of the proposed method with Conventional Processors

12-13 input bit tables and a 25fa/Kbit rate for 14-15 input bit tables.

The G5 FPU uses about 8 bits in and 10 bits out of look-up (90 fa) and AMD

10 bits in and 16+7 out, which is about 824fa for reciprocal approximation. The

estimated values presented here are reliable approximations, the actual speed-up

and the area ratios depend on the technology employed and its implementation.

Note that, in the 603eTMFPU, a radix-4 SRT divider is used and shared with

the multiplier. The proposed method can fit into a radix-4 MAF with extra hard-

ware of about 31fa: 29fa for CS–Booth-2 digit representation, leaving 2fa for an

extra Booth-2 recoder and 5:1 multiplexer for the 14 bit Booth recoder and for a

row of 5:1 multiplexers, to generate 15PP’s. The proposed method can fit into a

radix-8 multiplier with extra hardware of about 6fa, this is an extra Booth recoder.

Which is less than a 1.5% increase in area with respect to industrial multipliers.

In the radix-4 MAF the proposed method is 1τ slower in cycle time–where τ is

the delay of one full adder, due to another level of 3:2CSA for CS-Booth repre-

sentation.

Note that, in the radix-4 MAF and in the radix-8 multiplier, we do not include

the extra hardware for 5:2CSA and 4:2CSA, which are replaced by 3:2CSA, be-

cause as the technology is scaling down, the complexity of 5:2CSA and 4:2CSA may

be equivalent to that of 3:2CSA.

There is about 16% improvement in the performance with respect to IBM and

Itanium processors, but a 4% decrease with respect to IBM 603eTM and AMD

processors. This is because, 1.09 bits are retired per iteration and it is shared with
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the multiplier and, also, a large LUT is not available i.e., the performance is about

the same as the average performance of state-of-the-art processors.

3.7 Conclusion

Single precision computation of a modified Newton-Raphson reciprocation algo-

rithm is proposed. It is a variable latency algorithm and only requires a max-

imum of 22 iterations providing a linear convergence in character. A variable

latency algorithm is useful in speed independent design, also called a self-timed

divider. The self-timed divider provides processing capability according to the

task at hand. In this way, it can reduce power consumption without sacrificing

performance.

The advantages of our method are that it does not require a look-up table and

each of the iterations is a cycle, unlike the pairs of cycles found in the state-of-

the-art algorithms. The performance of the proposed method is about the same

as the average performance of state-of-the-art processors. To maintain the aver-

age performance, intermediate results are computed in CS form. The multiply-

add operation and Booth recoding can be performed in the same cycle. Initial

approximation in our case is a two’s complement of the divisor, which can be

performed during partial products summation. The multiples of the divisor are

constant throughout each of the iterations. Therefore we generate them only once,

in the second cycle with a radix-4 multiplier and in the third cycle with a radix-8

multiplier, i.e. in the second iteration. This leads to a reduction of a cycle in each

iteration, unlike the N-R method. The eqn.3.10-eqn.3.13 could be considered as

a multiplication in hardware terms.

In the N-R method the number operation required for reciprocation are: a

multiplication and multiply-add operation (see eqn.3.2-eqn.3.4) and each of the

iterations requires two cycles. The multiply-add operation requires the multipli-

cand (S) to be in non-redundant form. It is possible to use the redundant form, but

the data width required is twice that of the non-redundant form, unlike the pro-
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posed method. Without the use of a LUT for the N-R algorithm, the performance

is about the same. This is because each iteration requires two multiplications,

which is about 6 cycles (we assumed 3 cycles for a multiplication), it requires 4

iterations to obtain the single precision result.

With respect to the SRT method, the proposed method does not require a

quotient digit selection hardware to select the next quotient digits, which increases

the cycle time with respect to the radix.

We used both a radix-4 and a radix-8 multiplier. In a radix-8 multiplier, there

may be a delay of an OR gate in cycle time, due to the extra radix-8 Booth re-

coder. In a radix-4 multiplier, it is 1τ slower in cycle time, due to another level of

3:2CSA for CS–Booth-2 digit representation.

We set-out a reciprocation/division algorithm with better silicon efficiency

than conventional methods as shown in Table 3.4. The proposed method can fit

into a radix-4 multiplier with extra hardware of about 31fa and about 6fa for a

radix-8 multiplier, which is less than a 1.5% increase in area with respect to in-

dustrial multipliers.

There is about 16% improvement in performance with respect to IBM and Ita-

nium processors, but 4% decrease with respect to IBM 603e and AMD processors,

due to the fact that 1.09 bits retired per iteration, the multipliers are shared and

a large LUT is not available i.e., performance is about the same as the average

performance of state-of-the-art processors.

The proposed method can be further extended to double precision compu-

tation, which requires about 50 cycles. This can be reduced by employing an

appropriate look-up table with market targeting.

It offers a good trade-off between performance and area making it suitable

for the mobile computing market. In the mobile computing market area is crucial.

Most architects look for a division algorithm with a low cost and reduced area, and

an acceptable performance that can run internet applications, business applications

such as audio and video streaming, charting, presentations, snapshot viewing, day

to day accounting etc. It is expected that, with the proposed method, processor
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architects will have an option for their next generation processors.



Chapter 4

Modified AQA Method Using a LUT

In this chapter we propose a division and square root using the Accurate Quotient

Approximation Method for double precision computation. The proposed method

employs a second degree minimax approximation to obtain an initial 15 bits es-

timate of reciprocal and inverse square root values. This is then passed through

an iteration of Goldschimdt reciprocal and inverse square root algorithms, to en-

hance the initial approximation and to make initial approximation more silicon

efficient. Thereafter we perform an iteration of the Accurate Quotient Approxima-

tion method to obtain a double precision result. To evaluate the proposed method,

we used a radix-4 MAF of IBM 603eTM and a radix-8 multiplier of G5 FPU.

We then compared it with conventional processors and it shows that there is a

significant improvement in performance with better silicon efficiency. To obtain

the best performance, intermediate results are computed in CS form and some

computations are overlapped. We used the AQA method because there are some

advantages over the N-R method, GLD algorithm, Cyrix algorithm and SRT al-

gorithm, it is detailed in this chapter.

61
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Figure 4.1: Proposed Concept

4.1 Proposed Method

Some steps of the AQA method can be modified for a single iteration algorithm,

to obtain the double precision results, using high seed, 30 bits, for the reciprocal

and inverse square root. Figure 4.1 exhibits the concept of the proposed method.

We interface an initial 15 bit minimax approximation with GLD reciprocation and

inverse square root algorithms to make the initial approximation silicon efficient.

Interfacing this high seed 30 bits initial approximation with modified AQA method

boosts the performance, allows the overlapping of partial remainder computation

and, furthermore, offers more parallelism. A brief aspect of these features is de-

picted in Section 4.6.
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Recalling eqn.2.34 - eqn.2.37 and algorithm steps 1-7 of subsection 2.3.2 for

i = 1 and 2Q = 0

P ′
1 = P − P × Y ′ P ′

1 = P − q1 × (2Q + q1)

P ′
1 = X − X × Y × (1/Y30) P ′

1 = Y − Y 2 × (1/
√

Y30)
2 (4.1)

Q′
1 = Q + q1 Q′

1 = Q + q1 (4.2)

. . . division (Q′
i = X/Y ) . . . square root (Q′

i = Y/
√

Y )

Where P is current partial remainder, Q is current partial quotient, P ′
1 is next

partial remainder, Q′
1 is next partial quotient and q1 is next partial quotient bits.

One would substitute Q as X/Y30 for the division and Y/
√

Y 30 for the square

root, assuming that these operations guarantee the first 28 bits of the quotient.

Multiplying the next partial remainder P ′
1 with respective initial approximations

i.e. P ′
1 × (1/Y30) for the division and P ′

1/2× (1/
√

Y 30) for the square root can be

viewed as a current partial quotient bits q1 in our case, adding this partial quotient

to the respective Q one can obtain a final Q′
1. Substituting these assumptions

results in

Q′
1 = (X) × (1/Y30) + (P ′

1) × (1/Y30) . . .division

Q′
1 = (Y ) × (1/

√
Y30) + (P ′

1/2) × (1/
√

Y30) . . . square root (4.3)

We require these assumptions because AQA is a linear convergent algorithm.

I.e. h − 2 bits are generated in each iteration (28 bits in our case). By performing

X/Y30 and Y/
√

Y 30 we can guarantee the first 28 bits of the quotient. To obtain

the double precision result, we need to pass an iteration to obtain the lower 28 bits

of the quotient, which is P ′
1 × (1/Y30) and P ′

1/2 × (1/
√

Y 30) for the respective

functions. Therefore, the upper 28 bits of Q′
1 and lower 28 bits of Q′

1 can be

performed in parallel.

Simplifying the eqn.4.1 and the eqn.4.3 both the next partial remainder and



64 Chapter 4. Modified AQA Method Using a LUT

the quotient can be viewed as

P ′′ = −Y × X × (1/Y30) P ′′ = −Y 2 × (1/
√

Y30)
2 (4.4)

Q′ = (2X + P ′′) × (1/Y30) Q′ = (S + P ′′/2) × (1/
√

Y30) (4.5)

. . . division (Q′ = X/Y30) where S = Y + Y/2 . . . square root (Q′ = Y/
√

Y30)

To allow a fair comparison, we assumed a 30 bit initial approximation for the

Cyrix processor algorithm. The concept comparisons are explained using Figure

4.2, Table 4.1 and Table 4.2.

In the Cyrix square root algorithm, after obtaining the squared initial approxi-

mation (1/
√

Y30)
2 and Y 2 (initially Q = 0), they are multiplied firstly for iteration

i = 1. Follow the algorithm steps 1 to 7 of subsection 2.3.2 and Figure 4.2. Then,

this result is subtracted from Y (P = Y ) for i = 1 and the result is stored in a

register P ′
i , this is a next partial remainder. During the multiplication of Y 2 with

(1/
√

Y30)
2, an independent operation q1 = P × 1/

√
Y30 is performed for i = 1,

thereafter it is added to Q (Q = 0 for i = 1) and the result is stored in a register

Q′
i, this is a next partial quotient. The next partial remainder and quotient are up-

dated as a current partial remainder and quotient i.e. P = P ′
1, Q = Q′

1 in the first

iteration to allow iteration for the second iteration i = 2.

In the second iteration, the current partial remainder P is right shifted and then

multiplied with 1/
√

Y30 to obtain q2. Afterwards, the q2 is added to a left shifted

result of Q i.e. 2Q + q2. The result of this addition is then multiplied with q2 (see

eqn.2.35). These operations are shown in a dotted square box of Figure 4.2. The

multiplied result is then subtracted from P . The result of this operation is the next

partial remainder P ′
2. The next partial quotient Q′

2 is obtained by adding q2 to Q.

An example of this algorithm using radix-10 is depicted in Table 4.1.

In the proposed method for the square root, after obtaining the squared initial

approximation (1/
√

Y30)
2 and Y 2, they are multiplied. The result of this operation

we call current partial remainder P ′′. Follow the eqn.4.4&eqn.4.5 and Figure



4.1. Proposed Method 65

Proposed Method Cyrix Processor Square Root Algo-
rithm

Y = 1.546949120382167.
1/
√

Y30 = 0.804010989.
(1/

√
Y30)

2 =
0.646433670432758121.
Y 2 = 2.393051581051160208.
S = Y + Y/2 =
2.3204236805732505.
P ′′ = −Y 2 × (1/

√
Y30)

2,
Q′ = (S + P ′′/2) × (1/

√
Y30).

Y = 1.546949120382167.
1/
√

Y30 = 0.804010989.
Q = 0, P = Y , q1 =
P × 1/

√
Y30, (1/

√
Y30)

2 =
0.646433670432758121,
P 2 = 2.393051581051160208
for i = 1. qi = P/2 × 1/

√
Y30 for

i ≥ 2. P ′
i = P − qi × (2Q + qi),

Q′
i = Q + qi. P = P ′

i , Q = Q′
i

i = 1 P ′′ =
−1.546949117073816457,
Q′ = 1.2437640935411212

q1 = 1.243764092211146147.
P ′

1 = 3.30835050 × 10−9, Q′
1 =

1.243764092211146147
P = P ′

1, Q = Q′
1

i = 2 q2 = 1.32997500 × 10−9.
P ′

2 = 3.74683 × 10−17,
Q′

2 = 1.2437640935411212

Table 4.1: Comparison of Proposed method with Cyrix algorithm

4.2. During the multiplication of Y 2 with (1/
√

Y30)
2, an independent operation

Y +Y/2 (S) is performed. We then add the result of this addition to a right shifted

P ′′ i.e. S + P ′′/2. The result of this addition is then multiplied by 1/
√

Y30, which

in our case is a quotient. An example of our algorithm is depicted in Table 4.1 (for

radix-10).

In the Cyrix division algorithm, after obtaining Y ′, which is a product of

1/Y30 × Y (follow the algorithm steps 1 to 7 of subsection 2.3.2 and Figure 4.2),

it is multiplied by P (P = X) for the first iteration i = 1 and is then subtracted

from P . This result is a next partial remainder and is stored in a register P ′
i . Dur-

ing the multiplication of P by Y ′, an independent multiplication P with 1/Y30 is

performed to obtain q1. This result is added to Q (Q = 0 for i = 1). The result is a

next partial quotient and is stored in a register Q′
i. Both the next partial remainder

and quotient are updated as a current partial remainder and quotient i.e. P = P ′
1,

Q = Q′
1 in the first iteration to allow to iterate for second iteration i = 2.

In the second iteration, current partial remainder P is multiplied by Y ′ and the
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Figure 4.2: Concept comparison of Cyrix algorithm with the proposed method
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result of this product is subtracted from P , the result is a next partial remainder

P ′
2. Note that the Y ′ is generated only once, in the first iteration. During the multi-

plication Y ′ by P , another independent multiplication P by 1/Y30 is performed to

obtain q2 and the result of this multiplication is added to Q to obtain the next par-

tial quotient Q′
2. An example of this algorithm using radix-10 is shown in Table

4.2.

In the proposed method (for division), after obtaining X × Y product and

1/Y30, they are multiplied. The result of this multiplication we call current partial

remainder P ′′, follow the eqn.4.4&4.5 and Figure 4.2. The result of this multi-

plication is subtracted from a left shifted X i.e. 2X + P ′′ and then this result is

multiplied by 1/Y30 to obtain, in our case, the quotient Q′. An example of the

proposed method is depicted in Table 4.2 (for radix-10).

In summary, the number of dependent operations in Cyrix algorithms is (for

both division and square root): an addition (in square root), multiplication, sub-

traction and an addition–follow right to left of the eqn.2.34-eqn.2.37. It requires

two iterations to obtain double precision results. The first 28 bits and the last 28

bits of the quotient are generated serially.

In the proposed method, the number of dependent operations for the division

and square root are the same: a multiplication, an addition and multiplication–

follow the eqn.4.4&4.5. Note that X × Y , Y 2 and Y + Y/2 are independent

operations. It requires an iteration to obtain double precision results. The first

28 bits and the last 28 bits of Q′ are generated in parallel and it is added during

multiplication, to obtain final Q′ (eqn.4.5). The proposed method can be operated

in fixed point mode, unlike Cyrix algorithms.

The 30 bit initial approximation for the reciprocal and the inverse square root

can be obtained by indexing the top m bits of Y to the look-up table, which returns

more than m bits of precision for these functions. Somewhat more than m bits of

precision can be obtained from [?, ?, ?, ?]. To obtain a 30 bit result, one would

consider 9 ≤ m ≤ 20.
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Proposed Method Cyrix Processor Division Algo-
rithm

X = 1.3256711329137561,
Y = 1.546949120382167.
1/Y30 = 0.646433671.
X × Y = 2.050745792976965794.
P ′′ = −X × Y × (1/Y30),
Q′ = (2X + P ′′) × (1/Y30).

X = 1.3256711329137561, Y =
1.546949120382167. 1/Y30 =
0.646433671. Y ′ = Y × 1/Y30 =
0.999999998738865136, Q = 0,
P = X , q1 = P × 1/Y30 for i ≥ 1.
P ′

i = P − P × Y ′, Q′
i = Q + qi.

P = P ′
i , Q = Q′

i

i = 1 P ′′ = −1.325671131241906016,
Q′ = 0.8569584580689085

q1 = 0.856958456988168282.
P ′

1 = 1.671850083 × 10−9, Q′
1 =

0.856958456988168282
P = P ′

1, Q = Q′
1

i = 2 q2 = 1.080740186 × 10−9.
P ′

2 = 2.10842 × 10−18,
Q′

2 = 0.8569584580689085.

Table 4.2: Comparison of Proposed method with Cyrix algorithm

4.2 Initial Approximation

To make the 30 bit initial approximation silicon efficient, we first obtain a 15 bit

initial reciprocal and inverse square root approximation using a Minimax method

[?] and we then pass it through an iteration of GLD algorithm. Figure 4.3 shows

the concept of 30 bit initial approximation.

The Minimax approximation is performed as

f(y) = C0 + C1Y2 + C2Y
2
2 (4.6)

The n-bit binary input significant Y is split into an upper part Y1 and a lower

part Y2:

Y1 = [1.y1, y2....ym], Y2 = [...ym+1...yn] × 2−m

Where C0, C1, C2 are coefficients, the value of these coefficients depends only

on the Y1, the m most significant bits of Y.



4.2. Initial Approximation 69

Minimax 
approx

15

30

Goldschimidt itn

m=4&3

15 151/ Y   ,  1/    Y 

30 1/Y    ,  1/    Y 30

Figure 4.3: The 30 bit Initial Approximation concept

The minimax approximation with polynomial coefficients C0, C1, C2 of unre-

stricted word length yields very accurate results. The coefficients must be rounded

to a finite size to store the values of these coefficients in the look-up tables. In or-

der to compensate for the rounding errors introduced by finite size coefficients, it

must be passed through 3-passes. The method can be performed with the com-

puter algebra system using Maple:

• Find the original approximation with non truncated coefficients and round

the degree-1 coefficient to p bits to obtain C1.

-example

The computation of the function 1/
√

Y in the interval (1, 2) for m = 4. At

address i in the table, we will find the coefficients of the approximation for

the interval [1 + i/16, (i + 1)/16). Let us say i = 11 and t = 16, p = 11,

q = 9 bit precisions

>pol1:= minimax(1/sqrt(1+11/16+y),y=0..1/16,[2,0],

1,’err’);
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> C1:=2.ˆ (-11)*round(coeff(pol1,y)*2.ˆ (11));

ask for minimax approximation in that domain, the variable y represents Y2,

the lower part of the input operand Y . We obtain the approximation

>pol1:= 0.7698000005 +(-0.2279846809 + 0.09685666226

y) y;

> C1:=-0.2280273438;

> err:=0.35841950 10−6;

• Compute aa2 using the analytical expression

aa2 = a2 + (a1 − C1) × 2m (4.7)

where a1, a2 are the degree-1 and degree-2 coefficients of the original ap-

proximation, round aa2 to q bits to obtain C2.

>a1:=coeff(pol1,y);

>a2:=coeff(pol1,yˆ 2);

> aa2:=a2+(a1-C1)*2.ˆ 4;

> C2:=2.ˆ (-9)*round(aa2*2.ˆ (9));

>a1:=-0.2279846809;

>a2:=0.09685666226;

> aa2:=0.097539269;

> C2:=0.09765625000;

• Based on C1 and C2 above, compute the degree-0 coefficient and then round

to t bits to obtain C0.

> p0:=minimax(1/sqrt(1+i/16+y)-C1*y-C2*yˆ 2,y=0..1/16,

[0,0],1,’err’);

> C0:=round(2.ˆ (16)*(tcoeff(p0)))*2.ˆ (-16);

> p0:=0.769799943;

> C0:=0.7698059081;
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> err:=0.7580 10−6;

From the above rounded coefficients, compare the error of the approximation

for the target precision (15 bits in our case) with target operation, inverse square

root in this case

> err:=infnorm(1/sqrt(1+11/16+y)-C0-C1*y-C2*yˆ 2,y=0

..1/16);

> err:=0.6722820608 10−5;

The error (err) of the approximation is much less than 2−15. Figure 4.4 shows a

maple program which implements the minimax method for the inverse square root

computation, with m = 3. To obtain 15 bit initial approximation, the coefficient

world lengths we have chosen are t = 15, p = 10 and q = 8 bits, because

this combination yields an error of less than 2−15. The number of correct bits

are obtained as goodbits and the error of the approximation, ε′approx (discussed in

the next section) is shown as errmax. Similar procedure can be followed for the

reciprocal. The coefficient word lengths we obtain are: t = 15, p = 8 and q = 7

bits for m = 4.

4.2.1 Error Computation

The total error in the final result of the function approximation step can be

expressed as the accumulation of the error in the result before rounding, εinterm,

and the rounding error, εround:

εtotal = εinterm + εround < 2−r (4.8)

where r depends on the input and output ranges of the function to be approxi-

mated, on the target accuracy and defines a specific bound on the final error.

The error in the intermediate result comes from two sources: the error in the
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> with(numapprox);
>computecoeffts:=proc(t,p,q)
> errmax:=0;
>f:=fopen(”table invsqrt.txt”,WRITE);
> fprintf(f,”i\ t C0 \ t \ t C1 \ t \ t C2 \ t \ t err \ n”);
> Digits:=12;
> for i from 0 to 7 do
> pol1:= minimax(1/sqrt(1+i/8+y),y=0..1/8,[2,0],1,’err’);
> C1:=2.ˆ (-p)*round(coeff(pol1,y)*2.ˆ (p));
> a1:=coeff(pol1,y);
> a2:=coeff(pol1,yˆ 2);
> aa2:=a2+(a1-C1)*2.ˆ 3;
> C2:=2.ˆ (-q)*round(aa2*2.ˆ (q));
> p0:=minimax(1/sqrt(1+i/8+y)-C1*y-C2*yˆ 2,y=0..1/8,[0,0],1,’err’);
> C0:=round(2.ˆ (t)*(tcoeff(p0)))*2.ˆ (-t);
> err:=infnorm(1/sqrt(1+i/8+y)-C0-C1*y-C2*yˆ 2,y=0..1/8);
> fprintf(f,”%d \ t % e \ t % e\ t % e \ t % e \ n”,i,C0,C1,C2,err);
> if errmax< err then errmax:= err fi;
> od;
> fclose(f);
> goodbits:=abs(ln(errmax))/ln(2.0);
> print(goodbits,errmax);
> end;
>

>

>

>computecoeffts(15,10,8);
> 15.0488978369, 0.0000295005660633

Figure 4.4: Maple program for obtaining inverse square coefficients m = 3
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minimax approximation, εapprox, and the error due to the use of finite arithmetic

in the evaluation of the degree-2 polynomial:

εinterm ≤ εapprox + εC0 + εC1Y2 + εC2Y
2
2 + |C2|εY2 + |C2|εY 2

2
(4.9)

The error of the approximation, εapprox, depends on the value of m and the

function to be interpolated. The maple program we showed in Figure 4.3 con-

tributes the intermediate error of the minimax performed with rounded coefficients

and therefore we can define:

ε′approx = εapprox + εC0 + εC1Y2 + εC2Y
2
2 (4.10)

since εY2 = 0, in this case:

εinterm ≤ ε′approx + εsquaring (4.11)

εsquaring = |C2|εY 2
2

The maximum error on the squaring computation bounded to be

∑
i>2m+12

partial producti < 2−2×(m=3)−10 . . . inverse square root (4.12)

∑
i>2m+10

partial producti < 2−2×(m=4)−8 . . . reciprocal (4.13)

Therefore, the εsquaring ≤ |C2|.2−2m−8 for the reciprocal and εsquaring ≤
|C2|.2−2m−10 for the inverse square root.

εround depends on how the rounding is carried out. Conventional rounding

schemes are truncation and rounding to the nearest. Using truncation of the

intermediate result at position 2−r, the associated error would be bounded by

εround ≤ 2−r. While performing the rounding to the nearest by adding a one
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at position 2−r−1 before such truncation, the rounding error would be bounded

by 2−r−1 instead. In the minimax method round to the nearest is preformed, by

adding one to the C0 in advance at position 2−r−1 i.e. C ′
0 = C0+2−16 this is stored

in the LUT instead of C0. We then truncate the intermediate result at position 2−16

to guarantee 15 bit results.

Summarizing the total error in the final result can be expressed as:

εtotal ≤ ε′approx + |C2|εY 2
2

< 2−16 (4.14)

4.2.2 Goldschimdt Algorithm

To obtain the double precision result for the division and the square root i.e. 53 bit,

we need 30 bit initial approximation, passing this 15 bit approximation through

an iteration of GLD reciprocation and inverse square root algorithms [?], we can

obtain 30 bit initial approximation. Following are the GLD equations

1/Y30 = 1/Y15 × (2 − (1/Y15) × Y30) (4.15)

2(1/
√

Y30) = 1/
√

Y15 × (3 − (1/
√

Y15)
2 × Y30) (4.16)

4.2.3 Error computation

The error computation for the reciprocal and inverse square root can be set as

|ε1/Y30 | = (1/Y15 + |ε1/Y15 |) × (2 − [(1/Y15 + |ε1/Y15 |) × (Y30 + εY30)] + εvt)

+εt′ (4.17)

2|ε1/
√

Y30
|= (1/

√
Y15 + |ε1/

√
Y15

|) × (3 − [(1/
√

Y15 + |ε1/
√

Y15
|)2 × (Y30 + εY30)] +

εvt) + εt′ (4.18)
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The maximum absolute error when computing the reciprocal and the inverse

square root, |ε1/Y30 |, |ε1/
√

Y30
| are proportional to ε2

1/Y15
and ε2

1/
√

Y15
respectively.

The |ε1/Y30
| and |ε1/

√
Y30

| are also depend on the the use of finite arithmetic, this

is an intermediate word length truncating at t, introducing error εvt and εt′ at the

multiplier and the final result. Furthermore, it also depends on the absolute error of

the initial approximations |ε1/Y15 |, |ε1/
√

Y15
| and the error of the truncated divisors,

εY30 .

Therefore, the error in the final result must be bounded by:

|ε1/Y30 | =
2ε1/Y15.Y30

Y15
+

εY30

Y 2
15

+
εvt

Y15
+ ε2

1/Y15
.Y30 +

2ε1/Y15 .εY30

Y15
+ εvt.

ε1/Y15 + ε2
1/Y15

.εY30 + εt′ < 2−30

(4.19)

|ε1/
√

Y30
| = |ε1/

√
Y15

| + 3|ε1/
√

Y15
|.Y30

2.Y15
+

εY30

2.Y15.
√

Y15

+
εvt

2.
√

Y15

+
5ε2

1/
√

Y15
.Y30

2.
√

Y15

+

|ε3
1/

√
Y15

|.Y30 +
3|ε1/

√
Y15

|.εY30

2
+

εvt.|ε1/
√

Y15
|

2
+

ε2
1/

√
Y15

.εY30

2
√

Y15

+ εt′ < 2−30

(4.20)

The target 30 bit precision can be met εY30 , εvt < 2−32 and εt′ < 2−30 by keeping

|ε1/Y15 |, |ε1/
√

Y15
| < 2−16:

|ε1/Y30 | < 2−15 + 2−32 + 2−32 + 2−32 + 2−47 + 2−48 + 2−64 + 2−30 < 2−29

(4.21)

|ε1/
√

Y30
| < 2−16 + 2−17 + 2−33 + 2−33 + 2−33 + 2−48 + 2−49 + 2−49 + 2−65

+2−30 < 2−29

(4.22)
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The conservative bounds on εY30 , εvt < 2−32 and εt′ < 2−31 and |ε1/Y15
|,

|ε1/
√

Y15
| < 2−16 can be met by employing a truncation on the multipliers.

4.2.4 Architecture of Minimax Approximation

When m = 3 for the inverse square root, the lower part Y2 has 12 bits and Y 2
2

has 6 leading zeros with a word length of 12 bits, if truncation at position 2−18 is

performed for Y 2
2 . Similarly when m = 4 for the reciprocal, the lower part Y2 has

11 bits and Y 2
2 has 8 leading zeros with a word length of 10 bits, if truncation at

position 2−18 is performed for Y 2
2 . This is because Y2 has m leading zeros, which

means that Y 2
2 will have 2m leading zeros. We used a specialized squaring unit

for squaring operation Y 2
2 . More information on the squaring operation can be

obtained from [?, ?, ?].

We use Y2 and Y 2
2 as multipliers. To use Y 2

2 (Y2 is in non redundant form) as

a multiplier, it is converted from CS to Booth digit representation (discussed in

Section 4.4). The Figure 4.6 shows an initial 15 bit approximation in the standard

radix-4 and radix-8 multipliers.

The size of the LUT’s for the inverse square root are 2× 23 × (15 + 10 +8) =

0.52Kbits= 0.064KB. In the architecture we included the LUT for the reciprocal,

which is 24 × (15 + 8 + 7) = 0.47Kbits= 0.059KB. Therefore, the total size of

the LUT’s to be employed is 0.99Kbits which is 0.123KB.

In Figure 4.6 (a), is a two stage pipeline architecture. In the first stage, the ta-

bles are addressed using the operand Y1 to look-up co-efficient values C0, C1, C2,

in parallel computation of Y 2
2 . After that, multiplexing for multiplicand and

multiplier–to select either for division/square root or general multiplication and

then, recoding of Y2 and Y 2
2 . Thereafter, PP’s generation and 10 PP’s summation

(6 PP’s of C1+ 4 PP’s of C2) plus C0 in three levels of 4:2CSA tree. In the

case of the reciprocal, we generate the same 10 PP’s. Figure 4.5 shows the PP’s

accumulation of the initial 15 bit approximation.
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Figure 4.5: Minimax accumulation of PP’s

We have chosen a two stage pipeline architecture because it can be easily

incorporated in the standard radix-4 multiplier (53 × 53 bit), the multiplier accu-

mulates 27 PP’s in four levels of 4:2CSA tree. The last stage is a CPA of the

accumulation tree that performs assimilation from the CS-non redundant form of

the result.

A similar architecture for a radix-8 multiplier (53×53 bit ) is shown in Figure

4.6 (b). In the case of the radix-8 multiplier, it is a three stage pipeline. In the

first stage it looks-up values of C0, C1, C2 from look-up tables, in parallel with

squaring of Y2. Then uses multiplexing for the multiplicand and multiplier–to

select, either for division/square root or general multiplication. Thereafter 3M

multiple generation, which is in parallel with recoding of the multiplier Y2 and

Y 2
2 .

In the second stage, multiplexing of multiplicands and 7 PP’s summation for

inverse square root and reciprocal (4 PP’s of C1 and 3PP’s of C2) plus C0 in

four levels of 3:2CSA tree. The standard radix-8 multiplier requires six levels of

3:2CSA tree for 18 PP’s summation. Finally the third stage is a CPA, to obtain
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4.2. Initial Approximation 79

the result in the non-redundant form.

The access time for LUT’s are 1/4th of cycle time and 3M multiple generation

for (C1 + C2) is half the cycle time of standard multipliers.

4.2.5 Delay Estimates of Initial Minimax Approximation

In this section we analyze the cycle time for conventional multipliers and the ini-

tial approximation. We will show that the cycle time of initial approximation can

be matched with the cycle time of the conventional multipliers. The cycle time

we analyzed in terms τ -the delay of one full adder [?, ?]. These estimates are re-

liable approximations. The actual speed-up depends on the technology employed

and its implementation. We do not consider inter-connection delay because it is

technology dependent. In principle, the cycle time depends upon the scheduling

and market targeting. The pipelining of our architecture is flexible and can be

performed differently, according to the technology to be employed.

We used a radix-4 multiplier of IBM Power PC 603eTMFPU [?] and a radix-8

multiplier of IBM G5 FPU [?]. The estimated cycle time of the proposed initial

approximation is compared with these industrial multipliers.

The Power PC FPU uses a radix-4 multiply-add fused (53 + 53 × 53 bit)

operation i.e. 53(A) × 53(C) multiplied result added to another 53 bit operand

say, B (B+A×C). It is a four stage pipeline for double precision MAF (Multiply-

Add Fused) and is a three stage pipeline for single precision MAF.

In the case of double precision MAF, 53(A) × 28(C)-the lower 28 bits of C

multiplied and added to aligned B operand in the final 3:2 CSA as shown in the

first stage of Figure 4.13 of Section 4.6, the result (in CS form) is fed back to the

second pass. In the second pass, 53(A) × 25(C)-the first 25 bits multiplied1, the

PP’s of this pass assimilates with the first pass CS result so, 16 PP’s were added

(14 PP’s + carry and sum of the first pass) with three levels of 4:2CSA’s. In both

1In second pass the first 25 bits of C made to 28 bits with a concatenating three 0
′
s to generate

14 PP’s.
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Radix-4MAF Proposed method in radix-4
MAF

first pass &
second pass

(trecoding + t5:1mux) + 3 ×
t4:2CSA + 1 × t3:2CSA + treg

(trecodingY2andY 2
2

+ t5:1mux) +
3 × t4:2CSA + treg

2τ+3×1.5τ+1τ+1τ = 8.5τ 2τ + 3 × 1.5τ + 1τ = 7.5τ
Third stage tcpa ‖ texp adj + tLZD + treg tcpa + treg

7τ + 1τ + 1τ = 9τ 7τ + 1τ = 8τ
Fourth stage tnorm ‖ texp adj + tround + treg –

5τ + 2τ + 1τ = 8τ –

Table 4.3: Delay estimates in radix-4 multiplier

passes 14 PP’s are generated. In the second stage, CPA which is in parallel with

exponent aligning (exp adj)) and leading zero detection (LZD). And in the third

stage, normalization and rounding.

The total latency of MAF operation is 4 cycles for double precision: first two

cycles for dual pass multiplication, in the third cycle, carry propagate addition,

and the final fourth cycle for normalization and rounding.

In the case of single precision it is 3 cycles: in the first cycle single pass

multiplication, in the second cycle carry propagate addition and the final third

cycle is for normalization and rounding.

The cycle time is set by the delay of the slowest path in the architecture, which

may be in the third stage. Table 4.3 shows the delay estimates for MAF and the

initial approximation in the MAF. Initial approximation in the MAF requires

single pass multiplication. The cycle time of MAF can be estimated as 9τ . Note

that the LUT’s and squaring unit can be placed either in the first stage or before

the first pipeline stage. However, we assumed that it was placed before the first

pipeline stage and is coupled with 6:1 multiplexers (see Figure 4.13 on the top

right).

The radix-8 multiplier (64 × 56 bit) [?] consists of three stages: in the first

stage, 3M multiple generation and recoding of the multiplier. In the second

stage, multiplexing of the multiplicands and 19 PP’s summation in six levels of

3:2CSA’s and, finally, the third stage is for CPA. There is a selection of two pos-
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Radix-8 multiplier Proposed method in radix-8 multi-
plier

First
stage

t3M ‖ trecoding + treg tlut ‖ tY2squaring + t2−to−1 mux +
t3C1,3C2,3Y2 ‖ tY2andY 2

2 recoding + treg

7τ + 1τ = 8τ 1.5τ + 0.5τ + 3τ + 1τ = 6τ
Second
stage

t4−to−1 mux+6×t3:2CSA+treg t4−to−1 mux + 4 × t3:2CSA +
1 × t3:2CSA for cs−booth digit rep +
tradix−8rec + treg

1.5τ + 6 × 1τ + 1τ = 8.5τ 1.5τ+4×1τ+1τ+0.3τ+1τ = 7.8τ
Third
stage

tcpa + treg tcpa + treg

7τ + 1τ = 8τ 7τ + 1τ = 8τ

Table 4.4: Delay estimates in radix-8 multiplier

sible normalization results in the third cycle. This selection signal is built into a

custom designed data flow for speed.

Table 4.4 shows the delay estimates of the radix-8 multiplier and the initial

approximation in the radix-8 multiplier. The cycle time of the radix-8 multiplier

can be estimated as 8.5τ .

Therefore the cycle time of the initial approximation may not affect the cycle

time of the industrial multipliers.

The 15 bit approximation can also be obtained from linear approximation al-

gorithms, bipartite method [?, ?, ?]. In these cases the table size is more than

0.45KB, the quadratic Minimax approximation requires 0.123KB. Other quadratic

methods such as [?, ?] can be used, but they may add delay to the critical path for

the industrial multipliers. The Minimax method may not add critical path delay to

the industrial multipliers. However, the use of novel efficient algorithms in terms

of speed and area is welcome.

4.2.6 Architecture and Performance of initial approximation

To evaluate the proposed 30 bit initial approximation, we used a radix-4 MAF of

IBM 603eTM FPU [?] and a radix-8 multiplier of G5 FPU [?, ?]. As discussed
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before, the latency of radix-4 MAF operation is 3 cycles (single pass multiplica-

tion) with a throughput of 1 and the latency of the radix-8 multiplier is 3 cycles

with a throughput of 1.

In the radix-4 multiplier, after obtaining the 15 bit initial inverse square root

approximation in the non redundant form as shown in Figure 4.6 (a), it has to be

squared (1/
√

Y15)
2 to perform an iteration of GLD inverse square root algorithm–

follow the eqn 4.16. For squaring 1/
√

Y15, using the 1/
√

Y15 as a multiplier and

a multiplicand, we generate 8 PP’s of 1/
√

Y15 and they are accumulated in two

levels of 4:2CSA tree. The product is obtained in CS form to convert to Booth-

2 digit representation (discussed in Section 4.4) for use as a multiplier and Y30

as a multiplicand. Using (1/
√

Y15)
2 as a multiplier, we generate 16 PP’s of Y30

and they are accumulated in three levels of 4:2CSA tree, the constant 3 can be

introduced in the CSA tree (replacing last 4:2CSA of first level with 5:2CSA2[?]).

The result is obtained in CS–Booth-2 digit form to use as a multiplier and 1/
√

Y15

as a multiplicand. We generate 16 PP’s of 1/
√

Y15 and they are accumulated in

a three levels of 4:2CSA tree, thereafter CPA addition of the product to obtain

1/
√

Y30 in the non-redundant form.

Performance: The performance of the initial 1/
√

Y30 is followed by above

explanation, it is shown in the Figure 4.7.

� First couple of cycles for obtaining the 1/
√

Y15 in the non redun-

dant form.

� In the third cycle, obtaining (1/
√

Y15)
2 CS–Booth-2 digit repre-

sentation.

� The fourth cycle is for performing 3 − (1/
√

Y15)
2.Y30, obtain the

result in CS–Booth-2 digit representation.

� And finally the fifth and sixth cycles are to obtain 1/
√

Y30 in the

non redundant form.
2Replacing 4:2CSA with 5:2CSA in the first level of last 4:2CSA the delay in cycle time may

be compensated, as this 5:2CSA is a late arriving signal, first preference could be given to this
5:2CSA for summing in a routing algorithm of PP’s summation.



4.2. Initial Approximation 83

1
15

/     Y

  

   

CS

1/  Y

CS

 non rd

St1
St2

 non rd

St2
St1

                                                         

15
2

CS

St1

3−
15

2Y30

CS
 St1 1/     Y

30
non rd

St1     St2

1                2                3                4                5                6                               

CS
St1 1/Y

30CS
St1

non rd
  St2

Reciprocal

Inverse square root

  (1/    Y )
  (1/    Y )

15

15

2−1/Y  Y
30

Figure 4.7: Timing diagram of initial 30 bit approximation in the radix-4 multiplier

In the radix-8 multiplier, after obtaining the 1/
√

Y15 in the non-redundant form

as shown in Figure 4.6 (b), it is squared. Using the 1/
√

Y15 as a multiplier and

a multiplicand, we generate 6 PP’s of 1/
√

Y15 and these are accumulated in two

levels of a 3:2CSA tree. The result is obtained in CS–Booth-3 digit representation

(discussed in section 4.4) and recoded using an extra radix-8 recoder. The result

of this recoder can be directly applied to the multiplexer to multiplex the multipli-

cands for the next cycles. During the PP’s summation of 1/
√

Y15, an independent

instruction 3Y30 multiple can be performed, because the multiplier has a through-

put of 1. Using (1/
√

Y15)
2 as a multiplier and Y30 as a multiplicand, we generate

11 PP’s of Y30 and these are accumulated in five levels of a 3:2CSA tree and the

constant 3 can be introduced in this tree. The result is obtained in CS–Booth-3

digit representation with recoding. During this accumulation, the 3(1/
√

Y15) mul-

tiple instruction can be performed. Using 3 − (1/
√

Y15)
2.Y30 as a multiplier and

1/
√

Y15 as a multiplicand we generate 11PP’s of 1/
√

Y15 and these are accumu-

lated in five levels of a 3:2CSA tree. The result is allowed to propagate the carry

to obtain 1/
√

Y30 in the non-redundant form.
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Figure 4.8: Timing diagram of initial 30 bit approximation in the radix-8 multiplier

Performance: is similar to the radix-4 multiplier as shown in Figure 4.8. The

timing diagram is followed by the above explanation. Furthermore, it is two cycles

slower with respect to the radix-4 multiplier, because the recoding of Y2 and Y 2
2

(in the first cycle) and 3(1/
√

Y15) multiple (in the fourth cycle) is performed in

another pipeline stage, unlike the radix-4 multiplier, the recoding and multiple

generation is performed in the same pipeline stage of PP’s summation.

Similarly for the division, in the radix-4 multiplier, after obtaining the 1/Y15

in the CS form–as shown in Figure 4.6 (a), it is passed through an iteration

of the GLD reciprocation algorithm, follow the eqn.4.15. The CS of 1/Y15 is

converted to CS–Booth-2 digit representation to use as a multiplier and Y30 as a

multiplicand. We generate 8 PP’s of Y30 and these are accumulated in two levels

of a 4:2CSA tree, the product is two’s complemented and obtained in CS–Booth-

2 digit representation to use as a multiplier. During the PP’s summation of Y30,

a carry propagate addition instruction for CS of 1/Y15 can be performed. Using

2−1/Y15.Y30 as a multiplier and 1/Y15 as a multiplicand, we generate 16 PP’s of

1/Y15 and these are accumulated in three levels of a 4:2CSA tree. The result of
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1/Y30 is obtained in both CS and non-redundant form to use as a multiplier and

multiplicand for modified AQA method (discussed in next section).

Performance: The performance of the initial 1/Y30 followed by the above

explanation, is shown in Figure 4.7.

� In the first cycle, obtain the 1/Y15 in the CS form and in the sec-

ond cycle the CS result is allowed to propagate the carry. In

the second cycle an independent instruction 2−1/Y15Y30 is per-

formed.

� In the third cycle, multiplying 2−1/Y15.Y30 with 1/Y15 and obtain

the result in CS form.

� The fourth and final cycle is to obtain 1/Y30 in the non-redundant

form.

In the radix-8 multiplier, during the PP’s summation of coefficient bits for the

1/Y15, another instruction 3Y30 can be performed. After obtaining the 1/Y15 in

the CS form, it is converted to CS–Booth-3 digit representation with recoding as

a multiplier and Y30 as a multiplicand in the next cycles. We generate 6 PP’s of

Y30 and these are accumulated in two levels of a 3:2CSA tree, the result is two’s

complemented. Thereafter it is converted to a CS–Booth-3 digit and recoded.

During the PP’s summation of Y30, a carry propagate addition instruction of 1/Y15

can be performed. Thereafter, a 3(1/Y15) multiple instruction is performed. Using

2 − 1/Y15.Y30 as a multiplier and 1/Y15 as a multiplicand we generate 11 PP’s

of Y15 and these are accumulated in five levels of a 3:2CSA tree. This result is

allowed to propagate the carry, to obtain the result in non-redundant form 1/Y30.

Performance: The performance of initial 1/Y30, followed by the above expla-

nation, is shown in Figure 4.8.

� First two cycles for obtaining 1/Y15 in the CS form and in the sec-

ond cycle 3Y30 multiple instruction can be performed, because

the radix-8 multiplier has a throughput of 1.
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Figure 4.9: Proposed Method

� In the third cycle, obtaining 2 − 1/Y15.Y30 CS-Booth 3 digit with

recoding and a CPA for 1/Y15.

� The fourth cycle is for performing 3(1/Y15).

� Finally the fifth and sixth cycle are for obtaining 1/Y30 in the non-

redundant form.

It is two cycles slower, with respect to the radix-4 multiplier, because the re-

coding of Y2 and Y 2
2 (in the first cycle) and 3(1/Y15) multiple (in the fourth cycle)

is performed in another pipeline stage. Unlike the radix-4 multiplier, the recoding

and multiple generation is performed in the same pipeline stage of PP’s summa-

tion.

4.3 Algorithm

The algorithm presented here is for both the division and square root. In order to

obtain double precision results, an iteration is required after 30 bit initial approx-

imation. The concept shown in Figure 4.9, recalling the eqn.4.4&eqn.4.5
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P ′′ = −Y × X × (1/Y30) P ′′ = −Y 2 × (1/
√

Y30)
2 (4.23)

Q′ = (2X + P ′′) × (1/Y30) Q′ = (Y + Y/2 + P ′′/2) × (1/
√

Y30) (4.24)

. . . division Q′ = X/Y30 . . . square root Q′ = Y/
√

Y30

Following are some steps to compute modified AQA method:

1. Obtain the 30 bit initial approximation, in parallel perform X×Y (Y 2 in the

case of square root) and then take first 59 bits (detailed in error computation

section) of the multiplied result.

2. In the case of square root, square the initial approximation and in parallel

add Y + Y/2. The addition of this result is say, S.

3. Multiply 1/Y30 with the truncated X × Y product. Multiply (1/
√

Y30)
2

with the truncated Y 2 product in the case of square root. The result of this

multiplication is P ′′.

4. Subtract the above result P ′′ to 2X for the division. Subtract the above

result P ′′/2 to S for the square root. It can be introduced in the CSA tree.

Obtain the result in CS to Booth digit representation (discussed in next

section).

5. And then, multiply 1/Y30 (1/
√

Y30 for the square root) with the above result

to get Q′.

In the division and square root, the exponent can be computed in parallel with

the mantissa of the quotient, therefore we focused on the mantissa in this thesis.
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4.4 CS to Redundant Booth digit representation

In our design, the operands 1/Y15 and (1/
√

Y15)
2, 1/Y30 and (1/

√
Y30)

2, 2 −
1/Y15Y30 and 3 − (1/

√
Y15)

2Y30, 2X + P ′′ and S + P ′′/2, and Q′ (for division)

are used as multipliers, and they are obtained in CS form. These intermediate

results we call B and for the non-redundant representation of these intermedi-

ate results we call B′. Using these operands as a CS multiplier, the final level

of CSA tree [?, ?] are unused and we use this final level of CSA tree to con-

vert CS to Booth 2&3 digit representation for the radix-4 and radix-8 multipliers

respectively. The multipliers in CS form will enhance the performance of the

division and the square root. Recalling the equations eqn.3.15 to eqn.3.23, and

Figure 3.1, Figure 3.2 and Figure 3.3 of Chapter 3, by changing the notation t to

B and t′ to B′ we obtain

〈B〉 =

m′−1∑
i=0

(−2.rB′3i + rB′2i + rB′1i).4
i (4.25)

The set of tripels (rB ′3i, rB
′2i, rB

′1i), with 0 ≤ i < m′ to be a redundant

Booth-2 digit representation of 〈B ′〉, iff 〈B〉 = 〈B′〉. Where m′ is a PP’s reduc-

tion factor for multiples of the multiplicand with b bit multiplier.

As discussed in Subsection 4.2.1 and 4.2.3 of Section 4.2, the 1/Y15 has b = 16

bits and (1/
√

Y15)
2 has b = 32 bits, the 1/Y30 has b = 30 bits and (1/

√
Y30)

2

has b = 60 bits , the 2 − 1/Y15Y30 has b = 32 bits and 3 − (1/
√

Y15)
2Y30 has

b = 32 bits , the 2X + P ′′ and S + P ′′/2, and Q′ have a maximum b = 59

bits (discussed in next section); having B ′
m+1 = B′

m = B′
−1 = 0 then m′ =

�(b+1)/2�. Thus, the product not changed if fed to the multiplier in either the set

of tripels B ′
2i+1, B

′
2i, B

′
2i−1 based on the non-redundant representation of 〈B ′〉 or

a redundant Booth-digit representation (rB ′3i, rB
′2i, rB

′1i) of 〈B′〉.
We assume to have a carry-save representation of 〈B〉 + const, that already

includes the additive constant const =
∑m′−1

i=0 2.4i. The const is required to
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Figure 4.10: Compression from carry-save to redundant Booth-digit representation

obtain B in eqn.4.25 form.

Looking at a bit windows of width 2 in this carry-save representation of the

number 〈B〉 + const, each window contains 4 bits (see Figure 4.10); two with

a weight of one and two with a weight of two. The binary value wj of the part

of the number within a window i is in the range wi ∈ {0, . . . 6}. The number

〈B〉 + const can then be written by:

〈B〉 + const =
m′−1∑
i=0

wi.4
i (4.26)

If we input the 4 bits of a window i into a 2-bit adder, we get three output bits

c2i+2, s2i+1 and s2i, that represent the value of the window by

wi = 4.c2i+2 + 2.s2i+1 + s2i (4.27)
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(a) 2 bit addition in CSA (b) 3 bit addition in CSA

Figure 4.11: CS-Booth digit representation in a CSA cell

〈B〉 + const =

m′−1∑
i=0

(4.c2i+2 + 2.s2i+1 + s2i)4
i, (4.28)

Subtract the additive constant const on both sides, and obtain the value of 〈B〉

〈B〉 + const −
m′−1∑
i=0

2.4i =
m′−1∑
i=0

(4.c2i+2 + 2(s2i+1 − 1) + s2i)4
i, (4.29)

As x − 1 ≡ −x for x ∈ {0, 1}, then one can substitute s2i+1 − 1 by −s2i+1

and we can get

〈B〉 =

m′−1∑
i=0

(4.c2i+2 − 2s2i+1 + s2i)4
i (4.30)
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In radix-4 recoding [?, ?, ?, ?, ?] the multiplier is recoded with s2m′+1 =

s2m′ = c0 = 0, then we have

〈B〉 + const =
m′∑
i=0

(2.s2i+1 + s2i + c2i)4
i (4.31)

Subtracting the additive constant const on both sides, and obtain the value of

〈B〉

〈B〉 + const −
m′−1∑
i=0

2.4i =

m′∑
i=0

(2.(s2i+1 − 1) + s2i + c2i)4
i (4.32)

〈B〉 =

m′∑
i=0

(−2s2i+1 + s2i + c2i)4
i (4.33)

The set of triples (s2i+1, s2i, c2i) is a redundant Booth 2 digit representation of

〈B〉. The implementation of this partial compression is depicted in Figure 4.10.

In the radix-4 MAF [?], the const is introduced by replacing the third level

of 4:2CSA with 5:2CSA (the 4:2CSA requires two carries and sums of previous

level, by replacing this 4:2CSA with 5:2CSA we introduce another input which

is const). Performing CS–Booth-2 digit representation is a just wire crossing in

a adjacent CSA cells, it can be performed in the final 3:2CSA level. Figure 4.11

(a) depicts the CS–Booth-2 digit representation in a CSA for radix-4 multiplier.

Where Bsi, Bci are the intermediate sums and carries of B ′. We assumed a

3:2CSA consists of a combination of X-or’s, OR’s and AND gates, however it

can be built with NAND or NOR gates.

In the radix-8 multiplier [?], the constant is const =
∑m′−1

i=0 4.(8)i, it can be

introduced by replacing the fifth level of 3:2CSA with 4:2CSA (the 3:2CSA re-
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CS-Redundant Booth digit representation
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Figure 4.12: CS-Booth recoding

quires two sums and a carry of previous level, by replacing this 3:2CSA with

4:2CSA we introduce another input which is const). Performing CS–Booth-3

digit representation is a just wire crossing in an adjacent CSA cells, it can be per-

formed in the final sixth level of 3:2CSA. An extra radix-8 recoder is required at

the end of the CSA tree. Because of the need to recode in the pipe line stage of

PP’s summation. In the radix-8 multiplier, the recoder is coupled with 3M mul-

tiple generation which is another pipe line stage [?]. Figure 4.11 (b) and Figure

4.12 depicts the 3 bit addition and CS–radix-8 Booth recoding. The results of this

recoding can be directly applied to the multiplexer to select the multiplicands.

In the radix-4 multiplier, an extra radix-4 recoder [?] is not required because

the radix-4 recoder of the multiplier is placed in the same pipeline stage of PP’s

summation.

The multiplexers in Figures 4.11 (a)& (b) may not add additional delay in

cycle time because they can be selected before start time of the PP’s summation.

In the case of the radix-4 multiplier, it can be selected at the start of the first stage

and in the radix-8 multiplier it can be selected at the start of the second stage.

The work presented in [?] requires an additional hardware for 2 bit adder3, in

3The author proposed a 30 bit unfolded architecture for redundant reciprocation approximation.
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our design, as mentioned, this can be performed by just wire crossing in the CSA.

We suggest that you obtain more information on CS-Booth k digits from [?].

In [?, ?] other partial compressions of redundant number representation were

described. Most of these recoders require at least four logic levels. Each of the two

logic levels is a delay of mux & xor gate. From this point of view, the described

technique is simpler, faster and the hardware can be shared with the CSA tree.

4.5 Error Computation

An accuracy of n + 2 bits of the final estimate is required, in order to guarantee

exact rounding. The result before rounding Q′
1 must satisfy:

−2−n−2 < [Q′
1] < 2−n−2 (4.34)

Rounding is performed by adding 2−n−2 to Q′
1 and then truncating the result to

a value to n+1 bits to form Q′′
1 , which has an error of strictly ±0.5ulp. Therefore,

we must guarantee |εq′ | < 2−55, since the range of output result 0.5 ≤ Q′
1 < 2 and

1 ≤ Q′
1 < 2 for division and square root. Error computation for the division and

square root operation using eqn.4.1& eqn.4.3 can be set as :

|εp′1| = X − (X.Y + εX.Y ) × (1/Y30 + |ε1/Y30
|) + εpt′ (4.35)

|εq′1| = (X + |εp′1|) × (1/Y30 + |ε1/Y30 |) + εqt′ (4.36)

|εp′1| = Y − (Y 2 + εY 2) × (1/
√

Y30 + |ε1/
√

Y30
|)2 + εpt′ (4.37)

|εq′1| = (Y + |εp′1 |/2) × (1/
√

Y30 + |ε1/
√

Y30
|) + εqt′ (4.38)

error accumulates from the initial approximation (Minimax method and GLD al-

gorithm) and error due to finite word length of the intermediate result at b =
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59, εpt′ , εX.Y , εY 2 and εqt′ ≤ 2−59. The target precision can be met keeping

|ε1/Y30 |, |ε1/
√

Y30
| < 2−29 (truncating at position 2−30), solving the above equa-

tions results

|εq′1| < −X.Y ε1/Y30

Y30

− X.Y ε2
1/Y30

+
εpt′

Y30

− εX.Y

Y 2
30

− 2εX.Y ε1/Y30

Y30

+ εpt′ |ε1/Y30
|

− εX.Y ε2
1/Y30

+ εqt′ < 2−55

(4.39)

|εq′1| < 2−29 + 2−58 + 2−59 + 2−59 + 2−87 + 2−88 + 2−117 + 2−59 < 2−55

(4.40)

|εq′1| <
√

Y30Y30|ε1/
√

Y30
|/2 −

√
Y30Y ε2

1/
√

Y30
+ εpt′/2

√
Y30 − Y 2|ε3

1/
√

Y30
|/2 +

εpt′ |ε1/
√

Y30
|/2 + εqt′ < 2−55

(4.41)

|εq′1| < 2−30 + 2−58 + 2−60 + 2−88 + 2−89 + 2−59 < 2−55

(4.42)

These conservative bounds on εpt′, εX.Y , εY 2 and εqt′ can be met by employing

truncation in the multiplier, which carry out P ′
1 and Q′

1 at b = 59.

The result before rounding Q′
1 must satisfy eqn.4.34. Rounding can be per-

formed by computing a corresponding remainder. By observing the sign and

magnitude of remainder and the value of n+1, all IEEE rounding modes can be

implemented by selecting either Q′
1, Q

′
1 + 2−n or Q′

1 − 2−n. The action table for

correctly rounding Q′
1 is shown in Table 4.5 [?].

For directed rounding modes RP and RM, the action depends on the sign of

estimate: those entries that contain two operations such as pos/neg correspond to

the final result being positive or negative respectively. Most industrial multipliers

incorporate these modes.
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Guard Bit Remainder RN RP(+/-) RM(+/-) RZ
0 = 0 trunc trunc trunc trunc
0 - trunc trunc/dec dec/trunc dec
0 + trunc inc/trunc trunc/inc trunc
1 = 0 RNE inc/trunc trunc/inc trunc
1 - trunc inc/trunc trunc/inc trunc
1 + inc inc/trunc trunc/inc trunc

Table 4.5: Action table for rounding

4.6 Architecture and Performance

The architecture of the proposed method is, simply to introduce LUT’s and a

squaring unit during input operand multiplexing in a multiplier. We used the

IBM Power PC 603eTM microprocessor FPU [?, ?], which is targeted at portable

computers and an IBM G5 FPU [?, ?] that is targeted at scientific computing

applications. The proposed method requires minimum hardware requirements in

these multipliers.

The Power PC FPU uses radix-4 MAF operation. As discussed previously,

the latency of MAF operation is 4 cycles: the first two cycles for dual pass mul-

tiplication, in the third cycle, carry propagate addition, and the final fourth cycle

for normalization and rounding.

In a radix-4 multiplier [?], after obtaining the squared 30 bit initial approxima-

tion (1/
√

Y30)
2, Y 2 and S in the square root, we need to multiply i.e. an iteration

of −Y 2 × (1/
√

Y30)
2 is required to obtain double precision result (eqn.4.23). By

using Y 2 as a multiplicand and (1/
√

Y30)
2 as a multiplier, we generate 15 PP’s

(P ′′) in each pass and compressed in three levels of 4:2CSA, the S (algorithm

step 2 of section 4.3) can be subtracted during the PP’s summation of the second

pass (using the space of addition feed back of CS result i.e. replacing the last

4:2CSA of the first level with 5:2CSA see [?]) as shown in Figure 4.13 on the

right dashed arrow. And then, with this result (acting as a multiplier) multiplied

by 1/
√

Y30 (59 × 30 bit), we generate 30 PP’s of 1/
√

Y30-a dual pass multiplica-
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tion, thereafter the result in CS form is allowed to propagate the carry to obtain

Q′.

Similarly, for the division, after obtaining the 30 bit initial approximation

1/Y30 and X × Y product, an iteration of −X × Y × (1/Y30) is required to

obtain the double precision result. By using the result of X × Y as a multipli-

cand and 1/Y30 as a multiplier, we generate 15 PP’s and this is summed in three

levels of a 4:2CSA. The operand 2X can be introduced during this PP’s sum-

mation (using the space of addition feed back of CS result i.e. replacing one of

2:1 multiplexer for CS feed back with 3:1 multiplexer, which is in parallel with

the 5:1 multiplexer for multiplicand selection see [?]) as shown in Figure 4.12 on

the right dashed arrow. And then, with this result multiplied by 1/Y30 (59 × 30

bit), we generate 30 PP’s of 1/Y30-a dual pass multiplication and the result Q′ is

obtained in CS form.

Note that, 15 PP’s can be generated, by adding an extra 3 bit Booth recoder

to the 14 bit Booth recoder and adding an extra 5:1 multiplexer to the row of

5:1 multiplexers (for selecting the multiplicands) without additional delay. By

replacing 4:2CSA with 5:2CSA in the first level of last 4:2CSA the delay in

cycle time may be compensated. As this 5:2CSA is a late arriving signal, first

preference could be given to this 5:2CSA for summing in routing algorithm of

PP’s summation.

As mentioned, the results of (1/
√

Y15)
2 and 1/Y15, (1/

√
Y30)

2 and 1/Y30,

3 − (1/
√

Y15)
2Y30 and 2 − 1/Y15Y30, S + P ′′/2, 2X + P ′′ and Q′ (for division)

are obtained in CS form to enhance the performance of the division and square

root, to use as a multipliers. The results of these operations are represented in

Booth digit representation by just wire crossing in the final level of 3:2CSA (see

Figure 4.10& 4.11 (a) followed by eqn’s. 4.25-4.33). To use these operands as a

CS multipliers, one has to replace third level of 4:2CSA with 5:2CSA to intro-

duce the const =
∑m′−1

i=0 2.4i. The third level of 4:2CSA requires two sums and

carries from the previous level, by replacing 4:2CSA with 5:2CSA we introduce

another input which is const (not shown in the Figure 4.13).
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Figure 4.13: Proposed architecture

Performance: The square root performance shown in Figure 4.14.

� In the first two cycles, generating a 15 bit minimax approxima-

tion, a single pass multiplication with carry propagate addition

is obtained.

� During two to five cycles Y 2, a dual pass multiplication is per-

formed.

� Four to seven cycles for the generation of 1/
√

Y30 approximation

through GLD algorithm (eqn.4.16). During four and five cycles

some instructions of 1/
√

Y30 can be performed because MAF [?]

has a throughput of 1.
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Figure 4.14: Performance in the MAF multiplier

� Eight to ten cycles to obtain partial part of Q′ (eqn.4.24). Note

the nine and the ten cycles for dual pass multiplication to obtain

S + P ′′/2 in CS–Booth digit form. The PP’s summation of

these cycles assimilates with added Y + Y/2 (S), which was

performed in the eighth cycle (as mentioned, the MAF has a

throughput of 1). The S +P ′′/2 operation acts as a multiplier in

the next cycles.

� Thereafter, eleven to thirteen cycles for Q′ acting 1/
√

Y30 as a mul-

tiplicand and the final, fourteen to seventeen cycles for round-

ing. This can be performed by computing a remainder: rem =

Y − Q′2.

� Thus the square root is performed in 17 cycles.

Similarly, for the division, use the timing diagram shown in Figure 4.14. It

can be expected to perform in 12 cycles.

In the radix-8 multiplier [?, ?], similar architecture and performance can be

obtained with a three stage pipeline: in the first stage booth recoding and 3M

multiple generation, in the second stage PP’s summation and in the third stage

carry propagate addition. There is a selection signal built into the custom designed
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Figure 4.15: Performance in the radix-8 multiplier

data flow for the speed. This selection signal selects two possible normalization

results in the third cycle.

The square root operation requires 59(Y 2) × 60(1/
√

Y30)
2 bit multiplication

and 20 PP’s are accumulated out of 19 PP’s (64 × 56 bit), all six levels of

3:2 CSA’s are required to compress the result into sum and carry. An extra

3:2CSA addition i.e. another cycle is required to subtract a compressed result

P ′′/2 to S, this is because the (1/
√

Y30)
2 operation accumulates all levels of

3:2CSA’s. In the final sixth level, CS–Booth-3 representation is performed as

shown in Figure 4.11 (b). Thereafter it is recoded using an extra radix-8 recoder

(see Figure 4.12). The performance of the square root is similar to that of the

radix-4 multiplier as shown in Figure 4.15.

Similarly, for the division, with the 59(X.Y ) × 30(1/Y30) bit multiplication,

10 PP’s were accumulated out of 19 PP’s, the operand 2X can be introduced in

a 3:2CSA tree. It requires five levels of 3:2 CSA’s out of six and plus 1 level for

CS-Booth digit representation along with radix-8 recoder. Multiplying this result

with the 1/Y30 results in Q′. The division can be expected in 11 cycles, a cycle

is reduced because it is a three stage pipeline. Figure 4.15 depicts the division

performance in the radix-8 multiplier.
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To enhance the performance of the division and square root in the radix-8

multiplier, we use the CS result of the intermediate results4 as a multipliers. To

use these operands as a multipliers, one has to replace fifth level of 3:2CSA with

4:2CSA. The 3:2CSA requires two sums and a carry from the previous level,

by replacing 3:2CSA with 4:2CSA we introduce another input which is const =∑m′−1
i=0 4.(8)i.

Note that, replacing 4:2CSA with 5:2CSA in the MAF and replacing 3:2CSA with

4:2CSA in the radix-8 multiplier, can introduce delay in the cycle time. How-

ever, as the technology is scaling down, in the future, the delay of 5:2CSA and

4:2CSA may be equivalent to that of 3:2CSA.

41/Y15 and (1/
√

Y15)2, 1/Y30 and (1/
√

Y30)2, 2−1/Y15Y30 and 3−(1/
√

Y15)2Y30, 2X+P ′′

and S + P ′′/2, and Q′ (for division).

Conventional al-
gorithms

Division Square root

Newton-Raphson
Method [?]

1/Y60 = (1/Y30) × (2 −
Y × 1/Y30)

2Q = 1/Y30 × (3 − Y ×
(1/

√
Y30)

2)
Q = X × 1/Y60 Q = Y × 2(1/

√
Y60)

GLD algorithm
[?]

Gd = X × 1/Y30 Gs = Y × 1/
√

Y30

Vd = 2 − (1/Y30) × Y Vs = 3 − (1/
√

Y30)
2 × Y

Q = Gd × Vd 2Q = Gs × Vs

Cyrix algorithm
[?]

P ′
i = P − P × Y ′ P ′

i = P − qi × (2Q + qi)

Q′
i = Q + qi Q′

i = Q + qi

SRT method [?,
?]

W [i+1] = rW [i]−Y qi+1,
where W [0] = X , r = 230

W [i + 1] = rW [i] − 2q[i]qi+1 +
q2
i+1r

−(i+1), where W [0] = Y ,
r = 230

qi+1 = SEL(W [i], Y ) qi+1 = SEL(W [i], Y )

Q =
∑N

i=1 qir
−i, where

N = �n/b�
Q =

∑N
i=1 qir

−i, where N =
�n/b�

Proposed Method P ′′ = −Y × X × (1/Y30) P ′′ = −Y 2 × (1/
√

Y30)
2

Q′ = (2X+P ′′)×(1/Y30) Q′ = (Y + Y/2 + P ′′/2) ×
(1/

√
Y30)

Table 4.6: Comparison of Proposed method with Conventional algorithms
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The advantage of using the modified AQA method is explained using Table

4.6. In the N-R method, it requires the whole 53 bits accuracy of the recipro-

cal/inverse square root of the divisor and this is then multiplied by the dividend to

obtain double precision quotients, even though the 30 bits initial approximation

was used. In the proposed method it requires only 30 bits of initial approximation

to obtain double precision quotients and, as mentioned, the first 28 bits and the

last 28 bits of the quotient are generated in parallel and the result is added during

the multiplication. In the quadratic convergence algorithm, the partial remainder

is not available, unlike the AQA method.

The modified AQA method and GLD algorithm [?] are similar, if the same

30 bit initial approximation were used. But the method of computation in the

hardware differs. In the proposed method, intermediate results are computed in

CS form and used as a multipliers in the next computation, furthermore, over-

lapping some computations (see Figure 4.14&4.15)– offers more parallelism. We

use CS multiplier and overlapping to amplify the performance for these func-

tions. These features are unlike in the GLD algorithm [?]. The timing diagram

of GLD algorithm is shown in Figure 4.16 for the radix-8 multiplier for compari-

son with the modified AQA method timing diagram in Figure 4.15. In the radix-4

multiplier the latency of the GLD algorithm is three cycles less, this is because the

Booth recoding of the multiplier is in the same pipeline stage of the PP’s summa-

tion. In the radix-8 multiplier, the Booth recoding is in another pipeline stage and

is usually coupled with 3M multiple generation. On average, there is more than

25% improvement in performance for both the division and the square root, with

respect to the GLD algorithm [?].

In the case of the Cyrix algorithm, it would require two iterations to obtain

the double precision results, if the same 30 bit initial approximation was used. In

the proposed method, it requires an iteration after the 30 bit initial approximation.

The number of dependent operations in the Cyrix algorithm are: an addition (for

square root), multiplication, subtraction and an addition. The first 28 bits and the

last 28 bits of the quotient are generated sequentially. In the proposed method, a

multiplication, an addition and a multiplication dependent operation are required.
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Figure 4.16: Performance of GLD algorithm [?] using 30 bit initial approximation

Furthermore, the proposed method can be operated in fixed point mode unlike

the Cyrix algorithm. As mentioned, the first 28 bits and the last 28 bits of the

quotient are generated in parallel and the result is added during the multiplication

(eqn.4.1-4.5).

The modified AQA method with respect to the SRT method, although large

numbers of bits are retired in the iteration, the complexity of the circuit is less

than that of the SRT method. If the SRT method is shared with a multiplier and

a 30 bit initial approximation is used. The performance gain of the SRT method

for double precision computation may not be substantial even though the high

accuracy of the initial approximations (30 bit) was used.

4.7 Comparisons

Most conventional processors share the hardware for the division and square root

with the multiplier. The extra hardware required for these functions are initial

approximation LUT’s of the reciprocal and inverse square root. Therefore, we

compare the proposed method with the state-of-the-art processor LUT’s in Table

4.7 for double precision computation.
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State-of-the-art Processors Extra hardware for
division and square
root (fa)

Latency/Throughput
Division and Square
root

Intel Itanium[?] Implemented in soft-
ware

30/–, 45/–

IBM G5 FPU[?, ?] ≈ 180 27-30/27-30, 37-46/37-
46

AMD K-7 [?] ≈ 2473 16/13, 27/24
SunUltraSPARC IV [?, ?] ≈ 127 20, 29/–
IBM Power PC 603eTM [?] — 33/–, Not Supported
Proposed Method (603eTM [?]
)

≈ 60 12/10, 17/15

Proposed Method (G5
FPU [?, ?])

≈ 72 11/9, 17/15

Table 4.7: Comparison of Proposed method with Conventional Processors

The hardware estimates are shown in terms of full adders (fa). A standard

1-bit full-adder has a hardware complexity equivalent to 9 nand/nor gates.

Look-up-tables: Estimates for the look-up table can be found in [?]. We as-

sumed a pessimistic model. Our model assumes 40fa/Kbit rate for tables ad-

dressed up to 6 bits, a 35fa/Kbit rate for 7-11 input bit tables, 30fa/Kbit rate for

12-13 input bit tables and a 25fa/Kbit rate for 14-15 input bit tables.

The estimated values presented here are reliable approximations, the actual

speed-up and the area ratios depend on the technology employed and its imple-

mentation.

The G5 FPU uses about 8 bits in and 10 bits out of look-up (90 fa), AMD

11 bits in and 16+7 out, which is about 1649fa and SunUltra 8 bits in and 9 bits

out of look-up which is about 81fa for inverse square root approximation. For the

reciprocal, LUT’s sizes are: 90 fa in the G5FPU, AMD uses 10 bits in and 16+7

out which is about 824fa and in SunUltra it is 7 bits in and 10 bits out which is

about 46fa.

The proposed method requires: 0.99Kbits for both reciprocal (24×(15+8+7))
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and inverse square root (2 × 23 × (15 + 10 + 8)) LUT’s, which is about 40fa and

another 20fa for 8 bit squaring unit. This means that the proposed method can fit

into a radix-4 MAF [?] with extra hardware of about 60fa.

In the case of a radix-8 multiplier [?], another extra 60 bit Booth recoder is

required in the second stage, which is about 12fa. This is because it is neces-

sary to perform redundant recoding in the PP’s summation stage to increase the

performance of these operations.

Note that we do not included the area estimates of extra 3 bit Booth recoder

and 5:1 multiplexer in the MAF . This is because in order to obtain exact IEEE

rounded result for both division and square root, multipliers could support 60×60

bit multiplication as found in the Sun Ultra SPARC IV processor [?]. Supporting

60 × 60 bit multiplication (both in a radix-4 and in a radix-8 multiplier) does not

increase the cycle time nor extra CSA’s are required.

Comparison shows that, on average, approximately more than 50% improve-

ment in the performance and more than 70% of the hardware can be saved with

respect to the conventional processor LUT’s. Note that, in a Power PC, by utilizing

most of the existing hardware, no extra hardware for division is required, because

it uses SRT algorithm with two bits retired per iteration. In a radix-8 multiplier

of the G5 architecture, there is an increase in performance, due to the enhanced

initial approximation with half the table size of the G5 initial approximation.

In the initial 15 bit approximation, one could eliminate the squaring unit and

perform two dependent multiplications (C2.Y2).Y2 in CSA tree, but there is about

2τ increase in the cycle time due to these dependent multiplications. As tech-

nology scales down and when the market targeting of the processor architect is

acceptable, these two dependent multiplications could perform in state-of-the-art

multipliers.
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4.8 Conclusions

We discussed the computation of the division and square root function using an

accurate quotient approximation method. The advantages of the proposed method

are (see Table 4.6): there may not be an increase in the cycle time, though large

numbers of bits are retired in the iteration. This is unlike the digit recurrence

method, which increases the cycle time with respect to the radix. Unlike the

Newton-Raphson method, it requires only the 30 bit initial approximation to ob-

tain the final quotient. The Cyrix algorithm requires two iterations to obtain the

double precision results and the first 28 bits and the last 28 bits of the quotient

are generated sequentially. Three dependent operations are required for the di-

vision and four dependent operations for the square root. The proposed method

requires an iteration to obtain the double results and three dependent operations

for both division and square root. The first 28 bits and the last 28 bits of the

quotient generated in parallel and added during multiplication. It is similar to

the GLD algorithm, if the 30 bit initial approximation is used, but the method

of computation in the hardware is different. We perform intermediate results in

CS form and used as a multipliers and, overlapping of some computations to en-

hance the performance. In the GLD algorithm these features are imperfect (see

Figure 4.15&4.16)5. These features lead to a significant boost in the performance

with respect to the GLD algorithm.

The look-up table size for the initial approximation is less than half the table

size of conventional processors. Booth recoding can be performed in the same

cycle of PP’s summation and overlapping some computation of the partial re-

mainder (see Figure 4.14&4.15) which increases performance.

We set-out a division and square root algorithm with better silicon efficiency

than the conventional methods as shown in Table. 4.7. The proposed method can

fit into a radix-4 multiplier with extra hardware of about 60fa and about 72fa for

a radix-8 multiplier, which is about more than a 70% decrease in the silicon area,

5In the radix-4 multiplier the latency of the GLD algorithm is three cycle less. this is due to
the fact that the Booth recoding is in the same pipeline stage of PP’s summation.
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with respect to state-of-the-art processor LUT’s.

There is a significant improvement in performance with respect to the state-of-

the-art processors. This is because we used high accuracy of initial approximation

(30 bit) and intermediate results are computed in carry save form. Firstly we ob-

tain a 15 bit initial approximation from the Minimax method, which is silicon

efficient and may not add critical path delay to industrial multipliers. We then

interface this approximation with a GLD algorithm to obtain a 30 bit initial ap-

proximation. However, the use of state-of-the-art efficient initial approximation

algorithms in terms of speed and area is encouraged. An iteration is required after

the 30 bit initial approximation to obtain double precision results.

It offers the best trade-off between performance and area, making it suitable

for both the mobile and scientific computing market. In both the mobile comput-

ing and high performance computing market area is crucial. Moreover, the speed

is the key in the high computing market. Most architects look for division and

square root algorithms that can run graphics applications, scientific computing ap-

plications, signal processing applications, audio and video streaming applications,

charting etc. It is expected that, with the proposed method, processor architects

will have an option for their next generation processors.



Conclusions

Summary

We discussed the division and square root computation for the single precision

and double precision computation. Basics of various floating point precisions,

rounding modes, special values and exceptions are explained in Chapter 1.

The use of division and square root functions depends on the target market.

For example, in mobile computing markets such as PDA, UPC, tablet PC , where

it can run internet applications, day to day accounting, snapshot viewing, presen-

tations etc. In these markets, the use of division and square root is less intense and

so single precision can suffice. Also, in these markets the processor architects look

for low cost and low complexity, but with acceptable performance. The modified

N-R reciprocation/division algorithm could be suitable for these markets.

The square root function without a LUT, by modifying the N-R algorithm,

is proposed. However, this adversely affects performance, because it has to be

squared in each iteration and each iteration requires at least three cycles. Some-

what more than 50 cycles are required to compute the square root. More research

on the “without a LUT for modified N-R square root algorithm” would be very

welcome.

These functions are frequent in 3D graphics, scientific computing applica-

tions, mathematical computing applications etc. Double precision computation

is required in many applications such as the previously mentioned scientific and

mathematical computing applications. In these markets, the processor architects
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look for higher performance with acceptable levels of cost and complexity. The

modified AQA method can be applied for these markets. Furthermore, the modi-

fied AQA method can be used in the mobile computing market for future proces-

sors.

To obtain a higher performance for these functions, the initial approximation

in the form of LUT or LUT with linear/quadratic approximation algorithms can

be used to reduce the area required for these functions. The initial approxima-

tions are usually coupled with the N-R method, the GLD algorithm and the Digit

recurrence algorithm, also called the SRT method. A discussion of the initial

approximation algorithms and the N-R method, the GLD algorithm and the Digit

recurrence algorithm are detailed in Chapter 2.

These functions are slower because they require sequences of addition or sub-

traction, multiplication and multiply-add operations, blocking the FPU through-

out the computation process. Some processors implemented these functions in the

software, such as in Itanium processors and others implemented them in the hard-

ware, such as in IBM and AMD processors. Implementing these functions in the

software provides a high degree of parallelism and does not block the FPU dur-

ing the computation, but performance is lower. By implementing these functions

in the hardware, performance can be enhanced, but this is complex and the cost is

higher. Most designers are willing to sacrifice the speed in favor of low cost and

low complexity. Performance and complexity depends on the precision and the

precision is dependent on the target market or on market demands.

We proposed the modified AQA method, which offers significant improve-

ments in performance, with better silicon efficiency than the conventional proces-

sors for double precision computation. We also proposed the average performance

modified N-R reciprocation algorithm, which offers the best silicon efficiency

when compared to the conventional processors used for single precision compu-

tation.

In Chapter 3, a single precision computation of a modified N-R reciprocation

algorithm without a LUT is proposed, which is the best silicon efficient algorithm.
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It is a variable latency algorithm and only requires a maximum of 22 iterations

with a linear convergence. A variable latency algorithm is useful in a self-timed

divider, because the processing capability depends on the task at hand. In this

way, it can reduce power consumption without sacrificing performance.

To evaluate the proposed method, we used a radix-4 and radix-8 multiplier. In

a radix-8 multiplier, there may be a delay of an OR gate in cycle time, due to the

extra radix-8 Booth recoder. In a radix-4 multiplier, it is 1τ slower in cycle time,

due to another level of 3:2CSA for CS–Booth-2 digit representation.

We compared the proposed method with the state-of-the-art processors in Ta-

ble 3.4. The proposed method can fit into a radix-4 multiplier with extra hardware

of about 31fa and of about 6fa for a radix-8 multiplier, which is less than a 1.5%

increase in area with respect to industrial multipliers.

There is about 16% improvement in performance with respect to IBM and

Itanium processors, but a decrease of 4% with respect to IBM 603eTM and AMD

processors. This is due to the fact that 1.09 bits are retired per iteration; it is shared

with the multiplier and a large LUT is not available. Therefore, the performance is

about the same as the average performance of the state-of-the-art processors. The

significance of the proposed N-R algorithm is discussed in the next section.

In Chapter 4, we proposed division and square root functions by modifying the

AQA method, using a LUT for high performance computing applications. This

requires iteration after the 30 bit initial approximation. The proposed modified

AQA method offers some attractive strategies additional to the conventional N-R,

GLD, SRT and Cyrix algorithms, which are discussed in the following section.

To evaluate the proposed modified AQA method, we used a radix-4 multi-

plier of IBM 603eTM FPU , which is targeted at the mobile computing market

and a radix-8 multiplier of IBM G5 FPU it targeted at high performance applica-

tions. We then compared it with the conventional processors for double precision

computation in Table 4.7. Comparison shows that better silicon efficiency with

significant improvement in performance can be expected.

It can be fitted into a radix-4 multiplier with extra hardware of about 60fa and



110 Conclusions

with about 72fa in a radix-8 multiplier. This, on average, is somewhat more than

a 70% decrease in the silicon area, with respect to the state-of-the-art processor

LUT’s. Performance is significantly better, because we used high seed, 30 bits,

and the intermediate results are computed in CS form, i.e. the intermediate results

are converted to CS to Booth digit representation for use as multipliers. This is

wire crossing in our design.

Contributions

The advantages/contributions of the proposed modified N-R reciprocation algo-

rithm are that it does not require a look-up-table and that performance is about the

same as the average performance of the state-of-the-art processors. The average

performance can be maintained by computing intermediate results in CS form.

The initial approximation is a two’s complement of the divisor which can be per-

formed during partial products summation. Each of the iterations is a cycle, unlike

the pairs of cycles found in the state-of-the-art processors. The multiples of the

divisor are constant throughout each of the iterations. Therefore we generate them

only once, in the third cycle in the case of the radix-8 multiplier and in the second

cycle in the case of the radix-4 multiplier, i.e. in the second iteration. This leads

to a reduction of a cycle for each of the iterations. Moreover, the multiply-add

operation and Booth digit representation can be performed in the same cycle of

partial products summation. It is a variable latency algorithm and requires only

22 iterations. Variable latency algorithms are useful in speed independent designs

that provide power according to the task at hand. The eqn.3.10-eqn.3.13 could be

considered to be a multiplication in hardware terms.

In the N-R method, to obtain the reciprocation, the required operations are:

a multiplication and multiply add operation (see eqn.3.2-eqn.3.4) and each of the

iterations require two cycles. In the N-R method, the multiply-add operation re-

quires (eqn.3.4) the multiplicand S to be in the non-redundant form. It is possible

to use the multiplicand in the redundant form, but this doubles the data width.
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These features are different in the proposed method (eqn.3.10-eqn.3.13–could be

considered to be a multiplication in hardware terms).

It is possible to use the N-R method as a without LUT algorithm, as in the

proposed method, but performance is about the same. This is because each iter-

ation requires two multiplications i.e. about 6 cycles (we assumed 3 cycles for a

multiplication) and requires 4 iterations to obtain the single precision result.

With respect to the SRT method, the proposed method does not require a

quotient digit selection hardware to select the quotient digits which increases the

cycle time with respect to the radix.

The proposed modified N-R algorithm can also be extended to the square root

computation and it only requires a maximum of 22 iterations. But it does not

offer the average performance of the conventional processors. This is due to the

squaring of the quotient in each of the iterations. Each of the iterations requires at

least three cycles. Therefore, more than 50 cycles are needed to obtain the result.

Breakthrough research on this algorithm is substantial.

The advantages/contributions of the proposed AQA method are shown in Table

4.6.

• Unlike the N-R method, only the 30 bit initial approximation is required to

obtain the final quotient.

• With respect to the GLD algorithm the proposed method is similar if the

30 bit initial approximation was used, but the method of computation in the

hardware is different. We perform intermediate results in CS form used

them as multipliers and, furthermore, we use the overlapping of some com-

putations. These features increase performance and the comparisons made

can be seen in Figures 4.15 and 4.16.

• The cycle time might not be increased, although large numbers of bits are

retired in the iteration, unlike the digit recurrence method which increases

the cycle time with respect to the radix.
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• With respect to the Cyrix algorithm, the modified AQA requires an iteration

to obtain double precision results. It requires a multiplication, an addition

and a multiplication dependent operation. The first 28 bits and the last 28

bits of the quotient generated in parallel, is added during multiplication. To

obtain double precision results, the Cyrix algorithm requires two iterations

and an addition (in square root) and multiplication, subtraction and addition-

dependent operations are required. The first 28 bits and the last 28 bits of the

quotient are generated sequentially, if the same 30 bits initial approximation

is assumed. Furthermore, the proposed method can be operated in fixed

point mode, unlike the Cyrix algorithm.

• The look-up table size for the initial approximation is less than half the

table size of the conventional processors. Booth recoding can be performed

in the same cycle of partial products summation and overlapping some of

the computations of the partial remainder (see Figures 4.14 & 4.15) which

increases performance.

• To make the proposed method silicon efficient, we first obtain a 15 bit ini-

tial approximation using the Minimax method, which is silicon efficient and

may not add critical path delay to industrial multipliers. We then interface

this approximation with the GLD algorithm to obtain a 30 bit initial ap-

proximation. However, the use of novel initial approximation algorithms

that are efficient in terms of speed and area, is encouraged.

• An iteration is required after a 30 bit initial approximation to achieve double

precision results.

The modified AQA method can also be extended to the mobile computing

market, as it can support high performance applications for future processors.

The proposed modified AQA method can fit into industrial multipliers with extra

hardware of less than 70fa. The choice is up to the architects.



Future Work

Performing manual calculations is a part of human nature. Computers readily

support binary arithmetic. A recent processor, the IBM z900 series, is the only one

capable of performing decimal instructions in the hardware [?, ?]. However, its

decimal computation capability is limited to integer operands. Recently, decimal

arithmetic has become more attractive in the financial and commercial world such

as banking, tax calculation, currency conversion, insurance and accounting, etc.

The following facts may explain this interest:

• A survey of commercial databases [?] shows that more than 90% of numbers

are stored in decimal or integer form, while more than half of them are

represented in a purely decimal format.

• It is well understood that, when converting decimal and binary formats,

most fractional decimal numbers are approximately represented in binary

floating point representation and, therefore, may loose precision [?, ?]. This

means that using binary floating point numbers in financial applications,

where errors cannot be tolerated, does not necessarily mean that correct

results will be obtained.

• Regulations, such as the European Directorate General II [?], specify deci-

mal digits for currency calculations.

It is likely that in the near future, most high-end processors will perform dec-

imal operations in decimal floating point format using dedicated decimal floating

point units.
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In decimal arithmetic there are some complex functions such as sequential

multiplication, division and square root. The fundamental operations of division

and square root are based on multiplication. Computing partial products of the

multiplication and adding each newly computed product to the previous partial

product, cannot be accomplished in a reasonable time [?] without a fast circuit for

decimal addition. This can adversely affect speed if division and square root were

also taken into consideration. One method for computing partial products is by

taking advantage of carry free addition. The building of fast circuits for decimal

carry free addition may be a possibility. Designing the computation of division

and square root, based on fast addition and multiplication, is challenging.

It may be interesting to focus the Accurate Quotient Approximation method

on decimal arithmetic. The decimal divider and square root can demand a larger

area and, thus, may obtain a reasonable speed-up.

Achieving the highest speed in the smallest chip area is one of the most im-

portant goals. However, there may be some other areas for designers to consider.

Among these is the design of methods using low power consumption [?], moti-

vated by battery operated devices demanding intensive computation in portable

environments, and for the proposed use of divider and square root computations,

it might be interesting to study whether they can be redesigned for low power use,

with or without performance loss in small calculations.



Resumen en Español

En esta Tesis se analizan los algoritmos para el cálculo de la división y la raı́z

cuadrada para una representación punto flotante con simple y doble precisión y se

proponen varias implementaciones alternativas. Los aspectos básicos relaciona-

dos con la representación punto flotante, modos de redondeo, valores especiales y

excepciones, se resumen en el capı́tulo 1.

El uso que se hace de las funciones de división y raı́z cuadrada depende, en

gran medida, del mercado al que se dirige la implementación. Por ejemplo, en

mercados de computación móvil, tales como PDAs, tablet PC, dónde se requiere

la ejecución de aplicaciones de internet, visión de fotogramas, presentaciones,

etc., no se realiza un uso masivo de estas operaciones; por este motivo, una rep-

resentación de punto flotante con precisión simple es suficiente. Por otra parte,

en estos segmentos de mercado, se imponen procesadores con una arquitectura

de bajo coste y baja complejidad, pero con rendimiento aceptable. El algoritmo

Newton–Raphson (N–R) modificado para cálculo del recı́proco y división, que se

propone en esta memoria, puede ser adecuado para este mercado.

Otra de las implementaciones propuestas, raı́z cuadrada sin tabla de aproxi-

mación inicial (Look–Up Table, LUT) está basado una modificación del algoritmo

N–R. Sin embargo, su rendimiento es algo deficiente, porque cada iteración re-

quiere tres ciclos y son necesarias varias iteraciones. El número total de ciclos que

se necesitan para el cálculo de la raı́z cuadrada con este algoritmo es, aproximada-

mente, 50. Creemos que es necesario profundizar todavı́a más en este algoritmo

para logar una implementación eficiente.

115



116 Resumen en Español

Estas funciones son frecuentes en aplicaciones de computación gráfica 3D,

aplicaciones de cálculo cientı́fico, aplicaciones matemáticas, etc. La mayor parte

de estas aplicaciones necesitan utilizar una representación punto flotante de doble

precisión. En estos campos de aplicación, el procesador tiene una arquitectura de

alto rendimiento con niveles de complejidad y coste aceptables. Otro de los algo-

ritmos propuestos, el método AQA (Accurate Quotient Aproximation) puede ser

de utilidad. Además, este método podrı́a ser utilizado para procesadores futuros

orientados a aplicaciones móviles.

Para aumentar el rendimiento de estas implementaciones, la aproximación ini-

cial se obtiene mediante la LUT o la LUT combinada con algoritmos de aprox-

imación lineal o cuadrática para reducir el área necesaria. Esta aproximación

inicial está acoplada a las iteraciones del algoritmo N–R, el algoritmo de Gold-

schmidt (GLD) y los algoritmos de dı́gito recurrencia (DR). En el capı́tulo 2, se

discute de forma detallada la obtención de la aproximación inicial y los algoritmos

N–R, GLD y DR.

Estas funciones son lentas porque efectúan secuencias de sumas y restas, mul-

tiplicaciones y suma-multiplicación, bloqueando la unidad de punto flotante del

procesador (FPU) durante el cálculo. Algunos procesadores implementan estas

funciones en software, por ejemplo el Itanium, y otros en hardware, tales como

los procesadores de IBM y AMD. La implementación software proporciona un

alto grado de paralelismo y no bloquea la FPU, sin embargo su rendimiento es

bastante pobre. Las implementaciones hardware obtienen mejores rendimientos,

pero a costa de una complejidad y coste mayores. Muchos diseñadores están dis-

puestos a sacrificar la velocidad para obtener costes y complejidad menores. El

rendimiento y la complejidad dependen de la precisión, y la precisión depende a

su vez del mercado al que está dirigido el procesador y de los requerimientos de

este mercado.

En esta memoria se propone un método, el método AQA modificado, que

proporciona mejoras significativas en el rendimiento, con una mayor eficiencia en

términos de área de silicio que los procesadores convencionales utilizados para
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cálculos en precisión simple.

En el capı́tulo 3 se describe una modificación del algoritmo N–R sin LUT

para el cálculo del recı́proco, que es la implementación de mayor eficiencia en

términos de área. Es un algoritmo de latencia variable, con convergencia lineal

que requiere un máximo de 22 iteraciones. Un algoritmo de latencia variable es

útil en divisores auto-controlados, dónde la capacidad de procesamiento depende

de la aplicación. De esta forma, se puede reducir el consumo de potencia sin

sacrificar el rendimiento.

Para evaluar el método propuesto utilizamos multiplicadores de radix 4 y radix

8. El resultado de la evaluación muestra que puede haber un ligero incremento de

tiempo debido a los componentes extra que se necesitan, recodificador de Booth

radix 8 y recodificación entre representaciones redundantes.

Hemos comparado el método propuesto con implementaciones en procesadores

actuales (Tabla 3.4). El método propuesto puede ser implementado en un multpli-

cador radix 4 y un multiplicador radix 8 con incremento de área de un 1.5 % con

respecto al área del multiplicador integrado en el procesador.

Por otra parte, se observa un incremento del 16 % en el rendimiento con re-

specto al procesador Itanium y a los procesadores de IBM, pero una pérdida del

4% con respecto al IBM 603eTM y los procesadores de AMD. Esta pérdida es

debida a que se retiran 1,09 bits por iteracción y no hay disponible una LUT de

tamaño elevado. Por lo tanto, el rendimiento es parecido al rendimiento medio de

los procesadores actuales.

En el capı́tulo 4, se propone una modificación del método AQA para di-

visión y raı́z cuadrada, utilizando una LUT, para aplicaciones de cálculo de alto

rendimiento. Esta implementación ofrece algunas estrategias atractivas adicionales

a los algoritmos N–R convencional, GLD, DR y Cyrix, que se discuten más ade-

lante.

Para evaluar el algoritmo AQA modificado hemos utilizado el multiplicador

radix 4 de la FPU del IBM 603eTM , orientado a aplicaciones móviles, y el multi-

plicador radix 8 de la FPU del IBM G5, orientado a aplicaciones de alto rendimiento;
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en ambos casos se ha utilizado una representació de doble precisión (ver Tabla

4.7). La comparación muestra que se obtiene una mayor eficiencia en términos

de área y un mayor rendimiento. Se obtiene una reducción de área de un 70%

respecto a implementaciones tradicionales basadas en LUT.

Las principales contribuciones de las propuestas presentadas en la Tesis se

resumen a continuación.

Con respecto al algoritmo N–R modificado para el cálculo del recı́proco, pode-

mos destacar que no necesita tablas para la aproximación inicial y que el rendimiento

se mantiene similar al obtenido con los procesadores actuales, debido a que se

están calculando los resultados intermedios en representación redudante. La aprox-

imación inicial es el complemento a dos del divisor, que puede obtenerse en par-

alelo con la suma de los productos parciales. Cada iteración es un ciclo, a difer-

encia de los dos ciclos por iteración de los procesadores actuales. Los múltiplos

del divisor se mantienen constantes durante la iteración por lo tanto, es necesario

generarlos solamente una vez. Además, la operación multiplicación–suma y la re-

codificación de Booth pueden ser realizadas en el mismo ciclo que la suma de los

productos parciales. El resultado es un algoritmo de latencia variable que require

sólo 22 iteraciones.

Este método puede ser extendido al cálculo de la raı́z cuadrada y sólo necesita

22 iteraciones. Pero no mejora el rendimiento medio de los procesadores conven-

cionales debido a que en cada iteración hay que cálcular el cuadrado del cociente.

Cada iteración precisa tres ciclos por lo tanto, son necesarios más de 50 ciclos

para obtener el resultado final.

Las principales contribuciones y ventajas del método AQA modificado son las

siguientes. En comparación con el método N–R, solamente se necesita la aprox-

imación inicial de 30 bits para obtener el cociente. Con respecto al algoritmo

GLD, la metodologı́a es parecida, pero la organización del hardware es diferente.

Los resultados intermedios en representación redundante se utilizan como multi-

plicadores y se solapan diversas operaciones. Estas caracterı́sticas incrementan el

rendimiento. La duración del ciclo no aumenta aunque el número de bits que se
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retiran en cada iteración es elevado. Esto no ocurre en los algoritmo DR, en los

que la duración del ciclo aumenta con el radix.

Con respecto al algoritmo Cyrix, el algoritmo AQA modificado necesita una

iteración para obtener el resultado en doble precisión. Los 28 bits más signi-

ficativos y los 28 bits menos significativos del cociente se generan en paralelo

y se suman durante la multiplicación. Para obtener doble precisión con el algo-

ritmo Cyrix se necesitan dos iteraciones. Los 28 bits más significativos y los 28

bits menos significativos del cociente se generan de forma secuencial. Por otra

parte, el algoritmo propuesto puede adaptarse a operar con operandos en punto

fijo, mientras que el algoritmo Cyrix no es posible adaptarlo.

El tamaño de la LUT para la aproximación inicial es, aproximadamente, la

mitad que el tamaño de la LUT en los procesadores convencionales. La recod-

ificación de Booth puede llevarse a cabo en el mismo ciclo que la suma de los

productos parciales y solapandose con alguna de las operaciones necesarias para

la obtención del resto, lo cual aumenta el rendimiento.

El algoritmo AQA modificado puede ser extendido también al mercado de

la computación móvil y al de aplicaciones de alto rendimiento de procesadores

futuros. Puede ser incorporado a multiplicadores industriales con poco hardware

extra.
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