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Preface

Nowadays the numerical methods have a fundamental role as a tool to reduce the design
time and developed costs of new products in fields such as Aerospace, Mechanic, Naval
Engineering, etc. From this point of view, sometimes the quick evolution of computers
is not enough in all the cases to solve the real-life problems of engineering efficiently and
in a practical time. Hence the computational capability of actual computers has to be
completed with efficient and renewed numerical methods.

One of the problems which has become more relevant from a social point of view is the
reduction of acoustic pollution produced by cars, planes, air-conditioned systems, etc., as
it is reflected in national and European laws, which are more restrictive in the last years.
In this context, it arises the necessity to solve more complex acoustic propagation problems
which cannot be tackled with by numerical techniques based on classical methods.

Obviously, prototype essays are fundamental to asses the feasibility of the proposed
technologies, nevertheless the high cost of prototype production makes necessary that this
kind of experiments has to be done in an advanced phase of design, with a product close
to the final one. These two factors are the reasons why computational acoustics becomes a
scientific field of great importance nowadays and numerical simulation is a relevant tool to
do analysis of products and to study innovative systems with comfortable acoustic properties
with competitive cost and saving developing time.

The sophistication of the acoustic materials related with the real-life problems in the
last decades have caused that the mathematical models used to solve acoustic propagation
problems have been enriched from a mathematical point of view, and consequently they
require the use of new advanced computational and numerical techniques.

Among these new models, we focus in this thesis on those derived from the porous
materials and, from a computational point of view, on the Perfectly Matched Layer (PML)
technique, which allows solving numerically acoustic propagation problems in unbounded
domains.

In any case, the complexity of the acoustic models and the geometrical configuration
of the problems require their resolution to be done by numerical methods as, for instance,
the finite element methods. The study presented through this thesis is in the context
of the frequency domain, i.e., under the assumption of time-harmonic dependency of the
time variable of the acoustic fields. In fact, our attention is focused in acoustic propagation
problems in the low range of frequencies, where the discretization by finite element methods
is suitable and non excessively expensive from a numerical point of view.

v



vi Preface

In the present dissertation thesis, we distinguish three parts well defined and different
but joined by a common topic: the study of acoustic propagation problems in bounded or
unbounded domains which involves dissipative material. In some cases the main topic is
the acoustic behavior of the porous material, but in other cases, the aim of our study is
the use of dissipative materials as a numerical tool to deal with other problems, such as
the truncation of unbounded computational domains. So, in the first part of this thesis,
we focus our attention on the computation of the resonance frequencies and the frequency
response of the porous material coupled with an acoustic fluid in bounded cavities. Then,
the second part is devoted to the mathematical and numerical analysis of the PML tech-
nique, which can be understood as a special case of dissipative medium. Finally, the last
part of this work shows some computational applications which involve porous media and
the PML technique, to truncate the unbounded domain where the acoustic propagation
problems are stated. In what follows, we describe every part and chapter in more detail.

The first part Porous materials is devoted to the study of the time-harmonic acoustic
propagation in porous materials. These kind of acoustic materials are widely used in several
noise control applications and they are known for their ability to dissipate acoustic waves
propagating along them. From an acoustic point of view, porous materials have relevant
advantages as compared to other kind of materials, since they are light and absorbent at
the same time, two characteristics which become fundamental in real-life applications.

In this first part we have two main goals. First, to revise the porous models attending to
the physical properties of the materials (if they have rigid or elastic solid part), remarking
the difference between the classical models and those more recent and derived by using
homogenization techniques. Secondly, the numerical resolution of some of these models,
proposing numerical tools which allow us to compute the resonance frequencies and the
frequency response of acoustic systems that involve porous materials.

The first part is organized as follows:

• Chapter 1. Porous models. Different porous media models are considered
through this chapter. The main difference between the models is the assumption done
about the solid skeleton. First, the Darcy’s like model and the Allard-Champoux mod-
els are described as the simplest and widest used models for rigid porous media. Then,
an extensive revision of the porous models with elastic solid part is done. First, the
classical Biot’s model is presented. Secondly, a collection of models, obtained by ho-
mogenization techniques, are presented. More precisely, we consider different models
for open pores (connected fluid part) or closed pores (isolated fluid part) geometries,
and dissipative or non-dissipative materials. In these last cases, a brief outline of
the homogenization technique is presented and the cell problems, which define the
coefficients of the macroscopic equations, are also stated.

• Chapter 2. Finite element solution of acoustic propagation in rigid porous
media. This chapter deals with the acoustical behavior of a rigid porous material.
First, the time-harmonic acoustic propagation problem is stated, taking into account
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the Darcy’s like model and the Allard-Champoux model. Both models are writ-
ten in terms of the displacement field. For the Darcy’s like model, the overdamped
eigenvalues (pure complex resonance frequencies) are studied analytically in a coupled
problem fluid/porous medium in a rigid rectangular cavity. Moreover, a finite element
method to compute the response to a harmonic excitation and also the free vibrations
of a three-dimensional finite multilayer system, consisting of a free fluid and a rigid
porous material, are considered. The finite element used is the lowest order face ele-
ment introduced by Raviart and Thomas, that eliminates the spurious or circulation
modes with no physical meaning. With this finite element method we compute the
response curve for the coupled system and also its complex eigenfrequencies. It is
remarkable that some of these eigenfrequencies have a small imaginary part but there
are also overdamped modes.

Part of the results presented in this chapter are contained in [27].

• Chapter 3. Finite element solution of new displacement/pressure poroe-
lastic models in acoustics. This chapter deals with the acoustical behavior of
porous materials having an elastic solid frame. First, we focus our attention on non-
dissipative poroelastic materials with open pores, whose motion is modelled only by
using the displacement and pressure field. Assuming periodic structure, we com-
pute the coefficients in the model by using homogenization techniques, which require
to solve boundary-value problems in the elementary cell. Secondly, we propose a
finite element method to compute the response to a harmonic excitation of a three-
dimensional enclosure containing a free fluid and a poroelastic material.

As in the previous chapter, the finite element used to discretize the fluid displacement
is the lowest order Raviart-Thomas face element that eliminates the spurious modes,
whereas, for the displacements in the porous medium, the “MINI element” is used to
achieve the stability of the method.

Part of the results presented in this chapter are contained in [28].

The second part Perfectly Matched Layers is devoted to introduce the PML
technique. First we introduce the partial differential equations which define its behavior, as
it was stated by Berenger in [22], by using the artificial trick so-named “splitting” technique.
Then a physical interpretation for the PML technique is done, understood as a dissipative
medium which does not produce spurious reflections if it is coupled with an acoustic fluid.
In fact, the PML technique is the numerical tool that will be used through all this work
to truncate the computational domains of scattering problems stated in an unbounded
medium, without perturbing too much the solution of the original problem.

However, the study of the PML is not reduced to a direct implementation of this tech-
nique. Through this part of the thesis, we propose a modification of the PML, which
optimizes the numerical results obtained in the discrete problems. More precisely, until
now the statement of the PML equations were based on a bounded absorbing function,
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which recovers a good accuracy from a theoretical point of view, but it presents some nu-
merical drawbacks in the implementation of the discretized problem. As a way of solving
these numerical problems, we propose a modified PML with a non integrable absorbing
function, and study this alternative from both numerical and theoretical points of view.

The second part is organized as follows:

• Chapter 4: A non reflecting porous material: the Perfectly Matched Lay-
ers. This chapter is devoted to introduce the PML technique in the two-dimensional
case using Cartesian coordinates. First, in the time domain, we consider the linear
wave equation and then we modify it to obtain the PML equation by including some
dissipative terms associated to the pressure and velocity fields. Besides, a physical
interpretation is given by comparison with rigid porous materials and materials with
memory.

A preliminary analysis by using the fundamental solution of the Helmholtz problem is
done to illustrate the advantages of using a non integrable absorbing function instead
of a classical choice, as a quadratic or constant functions. With this purpose we
compare the classical solution when a PML of unbounded thickness and the PML
with a non integrable absorbing function are used. To complete the introduction to
the PML technique, we perform an analysis in the context of plane waves with oblique
incidence, showing the best accuracy of the PML when a non integrable absorbing
function is used.

• Chapter 5: An optimal PML in Cartesian coordinates. Following the ideas
presented for the fundamental solution of the Helmholtz problem in the previous
chapter, we introduce an optimal bounded Perfectly Matched Layer (PML) technique,
stated in Cartesian coordinates for the two-dimensional case, by choosing a particular
absorbing function with unbounded integral. With this choice, as we have seen in the
plane wave analysis, the spurious reflections are avoided, even though the thickness of
the layer is finite. Different choices for the singular absorbing function are analyzed.
Finally, we show that such choice is easy to implement in a finite element method
and overcomes the dependency of parameters for the discrete problem. Finally, its
efficiency and accuracy are illustrated with some numerical tests.

Part of the results presented in this chapter are contained in [30].

• Chapter 6: An exact bounded PML in radial coordinates. The aim of this
chapter is to study the uniqueness and existence of solution for the coupled fluid/PML
problem, when the optimal PML, with a singular absorbing function is used. With this
purpose we consider the two-dimensional PML equation written in polar coordinates.

We prove that, in spite of the singularity of the absorbing function, the coupled
fluid/PML problem is well posed when the solution is sought in an adequate weighted
Sobolev space. Since the variational problem is not of Fredholm type, the steps
followed in the proof are based on the series representation of a new Dirichlet-to-
Neumman operator associated to the solution in the PML. This can be done since



Preface ix

we are able to describe analytically the smooth solution of the PML even in the case
of a non integrable absorbing function. Finally, the resulting variational formulation
can be numerically dealt with standard finite elements. The high accuracy of this
approach is numerically showed as compared with a classical PML technique.

Part of the results presented in this chapter are contained in [32] and [33].

In the third part Computational applications on dissipative acoustics some
numerical applications of the PML technique and the porous models are presented. First,
we compare two different acoustic dissipative models: the Allard-Champoux model, which
can be understood as an extensive reacting model (the pressure field depends on the physical
properties of the whole porous medium) and the wall impedance condition, which is a local
reacting model (the pressure field depends only on the properties of each spatial point).
Both models are compared in some scattering problems stated in unbounded domains.

Finally, the last chapter is devoted to the computation of the absorption coefficient as-
sociated to an absorbing surface. The definition of this coefficient is analyzed in terms of
the intensity and the sound power. A strategy consisting in two numerical experiments is
described. To model the absorbing surface, we take into account four kind of local reacting
panels. Let us remark that the PML technique, with a singular absorbing function, is used
to truncate the computational domain of interest in all the problems. The third part is
organized as follows:

• Chapter 7: Validation of acoustic dissipative models. The aim of this chapter
is to study the time-harmonic scattering problem in a coupled fluid/porous medium
system. We consider two different models for the treatment of porous materials: the
Allard-Champoux equations and an approximate model based on a wall impedance
condition. Both models are compared by computing analytically their respective
solutions for unbounded planar obstacles, considering successively plane and spherical
waves. A numerical method combining an optimal bounded PML and finite elements
is introduced to compute the solutions of both problems for more general axisymmetric
geometries. This method is used to compare the solutions for a spherical absorber.

Part of the results presented in this chapter are contained in [31].

• Chapter 8: Numerical simulation of local reacting panels. As a simpler
alternative to model thick porous panels with the models presented in the first part
of this thesis, we introduce the local reacting models, which does not involve new
partial differential equations in domains with small dimensions, that could imply nu-
merical difficulties in the discretization. More precisely, four boundary conditions are
introduced: wall impedance, porous veil, local reacting porous layer and local react-
ing multilayer condition. With each one of these boundary conditions a variational
formulation is written for the coupled problem fluid/local reacting panel. As in the
previous chapters, a finite element code, combined with the Cartesian PML technique,
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is used to compute the pressure field in arbitrary three-dimensional unbounded do-
mains. After performing the validation code with five problems whose exact solution
are well-known, some numerical results are showed for a real-life problem. Part of the
results presented in this chapter are contained in the technical report [29].

Finally, the last part of the manuscript is devoted to the discussion on some future
research lines and open problems. We also enclose the acknowledgments and a summary of
this dissertation thesis in Galician language.
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4 Chapter 1. Porous models

1.1 Introduction

The main goal of this chapter is to introduce various mathematical models which can
be used to characterize the acoustic behavior of porous materials. By porous material we
mean a material consisting of a solid matrix which is completely saturated by a fluid. The
acoustical behavior of porous media depends not only on the fluid but also on the stiffness
of its solid skeleton.

Acoustic behavior of porous media is of utmost importance because they exhibit good
properties as sound absorbers. Such kind of materials, as glasswools or ceramic foams (see
Figure 1.1) are used in isolation systems in buildings, vehicles or airplanes.

Figure 1.1: A particular porous material: ceramic foams.

When considering macroscopic models for porous media, they can be classified depend-
ing on whether the solid part is rigid or elastic:

A) Rigid porous models.
If the solid matrix is rigid, which is the simplest case, the porous material can be
considered as an equivalent fluid, with complex mass density and bulk modulus. These
parameters can be obtained through semi-empirical or experimental laws. Delany and
Bazley [56] presented a first model in 1970, which has been widely used to describe
sound propagation in fibrous materials. This model, was subsequently improved by
Morse and Ingard [88], Attenborough [13] and Allard and Champoux [5], among
others.

All models of this kind have a common characteristic: they are stated under the
assumption of time-harmonic dependency. Hence, the coefficients that appear in the
models depend on the frequency. Generally, the equations of these models can be
derived from the classical compressible fluid equations with some slight modifications
on the coefficients, for instance, adding a damping term or becoming the mass density
or the bulk modulus complex valued.
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B) Poroelastic models.
For the more realistic case when the elastic deformation of the skeleton is taken into
account, the theoretical basis for the mechanical behavior was mainly established by
Biot [38]. His theory describes the propagation of elastic waves in fluid-saturated
porous media. Adaption of this theory to the acoustic context was done, for example,
by Allard et al. [4] and Shiau [98] (see also the book by Allard [3] and the references
therein).

In spite of the fact that the classical Biot’s model was introduced in the time domain,
it has been also adapted to the frequency domain by Broubard and Lafarge [76] among
others, which allows writing a fluid-equivalent formulation for poroelastic materials.

One of the main drawbacks when Biot’s model is analyzed is that the coefficients are
not properly defined and, in general, their determination is not clear although several
experimental procedures have been proposed, as can be seen in Biot and Willis [40].

This gives motivation to undertake a derivation of models, rigorously from a mathe-
matical point of view, by using homogenization theory. It can be done for the both cases:
rigid or elastic solid matrix. For rigid matrix, Darcy’s model is obtained. Ene and Sanchez-
Palencia [59] were the first who gave a derivation of this model from the Stokes system,
using a formal multi-scale method, while Tartar [97] made that derivation rigorously in
the case of 2D periodic porous media. This methodology allows obtaining not only the
homogenized model but also the mathematical expression of the coefficients appearing in
it.

Derivation of macroscopic models for poroelastic materials depends strongly on the
connectivity of the fluid part. When the domain occupied by the fluid is connected, the
material is named open pore material; otherwise, it is named closed pore material. Fun-
damental references are papers by Gilbert and Mikelić [65], and by Clopeau et al. [49],
where the classical dissipative Biot’s model was derived by homogenization, using two-scale
convergence methods. They also contain a number of references to papers on the dissipative
Biot’s law. Moreover, the same procedure has been applied, for the first time, by Ferŕın
and Mikelić [62] to derive macroscopic models for non-dissipative poroelastic material with
open or closed pore.

The outline of this chapter is as follows. In Section 1.2 we introduce the two rigid
models that will be used through this work: the Darcy’s like model (Subsection 1.2.1)
and the Allard-Champoux model (Subsection 1.2.2). In the case of Darcy’s like model, we
also give a sketch of its derivation by homogenization techniques. In Section 1.3, we first
introduce the classical Biot’s model (Subsection 1.3.1) and then we recall three poroelastic
models obtained by homogenization techniques through the Subsections 1.3.2-1.3.4: non-
dissipative and open pore, non-dissipative and close pore, and dissipative and open pore.
In every model the auxiliary cell problems which define the coefficients of the models are
also detailed.
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1.2 Rigid porous models

In the last decades, simplified models, where absorptive materials are characterized by
normal wave impedance, were widely used to study wave propagation in rigid lined ducted
systems. More recently, when the solid skeleton is assumed to be rigid, the porous material
has been considered as an equivalent fluid, with complex mass density and bulk modulus.
These parameters can be obtained through empirical or experimental laws. A first model,
introduced by Delany and Bazley (see [56]), was presented for the first time in 1970; it has
been widely used to describe sound propagation in fibrous materials. Subsequently, this
model was improved by Morse and Ingard [88], Johnson et al. [73], Attenborough [12],
Allard et al. [6], Champoux and Stinson [45] or Allard and Champoux [5], among others.

But models simulating a slow flow fluid through porous media can be also derived
rigorously from a mathematical point of view by means of homogenization techniques. By
doing so, if we consider a rigid porous medium, we obtain the Darcy’s model.

To the best of our knowledge, Ene and Sanchez-Palencia [59] were the first who gave
derivation of it from the Stokes system, using a formal multiscale method. This derivation
was made rigorous in the case of 2D periodic rigid porous media by Tartar (see appendix
in [97]) and subsequently generalized by Mikelić, among others (see [86] and references
therein). As we have said in the introduction of this chapter, by means of this methodology
we obtain not only the homogenized model but also the mathematical expression of the
coefficients appearing in it. For instance, in the case of rigid porous media, the most
important coefficient in Darcy’s law is permeability, which can be computed by solving a
boundary-value problem in a unit cell of the periodic porous medium. For poroelastic media,
generalized Biot models were also derived from the first principles by using homogenization
techniques (see Gilbert and Mikelić [65], Clopeau et al. [49] or Ferŕın and Mikelić [62]).

Classically, from a macroscopic point of view, rigid porous media are characterized
modifying the conservative mass and momentum laws that model compressible fluids (see
[12] or [88] among others), in order to take into account the friction phenomena and the
energy exchange between the walls of pores of the solid material and the enclosed fluid.
From these modifications, a dissipative term arises in the momentum conservation law,
which models the friction phenomena, while the conservative mass law is modified to take
into account that the movement of the fluid is restricted to a part of the porous material.

Another fundamental feature consists in the isothermal character of the movement.
Whereas, in non-dissipative acoustics, the motion is assumed to be isentropic, when a rigid
porous material is modelled, we consider that the temperature is constant, i.e, we assume
that the movement in the porous material produce a change in the entropy but not in the
temperature.

Anyway, the pressure and velocity fields computed with these models must be under-
stood in a macroscopic sense, i.e., both the displacement and the pressure fields are only
averaged estimates in a control volume element of the real pressure and velocity inside the
porous material.

Among the different models existing in the bibliography for rigid porous media, we
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focus on a Darcy’s like model (obtained by homogenization techniques) and on another one
obtained through empirical laws by Allard and Champoux [5], for harmonic motions. The
latter generalizes the former, in the sense that both are equivalent for low frequencies when
the porosity is near to one.

The first one is derived from Darcy’s law, by adding the inertial effect (see for instance
[13]). In fact, if the porous material have a periodic structure, the Darcy’s model can be
obtained by applying a two-scale homogenization technique to the Stokes equations (see
[59] and [97]). In this case, the only parameter characterizing the porous media (named flow
resistivity), can be related to the permeability tensor, which can be computed explicitly by
solving a Stokes problem defined in the fluid part of the unit cell.

A finite element solution of the acoustic propagation in rigid porous media simulated
with these two models has been carried out by Bermúdez et al. [27].

1.2.1 Darcy’s like model

If the porous material is homogeneous from a macroscopic point of view (i.e, if the pores
that compose the micro-structure of the material are distributed uniformly) then, according
to Darcy’s law, it is necessary to introduce two new parameters: the flux resistivity tensor,
σ, which gives information about the resistance to the fluid movement exerted by the rigid
skeleton of the porous material, and the porosity coefficient φ, which is the ratio between
the volume of the fluid part and the total volume of the porous material.

If we suppose that the fluid filling the pores of the material is compressible, homogeneous
and isothermal, then the equations governing the movement of a porous material with rigid
solid part are

ρ
∂V

∂t
+ ρ(gradV )V + gradP + σV = 0, (1.1)

∂ρ

∂t
+ V · grad ρ +

ρ

φ
div V = 0, (1.2)

P = ρRθ, (1.3)

where σ is the flow resistivity tensor ([σ] = kg/(m3s)), φ is the porosity coefficient and θ,
P , ρ and V are the temperature, the pressure, the mass density and the velocity averaged
in the part occupied by the fluid in a control volume element, respectively.

If the acceleration term is negligible in comparison with the dissipative term (which
depends on the flow resistivity), the linear momentum conservation law (1.1) becomes the
Darcy’s law (see [21])

V = −σ−1 gradP. (1.4)

Usually, some authors (see [91]) write the above model in terms of the permeability tensor
K ([K] = m2). The permeability tensor can be written in terms of the flow resistivity and
the porosity coefficient as follows:

K = ηφσ−1,
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where η is the viscosity of the fluid filling the pores of the material. Since it is possible to
check that K only depends on the geometry of the pores, if we assume that the structure
of the solid part of the porous media is uniformly periodic, the permeability tensor can be
computed applying homogenization techniques.

Now, if we write the pressure in terms of mass density, ρ, and entropy, s, since we are
assuming that the flow of the fluid is isothermal, the value of the sound speed is given by

c =

√
∂P

∂ρ
(ρ, s) =

√
γ
∂P

∂ρ
(ρ, θ0) =

√
γRθ0, (1.5)

where θ0 is the constant temperature of the porous material and γ is the ratio of specific
heats at constant pressure and constant volume.

Similar to the classical arguments used in the linearization of the equations which govern
a compressible fluid (see for instance Section 11.2 in [25]), we are going to write the linearized
equations for this rigid porous model. More precisely, we linearize the mass and momentum
conservation laws in the neighborhood of a state at rest with constant mass density ρ0 an
pressure P0.

Since the movement is isothermal,

P ≈ P0 +
∂P

∂ρ
(ρ0, θ0)(ρ − ρ0) +

∂P

∂θ
(ρ0, θ0)(θ − θ0) = P0 +

c2

γ
(ρ − ρ0). (1.6)

If we neglect the term V · grad ρ and integrate (1.2) in time, we have

ρ = ρ0 −
ρ0

φ
div U ,

where U is the displacement field. So, using (1.6) we can write the pressure in terms of the
displacement,

P = P0 −
ρ0c

2

φγ
div U ,

whereas, the displacement field satisfies the equation

ρ0
∂2U

∂t2
− ρ0c

2

φγ
grad(div U ) + σ

∂U

∂t
= 0. (1.7)

On one hand, if the porous material is isotropic from a macroscopic point of view, i.e,
if the flow resistivity tensor σ is proportional to the identity, σ = σI, then (1.7) can be
rewritten as

ρ0
∂2U

∂t2
− ρ0c

2

φγ
grad(div U ) + σ

∂U

∂t
= 0.

On the other hand, if the porous material is fibrous, i.e., if the acoustic propagation in
the parallel and orthogonal directions to the fibers have different characteristics, then the
porous material would be modelled as an orthotropic medium. In this case, if we assume
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that the principal directions of σ match with the coordinates axes, then it is diagonal, i.e.,
σ = σ1e1 ⊗ e1 + σ2e2 ⊗ e2 + σ3e3 ⊗ e3.

Finally, in the frequency domain the governing equations of the movement in the Darcy’s
like model are

(ω2ρ0I + iωσ)u +
ρ0c

2

φγ
grad(div u) = 0, (1.8)

p = P0 −
ρ0c

2

φγ
div u, (1.9)

where u and p are the phasors of the displacement and the pressure fields in the frequency
domain, respectively. Let us remark that we are using e−ωt for the time convention of the
harmonic dependency.

Computing the permeability tensor

To finish this subsection, we show how to compute the permeability tensor for the rigid
porous media by using homogenization techniques. In fact, we summarize the main results
of the classic two-scale technique to determine the permeability tensor in the Darcy’s law,
where the fluid is considered viscous and incompressible (see [86]).

Assuming that the porous media have rigid solid part, we have seen that the equations
governing the movement involve the permeability tensor, which only depends on the geom-
etry of the pores of the periodic solid structure. If the material can be constructed with a
periodic pattern from a unique cell with size ε, the permeability tensor can be computed
by solving a Stokes problem in only one of these cells.

We denote by Ω ⊂ Rn (n = 2 or 3) the domain occupied by the porous material
whereas Ωε is the domain occupied by its fluid part. Since the porous material has a
periodic structure, if we denote by Y = (0, 1)n the unit cell of reference and by YF and YS

its fluid and solid part, respectively, both the fluid part Ωε and the solid part of the porous
medium Ω \ Ωε can be rewritten as

Ωε =
⋃
j∈Tε

Y ε
Fj

, Ω \ Ωε =
⋃
j∈Tε

Y ε
Sj

,

where Y ε
Fj

and Y ε
Sj

are respectively the fluid and the solid part of the cell Y ε
j of size ε

and homeomorphic to Y (see Figure 1.2). The index set Tε is defined by Tε = {k ∈
Zn : ε (YS + k) = Y ε

Sk
⊂ Ω}. For the sake of simplicity in the exposition, we avoid to

treat mathematically the exterior boundaries and consider that Ω = (0, L)n with periodic
boundary conditions on ∂Ω.

Since the geometrical structure of the porous medium is fixed, we are in a position to
precise what is the macroscopic problem that governs the slow flow of a viscous incompress-
ible flow through the porous medium. With this aim, we use the following steady Stokes
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Solid part

Fluid part

Fluid partSolid part

Figure 1.2: Rigid porous structure and unit cell.

system in Ωε (the fluid part of Ω):

−ηΔvε(x) + grad pε(x) = 0 in Ωε, (1.10)

div vε(x) = 0 in Ωε, (1.11)

vε = 0 on ∂Ωε \ ∂Ω, (1.12)

pε and vε are L − periodic, (1.13)

where η is the dynamical viscosity, vε the velocity and pε the pressure.

If we define the functional space Wε by

Wε =
{
u ∈ H1(Ωε)n : u = 0 on ∂Ωε \ ∂Ω, uε is L − periodic} ,

then the weak formulation of the problem (1.10)-(1.13) is:

Find vε ∈ Wε with div vε = 0 in Ωε and pε ∈ L2(Ωε) such that

η

∫
Ωε

gradvε · gradψ dVx −
∫

Ωε

pε div ψ dVx = 0, ∀ψ ∈ Wε. (1.14)

On the one hand, the elemental theory of elliptic problems guarantees the existence and
uniqueness of a velocity field solution of the above weak problem. On the other hand, the
pressure field pε is unique up to a constant (see [86]), which is usually fixed such that the
following condition holds: ∫

Ωε

pε dVx = 0.

Our aim is to take limits when ε → 0 in the system of equations (1.10)-(1.13). As a
first step, we study the a priori estimates for the velocity vε and the pressure pε. With
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this purpose, we extend vε by zero in the rigid part of the porous medium and define an
extension of the pressure as

p̃ε :=

⎧⎪⎨⎪⎩
pε in Ωε,

1∣∣∣Y ε
Fj

∣∣∣
∫

Y ε
Fj

pε dVx in Y ε
Sj

, for each j ∈ Tε,

where Y ε
Fj

and Y ε
Sj

are the fluid and solid part of the cell Y ε
j , respectively. If we take into

account these extensions for the pressure and the velocity, the following a priori estimates
are satisfied (see [86]):

‖vε‖L2(Ωε)n ≤ Cε2, (1.15)

‖gradvε‖L2(Ωε)9 ≤ Cε, (1.16)∥∥∥∥p̃ε − 1

|Ω|

∫
Ω

p̃ε dVx

∥∥∥∥
L2(Ω)

≤ 1

|YF|

∥∥∥∥pε − 1

Ωε

∫
Ωε

pε dVx

∥∥∥∥
L2(Ωε)

≤ C, (1.17)

where C is a positive constant not necessarily the same at each occurrence.
Because of these a priori estimates, we can assume that the pressure and the velocity

fields have the asymptotic expansions

vε(x,y) = ε2v0(x, y) + ε3v1(x,y) + ε4v2(x,y) + . . . , (1.18)

pε(x,y) = p0(x,y) + εp1(x,y) + ε2p2(x, y) + . . . , (1.19)

where y = x/ε. These expansions are written in two scales, i.e., taking into account the
macroscopic and microscopic levels of the geometry. Moreover, since the geometry of the
medium is periodic, it is natural to assume a periodic dependency in the scale of variable
y.

From the two scales of the expansions, the derivatives are transformed and, hence, the
differential operators can be rewritten as

grad = gradx + ε−1grady, (1.20)

div = divx + ε−1divy, (1.21)

Δ = Δx + 2ε−1divx grady +ε−2Δy, (1.22)

where the subindexes denote the spatial variable involved in the differentiation.
If we substitute the expressions (1.18)-(1.19) in (1.10)-(1.13), the lower order terms

satisfy the following equations:

• term O(ε−1),
gradyp0(x,y) = 0 in Ω × YF, (1.23)

• term O(1),

−ηΔyv0(x,y) + gradyp1(x, y) + gradxp0(x,y) = 0 in Ω × YF,
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• term O(ε),

divyv0(x,y) = 0 in Ω × YF,

−ηΔyv1(x,y) + gradyp2(x, y) + gradxp1(x,y) = 0 in Ω × YF,

• term O(ε2),

divxv0(x,y) + divyv1(x, y) = 0 in Ω × YF, (1.24)

v0(x, y) = 0 in Ω × (∂YF \ ∂Y ),

v0(x,y) and p1(x,y) are 1 − periodic in y,

−ηΔyv2(x, y) + gradyp3(x,y) + gradxp2(x, y) = 0 in Ω × YF.

Equation (1.23) is equivalent to p0 = p0(x), whereas v1 satisfies (1.24) if and only if

divx

∫
YF

v0(x, y) dVy = 0 in Ω.

In summary, the equations which are satisfied by v0, p0 and p1 are condensed in the following
system:

−ηΔyv0(x,y) + gradyp1(x, y) + gradxp0(x) = 0 in Ω × YF,

divyv0(x,y) = 0 in Ω × YF,

v0(x,y) = 0 in Ω × (∂YF \ ∂Y ),

v0(x, y) and p1(x, y) are 1 − periodic in y,

p0(x) and

∫
YF

v0(x, y) dVy are L − periodic in x,

divx

∫
YF

v0(x,y) dVy = 0,

where, in the above system of equations, we have added the condition of periodicity in the
spatial variable x (see [86]). For each j = 1, . . . , n, let us introduce the following auxiliary
problem in YF, whose solution is sought in H1

per(YF)n, i.e., periodic vector fields in H1(YF)n:
Find wj ∈ H1

per(YF)n and πj ∈ L2(YF) such that:

−Δywj(y) + gradyπj(y) = ej in YF,

divy wj(y) = 0 in YF,

wj(y) = 0 on ∂YF \ ∂Y,∫
YF

πj(y) dVy = 0,

where ej is the j-th vector of the canonical basis. For each fixed j, this problem has a
unique solution.
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From wj =
∑n

k=1 wj
kek, 1 ≤ j ≤ n, if we define the permeability tensor K as

Klm :=

∫
YF

wl
m dVy, 1 ≤ l, m ≤ n,

v0 and p1 are rewritten as

v0(x,y) = −1

η

n∑
j=1

wj(y)
∂p0

∂xj

(x), x ∈ Ω, y ∈ YF,

p1(x) = −
n∑

j=1

πj(y)
∂p0

∂xj

(x), x ∈ Ω, y ∈ YF,

and we obtain the relation between v0 and gradxp0:∫
YF

v0(x,y) dVy = −K

η
gradxp0(x), x ∈ Ω. (1.25)

Finally, if we take into account that porosity is the measure of YF, i.e., φ = |YF|, we identify
the macroscopic pressure p with p0 and define the averaged velocity v as

v(x) :=
1

|YF|

∫
YF

v0(x,y) dVy,

then equation (1.25) recovers the classical Darcy’s law (1.4) stated at the beginning of this
subsection.

1.2.2 Allard-Champoux model

In the previous Darcy’s like model, we have characterized the pressure and the displace-
ment of rigid porous media, by linearizing the conservative mass and momentum equations
and using, implicitly, that the relations between pressure and density are given by

c2(ρ − ρ0) = γ(p − P0). (1.26)

Moreover, Darcy’s like model includes a dissipative term which depends on the flow resis-
tivity tensor. In the first case, the state equation (1.26) guarantees that the fluid expands
isothermally inside the pores when it moves through them. However, some authors have
suggested that thermal effects in real-life materials depend on frequency. In order to take
into account these phenomena, it is obvious that both, the bulk modulus ρ0c

2/φγ and the
flow resistivity tensor σ, have to be frequency dependent.

Under this assumption, there are several semi-empirical models (see [12], [56] or [73])
which take into account this dependency with respect to frequency. In spite of this variety,
we focus our attention on one of the most recent and used ones: the Allard-Champoux
model (see [5]).
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The governing equations of the movement in the porous Allard-Champoux model are
written, in the frequency domain:

ω2ρ(ω)u + grad(divμ(ω)u) = 0, (1.27)

p = P0 − div μ(ω)u, (1.28)

where ρ(ω) is the dynamic mass density and μ(ω) is the dynamic bulk modulus.
If the material is isotropic, ρ(ω) and μ(ω) are isotropic tensors, i.e., ρ(ω) = ρ(ω)I

and μ(ω) = μ(ω)I. Following the Allard-Champoux formulas (see [5]), the dynamic mass
density ([ρ(ω)] = kg/m3) is computed by the expression

ρ(ω) = ρ0

(
1 − i

(
σ

ρ0ω

)
G1

(ρ0ω

σ

))
, (1.29)

whereas the dynamic bulk modulus ([μ(ω)] = N/m2) is given by

μ(ω) = γP0

⎛⎜⎜⎝γ − γ − 1

1 −
(

i

4Npr

)(
σ

ρ0ω

)
G2

(ρ0ω

σ

)
⎞⎟⎟⎠

−1

. (1.30)

Functions G1 and G2 are

G1

(ρ0ω

σ

)
=

√
1 +

i

2

(ρ0ω

σ

)
, (1.31)

G2

(ρ0ω

σ

)
= G1

(
4Npr

(ρ0ω

σ

))
, (1.32)

where P0 is the fluid pressure at rest, ρ0 is the mass density at rest, Npr the Prandtl’s
number and γ the rate of specific heats at constant pressure and volume.

From the expressions of G1 and G2, both the dynamic mass density and the dynamic
bulk modulus are functions of the ratio ρ0ω/σ. If we assume that ρ0ω 
 σ, then we obtain

ρ(ω) � ρ0

(
O(1) +

σ

iωρ0

)
,

lim
ρ0ω

σ
→0

μ(ω) = P0 =
ρ0c

2

γ
� ρ0c

2

φγ
.

Hence, if the porosity is close to one (φ � 1) and the frequency range is small enough,
when compared to the flow resistivity values, the Allard-Champoux model reduces to the
Darcy’s like model.

If the porous material is orthotropic (for instance, in the case of fibrous materials), and
we assume that the principal directions match with the coordinate axes and that e1 is the
direction parallel to the fibers, then tensors ρ(ω) and μ(ω) are diagonal, ρ(ω) = ρ1(ω)e1 ⊗
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e1 + ρ2(ω) (e2 ⊗ e2 + e3 ⊗ e3) and μ(ω) = μ1(ω)e1 ⊗e1 +μ2(ω) (e2 ⊗ e2 + e3 ⊗ e3), where
μj(ω), ρj(ω), j = 1, 2, are given by (1.29) and (1.30), respectively. The terms σj are the
flow resistivity coefficients in each principal direction. In this case, the equations satisfied
by the displacement are

ω2ρ1(ω)u1 +
∂

∂x1

(divμ(ω)u) = 0,

ω2ρ2(ω)uj +
∂

∂x2

(divμ(ω)u) = 0, j = 2, 3,

where u(x) = u1(x)e1 + u2(x)e2 + u3(x)e3. It can be seen that, even in this case, it is not
possible to decouple the three displacement components.

1.3 Poroelastic models

In the previous section we have presented two models for porous media where the solid
part is assumed to be rigid. Now we deal with the more general case of a porous medium
with elastic solid part, so that the displacement field in the solid part is not negligible.

The theoretical basis for the mechanical behavior of poroelastic materials has been es-
tablished by Biot (see [38]). He describes the propagation of elastic waves in fluid-saturated
elastic porous media. Adaption of Biot’s theory to the acoustic propagation can be seen
in Allard’s book [3]. The resulting model, named below as “classical” Biot’s model, is the
basis for most of the numerical studies involving poroelastic materials. However, the fact
that macroscopic coefficients appearing in this model can only be obtained from empirical
experiments (see Biot and Willis [40]) and that it involves the two displacements fields
(for solid and fluid parts, respectively) are unsuitable features of this model. These are
some of the reasons why a rigorous derivation of Biot-like models, starting from the first
principles and using homogenization techniques, is an interesting task. This work has been
done by Mikelić and coworkers in several papers and we shall refer to the obtained models
as generalized Biot’s models.

In the following subsection, as a first step, we study the classical Biot’s model. Then,
the rest of the subsections are devoted to introduce three new poroelastic models attending
to different geometries of the pores (open or closed) and to whether they are dissipative
or not. The main advantange of these new models, which are obtained by homogenization
techniques, lies in the fact that they can be described in terms of a pressure field and a
unique displacement field, whereas the Biot’s model needs two displacements fields to be
written.

1.3.1 Classical Biot’s model

The description of the acoustic model of a porous medium with elastic solid part was
stated originally by Biot [38] involving two displacements, US and UF, which are the
macroscopic displacement of the solid and fluid parts of the porous medium, respectively.
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If we suppose that the porous medium is homogeneous and isotropic from a macroscopic
point of view (i.e., pores are uniformly distributed and such that in each direction the
material properties are equal) then the constitutive laws defining the stress tensors, in the
solid part, SS, and in the fluid part, SF, are, respectively,

SS = (P − 2N) (tr(E[US])) I + Q (tr(E[UF])) I + 2NE[US],

SF = Q (tr(E[US])) I + R (tr(E[UF])) I,

where E[U ] = 1
2

(
gradU + gradU t

)
, φ is the porosity coefficient, and P, N, Q, and

R are scalar coefficients which are empirically determined through the so-called gedanke
experiments suggested initially by Biot (see [3] or [40]). In fact, this coefficients can be
rewritten in terms of the bulk modulus of the fluid and solid parts,

P =

(1 − φ)

(
1 − φ − μB

μS

)
μS + φ

μS

μF

μB

1 − φ − μB

μS

+ φ
μS

μF

+
4

3
N,

Q =

(
1 − φ − μB

μS

)
φμS

1 − φ − μB

μS

+ φ
μS

μF

,

R =
φ2μS

1 − φ − μB

μS

+ φ
μS

μF

,

where N is the shear coefficient of the porous medium and μB, μS, and μF are, respectively,
the bulk modulus of the porous medium, the solid part and the fluid part.

If we assume the following hypotheses for the porosity coefficient and the bulk modulus
of the solid and of the porous medium:

φ ≈ 1, μB 
 μS,

then we obtain simpler expressions for the above coefficients:

P = μB +
4

3
N +

(1 − φ)2

φ
μF,

Q = (1 − φ)μF,

R = φμF.

The system of equations governing the motion is a coupled system where the unknown
fields are the displacements uS and uF. Taking into account the dissipative effects of the
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displacement inside the pores, this system of equations can be written as

ρ11
∂2US

∂t2
+ ρ12

∂2UF

∂t2
− (P − N)grad(div US) − N ΔUS − Qgrad(div UF) + F = 0,

(1.33)

ρ22
∂2UF

∂t2
+ ρ12

∂2US

∂t2
− R grad(div UF) − Qgrad(div US) − F = 0, (1.34)

where F is the force due to the viscosity effects produced by the fluid inside the porous
medium. This force is proportional to the flow resistivity coefficient σ. In fact, we have

F = φσ
∂

∂t
(US − UF) ,

and coefficients ρij, 1 ≤ i, j ≤ 2 are given by

ρ11 = φ(α∞ − 1)ρF + (1 − φ)ρS,

ρ12 = −φ(α∞ − 1)ρF,

ρ22 = φα∞ρF,

where ρF and ρS are respectively the mass densities of the fluid and solid part, and φ is the
porosity coefficient and α∞ the tortuosity coefficient.

Finally, in the frequency domain, i.e., if we assume a time-harmonic dependence with
respect to time and we take into account that

Δu = grad(div u) − rot(rot u),

then the Biot system (1.33)-(1.34) becomes

ω2(ρ̃11uS + ρ̃12uF) + P grad(div uS) − N rot(rot uS) + Qgrad(div uF) = 0,

ω2(ρ̃22uF + ρ̃12uS) + R grad(div uF) + Qgrad(div uS) = 0,

where uF and uS are, respectively, the fluid and solid displacement fields in the frequency
domain and

ρ̃11 = ρ11 − i
σφ

ω
, ρ̃12 = ρ12 + i

σφ

ω
, ρ̃22 = ρ22 − i

σφ

ω
.

From a computational point of view, the main drawback of the classical Biot’s model
consists in the use of two displacements fields for describing the behavior of a porous
medium with elastic solid part. Moreover, from a modelling point of view, the coefficients
of this model are not properly defined. These disadvantage can be avoided by using models
obtained by homogenization techniques. In this case, it is possible to state models which
involve only a pressure field and a unique displacement field as unknowns.

In fact, we have to distinguish two kinds of models attending to the geometrical con-
figuration of the pores in the material: the first one when the fluid part is disconnected
(media with closed pores), and the second one when the fluid part is connected (media with
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open pores). Besides, according to the different treatment of the dissipative effects in the
models, we can also derive two different kind of them named dissipative and non-dissipative
models.

Firstly we focus our attention in the description of the non-dissipative model with closed
pores, following the ideas presented by Ferŕın and Mikelic in [49] and [62].

1.3.2 Non-dissipative poroelastic model (closed pores)

If we again assume that the porous medium is homogeneous and isotropic from a macro-
scopic point of view, then the equations governing the pressure field, P , and the displace-
ment field, U , in the porous medium are

ρ
∂2U

∂t2
− div (A [E(U )]) +

1

ĉ
(B − φI)grad (div (B − φI) U ) = 0, (1.35)

P = −1

ĉ
div (B − φI) U . (1.36)

We recall that φ is the porosity, ρF and ρS are, respectively, the density of the fluid and
of the solid part, and the coefficient ĉ, the symmetric tensor B, and the linear operator A
depend on the geometrical shape of the pores of the porous material, but not on the spatial
variables.

Derivation of the model by two-scale homogenization technique

For the sake of completeness in the exposition, in this subsection we describe how to
obtain the systems of equations (1.35)-(1.36) by using a two-scale homogenization technique.
Moreover, we also state the cell problems which define the coefficients that arise in this
model.

In the case of periodic porous media with elastic solid part and closed pores, we apply
the same homogenization technique reviewed in Section 1.2.1 for porous media with rigid
solid part. With this technique we obtain a model with a unique unknown displacement
field to describe the motion in the porous material (see [48], [49] or [50]). In what follows,
we use the same technique to derive the equations (1.35)-(1.36).

Firstly, we use the same notation used for the fluid and solid domains and the cells as
the ones introduced in Subsection 1.2.1. We only recall that Ωε

F and Ωε
S are, respectively,

the fluid and solid part of the porous domain.

Under the small deformations assumption, the macroscopic problem is given by the
following fluid-structure problem, where the displacements are described in terms of the
linearized equations in the fluid and solid domains:
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ρS
∂2wε

∂t2
− div(S(wε)) = 0 in Ωε

S × (0, T ), (1.37)

S(wε) := C[E(wε)] = 2μE(wε) + λ(tr(E(wε)))I in Ωε
S × (0, T ), (1.38)

ρF
∂2uε

∂t2
+ grad pε = 0 in Ωε

F × (0, T ), (1.39)

pε = −ρFc2 div uε in Ωε
F × (0, T ), (1.40)

uε · ν = wε · ν on Γε × (0, T ), (1.41)

S(wε)ν = −pεν on Γε × (0, T ), (1.42)

wε =
∂wε

∂t
= 0 in Ωε

S × {0}, (1.43)

uε =
∂uε

∂t
= 0 in Ωε

F × {0}, (1.44)

pε,wε, and uε are L − periodic. (1.45)

Here, uε and pε are, respectively, the fluid displacement and pressure fields, wε is the solid
displacement field, S(wε) is the linear approximation of the Piola-Kirchhoff stress tensor
and E(wε) = 1

2
(gradwε + (gradwε)t) is the infinitesimal strain tensor associated to the

solid displacement field. Finally ρF and ρS are the mass densities in the fluid and in the
solid part, respectively, λ and μ are the Lamé coefficients of the solid part, and c is the
sound speed in the fluid part of the porous material.

Now we describe the construction of the homogenized problem using the two-scale
method. We recall that x is the slow spatial variable whereas y is the fast one. Since
we have two scales, the spatial derivatives are transformed by Eqs. (1.20)-(1.22), intro-
duced in Subsection 1.2.1, in terms of operators gradx, grady, divx, and divy, where the
subscripts denote the spatial variable involved in the differential operator.

Following the ideas presented by Ferŕın & Mikelić [62], as a first step, we extend the
fluid and solid displacement field to a unique field ũε defined in Ω by the expression

ũε(x, t) =

{
uε(x, t) if x ∈ Ωε

F,

wε(x, t) if x ∈ Ωε
S,

(1.46)

and, analogously, a pressure field p̃ε defined as

p̃ε(x, t) =

⎧⎪⎪⎨⎪⎪⎩
−ρFc2 div uε(x, t) +

ρFc2

|Ω|

∫
Ωε

F

div uε(x, t) dVx if x ∈ Ωε
F,

ρFc2

|Ω|

∫
Ωε

F

div uε(x, t) dVx if x ∈ Ωε
S.

(1.47)

If we denote by u0(x, t) and p̃0(x,y, t) the limit fields when ε tends to zero for the dis-
placement ũε and the pressure p̃ε, respectively, and we define P (x, t) such that

p̃0(x,y, t) = χYF
(y)P (x, t) + B(t),
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where B(t) only depends on time t ∈ (0, T ), then u0(x, t) and P (x, t) satisfy the limit
problem

ρ
∂2u0

∂t2
− divx

(
A
[
E(u0)

])
− divx (PB) + |YF|gradxP = 0, (1.48)

− |YF|
ρFc2

∂P

∂t
= |YF| divx

(
∂u0

∂t

)
− B :

∂

∂t

(
Ex(u0)

)
− ∂P

∂t

∫
Y

divyw0 dVy, (1.49)

where ρ = ρF |YF|+ρS |YS|. Vector field w0, and tensor B and linear operator A are defined
from problems stated in only one of the cells of the porous medium. More precisely, let w0

be the solution of the following problem in the solid part of the cell Y :

−divy

(
C
[
Ey(w0)

])
= 0 in YS, (1.50)

−C
[
Ey(w0)

]
ν = ν on ∂YS \ ∂Y, (1.51)∫

Y

w0 dVy = 0, (1.52)

where ν is the unit normal vector to ∂YS \ ∂Y exterior to YS. Moreover, if for each 1 ≤
i, j ≤ n, we define the vector wij as the solution of the following problem:

divy

(
C

[
ei ⊗ ej + ej ⊗ ei

2
+ Ey

(
wij

)])
= 0 in YS, (1.53)

C

[
ei ⊗ ej + ej ⊗ ei

2
+ Ey(wij)

]
ν = 0 on ∂YS \ ∂Y, (1.54)∫

YS

wij dVy = 0, (1.55)

then the symmetric tensor B is given by

B =

∫
YS

C
[
Ey

(
w0

)]
dVy, (1.56)

whereas every component Aklij of the linear operator A ((A[E])kl = AklijEij), is given by

Aklij =

(∫
YS

C

[
ei ⊗ ej + ej ⊗ ei

2
+ Ey

(
wij

)]
dVy

)
kl

, 1 ≤ i, j, k, l ≤ n. (1.57)

We can easily check that Aklij = Alkij = Alkji.
Hence, if U = u0 denotes the macroscopic displacement and we integrate (1.49) with

respect to time, we obtain

ρ
∂2U

∂t2
− div (A [E(U )]) − (B − φI)gradP = 0, (1.58)

φ div U = B : E(U ) + ĉP, (1.59)
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where the differential operators are assumed to be written with respect to the macroscopic
variable x and

ĉ = − φ

ρFc2
+

∫
YS

divyw0 dVy. (1.60)

If we rewrite the terms arising in the equations, taking into account that B : E(U ) =
div BU , and we eliminate the pressure in (1.48), then we have

ρ
∂2U

∂t2
− div (A [E(U )]) +

1

ĉ
(B − φI)grad (div (B − φI) U ) = 0, (1.61)

P = −1

ĉ
div (B − φI) U . (1.62)

1.3.3 Non-dissipative poroelastic model (open pores)

Now, we consider a porous medium with elastic solid part and open pores. We apply
the same homogenization technique that we have used in the previous section to obtain
other new model.

If we again assume that the porous medium is homogeneous and isotropic, from a
macroscopic point of view, then the equations satisfied by the pressure field P and the
displacement U in the porous medium are

(ρI − ρFA)
∂2U

∂t2
− div (A [E(U )]) − (A + B − φI)gradP = 0, (1.63)

ĉ
∂2P

∂t2
+

1

ρF

div (AgradP ) = −div

(
(A + B − φI)

∂2U

∂t2

)
, (1.64)

where we recall that φ is the porosity coefficient, ρF and ρS are, respectively, the mass
density of the fluid and solid part, ρ = ρF|YF| + ρS|YS|.

As we have made in the previous subsection, we are going to summarize how to ob-
tain this model by using the two-scale homogenization technique. If we state the same
fluid-structure problem as in (1.37)-(1.45) and define the same extended pressure, p̃ε, and
displacement field ũε, given by (1.47) and (1.46), respectively, then u0(x, t) and P (x, t)
satisfy the limit problem

ρ
∂2u0

∂t2
− A

(
gradxP + ρF

∂2u0

∂t2

)
= divx

(
A
[
E(u0)

])
+ divx (PB) − |YF|gradxP,

(1.65)

− |YF|
ρFc2

∂P

∂t
=divx

(
(|YF| I − A)

∂u0

∂t
− 1

ρF

A

∫ t

0

gradxP (x, τ)dτ

)
−B :

∂

∂t

(
Ex(u0)

)
− ∂P

∂t

∫
Y

divyw0 dVy, (1.66)

where we recall that ρ = ρF |YF| + ρS |YS|.



22 Chapter 1. Porous models

Tensor B and linear operator A are defined by (1.56) and (1.57), respectively, also using
the same cell problems (1.50)-(1.52) and (1.53)-(1.55) stated in the previous subsection.
We recall that the coefficient ĉ, the tensors A and B, and the operator A depend on the
geometrical shape of the pores of the material and on the properties of the fluid and solid
parts, but not on the spatial variables.

In order to define tensor A, we need to introduce a new cell problem. For each 1 ≤ j ≤ n,
we define the scalar field ξj as the solution of the following problem in the fluid part of the
unit cell:

−Δyξj = 0 in YF, (1.67)

∂ξj

∂ν
= ej · ν on ∂YF \ ∂Y, (1.68)

ξj is 1 − periodic in Y, (1.69)∫
YF

ξj dVy = 0, (1.70)

then each component Aij of tensor A is given by

Aij =

∫
YF

(
δij −

∂ξj

∂yi

)
dVy, 1 ≤ i, j ≤ n.

If U = u0 denotes the macroscopic displacement and we integrate equation (1.66) with
respect to time, we obtain

ρ
∂2U

∂t2
− A

(
gradP + ρF

∂2U

∂t2

)
− div (A [E(U )]) − (B − φI)gradP = 0, (1.71)

div

(
φ

∂2U

∂t2
− 1

ρF

AgradP − A
∂2U

∂t2

)
= B : E

(
∂2U

∂t2

)
+ ĉ

∂2P

∂t2
. (1.72)

where the differential operators are assumed to be written with respect to the macroscopic
variable x and ĉ is again given by (1.60). If we rewrite the terms which arise in the equations
taking into account that B : E(U ) = div BU , and eliminate the pressure in the first of
these equations, we finally obtain the system of equations (1.63)-(1.64).

In spite of the fact that this model only uses a unique displacement field U , which is an
advantage with respect to the classical Biot’s model, the inclusion of the pressure gradient
in equation (1.64) does not allow decoupling the equations as we have done in the model
for closed pores.

For the sake of completeness in the exposition we also summarize the model when a
dissipative behavior is assumed in a porous medium with open pores.

1.3.4 Dissipative poroelastic model (open pore)

The dissipative generalized Biot model has been derived, by using homogenization tech-
niques, in Clopeau et al. [49] for the case where fluid viscosity η is of order O(ε2), ε being
the size of the elementary cell. The equations are given by
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ρI
∂2U

∂t2
− d

dt

∫ t

0

A(t − τ)

(
gradP (x, τ) + ρF

∂2U

∂τ 2
(x, τ)

)
dτ

− div (A [E(U )]) − (B − φI)gradP = 0,

and

div

(
φ

∂U

∂t
−
∫ t

0

A(t − τ)

(
1

ρF

gradP (x, τ) +
∂2U

∂τ 2
(x, τ)

)
dτ

)
= div B

∂U

∂t
+ ĉ

∂P

∂t
,

where we recall that ρF is the fluid density, ρS is the density of the solid skeleton, ρ =
φρF + (1 − φ)ρS and

Aklij :=

(∫
YS

C

[
ei ⊗ ej + ej ⊗ ei

2
+ Ey

(
wij

)]
dVy

)
kl

,

B :=

∫
YS

C
[
Ey(w0)

]
dVy,

ĉ :=

∫
YS

divyw0 dVy,

Aij(t) :=

∫
YF

wij

(
y,

ρF

η
t

)
dVy,

which implies, in particular, Aij(0) =
∫

YF
wij(y, 0) dVy = φδij.

Let us remark that tensor B, linear operator A, and coefficient ĉ coincide with the
expressions given for the non-dissipative models, since the vector fields w0 and wij are
solution of the same boundary-value problems (1.50)-(1.52) and (1.53)-(1.55), respectively.
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2.1 Introduction

In this chapter, only the case of rigid frame porous material will be considered. Two
models will be taken into account: the above mentioned sort of Darcy’s model and the
Allard-Champoux model (see [5]), both presented in Section 1.2. As we have shown in the
previous chapter, the main difference between them lies in the frequency dependence of the
coefficients, namely, the mass density and bulk modulus.

In fact, through this chapter we will focus our attention on the numerical computation
of the resonance frequencies and the frequency response of some acoustic problems which
involve these two models, which will be always stated in bounded domains. With this
purpose we have implemented a finite element method. Because its easy implementation
and its effectiveness in handling complex geometries, the finite element method has become
popular to solve such problems. Some examples of the finite element method applied to
sound propagation in poroelastic media are in the papers by Easwaran et al [58], Panneton
and Atalla [92], Göransson [68] or Atalla et al [11]. All of them, take Biot’s general theory as
the starting point. Other kind of problems concerning porous materials, related to vibration
modes, were solved by Bermúdez et al [36].

More precisely, a finite element method introduced by Raviart and Thomas [96] will be
used to solve numerically the two models which are formulated in displacements. In fact, if
we consider a tetrahedron partition of the computational domain, the degrees of freedom of
the Raviart-Thomas elements are the normal displacement in each face of the tetrahedra.
So the divergence of the displacement field is conserved in the continuous and discrete
problem and, as it has been proven in Bermúdez et al [26] (see also [35] and references
therein), these finite elements do not produce spurious modes.

Numerical experiments using both models will be presented for different three-dimensional
examples. More precisely, we solve the source problem associated with an external harmonic
excitation which allows us to know the response of the porous material. We also solve the
nonlinear spectral problem associated with it.

The outline of this chapter is as follows. In Section 2.2 we present the two models
associated with the problem consisting of a finite two-layer system with rigid porous ma-
terials. They will be stated in the frequency domain leading to the response problem and
to a nonlinear eigenvalue problem. In Section 2.3 the free vibration problem associated
with this nonlinear eigenvalue problem is analyzed in order to obtain a deeper insight of
the overdamped vibration frequencies. In Section 2.4 weak formulations for both problems
are presented and an analysis of overdamped vibration frequencies is made. In Section 2.5
the finite element method is introduced, whereas in Section 2.6 the corresponding matrix
description is shown. Finally, in Section 2.7, numerical results for some 3D examples are
given for both the response and the spectral problems.
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2.2 Models for fluid-porous vibrations

Let us consider a coupled system consisting of an acoustic fluid (i.e. compressible
barotropic inviscid) and a porous medium contained in a three-dimensional cavity. Let ΩF

and ΩA be the domains occupied by the fluid and the porous medium, respectively (see
Figure 2.1). The boundary of ΩF ∪ ΩA, denoted by Γ, is the union of two parts, ΓD and
ΓE. ΓD denotes the rigid walls of the cavity. Let ν the outward unit normal vector to Γ.
We assume the interface between the fluid and the porous media, denoted by ΓI, is the
union of surfaces, Γ0, Γ1, . . . , ΓJ . Let n be the unit normal vector to this interface pointing
outwards ΩA. Figure 2.1 shows a vertical cut of the domain for a better understanding of
the notation.

ΩA

ΩF

n

ν

ΓD

ΩF

Γ0 Γ1ΓE

Figure 2.1: 3D domain and vertical cut.

For studying the response of the coupled system (fluid-porous medium), subject to
harmonic forces acting on ΓE, we consider two different models for the vibrations in the
porous medium: Darcy’s like model and Allard-Champoux model. Both models assume
the skeleton of the porous media is rigid.

Firstly, the governing equations for free small amplitude motions of an acoustic fluid
filling ΩF are given in terms of displacement and pressure fields by

ρF
∂2UF

∂t2
+ gradPF = 0 in ΩF, (2.1)

PF = −ρFc2 div UF in ΩF, (2.2)

where PF is the pressure, UF the displacement field, ρF the density and c the acoustic speed
in the fluid.

Secondly, let us recall the rigid porous models introduced in Section 1.2 of the previous
chapter. The Darcy’s like model only has slight differences with respect to the above fluid
model. One of them consists of an additional damping term, named Darcy’s term (see [3]).
Moreover, the interstitial fluid flow is supposed to be isothermal, a standard assumption



28 FEM for rigid porous media models in acoustics

in porous media acoustics. If UA is the displacement field and PA is the pressure in the
porous medium, the Darcy’s like model is described by the following equations,

ρF
∂2UA

∂t2
+ gradPA + σ

∂UA

∂t
= 0 in ΩA,

PA = −ρFc2

φγ
div UA in ΩA,

where σ is the flow resistivity tensor, φ is the porosity, γ is the ratio of specific heats of
fluid and, again, ρF is the density and c the acoustic speed of the fluid filling the porous
medium.

Since we neglect viscosity in the fluid and shear stresses in the porous media, only the
normal component of the displacement vanishes on the part ΓD of the cavity boundary,

UF · ν = 0 on ΓD ∩ ∂ΩF,

UA · ν = 0 on ΓD ∩ ∂ΩA.

Similarly, on the interface ΓI between the fluid and the porous medium we consider the
usual kinematic and kinetic interface conditions, i.e., UF · n = UA · n and PF = PA.

If a displacement F is applied on ΓE, the equations describing the motion of the coupled
system can be written, when we use the above model, as follows (see [3]):

ρF
∂2UF

∂t2
+ gradPF = 0 in ΩF, (2.3)

ρF
∂2UA

∂t2
+ gradPA + σ

∂UA

∂t
= 0 in ΩA, (2.4)

PF = −ρFc2 div UF in ΩF, (2.5)

PA = −ρFc2

φγ
div UA in ΩA, (2.6)

PF = PA on ΓI, (2.7)

UF · n = UA · n on ΓI, (2.8)

UF · ν = 0 on ΓD ∩ ∂ΩF, (2.9)

UA · ν = 0 on ΓD ∩ ∂ΩA, (2.10)

UF · ν = F on ΓE. (2.11)

We are interested in harmonic vibrations. Thus, we suppose the displacement is of the
form F (x1, x2, x3, t) = Re ( eiωtf(x1, x2, x3)). Then, all fields are harmonic, i.e.,

UF(x1, x2, x3, t) = Re
(
eiωtuF(x1, x2, x3)

)
, UA(x1, x2, x3, t) = Re

(
eiωtuA(x1, x2, x3)

)
,

PF(x1, x2, x3, t) = Re
(
eiωtpF(x1, x2, x3)

)
, PA(x1, x2, x3, t) = Re

(
eiωtpA(x1, x2, x3)

)
.
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By replacing these expressions into the above equations, we can define a harmonic source
problem associated with the evolutionary source problem (2.3)-(2.11), namely,

−ω2ρFuF + grad pF = 0 in ΩF, (2.12)

−ω2ρF

(
1 +

σ

iωρF

)
uA + grad pA = 0 in ΩA, (2.13)

pF = −ρFc2 div uF in ΩF, (2.14)

pA = −ρFc2

φγ
div uA in ΩA, (2.15)

pF = pA on ΓI, (2.16)

uF · n = uA · n on ΓI, (2.17)

uF · ν = 0 on ΓD ∩ ∂ΩF, (2.18)

uA · ν = 0 on ΓD ∩ ∂ΩA, (2.19)

uF · ν = f on ΓE. (2.20)

In this context, i.e., looking for harmonic motions, we can also consider the Allard-
Champoux model (see [5]) for rigid frame fibrous materials (a particular case of porous
medium with rigid solid part). In this case, not only the Darcy’s term is included in a new
generalized form but also the thermal exchange between the air and the fibers of the porous
medium is considered in the model. The new equations replacing (2.13) and (2.15) are

−ω2ρ(ω)uA + grad pA = 0 in ΩA, (2.21)

pA = −div (μ(ω)uA) in ΩA, (2.22)

where ρ(ω) and μ(ω) are the so called dynamic density tensor and dynamic bulk modulus
tensor, respectively (see [5]) which was described in the previous chapter.

Drawing an analogy with the harmonic source problem (2.12)-(2.20), we can establish
a similar one using the Allard-Champoux model (1.27):

−ω2ρFuF + grad pF = 0 in ΩF, (2.23)

−ω2ρ(ω)uA + grad pA = 0 in ΩA, (2.24)

pF = −ρFc2 div uF in ΩF, (2.25)

pA = −div (μ(ω)uA) in ΩA, (2.26)

pF = pA on ΓI, (2.27)

uF · n = uA · n on ΓI, (2.28)

uF · ν = 0 on ΓD ∩ ∂ΩF, (2.29)

uA · ν = 0 on ΓD ∩ ∂ΩA, (2.30)

uF · ν = f on ΓE. (2.31)
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2.3 Associated nonlinear eigenvalue problems

We can define a nonlinear eigenvalue problem, associated with the above source prob-
lem (2.23)-(2.31), which corresponds to determining the free vibrations of the fluid-porous
system. More precisely, if we assume that f = 0 in the system (2.23)-(2.31), we can define
the following problem:

Find a complex angular frequency ω and complex amplitudes of pressure and displace-
ment fields (pF, pA) and (uF,uA), respectively, not all identically zero, satisfying

−ω2ρFuF + grad pF = 0 in ΩF, (2.32)

−ω2ρ(ω)uA + grad pA = 0 in ΩA, (2.33)

pF = −ρFc2 div uF in ΩF, (2.34)

pA = −div (μ(ω)uA) in ΩA, (2.35)

pF = pA on ΓI, (2.36)

uF · n = uA · n on ΓI, (2.37)

uF · ν = 0 on Γ ∩ ∂ΩF, (2.38)

uA · ν = 0 on Γ ∩ ∂ΩA. (2.39)

On the other hand, if we used the Darcy’s like model (2.3)-(2.11), we still obtain the above
eigenvalue problem but the expressions for the dynamic density and the bulk modulus
change. In this case, they are ρ(ω) = ρFI + σ/(iω) and μ(ω) = ρFc2/(φγ)I.

The solutions ω to this nonlinear eigenvalue problem (2.32)-(2.39) are expected to be
complex numbers with non-null real and imaginary parts due to the dissipative terms. The
real part corresponds to the angular frequency of the damped vibration mode, whereas the
imaginary part corresponds to its decay rate and should be strictly positive. However, as
the example below shows, overdamped modes corresponding to purely imaginary positive
values of ω also exist.

To gain a deeper insight into these overdamped modes, let us introduce a simpler model
problem for which these eigenvalues can be computed analytically. Let us take ΩF =
(−aF, 0) × (0, b) × (0, d), ΩA = (0, aA) × (0, b) × (0, d), ΓD = Γ and ΓE = ∅ (see Figure
2.2). If we consider an isotropic porous medium, modelled by the Darcy’s equations, the
eigenvalue problem can be solved by separation of variables.

For this purpose, it is convenient to write the problem in terms of pressure. This can be
done by eliminating uF and uA in equations (2.32)-(2.33) by using (2.34) and (2.35). Thus
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Figure 2.2: Fluid and rigid porous medium in a cavity with rigid walls.

we obtain:

ω2pF + c2ΔpF = 0 in ΩF, (2.40)

ω2

(
1 +

σ

iωρF

)
pA +

c2

φγ
ΔpA = 0 in ΩA, (2.41)

pF = pA on ΓI, (2.42)

1

ρF

∂pF

∂n
=

1

ρF + σ
iω

∂pA

∂n
on ΓI, (2.43)

∂pF

∂ν
= 0 on ΓD ∩ ∂ΩF, (2.44)

∂pA

∂ν
= 0 on ΓD ∩ ∂ΩA. (2.45)

If we look for non-trivial solutions of this problem of the form

pF(x1, x2, x3) = XF(x1)YF(x2)ZF(x3),

pA(x1, x2, x3) = XA(x1)YA(x2)ZA(x3),

standard calculations show that:

YF(x2) = cos
jπx2

b
, YA(x2) = cos

jπx2

b
, j = 0,±1,±2, . . .

ZF(x3) = cos
kπx3

d
, ZA(x3) = cos

kπx3

d
, k = 0,±1,±2, . . .
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Furthermore, for any pair of integers j and k, we must have

X ′′
F = β2

FXF, −aF < x1 < 0, (2.46)

X ′′
A = β2

AXA, 0 < x1 < aA, (2.47)

XF(0) = XA(0), (2.48)
1

ρF

X ′
F(0) =

1

ρF + σ
iω

X ′
A(0), (2.49)

X ′
F(−aF) = 0, (2.50)

X ′
F(aA) = 0, (2.51)

with

β2
F +

ω2

c2
=

π2

b2
j2 +

π2

d2
k2, (2.52)

β2
A + ω2φγ

c2

(
1 +

σ

iρFω

)
=

π2

b2
j2 +

π2

d2
k2. (2.53)

The general solutions of (2.46) and (2.47) are XF(x1) = CF,1 eβFx1+CF,2 e−βFx1 and XA(x1) =
CA,1 eβAx1 + CA,2 e−βAx1 . By replacing these expressions in (2.48)-(2.51) and after some cal-
culations, we obtain the following dispersion relation:

βF

(
ρF +

σ

iω

)
cosh(aAβA) sinh(aFβF) + βAρF sinh(aAβA) cosh(aFβF) = 0. (2.54)

For any pair of integers j and k, this equation together with (2.52) and (2.53) constitute
a nonlinear system which has complex solutions (ω, βF) ∈ C2 if we consider βA as an
expression that depends on ω and βF via

βA =

√
β2

F +
iω

c2

φγσ

ρ
− ω2

c2
(1 − φγ),

which is obtained from (2.52) and (2.53).
As we show below, for some of these solutions ω is a purely imaginary positive number.

To see this, we plot in figures 2.3 and 2.4 the curves obtained from equations (2.52)-(2.54)
for positive real values of βF and λ = −iω (i.e., purely imaginary positive values of ω = iλ).

If we assume that aF > aA, it can be seen that the resulting curves intersect differently

in case of aA < π ρFc
σ

√
1

3−φγ
or aA > π ρFc

σ

√
1

3−φγ
. More precisely, the following alternative

holds:

• If aA < π ρFc
σ

√
1

3−φγ
, then for any pair of integers j, k = 0, 1, 2, . . ., there exists a

solution (ωjk, βF,jk) of (2.52)-(2.54), with ωjk = iλjk satisfying

σ

2ρF

< λjk ≤ max

{
σ

ρF

,
σ

ρFφγ

}
and λjk → σ

2ρF

as
j2

b2
+

k2

d2
→ ∞.
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Figure 2.3: Curves (2.52) and (2.54) for real values of βF and λ = −iω; case aA <

π ρFc
σ

√
1

3−φγ
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• If aA > π ρFc
σ

√
1

3−φγ
, then for any pair of integers j, k = 0, 1, 2, . . ., there exists a

solution (ωjk, βF,jk) of (2.52)-(2.54), with ωjk = iλjk satisfying

0 < λjk ≤ max

{
σ

ρF

,
σ

ρFφγ

}
and λjk → σ

2ρF

as
j2

b2
+

k2

d2
→ ∞.

Each of these solutions (ωjk, βF,jk) yields an eigenmode of (2.40)-(2.45) with

pF,jk(x1, x2, x3) = cos
jπx2

a
cos

kπx3

d

(
CF,1 eβF,jkx1 + CF,2 e−βF,jkx1

)
, −aF < x1 < 0,

pA,jk(x1, x2, x3) = cos
jπx2

a
cos

kπx3

d

(
CA,1 eβA,jkx1 + CA,2 e−βA,jkx1

)
, 0 < x1 < aA,

where

βA,jk =

√
β2

F,jk −
λjk

c2

φγσ

ρ
+

λ2
jk

c2
(φγ − 1).

For real porous-fluid configuration, the thickness of porous layer typically satisfies aA <

π ρFc
σ

√
1

3−φγ
and, in this case, the overdamped eigenvalues are always between σ

2ρF
and σ

ρF
.
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Figure 2.4: Curves (2.52) and (2.54) for real values of βF and λ = −iω; case aA >
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2.4 Statement of the weak formulation

For the sake of simplicity, we restrict our attention to the case where the porous medium
is isotropic, i.e., μ(ω) = μ(ω)I. Let us define the set V of kinematically admissible virtual
displacements,

V = {(vF,vA) ∈ H : vF · n = vA · n on ΓI} ,

where

H = {(vF,vA) ∈ H(div, ΩF) × H(div, ΩA) : vF · ν = 0 on Γ ∩ ∂ΩF ,

vA · ν = 0 on Γ ∩ ∂ΩA} ,

and

H(div, Ω) =
{
v ∈ (L2(Ω))3 : div v ∈ L2(Ω)

}
,

where L2(Ω) denotes the space of square integrable functions. To get a weak formulation
of the eigenvalue problem (2.32)-(2.39), equation (2.32) is multiplied by the conjugate of a
virtual fluid displacement v̄F satisfying the Dirichlet condition (2.38) and then integrated
in ΩF. By using a Green’s formula and equation (2.34), we obtain∫

ΩF

ρFc2 div uF div v̄F −
∫

ΓI

pFv̄F · n = ω2

∫
ΩF

ρFuF · v̄F.
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In an analogous way, equations (2.33), (2.35) and (2.39) yield∫
ΩA

μ(ω) div uA div v̄A +

∫
ΓI

pAv̄A · n = ω2

∫
ΩA

ρ(ω)uA · v̄A.

Now, by adding both equations and using the kinetic constraint (2.37), we can write the
following pure displacement eigenvalue problem:

Find a complex angular frequency ω and a pair of displacements (uF,uA) ∈ V, with uF

and uA not both identically zero, satisfying∫
ΩF

ρFc2 div uF div v̄F +

∫
ΩA

μ(ω) div uA div v̄A =

ω2

(∫
ΩF

ρFuF · v̄F +

∫
ΩA

ρ(ω)uA · v̄A

)
, (2.55)

for all (vF,vA) ∈ V.
As it is typical in displacement formulations (see [26]), ω = 0 is an eigenfrequency of

this problem in both the Darcy’s like model and the Allard-Champoux model, with an
infinite-dimensional eigenspace given by

Z = {(uF, uA) ∈ V : div uF = 0 in ΩF, div uA = 0 in ΩA} .

This eigenspace consists of pure rotational fluid motions inducing neither variations of
pressure in the fluid nor in the porous medium. They are mathematical solutions of the
eigenvalue problem with no physical entity because they do not correspond to vibration
modes of the coupled system. They arise because no irrotational constraint is imposed to
the fluid and porous displacements (see [26]).

2.5 Finite element discretization

Fluid and porous displacements belong to the same class of functional spaces, H(div, ΩF)
and H(div, ΩA), respectively; hence the same type of finite elements should be used for each
of them to discretize the variational problem (2.55).

Let Th be a regular tetrahedral partition of ΩF ∪ ΩA such that every tetrahedra is
completely contained either in ΩF or in ΩA. We also assume that the faces of tetrahedra
lying on ΓD ∪ ΓE are completely contained either in ΓD or in ΓE.

To approximate the fluid and porous displacements, the lowest order Raviart-Thomas
elements (see [96]) are used to avoid spurious modes typical of displacement formulations
(see [74]). They consist of vector valued functions which, when restricted to each tetrahe-
dron, are incomplete linear polynomials of the form

uh(x1, x2, x3) = (a + dx1, b + dx2, c + dx3), a, b, c, d ∈ C.

These vector fields have constant normal components on each of the four faces of a tetra-
hedron (Figure 2.5) which define a unique polynomial function of this type. Moreover, the
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global discrete displacement field uh is allowed to have discontinuous tangential components
on the faces of the tetrahedra of the partition Th. Instead, its constant normal components
must be continuous through these faces (these constant values being the degrees of freedom
defining uh). Because of this, div uh is globally well defined in the domain, ΩF ∪ ΩA.

Figure 2.5: Raviart-Thomas finite element.

Then, for fluid displacements we use the Raviart-Thomas space (see [96])

Rh (ΩF) := {u ∈ H(div, ΩF) : u|T ∈ R0(T ), ∀T ∈ Th, T ⊂ ΩF} ,

and an analogous space for porous medium displacements:

Rh (ΩA) := {u ∈ H(div, ΩA) : u|T ∈ R0(T ), ∀T ∈ Th, T ⊂ ΩA} ,

where

R0(T ) :=
{
u ∈ P1(T )3 : u(x1, x2, x3) = (a + dx1, b + dx2, c + dx3), a, b, c, d ∈ C

}
.

Then, the discrete analogue of V is

Vh := {(uF,uA) ∈ Rh (ΩF) × Rh (ΩA) : uF · n = uA · n for each

face on ΓI, uF · ν = 0 on Γ ∩ ∂ΩF, uA · ν = 0 on Γ ∩ ∂ΩA} .

With this finite element space we define an approximate problem to (2.55):
Find a complex number ωh and a pair of displacements (uh

F,uh
A) ∈ Vh not both identi-

cally zero, such that∫
ΩF

ρFc2 div uh
F div v̄h

F +

∫
ΩA

μ(ωh) div uh
A div v̄h

A =

ω2
h

(∫
ΩF

ρFuh
F · v̄h

F +

∫
ΩA

ρ(ωh)u
h
A · v̄h

A

)
, (2.56)

for all (vh
F, vh

A) ∈ Vh.
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2.6 Matrix description

In the previous section, a discrete formulation of our eigenvalue problem has been stated.
Now a matrix description is given and it is shown that it is a well posed symmetric nonlinear
generalized eigenvalue problem involving sparse matrices.

Let uh
F and vh

F denote the column vectors of components of uh
F and vh

F, respectively, in
the standard finite element basis associated with Rh(ΩF). Similarly, let uh

A and vh
A denote

the column vectors of components of uh
A and vh

A, respectively, in the standard finite element
basis associated with Rh(ΩA). Then the problem (2.56) can be written in matrix form as(

RF 0
0 RA(ωh)

)(
uh

F

uh
A

)
= ω2

h

(
MF 0
0 MA(ωh)

)(
uh

F

uh
A

)
, (2.57)

where

vh
F

∗
RFuh

F =

∫
ΩF

ρFc2 div uh
F div v̄h

F,

vh
A

∗
RA(ωh)u

h
A =

∫
ΩA

μ(ωh) div uh
A div v̄h

A,

vh
F

∗
MFuh

F =

∫
ΩF

ρFuh
F · v̄h

F,

vh
A

∗
MA(ωh)u

h
A =

∫
ΩA

ρ(ωh)u
h
A · v̄h

A.

RF and MF are the standard stiffness and mass matrices of the fluid, respectively, while
RA(ωh) and MA(ωh) are the corresponding ones for the porous medium. Notice that every
matrix is highly sparse because only a maximum of seven entries per row can be different
from zero (this corresponds to the number of faces of two adjacent tetrahedra).

Matrices RF and RA(ωh) in the eigenvalue problem (2.57) are singular; however, by per-
forming a translation in the eigenvalues, it can be written in an equivalent more convenient
way: (

RF + MF 0
0 RA(ωh) + MA(ωh)

)(
uh

F

uh
A

)
= (ω2

h + 1)

(
MF 0
0 MA(ωh)

)(
uh

F

uh
A

)
.

Now, matrix RF + MF is clearly positive definite, hence non-singular and symmetric. How-
ever, the matrix RA(ωh) + MA(ωh) is singular if there exists ωh such that ρ(ωh) is null.
When we use the Darcy’s like model, the dynamic density is null only if ωh = i σ

ρF
(which is

an eigenvalue associated to null divergence displacements in the porous medium) while the
bulk modulus is positive. In the case of Allard-Champoux model, there exists a frequency
ωh such that μ(ωh) is null but this is not true for ρ(ωh).

Thus, except for this special case, the matrix on the left hand side is non-singular and,
consequently, it can be used to build a well posed generalized eigenvalue problem to help us
to solve the non-linear eigenvalue problem (2.57). With this aim, we can define a function
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S : C → C such that S(ωh) = λh, where λh is the least modulus eigenvalue of the following
problem, (

RF + MF 0
0 RA(ωh) + MA(ωh)

)(
uh

F

uh
A

)
= λh

(
MF 0
0 MA(ωh)

)(
uh

F

uh
A

)
.

The function S is well defined because the generalized eigenvalue problem is well posed.
Furthermore, both matrices of this problem are symmetric and highly sparse and, hence,
convenient for computational purposes. Finally, calculation of the eigenvalues of the prob-
lem (2.57) is equivalent to find the roots ωh of the nonlinear equation,

S(ωh) − (ω2
h + 1) = 0.

A similar problem arising from finite element analysis of dissipative acoustic models can be
found in [36].

2.7 Numerical results

In this section we present some numerical results obtained with a computer code imple-
menting the numerical method given in this chapter. This code allows us to compute the
response diagram of enclosures as those in Figures 2.1 and 2.2, consisting of several layers
of fluids and porous media, and also to solve the nonlinear eigenvalue problem (2.55) by
means of a secant method combined with an inverse power method. This type of method
has been already used in other works devoted to solve nonlinear eigenvalues problems (see
[36]).

In order to validate our method, we have considered the following data: fluid is air
with density ρF = 1.225 kg/m3, c = 343 m/s whereas properties of the porous material are
summarized in σ = 104 kg/(m3s), φ = 0.71, γ = 1.4, Npr = 0.702 and P0 = 101320 Pa.
Concerning dimensions of enclosures shown in Figures 2.1 and 2.2, they are as follows:
length and width are 4 m whereas height is 2 m for the first layer of free fluid, 0.05 m for
the second layer of porous material and 0.1 m for the third layer of free fluid in the case of
the enclosure in Figure 2.1.

These two enclosures have been decomposed in tetrahedra (see Figure 2.6). Depending
on which one is considered and on the degree of mesh refinement (parameter n refers to the
number of divisions introduced for each layer of the enclosure in Figure 2.6), the meshes
are denoted as it is shown in Table 2.1.

Firstly we consider the enclosure in Figure 2.2. In Table 2.2 we show the first complex
eigenfrequencies (in Hz) for three different meshes: mesh 2, mesh 3 and mesh 4. One can see
that they have a small imaginary part and a real part “close” to the response peaks. We also
include the extrapolated complex eigenfrequencies computed by the least square method,
and the exact ones corresponding to both Darcy’s like model and Allard-Champoux model,
obtained by solving their respective nonlinear system of equations, for any pair of integers
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Figure 2.6: Mesh 2 corresponding to the enclosure shown in Figure 2.2

Mesh 0 Mesh 1 Mesh 2 Mesh 3 Mesh 4

Sample Figure 2.1 Figure 2.1 Figure 2.2 Figure 2.2 Figure 2.2
n 2 4 6 8 10

d.o.f 1072 8128 21600 50688 98400

Table 2.1: Name and degrees of freedom for the different meshes.

j and k, namely,

β2
F +

ω2

c2
=

π2

b2
j2 +

π2

d2
k2,

β2
A +

ω2ρ(ω)

K(ω)
=

π2

b2
j2 +

π2

d2
k2,

βFρ(ω) cosh(aAβA) sinh(aFβF) = −βAρF sinh(aAβA) cosh(aFβF).

An excellent agreement can be observed between exact and computed values, even for
the coarser mesh. This shows the effectiveness of the method. From this Table we have
calculated the order of convergence of the method and found that it is approximately O(h2),
h being a parameter associated with the mesh size, which is optimal for the lowest order
Raviart-Thomas finite elements we have used.

On the other hand, according to the analysis in Section 2.3, there exist overdamped
modes. In spite of the fact that these overdamped modes are not the magnitudes of interest,
from the numerical point of view it is important to know if they are well approximated by
the finite element method. Otherwise they could be a source of spectral pollution. Table
2.3 includes the computed and exact purely imaginary eigenfrequencies of higher modulus
for the same three meshes described above.
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Mode Mesh 2 Mesh 3 Mesh 4 Extrapolated Exact
ωF

100 265.791+0.382 i 265.891+0.287 i 265.961+0.242 i 266.708+0.162 i 266.026+0.164 i
ωF

110 375.722+0.786 i 375.894+0.593 i 375.977+0.502 i 376.144+0.338 i 376.132+0.342 i
ωF

001 523.913+1.943 i 524.685+1.284 i 525.038+0.965 i 525.644+0.332 i 525.656+0.389 i
ωF

200 531.251+1.704 i 531.418+1.284 i 531.506+1.087 i 531.733+0.772 i 531.680+0.737 i
ωF

020 528.894+1.684 i 530.052+1.273 i 530.622+1.081 i 531.807+0.730 i 531.680+0.737 i

Table 2.2: Rigid porous medium and air. Darcy’s like model.

Mode Mesh 2 Mesh 3 Mesh 4 Extrapolated Exact
ωF

00 8163.265 i 8163.265 i 8163.265 i 8163.265 i 8163.265 i
ωF

10 8156.630 i 8157.003 i 8157.277 i 8163.163 i 8158.435 i
ωF

11 8149.990 i 8150.735 i 8151.285 i 8163.382 i 8153.605 i

Table 2.3: Rigid porous medium and air. Darcy’s like model. Overdamped modes.

When the Allard-Champoux model is used we obtain similar results to those previously
obtained for the Darcy’s like model. They are shown in Tables 2.4 and 2.5.

Mode Mesh 2 Mesh 3 Mesh 4 Extrapolated Exact
ωF

100 264.498+0.768 i 264.545+0.582 i 264.570+0.495 i 264.641+0.336 i 264.622+0.340 i
ωF

110 373.830+1.586 i 373.915+1.212 i 373.968+1.033 i 374.195+0.692 i 374.082+0.712 i
ωF

001 519.622+4.457 i 519.968+3.274 i 520.166+2.687 i 520.829+1.440 i 520.584+1.606 i
ωF

200 528.662+3.436 i 528.559+2.652 i 528.550+2.266 i 528.535+1.461 i 528.598+1.561 i
ωF

020 526.277+3.395 i 527.194+2.630 i 527.670+2.254 i 528.816+1.475 i 528.598+1.561 i

Table 2.4: Rigid porous medium and air. Allard-Champoux model.

Nevertheless, when calculating overdamped modes with the Allard-Champoux model
some difficulties appear due to the highly oscillating eigenfunction associated with it. This
means that a very refined mesh must be used in order to get a suitable approximation. In
fact, only with mesh 4 a good accuracy has been achieved. Figure 2.7 shows the oscillation
in the eigenvector in a plane near the interface between the fluid and the porous material.

Finally, we consider the enclosure shown in Figure 2.1. The response curves are drawn
in Figure 2.8 when the model is solved with mesh 0 and mesh 1. In these curves log10 ||p||L2

is plotted for frequencies ranging from 50 to 1000 Hz.

Several response peaks can be observed in these curves depending on the refinement of
the mesh. We notice that the finer the mesh, the smaller the number of peaks in the response
diagram. Moreover, Table 2.6 shows the computed (complex) resonance frequencies for the
damped coupled system shown in Figure 2.1 and the (real) eigenfrequencies of a similar
undamped enclosure where the porous material has been replaced with air. As one can see,
all are quite similar.
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Mode Mesh 2 Mesh 3 Mesh 4 Exact
ωF

100 4983.698 i 4439.175 i 4439.603 i 4438.380 i
ωF

110 4979.907 i 4436.174 i 4436.828 i
ωF

001 4976.004 i 4435.718 i 4435.633 i 4435.279 i

Table 2.5: Rigid porous medium and air. Allard - Champoux model. Overdamped modes.

Figure 2.7: Eigenvector for an overdamped mode with Allard-Champoux model

2.8 Conclusions

In this chapter a three-dimensional finite element method has been implemented to solve
the system of equations modelling the macroscopic behavior of a porous material with rigid
solid frame. It allows us to compute both the response to a harmonic excitation and the free
vibrations of a three-dimensional multilayer system consisting of different layers composed
of free fluids and rigid porous media. The finite element used is the lowest order face element
introduced by Raviart and Thomas, with the advantage of eliminating the spurious modes.

For rigid porous media we have considered two models: a Darcy’s like model and the
Allard-Champoux model. These two models are equivalent when frequency is much lower
than flow resistivity.

When solving the problem of free vibrations, the computer program predicts very well
the exact complex eigenfrequencies for the Darcy’s like model in the case of a test ex-
ample. This is true even for the overdamped modes. On the other hand, when using the
Allard-Champoux model, the eigenfrequencies with non-null real part are well approximated
whereas calculation of overdamped modes is much more complicated due to the highly os-
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Figure 2.8: Response curve with Mesh 0 (left) and Mesh 1 (right)

Undamped peaks Complex eigenfrequencies Damped peaks Damped peaks
Mesh 0 Mesh 1

269.392 266.189+1.495 i 250.5 250.5
588.840 594.737+8.535 i 572.5 581.0
751.297 751.811+1.506 i 720.5 748.0
808.175 797.242+1.750 i 785.5 -
924.519 936.395+5.309 i 921.0 -

Table 2.6: Resonance vibration frequencies and complex eigenfrequencies

cillating eigenfunction associated with them, as observed in Figure 2.7. This forces us to
use very fine meshes.



Chapter 3

Finite element solution of new
displacement/pressure poroelastic
models in acoustics

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Statement of the problem . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Weak formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Finite element discretization . . . . . . . . . . . . . . . . . . . . . 48

3.5 Matricial description . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Numerical solution of cell problems . . . . . . . . . . . . . . . . 53

3.7 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

43



44 FEM for poroelastic models in acoustics

3.1 Introduction

In this chapter, we consider the case of elastic frame porous material. The non-
dissipative model that we shall take into account has already been presented in Section
1.3.3. The advantages exhibited by this model with respect to classical Biot’s model (see
Section 1.3.1) lies in that we know mathematical expressions allowing us to compute their
coefficients.

We will focus our attention on the numerical computation of the frequency response
of some acoustic problems which involve the non-dissipative open-pores model (see Eqs.
(1.63)-(1.64)), which will be always stated in bounded domains. With this purpose we have
implemented a finite element method based on different types of elements for each pressure
and displacement fields in the acoustic source problems.

More precisely, to approximate fluid displacements, the lowest order Raviart-Thomas
finite element (see [96] and [37]) is used in order to avoid spurious modes typical of dis-
placement formulations when they are discretized by standard Lagrange finite elements (see
[74]). To approximate displacements in the porous medium, we use the so called “MINI
element” in order to achieve stability in the discrete problem (see [8]) and finally, the porous
medium pressure is approximated using continuous piecewise linear finite elements.

Numerical experiments presented in this chapter concerns the solution of a source prob-
lem associated with an external harmonic excitation in some three-dimensional examples.
Besides, the optimal order of convergence of the discrete problem is also showed for a
problem where the exact solution is known.

The outline of the chapter is as follows. In Section 3.2 we recall several models of porous
media associated with an elastic solid skeleton. In Section 3.3 we consider the model for
open poroelastic materials introduced by Ferŕın and Mikelić [62] coupled with the model for
acoustic propagation in a fluid written in terms of displacements. Then both are specialized
for harmonic waves in order to obtain the frequency response of the system. In Section
3.4 a weak formulation for this coupled model is presented. Numerical solution by finite
element approximation is addressed in Section 3.5 and a matrix description of the discrete
problem is given in Section 3.6. Section 3.7 is devoted to the computation of coefficients
in the model by solving cell problems. Finally, in Section 3.8, some numerical results are
shown both for academic tests and for enclosures containing a real life porous material and
air.

3.2 Statement of the problem

We consider a coupled system consisting of an acoustic fluid (i.e. inviscid compressible
barotropic) in contact with a poroelastic medium. Both are enclosed in a three-dimensional
cavity with rigid walls except one on which a harmonic excitation is applied. Let ΩF and
ΩA be the domains occupied by the fluid and the porous medium, respectively (see Figure
3.1). The boundary of ΩF ∪ΩA, denoted by Γ, is the union of two parts, ΓW and ΓE, where
ΓW denotes the rigid walls of the cavity. Let ν be the outward unit normal vector to Γ.
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The interface between the fluid and the porous medium is denoted by ΓI and n is the unit
normal vector to this interface pointing outwards ΩA. Figure 3.1 includes a vertical cut of
the domain for a better understanding of notations.

b

d

aF

ΩF ΩA

aA

ν

ΓW

n

ΓIΓE

Figure 3.1: 3D domain and vertical cut.

In order to study the response of the fluid-porous coupled system subject to a harmonic
excitation acting on ΓE, we assume that the skeleton of the porous medium is elastic and
consider the model for open pore non-dissipative poroelastic media given in Chapter 1.

First, we recall that, as we have considered in Chapter 2, the governing equations for free
small amplitude motions of an acoustic fluid filling ΩF are given, in terms of displacement
and pressure fields, by

ρF
∂2UF

∂t2
+ gradPF = 0 in ΩF, (3.1)

PF = −ρFc2div UF in ΩF, (3.2)

where PF is pressure, UF is displacement field, ρF is density and c is acoustic speed.
Secondly, we denote by UA and PA the macroscopic displacement and pressure fields in

the porous medium. The governing equations of the small amplitud motion are given by
(1.63)-(1.64), i.e.,

(ρI − ρFA)
∂2UA

∂t2
− div (A [E(UA)]) − (A + B − φI)gradPA = 0 in ΩA, (3.3)

ĉ
∂2PA

∂t2
+

1

ρF

div (AgradPA) = −div

(
(A + B − φI)

∂2UA

∂t2

)
in ΩA, (3.4)

where E(U ) = 1
2
(gradU +(gradU )t) and coefficient ĉ, tensors A,B, and linear operator

A depend on the geometry of the cells composing the poroelastic material and also on
physical properties of its solid and fluid parts. In fact, one can check that B is a symmetric
linear operator and tensor A (A[E])kl = AklijEij) satisfies Aklij = Alkij = Alkji.

Since the fluid is supposed to be inviscid, only the normal component of displacements
vanishes on ΓW, namely,

UF · ν = 0 on ΓW ∩ ∂ΩF, (3.5)
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whereas for boundary displacement of porous medium we suppose

UA = 0 on ΓW ∩ ∂ΩA. (3.6)

Similarly, on interface ΓI between fluid and porous medium we consider the usual interface
conditions of continuity of forces and normal displacements, that is,

−PFn = A [E(UA)] n + PA (A + B − φI) n on ΓI, (3.7)

UF · n = UA · n on ΓI. (3.8)

If a normal displacement F is imposed on ΓE, the above equations describing the motion
of coupled system (3.1)-(3.8) must be completed with boundary condition

UF · ν = F on ΓE. (3.9)

Finally, in order to close the model (see [11]), we are going to assume that

Agrad pA · ν = 0 on ΓW ∩ ∂ΩA, (3.10)

Agrad pA · n = 0 on ΓI. (3.11)

We are interested in harmonic vibrations so let us suppose excitation F to be of the
form, F (x1, x2, x3, t) = Re ( eiωtf(x1, x2, x3)). Then all fields are also harmonic:

UF(x1, x2, x3, t) = Re
(
eiωtuF(x1, x2, x3)

)
, UA(x1, x2, x3, t) = Re

(
eiωtuA(x1, x2, x3)

)
,

PF(x1, x2, x3, t) = Re
(
eiωtpF(x1, x2, x3)

)
, PA(x1, x2, x3, t) = Re

(
eiωtpA(x1, x2, x3)

)
.

By replacing these expressions in equations (3.1)-(3.11), we can define a harmonic source
problem associated with the evolutionary source problem, namely,

ω2ρFuF − grad pF = 0 in ΩF, (3.12)

pF = −ρFc2div uF in ΩF, (3.13)

ω2 (ρI − ρFA) uA + div (A[E(uA)]) + (A + B − φI)grad pA = 0 in ΩA, (3.14)

−ω2ĉpA +
1

ρF

div(Agrad pA) = ω2div ((A + B − φI) uA) in ΩA, (3.15)

−pFn = A [E(uA)] n + pA (A + B − φI) n on ΓI, (3.16)

uF · n = uA · n on ΓI, (3.17)

uF · ν = 0 on ΓW ∩ ∂ΩF, (3.18)

uA = 0 on ΓW ∩ ∂ΩA, (3.19)

Agrad pA · ν = 0 on ΓW ∩ ∂ΩA, (3.20)

Agrad pA · n = 0 on ΓI, (3.21)

uF · ν = f on ΓE. (3.22)
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3.3 Weak formulation

In order to use finite element methods for numerical solution of (3.12)-(3.22), we write
a weak formulation. For this purpose, we first introduce appropriate functional spaces. Let
V be the Hilbert space

V = H(div, ΩF) × L2(ΓI) × H1(ΩA)3 × H1(ΩA)

and V0 its closed subspace

V0 = {(vF, qF,vA, qA) ∈ V : vF · ν = 0 on (ΓW ∪ ΓE)∩ ∂ΩF, vA = 0 on ΓW ∩ ∂ΩA} .

Because of the choice of this functional framework and due to a trace Theorem for space
H(div, ΩF), we are led to assume that Dirichlet data function f belongs to functional space

H
− 1

2
00 (ΓE).

In order to get a weak formulation of source problem (3.12)-(3.22), we first multiply
equation (3.12) by the complex conjugate of a virtual fluid displacement vF ∈ H(div, ΩF)
satisfying Dirichlet condition (3.18), and then integrate in ΩF. By using a Green’s formula
and equation (3.13) we obtain

−ω2

∫
ΩF

ρFuF · v̄F +

∫
ΩF

ρFc2divuF divv̄F −
∫

ΓI

pFv̄F · n = 0.

In an analogous way, equations (3.14) and (3.15), when multiplied by the complex conjugate
of a virtual porous medium displacement v̄A satisfying Dirichlet condition (3.19) and a
virtual pressure q̄A and then integrated in ΩA yield

− ω2

∫
ΩA

(ρI − ρFA) uA · v̄A +

∫
ΩA

A[E(uA)] : E(v̄A)+∫
ΩA

div
(
(A + B − φI)tv̄A

)
pA =

∫
ΓI

A [E(uA)] n · v̄A+∫
ΓI

(A + B − φI)tv̄A · npA,

and∫
ΩA

ĉpAq̄A +

∫
ΩA

1

ρFω2
Agrad pA · grad q̄A +

∫
ΩA

div ((A + B − φI)uA) q̄A =∫
ΓI

1

ρFω2
q̄AAgrad pA · n +

∫
ΓD∩∂ΩA

1

ρFω2
q̄AAgrad pA · ν,

respectively.
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Now, by adding the last three equations and using interface and boundary conditions
(3.16), (3.20) and (3.21), we obtain∫

ΩF

ρFc2 div uF div v̄F − ω2

∫
ΩF

ρFuF · v̄F − ω2

∫
ΩA

(ρI − ρFA) uA · v̄A+∫
ΩA

A[E(uA)] : E(v̄A) +

∫
ΩA

div
(
(A + B − φI)tv̄A

)
pA +

∫
ΩA

ĉpAq̄A+∫
ΩA

1

ρFω2
Agrad pA · grad q̄A +

∫
ΩA

div ((A + B − φI)uA) q̄A =∫
ΓI

pF(v̄F · n − v̄A · n).

Finally, kinematic constraint (3.17) is weakly imposed on the interface between the
fluid and the porous medium by integrating this equation multiplied by any test function
qF defined on ΓI: ∫

ΓI

q̄F(uA · n − uF · n) = 0.

All together allow us to write the following source problem:

For fixed angular frequency ω, find (uF, pF,uA, pA) ∈ V satisfying (3.18), (3.19), (3.22)
and furthermore,∫

ΩF

ρFc2 div uF div v̄F − ω2

∫
ΩF

ρFuF · v̄F − ω2

∫
ΩA

(ρI − ρFA) uA · v̄A+∫
ΩA

A[E(uA)] : E(v̄A) +

∫
ΩA

div
(
(A + B − φI)tv̄A

)
pA +

∫
ΩA

ĉpAq̄A+∫
ΩA

1

ρFω2
Agrad pA · grad q̄A +

∫
ΩA

div ((A + B − φI)uA) q̄A =∫
ΓI

pF(v̄F · n − v̄A · n), (3.23)

∫
ΓI

q̄F(uA · n − uF · n) = 0, (3.24)

for all (vF, qF,vF, qA) ∈ V0.

3.4 Finite element discretization

Fluid and porous displacement fields belong to different functional spaces, H(div, ΩF)
and H1(ΩA)3, respectively, hence it is quite natural to use different types of finite elements
for each of them in order to discretize weak problem (3.23)-(3.24).
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Let Th be a regular family of tetrahedral partitions of ΩF∪ΩA such that every tetrahedra
is completely contained either in ΩF or in ΩA. We also assume that faces of tetrahedra lying
on ΓW ∪ ΓE ∪ ΓI are completely contained either in ΓW, or in ΓE or in ΓI.

As we have considered in Chapter 2, lowest order Raviart-Thomas finite elements have
been used to approximate fluid displacements. They consist of vector valued functions
which, when restricted to each tetrahedron, are incomplete linear polynomials of the form

uh(x1, x2, x3) = (a + dx1, b + dx2, c + dx3), a, b, c, d ∈ C.

These vector fields have constant normal components on each of the four faces of a tetra-
hedron (see Figure 3.2) which define a unique polynomial function of this type. Moreover,
the global discrete displacement field uh is allowed to have discontinuous tangential com-
ponents on the faces of tetrahedra of partition Th. Instead, its constant normal components
must be continuous through these faces (these constant values being the degrees of freedom
defining uh). Because of this, div uh is globally well defined in ΩF.

Figure 3.2: Raviart-Thomas finite element.

Thus, for fluid displacements we use the Raviart-Thomas space (see [96])

Rh (ΩF) := {u ∈ H(div, ΩF) : u|T ∈ R0(T ), ∀T ∈ Th, T ⊂ ΩF} ,

where

R0(T ) :=
{
u ∈ P1(T )2 : u(x1, x2, x3) = (a + dx1, b + dx2, c + dx3), a, b, c, d ∈ C

}
.

To approximate displacements in the porous medium, we use the so called “MINI ele-
ment” in order to achieve stability in the discrete problem (see [8]). We recall definition of
the corresponding discrete space by first defining bubble functions. For fixed T ∈ Th, we
denote by λT

1 , . . . , λT
4 barycentric coordinates in tetrahedron T . Then bubble function α,

associated with T , is defined by the product

α = 256
4∏

i=1

λT
i .
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This bubble function is a polynomial of degree four, null on the surface of tetrahedron T
and taking value one at barycenter of T . The approximating space associated with the
MINI element consists of continuous vector valued functions whose components, restricted
to each tetrahedron, are sum of a bubble function and a polynomial of degree one, i.e.,

uh
i (x1, x2, x3)|T = ax1 + bx2 + cx3 + d + eα(x1, x2, x3), a, b, c, d, e ∈ C.

The degrees of freedom for functions in this space are the values of the vector field at
vertices and barycenters of tetrahedra (see Figure 3.3).

Value at vertex

Value at barycenter

Figure 3.3: MINI finite element.

Then, for porous displacements, we use the MINI space

Mh (ΩA) :=
{
u ∈ H1(ΩA)3 : u|T ∈ (P1(T ) ⊕ Pb(T ))3, ∀T ∈ Th, T ⊂ ΩA

}
,

where
Pb(T ) = {aα : a ∈ C}.

To approximate porous medium pressure, continuous piecewise linear finite elements are
used. They consist of scalar valued functions which, when restricted to each tetrahedron,
are polynomials of the form

ph(x1, x2, x3)|T = ax1 + bx2 + cx3 + d, a, b, c, d ∈ C.

Thus, the porous medium pressure is approximated in the finite-dimensional space,

Lh (ΩA) :=
{
p ∈ H1(ΩA) : p|T ∈ P1(T ), ∀T ∈ Th, T ⊂ ΩA

}
.

We recall that the degrees of freedom defining ph are its values at vertices of tetrahedra.
Finally, in order to approximate the interface pressure we use piecewise constant func-

tions on the triangles of the mesh lying on the interface ΓI . In other words, for interface
pressure we use the space

Ch (ΓI) :=
{
p ∈ L2(ΓI) : p|∂T ∈ P0(∂T ), ∀T ∈ Th, ∂T ∩ ΓI �= ∅

}
.
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The degrees of freedom of this finite element space are the (constant) values on triangles
in ΓI.

Consequently, the discrete analogue to V is

Vh = Rh (ΩF) × Mh (ΩA) × Lh (ΩA) × Ch (ΓI)

while the corresponding to V0 is

V0h = {(vF, qF,vA, qA) ∈ Rh (ΩF) × Mh (ΩA) × Lh (ΩA) × Ch (ΓI) :

vF · ν = 0 on (ΓD ∪ ΓE) ∩ ∂ΩF,vA = 0 on ΓD ∩ ∂ΩA} .

With these finite element spaces we can define the approximate problem to (3.23)-(3.24)
by

For an angular frequency ω fixed, find (uh
F, ph

F,uh
A, ph

A) ∈ Vh satisfying

uh
F · ν = 0 on faces in ΓW ∩ ∂ΩF,

uh
A = 0 at vertices in ΓW ∩ ∂ΩA,

uh
F · ν = f on faces in ΓE,

and furthermore,∫
ΩF

ρFc2 div uh
F div v̄h

F − ω2

∫
ΩF

ρFuh
F · v̄h

F − ω2

∫
ΩA

(ρI − ρFA) uh
A · v̄h

A+∫
ΩA

AH [D(uh
A)] : D(v̄h

A) +

∫
ΩA

div
(
(A + BH − φI)tv̄h

A

)
ph

A +

∫
ΩA

ĉph
Aq̄h

A+∫
ΩA

1

ρFω2
Agrad ph

A · grad q̄h
A +

∫
ΩA

div
(
(A + BH − φI)uh

A

)
q̄h
A =∫

ΓI

ph
F(v̄h

F · n − v̄h
A · n) (3.25)

and ∫
ΓI

q̄h
F(uh

A · n − uh
F · n) = 0, (3.26)

for all (vh
F, qh

F, vh
F, qh

A) ∈ V0h.

3.5 Matricial description

In the previous Section, a discrete formulation of our source problem has been estab-
lished. Now a matrix description is given and, assuming that it is well posed, we show that
it is equivalent to a reduced linear system whose unknowns are the degrees of freedom of
the interface pressure.
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Let Uh
F and V h

F denote the column vectors of nodal components of fluid displacement
fields uh

F and vh
F, in the standard finite element basis associated with Rh (ΩF), excluding

those corresponding to faces on (ΓW ∪ ΓE) ∩ ∂ΩF. Similarly, let (Uh
A, P h

A) and (V h
A , Qh

A)
denote the column vectors of nodal components of the pair fields (uh

A, ph
A) and (vh

A, qh
A),

in the standard finite element basis associated with Mh (ΩA) × Lh (ΩA) , excluding those
corresponding to vertices in ΓW ∩ ∂ΩA for Uh

A and V h
A . Lastly, let us call P h

F and Qh
F the

vectors of nodal components of the interface pressure fields ph
F and qh

F, in the space of finite
elements Ch (ΓI).

Then the discretization problem can be written in matrix form as⎛⎜⎜⎝
RF − ω2MF 0 0 −DF

0 Ru,A − ω2Mu,A C∗ DA

0 C ω−2Rp,A + Mp,A 0
−D∗

F D∗
A 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝

Uh
F

Uh
A

P h
A

P h
F

⎞⎟⎟⎠ =

⎛⎜⎜⎝
Bh

0
0
0

⎞⎟⎟⎠ (3.27)

where

(V h
F )∗RFUh

F =

∫
ΩF

ρFc2 div uh
F div v̄h

F,

(V h
A )∗Ru,AUh

A =

∫
ΩA

A[E(uh
A)] : E(v̄h

A),

(Qh
A)∗Rp,AP h

A =

∫
ΩA

1

ρF

Agrad ph
A · grad q̄h

A,

(V h
F )∗MFUh

F =

∫
ΩF

ρFuh
F · v̄h

F,

(V h
A )∗Mu,AUh

A =

∫
ΩA

(ρI − ρFA) uh
A · v̄h

A,

(Qh
A)∗Mp,AP h

A =

∫
ΩA

ĉph
Aq̄h

A,

(Qh
A)∗CUh

A =

∫
ΩA

div
(
(A + B − φI)uh

A

)
q̄h
A,

(V h
F )∗DFP h

F =

∫
ΓI

ph
Fv̄h

F · n,

(V h
F )∗DAP h

F =

∫
ΓI

ph
Fv̄h

A · n,

and the right hand side Bh comes from boundary data f . RF and MF are the standard stiff-
ness and mass matrices of the fluid, while Ru,A, Mu,A and Rp,A, Mp,A are the corresponding
ones for the porous medium in the case of displacement and pressure, respectively. Notice
that every matrix depending on fluid fields is highly sparse because only a maximum of
seven entries per row can be different from zero (this corresponds to the number of faces of
two adjacent tetrahedra).
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Now, we are going to choose ω such that it is not an eigenvalue of the discrete problem.
Specifically, we assume that the entire matrix of linear system (3.27) and matrices RF −
ω2MF and

KA =

(
Ru,A − ω2Mu,A C∗

C ω−2Rp,A + Mp,A

)
(3.28)

are non-singular. On the other hand, we notice that matrix ω−2Rp,A + Mp,A is clearly
positive definite and hence non-singular.

In order to improve the resolution of linear system (3.27), we are going to take into
account the non-singularity of diagonal matrices. Firstly, we can rewrite this system as

(RF − ω2MF)Uh
F − DFP h

F = Bh, (3.29)

(Ru,A − ω2Mu,A)Uh
A + C∗P h

A + DAP h
F = 0, (3.30)

CUh
A + (ω−2Rp,A + Mp,A)P h

A = 0, (3.31)

−D∗
FUh

F + D∗
AUh

A = 0. (3.32)

Since matrix RF−ω2MF is non-singular, because of the choice of frequency ω, and ω−2Rp,A+
Mp,A is positive definite, we can obtain from (3.29) and (3.31)

Uh
F = (RF − ω2MF)−1(Bh + DFP h

F ), (3.33)

P h
A = −(ω−2Rp,A + Mp,A)−1CUh

A. (3.34)

If we take into account that KA is non-singular and ω−2Rp,A + Mp,A is positive definite, we
can conclude that matrix Ru,A − ω2Mu,A − C∗(ω−2Rp,A + Mp,A)−1C is also non-singular.
Then, it results from (3.30) and (3.34) that

Uh
A = −(Ru,A − ω2Mu,A − C∗(ω−2Rp,A + Mp,A)−1C)−1DAP h

F . (3.35)

Collecting equations (3.33) and (3.35), we can write a simple linear system from (3.32)
whose unique unknown is the nodal interface pressure vector P h

F , namely,{
D∗

A(Ru,A − ω2Mu,A − C∗(ω−2Rp,A + Mp,A)−1C)−1DA

+D∗
F(RF − ω2MF)−1DF

}
P h

F = D∗
F(RF − ω2MF)−1Bh,

where the involved matrix is non-singular because this system is equivalent to the full
system (3.27) which has unique solution.

3.6 Numerical solution of cell problems

In this section we solve the cell problems allowing us to obtain values of the macroscopic
coefficients for the poroelastic model considered in this chapter. More precisely, we are
going to solve problems (1.50)-(1.52), (1.53)-(1.55) and (1.67)-(1.70) presented in Chapter
1 for the fluid and solid cells shown in Figure 3.4. This is a first step to determine the
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components of operator A, matrices A and B, and scalar ĉ appearing in the poroelastic
model (3.3)-(3.4).

We use a finite element method to solve these boundary-value problems. More precisely,
we employ continuous piecewise linear finite elements on tetrahedral meshes to approximate
wij, w0 and ξi. These meshes can be seen in Figure 3.4.

O

X
Y

Z

O

X
Y

Z

Figure 3.4: Meshes of the fluid and solid part of the unit cell (YF and YS, respectively)

We assume that the solid part of the poroelastic material is glasswool of type R, with
the following properties:

Young modulus 8.7 × 1010 N/m2

Poisson coefficient 0.15

Density 2500 kg/m3

Assuming that the poroelastic material is completely saturated by air, we have obtained
the following macroscopic coefficients for generalized Biot model (3.3)-(3.4):

A =

⎛⎝ 0.7576 0.3222E-4 0.8560E-4
0.8526E-4 0.7581 0.8646E-4
0.5362E-4 0.2928E-4 0.7573

⎞⎠ ,

ĉ = -0.4955E-11,
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B =

⎛⎝ -0.2050 -0.1385E-3 -0.5167E-3
-0.1385E-3 -0.2061 0.4572E-3
-0.5167E-3 0.4572E-3 -0.2047

⎞⎠ ,

A = 1011 ×

⎛⎝ M11 M12 M13

M12 M22 M23

M13 M23 M33

⎞⎠ ,

where

M11 =

⎛⎝ 0.1589 -0.3337E-4 -0.8505E-4
-0.3337E-4 0.1195E-1 -0.1311E-3
-0.8505E-4 -0.1311E-3 0.1213E-1

⎞⎠ ,

M12 =

⎛⎝ -0.1057E-4 0.1813E-1 -0.5855E-4
0.1813E-1 -0.2185E-4 -0.1051E-5
-0.5855E-4 -0.1051E-5 0.2270E-4

⎞⎠ ,

M13 =

⎛⎝ 0.1115E-5 -0.1254E-4 0.1834E-1
-0.1254E-4 0.8837E-6 0.1045E-5
0.1834E-1 0.1045E-5 0.4812E-5

⎞⎠ ,

M22 =

⎛⎝ 0.1190E-1 -0.1144E-3 0.2185E-3
-0.1144E-3 0.1586 0.7522E-5
0.2185E-3 0.7522E-5 0.1204E-1

⎞⎠ ,

M23 =

⎛⎝ 0.1190E-5 0.4927E-4 -0.1044E-3
0.4927E-4 -0.1069E-5 0.1851E-1
-0.1044E-3 0.1851E-1 -0.1966E-5

⎞⎠ ,

M33 =

⎛⎝ 0.1212E-1 0.5964E-2 -0.1349E-3
0.5964E-2 0.1203E-1 -0.2908E-3
-0.1349E-3 -0.2908E-3 0.1584

⎞⎠ .

Moreover, porosity of the porous sample is φ = 0.648.
Finally, by progressive refinement of meshes one can see that matrices of macroscopic

parameters A and B tend to isotropic matrices. Similarly, tensor A has the same structure
as the elasticity tensor for isotropic elastic materials. Thus, due to the symmetry properties
of the cell, the macroscopic behavior of the studied porous medium is isotropic.

3.7 Numerical results

In this Section we present some numerical results obtained with a computer code devel-
oped by us which implements the numerical methods proposed in this chapter. This code
allows us to compute the response diagram of the enclosure shown in Figure 3.1, consisting
of a fluid and a poroelastic medium.
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In order to validate our method, we are going to build a simple example which can be
reduced to a one-dimensional problem and then solved exactly. We recall that equations
satisfied by pressure and displacement fields in the poroelastic media are

ω2 (ρI − ρFA) uA + div (A[D(uA)]) + (A + B − φI)grad pA = 0 in ΩA,

−ω2ĉpA +
1

ρF

div(Agrad pA) = ω2 div ((A + B − φI) uA) in ΩA.

If we assume that every linear operator is a multiple of the identity operator, we can find
a solution (uA, pA) of the form uA(x1, x2, x3) = uA(x3)e3, pA(x1, x2, x3) = pA(x3), and
rewrite the above three-dimensional problem as a one-dimensional problem, namely,

ω2 (ρ − ρFa) uA + su′′
A + (a + b − φ) p′A = 0 in (0, aA),

−ω2ĉpA +
a

ρF

p′′A = ω2 (a + b − φ) u′
A in (0, aA),

where the prime denotes derivative with respect to z and we have supposed that A [E(uA)] e3 =
su′

Ae3, A = aI, B = bI. After some algebraic manipulations, we obtain

a

ω2ρF

p′′′′A −
(

ĉ − (a + b − φ)2

s
− a(ρ − ρFa)

ω2sρF

)
p′′A − ω2(ρ − ρFa)ĉ

s
pA = 0 in (0, aA),

uA =
s

ω2(a + b − φ)(ρ − ρFa)

(
− a

ω2ρF

p′′′A +

(
ĉ − (a + b − φ)2

s

)
p′A

)
in (0, aA).

Let us assume a similar assumption for fluid displacement and interface pressure, i.e.,
uF(x1, x2, x3) = uF(x3)e3 and pF(x1, x2, x3) = pF(x3). We also suppose that ΩF = (0, b) ×
(0, d) × (ãF, 0), being ãF = −aF, and ΩA = (0, b) × (0, d) × (0, aA). Then the coupled
fluid-poroelastic problem can be written as

−ω2ρFuF + p′F = 0 in (ãF, 0), (3.36)

pF = −ρFc2u′
F in (ãF, 0), (3.37)

a

ω2ρF

p′′′′A −
(

ĉ − (a + b − φ)2

s
− a(ρ − ρFa)

ω2sρF

)
p′′A − ω2(ρ − ρFa)ĉ

s
pA = 0 in (0, aA), (3.38)

uA =
s

ω2(a + b − φ)(ρ − ρFa)

(
− a

ω2ρF

p′′′A +

(
ĉ − (a + b − φ)2

s

)
p′A

)
in (0, aA), (3.39)

−pF(0) = su′
A(0) + (a + b − φ) pA(0), (3.40)

uF(0) = uA(0), (3.41)

uF(ãF) = 0, (3.42)

uA(aA) = 0, (3.43)

ap′A(aA) = 0, (3.44)

ap′A(0) = 0, (3.45)

uF(ãF) = f. (3.46)
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The general solution of the ordinary differential system (3.36)-(3.38) is

uF(x3) = C1e
−ikFx3 + C2e

ikFx3 , x3 ∈ (−aF, 0), (3.47)

pA(x3) = C3e
−ikA,1x3 + C4e

ikA,1x3 + C5e
−ikA,2x3 + C6e

ikA,2x3 , x3 ∈ (0, aA), (3.48)

where kF = ω
c

and {kA,1,−kA,1, kA,2,−kA,2} are the four roots of the polynomial equation

− a

ω2ρF

k4
A +

(
ĉ − (a + b − φ)2

s
− a(ρ − ρFa)

ω2sρF

)
k2

A +
ω2(ρ − ρFa)ĉ

s
= 0.

If we take into account boundary and interface conditions (3.40)-(3.46) and expressions
(3.47) and (3.48), amplitudes Cj, 1 ≤ j ≤ 6 can be calculated by solving a linear system
of equations.

We have considered that fluid is air with ρF = 1.225 kg/m3 and c = 343 m/s, whereas
properties of the porous material are summarized in s = 9.18633 × 1010N/m2, φ = 0.95,
a = 0.67857, b = −0.05, ĉ = −6.59172 × 10−6ms2/kg and ρ = 1.26163 × 102 kg/m3. With
respect to the dimensions of the enclosure, length and width are 1 m while height is 1 m
for the first layer of free fluid and 1 m for the second layer of porous material whereas the
normal displacement on ΓE is f = 60.

We have computed the solution to this problem with three different uniform meshes,
named mesh 1, mesh 2 and mesh 3 of 2548, 8140 and 18788 degrees of freedom, respec-
tively. In Figure 3.5, we show the L2-norm of the relative errors for fluid displacement,∥∥uh

F − uF

∥∥
0,ΩF

/ ‖uF‖0,ΩF
, porous displacement,

∥∥uh
A − uA

∥∥
0,ΩA

/ ‖uA‖0,ΩA
, porous pressure,∥∥ph

A − pA

∥∥
0,ΩA

/ ‖pA‖0,ΩA
, and interface pressure,

∥∥ph
F − pF

∥∥
0,ΩF

/ ‖pF‖0,ΩF
, against mesh-

size, h. As it can be seen, convergence of order 2 is achieved for poroelastic fields and
interface pressure. In addition, convergence of order 1 is achieved for fluid displacement.

As a real life test, we are going to compute the solution of the coupled problem, using
the data obtained in the previous Section by solving cell problems. Figure 3.6 shows the
response curves for enclosure in Figure 3.1, when solved with mesh 1 having 2548 degrees
of freedom. In this curve the logarithm of “energy”,

log10

(
1

2

∫
ΩF

ρFc2| div uF|2 +

∫
ΩA

A[E(uA)] : E(ūA)+

∫
ΩA

div ((A + B − φI)uA) p̄A

)
,

is plotted for angular frequencies ω ranging from 50 to 2000 rad/s. Several response peaks
can be observed in this curve. In fact, response peaks of the curve shows the resonance
frequencies for the coupled system shown in Figure 3.1.

3.8 Conclusions

We have considered a mathematical model for acoustic propagation in periodic non-
dissipative porous media with elastic solid frame and open pore. Parameters of this model
have been computed by solving some partial differential equations in the unit cell obtained
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Figure 3.5: Curves of convergence for fluid and porous fields.

by homogenization methods. Then a three-dimensional finite element method has been
proposed and implemented for numerical solution of the coupling between a fluid and the
above porous medium. In order to validate the proposed methodology and to assess con-
vergence properties, the computer code has been used for a test example having analytical
solution. Then, as an application, we have computed the response curve for an enclosure
containing air and a layer of porous material.



3.8. Conclusions 59

Figure 3.6: Response curve.
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4.1 Introduction

The first problem to be tackled for the numerical solution of any scattering problem
in an unbounded domain is truncating the computational domain without perturbing too
much the solution of the original problem. In an ideal framework, the method should satisfy,
at least, three properties: efficiency, easiness of implementation, and robustness.

In fact, the typical first step for the numerical solution of any scattering problem in
an unbounded domain, by either finite elements or finite differences, entails an inherent
difficulty: to choose boundary conditions to replace the Sommerfeld radiation condition at
infinity (see, for instance, [66]).

Several numerical techniques have been developed with this purpose: boundary element
methods, infinite element methods, Dirichlet-to-Neumann operators based on truncating
Fourier expansions, absorbing boundary conditions, etc. The potential advantages of each
of them have been widely studied in the literature (see, for instance, [9, 57, 72, 90], and
[66] for a classical review on this subject).

We focus our attention on the last mentioned technique: local absorbing boundary
conditions (ABCs) can be used to preserve the computational efficiency of the numerical
method. Those of Bayliss and Turkel [15], Engquist and Majda [60], and Feng [61] are
among the most widely used. However, in spite of the simple implementation of lowest order
ABCs, good accuracy is only achieved for higher order ones [99], because these conditions
are not fully non-reflecting on the truncated boundary of the computational domain. As
a consequence, high accuracy using ABCs leads to a substantial computational cost and
increases the difficulty of implementation. Recently, a promising way has been open: high
order ABCs not involving high derivatives (see [67, 102]).

Let us remark that if the domain of the original problem is truncated with a sphere,
then the Dirichlet-to-Neumann (DtN) boundary condition is exactly known (see [66, 84]).
However, this boundary condition involves an infinite series which must be truncated for
its numerical use. Moreover, the exact DtN condition is non local, leading to dense blocks
in the linear system to be solved when a finite element method is used.

An alternative approach to deal with the truncation of unbounded domains is the so
called Perfectly Matched Layer (PML) method, which was introduced by Berenger [22,
23, 24]. It is based on simulating an absorbing layer of anisotropic damping material
surrounding the domain of interest, like a thin sponge which absorbs the scattered field
radiated to the exterior of this domain. This method is known as ‘perfectly matched’
because the interface between the physical domain and the absorbing layer does not produce
spurious reflections inside the domain of interest, as it is the case with ABCs.

This method has been applied to different problems. It was initially settled for Maxwell’s
equations in electromagnetism [18, 22] and subsequently used for the scalar Helmholtz
equation [69, 94, 101], advective acoustics [1, 16, 71], shallow water waves [89], elasticity
[14, 53], poroelastic media [105], and other hyperbolic problems (see for instance [82] among
many other papers). We focus our attention on wave propagation time-harmonic scattering
problems in linear acoustics, i.e., on the scalar Helmholtz equation.
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In the deduction of the PML [22], Berenger used an artificial splitting of the physical
unknowns, to force the tangential components of both velocities (in the acoustic medium
and in the PML layer) to coincide on the interface for any frequency and any angle of
incidence, thus guaranteeing the absence of spurious reflections [72]. However, from a
mathematical point of view, this non physical splitting has been shown unnecessary to
state the PML equations. In fact, Chew and Weedon [47] and Rappaport [95] showed
that the PML equations can be obtained using a complex-valued coordinate stretching, in
the framework of time-harmonic wave propagation. Related to this, Lassas et al. [79, 77]
showed that the PML, and in general a family of absorbing conditions, can be obtained by
using complex Riemannian metric tensors.

Furthermore, in spite of the fact that the PML has been originally settled in Cartesian
coordinates, Collino and Monk [52] proposed a similar complex-valued change of coordinates
to build a PML on curvilinear coordinates, as we show in Chapter 6.

In practice, since the PML has to be truncated at a finite distance of the domain of
interest, its external boundary produces artificial reflections. Theoretically, these reflections
are of minor importance because of the exponential decay of the acoustic waves inside the
PML. In fact, for Helmholtz-type scattering problems, Lassas and Somersalo [78] proved,
using boundary integral equation techniques, that the approximate solution obtained by the
PML method converges exponentially to the exact solution in the computational domain as
the thickness of the layer tends to infinity. This result was generalized by Hohage et al. [70]
using techniques based on the pole condition. Similarly, Bécache et al. proved an analogous
result for the convected Helmholtz equation [16] and for the Galbrun’s equation [17].

When the problem is discretized to be numerically solved, the approximation error
typically becomes larger. Increasing the thickness of the PML may be a remedy, but not
always available because of computational cost. An alternative is to take larger values
for the absorbing function involved in the complex-valued coordinate stretching. However,
Collino and Monk [51] showed that this methodology may produce an error growth in the
discretized problem. Consequently, an optimization problem arises: given a data set and a
mesh, to choose the optimal absorbing function to minimize the error.

In this framework, Asvadurov et al. [10] proposed a pure imaginary stretching to op-
timize the PML error. They recovered exponential error estimates using finite-difference
grid optimization. However, to the best of the authors’ knowledge, the optimization prob-
lem is still open in that there is no optimal criterion to choose the absorbing function
independently of data and meshes.

In the following three chapters we propose (see [32, 33, 30]) an alternative procedure to
avoid this drawback: to use an absorbing function with unbounded integral on the PML.

The outline of this introductory chapter on the PML technique is as follows. In Sec-
tion 4.2 a two-dimensional acoustic scattering problem is stated in an unbounded domain
and the solution is written explicitly under the assumption of time-harmonic dependency
in the case of a monopole source. In Section 4.3, we derive the time domain formulation
of the perfectly matched layer for the linear acoustic equations in Cartesian coordinates
and show the exact solution of the PML equations when the domain remains unbounded
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or when a singular absorbing function is used in the construction of the perfectly matched
layer. Finally, in Section 4.4 we consider a simple problem: the propagation of plane waves
with oblique incidence in a two-dimensional unbounded domain. We show that a PML
method based on a non-integrable absorbing function allows recovering the exact solution
in the domain of interest.

4.2 Wave equation

For the sake of completeness, the derivation of the two-dimensional linear wave equation
is outlined, since the same steps will be done for the PML equation.

4.2.1 Time domain equations

First, we state the system of equations of the wave motion in terms of the pressure and
the velocity fields.

Find the velocity field V and pressure field P in the whole space R2 which satisfy the
system of equations:

∂ρ

∂t
+ ρ0 div V = 0, (4.1)

ρ0
∂V

∂t
+ gradP = 0, (4.2)

P = P̃ (ρ), (4.3)

where ρ0 is the fluid mass density at rest, which is supposed to be a constant, and ρ is the
mass density.

From the fluid constitutive equation (4.3), we deduce that

∂P

∂t
= c2∂ρ

∂t
,

where c is the sound speed. By using (4.1), we obtain

1

c2

∂P

∂t
+ ρ0 div V = 0. (4.4)

If we derive with respect to the time variable, then we have

1

c2

∂2P

∂t2
+ ρ0 div

∂V

∂t
= 0.

Now, by applying the divergence operator in (4.2),

ρ0 div
∂V

∂t
+ ΔP = 0,
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and replacing this expression in (4.4), it results

1

c2

∂2P

∂t2
− ΔP = 0. (4.5)

4.2.2 Time-harmonic equations

We take into account a simple toy problem which illustrates the construction of perfectly
matched layers in Cartesian coordinates. If there exists an acoustical source in the fluid
domain, a non-null right-hand term F arises in the above equation. If we assume that F is
time-harmonic, i.e., F (x, t) = Re ( e−iωtf(x)), then P (x, t) = Re ( e−iωtp(x)) is a solution
of equation (4.5) provided

−ω2

c2
p − Δp = f. (4.6)

Moreover, from a physical point of view, if we postulate that no waves are reflected from
infinity, p must satisfy the Sommerfeld’s radiation condition uniformly in all the directions
(see [72]). Hence, the source problem stated in the whole space R2 and using the pressure
field as unique unknown is:

Given an acoustical source f , find the pressure field p satisfying

−ω2

c2
p − Δp = f in R2, (4.7)

lim
r→∞

r
1
2

(
∂p

∂r
− ikp

)
= 0, (4.8)

where r = |x| and k =
ω

c
is the wave number.

If the harmonic excitation inside the fluid domain is a monopole supported in d =
(d1, d2), then the right-hand term is f = −iωρ0Qδd, where Q is the volume velocity and δd

is the Dirac’s delta (see [63]). In this case the solution of problem (4.7)-(4.8) is

p(x) =
ωρ0Q

4
H

(1)
0 (k|x − d|), (4.9)

where H
(1)
0 is the Hankel function of first kind and order zero.

4.3 Cartesian Perfectly Matched Layers

Now we are going to introduce the Cartesian perfectly matched layers to deal with the
same problem. As a first step, we assume that the domain filled by the PML is unbounded.
In spite that this fact does not avoid to state a problem in a bounded domain, it allows us
to illustrate the derivation of the PML problem.
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4.3.1 Time-domain equations

We assume that the equations of linear acoustics (4.1)-(4.3) are satisfied in

ΩF = (−a, a) × (−b, b),

whereas the perfectly matched layers are situated in ΩA = R2 \ ΩF.
The two-dimensional Cartesian PML equations involve absorbing coefficients σj defined

for each 1 ≤ j ≤ 2, such that they are monotonically increasing, non negative, smooth in
ΩA and null inside the fluid domain ΩF. Moreover σj only depends on the spatial variable
xj.

Next, we state which are the equations governing the pressure field inside ΩA. With this
aim, we use the ‘splitting’ technique developed originally by Berenger ([22], [72]). First,
we suppose that the pressure field in ΩA is the addition of two terms which involve two
new unknowns without any physical meaning, Pj, 1 ≤ j ≤ 2, such that Eq. (4.1) can be
rewritten in terms of the pressure and the velocity fields as

∂Pj

∂t
+ ρ0c

2∂Vj

∂xj

= 0, 1 ≤ j ≤ 2, (4.10)

P = P1 + P2,

where Vj denotes the j-th component of the velocity field. Analogously, if we write every
component of Eq. (4.2), we obtain

ρ0
∂Vj

∂t
+

∂P

∂xj

= 0, 1 ≤ j ≤ 2. (4.11)

Inside the domain ΩA, where the PML is situated, we rewrite the equations adding a
dissipative or damping term involving the fictitious pressure component Pj and the velocity
field Vj, modifying (4.10)-(4.11). Consequently, the system to be solved in ΩA is

∂Pj

∂t
+ σjPj + ρ0c

2∂Vj

∂xj

= 0, 1 ≤ j ≤ 2, (4.12)

ρ0

(
∂Vj

∂t
+ σjVj

)
+

∂P

∂xj

= 0, 1 ≤ j ≤ 2, (4.13)

P =
2∑

j=1

Pj. (4.14)

4.3.2 A physical interpretation

If we denote by σ the diagonal tensor of coefficients σj, j = 1, 2, associated with the
j-th component, equation (4.13) can be rewritten as

ρ0

(
∂V

∂t
+ σV

)
= −gradP, (4.15)
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which is equal to the equation introduced in Chapter 1 for the Darcy’s like model in the
porous media (where σ was the flux resistivity tensor). The unique difference between that
model and the system of equations of the PML is the absorbing functions introduced for
the pressure field in (4.12).

Integrating (4.12) in time, we obtain

Pj = −ρ0c
2

∫ t

0

eσj(s−t)∂Vj

∂xj

ds.

Adding P1 and P2, we obtain an explicit expression for the pressure P ,

P = −ρ0c
2

∫ t

0

2∑
j=1

(
eσj(s−t)∂Vj

∂xj

)
ds. (4.16)

If we derive the previous equality two times respect to the time variable, we obtain

∂2P

∂t2
= −ρ0c

2

(
div

(
∂V

∂t
+ σV

)
+

∫ t

0

2∑
j=1

(
σ2

j eσj(s−t)∂Vj

∂xj

)
ds − 2

2∑
j=1

σj
∂Vj

∂xj

)
. (4.17)

Finally, if we take into account (4.15)-(4.17), we obtain a time-formulation of the PML in
terms of the pressure field,

∂2P

∂t2
− c2ΔP − c2

∫ t

0

2∑
j=1

(
σ2

j e
σj(s−t) ∂

∂xj

(∫ s

0

eσj(τ−s) ∂P

∂xj

dτ

))
ds

+ 2c2

2∑
j=1

(
σj

∂

∂xj

(∫ t

0

eσj(s−t) ∂P

∂xj

ds

))
= 0.

As a particular case, if the absorbing functions are constant and equal, i.e., if σ1(x1) =
σ2(x2) = σ, in the domains where they are not null, then we can rewrite the previous PML
equation in terms of the pressure field in a simpler form. In fact, the system of equations
(4.12)-(4.14) leads to

ρ0

(
∂V

∂t
+ σV

)
= −gradP, (4.18)

∂P

∂t
+ σP = −ρ0c

2 div V . (4.19)

Integrating (4.18) with respect to the time variable, we have

V = − 1

ρ0

∫ t

0

eσ(s−t) gradP ds, (4.20)
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and, substituting this expression in (4.19) and deriving with respect to time,

∂2P

∂t2
+ σ

∂P

∂t
− c2ΔP + div

(
c2σ

∫ t

0

eσ(s−t) gradP ds

)
= 0. (4.21)

As a conclusion, we observe that the PML equation written in terms of the pressure has
a damping term depending linearly on σ and, as in the case of materials with memory,
the pressure field at time t = T depends on the pressure fields in the interval 0 ≤ t < T .
Moreover, let us remark that, obviously, if σ = 0 then we recover the wave equation.

4.3.3 Time-harmonic equations

Now we rewrite the system of equations (4.12)-(4.14) in the frequency domain. If we
assume that

P (x, t) = Re(p(x) e−iωt), Pj(x, t) = Re(pj(x) e−iωt), V (x, t) = Re(v(x) e−iωt),

then the PML equations (4.12)-(4.14) turn into

pj = − ρ0c
2

σj − iω

∂vj

∂xj

, (4.22)

vj =
1

ρ0(σj − iω)

∂p

∂xj

, (4.23)

p = p1 + p2. (4.24)

By substituting (4.23) in (4.22),

pj = −c2 1

σj − iω

∂

∂xj

[
1

σj − iω

∂p

∂xj

]
, 1 ≤ j ≤ 2,

and then, using this expression in (4.24), we obtain

−ω2

c2
p −

2∑
j=1

iω

σj − iω

∂

∂xj

[
iω

σj − iω

∂p

∂xj

]
= 0. (4.25)

Following the ideas introduced in [47], we can define the complex change of variable

x̂j(xj) = xj +
i

ω

∫ xj

0

σj(s)ds, 1 ≤ j ≤ 2, (4.26)

so that formally we recover the weights that arise in (4.25) using its derivatives, i.e.,

∂xj

∂x̂j

=
−iω

σj(xj) − iω
.
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Hence the PML equation (4.25) can be seen as the Helmholtz equation in a new complex
coordinate system x̂ = (x̂1, x̂2), since we can rewrite Eq. (4.25) formally as

−ω2

c2
p −

2∑
j=1

∂2p

∂x̂2
j

= 0.

So, the construction of the PML equation can be understood as a complex stretching of
coordinates. However, let us remark that we will not use this formal property for any
derivation of the theoretical results on PML through this thesis.

Finally, we introduce some notation for the weights of the PML equation that will be
used through the next chapters. We define γ(xj), 1 ≤ j ≤ 2 as

γj(xj) :=
σj(xj) − iω

−iω
= 1 +

i

ω
σj(xj).

Now, if we assume an external harmonic source, F (x, t) = Re(f(x) e−iωt), such that
supp f ⊂ ΩF, the equation to solve in the PML domain as well as in the fluid domain
is

−ω2

c2
p −

2∑
j=1

1

γj

∂

∂xj

[
1

γj

∂p

∂xj

]
= f in R2. (4.27)

Infinite thickness layer with a bounded absorbing function

In order to close the system of equations of the time-harmonic source problem with
PML layers, (4.27), we need a radiation boundary condition, uniform in all the directions,
which substitutes the classical Sommerfeld’s condition. We take a homogeneous Dirichlet
condition at infinity. Hence, the source problem stated in the whole space R2 written in
terms of the pressure field is the following:

Given an acoustic source f , with compact support contained in ΩF, find the pressure
field p that satisfies

−k2p −
2∑

j=1

1

γj

∂

∂xj

[
1

γj

∂p

∂xj

]
= f in R2, (4.28)

lim
|x|→∞

p(x) = 0, (4.29)

where k = ω/c is the wavenumber.
For example, if we suppose that the source is a monopole supported at the point d =

(d1, d2) ∈ ΩF, then f = −iωρ0Qδd. Straightforward computations show that a solution of
(4.28)-(4.29) is

p(x) =
ωρ0Q

4
H

(1)
0 (kr̂d(x)), (4.30)
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where r̂d(x) =
√

(x̂1(x1) − d1)2 + (x̂2(x2) − d2)2.
From the complex stretching of coordinates, since x̂1(x1) = x1 if x1 ∈ (−a, a) and

x̂2(x2) = x2 if x2 ∈ (−b, b), it is immediate to check that the fundamental solutions given
by (4.9) and (4.30) coincide in the fluid domain ΩF.

In general, the exact solution of the original scattering problem is recovered from the
PML problem if the physical domain of interest is surrounded by an unbounded PML layer
(see [52]).

Finite-thickness layer with a singular absorbing function

Now we consider the more realistic case of a bounded PML domain.
We assume that the linear acoustic equations (4.1)-(4.3) are satisfied in

ΩF = (−a, a) × (−b, b),

whereas the PML is situated in the bounded domain

ΩA = [−a�, a�] × [−b�, b�] \ ΩF,

where a < a� and b < b�. We denote by ΓD = ∂ΩA \ ∂ΩF the exterior artificial boundary
where the PML domain is truncated (see Figure 4.1).

−b∗

b

−a a∗

b∗

−b

−a∗ a

ΓD

ΩA

ΩF

x2

x1

Figure 4.1: Cartesian PML stated in a two-dimensional bounded domain.

In this case the analogous to problem (4.28)-(4.29) is the following:

Given an acoustic source f with compact support in ΩF, find the pressure filed p that
satisfies

−k2p −
2∑

j=1

1

γj

∂

∂xj

[
1

γj

∂p

∂xj

]
= f in ΩA ∪ ΩF, (4.31)

p = 0 on ΓD. (4.32)
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It is well-known that since the PML domain has been truncated, spurious reflections
arise in the solution of the classical PML problem with standard bounded absorbing func-
tions. So it does not coincide any more with the original solution of the Helmholtz problem
stated in the unbounded domain. This drawback can be avoided by using singular absorbing
functions.

More precisely, we state the same two-dimensional Cartesian PML equations involving
the absorbing coefficients σj. But now, besides assuming that the absorbing functions are
non negative, smooth, monotonically increasing and null in ΩF, we suppose that they are
not integrable, so that

lim
|x1|→|a�|

σ1(x1) = +∞,

lim
|x2|→|b�|

σ2(x2) = +∞,

Through the rest of this part of the thesis, we will focus our attention on PMLs based on
this kind of singular absorbing functions.

In this case, using the same source as in the previous section, namely f = −iωρ0Qδd,
then it is easy to check that a solution of problem (4.31)-(4.32) is

p(x) =
ωρ0Q

4
H

(1)
0 (kr̂d(x)), (4.33)

where r̂d(x) =
√

(x̂1(x1) − d1)2 + (x̂2(x2) − d2)2.
As in the previous case where the PML domain was unbounded, since x̂1(x1) = x1 if

x1 ∈ (−a, a) and x̂2(x2) = x2 if x2 ∈ (−b, b), it is immediate to check that the fundamental
solutions given by (4.9) and (4.33) coincide in the fluid domain ΩF. This kind of results
are proved theoretically in Chapter 6 (see also [33]) for the PML equation written in radial
coordinates for time-harmonic scattering problems.

4.4 Plane wave analysis of the PMLs

We consider a simple problem which will provide valuable information for the design of
an efficient PML method: the propagation of two-dimensional acoustic plane waves with
oblique incidence. With this problem, we also illustrate the ideas introduced in the previous
subsection.

Consider the following time-harmonic problem posed in the right half-space:⎧⎪⎪⎨⎪⎪⎩
Δp + k2p = 0, x1 > 0, x2 ∈ R,
p(0, x2) = eik2x2 , x2 ∈ R,

lim
x1→+∞

(
∂p

∂x1

− ik1p

)
= 0,

(4.34)

where k = ω/c is the wave number, k1 = k cos θ and k2 = k sin θ, with θ being the incidence
angle. It is well-known that the solution of this problem is the plane wave

p(x1, x2) = ei(k1x1+k2x2).
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We introduce a PML in the vertical strip a < x1 < a∗, to truncate the unbounded
domain in the x1-direction (see Figure 4.2). The strip 0 < x1 < a is the so called ‘physical
domain’, i.e., the domain where we are interested in computing the solution of problem
(4.34).

θ

x1 = 0 x1 = a x1 = a∗

PML

Figure 4.2: PML in the x1-direction for plane waves with oblique incidence.

We consider a variable absorption coefficient σ in the PML. This coefficient is allowed
to be a function of the variable x1; constant, linear or quadratic ‘absorbing functions’ are
the typical choices (see, for instance, [16, 22, 52]). In this case, we allow for any arbitrary
non-negative absorbing function.

In order to solve the problem with PML layers, we distinguish two pressure fields: we
denote by pF and pA the restriction of the pressure field to the fluid domain and to the
PML, respectively. This approach allows us to write explicitly the spurious reflection that
the bounded PML domain produces in the fluid domain.

Thus, the amplitudes of the pressure waves in the physical domain, pF, and in the PML,
pA, are the solution of the following equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔpF + k2pF = 0, 0 < x1 < a,

1

γ1

∂

∂x1

(
1

γ1

∂pA

∂x1

)
+

∂2pA

∂x2
2

+ k2pA = 0, a < x1 < a∗,

pF(0, x2) = eik2x2 ,
pF(a, x2) = pA(a, x2),

∂pF

∂x1

(a, x2) =
1

γ1(a)

∂pA

∂x1

(a, x2) ,

pA (a∗, x2) = 0,

with, as it was defined in Section 4.3.3,

γ1(x1) :=

{
1, if 0 < x1 < a,

1 +
i

ω
σ1(x1), if a ≤ x1 < a∗.

As we have already shown in the previous subsection, if we introduce the complex change
of variable

x̃1(x1) =

∫ x1

0

γ1(s) = x1 +
i

ω

∫ x1

a

σ1(s), x1 ∈ [a, a∗), (4.35)
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then
∂x̃1

∂x1

= γ1 and
∂

∂x̃1

=
1

γ1

∂

∂x1

,

and hence, if we denote p̂A(x̃1, x2) = pA(x1, x2), then we have

1

γ1

∂

∂x1

(
1

γ1

pA

∂x1

)
+

∂2pA

∂x2
2

+ k2pA = 0 ⇐⇒ ∂2p̂A

∂x̃2
1

+
∂2p̂A

∂x2
2

+ k2p̂A = 0.

Since we have recovered formally the Helmholtz equation, the solution of the PML
problem can be written as superposition of plane waves:{

pF(x1, x2) =
(
I eik1x1 + R e−ik1x1

)
eik2x2 , x1 ∈ (0, a),

p̂A(x̃1, x2) =
(
T eik1x̃1 + RA e−ik1x̃1

)
eik2x2 , x1 ∈ [a, a∗),

where I is the amplitude of the incident wave, T that of the wave transmitted to the PML,
and R and RA are the amplitudes of the reflected waves in the physical domain and in the
absorbing layer, respectively.

By substituting (4.35) in the last equation, we can write the solution in the absorbing
layer in the following equivalent form:

pA (x1, x2) =
[
T eik1x1 e−

cos θ
c

∫ x1
a σ1(s) + RA e−ik1x1 e

cos θ
c

∫ x1
a σ1(s)

]
eik2x2 .

Hence, from the boundary condition at x1 = 0, we obtain

I = 1 − R,

and, from the transmission conditions at x1 = a,

R = RA and I = T.

Notice that the latter implies that no spurious reflections arise at x1 = a (which is the main
feature of the PML technique); the terms involving R and RA arise as a consequence of
the waves reflected at x1 = a∗. Finally, the homogeneous Dirichlet boundary condition at
x1 = a∗ yields

R = RA =
e2ik1a∗

e2ik1a∗ − e
2 cos θ

c

∫ a∗
a σ1(s)

. (4.36)

Summarizing, we have obtained the following analytical expression for the solution to
the PML problem above:⎧⎪⎨⎪⎩

pF(x1, x2) =
[
(1 − RA) eik1x1 + RA e−ik1x1

]
eik2x2 , x1 ∈ (0, a),

pA(x1, x2) =
[
(1 − RA) eik1x1 e−

cos θ
c

∫ x1
a σ1(s) + RA e−ik1x1 e

cos θ
c

∫ x1
a σ1(s)

]
eik2x2 ,
x1 ∈ [a, a∗).
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Expression (4.36) for RA shows that the larger the integral
∫ a∗

a
σ1(s) the closer RA to

zero and, consequently, the closer pF to the solution, p, of problem (4.34) in the physical
domain. Indeed, straightforward computations lead to∫ a

0

|p(x1, x2) − pF(x1, x2)|2 dx1 = |RA|2
2k1a − sin (2k1a)

k1

.

Classical PML techniques rely on taking a bounded absorbing function σ, such that its
integral be sufficiently large. We propose instead to use an unbounded σ such that∫ a∗

a

σ(s) = +∞.

In this case, RA = 0 and, consequently, the resulting pF will coincide exactly with the
solution p of problem (4.34) in the physical domain.

In order to illustrate this behavior we take the following parameters: a = 0.5 m, a∗ =
0.6 m, ω = 1200 rad/s, c = 340 m/s, and θ = 3π

8
rad. We compare two examples of the

above mentioned absorbing functions: a classical choice, namely the quadratic function
taking the value σ∗ at x1 = a∗,

σ1(x1) = σ(Q)(x1) =
σ∗

(a∗ − a)2 (x1 − a)2, x1 ∈ [a, a∗), (4.37)

and the following unbounded function with unbounded integral in [a, a∗),

σ1(x1) = σ(U)(x1) =
c

a∗ − x1

, x1 ∈ [a, a∗). (4.38)

In Figures 4.3 and 4.4 we can see that, when choosing the quadratic function, pF approxi-
mates the exact solution p when σ∗ becomes large. The reflection coefficient is, in this case,
RA = 0.26 for σ∗ = 50c, and RA = 2.88 × 10−6 for σ∗ = 500c. In the same Figure we can
see that the error is 0 when choosing the unbounded absorbing function, σ(U).

In Figure 4.5 we show the dependence of the reflection coefficient RA, with respect to
the angle of incidence of the plane wave, when σ(Q) is used. It is important to emphasize
that, in this case, the reflection coefficient (and hence the error) increases when taking a
larger angle of incidence, whereas the error is null, for any angle of incidence, when σ(U) is
used.

Analogously, we show in Figure 4.6 the dependency of RA with respect to the frequency
ω when σ(Q) is used. For this test we have taken θ = 0.99π

2
as angle of incidence (very

close to the critical value π
2
). We observe that RA achieves periodically maximum values for

certain high frequencies. Again, we want to remark that, taking the unbounded absorbing
function σ(U) in the PML, we recover RA = 0, for any value of the frequency.
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Figure 4.3: Real part of exact and approx-
imated pressures for θ = 3π/8.
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Figure 4.4: Imaginary part of exact and ap-
proximated pressures for θ = 3π/8.
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Chapter 5

An optimal PML in Cartesian
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5.1 Introduction

We have shown in Chapter 4, in the plane wave analysis of a bounded PML and also
for the fundamental solution of the Helmholtz equations that we can recover the solution of
the original source problem with a bounded PML layer with singular absorbing functions.
Now, through this chapter we are going to use the same ideas to check that we also re-
cover accurate numerical results for time-harmonic scattering problems using an absorbing
function with unbounded integral on the PML.

In this chapter, we consider Cartesian perfectly matched layers. We report numerical
evidence that allows us to choose a particularly convenient non-integrable absorbing func-
tion. This function only depends on the sound speed of the fluid. We show that this choice
leads to a robust PML method, easy to implement in a finite element code. We assess the
efficiency of our choice by comparing it with classical bounded absorbing functions in some
test problems. We also report the numerical results obtained for some realistic examples.

The outline of this chapter is as follows. In Section 5.2 we recall the classical two-
dimensional scattering problem with Cartesian perfectly matched layers. In Section 5.3 we
describe a finite element method to solve this problem. We show that for the resulting
finite element problem to be well posed, it is necessary to impose some constraints on the
absorbing function. In Section 5.4 we report the results of some numerical tests which show
us how to choose the most convenient non-integrable absorbing function. In Section 5.5 we
point out the advantages of our choice as compared with classical PMLs based on quadratic
absorbing functions. In Section 5.6 we report the numerical results obtained with our PML
technique applied to some realistic wave propagation problems. Finally, in an appendix, we
show how the element matrices can be computed either by explicit integration or by means
of quadrature rules.

5.2 The time-harmonic acoustic scattering problem

We deal with the time-harmonic acoustic scattering problem in an unbounded exterior
2D domain. Let Ω be a bounded domain of R2 occupied by an obstacle to the propagation
of acoustic waves; we assume the obstacle has a totally reflecting boundary Γ, with outer
normal unit vector n (see Figure 5.1). Our goal is to solve the following exterior Helmholtz
problem with Neumann boundary data:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Δp + k2p = 0 in R2 \ Ω,

∂p

∂n
= g on Γ,

lim
r→∞

√
r

(
∂p

∂r
− ikp

)
= 0.

(5.1)

Once more, p is the unknown amplitude of the pressure wave and k = ω/c is the wave
number, with ω being the angular frequency of the waves and c the sound speed of the fluid
in the exterior domain.
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n
Γ

Ω

R2 \ Ω

Figure 5.1: Two-dimensional unbounded domain.

We introduce perfectly matched layers (PML) on the x1 and x2 directions to truncate
the unbounded domain, as shown in Figure 5.2. The inner rectangle contains the obstacle
Ω as well as the physical domain ΩF, i.e., the subdomain occupied by the fluid surrounding
the obstacle where we are interested in computing the solution of (5.1).
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−a a∗
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−b

−a∗ aΩ
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ΓD

Γ

ΩA

ΩF

x2

x1

Figure 5.2: Cartesian PML on a two-dimensional domain.

We use the notation introduced in Figure 5.2. In particular, ΩA denotes the absorbing
layer, ΓI the interface between the physical domain and the layer, ΓD the outer boundary,
and ν = (ν1, ν2) the unit normal vector to ΓI outward to ΩF.

As we have done for the plane wave analysis of the PMLs in Subsection 4.4, we consider
now variable absorption coefficients, σ1 and σ2, acting on the vertical and horizontal layers,
respectively; moreover, both absorption coefficients act in the corner layers. These coeffi-
cients, σ1 and σ2, are allowed to be functions of x1 and x2, respectively. Although constant,
linear or quadratic functions are the typical choices, we proceed as in the previous section,
and allow for arbitrary non-negative absorbing functions σ1(|x1|) and σ2(|x2|).

The amplitudes of the pressure waves in the physical domain, pF, and in the PML, pA,
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are solution of the following equations (see, for instance, [52]):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔpF + k2pF = 0 in ΩF,

1

γ1

∂

∂x

(
1

γ1

∂pA

∂x

)
+

1

γ2

∂

∂y

(
1

γ2

∂pA

∂y

)
+ k2pA = 0 in ΩA,

∂pF

∂n
= g on Γ,

pF = pA on ΓI,

∂pF

∂νx

+
∂pF

∂νy

=
1

γ1

∂pA

∂νx

+
1

γ2

∂pA

∂νy

on ΓI,

pA = 0 on ΓD,

(5.2)

where

γ1(x1) =

{
1, if |x1| < a,

1 +
i

ω
σ1 (|x1|) , if a ≤ |x1| < a∗,

and

γ2(x2) =

{
1, if |x2| < b,

1 +
i

ω
σ2 (|y|) , if b ≤ |x2| < b∗.

The main goal of this chapter is to determine how to choose the absorbing functions σ1

and σ2, so that pF be an approximation as close as possible to the solution p of problem
(5.1) in the physical domain. According to the results of the previous section, the natural
candidates are unbounded functions σ1 and σ2 such that∫ a∗

a

σ1(s) = +∞ and

∫ b∗

b

σ2(s) = +∞.

5.3 Finite element discretization.

In this section we describe a finite element method for the numerical solution of (5.2)
and show that the resulting discrete problem is well posed only for certain unbounded
absorbing functions. This will lead to additional constraints on σ1 and σ2.

We consider a partition in triangles of the physical domain ΩF and a partition in rectan-
gles of the absorbing layer ΩA, matching on the common interface ΓI as shown in Figure 5.3.
As usual, h denotes the mesh-size.

The reason why we use such hybrid meshes is that triangles are more adequate to fit
the boundary of the obstacle, whereas rectangles will allow us to compute explicitly the
integrals involving the absorbing function appearing in the elements in the layer. This is
not strictly necessary, since these integrals can also be efficiently computed by means of
standard quadrature rules as shown in the appendix. However, in this chapter, we will
mainly consider exact integration to be able to assess the accuracy of the proposed PML
independently of quadrature errors.
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ΓD

ΓI

ΩA

ΩF

Figure 5.3: Hybrid mesh on PML and physical domain.

We will compute approximations ph
F and ph

A of the pressure amplitudes in the physical
domain and in the absorbing layer, respectively, by using linear triangular finite elements
for the former and bilinear rectangular finite elements for the latter. The degrees of freedom
defining the finite element solution are the values of ph

F and ph
A at the vertices of the elements.

Notice that because of the transmission condition pF = pA on ΓI, the values of ph
F and ph

A

must coincide at the vertices on the interface.
Moreover, we impose the Dirichlet boundary condition ph

A = 0 on ΓD to the finite
element solution. Hence, ph

A does not have degrees of freedom on the outer boundary. This
fact will be essential for the resulting discrete problem to be well posed.

Standard arguments in this finite element framework lead to the following discretization
of problem (5.2)written in weak form:∫

ΩF

∇ph
F · ∇q̄h dx1 dx2 −

∫
ΩF

k2ph
Fq̄h dx1 dx2 +

∫
ΩA

γ2

γ1

∂ph
A

∂x1

∂q̄h

∂x1

dx1 dx2

+

∫
ΩA

γ1

γ2

∂ph
A

∂x2

∂q̄h

∂x2

dx1 dx2 −
∫

ΩA

k2γ1γ2p
h
Aq̄h dx1 dx2 =

∫
Γ

gq̄h,

for all function qh, continuous in ΩF ∪ΩA, piecewise linear in ΩF, piecewise bilinear in ΩA,
and vanishing on ΓD.

Once the discrete problem is written in matrix form, it yields a system of linear equa-
tions whose unknowns are the nodal values of ph

F and ph
A. The entries of the matrix are

computed by assembling the element matrices; in particular, the following terms involve
the unbounded absorbing functions:∫

K

γ2

γ1

∂Ni

∂x1

∂Nj

∂x1

dx1 dx2,

∫
K

γ1

γ2

∂Ni

∂x2

∂Nj

∂x2

dx1 dx2, and

∫
K

k2γ1γ2NiNj dx1 dx2, (5.3)

with K being a rectangular element in ΩA and {Ni} the nodal finite element basis.
For the discrete problem to be well posed, it is necessary that all the integrals above be

finite, what is not trivial since they involve singular functions, whenever K is a rectangle
with one edge lying on the outer boundary ΓD.

For instance, consider the element K shown in Figure 5.4 (the forthcoming arguments
and conclusions hold also true for all other elements with edges lying on ΓD). Notice that,
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ΓD

b2

a∗

b1

a∗ − h1

h2

h1

K

P2

P1

Figure 5.4: Finite element with an edge lying on ΓD.

since ph
A vanishes at the vertices on ΓD, in this element we only need to compute the integrals

(5.3) for the nodal functions N1 and N2 associated with the vertices denoted by P1 and P2,
respectively.

These functions are given by

N1(x1, x2) =
(x1 − a∗)(x2 − b2)

h1h2

, N2(x1, x2) = −(x1 − a∗)(x2 − b1)

h1h2

,

and their partial derivatives by

∂N1

∂x1

(x1, x2) =
x2 − b2

h1h2

,
∂N2

∂x1

(x1, x2) = −x2 − b1

h1h2

,

∂N1

∂x2

(x1, x2) =
x1 − a∗

h1h2

,
∂N2

∂x2

(x1, x2) = −x1 − a∗

h1h2

.

Therefore, the integrals in (5.3) can be written as follows:∫
K

γ2

γ1

∂Ni

∂x1

∂Nj

∂x1

dx1 dx2 = ± 1

h2
1h

2
2

∫ b2

b1

γ2(x2)(x2 − bj)(x2 − bi) dx2

∫ a∗

a∗−h1

dx1

γ1(x1)
, (5.4)∫

K

γ1

γ2

∂Ni

∂x2

∂Nj

∂x2

dx1 dx2 = ± 1

h2
1h

2
2

∫ b2

b1

dx2

γ2(x2)

∫ a∗

a∗−h1

γ1(x1)(x1 − a∗)2 dx1, (5.5)∫
K

γ1γ2NiNj dx1 dx2

= − 1

h2
1h

2
2

∫ b2

b1

γ2(x2)(x2 − bj)(x2 − bi) dx2

∫ a∗

a∗−h1

γ1(x1)(x1 − a∗)2 dx1. (5.6)

We assume singularities of power type for the absorbing functions:

σ1(x1) = O
(
(a∗ − x1)

−α
)

as x1 → a∗, σ2(x2) = O
(
(b∗ − x2)

−α
)

as x2 → b∗. (5.7)

Notice that the constraint that σ1 and σ2 have unbounded integrals holds true if and only
if α ≥ 1.
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From the definitions of γ1 and γ2 we have that γ1(x1) = O
(
(a∗ − |x1|)−α

)
and γ2(x2) =

O
(
(b∗ − |x2|)−α

)
. Moreover, |γ1| ≥ 1 and |γ2| ≥ 1 and, hence, the integrals of 1/γ1(x1) and

1/γ2(x2) are always finite.
For an element K as that in Figure 5.4, γ2 is bounded in the interval [b1, b2] and,

consequently, the integrals involving γ2(x2) are also finite. Finally, for the integral involving
γ1(x1) we have∫ a∗

a∗−h

γ1(x1)(x1 − a∗)2 dx1 =

∫ a∗

a∗−h

O
(
(a∗ − x1)

2−α
)

dx1 < ∞ ⇐⇒ α < 3.

As a consequence of this analysis, we will restrict our choice of σ1 and σ2 satisfying (5.7)
to exponents α such that 1 ≤ α < 3.

5.4 Determination of the absorbing function

In this section we report the numerical experimentation performed to determine the most
convenient unbounded absorbing functions. With this purpose, we have applied our PML
method with different σ1 and σ2 to a scattering problem with known analytical solution
and compared the accuracy of the numerical results.

Consider problem (5.1) where the obstacle Ω is the unit circle centered at the origin.
Given any inner point (x0

1, x
0
2) of this circle, it is well known that the function

p(x1, x2) =
i

4
H

(1)
0

(
k
√

(x1 − x0
1)

2 + (x2 − x0
2)

2

)
satisfies the first and third equations of (5.1). Therefore, if we take g = ∂p/∂n, then p is
the unique solution of this problem.

In our experiments we have taken x0
1 = 0.5 m, x0

2 = 0, and k = ω/c, with c = 340 m/s
and different values of the frequency ω. For our computational domain we have taken
a = b = 2.0 m and a∗ = b∗ = 2.25 m (see Figure 5.5).

We have used uniform refinements of the mesh shown in Figure 5.5; the number N of
elements through the thickness of the PML is used to label each mesh.

To measure the accuracy we have computed the relative error in the L2-norm in ΩF:

Error =

(∫
ΩF

∣∣ph
F − p

∣∣2 dx1 dx2

)1/2

(∫
ΩF

|p|2 dx1 dx2

)1/2
, (5.8)

where ph
F is the numerical solution in the physical domain and p the exact solution.

According to the results of the previous section, it is enough to restrict the analysis
to absorbing functions satisfying (5.7) with 1 ≤ α < 3. We have considered the integer
powers: α = 1 and α = 2. In particular, we have tested functions of the following type,
where β is a free parameter to be fitted:
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x

y

1m

x0 = 0.5m

a∗ = 2.25m

a = 2m

b∗ = 2.25m

b = 2m

N = 2

Figure 5.5: Domains and mesh in the scattering problem.

• A.

σ1(x1) =
β

a∗ − x1

, σ2(x2) =
β

b∗ − x2

;

• B.

σ1(x1) =
β

(a∗ − x1)2
, σ2(x2) =

β

(b∗ − x2)2
.

Notice that, in both cases, σ1(a) �= 0 and σ2(b) �= 0. Hence, the corresponding coeffi-
cients γ1 and γ2 will be discontinuous. To avoid eventual side effects of these discontinuities
in the coupling conditions on ΓI, we have also considered functions of the following type,
which yield continuous γ1 and γ2:

• C.

σ1(x1) =
β

a∗ − x1

− β

a∗ − a
, σ2(x2) =

β

b∗ − x2

− β

b∗ − b
,

• D.

σ1(x1) =
β

(a∗ − x1)2
− β

(a∗ − a)2
, σ2(x2) =

β

(b∗ − x2)2
− β

(b∗ − b)2
.

In each case, we have fitted the parameter β so as to minimize the error. Figs. 5.6 to
5.11 show the results obtained with each type of absorbing functions and a range of values
of β. We have used three meshes with refinement levels N = 2, 4, and 8, which have 464,
1720, and 6768 vertices, respectively. We report the results obtained with two frequencies:
ω = 250 rad/s and ω = 750 rad/s.

We report, in Table 5.1, the minimal relative errors and the optimal values of β deter-
mined for each type of absorbing function and each of the three meshes. It can be clearly
seen from this table that the smallest errors are always attained for a function of A type
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Figure 5.6: Relative errors for PML
with different unbounded absorbing
functions. Mesh: N = 2; ω =
250 rad/s.
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Figure 5.7: Relative errors for PML
with different unbounded absorbing
functions. Mesh: N = 2; ω =
750 rad/s.
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Figure 5.8: Relative errors for PML
with different unbounded absorbing
functions. Mesh: N = 4; ω =
250 rad/s.
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Figure 5.9: Relative errors for PML
with different unbounded absorbing
functions. Mesh: N = 4; ω =
750 rad/s.

with the parameter β ≈ c. To allow for comparison, we also include in the table the errors
for this choice; namely,

σ1(x1) =
c

a∗ − x1

, σ2(x2) =
c

b∗ − x2

. (5.9)

Let us remark that, for each mesh, the CPU time needed to solve the problem is es-
sentially the same for the four types of absorbing functions. The condition numbers of the
system matrices remain basically of the same order of magnitude for all of the choices, too.

As a definite conclusion of this experimentation, we propose to use the absorbing func-
tions (5.9). Notice that an additional advantage of this proposal is that the resulting PML
method does not need any parameter to be determined.
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Figure 5.10: Relative errors for PML
with different unbounded absorbing
functions. Mesh: N = 8; ω =
250 rad/s.
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Figure 5.11: Relative errors for PML
with different unbounded absorbing
functions. Mesh: N = 8; ω =
750 rad/s.

Table 5.1: Minimal errors and optimal values of the parameter β for PML with different
unbounded absorbing functions.

ω = 250 rad/s ω = 750 rad/s
Mesh Type β Error(%) β Error(%)

A 1.2 c 0.646 1.1 c 1.696
B 2.2 c 2.160 1.8 c 2.305

N = 2 C 0.9 c 7.646 0.7 c 5.318
D 14.4 c 14.995 11.8 c 9.739

(5.9) c 0.763 c 1.700
A 1.0 c 0.131 1.1 c 0.437
B 2.6 c 0.367 3.4 c 0.474

N = 4 C 1.1 c 2.113 0.8 c 1.411
D 4.0 c 4.297 3.2 c 2.729

(5.9) c 0.131 c 0.447
A 1.0 c 0.029 1.2 c 0.101
B 2.8 c 0.070 2.6 c 0.111

N = 8 C 1.1 c 0.589 0.9 c 0.365
D 7.6 c 0.957 6.8 c 0.602

(5.9) c 0.029 c 0.109

To assess the order of convergence of the proposed numerical method, we show in
Figure 5.12 the error curves (log-log plots of errors versus mesh-size) for ω = 250 rad/s
and ω = 750 rad/s. It can be seen from this figure that an order of convergence O(h2) is
achieved. Let us recall that this is the optimal order for the used finite elements in L2-norm.
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To end this section, we show in Figure 5.13 the real and imaginary parts of the solution
computed with the proposed PML method for the mesh corresponding to N = 8 and
ω = 750 rad/s. The solution is plotted in the physical domain and in the PML.
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Figure 5.12: Error curves of the PML method with absorbing functions (5.9).

5.5 Comparison with classical absorbing functions

The aim of this section is to compare the proposed unbounded absorbing function (5.9)
with the most standard classical choice: quadratic functions of the form

σ1(x1) = σ∗(x1 − a)2 and σ2(x2) = σ∗(x2 − b)2, (5.10)

where σ∗ is a parameter to be determined. For the comparison we have used the same
numerical test as in the previous section.

When these quadratic absorbing functions are used, the standard procedure to minimize
the spurious reflections produced at the outer boundary of the PML consists of taking large
values for σ∗. Notice that this agrees with the analysis in Section 4.4. However, larger values
of σ∗ lead to larger discretization errors. Therefore, σ∗ cannot be chosen arbitrarily large
because, otherwise, the discretization errors would be dominant, deteriorating the overall
accuracy of the method.

As shown in [51], for a given problem and a given mesh there is an optimal value of
σ∗ leading to minimal errors. Unfortunately, such optimal value depends strongly on the
problem data as well as on the particular mesh. Thus, in practice, it is necessary to find in
advance a reasonable value of σ∗. No theoretical procedure to tune this parameter is known
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Figure 5.13: Solution of the scattering problem computed by the PML method with ab-
sorbing functions (5.9). Mesh N = 8, ω = 750 rad/s.

to date. Some efforts have been done in [100], but the dependency of σ∗ with respect to
the mesh has not been avoided.

Let us emphasize that a benefit of our proposed PML strategy is that it does not need
of any parameter to be fitted.

In Table 5.2 we compare the errors of the PML method with the unbounded absorbing
functions (5.9) and with the quadratic absorbing functions (5.10). For the latter, we have
used the optimal value of σ∗, which is also reported in the table. We also include in the
table the condition number κ of the system matrix for each discrete problem.

A significant advantage of the proposed unbounded absorbing functions (5.9) can be
clearly appreciated from this table. This is particularly remarkable for lowest frequencies,
but the errors with the quadratic absorbing functions are larger in all cases, even though
the optimal value of σ∗ has been used. On the other hand, in spite of the singular character
of the unbounded functions, the condition numbers of the resulting system matrices are
essentially of the same order as those of the quadratic functions.

On the other hand, Table 5.2 also shows that the optimal value of σ∗ strongly depends
on the problem data (the frequency ω in this case) and the mesh. The errors and the
condition numbers would be significantly larger if any other value than the optimal σ∗ were
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Table 5.2: Comparison of PML methods with unbounded and quadratic absorbing func-
tions.

Unbounded (5.9) Quadratic (5.10)
ω(rad/s) Mesh Error(%) κ σ∗ Error(%) κ

N = 2 0.763 6.7e+02 22.28 c 11.644 4.7e+02
250 N = 4 0.131 5.1e+03 29.57 c 3.675 5.0e+03

N = 8 0.029 4.1e+04 38.37 c 1.134 4.6e+04
N = 2 1.700 1.1e+02 27.67 c 7.602 1.1e+02

750 N = 4 0.447 7.0e+02 35.52 c 2.291 9.4e+02
N = 8 0.109 5.6e+03 43.49 c 0.698 8.2e+03
N = 2 6.958 2.7e+02 27.89 c 11.620 2.9e+02

1250 N = 4 1.946 1.1e+03 36.94 c 3.336 1.7e+03
N = 8 0.430 9.7e+03 45.70 c 0.919 1.5e+03

used. This can be appreciated from Figure 5.14 and 5.15, where the relative error and the
condition number are respectively plotted as functions of σ∗, for the mesh corresponding
to N = 4 and ω = 750 rad/s.
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Figure 5.14: Relative error for
quadratic absorbing functions with
varying σ∗. Mesh: N = 4; ω =
750 rad/s.
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Figure 5.15: Condition number for
quadratic absorbing functions with
varying σ∗. Mesh: N = 4; ω =
750 rad/s.

As a conclusion, the proposed PML method with unbounded absorbing function (5.9)
clearly beats the classical choice of bounded absorbing functions. Moreover, it overcomes
the problem of determining optimal parameters.
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5.6 Numerical tests

In this section we report the results obtained by applying the proposed PML strategy
based on the non-integrable absorbing function (5.9) to solve two ‘real life’ Helmholtz
problems.

The first test is the scattering of an incident plane wave on the annular obstacle shown in
Figure 5.16. The wave number has been taken k = 2π and the acoustic speed c = 340 m/s.

1 m

π

4

0.25 m

Figure 5.16: Annular obstacle of the scattering problem.

We have used our PML method on the two embedded square domains shown in Figs. 5.17
and 5.18. Therefore, we have been able to compare the numerical results as a mean of
assessing the accuracy of the method, since an analytical solution of this problem is not
available.

We have used uniform refinements of the meshes shown in Figs. 5.17 and 5.18, with
21160 triangles and 3328 rectangles, for the smaller domain, and with 64680 triangles and
5888 rectangles for the larger.

In Figs. 5.19 and 5.20 we show the real and imaginary parts, respectively, of the com-
puted solutions in both domains. It can be seen that both solutions are almost identical
on the common part of the physical domains. Indeed, the relative difference in L2-norm
(which is defined analogously to (5.8)) is only 0.233%. Therefore, the solution computed in
the smaller domain (and consequently with less computational effort) can be safely used.

In the second test we have simulated the scattering of waves generated by a monopole
(i.e., a Dirac’s delta source term). We have used the same annular obstacle and square
domains as in the previous test, with the monopole located at the center of the squares.
We have also used the same meshes, wave number, and acoustic speed.

The computed solutions are shown in Figs. 5.21 and 5.22. Once more, both solutions
are practically indistinguishable in the common part of the physical domains. In this case,
the relative difference in L2-norm is only 0.184%.

Obviously we can change the geometry of the obstacle. For instance, we also consider
a diapason whose thickness is 0.2 m, its interior aperture 1 m, and its length 4.1 m (see
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3.5 m 0.25 m 

Figure 5.17: Smaller
domain and coarse
mesh for the scatter-
ing problem.

7 m 0.25 m 

Figure 5.18: Larger domain and coarse mesh for
the scattering problem.

Figure 5.23).

First, we suppose that a plane wave in the positive x-direction is scattered by the
diapason. The mesh corresponds to the physical domain ΩF = [−3.6, 3.6]2 \Ω and to PML
layers with thickness 0.5 m. We use two meshes, which are refinements of the mesh in
Figure 5.23. Mesh N = 4 has 9140 triangles in ΩF and 3120 rectangles in the PML layers,
whereas mesh N = 8 has 36610 triangles in the fluid domain and 12480 in the PML.

In Figures 5.24 and 5.25 we show the results that we have obtained for the reflected
pressure field by the diapason, for a wave number k = 2π m−1, using the mesh N = 4.

Figures 5.26 and 5.27 show the same numerical problem with a higher wave number,
k = 10π m−1. In this case we have used the mesh N = 8.

Now we keep the same geometry of the diapason with the same meshes, but simulate
a Dirac’s delta (monopole) acting at the point (0.5, 0) m (inside the arc of the diapason).
In Figures 5.28 to 5.31 we show the real and the imaginary part of the reflected pressure
fields generated by a monopole for the wave numbers k = 2π m−1 (with the mesh N = 4)
and k = 10π m−1 (with the mesh N = 8).

Finally, the last example resembles the well-known double-slit interference experiment
stated originally by Thomas Young in 1801 to infer the wave-like nature of light. This
model mimics the plane-wave excitation with two waveguides leading to slits in a screen
and computes the diffraction pattern in a domain surrounding the apertures.

We have used the domain shown in Figure 5.32 and a refinement of the mesh plotted in
the same figure, with 51424 triangles and 6656 rectangles. We have taken a wave number
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Figure 5.19: Reflected wave field generated by an incident plane wave. Real part.

k = 8π and an acoustic speed c = 340 m/s.
Figure 5.33 shows the wave field near the double-slit.
When the Fresnel number is small enough, classical theory predicts a phenomenon of

destructive interference which depends only on the angular coordinate θ (see for instance
[41]). The interference lines are θ = ±ka, being k the wave number and a the radius of the
aperture in the slits. It can be checked in Figure 5.34 that the numerical results achieve a
good accuracy with respect to the approximated classical theory of Fraunhofer diffraction.

5.7 Conclusions

We have introduced a PML method based on a non-integrable absorbing function for
the numerical solution of time-harmonic problems in unbounded domains. We have shown
that this method is able to absorb plane waves with arbitrary incidence angle without any
spurious reflection.

We have compared the performance of different non-integrable absorbing functions lead-
ing to well posed finite element discretizations. The comparison allow us to choose a partic-
ularly simple one, which only depends on the acoustic speed. Therefore, we have obtained
a PML method free of parameters with no physical meaning.
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Figure 5.20: Reflected wave field generated by an incident plane wave. Imaginary part.

We have shown that the proposed method leads to significantly smaller errors than
the classical ones based on bounded absorbing functions. To assess the efficiency of our
approach, we have applied it to solve some realistic problems, obtaining very good results
even with thin absorbing layers close to the obstacles.

As shown in the forthcoming appendix, the method is very easy to implement. The
integrals in the PML involving the unbounded absorbing function can be computed either
explicitly or by means of standard quadrature rules. Let us emphasize that, if quadrature
rules are chosen, then there is no need of using hybrid meshes with triangles in the region
of interest and rectangles in the PML. A thorough numerical experimentation to validate
the proposed PML method on purely triangular meshes will be reported somewhere else.

5.8 Computation of the element matrices

Our choice of absorbing functions,

σ1(x1) =
c

a∗ − x1

, σ2(x2) =
c

b∗ − x2

,

allows the explicit computation of integrals like those in (5.3). Although such explicit
computation is not indispensable, it avoids the use of quadrature rules and their inherent
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Figure 5.21: Wave field generated by a monopole. Real part.

truncation errors.
As an example of explicit computation, consider the integrals (5.4)–(5.6) over an element

K as that shown in Figure 5.4. In this case, we have to compute four different integrals:∫ a∗

a∗−h1

γ1(x1)(x1 − a∗)2 dx1,

∫ a∗

a∗−h1

dx1

γ1(x1)
,∫ b2

b1

γ2(x2)(x2 − bj)(x2 − bi) dx2,

∫ b2

b1

dx2

γ2(x2)
.

All the integrals that appear in the computation of the element matrices for any other
element K in ΩA are essentially equal to one of these four.

The integrals involving γ1 are computed as follows:∫ a∗

a∗−h1

γ1(x1)(x1 − a∗)2 dx1 =

∫ a∗

a∗−h1

[
1 +

i

ω

c

(a∗ − x1)

]
(x1 − a∗)2 dx1 =

h3
1

3
− i

c

ω

h2
1

2

and ∫ a∗

a∗−h1

dx1

γ1(x1)
=

∫ a∗

a∗−h1

ω(a∗ − x1)

ω(a∗ − x1) + ic
dx1 = h1 +

ic

ω
log

(
ic

ωh1 + ic

)
.
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Figure 5.22: Wave field generated by a monopole. Imaginary part.

−4.1−3.6 0 3.6 4.1
−2.7

−2.2

0

2.2

2.7

Figure 5.23: Mesh of the fluid domain and PML surrounding the diapason.
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Figure 5.24: Real part of the pres-
sure field generated by an incident
plane wave, k = 2π m−1.

Figure 5.25: Imaginary part of the
pressure field generated by an inci-
dent plane wave, k = 2π m−1.

Figure 5.26: Real part of the pres-
sure field generated by an incident
plane wave, k = 10π m−1.

Figure 5.27: Imaginary part of the
pressure field generated by an inci-
dent plane wave, k = 10π m−1.

The computation of the integrals involving γ2 depend on the location of the element K.
If −b ≤ b1 < b2 ≤ b, then γ2 = 1 and the integrals are trivial. If b ≤ b1 < b2 ≤ b∗, then

∫ b2

b1

dx2

γ2(x2)
=

∫ b2

b1

ω(b∗ − x2)

ω(b∗ − x2) + ic
dx2 = h2 +

ic

ω
log

(
ω(b∗ − b2) + ic

ω(b∗ − b1) + ic

)

and∫ b2

b1

γ2(x2)(x2 − bj)(x2 − bi) dx2 =

∫ b2

b1

(x2 − bj)(x2 − bi) dx2 + i
ω

c

∫ b2

b1

(x2 − bj)(x2 − bi)

b∗ − x2

dx2.

The first integral above is trivial, whereas for the second one straightforward computations
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Figure 5.28: Real part of pressure
field generated by a monopole, k =
2π m−1.

Figure 5.29: Imaginary part of
the pressure field generated by a
monopole, k = 2π m−1.

Figure 5.30: Real part of the pres-
sure field generated by a monopole,
k = 10π m−1.

Figure 5.31: Imaginary part of
the pressure field generated by a
monopole, k = 10π m−1.

lead to ∫ b2

b1

(x2 − bj)(x2 − bi)

b∗ − x2

dx2 =
h2

2
(2b∗ − b2 − b1) − h2(2b

∗ − bi − bj)

+ (b∗ − bj)(b
∗ − bi) log

(
b∗ − b1

b∗ − b2

)
.

Similar results are valid if −b∗ ≤ b1 < b2 ≤ −b.
Alternatively, all these integrals can be computed using standard quadrature rules. In

principle, these rules could lead to large truncation errors due to the singular character of
the unbounded absorbing functions. However, our preliminary experiments show that the
effect of numerical quadrature does not seem to modify significantly the accuracy of the
proposed PML method.

To show this we have solved the numerical test from Section 5.4 with the integrals
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0.1 m 

0.5 m 

0.25 m 

2 m 

Figure 5.32: Domain and coarse mesh for the double-slit interference test.

Figure 5.33: Wave field generated by the excitation of the waveguides.

computed by Gauss-Legendre rules with 4 and 9 nodes. We report in Table 5.3 the relative
errors of the solutions computed with each rule and with exact integration.

It can be clearly seen that the errors in the numerical integration are negligible. More-
over, for 250 rad/s and 750 rad/s the 4-nodes rule shows a slightly better performance,
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Figure 5.34: Interference pattern at different distances r from the waveguides apertures.

Table 5.3: Comparison of quadrature rules using PML with unbounded absorbing functions.

Gauss-Legendre Exact Integration
ω(rad/s) Mesh 4 nodes 9 nodes

N = 2 0.763689 0.770405 0.763485
250 N = 4 0.130572 0.130413 0.130580

N = 8 0.028858 0.028755 0.028860
N = 2 1.699869 1.699611 1.699889

750 N = 4 0.446922 0.446910 0.446922
N = 8 0.109444 0.109467 0.109443
N = 2 6.957597 6.958152 6.958012

1250 N = 4 1.946417 1.946320 1.946313
N = 8 0.429920 0.429913 0.429912

which agrees with the fact that low-order integration schemes are preferable for singular
integrands.
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An exact bounded PML in radial
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6.1 Introduction

We have shown in Chapter 5 that the Cartesian PML technique based on singular
absorbing functions, leads to accurate numerical results. The aim of this chapter is to ana-
lyze mathematically the existence and uniqueness of solution of the corresponding coupled
fluid/PML problem.

We also prove that this choice leads to a theoretically exact bounded PML. More pre-
cisely, this kind of absorbing function on a circular annular layer allows recovering the
exact solution of the time-harmonic scattering problem in the domain of interest, up to
discretization errors, even though the thickness of the layer is finite. This is the reason why
we call “exact” PML methods to those based on such absorbing functions.

Standard PML techniques based on bounded absorbing function lead to partial differ-
ential equations in the PML with bounded coefficients. Thus, the theoretical procedure to
prove the well-posedness of the coupled fluid/PML problems is based on the Freedholm al-
ternative in standard Sobolev spaces. However, when a non-integrable absorbing function
is used, the coefficients in the PML equation become unbounded, and the natural func-
tional framework involves a non-standard weighted Sobolev space. In this case standard
arguments cannot be applied due to the lack of a compactness result. As an alternative, we
reproduce the classical steps used for the Helmholtz equation, taking advantage of the series
representation of the solution in the PML domain. Thus we prove a result of existence and
uniqueness for the coupled fluid/PML problem.

The analysis of the theoretical error for other PML techniques is typically based on
the construction of an analogous Dirichlet-to-Neumann operator using the solution in the
PML. We also use this approach to prove that the solution in the fluid domain of the
coupled fluid/PML problem is exactly equal to the solution of the scattering problem in an
unbounded domain.

The outline of this chapter is as follows: we recall in Section 6.2 how the classical time-
harmonic scattering problem can be stated in a bounded domain by using a DtN operator.
Section 6.3 is devoted to settling PML equations based on non-integrable absorbing func-
tions on an annular domain surrounding the physical one. Once the fundamental solution
for the PML is calculated in Section 6.4, a integral representation formula is proved in
Section 6.5. We rewrite a classical “addition theorem” for the PML fundamental solution
in Section 6.6. Using these tools, we prove a characterization theorem for the solution of
the radial PML in Section 6.7 and derive a theorem of existence and uniqueness of solution
for the PML problem. In Section 6.8, we use this result to recover the classical solution
of the scattering problem by means of a coupled fluid/PML problem. We prove existence
and uniqueness of solution for this coupled problem and write a weak formulation, as well.
Finally, in Section 6.9, we report some numerical results obtained with a standard finite
element method.
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6.2 Scattering problem

Let Ω be a bounded two-dimensional open set with a Lipschitz boundary Γ. We aim to
solve a scattering problem in the unbounded domain R2 \ Ω, which we assume connected
(see Figure 6.1). As in Chapter 5, we are going to focus our attention on the time-harmonic
scattering problem. More precisely, we consider the following Dirichlet boundary value
problem for the Helmholtz equation, which models the wave propagation with frequency
ω > 0 and velocity of propagation c > 0:

Find p ∈ H1
loc(R

2 \ Ω) such that

−Δp − k2p = 0 in R2 \ Ω, (6.1)

p = f on Γ, (6.2)

lim
r→∞

√
r

(
∂p

∂r
− ikp

)
= 0, (6.3)

where r := |x| is the radial polar coordinate for x ∈ R2, k := ω/c is the wave number,

and f ∈ H
1
2 (Γ) is the Dirichlet boundary data. Let us remark that we could analogously

consider the corresponding Neumann boundary value problem. The existence of solution
to both problems is well known in the literature (see for instance [104]).

Ω

ΩR

SR

ν

R2 \ BR

Γ

Figure 6.1: Scatterer and artificial circular boundary.

Let BR := {x ∈ R2 : |x| < R} be an open ball of radius R such that Ω ⊂ BR. Let
SR := {x ∈ R2 : |x| = R} be its boundary and ν its outward unit normal vector (see
Figure 6.1). The DtN operator of the problem above is defined as follows:

G : H
1
2 (SR) −→ H− 1

2 (SR)

g �−→ ∂p̃

∂ν

∣∣∣∣
SR

(6.4)
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where p̃ ∈ H1
loc(R

2 \ BR) is the unique solution of

−Δp̃ − k2p̃ = 0 in R2 \ BR,

p̃ = g on SR,

lim
r→∞

√
r

(
∂p̃

∂r
− ikp̃

)
= 0.

Let us recall that this operator is explicitly given by the following series (see [84, 90]):

Gg =
∞∑

n=−∞
gnk

[H
(1)
n ]′(kR)

H
(1)
n (kR)

einθ,

where θ is the angular polar coordinate of x, gn := 1/(2πR)
∫

SR
g(x) e−inθ dS is the nth

Fourier coefficient of g, and H
(j)
n denotes the nth Hankel function of jth kind, j = 1, 2 (see

for instance [103]).
Problem (6.1)–(6.3) can be equivalently settled in the bounded domain

ΩR :=
{
x ∈ R2 \ Ω : |x| < R

}
by means of this DtN operator as follows:

Find p ∈ H1(ΩR) such that

−Δp − k2p = 0 in ΩR, (6.5)

p = f on Γ, (6.6)

∂p

∂ν
= G

(
p|SR

)
on SR. (6.7)

Clearly, if p is the solution of Problem (6.1)–(6.3) (see Figure 6.1), then p|ΩR
is the

unique solution of the problem above.

6.3 Statement of the PML equation

Radial PML methods are based on simulating dissipation in an annular domain, D :=
{x ∈ R2 : R < |x| < R�}, surrounding the physical domain of interest (see Figure 6.2).

This can be done by means of a complex-valued radial stretching proposed by Collino
and Monk [52], which leads to the following partial differential equation written in polar
coordinates:

−1

r

(
∂

∂r

(
γ̂(r)r

γ(r)

∂p̂

∂r

)
+

γ(r)

γ̂(r)r

∂2p̂

∂θ2

)
− γ(r)γ̂(r)k2p̂ = 0 in D, (6.8)

where

γ(r) := 1 +
i

ω
σ(r) and γ̂(r) := 1 +

i

ωr

∫ r

R

σ(s), (6.9)
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R�
R

Figure 6.2: Domain D.

with the so-called absorbing function σ : [R, R�) −→ [0,∞) being monotonically in-
creasing and smooth. Although in practice σ will be chosen in C∞([R, R�)), in all what
follows it is enough to assume that σ ∈ C2,1([R,R′]) for all R′ ∈ (R,R�) (recall that
C2,1([R, R′]) := {F ∈ C2([R, R′]); F ′′ is Lipschitz-continuous in [R, R′]}). Notice that we
do not assume that σ(R) = 0. This function has been typically chosen bounded (see [52]).
As an alternative, we propose to choose a non-integrable function, i.e., such that∫ R�

R

σ(s) = +∞; (6.10)

for example, σ(r) := c/(R� − r).
Under the previous assumptions on σ, limr→R� |γ(r)| = limr→R� |γ̂(r)| = +∞. Moreover,

the coefficients of the differential equation (6.8) satisfy

lim
r→R�

∣∣∣∣ γ̂(r)r

γ(r)

∣∣∣∣ = 0 and lim
r→R�

∣∣∣∣ γ(r)

γ̂(r)r

∣∣∣∣ = +∞. (6.11)

Indeed, given ε > 0, let Aε :=
∫ R�−ε

R
σ(s). Because of (6.10), ∃r ∈ (R� − ε, R�) such that∫ r

R�−ε
σ(s) ≥ Aε. Then∫ r

R

σ(s) =

∫ R�−ε

R

σ(s) +

∫ r

R�−ε

σ(s) ≤ 2

∫ r

R�−ε

σ(s) ≤ 2εσ(r).

Hence,

lim
r→R�

1

σ(r)

∫ r

R

σ(s) = 0,
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which together with the definitions of γ and γ̂, and the fact that R ≤ r ≤ R� yield (6.11).

To end this section, we write the equation (6.8) in a more compact form. Let {er, eθ}
be the canonical polar-coordinates basis. Let us recall the expressions of the divergence
and gradient operators in this basis:

grad q =
∂q

∂r
er +

1

r

∂q

∂θ
eθ,

and, for w = wrer + wθeθ,

div w =
1

r

(
∂

∂r
(rwr) +

∂wθ

∂θ

)
.

It is straightforward to show that the PML equation (6.8) can be written as follows:

− div(Agrad p̂) − γ(r)γ̂(r)k2p̂ = 0 in D,

where

A :=

(
arr 0
0 aθθ

)
, with arr(r) :=

γ̂(r)

γ(r)
and aθθ(r) :=

γ(r)

γ̂(r)
. (6.12)

Let us emphasize that matrix A is written in the polar coordinates basis. Therefore, for
the concrete evaluation of any expression involving A (like that above), all the vector fields
and the differential operators must be written in the same basis.

6.4 PML fundamental solution

We consider the following complex change of variable, proposed by Collino and Monk
in [52]:

r̂(r) := γ̂(r)r = r +
i

ω

∫ r

R

σ(s)ds, r ∈ [R, R�).

The assumed smoothness of σ is more than enough to ensure that r̂ ∈ C2([R, R�)). We also
define a complex-valued function d(·, ·) which will be often used instead of the Euclidean
distance within the PML: given two points x and y in D, with respective polar coordinates
(rx, θx) and (ry, θy), let

d(x,y) :=
√

r̂2
x + r̂2

y − 2r̂xr̂y cos(θy − θx), (6.13)

where r̂x := r̂(rx), r̂y := r̂(ry) and the square root is chosen so that Re(
√

z) > 0 for z �= 0.
The following lemma shows that this definition makes sense, because the radicand in (6.13)
is never a negative real number.
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Lemma 6.4.1. For all x, y ∈ D, x �= y,

r̂2
x + r̂2

y − 2r̂xr̂y cos(θy − θx)

either is a positive real number or it has a positive imaginary part. Moreover it vanishes if
and only if x = y.

Proof. Since r̂2
x + r̂2

y−2r̂xr̂y cos(θy−θx) is symmetric as a function of x and y, it is enough
to consider r̂x ≥ r̂y.

First, consider the trivial case in which σ vanishes in [R, rx]. In such a case r̂x = rx, r̂y =
ry, and r̂2

x + r̂2
y−2r̂xr̂y cos(θy− θx) ≥ (rx− ry)2 ≥ 0. Moreover r̂2

x + r̂2
y−2r̂xr̂y cos(θy− θx)

vanishes if and only if rx = ry and θx = θy; namely, if and only if x = y.
Secondly, consider the case in which σ does not vanishes in [R, rx] and, hence,

∫ rx

R
σ(s)ds >

0 (recall that σ is monotonically increasing and non-negative). In such a case, there holds

Im(r̂2
x + r̂2

y − 2r̂xr̂y cos(θy − θx))

=
2

ω

(
rx

∫ rx

R

σ(s)ds + ry

∫ ry

R

σ(s)ds − cos(θy − θx)

(
rx

∫ ry

R

σ(s)ds + ry

∫ rx

R

σ(s)ds

))
≥ 2

ω

(
rx

∫ rx

R

σ(s)ds + ry

∫ ry

R

σ(s)ds −
(

rx

∫ ry

R

σ(s)ds + ry

∫ rx

R

σ(s)ds

))
=

2

ω
(rx − ry)

(∫ rx

R

σ(s)ds −
∫ ry

R

σ(s)ds

)
≥ 0,

the latter because
∫ rx

R
σ(s)ds ≥

∫ ry

R
σ(s)ds, for rx ≥ ry. Moreover, once more

Im(r̂2
x + r̂2

y − 2r̂xr̂y cos(θy − θx)) = 0

if and only if rx = ry and θx = θy; namely, if and only if x = y. Thus we conclude the
proof.

Corollary 6.4.2. The complex-valued function d takes values in the set

{z ∈ C : Re(z) > 0, Im(z) ≥ 0} ∪ {0}.

Moreover, d(x,y) vanishes if and only if x = y.

Remark 6.4.3. The usual distance between two points x and y can be written as follows:

|x − y| =
∣∣rx eiθx − ry eiθy

∣∣ =
√

(rx eiθx − ry eiθy )(rx e−iθx − ry e−iθy ).

If we substitute in the previous equation the radial coordinates rx and ry by the complex
values r̂(rx) and r̂(ry), respectively, we obtain the complex-valued function d(x,y). In fact,
it is immediate to deduce from (6.13) that

d(x,y) =
√

(r̂x eiθx − r̂y eiθy )(r̂x e−iθx − r̂y e−iθy ). (6.14)
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The following lemma will play a key role in the subsequent analysis. It allows us to
compare |d(x,y)| with the standard Euclidean distance for x and y sufficiently close.

Lemma 6.4.4. For fixed x ∈ D, there exist three positive constants C1, C2 and ρ, which
depend on x, such that,

C1 |x − y| ≤ |d(x,y)| ≤ C2 |x − y| ,

for all y ∈ D such that |y − x| < ρ.

Proof. Let T± : D → R2 be defined by T±x := (Re(r̂x e±iθx), Im(r̂x e±iθx)). Because of
(6.14) we can write

|d(x, y)| =
√

|T+x − T+y| |T−x − T−y|. (6.15)

To prove the lemma we will study the smoothness and invertibility of T±. For x = (x1, x2) ∈
D, let r := |x| ∈ (R,R�) and s(r) := 1

ωr

∫ r

R
σ(ξ)dξ. Hence

T±x = (x1 ∓ x2s(r),±x2 + x1s(r)),

DT±x =

(
1 ∓ x1x2

r
s′(r) ∓s(r) ∓ x2

2

r
s′(r)

s(r) +
x2
1

r
s′(r) ±1 + x1x2

r
s′(r)

)
,

so that T± ∈ C1(D), and det(DT±x) = ±(1 + s2(r) + rs(r)s′(r)) �= 0, the latter because
s(r) ≥ 0 and

s′(r) =
1

ωr

(
σ(r) − 1

r

∫ r

R

σ(ξ)dξ

)
≥ 1

ωr

(
σ(r) − 1

r − R

∫ r

R

σ(ξ)dξ

)
≥ 0.

Therefore, as a consequence of the inverse function theorem, T± is invertible in a neighbor-
hood of T±x and its inverse is C1 in the same neighborhood. Consequently, ∃C±

1 , C±
2 , ρ± >

0 such that ∀y ∈ D, if |x − y| ≤ ρ±, then

C±
1 |x − y| ≤ |T±x − T±y| ≤ C±

2 |x − y|;

which together with (6.15) allow us to conclude the proof.

For fixed x ∈ D, d(x, ·) is infinitely differentiable with respect to θy, but the differen-
tiability with respect to ry depends on the regularity of σ. The assumed smoothness of
σ is enough to ensure that d(x, ·) ∈ C2(D \ {x}). The following lemma collects several
limits that will be used in the sequel. The corresponding proofs are straightforward. From
now on, to simplify the notation, we denote γy := γ(ry) and γ̂y := γ̂(ry). Accordingly, we
denote Ay instead of A when γy and γ̂y are used in the definition (6.12).
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Lemma 6.4.5. For fixed x ∈ D, there holds uniformly in θy ∈ (−π, π]:

i) lim
ry→R�

Im(d(x,y)) = +∞, (6.16)

ii) |d(x,y)| = O (Im(d(x,y))) , as ry → R�, (6.17)

iii) lim
ry→R�

d(x,y)

r̂y

= 1, (6.18)

iv)

∣∣∣∣∂d(x,y)

∂θy

∣∣∣∣ = 1, as ry → R�. (6.19)

Proof. i) We work with the square of the complex ‘distance’ d(·, ·)2. In fact, we have

d(x,y)2 = r̂2
x + r̂2

y − 2r̂xr̂y cos(θy − θx) = Re(r̂x)2 − Im(r̂x)2 + 2i Re(r̂x) Im(r̂x)

+ Re(r̂y)2 − Im(r̂y)2 + 2i Re(r̂y) Im(r̂y) − 2 cos(θy − θx)[Re(r̂x) Re(r̂y)

− Im(r̂x) Im(r̂y) + i(Re(r̂x) Im(r̂y) + Re(r̂y) Im(r̂x))]

= Re(r̂x)2 + Re(r̂y)2 − Im(r̂x)2 − 2 Re(r̂x) Re(r̂y) cos(θy − θx)

+ Im(r̂y)(− Im(r̂y) + 2 Im(r̂x) cos(θy − θx)) + 2i[Re(r̂x) Im(r̂x)

− Re(r̂y) Im(r̂x) cos(θy − θx) + Im(r̂y)(Re(r̂y) − Re(r̂x) cos(θy − θx))].

It is important to remember that, in this case, Re(r̂x), Re(r̂y), and Im(r̂x) remain bounded
and only Im(r̂y) tends to infinity when ry goes to R�. Since the term in the real part of
d(·, ·)2 involving Im(r̂y) is Im(r̂y)(− Im(r̂y) + 2 Im(r̂x) cos(θy − θx)), then

lim
ry→R�

Re(d(x,y)2) = −∞,

uniformly in all the directions θy ∈ (−π, π], i.e., for all A < 0 there exists δ > 0 such that,
if |ry − R�| < δ then Re(d(x,y)2) < A.

Meanwhile, the term in the imaginary part of d(·, ·)2 involving Im(r̂y) appears multiplied
by the factor (Re(r̂y) − Re(r̂x) cos(θy − θx)). Since we can assume that ry > rx (because
rx < R� is fixed while ry goes to R�), then Re(r̂y) − Re(r̂x) cos(θy − θx) > 0 and we have

lim
ry→R�

Im(d(x, y)2) = +∞,

uniformly in all the directions θy ∈ (−π, π].
ii)If d(x,y) = a + ib with a, b ∈ R, then a2 − b2 → −∞ and ab → +∞ when ry → R�.

Hence |b| > |a| > 0 with |b| → +∞ when ry → R�, uniformly in all the directions
θy ∈ (−π, π]. Since ab goes to infinity uniformly, for all A < 0 there exists δ > 0 such that,
if |ry − R�| < δ then ab > A and hence A < ab < |b|2 obtaining that the limit for |b| is also
uniform.

Moreover, terms a and b have the same sign, and because of the choice of the positive
root in the definition of the complex distance d(·, ·), we can conclude (6.17). On the other
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hand, since |b| > |a| > 0 when ry → R�, we have

lim
ry→R�

|d(x,y)|
Im(d(x,y))

≤
√

2,

obviously uniformly with respect to θy.
iii) Taking again into account that only the term Im(r̂y) is unbounded in d(x,y)2 and

in r̂2
y, we have

lim
ry→R�

d(x,y)2

r̂2
y

= lim
ry→R�

Im(r̂y)(− Im(r̂y) + 2 Im(r̂x) cos(θy − θx))

− Im(r̂y)2 + 2i Re(r̂y) Im(r̂y)

+ lim
ry→R�

2i Im(r̂y)(Re(r̂y) − Re(r̂x) cos(θy − θx))

− Im(r̂y)2 + 2i Re(r̂y) Im(r̂y)
= 1.

Hence, the limit in (6.18) is equal to +1 or −1. If we take into account that we have chosen
the real part of d(x,y) to be positive and that the real part of r̂y is also positive, then
only 1 is possible. It is immediate to verify that the previous limit is uniform since the
dependence of d(x,y) with respect to θy is continuous in the compact subset (−π, π] and
Im(r̂y) → +∞ uniformly in all the directions when r goes to R�.

iv) It is immediate to prove that ∂r̂y

∂ry
= γy. Then, applying the inverse function theorem,

we have

lim
ry→R�

∂d(x,y)

∂ry

(
∂r̂y

∂ry

)−1

= lim
ry→R�

∂d(x,y)

∂r̂y

= lim
ry→R�

r̂y − r̂x cos(θy − θx)

d(x,y)
= 1.

Obviously, the uniformity in all the directions of this limit is a direct consequence of the
same property proved for (6.18).

Now we are in a position to compute a fundamental solution of the PML equation, i.e.,
a solution Φ (in the sense of distributions) of

− divy(Ay grady Φ(x,y)) − γyγ̂yk2Φ(x,y) = δx in D′(D), (6.20)

δx being the Dirac’s delta supported at the point x ∈ D.

Theorem 6.4.6. For fixed x ∈ D,

Φ+(x,y) :=
i

4
H

(1)
0 (kd(x,y)), (6.21)

and

Φ−(x,y) := − i

4
H

(2)
0 (kd(x,y)), (6.22)

are solutions of (6.20).
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Proof. Let x ∈ D be fixed. First, we are going to prove that

− divy(Ay grady Φ±(x, y)) − γyγ̂yk2Φ±(x,y) = 0, (6.23)

for all y ∈ D \ {x}. With this purpose, (6.23) can be immediately written as follows:

− 1

ry

(
∂

∂ry

(
γ̂yry

γy

∂Φ±(x,y)

∂ry

)
+

γy

γ̂yry

∂2Φ±(x, y)

∂θ2
y

)
− γyγ̂yk2Φ±(x,y) = 0. (6.24)

Now d(x, ·) ∈ C2(D \ {x}) and, according to Corollary 6.4.2, it takes values in the half
complex plane Re z > 0. Hence Φ± ∈ C2(D\{x}), since the Hankel functions are analytical
in the whole complex plane except along the negative real axis.

Since H
(1)
0 (z) and H

(2)
0 (z) are solutions of the following Bessel equation (see [2]):

q′′(z) +
1

z
q′(z) + q(z) = 0, z �= 0,

the change of variable z = kd(x,y) allows us to conclude (6.24).

D̃ε

R

R�

R̃

O

x

ε

Figure 6.3: Domain D̃ε.

Next, let ϕ ∈ D(D) and R̃ ∈ (R,R�) be such that x ∈ D̃ and supp ϕ ⊂ D̃ with
D̃ := {x ∈ R2 : R < |x| < R̃}. Let ε > 0 be sufficiently small so that S(x, ε) := {x ∈ R2 :
|x − y| = ε} ⊂ D̃. Finally, let D̃ε := {y ∈ D̃ : |x − y| > ε} (see Figure 6.3) and n be its
outward unit normal vector. There holds

−〈divy(Ay grady Φ±(x,y)) + γyγ̂yk2Φ±(x,y), ϕ〉

= − lim
ε→0

∫
D̃ε

Φ±(x,y)(divy(Ay grady ϕ(y)) + γyγ̂yk2ϕ(y)) dy

= lim
ε→0

(∫
S(x,ε)

Ay grady Φ±(x,y) · nϕ(y) dSy

−
∫

S(x,ε)

Ay grady ϕ(y) · n Φ±(x, y) dSy

)
= ϕ(x) = 〈δx, ϕ〉,
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where we have used (6.23) and Lemma 6.10.3 (which is proved in Section 6.10 below). Thus
we conclude the theorem.

To finish this section, we settle some decay properties of the fundamental solution Φ+.

Lemma 6.4.7. For fixed x ∈ D, there holds uniformly in θy ∈ (−π, π]:

lim
ry→R�

√
γ̂yγyΦ+(x,y) = 0,

lim
ry→R�

√
γ̂y

γy

∂Φ+(x, y)

∂ry

= 0,

lim
ry→R�

√
γy

γ̂y

∂Φ+(x, y)

∂θy

= 0.

Proof. Let x ∈ D fixed. Using the asymptotic classical estimates for Hankel functions
(see [103]) and Lemma 6.4.5, we can check that Φ+(x, ·) and their derivatives go to zero
exponentially and uniformly in all the directions, as ry → R�. In fact, these three limits
are satisfied for each Hankel function of first kind and order n.

From item i) of Lemma 6.4.5, Im(d(x,y)) tends to infinity uniformly in all directions
θy ∈ (−π, π] when ry goes to R�. Hence, using the asymptotic behavior (6.82) and (6.83), we
can check that the first kind Hankel functions and their derivatives go to zero exponentially
while those of the second kind (and their derivatives) increase exponentially, in both cases
uniformly in all the directions.

Indeed, using the asymptotic behavior (6.82) and the limits (6.17)-(6.19), the outcoming
fundamental solution satisfies,

lim
ry→R�

∣∣∣√γ̂yγy H(1)
n (kd(x,y))

∣∣∣
= lim

ry→R�

∣∣∣∣∣
√

2γ̂yγy

πkd(x,y)
ei(kd(x,y)−nπ

2
−π

4
)

(
1 + O

(
1

|d(x, y)|

))∣∣∣∣∣
=

√
2

πkR�
lim

ry→R�

∣∣∣∣√γy eikr̂y

(
1 + O

(
1

|d(x, y)|

))∣∣∣∣ = 0, (6.25)

lim
ry→R�

∣∣∣∣∣
√

γ̂y

γy

∂ H
(1)
n (kd(x,y))

∂ry

∣∣∣∣∣
= lim

ry→R�

∣∣∣∣∣
√

γ̂y

γy

∂d(x,y)

∂ry

ik

√
2

πkd(x,y)
ei(kd(x,y)−nπ

2
−π

4
)

(
1 + O

(
1

|d(x,y)|

))∣∣∣∣∣
=

√
2k

πR�
lim

ry→R�

∣∣∣∣√γy eikr̂y

(
1 + O

(
1

|d(x,y)|

))∣∣∣∣ = 0, (6.26)
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and

lim
ry→R�

∣∣∣∣∣
√

γy

γ̂y

∂ H
(1)
n (kd(x,y))

∂θy

∣∣∣∣∣
= lim

ry→R�

∣∣∣∣∣
√

γy

γ̂y

∂d(x,y)

∂θy

ik

√
2

πkd(x,y)
ei(kd(x,y)−nπ

2
−π

4
)

(
1 + O

(
1

|d(x,y)|

))∣∣∣∣∣
=

√
2k

πR�
lim

ry→R�

∣∣∣∣√γy

γ̂y

eikr̂y

(
1 + O

(
1

|d(x,y)|

))∣∣∣∣ = 0, (6.27)

In the previous limits we have taken into account that lim
ry→R�

√
γy eikr̂y = 0. In fact,

lim
ry→R�

√
γy eikr̂y =

(
1

2ik
lim

ry→R�

∂

∂ry

( e2ikr̂y )

) 1
2

=

(
1

2ik
lim

ry→R�

e2ikr̂y

ry − R�

) 1
2

= 0,

because of the definition of r̂. Moreover, all the previous limits are uniformly in all the
directions θy ∈ (−π, π] since θy is not involved in the definition of r̂y.

6.5 PML integral representation formula

The aim of this section is to obtain an integral representation of the solutions of the
PML equation (6.8). We search for smooth solutions which, furthermore, belong to the
functional space

V :=

{
q ∈ H1

loc(D) : ‖q‖2
V :=

∫ R�

R

∫ π

−π

∣∣∣∣ γ̂(r)r

γ(r)

∣∣∣∣ ∣∣∣∣∂q

∂r

∣∣∣∣2 dθ dr

+

∫ R�

R

∫ π

−π

∣∣∣∣ γ(r)

γ̂(r)r

∣∣∣∣ ∣∣∣∣∂q

∂θ

∣∣∣∣2 dθ dr +

∫ R�

R

∫ π

−π

|γ̂(r)γ(r)r| |q|2 dθ dr < +∞
}

.

As a first step, we restrict our analysis to solutions of (6.8) in the space

W := V ∩ C1(D�) ∩ C2(D),

where

D� := D ∪ SR = {x ∈ R2 : R ≤ |x| < R�}.

Since the weights involved in the definition of V belong to L1
loc(R,R�) and are positive,

V is a Banach space when endowed with the norm ‖·‖V (see Kufner & Sändig [75]) and,
moreover, V ⊂ H1

loc(D
�), so that q ∈ H1(K) even for compact sets K intersecting SR.

First, we prove two preliminary results.
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Lemma 6.5.1. If q ∈ V, then

lim
R̃→R�

∫
SR̃

|γ̂| |q|2 dS = 0.

Proof. For q ∈ V, we define the complex-valued function F given by

F (r) :=

∫
Sr

γ̂ |q|2 dS =

∫ π

−π

rγ̂(r) |q(r, θ)|2 dθ.

From the definition of V, it is immediate to check that F and γF belong to L1(R, R�). We
also define

G(r) : =

∫ π

−π

∂

∂r

(
rγ̂(r) |q(r, θ)|2

)
dθ

= γ(r)

∫ π

−π

|q(r, θ)|2 dθ + 2rγ̂(r)

∫ π

−π

Re

(
∂q

∂r
(r, θ)q̄(r, θ)

)
dθ.

For q ∈ V, the first term in the above sum is integrable in (R,R�). Regarding the second
term, we have∫ R�

R

∣∣∣∣2rγ̂(r)

∫ π

−π

Re

(
∂q

∂r
(r, θ)q̄(r, θ)

)
dθ

∣∣∣∣ dr

≤ 2

(∫ R�

R

∫ π

−π

∣∣∣∣ γ̂(r)r

γ(r)

∣∣∣∣ ∣∣∣∣∂q

∂r

∣∣∣∣2 dθ dr

) 1
2 (∫ R�

R

∫ π

−π

|γ̂(r)γ(r)r| |q|2 dθ dr

) 1
2

,

which is again finite for q ∈ V. Thus G ∈ L1(R, R�). Moreover, straightforward compu-
tations show that G is the distributional derivative of F . Hence F ∈ W1,1(R, R�) and,
consequently, F ∈ C([R, R�]) (see for instance Theorem VIII.2 in [44]).

Now we can conclude the lemma by showing only that limr→R� F (r) = 0, since Re(γ)
and Im(γ) are non negative. We proceed by contradiction. Suppose limr→R� F (r) �= 0; in

such a case, since |γ| > 1 and γ is not integrable near r = R�,
∫ R�

R
|γF | dr = ∞, which

would contradict the fact that γF ∈ L1(R, R�).

Lemma 6.5.2. If p̂ ∈ W is a solution of (6.8) and q ∈ V, then

lim
R̃→R�

∫
SR̃

γ̂

γ

∂p̂

∂r
q dS = 0.

Proof. Let R̃ ∈ (R,R�). Since q ∈ V ⊂ H1
loc(D

�), if we multiply (6.8) by q ∈ V and
integrate by parts in D̃ := {x ∈ R2 : R < |x| < R̃}, we obtain∫

SR̃

γ̂

γ

∂p̂

∂r
q dS =

∫
D̃

γ̂

γ

∂p̂

∂r

∂q

∂r
+

∫
D̃

γ

γ̂r2

∂p̂

∂θ

∂q

∂θ
− k2

∫
D̃

γγ̂p̂q +

∫
SR

1

γ

∂p̂

∂r
q dS

=

∫ R̃

R

[∫
Sr

(
γ̂

γ

∂p̂

∂r

∂q

∂r
+

γ

γ̂r2

∂p̂

∂θ

∂q

∂θ
− k2γγ̂p̂q

)
dS

]
dr +

∫
SR

1

γ

∂p̂

∂r
q dS.

(6.28)
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Because of the definition of V, the expression between brackets above belongs to L1(R,R�).
Consequently, if we define

H(R̃) :=

∫
SR̃

γ̂

γ

∂p̂

∂r
q dS,

then, according to (6.28), from [44] again we have H ∈ C([R, R�]). On the other hand, from
the Cauchy-Schwarz inequality, we have∫ R�

R

|γ(r)H(r)| dr =

∫ R�

R

∣∣∣∣∫ π

−π

γ̂(r)r
∂p̂

∂r
q dθ

∣∣∣∣ dr

≤
(∫ R�

R

∫ π

−π

∣∣∣∣ γ̂(r)r

γ(r)

∣∣∣∣ ∣∣∣∣∂p̂

∂r

∣∣∣∣2 dθ dr

) 1
2 (∫ R�

R

∫ π

−π

|γ̂(r)γ(r)r| |q|2 dθ dr

) 1
2

.

which is finite for p̂, q ∈ V. Thus, γH ∈ L1(R, R�) and, hence, the same argument used to
prove the previous lemma, allow us to conclude that limr→R� H(r) = 0.

Now, the following step is to establish an integral representation of the solution of the
PML equation.

Theorem 6.5.3. If p̂ ∈ W is a solution of (6.8), then the following integral representation
formula holds true:

p̂(x) =
1

γ(R)

∫
SR

(
∂Φ+(x, y)

∂ry

p̂(y) − ∂p̂

∂ry

(y)Φ+(x,y)

)
dSy, x ∈ D. (6.29)

Proof. We fix an arbitrary x ∈ D and use the notation from Figure 6.3. As shown in the
proof of Theorem 6.4.6, Φ+(x, ·) satisfies (6.23). Hence, since Ay is diagonal, by using the
Green’s second theorem and (6.8), we have∫

∂D̃ε

(
Ay grady p̂(y) · n Φ+(x,y) − Ay grady Φ+(x,y) · n p̂(y)

)
dSy (6.30)

=

∫
D̃ε

(
div(Ay grady p̂(y))Φ+(x,y) − div(Ay grady Φ+(x,y))p̂(y)

)
dy = 0,

where n is the outward unit normal vector to D̃ε.
By using Lemma 6.10.3 below (see Appendix) and (6.30), we obtain

p̂(x) = lim
ε→0

(∫
S(x,ε)

Ay grady Φ+(x,y) · n p̂(y) dSy

−
∫

S(x,ε)

Ay grady p̂(y) · n Φ+(x, y) dSy

)
=

1

γ(R)

∫
SR

(
∂Φ+(x, y)

∂ry

p̂(y) − ∂p̂

∂ry

(y) Φ+(x,y)

)
dSy

−
∫

SR̃

γ̂y

γy

∂Φ+(x, y)

∂ry

p̂(y) dSy +

∫
SR̃

γ̂y

γy

∂p̂

∂ry

(y) Φ+(x, y) dSy.
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To conclude the proof, it is enough to show that the last two integrals go to zero as R̃ → R�.
For the first one we use Lemmas 6.4.7 and 6.5.1. For the second one, first we replace
Φ+(x,y) by ζ(y)Φ+(x,y) where ζ is a smooth cutoff function vanishing in a neighborhood
of x and taking the value 1 in {x ∈ R2 : R̃ ≤ |x| < R�}. Thus, the value of the integral
does not change and ζ(y)Φ+(x, y) ∈ V, because of Lemma 6.4.7. Hence, the integral goes
to zero as R̃ → R� as a consequence of Lemma 6.5.2.

6.6 Addition theorem

To characterize the solution of the PML equation, it is useful to write the fundamental
solution as a series involving Bessel functions of first kind and order n, which we denote as
usual by Jn.

Theorem 6.6.1. Let x ∈ D be fixed. For all y ∈ D such that |y| < |x|, there holds:

Φ+(x,y) =
i

4

∞∑
n=−∞

H(1)
n (kr̂x) Jn (kr̂y) ein(θx−θy ). (6.31)

This series and its term by term first derivatives with respect to ry are absolutely and
uniformly convergent on compact subsets of the set {y ∈ R2 : R ≤ |y| < |x|}.
Proof. Let R̃ ∈ [R, |x|). First, we define the following functions:

φ(y) :=

⎧⎨⎩
i

4
H

(1)
0 (k |x − y|), if 0 ≤ |y| < R,

Φ+(x,y), if R ≤ |y| < R�,

and, for each n ∈ N,

pn(y) :=

{
Jn (kry) einθy , if 0 ≤ |y| < R,

Jn (kr̂y) einθy , if R ≤ |y| ≤ R̃.

All these functions are continuous for |y| < R̃, analytic for |y| < R and C2 for R ≤ |y| ≤ R̃.
Moreover, they satisfy

lim
r→R+

1

γ

∂φ

∂r
= lim

r→R−

∂φ

∂r
and lim

r→R+

1

γ

∂pn

∂r
= lim

r→R−

∂pn

∂r
, n ∈ N.

Furthermore, straightforward computations allow us to show that φ and pn, n ∈ N, all
are solutions of the PML equation (6.8) in R ≤ |y| < R̃ and solutions of the Helmholtz
equation in 0 < |y| < R.

Next, we proceed as in the proof of the addition theorem for the Helmholtz equation
(see [54]), taking care of the fact that the Helmholtz equation is substituted by the PML
equation for R ≤ |y| < R̃. Thus we obtain∫

SR̃

γ̂

γ

(
pn

∂φ

∂r
− ∂pn

∂r
φ

)
dS = 0. (6.32)
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On the other hand, straightforward computations allow us to show that, for all n ∈ N,
if we define

qn(y) := H(1)
n (kr̂y) einθy , y ∈ D, (6.33)

then qn are solutions of the PML equation (6.8) and belong to W. By applying the analogous
of Theorem 6.5.3 for qn instead of p̂, on the annular domain R̃ < |y| < R� instead of D,
and taking into account that φ = Φ+(x, ·) in this domain, we obtain∫

SR̃

γ̂

γ

(
qn

∂φ

∂r
− ∂qn

∂r
φ

)
dS = qn(x). (6.34)

Next, multiplying equation (6.32) by H
(1)
n (kr̂(R̃)) and (6.34) by Jn(kr̂(R̃)), we have∫

SR̃

γ̂

γ

(
H(1)

n (kr̂(R̃))pn
∂φ

∂r
− H(1)

n (kr̂(R̃))
∂pn

∂r
φ

)
dS = 0,∫

SR̃

γ̂

γ

(
Jn(kr̂(R̃))qn

∂φ

∂r
− Jn(kr̂(R̃))

∂qn

∂r
φ

)
dS = Jn(kr̂(R̃))qn(x).

If we subtract the first from the second equation, taking into account that H
(1)
n (kr̂(R̃))pn =

Jn(kr̂(R̃))qn on SR̃, we obtain

Jn(kr̂(R̃))qn(x) =
(
H(1)

n (kr̂(R̃))kγ(R̃) J′
n(kr̂(R̃))

− Jn(kr̂(R̃))kγ(R̃)[H(1)
n ]′(kr̂(R̃))

) γ̂(R̃)R̃

γ(R̃)

∫ π

−π

φ einθ dθ

= − 2i

π

∫ π

−π

φ einθ dθ, (6.35)

where we have used the explicit value of the Wronskian H
(1)
n (z) J′

n(z) − Jn(z)[H
(1)
n ]′(z) =

−2i/(πz) (see [2]).
Since φ ∈ C(D�), φ|SR̃

admits a Fourier series, i.e.,

φ(y) =
∞∑

n=−∞
φn e−inθy , y ∈ SR̃, (6.36)

where, from (6.35) and (6.33),

φn :=
1

2π

∫ π

−π

φ einθ dθ =
i

4
H(1)

n (kr̂x) Jn(kr̂(R̃)) einθx . (6.37)

Finally, we conclude (6.31) from (6.36) and (6.37), since r̂(R̃) = r̂y, for y ∈ SR̃.
The uniform convergence of the series (6.31) and its term by term first derivatives

on compact subsets of {y ∈ R2 : R ≤ |y| < |x|} is straightforward from the uniform
convergence of the analogous series in the addition theorem for the fundamental solution
of the Helmholtz equation (see [54]), and the fact that |r̂(r)| is a monotonically increasing
function.
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6.7 Existence and uniqueness of solutions for the PML

equation

Now we are able to characterize the smooth solutions of the PML equation (6.8):

Theorem 6.7.1. If p̂ ∈ W is a solution of (6.8), then there exists a sequence {an} such
that, for all x ∈ D,

p̂(x) =
∞∑

n=−∞
an H(1)

n (kr̂x) einθx .

Proof. Let p̂ ∈ W be a solution of (6.8). For fixed x ∈ D, if we apply the PML integral
representation formula (6.29) and Theorem 6.6.1, then we have

p̂(x) =
1

γ(R)

∫
SR

(
∂Φ+(x,y)

∂ry

p̂(y) − ∂p̂

∂ry

(y) Φ+(x,y)

)
dSy

=
1

γ(R)

∫
SR

(
i

4

∞∑
n=−∞

kγ(R) H(1)
n (kr̂x) Jn

′(kR) ein(θx−θy ) p̂(y)

− ∂p̂

∂ry

(y)
i

4

∞∑
n=−∞

H(1)
n (kr̂x) Jn(kR) ein(θx−θy )

)
dSy

=
∞∑

n=−∞
an H(1)

n (kr̂x) einθx ,

where

an =
i

4

1

γ(R)

∫
SR

(
kγ(R) Jn

′(kR) e−inθy p̂(y) − ∂p̂

∂ry

(y) Jn(kR) e−inθy

)
dSy.

Now, we prove the existence and uniqueness of smooth solutions of the following problem
for the PML equation with Dirichlet data g:

Find p̂ ∈ W such that

− div(Agrad p̂) − γγ̂k2p̂ = 0 in D, (6.38)

p̂ = g on SR. (6.39)

Theorem 6.7.2. If g ∈ Hs(SR) with s > 3/2, then there exists a unique solution p̂ ∈ W of
(6.38)-(6.39). Moreover, this solution is given by

p̂(x) =
∞∑

n=−∞

gn

H
(1)
n (kR)

H(1)
n (kr̂x) einθx , (6.40)

where gn := 1/(2πR)
∫

SR
g(x) e−inθx dS are the Fourier coefficients of g. Moreover the series

and its term by term first derivatives converge uniformly on compact subsets of D�.
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Proof. First, we are going to prove that p̂ as defined by (6.40) belongs to W. We split
the proof into three steps. The first one consists in proving that p̂ ∈ C2(D). This step
is essentially identical to what is known for the Helmholtz problem. In fact, taking into
account classical estimates of the Hankel functions of first kind for large order (see [103]),
for x in any compact subset of D and N large enough, there holds

⎛⎝ ∑
|n|≥N

∣∣∣∣∣ gn

H
(1)
n (kR)

H(1)
n (kr̂x) einθx

∣∣∣∣∣
⎞⎠2

≤
∑
|n|≥N

∣∣∣∣∣H(1)
n (kr̂x)

H
(1)
n (kR)

∣∣∣∣∣
2 ∑
|n|≥N

|gn|2

≤ C ‖g‖2
L2(SR)

∑
|n|≥N

(
R

|r̂x|

)2|n|
,

where we recall that |r̂x| > R (here and thereafter C denotes a generic constant, not
necessarily the same at each occurrence). From this, we conclude the uniform and absolute
convergence of the series (6.40) on compact subsets of D. Analogous procedures allow us
to prove the uniform convergence of the corresponding series for the first and the second
derivatives. Since each term in each series is continuous, we conclude that p̂ ∈ C2(D).

The second step consists in proving that p̂ ∈ C(D�). Since g ∈ Hs(SR) with s > 1/2, for
x in any compact subset of D� we have for N large enough

⎛⎝ ∑
|n|≥N

∣∣∣∣∣ gn

H
(1)
n (kR)

H(1)
n (kr̂x) einθx

∣∣∣∣∣
⎞⎠2

≤
∑
|n|≥N

∣∣∣∣∣ 1

ns

H
(1)
n (kr̂x)

H
(1)
n (kR)

∣∣∣∣∣
2 ∑
|n|≥N

n2s |gn|2

≤ C
∑
|n|≥N

∣∣∣∣ 1

ns

∣∣∣∣2 ∑
|n|≥N

n2s |gn|2 ≤ C ‖g‖2
Hs(SR)

∑
|n|≥N

1

n2s
,

the latter because of the decay behavior of the Fourier coefficients of functions in Hs(SR)
(see [81]). This allows us to conclude that p̂ ∈ C(D�).

The same arguments as above applied to the term by term derivatives of the series allow
us to show that, for g ∈ Hs(SR) with s > 3/2, ∂p̂/∂r and ∂p̂/∂θ belong to C(D�), too.

From the previous steps, clearly p̂ ∈ H1
loc(D

�). Hence, since the weights in the norm of
V are positive bounded functions in compact subsets of D�, in order to prove that p̂ ∈ V
we only need to prove that there exists δ > 0 such that

∫ R�

R�−δ

∫ π

−π

(∣∣∣∣ γ̂(r)r

γ(r)

∣∣∣∣ ∣∣∣∣∂p̂

∂r

∣∣∣∣2 +

∣∣∣∣ γ(r)

γ̂(r)r

∣∣∣∣ ∣∣∣∣∂p̂

∂θ

∣∣∣∣2 + |γ̂(r)γ(r)r| |p̂|2
)

dθ dr < +∞. (6.41)

Since Im(r̂x) → +∞, as rx → R�, using standard estimates for H
(1)
0 and [H

(1)
0 ]′, and for

H
(1)
n and [H

(1)
n ]′, n ∈ N, the latter uniform in n (see [46]), it is straightforward to prove that
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the following limits hold uniformly in θx ∈ (−π, π] and n ∈ N:

lim
rx→R�

√
γ̂xγx

H
(1)
n (kr̂x)

H
(1)
n (kR)

= 0,

lim
rx→R�

1

n

√
γ̂x

γx

∂

∂rx

(
H

(1)
n (kr̂x)

H
(1)
n (kR)

)
= 0,

lim
rx→R�

1

n

√
γx

γ̂x

H
(1)
n (kr̂x)

H
(1)
n (kR)

= 0.

Hence, for δ small enough, we have∫ R�

R�−δ

∫ π

−π

|γ̂(r)γ(r)r| |p̂|2 dθ dr ≤ Cδ

∫ π

−π

∣∣∣∣∣
∞∑

n=−∞
gn einθ

∣∣∣∣∣
2

dθ = Cδ ‖g‖2
L2(SR) ,

∫ R�

R�−δ

∫ π

−π

∣∣∣∣ γ̂(r)r

γ(r)

∣∣∣∣ ∣∣∣∣∂p̂

∂r

∣∣∣∣2 dθ dr ≤ Cδ

∫ π

−π

∣∣∣∣∣
∞∑

n=−∞
ngn einθ

∣∣∣∣∣
2

dθ ≤ Cδ ‖g‖2
H1(SR) ,

∫ R�

R�−δ

∫ π

−π

∣∣∣∣ γ(r)

γ̂(r)r

∣∣∣∣ ∣∣∣∣∂p̂

∂θ

∣∣∣∣2 dθ dr ≤ Cδ

∫ π

−π

∣∣∣∣∣
∞∑

n=−∞
ngn einθ

∣∣∣∣∣
2

dθ ≤ Cδ ‖g‖2
H1(SR) ,

which allow us to conclude that the integral (6.41) is finite. Therefore, from the three
previous steps we deduce that p̂ ∈ W.

Next, since p̂ is continuous on SR, evaluating (6.40) for x ∈ SR we have p̂(x) =∑∞
n=−∞ gn einθ, so that (6.39) follows from the convergence of the Fourier series of g.
On the other hand, straightforward computations allow us to show that each term in

the series (6.40) is a solution of (6.38). Thus, p̂ is a solution too, because we have already
shown the uniform convergence on compact subsets of D of that series and its term by term
first and second derivatives.

Finally, p̂ is the unique solution of (6.38)-(6.39) in W because of Theorem 6.7.1 and the
uniqueness of the Fourier expansion of g.

6.8 Coupled fluid/PML problem

Our next goal is to study the coupled fluid/PML problem and to prove that the solution
of the classical scattering problem is recovered when the PML is used.

Theorem 6.7.2 allows us to define a “Dirichlet-to-Neumann” PML operator,

Ĝ : H
1
2 (SR) → H− 1

2 (SR).

First we define G for sufficiently smooth data as follows:

Ĝ(g) =
1

γ(R)

∂p̂

∂r

∣∣∣∣
SR

, g ∈ Hs(SR), with s > 3/2, (6.42)



6.8. Coupled fluid/PML problem 123

where p̂ is the unique solution in W of (6.38)-(6.39). This definition can be extended to

g ∈ H
1
2 (SR) by means of a density argument, because of the following result:

Theorem 6.8.1. There exists a unique bounded linear operator Ĝ : H
1
2 (SR) → H− 1

2 (SR)
satisfying (6.42), which coincides with G as defined by (6.4).

Proof. If g ∈ Hs(SR), s > 3/2, and G is defined by (6.4), then Ĝg = Gg. Indeed,

Ĝg =
1

γ(R)

∂p̂

∂r

∣∣∣∣
SR

=
1

γ(R)

∞∑
n=−∞

gnk

H
(1)
n (kR)

dr̂

dr
(R)[H(1)

n ]′(kr̂x) einθ

=
∞∑

n=−∞

gnk

H
(1)
n (kR)

[H(1)
n ]′(kR) einθ = Gg.

Consequently, the definition of Ĝ extends uniquely to the whole space H
1
2 (SR) and Ĝ =

G.

Therefore, Ĝ can be equivalently used instead of G in the definition of problem (6.5)-
(6.7). Moreover we have the following result.

Theorem 6.8.2. For f ∈ H
1
2 (Γ), there exists a unique solution (p, p̂) ∈ H1(ΩR)×V of the

following problem:

−Δp − k2p = 0 in ΩR, (6.43)

− div(Agrad p̂) − γγ̂k2p̂ = 0 in D, (6.44)

p = f on Γ, (6.45)

∂p

∂ν
= Agrad p̂ · ν in H− 1

2 (SR), (6.46)

p = p̂ on SR. (6.47)

Moreover, p coincides with the solution of (6.5)-(6.7) and, hence, it coincides with the
solution of the scattering problem (6.1)-(6.3) in ΩR.

Proof. Let p ∈ H1(ΩR) be the solution of (6.5)-(6.7). Then p is the restriction to ΩR of the
solution of (6.1)-(6.3). Hence p|SR

is arbitrarily smooth. Thus, Ĝ(p|SR
) = (1/γ(R))∂p̂/∂r,

with p̂ ∈ W being the solution of (6.38)-(6.39). Therefore (p, p̂) ∈ H1(ΩR)×V is a solution
of the coupled fluid/PML problem.

To prove the uniqueness, it is enough to show that the solution (po, p̂o) of problem (6.43)-
(6.47) with f = 0 vanishes. By applying local regularity up to the boundary results for
transmission problems (in particular Theorem 4.20 from [85]), we conclude that p̂o ∈ C2(D�).
Notice that this regularity comes from the assumed smoothness on the absorbing function:
σ ∈ C2,1([R, R′]) ∀R′ ∈ (R, R�). Hence p̂o ∈ W and

Agrad p̂o · ν =
1

γ(R)

∂p̂o

∂r
on SR.
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Consequently, (6.44) and (6.47) imply that Ĝ(po|SR
) = Agrad p̂o ·ν and, because of (6.46)

and Theorem 6.8.1, we have

∂po

∂ν
= Ĝ(po|SR

) = G(po|SR
) on SR.

Therefore, po is the unique solution of (6.5)-(6.7) with f = 0 and hence po = 0. Finally, as
a consequence of Theorem 6.7.2, p̂o = 0, too.

Finally we write a weak formulation of the coupled fluid/PML problem (6.43)-(6.47),
which will be used in the following section to introduce a convenient finite element dis-
cretization. For this purpose, we introduce the functional space

H :=
{
(q, q̂) ∈ H1(ΩR) × V : q = q̂ on SR

}
,

and its subspace
H0 := {(q, q̂) ∈ H : q = 0 on Γ} .

Let (p, p̂) ∈ H be the solution of problem (6.43)-(6.47) and (q, q̂) ∈ H0. Integrating by
parts (6.43) in ΩR and (6.44) in D̃ = {x ∈ R2 : R < |x| < R̃} with R̃ ∈ (R, R�), since p
and p̂ are smooth, we obtain∫

ΩR

grad p · grad q − k2

∫
ΩR

pq −
∫

SR

∂p

∂r
q dS

+

∫
D̃

Agrad p̂ · grad q̂ − k2

∫
D̃

γγ̂p̂q̂ +

∫
SR

1

γ

∂p̂

∂r
q̂ dS −

∫
SR̃

γ̂

γ

∂p̂

∂r
q̂ dS = 0.

Since (q, q̂) ∈ H0 ⊂ H, the boundary terms on SR cancel out because of (6.46). Moreover,
as R̃ goes to R�, using Lemma 6.5.2 we have∫

ΩR

grad p · grad q +

∫
D

Agrad p̂ · grad q̂ − k2

(∫
ΩR

pq +

∫
D

γγ̂p̂q̂

)
= 0.

Thus we are led to the following weak formulation of problem (6.43)-(6.47):

For f ∈ H
1
2 (Γ), find (p, p̂) ∈ H such that p = f on Γ and∫

ΩR

grad p · grad q +

∫
D

Agrad p̂ · grad q̂

− k2

(∫
ΩR

pq +

∫
D

γγ̂p̂q̂

)
= 0 ∀ (q, q̂) ∈ H0. (6.48)

Corollary 6.8.3. The solution of the coupled fluid/PML problem (6.43)-(6.47) is the
unique solution of the weak problem (6.48).

Proof. We have already shown that the solution of problem (6.43)-(6.47) satisfies (6.48).
The converse follows from standard arguments. Hence (6.48) attains a unique solution.
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Remark 6.8.4. According to Lemma 6.5.1, a kind of homogeneous Dirichlet boundary
condition

p̂ = 0 on SR�

is implicitly contained in the definition of the space V. This boundary condition will be
actually used in the discretization of Problem (6.48) proposed in the following section.

6.9 Discretization and numerical results

In this section, we introduce a finite element discretization of problem (6.48). For this
purpose, we use meshes Th of curved elements which correspond to standard quadrilaterals
in polar coordinates. As usual, h denotes the mesh-size. Each element must be completely
contained either in Ω̄R or in D̄. Moreover, we take advantage of the fact that D is an
annular domain by using curved rectangles in D (see Figure 6.4). We use bilinear elements
in polar coordinates.Thus, the finite-element space is

Hh := {(qh, q̂h) ∈ C(ΩR) × C(D) : q̂h = 0 on SR� ,

qh = q̂h on SR, qh|K , q̂h|Kbilinear in K ∀K ∈ Th} .

As a consequence of Lemma 6.5.1, the boundary condition q̂h = 0 on SR� in the definition
of Hh turns out necessary for Hh ⊂ H. For a non-integrable absorbing function σ in (6.9)
as that defined by (6.49) below, this boundary condition is also sufficient (see [30] for other
feasible choices of σ for which Hh ⊂ H).

Let fh be a convenient approximation of f in the space of traces on Γ of functions in Hh.
The discrete weak problem associated with the coupled fluid/PML problem is the following:

Find (ph, p̂h) ∈ Hh such that ph = fh on Γ and∫
ΩR

grad ph · grad qh +

∫
D

Agrad p̂h · grad q̂h

− k2

(∫
ΩR

phqh +

∫
D

γγ̂p̂hq̂h

)
= 0 ∀ (qh, q̂h) ∈ Hh ∩ H0.

In what follows we report some numerical results obtained with a computer code im-
plementing the perfectly matched layer method with a non-integrable absorbing function
σ. In all the numerical tests we have used

σ(s) :=
c

R� − s
; (6.49)

let us recall that c is the velocity of propagation in ΩR.
To illustrate the performance of the PML method with an non-integrable σ, we consider

a simple problem for which we have an analytical solution. It is well known that the function

p(x) =
i

4
H

(1)
0 (k |x|)
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satisfies the scattering problem (6.1)-(6.3). Therefore, if we take f := p|Γ, then p is the
component in the fluid domain ΩR of the unique solution of (6.43)-(6.47).

In this numerical experiment we have taken k = ω/c with c = 340 m/s and ω =
750 rad/s. We have used the computational domain shown in Figure 6.4 where R� = 1 m,
R = 2.25 m and R� = 2.5 m.

Because of the boundary condition ûh = 0 on SR� , all the integrals involved in the
finite element method are finite (see Chapter 5 for details). To evaluate these integrals
we have used a Simpson adaptive rule, to reduce the effect of the numerical errors arising
from quadrature as much as possible. However, it is shown in Chapter 5 that standard
quadrature rules lead to numerical results essentially of the same accuracy.

Ω

R�

R�

R

ΩR

D

Figure 6.4: Domains and mesh (N = 2) in the scattering problem.

We have used uniform refinements of the mesh shown in Figure 6.4; the number N of
elements through the thickness of the PML is used to label each mesh. Specifically, meshes
corresponding to N = 2, 4 and 8 have 264, 1008 and 3936 degrees of freedom, respectively.

We show in Figure 6.5 the real and imaginary parts of the solution computed for the
fluid/PML coupled problem with the mesh corresponding to N = 8. The solution is plotted
in the fluid domain and in the PML as well.

To measure the accuracy we have estimated the relative error in the L2-norm in ΩR as
follows:

Error :=
‖ph − Πhp‖L2(ΩR)

‖Πhp‖L2(ΩR)

,

where ph is the numerical solution in ΩR and Πhp is the Lagrange interpolant of the exact
solution p.

To assess the order of convergence of the proposed numerical method, we show in Fig-
ure 6.6 the error curve (log-log plot of error versus mesh-size) computed in the fluid domain
ΩR. It can be seen from this figure that an order of convergence O(h2) is achieved. Let us
recall that this is the optimal order for the used finite elements in L2-norm.

To end this section, we compare the numerical performance of this PML technique with
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Figure 6.5: Solution of the fluid/PML coupled problem. Mesh N = 8
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Figure 6.6: Error curve for the fluid/PML coupled problem (ω = 750 rad/s).

that of a classical one based on a quadratic function (see for instance [22] or [52]):

σQ(s) := cσ�(s − R)2. (6.50)

As shown in [51], for a given problem and a given mesh there is an optimal value of σ�

leading to minimal errors. Such optimal value depends strongly on the problem data as
well as on the particular mesh. Thus, in practice, it is necessary to tune it. No theoretical
procedure for such a tuning is known to date.

In Table 6.1, we compare the errors of the PML methods with the unbounded absorb-
ing function (6.49) and with the quadratic absorbing function (6.50) applied to the same
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test problem as above. For the quadratic absorbing function, we have used the optimally
tuned value of σ�, which is also reported in the table (and which can be seen that changes
significantly from one mesh to the other).

Table 6.1: Comparison of PML methods with non-integrable and quadratic absorbing func-
tions.

Non-integrable σ (6.49) Quadratic σQ (6.50)

Mesh Error(%) Error(%) σ�

N = 2 0.342 11.346 415.54
N = 4 0.079 3.247 565.07
N = 8 0.019 0.970 702.32

Table 6.1 shows that the errors of the PML method with the non-integrable absorbing
function are significantly smaller than those of the classical PML technique. On the other
hand, another benefit of our proposed PML method is that there is no need of fitting any
non-physical parameter.

Further numerical examples on more complex geometries and with different data have
been reported in [30], where we have implemented a Cartesian PML using non-integrable
absorbing functions.

6.10 Appendix

For the sake of clarity in the exposition, the more technical results and the fundamental
properties of the Hankel functions, which have been used extensively through this chapter,
are presented in this Appendix.

6.10.1 Technical results

In this subsection we collect some technical results that have been used through the
proof of Theorems 6.4.6 and 6.5.3.

First, we recall some basic results about the relation between polar coordinates centered
at different points. For a fixed point x ∈ D, we introduce (ρy, φy) as the coordinates of
point y in polar coordinates centered at x:

y = x + ρy(cos φy, sin φy).

We denote by {eρ, eφ} the canonical basis of the second system of coordinates (see Figure
6.10.1).
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x

O

θy

θy − φy

ρy

y

S(x, ρy)

ry

er(y)

eρ(y)eθ(y)

eφ(y)

φy

Figure 6.7: Basis of two different polar coordinate system.

For each point y ∈ D, we have

er = cos(φy − θy)eρ − sin(φy − θy)eφ, (6.51)

eθ = sin(φy − θy)eρ + cos(φy − θy)eφ. (6.52)

Moreover, we compute the partial derivatives of the coordinates in the first system with
respect to the second one. Firstly, it is clear that

ρy cos φy = ry cos θy − r(x) cos θ(x), (6.53)

ρy sin φy = ry sin θy − r(x) sin θ(x). (6.54)

Let us introduce the functions ξr and ξθ be such that ry = ξr(ρy, φy) and θy = ξθ(ρy, φy).
If we derive both equations with respect to radial coordinate ρy, we obtain the linear system

cos φy =
∂ξr(ρy, φy)

∂ρy

cos θy − ry sin θy
∂ξθ(ρy, φy)

∂ρy

,

sin φy =
∂ξr(ρy, φy)

∂ρy

sin θy + ry cos θy
∂ξθ(ρy, φy)

∂ρy

,

whose solution is

∂ξr(ρy, φy)

∂ρy

= cos φy cos θy + sin φy sin θy = cos(φy − θy),

∂ξθ(ρy, φy)

∂ρy

=
1

ry

(cos θy sin φy − sin φy cos θy) =
1

ry

sin(φy − θy).
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Analogously, if we derive with respect to φy, we have

−ρy sin φy =
∂ξr(ρy, φy)

∂φy

cos θy − ry sin θy
∂ξθ(ρy, φy)

∂φy

,

ρy cos φy =
∂ξr(ρy, φy)

∂φy

sin θy + ry cos θy
∂ξθ(ρy, φy)

∂φy

,

whose solution is

∂ξr(ρy, φy)

∂φy

= ρy(− sin φy cos θy + cos φy sin θy) = −ρy sin(φy − θy),

∂ξθ(ρy, φy)

∂φy

=
ρy

ry

(cos θy cos φy − sin θy sin φy) =
ρy

ry

cos(φy − θy).

Summarizing we have

∂ry

∂ρy

= cos(φy − θy),
∂θy

∂ρy

=
1

ry

sin(φy − θy). (6.55)

∂ry

∂φy

= −ρy sin(φy − θy),
∂θy

∂φy

=
ρy

ry

cos(φy − θy). (6.56)

Now we are going to study the behavior of the complex distance d(·, ·) between close
points and near the circumference SR� . The following lemma collects several limits that
will be used in the proof of Lemma 6.10.3 below.

Lemma 6.10.1. For fixed x ∈ D and φy ∈ (−π, π],

lim
ρy→0

∂r̂y

∂ρy

= γx cos(φy − θx), (6.57)

lim
ρy→0

∂d(x,y)

∂ρy

=
√

γ2
x cos2(φy − θx) + γ̂2

x sin2(φy − θx), (6.58)

lim
ρy→0

r̂y − r̂x cos(θy − θx)

ry − rx cos(θy − θx)
= γx. (6.59)

Proof. It is clear that, since d(x, ·) and r̂(|·|) are in C1(D\{x}), we can compute derivatives
at any point of D different form x. In order to obtain the first equation, we have

∂r̂y

∂ρy

=
∂r̂y

∂ry

∂ry

∂ρy

. (6.60)

From the definition of r̂y it is immediate to check that ∂r̂y

∂ry
= γy. Then, from (6.60) and

(6.55) we obtain
∂r̂y

∂ρy

= γy cos(φy − θy).
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If ρy = 0, then x = y and (6.57) is obtained. For the second equation, firstly we are going
to bound the limit. For x ∈ D and a fixed angle φy ∈ (−π, π], using the Taylor polinomial
of first order for function F (ρy) = d(x, x + ρy(cos φy, sin φy)), which is smooth in [0, +∞),
we obtain

lim
ρy→0

d(x,y)

ρy

= lim
ρy→0

F (ρy)

ρy

= F ′(0) = lim
ρy→0

∂d(x,y)

∂ρy

. (6.61)

Hence, it is clear that F ′(0) ∈ [C1, C2] where the positive constants C1, C2 are given by
lemma 6.4.4. Therefore,

F ′(0) = lim
ρy→0

∂d(x,y)

∂ρy

= lim
ρy→0

(
∂d(x, y)

∂r̂y

∂r̂y

∂ρy

+
∂d(x,y)

∂θy

∂θy

∂ρy

)
= lim

ρy→0

r̂y − r̂x cos(θy − θx)

d(x,y)
γy cos(φy − θy) + lim

ρy→0

r̂yr̂x sin(θy − θx)

d(x,y)

sin(φy − θy)

ry

= γx cos(φy − θx) lim
ρy→0

r̂y − r̂x cos(θy − θx)

d(x,y)
+ r̂xγ̂x sin(φy − θx) lim

ρy→0

sin(θy − θx)

d(x,y)
.

In the last equality we have used that r̂x

rx
= γ̂x. Now, taking into account that F ′(0) �= 0,

we have

F ′(0) =γx cos(φy − θx) lim
ρy→0

∂r̂y

∂ρy
+ r̂x

ry
sin(θy − θx) sin(φy − θy)

∂d(x,y)
∂ρy

+ r̂xγ̂x sin(φy − θx) lim
ρy→0

cos(θy − θx) 1
ry

sin(φy − θy)

∂d(x,y)
∂ρy

=γx cos(φy − θx)
γx cos(φy − θx)

F ′(0)
+ r̂xγ̂x sin(φy − θx)

1

rx

sin(φy − θx)

F ′(0)

=F ′(0)−1
(
γ2

x cos2(φy − θx) + γ̂2
x sin2(φy − θx)

)
.

Solving the above equation to obtain F ′(0), we conclude (6.58). For the last limit (6.59),
we can use again an analogous argument involving Taylor polinomial of first order over each
factor in the quotient and (6.57), to obtain

lim
ρy→0

r̂y − r̂x cos(θy − θx)

ry − rx cos(θy − θx)
= lim

ρy→0

∂r̂y

∂ρy
+ r̂x sin(θy − θx) ∂ξθ

∂ρy

∂ry

∂ρy
+ rx sin(θy − θx) ∂ξθ

∂ρy

= γx. (6.62)

The following integral will be also used below.

Lemma 6.10.2. For a ∈ C with Re(a) �= 0, there holds

1

2π

∫ π

−π

1

a cos2 θ + a−1 sin2 θ
dθ = sign(Re(a)). (6.63)
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Proof. Firstly it is easy to see that

I =

∫ π

−π

1

a cos2 θ + a−1 sin2 θ
dθ = 2a

∫ π
2

−π
2

1

cos2 θ

1

a2 + tan2 θ
dθ.

Using the change of variable s = tan θ, we have
ds

dθ
=

1

cos2 θ
and then

I = 2a

∫ ∞

−∞

1

a2 + s2
ds =

2

a

∫ ∞

−∞

1

1 + a−2s2
ds = lim

R→∞
2

a

∫ R

−R

1

1 + a−2s2
ds. (6.64)

In order to evaluate the previous improper integral, we apply the Residues’s theorem.

For this purpose we have to calculate the residues of the function f(z) =
1

1 + a−2z2
=

1

2

(
1

1 + ia−1z
+

1

1 − ia−1z

)
in the poles ±ia. In fact,

Res f(z) =

{
a
2i

in z = ia,
−a
2i

in z = −ia.
(6.65)

−R R

CR

ia−1

Figure 6.8: Path in the complex plane (when Im(ia) > 0).

Now we have two alternatives to be considered: if Im(ia) > 0 we obtain∫ R

−R

1

1 + a−2s2
ds = 2πiRes f(ia) −

∫
CR

1

1 + a−2s2
ds, (6.66)

whereas if Im(ia) < 0,∫ R

−R

1

1 + a−2s2
ds = 2πiRes f(−ia) −

∫
CR

1

1 + a−2s2
ds, (6.67)
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where Cr = {r eiθ : θ ∈ [0, π]} with r = R and r = −R. When R tends to infinity, the
integral on CR goes to zero and we conclude

I = lim
R→∞

2

a

∫ R

−R

1

1 + a−2s2
ds = sign(Im(ia))2π = sign(Re(a))2π. (6.68)

Now, we are in a position to prove the next lemma, which has been used in Theorems
6.4.6 and 6.5.3.

Lemma 6.10.3. For x ∈ D fixed, if Φ± are the fundamental solutions given by (6.21) and
(6.22), and ϕ ∈ C1(D), then

lim
ε→0

(∫
S(x,ε)

Ay grady Φ±(x,y) · nϕ(y) dSy

−
∫

S(x,ε)

Ay grady ϕ(y) · n Φ±(x, y) dSy

)
= ϕ(x), (6.69)

where S(x, ε) = {y ∈ R2 : |x − y| = ε} and n is its inward unit normal vector.

Proof. We prove the lemma for Φ+. An analogous proof is valid for Φ−.
First, we check that the limit of the second integral in (6.69) is zero. Since ϕ ∈ C1(D)

and the coefficients of Ay are bounded for all y such that |x − y| ≤ ε, we only have to
prove that

lim
ε→0

∫
S(x,ε)

Φ+(x, y) dSy = 0.

The above limit is easy to check by using Lemma 6.4.4 and the following estimate:∣∣∣∣Φ+(x,y) − i

4

(
2i

π
log

kd(x, y)

2
+

2Cei

π
+ 1

)∣∣∣∣ ≤ C |d(x,y)|2 |log d(x, y)| ,

for |x − y| small enough, which in its turn follows from the asymptotic behavior of Hankel
functions (see [103]). In the above expression, Ce is the Euler’s constant.

Regarding the first integral in (6.69), since n = −eρ on S(x, ε), from (6.21), (6.51) and
(6.52), we have

Ay grady Φ+(x,y) · n =

(
γ̂y

γy

∂Φ+(x,y)

∂ry

er +
γy

r̂y

∂Φ+(x,y)

∂θy

eθ

)
· (−eρ)

= −k
i

4
[H

(1)
0 ]′(kd(x, y))

[
γ̂y

γy

∂d(x, y)

∂ry

cos(φy − θy) +
γy

r̂y

∂d(x,y)

∂θy

sin(φy − θy)

]
=: −k

i

4
[H

(1)
0 ]′(kd(x, y))M(x, y), (6.70)
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where M(x, y) denotes the expression between brackets above. By using the following
elementary identities (see Figure 6.9):

|x − y| cos(φy − θy) = ry − rx cos(θy − θx),

|x − y| sin(φy − θy) = rx sin(θy − θx),

we obtain

M(x, y) =

(
γ̂y

r̂y − r̂x cos(θy − θx)

ry − rx cos(θy − θx)
cos2(φy − θy) +

γyr̂x

rx

sin2(φy − θy)

) |x − y|
d(x, y)

,

which, in particular, together with Lemma 6.4.4 and the third limit from Lemma 6.10.1,
show that M(x,y) is bounded for |x − y| small enough.

θy − θx

x

O

y

θy
φy

|x − y|

θy − φy

Figure 6.9: Polar coordinates systems centered at the origin O and at a point x ∈ R2

On the other hand, by using a classical estimate of [H
(1)
0 ]′(z) (see [103]) and Lemma

6.4.4, we have ∣∣∣∣[H(1)
0 ]′(kd(x, y)) − 2i

π

1

kd(x,y)

∣∣∣∣ ≤ C |x − y| |log(kd(x,y))| , (6.71)

for |x − y| small enough. Because of this, we proceed from (6.70) as follows:∫
S(x,ε)

Ay gradyΦ+(x,y) · nϕ(y)dSy = −
∫ π

−π

εk
i

4
M(x,y)

2i

π

1

kd(x, y)
ϕ(y) dφy

−
∫ π

−π

εk
i

4
M(x,y)

(
[H

(1)
0 ]′(kd(x,y)) − 2i

π

1

kd(x,y)

)
ϕ(y) dφy. (6.72)

Manipulating the second integral from (6.71), we obtain∣∣∣∣∫ π

−π

εk
i

4
M(x,y)

(
[H

(1)
0 ]′(kd(x, y)) − 2i

π

1

kd(x,y)

)
ϕ(y) dφy

∣∣∣∣
≤ C

∫ π

−π

k

4
|M(x,y)| ε2 |log(kd(x, y))| |ϕ(y)| dφy −→ 0 as ε → 0, (6.73)
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since M(x, y) is bounded for |x − y| ≤ ε and |d(x,y)| = O(ε) uniformly in all directions
(see Lemma 6.4.4).

Thus, we only have to calculate the limit of the remaining integral in (6.72). For this
purpose, we compute the following limit as ρy = |x − y| → 0 for fixed φy ∈ (−π, π]:

lim
ρy→0

ρyM(x, y)

d(x,y)
=

⎛⎜⎜⎝γ̂x cos(φy − θx) lim
ρy→0

∂r̂y

∂ρy

+ r̂x sin(θy − θx)
∂θy

∂ρy

∂d(x, y)

∂ρy

+γxr̂x sin(φy − θx) lim
ρy→0

cos(θy − θx)
∂θy

∂ρy

∂d(x,y)

∂ρy

⎞⎟⎟⎠ lim
ρy→0

(
∂d(x,y)

∂ρy

)−1

=γxγ̂x lim
ρy→0

(
∂d(x,y)

∂ρy

)−2

=
γxγ̂x

γ2
x cos2(φy − θx) + γ̂2

x sin2(φy − θx)
,

where we have used L’Hôpital’s rule, Lemma 6.10.1 and (6.55).
Therefore, since ρy = ε on S(x, ε), by using the above limit, the boundedness of M(x,y)

and Lemma 6.4.4, we have from (6.72) and (6.73)

lim
ε→0

∫
S(x,ε)

Ay grady Φ+(x,y) · n ϕ(y)dSy

=ϕ(x)
1

2π

∫ π

−π

γxγ̂x

γ2
x cos2(φy − θx) + γ̂2

x sin2(φy − θx)
dφy

= sign

(
Re

(
γx

γ̂x

))
ϕ(x)

=ϕ(x),

because of Lemma 6.10.2 with a = γx/γ̂x, which can be shown that has a positive real
part.

6.10.2 Some classical results about the Hankel functions

In the two dimensional case, the elementary solutions of Helmholtz equation are the
Hankel functions of first and second kind of order n, which are denoted by H

(1)
n and H

(2)
n ,

respectively. In this appendix, we focus our attention on some simple asymptotic properties
of the Hankel functions. For a more detailed analysis we refer to Lebedev [80] or Watson
[103].

Firstly, we can write the Hankel functions using Bessel functions as

H(1)
n (z) := Jn(z) + i Yn(z),

H(2)
n (z) := Jn(z) − i Yn(z),
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where Jn and Yn are the Bessel functions of first and second kind of order n.
The following series expansions for the Bessel functions are known:

Jn(z) =
∞∑

k=0

(−1)k

k!(n + k)!

(z

2

)n+2k

, (6.74)

Yn(z) =
2

π
Jn(z) log

z

2
− 1

π

n−1∑
k=0

(n − k − 1)!

k!

(z

2

)2k−n

− 1

π

∞∑
k=0

(−1)k

k!(n + k)!

(z

2

)n+2k

(ψ(k + 1) + ψ(k + n + 1)), (6.75)

where ψ(k + 1) = −Ce + 1 + · · ·+ 1
k
, k ∈ N and Ce is the Euler’s constant. The sum of the

series (6.74) and (6.75) are analytic functions of z in the complex plane cut along (−∞, 0].

Lemma 6.10.4. The Hankel functions of order 0 verify the following asymptotic behavior
when the modulus of the argument is small, i. e., when |z| → 0

H
(1)
0 (z) =

2i

π
log

z

2

2Cei

π
+ 1 + O(|z|2 | log z|), (6.76)

d H
(1)
0

dz
(z) =

2i

π

1

z
+ O(|z| | log z|). (6.77)

Proof. For n = 0, using (6.74) and (6.75) it is immediate to conclude that

H
(1)
0 (z) = J0(z) + i Y0(z)

= 1 + O(|z2|) + i

(
2

π

(
1 + O(|z|2)

)
log

z

2
+

2Ce

π
+ O(|z|2)

)
=

2i

π
log

z

2
+

2Cei

π
+ 1 + O(|z|2 | log z|),

when |z| → 0.
On the other hand, taking into account (6.74) and (6.75) for n = 1,

d H
(1)
0

dz
(z) = −H

(1)
1 (z) = − J1(z) − i Y1(z)

= O(|z|) − i

(
2

π
O(|z|) log

z

2
− 1

π

2

z
+ O(|z|)

)
=

2i

π

1

z
+ O(|z| | log z|) + O(|z|) =

2i

π

1

z
+ O(|z| | log z|),

when |z| → 0.

Analogously, using the definition of H
(2)
n , (6.74) and (6.75) we obtain the results for the

Hankel functions of second kind.



6.10. Appendix 137

Lemma 6.10.5. The following asymptotic behavior with respect to the order n is verified

Jn(z) =
zn

2nn!

(
1 + O

(
1

n

))
, (6.78)

H(1)
n (z) =

2n(n − 1)!

iπzn

(
1 + O

(
1

n

))
, (6.79)

when n → ∞. Moreover, analogous asymtotic behaviour is obtained for their derivatives:

d Jn

dz
(z) =

zn−1

2n(n − 1)!

(
1 + O

(
1

n

))
, (6.80)

d H
(1)
n

dz
(z) =

−2nn!

iπzn+1

(
1 + O

(
1

n

))
, (6.81)

when n → ∞.

Proof. Firstly, from (6.74) we have

Jn(z) =
∞∑

k=0

(−1)k

k!(n + k)!

(z

2

)n+2k

=
zn

2nn!

∞∑
k=0

(−1)kn!

k!(n + k)!

(z

2

)2k

=
zn

2nn!

(
1 + O

(
1

n

))
= O

(
1

n

)
,

when n → ∞.
In a similar way,

Yn(z) = −(n − 1)!

π

(
2

z

)n (
1 + O

(
1

n

))
+ O

(
1

n

)
+ O

(
1

n!

)
= −(n − 1)!

π

(
2

z

)n (
1 + O

(
1

n

))
,

when n → ∞. Then, from the definition of H
(1)
n , we obtain the asymptotic behavior (6.79).

Finally, we can obtain estimates (6.80) and (6.81) again taking into account the series
expansions of the Bessel and Hankel functions.

Remark 6.10.6. We must remark how the expressions (6.78)-(6.81) must be understood.
For instance, (6.78) implies that there exists C > 0 and N ∈ N such that for all n > N , if
n > N then

1 − C

n
≤

∣∣∣∣∣∣∣
Jn(z)
zn

2nn!

∣∣∣∣∣∣∣ ≤ 1 +
C

n
.

We finish this section with a more technical and classical lemma proved, for example,
in [103].
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Lemma 6.10.7. For large argument, we have the following asymptotic behavior of the
Hankel functions

H(1)
n (z) =

√
2

πz
ei(z−nπ

2
−π

4
)

(
1 + O

(
1

|z|

))
, (6.82)

d H
(1)
n

dz
(z) = ±i

√
2

πz
ei(z−nπ

2
−π

4
)

(
1 + O

(
1

|z|

))
, (6.83)

when |z| → ∞ and |arg(z)| < π − δ, where δ is an arbitrary small positive number.
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7.1 Introduction

One of the most used techniques in passive control of noise consists of covering the
reflecting surfaces with porous materials.

From a microscopic point of view, these materials consist of a solid skeleton, rigid or
elastic, completely saturated by an acoustic fluid. This kind of absorbing materials are
widely used because of its capability to dissipate acoustic waves, specially at high range
frequencies.

There are several alternatives to derive models governing the vibrations of porous media;
an overview can be found in Allard’s book [3] and in Chapter 1.

If the solid skeleton is assumed to be rigid, the porous material can be considered as
an equivalent fluid with dynamical density and bulk modulus coefficients depending on the
frequency (see Section 1.2). These parameters can be obtained by empirical laws. In this
setting, the equations introduced by Delany and Bazley [56] in 1970 have been widely used
to describe sound propagation in fibrous materials. This model was subsequently improved
by Morse and Ingard [88], Attenborough [12], and, more recently, by Allard and Champoux
[5], among others.

On the other hand, when the elastic deformation of the skeleton is taken into account,
the theoretical basis for the mechanical behavior of the porous material was established
by Biot [38, 39]. This theory describes the propagation of elastic waves in fluid-saturated
porous media. The adaptation of this theory to acoustics can be found, for example, in the
work of Allard et al. [4].

Furthermore, under the assumptions of rigid or elastic skeleton, it is also possible to
obtain models for the motion of porous materials from a rigorous mathematical point of
view by homogenization techniques [49, 28], (see Section 1.3).

The use of all these models can be inadequate when modelling the propagation of sound
in an enclosure including porous media, since the thickness of the porous layer coating the
reflecting surfaces is often much smaller than the characteristic dimensions of the physical
domain of interest. This difference in size is typically a serious drawback to create a mesh
of the domain in order to compute the acoustic field with, for instance, a finite-element
method.

If we assume that the porous layers are thin, this numerical difficulty can be overcome
by substituting the partial differential equations governing the porous medium by a wall
impedance condition on the coated boundaries. This boundary condition involves frequency
dependent coefficients which can be theoretically computed from the dynamic density and
bulk modulus of the coating porous material in the case of incident plane waves on a plane
surface (see Subsection 7.2.3 below). Let us remark that the two models do not necessarily
lead to the same solution for more general geometric conditions.

We compare in this chapter a fluid-porous model with an approximation obtained by
replacing the porous media by a wall impedance condition. We study the dependence of
both models with respect to the thickness of the porous layer, the frequency, the acoustic
source and the geometry of the problem domain. More precisely, we study the accuracy of
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the wall impedance model versus the Allard-Champoux model for time-harmonic scattering
problems in unbounded three-dimensional domains. Many problems with practical interest
fall in this framework, as for instance the numerical simulation of real experiments involving
absorbing materials in an anechoic or semi-anechoic room [21].

The fluid-porous scattering problems can be solved analytically only for some geomet-
rically simple domains. However, in general, it is necessary to use numerical techniques.
Because of its easy implementation and its effectiveness in handling complex geometries,
the finite-element method has become popular to solve such problems. Some examples of
the finite element method applied to sound propagation in porous media are the papers
by Easwaran et al. [58], Panneton and Atalla [92], and Bermúdez et al. [27]. All of them
consider acoustic propagation inside rigid cavities and, hence, the problems are posed in
bounded domains.

For problems posed on unbounded domains, finite-element methods require first to
truncate the computational domain without perturbing too much the solution of the original
problem. Several techniques are available to do this: absorbing boundary conditions [60],
boundary elements [72], infinite elements [9], etc. In the present chapter, we will use the
PML (Perfectly Matched Layer) method, introduced in Chapter 4.

The PML method is based on simulating an absorbing layer of damping material sur-
rounding the domain of interest, like a thin sponge which absorbs the scattered field radiated
to the exterior of this domain. This method is known as ‘perfectly matched’ because the
interface between the physical domain and the absorbing layer does not produce spurious
reflections.

In practice, since the PML has to be truncated at a finite distance of the domain of
interest, its external boundary produces artificial reflections. Theoretically, these reflections
are of minor importance because of the exponential decay of the acoustic waves inside the
PML, but the approximation error typically becomes larger once the problem is discretized.
Increasing the thickness of the PML may be a remedy, although not always available because
of its computational cost. An alternative usual choice to achieve low error levels is to take
larger values of the absorption coefficients in the layer. However, Collino and Monk [51]
showed that this methodology may produce an increasing error in the discretized problem.

We will use the alternative procedure to avoid this numerical drawback, which has
been proposed and analyzed in Chapter 5. It consists of using an absorbing function
with unbounded integral on the PML. In such a case, the exact solution of the original
time-harmonic scattering problem in the domain of interest is recovered, even though the
thickness of the layer is finite (see Chapter 6).

The outline of this chapter is as follows: In Section 7.2, we state the scattering problems
in a three-dimensional unbounded domain with a porous layer surrounding a rigid obstacle.
We introduce the Allard-Champoux equations, governing the motion in the porous layer,
and the wall impedance model. Then we compute the frequency dependent impedance
which yields the equivalence between both models under the assumption of plane waves with
normal incidence. In Section 7.3, we study the particular case where the obstacle is planar
and unbounded. For this simple geometry we obtain the exact solution for the scattering
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problem assuming plane waves of oblique incidence or spherical waves. In both cases we
compare the pressure fields computed from the two models. In Section 7.4, under the
hypothesis of spherical geometry, both models are numerically solved by using an optimal
bounded PML technique combined with a finite-element method. Finally, we report the
numerical results obtained with this approach, when the obstacle is a sphere covered by a
porous material.

7.2 Statement of the problem. Mathematical model-

ing

We consider in this section a time-harmonic scattering problem for a coupled system
formed by an acoustic fluid and a porous medium.

Let Ω be a domain (bounded or unbounded) occupied by an obstacle to the propagation
of acoustic waves, with a totally reflecting boundary Γ and outward unit normal vector ν.
We consider a set of coordinates with its origin lying inside the obstacle.

Let ΩA be another domain surrounding the obstacle and occupied by a porous material,
with outer boundary ΓI and outward normal unit vector n. The rest of the space, ΩF, is
filled with an acoustic fluid (i.e., compressible, barotropic and inviscid). Figure 7.1 shows
a two-dimensional section of the domains.

Γ
Ω

ΩA
ΓI

n

ν

ΩF

Figure 7.1: Two-dimensional vertical section of the domains.

In what follows we introduce the equations of the time-harmonic scattering problem
with two different models for the porous medium.

7.2.1 The Allard-Champoux model

The first model consists of using directly the Allard-Champoux equations governing
the porous material. Consider a periodic acoustic source with angular frequency ω and
amplitude g acting inside ΩF. The amplitudes of the pressure fields in ΩF and ΩA are,
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respectively, the solutions p1 and pA of the following equations:

1

ρF

Δp1 +
ω2

μF

p1 = g in ΩF, (7.1)

1

ρA

ΔpA +
ω2

μA

pA = 0 in ΩA, (7.2)

p1 = pA on ΓI, (7.3)

1

ρF

∂p1

∂n
=

1

ρA

∂pA

∂n
on ΓI, (7.4)

1

ρA

∂pA

∂ν
= 0 on Γ, (7.5)

lim
r→+∞

r

(
1

ikF

∂p1

∂r
− p1

)
= 0 in ΩF, (7.6)

lim
r→+∞

r

(
1

ikA

∂pA

∂r
− pA

)
= 0 in ΩA. (7.7)

Eq. (7.1) is the standard Helmholtz equation for an acoustic fluid, where ρF is the mass
density of the fluid at rest and μF its bulk modulus which, for an acoustic fluid, is given by
μF = ρFc2

F, with cF being the sound speed in the fluid.
Eq. (7.2) corresponds to the Allard-Champoux [5] model for the vibrations in ΩA. This

model assumes that the skeleton of the porous medium is rigid. In fact, it considers that
the medium consists of a fluid-saturated rigid fibrous material. It also assumes that the
thermal exchange between the fluid and the fibers of the porous medium is not negligible.
If the porous material is assumed to be isotropic from a macroscopic point of view, then
the pressure in the porous medium satisfies Eq. (7.2), where ρA and μA are the so called
dynamic density and dynamic bulk modulus, respectively, which depend on the frequency.
These coefficients are given by the expressions given by the Allard-Champoux model Eqs.
(1.29)-(1.30), described in Chapter 1. Let us remark that we are using the pressure as the
unknown field to write the equations of the model.

Eq. (7.3) and (7.4) are the usual kinematic and kinetic interface conditions, which pre-
serve continuity of pressure and velocity fields, respectively, whereas Eq. (7.5) is the stan-
dard reflecting condition on a rigid obstacle. Finally, Eq. (7.6) and (7.7) are the radiation
Sommerfeld conditions in fluid and porous domains, with kF and kA being the respective
wave numbers

kF = ω

√
ρF

μF

=
ω

cF

and kA = ω

√
ρA

μA

. (7.8)

Let us remark that Eq. (7.7) only holds if the porous medium domain is unbounded.

7.2.2 The wall impedance model

An alternative to model the effect of the porous medium, valid in principle when the
thickness of the porous layer is negligible, consists of replacing the equation in ΩA by
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a complex-valued frequency-dependent wall impedance condition on ΓI. This condition is
defined as to recover the exact pressure field in problems involving plane waves with normal
incidence, as will be shown in the next subsection.

Consider again the notation shown in Figure 7.1 and the same periodic acoustic source
as above. The amplitude of the pressure field in ΩF is now the solution p2 of the following
exterior Helmholtz problem:

1

ρF

Δp2 +
ω2

μF

p2 = g in ΩF, (7.9)

p2 −
Z

iωρF

∂p2

∂n
= 0 on ΓI, (7.10)

lim
r→+∞

r

(
1

ikF

∂p2

∂r
− p2

)
= 0 in ΩF. (7.11)

Eq. (7.10) is the wall impedance condition which models the layer of porous material
covering the obstacle and involves the frequency-dependent wall impedance coefficient Z.
Since the fluid is assumed to be inviscid, this condition only involves the normal derivative
of the pressure.

7.2.3 Computing the wall impedance

In what follows we compute the complex frequency-dependent wall impedance coefficient
Z, in such a way that the solutions p1 and p2 of problems (7.1)-(7.7) and (7.9)-(7.11),
respectively, coincide under the assumption of plane waves with normal incidence. Let us
recall that this is the standard assumption for a Kundt’s tube.

x2

x3

x1

d

a

ΓI

ΩA

ΩF

Γ

Figure 7.2: Unbounded obstacle with planar boundary. 3D domains.
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Consider fluid and porous medium domains ΩF and ΩA, respectively, as in Figure 7.2.
Assume that the source term is now a plane wave with normal incidence to ΓI with amplitude
pinc. Assume also that this plane wave has a zero phase on the plane x3 = a. We introduce
this source in both problems through the following boundary condition:

−1

2

(
1

ikF

∂pj

∂x3

− pj

)∣∣∣∣
x3=a

= pinc, j = 1, 2.

It is clear that with this boundary condition and without any other source term in the fluid
domain, the solution is composed of different plane waves with normal incidence.

Eq. (7.1)-(7.7) reduce in this case to the following one-dimensional problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

ρF

d2p1

dx2
3

+
ω2

μF

p1 = 0, d < x3 < a,

1

ρA

d2pA

dx2
3

+
ω2

μA

pA = 0, 0 > x3 > d,

−1

2

(
1

ikF

dp1

dx3

− p1

)
= pinc, x3 = a,

p1 = pA x3 = d,

1

ρF

dp1

dx3

=
1

ρA

dpA

dx3

, x3 = d,

1

ρA

dpA

dx3

= 0, x3 = 0.

(7.12)

Straightforward computations lead to

p1(x1, x2, x3) = pinc

[
e−ikF(x3−a) + R1 eikF(x3+a)

]
,

where the reflection coefficient R1 is given by

R1 = e−2ikFd ZA cos(kAd) + iZF sin(kAd)

ZA cos(kAd) − iZF sin(kAd)
,

with
ZF =

ωρF

kF

= ρFcF and ZA =
ωρA

kA

being the characteristic impedances of the fluid and the porous medium, respectively.
Analogously, Eq. (7.9)-(7.11) yield in this case the following one-dimensional problem:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1

ρF

d2p2

dx2
3

+
ω2

μF

p2 = 0, d < x3 < a,

−1

2

(
1

ikF

dp2

dx3

− p2

)
= pinc, x3 = a,

p2 −
Z

iωρF

dp2

dx3

= 0, x3 = d.

(7.13)
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In this case, it is simple to show that

p2(x1, x2, x3) = pinc

[
e−ikF(x3−a) + R2 eikF(x3+a)

]
,

with

R2 = e−2ikFd Z + ZF

Z − ZF

.

Thus, it is possible to define a particular complex-valued coefficient Z so that its solution
coincides with that of problem (7.12). Therefore we obtain the following result:

Proposition 7.2.1. Let p1 and p2 be the solutions of problems (7.12) and (7.13), respec-
tively. If

Z = ZA coth(ikAd), (7.14)

then p1(x1, x2, x3) = p2(x1, x2, x3), for d < x3 < a.

This is a classical result [43]. Eq. (7.14) is nothing but the well-known expression of the
input impedance to a rigidly backed porous layer with thickness d.

7.3 Planar unbounded wall

In this section we will deal with other particular problems in which the obstacle and
the absorbing layer are unbounded and have a planar boundary as in Figure 7.2. We will
consider two simple source terms: plane waves with oblique incidence and spherical waves.
In both cases, we will deduce explicit formulas for the solutions of problems (7.1)-(7.7) and
(7.9)-(7.11), which will allow us to compare both models.

In spite of the fact that the assumption of an unbounded absorbing layer is not realistic,
it allows us to avoid the diffraction effects due to the borders of the porous sample. This
assumption is usually made, even from an experimental point of view, when the size of the
sample is much larger than the length wave of the acoustic source.

7.3.1 Plane waves with oblique incidence

Consider now as a source term a plane wave of amplitude pinc with oblique incidence on
the interface ΓI, the incidence angle being α. We assume again that this plane wave has a
zero phase with respect to the variable x3 on the plane x3 = a, so that we introduce the
source term by means of the following boundary condition:

−1

2

(
1

ikF cos α

∂pj

∂x3

− pj

)∣∣∣∣
x3=a

= pinc e−ikFx2 sin α, j = 1, 2.
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In this case, Eq. (7.1)-(7.7) reduce to the following two-dimensional problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

ρF

∂2p1

∂x2
2

+
1

ρF

∂2p1

∂x2
3

+
ω2

μF

p1 = 0, d < x3 < a,

1

ρA

∂2pA

∂x2
2

+
1

ρA

∂2pA

∂x2
3

+
ω2

μA

pA = 0, 0 < x3 < d,

−1

2

(
1

ikF cos α

∂p1

∂x3

− p1

)
= pinc e−ikFx2 sin α, x3 = a,

p1 = pA, x3 = d,

1

ρF

∂p1

∂x3

=
1

ρA

∂pA

∂x3

, x3 = d,

1

ρA

∂pA

∂x3

= 0, x3 = 0.

(7.15)

Straightforward computations lead now to the following expression for p1:

p1(x1, x2, x3) = pinc e−ikFx2 sin α
[
e−ikF(x3−a) cos α + R1 eikF(x3+a) cos α

]
, (7.16)

where the reflection coefficient R1, which depends on the frequency and the incidence angle,
is given by

R1 = e−2ikFd cos α Z∗
A cos α cos(k∗

Ad) + iZF sin(k∗
Ad)

Z∗
A cos α cos(k∗

Ad) − iZF sin(k∗
Ad)

,

with

k∗
A =

√
k2

A − k2
F sin2 α and Z∗

A = ωρA/k∗
A,

whereas ZF = ωρF/kF = ρFcF, as above.
Analogously, under the assumption of plane waves with oblique incidence, problem (7.9)-

(7.11) can be written as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1

ρF

∂2p2

∂x2
2

+
1

ρF

∂2p2

∂x2
3

+
ω2

μF

p2 = 0, d < x3 < a,

−1

2

(
1

ikF cos α

∂p2

∂x3

− p2

)
= pinc e−ikFx2 sin α, x3 = a,

p2 −
Z

iωρF

∂p2

∂x3

= 0, x3 = d.

(7.17)

Proceeding as above, it is easy to show that the pressure field is given by

p2(x1, x2, x3) = pinc e−ikFx2 sin α
[
e−ikF(x3−a) cos α + R2 eikF(x3+a) cos α

]
, (7.18)

where the reflection coefficient is now

R2 = e−2ikFd cos α Z cos α + ZF

Z cos α − ZF

.
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The expression of the input impedance for plane waves with oblique incidence in a
multilayered media is also well known [43]. In principle, we could use it to define Z so that
we recover the equivalence between the solutions of problems (7.15) and (7.17). However,
this value of Z would depend on the incidence angle α.

Our aim is to characterize the behavior of a porous layer by a wall impedance depending
only on the thickness and the physical properties of the porous material, but not on the
particular acoustic source. Because of this, we propose to use the wall impedance (7.14)
computed for plane waves with normal incidence. In what follows, we compare the solu-
tions (7.16) and (7.18) of problems (7.15) and (7.17), respectively, as a first validation of
this proposal.

For the fluid parameters we have used ρF = 1.2 kg/m3 and cF = 343 m/s, whereas, for
the porous layer, Pr = 0.702, γ = 1.4, σ = 20000 rays mks and P0 = 101320 N/m2, the
thickness of the layer being d = 0.05 m.

Figure 7.3 shows the real and the imaginary parts of the wall impedance defined in
(7.14) for a range of frequencies f = ω/(2π) between 100 and 2000 Hz.
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Figure 7.3: Wall impedance Z as defined by Eq. (7.14) for different values of f = ω/(2π).

We consider an incoming plane wave of oblique incidence with angle α = π/3 rad,
amplitude pinc = 1 N/m2 and null x3-phase on the plane x3 = 1 m.

As a first test, we compute the solutions p1 and p2 provided by each model at different
observation points on the x3-axis that we call m1, m2, m3 and m4 (see Figure 7.4), for a
wide range of frequencies.

We show the real parts of the results in Figure 7.5, where the agreement of both models
can be clearly appreciated. Indeed, the agreement is so good that, for each of the observation
points, the curves corresponding to each model almost coincide, making it very hard to
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Figure 7.4: Observation points for the pressure field.

distinguish one from the other.

100 500 1000 1500 2000
−1.5

−1

−0.5

0

0.5

1

1.5

Frequency  f (Hz)

P
re

ss
ur

e 
(N

/m
2  )

Re( P
1
) at  m

1

Re( P
2
) at  m

1

Re( P
1
) at  m

2

Re( P
2
) at  m

2

Re( P
1
) at  m

3

Re( P
2
) at  m

3

Re( P
1
) at  m

4

Re( P
2
) at  m

4

Figure 7.5: Plane waves with oblique incidence. Real part of the pressure fields at different
points.

For plane waves, there is no need of comparing the solution provided by both models
at points with the same coordinate z, as m5, . . . , m8 in Figure 7.4. Indeed, p1(mj), j =
4, . . . , 8, only differ in phase, and the same happens with p2(mj) (see Eq. (7.16) and (7.18)).
Clearly, this is not the case for more general waves as will be shown in the next section.
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Finally, we check the agreement between both models for different values of the thickness
of the porous material. In Figure 7.6 we show the relative difference between both solutions,
|p1 − p2| / |pinc|, at the points m3 and m8 (see Figure 7.4), for a couple of frequencies and
a wide range of values of the thickness.
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Figure 7.6: Plane waves with oblique incidence. |p1 − p2| / |pinc| versus thickness of the
porous layer.

We observe that the agreement between both models is essentially independent of the
point where we compute the pressure field. Moreover, the relative difference between both
models does not increase with frequency. On the other hand, even for a thick porous
layer and moderate values of the angle of incidence (α = π/3 rad), the agreement does not
degenerate. Indeed each curve shows only one small error peak for very small values of the
thickness d (≈ 12% for 1000 Hz and ≈ 6% for 500 Hz).

7.3.2 Spherical waves

Next we consider a new source term: a monopole acting inside the fluid domain. In this
case, the technique to obtain the solutions of the scattering problems is classical [55]. For
completeness, we detail the computations for the Allard-Champoux model.

For a monopole at the point a = (0, 0, a), with constant volume velocity Q [22], the
acoustic source term in (7.1) is g = iωQδa, with δa being the Dirac’s delta with support at
a.

Since the source term depends neither on x1 nor on x2, and the interfaces ΓI and Γ are
orthogonal to the x3-axis, we take advantage of the symmetry of the problem. We use the
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two-dimensional Fourier transform [42] in the space variables x1 and x2:

P̃1(x̃1, x̃2, x3) =

∫ +∞

−∞

∫ +∞

−∞
p1(x1, x2, x3) e−ix̃1x1 e−ix̃2x2 dx1 dx2.

Let us remark that we use tildes to denote Fourier variables because hats have already been
used for variables related to the PML.

Taking Fourier transform of Eq. (7.1) and (7.2), we obtain:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

ρF

[
−(x̃2

1 + x̃2
2)P̃1 +

∂2P̃1

∂x2
3

]
+ ω2 1

μF

P̃1 = iωQδ̃a in ΩF,

1

ρA

[
−(x̃2

1 + x̃2
2)P̃A +

∂2P̃A

∂x2
3

]
+ ω2 1

μA

P̃A = 0 in ΩA.

Notice that δ̃a coincides with the one-variable Dirac’s delta with support at the point
x3 = a. Hence, by using the Sommerfeld radiation conditions (7.6) and (7.7), we obtain:

P̃1(x̃1, x̃2, x3) =
ωρFQ ei

√
k2
F−r̃2 |x3−a|

2
√

k2
F − r̃2

+ R̃1 ei
√

k2
F−r̃2 x3 , (7.19)

P̃A(x̃1, x̃2, x3) = TA e−i
√

k2
A−r̃2 x3 + RA ei

√
k2
A−r̃2 x3 , (7.20)

where r̃ =
√

x̃2
1 + x̃2

2, and kF and kA are the wave numbers in the fluid and in the porous
media, respectively, as defined in (7.8).

We introduce the following notation:

k̃F =
√

k2
F − r̃2, k̃A =

√
k2

A − r̃2, Z̃F =
ωρF

k̃F

, Z̃A =
ωρA

k̃A

.

The interface conditions (7.3)-(7.5) lead to the following system of equations for the coeffi-

cients RA, R̃1 and TA:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Z̃FQ

2
eik̃F(d−a) + R̃1 eik̃Fd = TA e−ik̃Ad + RA eik̃Ad,

−Q

2
eik̃F(d−a) +

R̃1

Z̃F

eik̃Fd = −TA

Z̃A

e−ik̃Ad +
RA

Z̃A

eik̃Ad,

−TA + RA = 0.

Notice that since k̃F and k̃A depend on x̃1 and x̃2 through r̃, so do RA, R̃1 and TA.
By solving this linear system, we obtain

R̃1 = e−2ik̃Fd Z̃A cos(k̃Ad) + iZ̃F sin(k̃Ad)

Z̃A cos(k̃Ad) − iZ̃F sin(k̃Ad)

Z̃FQ

2
eik̃Fa.
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Using now (7.19) and the inverse Fourier transform, we have

p1(x) =
iωρFQ

4π

eikF|x−a|

|x − a| + pR
1 (x),

where

pR
1 (x) =

1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
R̃1(x̃1, x̃2) eik̃Fx3 eix̃1x1 eix̃2x2 dx̃1 dx̃2.

Since R̃1 depends on x̃1 and x̃2 only through r̃, by using the Hankel transform[42] we can
rewrite the pressure field in ΩF as follows:

p1(x) =
iωρFQ

4π

eikF|x−a|

|x − a| +
1

2π

∫ +∞

0

R̃1(r̃) eik̃Fx3 J0

(
r̃
√

x2
1 + x2

2

)
r̃ dr̂, (7.21)

where J0 denotes the Bessel function of first kind and order zero.
The above integral can be computed exactly only if the geometry is very simple. Oth-

erwise, some quadrature rule has to be used. In such case, numerical problems should be
expected because the function R̃1(r̃) has a singularity at r̃ = kF.

By applying similar techniques to the wall impedance model, we can also write explicitly
the solution of (7.9)-(7.11) as follows:

p2(x) =
iωρFQ

4π

eikF|x−a|

|x − a| +
1

2π

∫ +∞

0

R̃2(r̃) eik̃Fx3 J0

(
r̃
√

x2
1 + x2

2

)
r̃ dr̂, (7.22)

where R̃2 is given by

R̃2 = e−2ik̃Fd Z + Z̃F

Z − Z̃F

Z̃FQ

2
eik̃Fa.

Our next goal is to compare the solutions (7.21) and (7.22) when the wall impedance Z
is taken according to (7.14).

We have used the same values for the physical and geometrical parameters as in the
previous test. The integrals in (7.21) and (7.22) have been computed by using recursive
adaptive Lobatto quadrature [64] with a tolerance error of 10−8 and truncating the inte-
gration domain at a distance 10−7 from the singular point r̃ = kF.

We have computed p1 and p2 at the same points as in the previous test for different fre-
quencies. The real parts of the results are shown in Figure 7.7, where an excellent agreement
between both models can be clearly observed again for a wide range of frequencies. Once
more, the agreement is so good that it is very hard to distinguish the curves corresponding
to each model.

We have also computed p1 and p2 at points m5, m6, m7 and m8, not lying on the
x3-axis (see Figure 7.4) for different frequencies. The real parts of the results, are shown
in Figure 7.8. Once more, for each of the observation points, the curves corresponding to
each model almost coincide because of the excellent agreement.
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Figure 7.7: Spherical waves. Real part of the pressure fields at different points lying on the
x3-axis.
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Figure 7.8: Spherical waves. Real part of the pressure fields at different points lying on the
line x3 = 0.55.

Finally, Figure 7.9 shows the relative difference between both solutions, |p1 − p2| / |pinc|,
at points m3, m4 and m8, for a couple of frequencies and a range of values of the thickness.
The incidence pressure pinc is now the first term in the right hand sides of Eq. (7.21) and
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(7.22), namely,

pinc =
iωρFQ

4π

eikF|x−a|

|x − a| . (7.23)
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Figure 7.9: Spherical waves. |p1 − p2| / |pinc| versus thickness of the porous layer.

It can be checked that the agreement between both models gets worse for large values
of d. Anyway, for rather thick porous media layers and moderate values of the frequency,
the agreement is excellent, the relative difference remaining smaller than 3%.

7.4 Curved wall

In the previous section, we have solved analytically the Allard-Champoux and the wall
impedance models in two particular cases, taking advantage of the special geometric config-
uration of the domains (planar interfaces and unbounded fluid and porous media). However,
in real problems, the obstacle and the porous layer are bounded and have arbitrary shapes,
usually with non-planar boundaries.

In this framework, we are going to focus our attention on the comparison of both models
in the case of non-planar geometries. Since in such case it is not possible to compute the
exact solutions using analytical techniques, it is necessary to introduce a computational
method. This is the aim of the rest of the chapter.

From a computational point of view, we have to deal with two main difficulties:

• the fluid domain is unbounded,
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• the thickness of the porous layer is much smaller than the other dimensions.

We overcome the first difficulty by using the Perfectly Matched Layer technique [22]
with optimal choice of the absorbing function, [32] as described in Subsection 7.4.1 below.

The second difficulty becomes relevant when we try to solve numerically problem (7.1)-
(7.7) in three-dimensional domains by applying a finite-element method. Indeed, because
of the different scales in the dimensions of the porous layer, it is necessary to use meshes
with a large number of degrees of freedom to obtain a good accuracy of the results, which
in its turn implies to solve large linear systems of equations.

For simplicity, we restrict our analysis to axisymmetric problems. Let (r, θ, ϕ) denote
the standard spherical coordinates of a point x ∈ R3 (see Figure 7.10) and {er, eθ, eϕ}
the canonical basis associated to this system of coordinates. We consider problems such
that the porous and fluid domains as well as the external source are independent of the
azimuthal angle ϕ. In such case Eqs. (7.1)-(7.7) and (7.9)-(7.11) can be rewritten in terms
of r and θ, and, hence, reduced to two dimensions.

x2

x3

θ

ϕ

x1

r x1 = r sin θ cos ϕ,

x3 = r cos θ.

x2 = r sin θ sin ϕ,

Figure 7.10: Spherical coordinates.

7.4.1 The Perfectly Matched Layer

Analogously to the derivation of the two-dimensional PML technique in polar polar co-
ordinates in Chapter 6, we are going to introduce a PML technique in spherical coordinates
[93] to truncate the unbounded fluid domain.

For this purpose, we surround the domain of interest (i.e., the part of the domain where
we want to compute the pressure field) with a spherical PML. We consider a ball of radius
R containing the domain of interest, the porous layer and the scatterer. The PML occupies
the “annular” domain Ω̂F = {x ∈ ΩF : R < |x| < R�} and we denote by ΓM and ΓD the

spherical surfaces of radius R and R�, respectively, so that the boundary of Ω̂F is ΓM ∪ΓD,
as shown in Figure 7.11 (left). Notice that er is a unit normal vector for both surfaces.
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Figure 7.11: Original axisymmetric (cut) domains and spherical coordinates domains.

From now on, we make an abuse of notation: we denote with the same names the original
three-dimensional domains and the corresponding two-dimensional projections, namely,

ΩF = {(r, θ) : x = (r, θ, ϕ) ∈ ΩF}, ΓI = {(r, θ) : x = (r, θ, ϕ) ∈ ΓI}, etc.

See Figure 7.11 for a better understanding of this notation.

Problems (7.1)-(7.7) and (7.9)-(7.11) are respectively written in this two-dimensional

spherical coordinates setting as follows, where p̂j (j = 1, 2) denote the pressure fields in Ω̂F:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

ρF

div (grad p1) +
ω2

μF

p1 = g in ΩF,

1

ρA

div (grad pA) +
ω2

μA

pA = 0 in ΩA,

1

ρF

d̂iv
(
ĝrad p̂1

)
+

ω2

μF

p̂1 = 0 in Ω̂F,

p1 = pA on ΓI,

1

ρF

∂p1

∂n
=

1

ρA

∂pA

∂n
on ΓI,

1

ρA

∂pA

∂ν
= 0 on Γ,

p1 = p̂1 on ΓM,
1

ρF

∂p1

∂r
=

1

ρF

ĝrad p̂1 · er on ΓM,

p̂1 = 0 on ΓD.

(7.24)
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1

ρF

div (grad p2) +
ω2

μF

p2 = g in ΩF,

1

ρF

d̂iv
(
ĝrad p̂2

)
+

ω2

μF

p̂2 = 0 in Ω̂F,

p2 −
Z

iωρF

∂p2

∂ν
= 0 on ΓI,

p2 = p̂2 on ΓM,
1

ρF

∂p2

∂r
=

1

ρF

ĝrad p̂2 · er on ΓM,

p̂2 = 0 on ΓD.

(7.25)

In the previous systems, the differential operators div and grad are, respectively, the
divergence and gradient differential operators in spherical coordinates for axisymmetric
problems (i.e., with vanishing partial derivatives with respect to ϕ):

gradQ =
∂Q

∂r
er +

1

r

∂Q

∂θ
eθ,

div w =
1

r2

∂

∂r
(r2wr) +

1

r sin θ

∂

∂θ
(sin θwθ),

where w = wrer + wθeθ. On the other hand, d̂iv and ĝrad are the differential operators
associated to the specific complex change of coordinates typical of the PML technique [47]:

ĝradQ =
1

γr

∂Q

∂r
er +

1

rγ̂r

∂Q

∂θ
eθ,

d̂iv w =
1

r2γrγ̂2
r

∂

∂r
(r2γ̂2

rwr) +
1

rγ̂r sin θ

∂

∂θ
(sin θwθ),

where

γr(r) = 1 +
i

ω
σr(r) and γ̂r(r) = 1 +

i

rω

∫ r

R

σr(s) ds, R < r < R�,

with σr being the variable absorption coefficient in the PML.
The typical choices for σr are constant, linear or parabolic functions [22, 52]. Instead,

we use a non-integrable absorbing function σr, which allows us to recover the exact solution
of the original scattering problem in the domain of interest [32]. In particular we use

σr(s) =
cF

R� − s
, R < s < R�, (7.26)

which has been shown to be an optimal choice in Chapters 5 and 6.

7.4.2 Finite-element discretization

In this section we introduce a standard finite-element method to solve numerically the
variational formulations of problems (7.24) and (7.25).
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Ω̂F

ΩF

ΩA

Figure 7.12: Quadrilateral finite elements for the domains in spherical coordinates.

Consider a quadrilateral mesh of the domains ΩA, ΩF and Ω̂F, matching on the common
interfaces, ΓI and ΓM (see Figure 7.12).

Regarding problem (7.24), we will compute approximations pAh, p1h and p̂1h of the

pressure amplitude in ΩA, ΩF and Ω̂F, respectively, by using continuous piecewise bilinear
quadrilateral finite elements. The degrees of freedom defining the finite-element solution
are the values of pAh, p1h and p̂1h at the vertices of the elements. Notice that, because of
the transmission conditions, pAh = p1h on ΓI and p1h = p̂1h on ΓM, and, hence, the values
of these functions must coincide at the vertices on the interfaces. Moreover, because of the
boundary condition, p1h = 0 on ΓD.

Standard arguments lead to the following discrete problem from the variational formu-
lation of problem (7.24):∫

ΩF

(
grad p1h · grad qh − k2

Fp1hqh

)
dS +

∫
ΩA

(
grad pAh · grad qh − k2

ApAhqh

)
dS

+

∫
Ω̂F

(
γ̂2

r

γr

∂p̂1h

∂r

∂qh

∂r
+

γr

r2

∂p̂1h

∂θ

∂qh

∂θ
− k2

Fγ̂2
rγrp̂1hqh

)
dS =

∫
ΩF

ρFgqh dS,

for all discrete test pressure field qh in the corresponding finite-element space. Recall that
the surface element dS = r sin θ dr dθ. Let us remark that the integrals in the above problem
are well defined, in spite of the non-integrable character of the absorbing function (7.26)
(for more details, see [30] or Chapter 6).

Analogously, the following is the discrete problem corresponding to (7.25):

∫
ΩF

(
grad p2h · grad qh − k2

Fp2hqh

)
dS −

∫
ΓI

iωρF

Z
p2hqh dL

+

∫
Ω̂F

(
γ̂2

r

γr

∂p̂2h

∂r

∂qh

∂r
+

γr

r2

∂p̂2h

∂θ

∂qh

∂θ
− k2

Fγ̂2
rγrp̂2hqh

)
dS =

∫
ΩF

ρFgqh dS,

for all discrete test pressure field qh in the corresponding finite-element space; dL stands
for the arc-length element. Notice that, once more, p2h = p̂2h on ΓM and p2h = 0 on ΓD.
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7.4.3 Verification of the numerical methods

In this section we verify the numerical methods that we have introduced in Section 7.4.2;
namely, the PML model with a singular absorbing function and the finite element methods
in spherical coordinates to approximate each model: Allard-Champoux and wall impedance.
With this purpose, we have solved two simple problems, one for each model, both of them
with known analytical solutions.

Verification of the numerical method for the Allard-Champoux model

In the first test, we check the accuracy of the numerical approximation of the Allard-
Champoux model. Let Ω be a sphere centered at the origin of coordinates (see Figure 7.13).
We consider problem (7.1)-(7.7) with g = 0 and Eq. (7.5) substituted by the following one:
∂pA

∂ν
= 1 on Γ. In this case, the solution is a superposition of two spherical waves:

pA(x) = AA
eikAr

r
+ BA

e−ikAr

r
,

p1(x) = A1
eikFr

r
+ B1

e−ikFr

r
.

The pairs of complex constants AA, A1 and BA, B1 are, respectively, the amplitudes of
the ingoing and outgoing spherical waves in the porous media and the fluid. They are
determined by the transmission and boundary conditions of the problem.
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Ω̂F

ΩF

ΩA
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0 π

R

R∗
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ΩA

ΩF

Ω̂F

Figure 7.13: Three-dimensional cut of the spherical geometry and spherical coordinates
domains.

We have taken an inner sphere of radius R0 = 0.5 m, R = 1.6 m and R� = 1.8 m. We
have used the same values for the physical parameters as in Section 7.3: ρF = 1.2 kg/m3,
cF = 343 m/s, Pr = 0.702, γ = 1.4, σ = 20000 rays mks, P0 = 101320 N/m2 and d = 0.05 m.
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We have used uniform refinements of the mesh shown in Figure 7.15. The number N of
elements through the thickness of the PML is used to label each mesh.
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Figure 7.14: Coarse mesh for Allard-
Champoux model in Cartesian coordi-
nates (N = 3).
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Figure 7.15: Coarse mesh for Allard-
Champoux model in spherical coordi-
nates (N = 3).

We compare in Figure 7.16 the exact and the computed solution of the Allard-Champoux
model along the x3-axis, for a frequency f = 1000 Hz. The computed solution was obtained
with the mesh corresponding to N = 12, which has 5145 degrees of freedom. The solution
is plotted in the physical domain and in the PML.
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Aprox. solution

Figure 7.16: Real part of the pressure field computed with Allard-Champoux model. Mesh:
N = 12 (5145 degrees of freedom); frequency: f = 1000 Hz.

To measure the accuracy of the numerical solution we have computed the relative error



7.4. Curved wall 163

in L2-norm: (∫
ΩF

|p1h − p1|2 dS

)1/2

(∫
ΩF

|p1|2 dS

)1/2
.

We report in Figure 7.17 the error curves (log-log plot of errors versus degrees of freedom)
for a couple of frequencies. For instance, in the case of Figure 7.16, the relative error is
18.15%.
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Figure 7.17: Error curve for Allard-Champoux model.

Figure 7.17 allow us to asses the order of convergence of the method. It can be seen
that a quadratic order of convergence is achieved in all cases. Let us recall that this is the
optimal order for the finite elements we have used.

Verification of the numerical method for the wall impedance model

In the second test, we check the accuracy of the numerical approximation of the wall
impedance model. We use the same values for the physical and geometrical parameters as
in the previous test. We consider now problem (7.9)-(7.11) with g = 0 and the boundary

condition p2 =
Z

iωρF

∂p2

∂n
+ 1 on ΓI, instead of Eq. (7.10). The solution is a spherical wave

p2(x) = A2
eikFr

r
+ B2

e−ikFr

r
,

whose complex coefficients, A2 and B2, can be explicitly determined from the boundary
conditions of the problem.

We have used the same meshes as in the previous test, excluding the elements in ΩA.
We compare in Figure 7.18 the exact and the computed solution of the wall impedance

model along the x3-axis, for a frequency f = 1000 Hz. The computed solution was obtained
with the mesh corresponding to N = 12 (5145 degrees of freedom).
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Figure 7.18: Real part of the pressure field computed with the wall impedance model.
Mesh: N = 12 (5145 degrees of freedom); frequency: f = 1000 Hz.

Figure 7.19 shows the error curves for a couple of frequencies. For instance, in the
case of Figure 7.18, the relative error is 9.83%. The order of convergence is again optimal
(quadratic).
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Figure 7.19: Error curves for wall impedance model.

7.4.4 Numerical validation of the wall impedance model for non-
planar geometries

In this section we validate the wall impedance model by means of a test involving non-
planar geometries. With this purpose, we compare the results of this model with those
obtained with Allard-Champoux model. We will show that the geometry and the data of
the problem are essential factors which can affect the agreement shown in Section 7.3.
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We study the reflection of a spherical wave scattered by a non-concentric spherical
obstacle. The solution of this problem has been broadly studied in the literature and an
exact solution can be obtained via a series representation [7, 87].

We have used the physical parameters and the geometry described in Section 7.4.3. We
have taken as external source a monopole with volume velocity Q = 1 m3/s acting at the
point a = (0, 0, a), with a = 1.3 m (see Figures 7.14 and 7.15).

Figures 7.20 and 7.21 show the real parts of the pressure fields computed with each
model on the mesh corresponding to N = 12, for a frequency f = 500 Hz and a thickness
of the porous layer d = 0.05 m. In all cases, the solution is plotted in the physical domain
and in the PML. The pressure field has not been plotted around the monopole location to
avoid scale distortions due to excessively large pressure values arising from the singularity.

Figure 7.20: Real part of the pressure
field computed with Allard-Champoux
model. Mesh: N = 12; frequency: f =
500 Hz; thickness d = 0.05 m.

Figure 7.21: Real part of the pressure
field computed with the wall impedance
model. Mesh: N = 12; frequency: f =
500 Hz; thickness d = 0.05 m.

We have checked the agreement between both models by comparing the values of the
pressure field computed with each model at three points in the fluid domain: M 1 = (0, 0, b),
M 2 = (0, b, 0) and M 3 = (0, 0,−b), with b = 0.85 m (see Figures 7.14 and 7.15). For each of
these points, we have plotted the relative difference between both models, |p1h − p2h| / |pinc|,
versus the frequency. In this expression, p1h and p2h are the values computed with Allard-
Champoux and the wall impedance model, respectively, whereas pinc is the incidence pres-
sure as given by Eq. (7.23), which is the standard for spherical waves. Figures 7.22 and 7.23
shows these plots for two values of the thickness: d = 0.05 m and d = 0.2 m, respectively.

We observe large differences between the solutions obtained with both models in many
cases. For instance, the curves corresponding to points M 1 and M 2 have peaks of around
100% at very low frequencies, although they show a reasonable agreement in the middle
frequencies range. This behavior is essentially independent of the layer thickness.

Finally, we show in Figures 7.24 and 7.25 the real parts of the pressure field computed
with each model for a larger frequency, f = 6000 Hz, and a thickness d = 0.05 m. We have
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Figure 7.22: |p1h − p2h| / |pinc| versus
frequency. Mesh: N = 12; thickness:
d = 0.05 m.
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Figure 7.23: |p1h − p2h| / |pinc| versus
frequency. Mesh: N = 12; thickness:
d = 0.2 m.

used in this case a very refined mesh corresponding to N = 48 in order to preserve the six
elements per wave-length rule. A much better agreement can be observed in this case.

Figure 7.24: Real part of the pressure
field computed with Allard-Champoux
model. Mesh: N = 48; frequency: f =
6000 Hz; thickness: d = 0.05 m.

Figure 7.25: Real part of the pressure
field computed with the wall impedance
model. Mesh: N = 48; frequency: f =
6000 Hz; thickness: d = 0.05 m.

7.5 Conclusions

We have studied the agreement between two models for porous media in acoustic scat-
tering problems: Allard-Champoux and a wall impedance model. We have shown that both
provide almost identical results in planar geometries, even in the case of oblique incidence
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or spherical waves. This agreement holds for a wide range of frequencies, even for a non
negligible thickness.

To be able to deal with non-planar geometries, we have introduced a finite-element
method combined with an optimal bounded PML technique. We have applied this numerical
strategy to compute the pressure field scattered by a sphere. This numerical example has
shown that the agreement between the model for non-planar geometries may be very poor.

From these results, we conclude that the simplified wall impedance model is suitable to
model porous media in planar geometries, but not so reliable in more general cases.
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8.1 Introduction

This final chapter is devoted to describe other computational application of the Perfectly
Matched Layer technique in the context of dissipative acoustics. In particular, the main
goal of this chapter is the numerical simulation of locally reacting panels in free field.

More precisely, we compute the acoustic field associated to a thin panels surrounded
by an unbounded cavity of fluid, which is excited by a time-harmonic source. With this
purpose, we apply the Cartesian PML technique with the singular absorbing functions
introduced in Chapter 5, combined with a standard finite element code, in the three space
dimensions.

First, we focus our attention on panels of dissipative materials modelled as locally
reacting surfaces inside a cavity filled with an inviscid, barotropic and compressible fluid.
If we consider a three-dimensional problem, it can be useful to take into account the normal
specific impedance associated to a surface (see [21]), since this physical quantity gives us
information about the ratio between the pressure and the normal velocity on this surface.

In the framework of acoustic propagation of plane waves, when we deal with an inter-
face between two different media, the normal specific impedance depends on the angle of
incidence of the wave. But, in some cases, this normal specific impedance can be considered
independent of this angle. In these cases, we say that it is a locally reacting surface (see
[43]). The interesting feature is that acoustic propagation through this kind of surfaces is
determined by its impedance at each point on the surface.

If we consider a locally reacting surface, the normal component of the velocity at each
point of the surface is completely determined by the pressure at that point. This fact
makes possible that several thin layers of dissipative materials can be modelled by boundary
conditions. This happens, for instance, in the case of impedance walls, porous veils, and
microperforated or rigid plates.

To model the panel, it is considered as a layer with negligible thickness which reacts
locally. According to this simplification, we study several possible boundary conditions to
model the panel which can be used for classical porous veils, thin layers of porous materials,
etc.

Secondly, to deal with the unbounded domain where the problem is stated, we use the
PML technique in Cartesian coordinates described in Chapter 5, to truncate the domain of
physical interest.

The outline of this chapter is as follows. In Section 8.2 we study different boundary
conditions that can be used to model a panel of dissipative material surrounded by an
unbounded fluid domain. In Section 8.3, we describe the variational formulation of each of
the problems stated in the previous sections. Finally, in Sections 8.4 and 8.5 we describe a
finite element method for numerical discretization of each of the acoustic problems. Finally,
some numerical results in a more realistic case are shown in Section 8.6.
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8.2 Modelling the panel

Since the PML technique has already been widely used through the present work, we are
going to state directly the fluid/PML coupled problem (see Chapter 4 and 5 for details).
In this chapter, the unique new feature of the PML technique is that the equations are
written in three space dimensions.

We consider a coupled system consisting of an acoustic fluid in the physical domain of
interest

ΩF = (−a, a) × (−b, b) × (−d, d).

Since we need to simulate numerically a problem in an unbounded fluid domain, we surround
this fluid domain by a cartesian PML layer, which occupies the domain

ΩA = (−a∗, a∗) × (−b∗, b∗) × (−d∗, d∗) \ ΩF.

In the sequel we assume that the locally reacting panel is included in the physical domain
of interest. ΩF (see Figure 8.1).

a∗

−d

d

d∗

−a∗ −a a

−d∗
ΩA

ΩF

x1

x3

n
Γ+

P

Γ−
P

ΓD

Figure 8.1: Vertical cut of the fluid/PML domain and the locally reacting panel.

We denote the exterior boundary of the PML by ΓD and we assume that the absorbing
panel is placed on the surface ΓP, inside ΩF. We denote by Γ+

P and Γ−
P each of the sides of

the panel, with n the unit normal vector which is chosen as shown in Figure 8.1.
Through the next section, we consider four types of locally reacting panels:

• an absorbing panel modelled by a wall impedance condition which preserves the con-
tinuity of the pressure,

• an absorbing panel which preserves the continuity of the displacements,

• an absorbing panel that preserves neither the continuity of the pressure nor that of
the displacements,
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• an absorbing panel with a rigid back.

In every case we focus our attention on the description of the boundary conditions and on
the complex impedance value associated to the panels.

8.2.1 Wall-like impedance

First, we assume that the absorbing panel can be modelled by a wall-like impedance
condition. If we denote by p+,u+ the pressure and the displacement, respectively, on the
positive side of the absorbing panel, Γ+

P , and by p−,u− those on the negative side, Γ−
P , then

the equations governing the behavior of the absorbing panel are

p+ = p− on ΓP,

p+ = −iωZ(u+ · n − u− · n) on ΓP,

where Z is the surface impedance of the panel.

Taking into account the motion equation in the frequency domain, the fluid normal
displacement can be written in terms of the normal derivative of the pressure field as

u+ · n =
1

ω2ρ0

∂p+

∂n
on ΓP,

u− · n =
1

ω2ρ0

∂p−

∂n
on ΓP.

Then, in this case, the pressure field is solution of the following problem:

For a given acoustic source f with compact support in ΩF and a fixed angular frequency
ω, find the pressure field p satisfying

−k2p −
3∑

j=1

1

γj

∂

∂xj

[
1

γj

∂p

∂xj

]
= f in ΩA ∪ ΩF, (8.1)

p+ = p− = − iZ

ωρ0

(
∂p+

∂n
− ∂p−

∂n

)
on ΓP, (8.2)

p = 0 on ΓD, (8.3)

where k =
ω

c
is the wave number.

In summary, the acoustic behavior of the locally reacting panel depends on the value of
the complex impedance Z(ω). To determine this quantity we can either use experimental
measures (see [21]) or try to obtain an explicit mathematical expression. For instance, if
we assume that the panel consists of a unique thin layer of porous material, the surface
impedance of the panel can be considered as the input impedance to a multilayered media
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formed with a porous medium and an unbounded layer of fluid. In this case, the surface
impedance of the panel is given by (see [43])

Z = Zp
Z0 cos(kpd) − iZp sin(kpd)

Zp cos(kpd) − iZ0 sin(kpd)
,

where d is the thickness of the panel, Z0 the fluid characteristic impedance, kp the wave
number of the porous medium and Zp the characteristic impedance of the porous material.
If we compute the impedance and the wave number with the Darcy’s like model, introduced
in Chapter 2, then we have

Zp = ρ0c

(
1 − i

σ

ρ0ω

)
, kp =

ω

c

(
1 − i

σ

ρ0ω

)
,

where we recall that σ is the flow resistivity of the porous medium.

8.2.2 Porous veil and micro-perforated plates

Now we assume that the displacement is continuous through the panel, whereas the
pressure has a jump. This is the case of porous veils or rigid or microperforated plates.
Then, in the frequency domain, the equations governing the motion of the absorbing panel
are given by

∂p+

∂n
=

∂p−

∂n
on ΓP,

p+ − p− = −iωZu+ · n = − iZ

ωρ0

∂p+

∂n
on ΓP.

Let us remark that the first boundary condition implies that u+ · n = u− · n. Taking into
account these transmission conditions, the pressure field is solution of the following problem:

For a given acoustic source f with compact support in ΩF and a fixed angular frequency
ω, find the pressure field p satisfying

−k2p −
3∑

j=1

1

γj

∂

∂xj

[
1

γj

∂p

∂xj

]
= f in ΩA ∪ ΩF, (8.4)

∂p+

∂n
=

∂p−

∂n
on ΓP, (8.5)

p+ − p− = − iZ

ωρ0

∂p+

∂n
on ΓP, (8.6)

p = 0 on ΓD. (8.7)

As in the case of the wall impedance model, we should know the value of the complex
impedance Z(ω) via experimental or theoretical analysis. For instance, in the case of a
microperforated plate, the impedance can be computed by using the Maa’s formula (see
[83]).
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8.2.3 Thin porous layer

In the previous subsections, we have modelled a panel as a locally reacting surface
preserving the continuity of the pressure (in the case of the wall-like impedance condition)
or the continuity of the normal displacements (in the case of porous veils or microperforated
plates). Nevertheless, it is also possible to model the absorbing panel as a locally reacting
surface where neither the continuity of the pressure field nor the continuity of the normal
displacement are preserved.

This is the case when we consider a panel formed by a thin layer of porous material,
with a negligible thickness as it is compared to the rest of the dimensions of the panel.

In fact, if the porous layer is thin enough, we can approximate the solution of the
acoustic propagation problem inside the layer in terms of plane waves with normal incidence.
Hence, we can use a simple one-dimensional model to write the pressure and the normal
displacements fields as

u(x3) · n = Ae−ikpx3 + Beikpx3 ,

p(x3) = −iωZp(−Ae−ikpx3 + Beikpx3),

where kp and Zp are the wave number and the characteristic impedance in the porous
material, respectively. Taking these considerations into account, we write the pressure
field and the normal displacement on the two faces of the absorbing panel in terms of the
amplitudes of the plane waves,

u− · n = A + B, p− = −iωZp(−A + B) on x3 = 0, (8.8)

u+ · n = Ae−ikpd + Beikpd, p+ = −iωZp(−Ae−ikpd + Beikpd) on x3 = d, (8.9)

where d is the thickness of the panel. From (8.8), we write the amplitudes A and B in
terms of p− and u− · n. Substituting them in (8.9), we obtain

u+ · n = cos(kpd)u− · n − 1

ωZp

sin(kpd)p− on ΓP, (8.10)

p+ = ωZp sin(kpd)u− · n + cos(kpd)p− on ΓP. (8.11)

Finally, if we write the normal displacements in terms of the normal derivatives of the
pressure field, from (8.10)-(8.11), we have

∂p+

∂n
=

ωρ0

Zp sin(kpd)

(
p+ cos(kpd) − p−

)
on ΓP,

∂p−

∂n
= − ωρ0

Zp sin(kpd)

(
p− cos(kpd) − p+

)
on ΓP.

Hence, the pressure field is solution of the following problem:
For a given acoustic source f with compact support in ΩF, and a fixed angular frequency ω,
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find the pressure field p which satisfies

−k2p −
3∑

j=1

1

γj

∂

∂xj

[
1

γj

∂p

∂xj

]
= f in ΩA ∪ ΩF, (8.12)

∂p+

∂n
=

ωρ0

Zp sin(kpd)

(
p+ cos(kpd) − p−

)
on ΓP, (8.13)

∂p−

∂n
= − ωρ0

Zp sin(kpd)

(
p− cos(kpd) − p+

)
on ΓP, (8.14)

p = 0 on ΓD. (8.15)

8.2.4 Multilayer panel with a rigid back

Now we analyze the acoustic behavior of a locally reacting multilayer panel surrounded
by an unbounded fluid. In fact, we focus our attention on a multilayer panel constituted
by three media: a porous material, a fluid cavity and a rigid wall (see Figure 8.2).

x3

Rigid wall
Porous layer

Fluid

x3 = d2

x3 = 0

x3 = d1

Figure 8.2: Multilayer panel formed by a porous layer and a fluid cavity with rigid back.

We again consider that the thickness of the multilayer is small enough as to model it
by using the one-dimensional equations of acoustic propagation of plane waves with normal
incidence.

Following the same technique as the one used in the case of the thin porous layer model,
we can compute the input impedance of the multilayer as (see [43])

Z =
p−

−iωu− · n = Zp
ZT cos(kpd1) − iZp sin(kpd1)

Zp cos(kpd1) − iZT sin(kpd1)
,

where ZT = iZ0cotan(kpd2), and x3 = d1 and x3 = d2 are the planes where the coupling
interfaces between the porous material and the fluid domains are located (see Figure 8.2).
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Moreover, we must take into account that the rigid wall condition imposes a homoge-
neous condition on the normal derivative of the pressure on the back of the panel (Γ+

P),

u+ · n =
1

ω2ρ0

∂p+

∂n
= 0.

Hence, the pressure field is solution of the following problem:

For a given acoustic source f with compact support in ΩF, and a fixed angular frequency
ω, find the pressure field p which satisfies

−k2p −
3∑

j=1

1

γj

∂

∂xj

[
1

γj

∂p

∂xj

]
= f in ΩA ∪ ΩF, (8.16)

∂p+

∂n
= 0 on Γ+

P , (8.17)

p− =
iZ

ωρ0

∂p−

∂n
on Γ−

P , (8.18)

p = 0 on ΓD. (8.19)

8.3 Variational formulation

As a previous step to their numerical solution, we write down the variational formulation
of the problems stated in the previous section. With this purpose, first we introduce the
adequate functional spaces. To simplify the notation, we denote Ω = (ΩA ∪ ΩF) \ ΓP and
the boundary of this domain Ω by ∂Ω = ΓD ∪ Γ+

P ∪ Γ−
P .

Let H be the Hilbert space defined by

H = {q ∈ H1
loc(Ω) : q|ΩF

∈ H1(ΩF \ ΓP), q|ΩA
∈ W}, (8.20)

where the Hilbert space W is a weighted Sobolev space endowed with the norm

‖q‖2
W =

∫
ΩA

∣∣∣∣γ2γ3

γ1

∣∣∣∣ ∣∣∣∣ ∂q

∂x1

∣∣∣∣2 +

∫
ΩA

∣∣∣∣γ1γ3

γ2

∣∣∣∣ ∣∣∣∣ ∂q

∂x2

∣∣∣∣2 +

∫
ΩA

∣∣∣∣γ1γ2

γ3

∣∣∣∣ ∣∣∣∣ ∂q

∂x3

∣∣∣∣2 +

∫
ΩA

|γ1γ2γ3| |q|2.

In fact, a kind of homogeneous Dirichlet boundary condition on the exterior boundary of
the PML domain,

q = 0 on ΓD,

is contained implicitly in the definition of space W. This boundary condition will be actually
used in the discretization of weak problems proposed in the following section.

In order to obtain a variational formulation of the four source problems, first we multiply
the PML equation by γ1γ2γ3 with γj, j = 1, 2, 3, analogous to those defined for the two-
dimensional case in Chapter 4. Thus we obtain symmetric bilinear forms in all cases. So
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we have

−k2γ1γ2γ3p − ∂

∂x1

(
γ2γ3

γ1

∂p

∂x1

)
− ∂

∂x2

(
γ1γ3

γ2

∂p

∂x2

)
− ∂

∂x3

(
γ1γ2

γ3

∂p

∂x3

)
= f.

To obtain the previous expression we have used that f has compact support contained in
ΩF and that each coefficient γj only depends on the variable xj.

Now if we multiply this expression by the complex conjugate of the virtual pressure
q ∈ H, integrate in Ω and use the first Green formula, then we have

−
∫

Ω

k2γ1γ2γ3pq̄ +

∫
Ω

γ2γ3

γ1

∂p

∂x1

∂q̄

∂x1

+

∫
Ω

γ1γ3

γ2

∂p

∂x2

∂q̄

∂x2

+

∫
Ω

γ1γ2

γ3

∂p

∂x3

∂q̄

∂x3

−
∫

Γ+
P

∂p+

∂n
q̄+ +

∫
Γ−

P

∂p−

∂n
q̄− =

∫
ΩF

f q̄, (8.21)

where p+, q+ and p−, q− are the restrictions of the pressure fields p, q to the boundaries Γ+
P

and Γ−
P , respectively.

Taking into account each one of the different boundary conditions stated for each type
of panel, we write four different variational problems.

8.3.1 Wall-like impedance

Since, in the case of the wall impedance condition, the pressure field is continuous
through the panel, the functional space of the virtual pressure is given by

V = {q ∈ H1
loc(ΩF ∪ ΩA) : q|ΩF

∈ H1(ΩF), q|ΩA
∈ W}, (8.22)

and hence, by identifying Γ+
P and Γ−

P , the boundary integrals that arise in (8.21) are reduced
to ∫

Γ+
P

∂p+

∂n
q̄+ −

∫
Γ−

P

∂p−

∂n
q̄− =

∫
ΓP

(
∂p+

∂n
− ∂p−

∂n

)
q̄ = −

∫
ΓP

ωρ0

iZ
pq̄.

Consequently, the variational formulation of problem (8.1)-(8.3) can be written as follows:

For a fixed frequency ω, find p ∈ V such that

−
∫

Ω

k2γ1γ2γ3pq̄ +

∫
Ω

γ2γ3

γ1

∂p

∂x1

∂q̄

∂x1

+

∫
Ω

γ1γ3

γ2

∂p

∂x2

∂q̄

∂x2

+

∫
Ω

γ1γ2

γ3

∂p

∂x3

∂q̄

∂x3

+

∫
ΓP

ωρ0

iZ
pq̄ =

∫
ΩF

f q̄, (8.23)

for all q ∈ V.
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8.3.2 Porous veil

In the case of the porous veil or a rigid or microperforated plate the normal derivative
of the pressure field is continuous through the panel. Hence, by identifying Γ+

P and Γ−
P , the

boundary integrals that arise in (8.21) are reduced to∫
Γ+

P

∂p+

∂n
q̄+ −

∫
Γ−

P

∂p−

∂n
q̄− =

∫
ΓP

∂p+

∂n
(q̄+ − q̄−) = −

∫
ΓP

ωρ0

iZ
(p+ − p−)(q̄+ − q̄−).

Consequently, the variational formulation of problem (8.4)-(8.7) can be written as follows:

For a fixed frequency ω, find p ∈ H such that

−
∫

Ω

k2γ1γ2γ3pq̄ +

∫
Ω

γ2γ3

γ1

∂p

∂x1

∂q̄

∂x1

+

∫
Ω

γ1γ3

γ2

∂p

∂x2

∂q̄

∂x2

+

∫
Ω

γ1γ2

γ3

∂p

∂x3

∂q̄

∂x3

+

∫
ΓP

ωρ0

iZ
(p+ − p−)(q̄+ − q̄−) =

∫
ΩF

f q̄, (8.24)

for all q ∈ H.

8.3.3 Thin porous layer

If the panel preserves neither the continuity of the pressure nor that of the displacement,
then, taking into account (8.13)-(8.14), the boundary integrals that arise in (8.21) can be
rewritten as∫

Γ+
P

∂p+

∂n
q̄+ −

∫
Γ−

P

∂p−

∂n
q̄−

=

∫
Γ+

P

ωρ0

Zp sin(kpd)

(
p+ cos(kpd) − p−

)
q̄+ +

∫
Γ−

P

ωρ0

Zp sin(kpd)

(
p− cos(kpd) − p+

)
q̄−

=

∫
ΓP

ωρ0

Zp sin(kpd)

(
(p+q̄+ + p−q̄−) cos(kpd) − (p+q̄− + p−q̄+)

)
.

Hence, the variational formulation of problem (8.12)-(8.15) can be written as follows:

For a fixed frequency ω, find p ∈ H such that

−
∫

Ω

k2γ1γ2γ3pq̄ +

∫
Ω

γ2γ3

γ1

∂p

∂x1

∂q̄

∂x1

+

∫
Ω

γ1γ3

γ2

∂p

∂x2

∂q̄

∂x2

+

∫
Ω

γ1γ2

γ3

∂p

∂x3

∂q̄

∂x3

−
∫

ΓP

ωρ0

Zp sin(kpd)

(
(p+q̄+ + p−q̄−) cos(kpd) − (p+q̄− + p−q̄+)

)
=

∫
ΩF

f q̄, (8.25)

for all q ∈ H.
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8.3.4 Multilayer panel with a rigid back

Finally, if we assume that the panel is a multilayer formed by two media in contact with
a rigid wall, then, taking into account (8.17)-(8.18), the substraction of boundary integrals
that arises in (8.21) is given by∫

Γ+
P

∂p+

∂n
q̄+ −

∫
Γ−

P

∂p−

∂n
q̄− = −

∫
Γ−

P

∂p−

∂n
q̄− = −

∫
ΓP

ωρ0

iZ
p−q̄−.

Hence, the variational formulation of problem (8.16)-(8.19) can be written as follows:

For a fixed frequency ω, find p ∈ H such that

−
∫

Ω

k2γ1γ2γ3pq̄ +

∫
Ω

γ2γ3

γ1

∂p

∂x1

∂q̄

∂x1

+

∫
Ω

γ1γ3

γ2

∂p

∂x2

∂q̄

∂x2

+

∫
Ω

γ1γ2

γ3

∂p

∂x3

∂q̄

∂x3

+

∫
ΓP

ωρ0

iZ
p−q̄− =

∫
ΩF

f q̄, (8.26)

for all q ∈ H.

8.4 Finite element discretization

In order to solve the variational problems (8.23)-(8.26) stated in the previous section,
we discretize them by using a finite element method.

Let Th be a structure partition of the three-dimensional domain Ω in parallelepipedic
elements, such that each parallelepiped is completely contained either in ΩF or in ΩA (see
Figure 8.11). We also assume the if a finite element in Th has a face on the boundary of Ω,
this face is completely contained in ΓD, Γ−

P or Γ+
P .

To approximate the pressure field p, we use piecewise continuous bilinear elements.
Hence, in the variational problems (8.24), (8.25) and (8.26), the pressure field is approxi-
mated in the discrete space of finite elements

Hh := {qh ∈ C(ΩF ∪ ΩA) : qh = 0 on ΓD, qh|K bilinear in K, ∀K ∈ Th} ⊂ H,

and, analogously, in the problem (8.23) the discrete space of finite elements is

Vh := {qh ∈ C(Ω) : qh = 0 on ΓD, qh|K bilinear in K, ∀K ∈ Th} ⊂ V,

where H and V are defined by (8.20) and (8.22), respectively.
Then, we define the following approximate problems:

• Discrete problem associated to (8.23):
For a fixed frequency ω, find ph ∈ Vh such that

−
∫

Ω

k2γ1γ2γ3phq̄h +

∫
Ω

γ2γ3

γ1

∂ph

∂x1

∂q̄h

∂x1

+

∫
Ω

γ1γ3

γ2

∂ph

∂x2

∂q̄h

∂x2

+

∫
Ω

γ1γ2

γ3

∂ph

∂x3

∂q̄h

∂x3

+

∫
ΓP

ωρ0

iZ
phq̄h =

∫
ΩF

f q̄h, (8.27)
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for all qh ∈ Vh.

• Discrete problem associated to (8.24):
For a fixed frequency ω, find ph ∈ Hh such that

−
∫

Ω

k2γ1γ2γ3phq̄h +

∫
Ω

γ2γ3

γ1

∂ph

∂x1

∂q̄h

∂x1

+

∫
Ω

γ1γ3

γ2

∂ph

∂x2

∂q̄h

∂x2

+

∫
Ω

γ1γ2

γ3

∂ph

∂x3

∂q̄h

∂x3

+

∫
ΓP

ωρ0

iZ
(p+

h − p−h )(q̄+
h − q̄−h ) =

∫
ΩF

f q̄h, (8.28)

for all qh ∈ Hh.

• Discrete problem associated to (8.25):
For a fixed frequency ω, find ph ∈ Hh such that

−
∫

Ω

k2γ1γ2γ3phq̄h +

∫
Ω

γ2γ3

γ1

∂ph

∂x1

∂q̄h

∂x1

+

∫
Ω

γ1γ3

γ2

∂ph

∂x2

∂q̄h

∂x2

+

∫
Ω

γ1γ2

γ3

∂ph

∂x3

∂q̄h

∂x3

−
∫

ΓP

ωρ0

Zp sin(kpd)

(
(p+

h q̄+
h + p−h q̄−h ) cos(kpd) − (p+

h q̄−h + p−h q̄+
h )
)

=

∫
ΩF

f q̄h, (8.29)

for all qh ∈ Hh.

• Discrete problem associated to (8.26):
For a fixed frequency ω, find ph ∈ Hh such that

−
∫

Ω

k2γ1γ2γ3phq̄h +

∫
Ω

γ2γ3

γ1

∂ph

∂x1

∂q̄h

∂x1

+

∫
Ω

γ1γ3

γ2

∂ph

∂x2

∂q̄h

∂x2

+

∫
Ω

γ1γ2

γ3

∂ph

∂x3

∂q̄h

∂x3

+

∫
ΓP

ωρ0

iZ
p−h q̄−h =

∫
ΩF

f q̄h, (8.30)

for all qh ∈ Hh.

8.5 Numerical validation

In this section we present a validation of the numerical codes implementing the FE
methods that we have described in the previous section. To perform such validation, we
have chosen five problems whose exact solution are well-known, since they can reduce to
one-dimensional problems.

With this purpose, we assume that the cavities containing the fluid and the PML layer
is situated are ΩF = (−a, a)× (−b, b)× (−d, d) and ΩA = (−a, a)× (−b, b)× (−d∗, d∗) \ΩF

respectively. The boundary ∂(ΩF∪ΩA), is divided in three parts: ∂(ΩF∪ΩA) = Γ0
D∪Γ1

D∪ΓN,
where

Γ1
D = {(x1, x2, x3) ∈ R3 : x3 = d},

Γ0
D = {(x1, x2, x3) ∈ R3 : x3 = −d∗},

ΓN = {(x1, x2, x3) ∈ R3 : |x1| = a or |x2| = b}.
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The panel is inside the fluid cavity on a plane centered at the origin, i.e., ΓP = {(x1, x2, x3) ∈
ΩF : x3 = 0}. Figure 8.3 shows the vertical cut of the domain for all the tests. In all of them
we have used the following geometrical data: a = 0.5 m, b = 0.5 m, d = 0.5 m, d∗ = 0.75 m.
In every case, we have excited the acoustic system on Γ1

D by using a non homogeneous
Dirichlet condition p = p0, with p0 = 1 N/m2. The physical data of the problem are
ω = 1000 rad/s, c = 340 m/s, ρ0 = 1 m/s, and σ = 25000 Ns/m4.

x3 = −d

Γ0
D

ΓN

ΓN

x3 = −d�

x3 = 0

x3 = ad

ΩF

ΓI

Γ1
D

ΩA

r

Figure 8.3: Vertical cut of the three-dimensional domain ΩA ∪ ΩF.

To solve numerically all the problems, we have used two successive refinements of the
mesh in Figure 8.4, which are labelled by the numbers 2 and 4, with 1440 and 11520
elements, respectively.

Figure 8.4: Mesh 2 used in the numerical validation problems.

Problem 1: In the first test no panel has been included. The boundary conditions for this
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problem are

p = 0 on Γ0
D,

p = p0 on Γ1
D,

∂p

∂n
= 0 on ΓN.

The plots of Figure 8.5 show the exact and approximate pressure fields of the problem
on the line x1 = x2 = 0 (line r in Figure 8.3).
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Figure 8.5: Problem without panel. Pressure field on the line r.

Problem 2: A wall impedance panel has been included on ΓP. The boundary conditions
for this problem are

p = 0 on Γ0
D,

p = p0 on Γ1
D,

∂p

∂n
= 0 on ΓN,

p+ = p− on ΓP,

p+ = −iωZ(u+ · n − u− · n) on ΓP,

where we have taken Z = 340 − i8500 Ns/m3. In Figure 8.6, we show the exact and
approximate pressure fields for this problem on the line x1 = x2 = 0.

Problem 3: A porous veil panel has been included on ΓP. In this case, The boundary
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Figure 8.6: Wall impedance panel. Pressure field on the line r.

conditions are

p = 0 on Γ0
D,

p = p0 on Γ1
D,

∂p

∂n
= 0 on ΓN,

∂p+

∂n
=

∂p−

∂n
on ΓP,

p+ − p− = −iωZu+ · n = − iZ

ωρ0

∂p+

∂n
on ΓP.

Now, we have considered Z = i1000 Ns/m3. In Figure 8.7 we show the exact and
approximate pressure fields for this problem on the line x1 = x2 = 0.
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Figure 8.7: Porous veil panel. Pressure field on the line r.
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Problem 4: A locally reacting porous layer has been included on ΓP. The boundary
conditions for this problem are

p = 0 on Γ0
D,

p = p0 on Γ1
D,

∂p

∂n
= 0 on ΓN,

∂p+

∂n
=

ωρ0

Zp sin(kpd)

(
p+ cos(kpd) − p−

)
on ΓP,

∂p−

∂n
= − ωρ0

Zp sin(kpd)

(
p− cos(kpd) − p+

)
on ΓP.

In Figure 8.8 we show the exact and approximate pressure fields for this problem on
the line x1 = x2 = 0.
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Figure 8.8: Locally reacting porous layer. Pressure field on the line r.

Problem 5: A wall impedance panel in contact with a rigid wall has been included on ΓP.
The boundary conditions for this problem are

p = 0 on Γ0
D,

p = p0 on Γ1
D,

∂p

∂n
= 0 on ΓN,

∂p+

∂n
= 0 on ΓP,

p− =
iZ

ωρ0

∂p−

∂n
on ΓP,

where Z = 340− i8500 Ns/m3. The corresponding pressure fields are drawn in Figure
8.9.
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Figure 8.9: Wall impedance panel in contact with a rigid wall. Pressure field on the line r.

In Table 8.1, we show the relative errors in L2-norm for the solution of each discrete
problem. The last column in this table shows the orders of convergence, which are very
close to the optimal one for all the problems.

Table 8.1: Relative errors for the numerical test examples.

Mesh 2 Mesh 4 Order
Problem 1 0.015995 0.003694 2.081
Problem 2 0.016010 0.003696 2.081
Problem 3 0.071112 0.017137 2.037
Problem 4 0.116677 0.032372 1.898
Problem 5 0.053719 0.014156 1.948

8.6 Numerical results for an absorbing box for reduc-

ing noise in rooms

In this section we present some numerical results in a real-life experiment. We consider
a box which has a micro-perforated plate in one of its faces and the rest of them are rigid.
This box is filled and surrounded with a fluid of the same physical characteristics (see Figure
8.10).

Since five of the box faces are rigid, the unique boundary term in the weak formulation
is that computing on ΓP, where the micro-perforated panel is situated. Hence, the weak
formulation (8.24) and consequently, its discrete formulation (8.28) remain valid.

In all the numerical results which are showed below, we have chosen the following data:
the dimensions of the box are a = b = 0.6 m, h = 0.15 m, the data of the fluid are
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Figure 8.10: Cut of the three-dimensional domain: a rigid box with a micro-perforated
plate on a face.

c = 343 m/s, ρ0 = 1 kg/m3. The geometrical dimensions of the PML domain and the fluid
cavity which surrounds the box are the following (in meters):

ΩF = [−0.5, 0.5] × [−0.5, 0.5] × [−0.925, 0.925],

ΩA = [−0.7, 0.7] × [−0.7, 0.7] × [−1.125, 1.125] \ ΩF.

We have used a refinement of the parallelepiped meshes showed in Figure 8.11. Let us
remark that the mesh is refined in the neighborhood the faces of the locally reacting panel
to capture accurately the discontinuities of the pressure field.

The acoustic source that we have considered is a monopole supported at the point
a =(0,0,-0.725) m and a pure complex amplitude depending linearly on the angular fre-
quency and on the fluid density at rest, i.e., we have considered f = iωρ0Qδa, where
Q = 1 m3/s is the volume velocity of the monopole, and δa is the Dirac’s delta supported
at the point a.

To model the acoustic behavior of the micro-perforated plate, we have used the approx-
imated Maa’s formula (see [83]) to compute its impedance,

Z =
1

φ

⎛⎝32ηs

4r2
0

√
1 +

x(ω)2

32
+ iωρFs

⎛⎝1 +
1√

9 + x(ω)2

2

⎞⎠⎞⎠ (8.31)

where x(ω) = r0

√
ωρ0/η being η = 1.789 × 10−5 kg/ms the fluid viscosity, s = 10−3 m the

thickness of the plate, φ = 0.1 the rate of its perforation, and r0 = 4 × 10−3 m the radius
of its holes.
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Figure 8.11: Parallelepiped mesh of the fluid and PML domains, refined in the neighborhood
of the panel.

Figures 8.12, 8.13 and 8.14 show the real part (plots on the left side) and the imaginary
part (plots on the right side) of the pressure field associated respectively to the angular
frequencies ω = 800 rad/s, ω = 1330 rad/s, and ω = 2500 rad/s.

In all cases, the pressure field have been plotted on the plane x2 = 0. In order to avoid
that the singularity of the pressure field in the support of the monopole modifies the color
scale of the figures, a white circle has been drawn centered at the point (0,0,-0.725) m.

Let us remark that in each of the three examples the discontinuity of the pressure fields
between the faces of the boundary, where the micro-perforated plate is situated, is small
because of the scale used in the plots. In fact, in each of the numeric examples the pressure
jump is close to 3 N/m2.

8.7 Conclusions

Different mathematical models have been considered for modelling locally reacting ab-
sorbing panels in an acoustic propagation problem in an unbounded domain. The PML
technique has been used to reduce the problem to a computational bounded domain. Sev-
eral different models, attending to the different coupling conditions between pressure and
normal displacement on the faces of the panel, have been analyzed to write four variational
problems depending on the type of locally reacting panel. Finally, the discrete coupled
problems fluid/locally reacting panel have been solved by a finite element method with the
PML technique. Finally a more complex real-life experiment has been solved numerically
with the same code.
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Figure 8.12: Real part (left) and imaginary part (right) of the pressure field for ω =
800 rad/s.

Figure 8.13: Real part (left) and imaginary part (right) of the pressure field for ω =
1330 rad/s.
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Figure 8.14: Real part (left) and imaginary part (right) of the pressure field for ω =
2500 rad/s.
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Further research

To finish this memory, we describe briefly some of the research lines we are starting to
explore. We can divide them in two large blocks, attending to the aims of each one: the
study of new dissipative models and the analysis of new aspects of the PMLs.

• The first future research line is devoted to the analysis of new models for the dis-
sipative materials. More precisely, we have started to study new models for new
dissipative panels Micro-perforated panels (MPP).

In the literature, this kind of panels is modelled by the Maa’s equations (see [83]),
which give a semi-empirical expression for the input impedance of the panel. However,
this model is not completely satisfactory from a mathematical point of view, since
it is a local reacting model and, moreover, in the simplest plane wave analysis, the
equations do not take into account the angle of incidence of the waves.

The first stage of this research line is currently being done. From a numerical point
of view, a preliminary approach by using a finite element method (based on the
Raviart-Thomas elements described in Chapter 2) is being used to validate the Maa’s
equations in a periodic micro-perforated panel when the angle of incidence of the
plane waves is not null. At the same time, in order to fix the Maa’s model drawbacks,
a derivation of a new system of equations is being done by using homogenization
techniques.

In the context of the comparison of local and extended reacting models, there are also
some forthcoming open problems. For instance, in the validation of models presented
in Chapter 7, the implementation of models without axisymmetric assumptions, and
the study of the accuracy of both models in relation with the length-wave and the
size of the obstacle should be done.

Finally, we have always kept through this dissertation, the hypothesis of time-harmonic
motions related with porous models. Obviously, the mathematical study of the mod-
els in the time domain, and their forthcoming implementation in a computer code,
are also challenging future objectives. In particular, to derive a time domain model
associated to Allard-Champoux model, which seems to require the introduction of
time derivatives of fractional order.

191



192 Further research

• The second block of open problems arises around the Perfectly Matched Layer tech-
nique.

Among the technical issues in the context of the time-harmonic problems, we dis-
tinguish the proof of error estimates for the discrete finite solution. This kind of
estimates have an inherent difficulty, since they involve the non-standard weighted
Sobolev spaces presented in Chapter 5.

We can also mention some future computational challenges such as fluid/structure
problems stated in unbounded domains, where the elastic solid and the coupling
interfaces between fluid and solid domains are unbounded and, so, they have to be
truncated by the PML domain. The implementation of this problem in a computer
code is currently being done and some preliminar results have been presented in [34].

Moreover, through this dissertation, every finite element implementation use a quadri-
lateral (or parallelepipedic) partition in the PML domain (in Cartesian, polar or spher-
ical coordinates). Other open problem consists of studying if the finite element imple-
mentation with triangular meshes and numerical integration using a non-integrable
absorbing function is so accurate as those with quadrilaterals.

On the other hand, in the context of the study of the PML technique there are several
open problems that could be tackled in the framework of the time domain. Problems
so basic as energy estimates for the time domain PML equations (even for classical
choices of the bounded absorbing functions) remain open for non constant absorb-
ing functions. Moreover, some numerical aspects of the stability of finite difference
schemes starts to be well understood only recently (see for instance [20]).

Obviously, the mathematical analysis of the PML technique in the time domain using
the non-integrable absorbing function is also a future line of work in order to asses the
performance of this strategy to deal with the scattering problems in the time domain
as well as in the frequency domain.

The preliminary studies about the existence and uniqueness of solution for the cou-
pled fluid/PML problem with the singular absorbing function, its time domain im-
plementation, by a finite difference scheme, and the numerical comparison between
the classical choices and the singular absorbing function, are by now in progress (see
[19]), in a work jointly with Eliane Bécache, researcher of the Poems team at INRIA
(Institut National de Recherche en Informatique et Automatique).

In this context, the first results show that the exact solution of the time domain
scattering problem is recovered by using the non-integrable absorbing function. The
existence and uniqueness is also proved by using the retarding potential technique
and the Fourier-Laplace transform. Moreover, the time domain implementation is
also standard and it does not require any extra computational cost to obtain better
numerical results than the classical PML technique with bounded absorbing functions.
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Hervella Nieto, and Prof. Rodolfo Rodŕıguez for their work and support during these years.
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Resumo en galego

Os métodos numéricos están a adquirir un papel cada vez máis importante como ferra-
menta para reducir os tempos e custos no deseño e desenvolvemento de produtos en moitos
dos ámbitos da enxeñaŕıa (aeronáutica, mecánica, naval, telecomunicacións, etc.). Neste
sentido a rápida evolución dos computadores non é suficiente en todos os casos para resolver
de xeito eficiente e en tempos razonables problemas da enxeñaŕıa con interese práctico e
polo tanto ten que ser complementado con algoritmos e métodos de resolución numéricos
eficientes.

Un dos problemas que cobra maior importancia social é a reducción da contaminación
acústica producida por coches, avións, sistemas de aires acondicionados etc, como queda re-
flexado nas lexislacións autonómicas, estatais e europeas cada vez máis esixentes. Neste con-
texto, xurde a necesidade de resolver problemas de propagación acústica cada vez máis com-
plexos que non poden ser resoltos por técnicas baseadas en métodos matemáticos clásicos.
Por suposto, as probas sobre prototipos son fundamentais para asegurarse do bon funciona-
mento das tecnolox́ıas propostas. Sen embargo, o alto custo da fabricación de prototipos,
fai necesario que estas probas se realicen nunha etapa xa avanzada do deseño, cunha pro-
posta próxima á solución final. Estes dous factores fan que a acústica computacional se
convirta nunha disciplina cada vez de maior importancia e que a simulación numérica sexa
unha técnica determinante para realizar análises e deseños de sistemas acústicamente con-
fortabeis en tempos e con custos competitivos.

A riqueza matemática dos problemas relacionados coa acústica orixina que os mode-
los numéricos que se deben utilizar na súa resolución abrangan un espectro moi amplo,
requerindo a utilización de moitas das técnicas máis avanzadas da computación numérica
actual. Entre estes modelos debemos destacar a ecuación de Helmholtz, como a ecuación
fundamental que modela a propagación harmónica das ondas acústicas no dominio da fre-
cuencia. Ademais, todos estes modelos poden aplicarse a problemas en dominios limitados,
o que non involucra novas dificultades, pero tamén en dominios non limitados. Esta última
posibilidade é moi frecuente en acústica e esixe técnicas espećıficas de resolución.

Como xa adiantamos, a complexidade destes modelos matemáticos demandan a súa res-
olución mediante métodos numéricos, como, por exemplo, o método de elementos finitos.
Cando se presentan dominios non limitados, estes métodos teñen que ser complementados
con condicións de non reflexión como, por exemplo, as técnicas de capas absorbentes perfec-
tamente adaptadas, ou, seguindo o seu acrónimo inglés, PML (Perfecty Matched Layers).

O traballo presentado ao longo da tese enmarcase no dominio da frecuencia, é dicir,
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baixo a hipótese de dependencia harmónica da variable do tempo. De feito, a nosa atención
centrarase en problemas de propagación acústica no réxime de baixas frecuencias, no que a
discretización mediante un método de elementos finitos é ainda viable e non costosa, dende
un punto de vista computacional. De feito, todos os métodos propostos para a resolución
numérica dos problemas de propagación acústica ao longo da tese, teñen en común o uso
dos elementos finitos.

Pódense distinguir tres parte ben diferenciadas ainda que cunha temática común: o es-
tudio de problemas de propagación acústica tanto en dominios limitados como non limitados
que involucran materias disipativos. Nuns casos a materia de estudio serán o comporta-
mento acústico dos materias porosos, mentras que noutros, ditos materiais usaranse como
ferramenta numérica para tentar resolver outros problemas, como pode ser o truncamento
de dominios computacionais non limitados. Na primeira parte, centramos a nosa atención
no cálculo das frecuencias de resonancia e da resposta en frecuencia de materias porosos
acoplados a fluidos acústicos en recintos limitados. Mentras a segunda parte ad́ıcase á
análise matemática e numérica da técnica das PML , a cal tamén pode ser considerado
como un caso especial de medio disipativo. Finalmente, a última parte deste traballo
mostra algunas aplicacións computacionais que involucran medios porosos e que usan a
técnica das PML para truncar o dominio non limitado que involucra o problema de propa-
gación acústica. Vexamos cada unha das partes máis polo miudo.

A primeira parte Materiais porosos está dedicada ao estudio da propagación acústica
en réxime harmónico a través de materiais porosos. Esta clase de materiais é ampla-
mente usada en diferentes aplicacións do control pasivo do ruido. Estes materiais son ben
coñecidos pola súa habilidade para disipar as ondas acústicas. Polo tanto, dende un punto
de vista acústico, os materiais porosos posuen vantaxes relevantes fronte a outra clase de
materiais xa que son lixeiros e absorbentes ao mesmo tempo, dúas caracteŕısticas que os
convirten en fundamentais nas aplicacións acústicas á vida real. Esta primeira parte ten
dous obxectivos fundamentais. Por unha parte, facer unha revisión dos modelos de medios
porosos atendendo ás caracteŕısticas f́ısicas dos materias, xa sexan de parte sólida ŕıxida
ou elástica, remarcando a diferencia entre os modelos clásicos e aqueles que apareceron
recentemente, obtidos mediante as técnicas de homoxeneización. Por outra parte, a nosa
atención tamén se centra na resolución numérica dalgún destes modelos, proporcionando
ferramentas numéricas capaces de calcular as frecuencias de resonancia e a resposta en fre-
cuencia de sistemas acústicos que involucran a estes materias porosos. A primeira parte da
tese está organizada como segue:

Caṕıtulo 1. Modelos para medio porosos. Ao longo deste caṕıtulo se consideran
diferentes modelos cos que describir o movemento no interior de un medio poroso. A prin-
cipal diferencia entre todos estes modelos radica na suposición feita sobre a parte solida
do esquelete dos materiais. Primeiro, os modelos de Darcy e de Allard-Champoux son de-
scritos como o máis simple e o máis amplamente empregado en canto a medios poroso con
parte sólida ŕıxida se refire. Despois, faise unha revisión exhaustiva dos modelos de medio
porosos con parte sólida elástica. Esta revisión se comeza presentando o modelo clásico
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de Biot e logo se describe unha colección de modelos obtidos mediante técnicas de homox-
eneización atendendo ás diferentes xeometŕıas que poden ter os poros do material, xa sexan
de poros abertos (parte fluida conexa) ou poros pechados (parte fluida aillada), ou ben se
se tratan de modelos disipativos ou non disipativos. Neste últimos casos, faise unha breve
exposición de cal é o procedemento de obtención de ditos modelos macroscopicos e de cales
son os problemas, enunciados sobre a parte fluida e sólida de un único poro do mateiral,
que definen os coeficientes que aparecen nas ecuacións do movemento macroscópico.

Caṕıtulo 2. Resolución numérica mediante un método de elementos finitos da
propagación acústica en medios porosos con parte sólida ŕıxida. Este caṕıtulo se
enfrenta co comportamento acústico dun material poroso de matriz sólida ŕıxida. Primeiro
se enuncia o problema de propagación no dominio da frecuencia tendo en conta os modelos
de Darcy e de Allard-Champoux que governan o movemento no interior do medio poroso,
no que se usa o campo de desplazamentos como a incógnita do problema a determinar. Para
o caso do modelo de Darcy, estúdiase de forma anaĺıtica os autovalores sobreamortiguados
(frecuencias de resonancia complexas puras) no caso dun problema acoplado fluido/medio
poroso no interior dunha cavidade rectangular limitada. Como ferramenta numérica, im-
plementouse un método de elementos finitos para calcular a resposta do sistema acústico
a unha excitación harmónica e tamén para calcular as vibracións libres dun sistema mul-
ticapa tridimensional formado por un fluido acústico e un material poroso acoplados. O
elemento finito usado é o elemento de cara de orde máis baixo introducido por Raviart e
Thomas, o cal elimina os modos espureos de circulación que non teñen significado f́ısico
e no que os graos de liberdade son os desplazamentos normais a cada unha das caras dos
tetraedros que forman a malla de discretización. Os resultados numéricos mostran que o
método de elementos finitos permı́tenos calcular a curva de resposta en frecuencia do sistema
acoplado fluido/medio poroso e os autovalores complexos do sistema acústico. Tamén se
pode apreciar que algúns destes autovalores posuen unha pequena parte imaxinaria mentras
que outros son sobreamortiguados. Parte destes resultados contidos neste caṕıtulo foron
presentados en [27].

Caṕıtulo 3. Resolución numérica mediante un método de elementos finitos
dun novo modelo desplazamento/presión de medios poroelásticos. O comporta-
mento acústico de materiais porosos con un esquelete sólido elástico é tido en conta neste
caṕıtulo. Primeiro, centramos a nosa atención nun novo modelo en particular que emprega
un único campo de desplazamento e presións como incógnitas que aparecen nas ecuacións
en derivadas parcias que describen o movemento no interior do material poroso non disi-
pativo e que posue poros abertos. Se supoñemos unha estructura periódica no material
entón podemos calcular os coeficientes no modelo usando técnicas de homoxeneización que
requiren resolver problemas na celda unidade coa que se construe cada un dos poros que
forman o medio poroso. Despois proponse un método de elementos finitos para calcular a
resposta a unha excitación harmónica nunha cavidade tridimensional limitada que contén
a un fluido acústico acoplado cun medio poroelástico. O elemento usado para o fluido é o
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elemento de cara de orde máis baixo introducido por Raviart e Thomas, o cal elimina os
modos espureos de circulación que non teñen significado f́ısico e no que os graos de liberdade
son os desplazamentos normais a cada unha das caras dos tetraedros que forman a malla de
discretización. Mentras, o elemento finito usado para o desplazamento no medio poroso é
denominado “mini elemento”, no que os graos de liberdade son ademais dos desplazamen-
tos en cada vértice dos tetraedros da malla, un novo grao de liberdade que depende dunha
función burbulla asociada a cada tetraedro. Este tipo de elementos é usado para garantir
a estabilidade numérica do método. O resultados numéricos mostran a orde óptima de
converxencia e a capacidade da ferramenta numérica para calcular a resposta en frecuencia
do sistema acústico. Parte destes resultados contidos neste caṕıtulo foron presentados en
[28].

A segunda parte da tese Capas perfectamente adaptadas está dedicada ao estu-
dio da técnica das PML (Perfectly Matched Layers). Primeiro introdúcense as ecuacións
en derivadas parcias que definen o seu comportamento como orixinalmente fixo Berenger
en [22] empregando o argumento da separación artificial das variables do problema (tamén
coñecido como “splitting”) para despois darlle unha interpretación f́ısica como medio disi-
pativo que non produce reflexións espureas ao acoplarse cun fluido acústico. De feito a
técnica das PML é ferramenta numérica que se usa ao longo deste traballo para truncar
a dominio computacional dos problemas de dispersión acústica enunciados sobre dominios
non limitados. Esta técnica permite reducir o dominio de ditos problemas sen perturbar
demasiado a solución do problema orixinal. Sen embargo, o estudio das PML non se re-
duce á simple utilización da técnica senon que ao longo desta parte da tese se propón unha
modificación que optimiza os resultados numéricos acadados nos problemas discretizados.
Máis precisamente, ata o de agora para construir as capas PML usábase unha función
absorbente limitada,que ainda que teoricamente adecuados, non produćıa un resultados
numéricos óptimos nos problemas discretizados. Ao longo desta parte ademais de presen-
tar esta técnica, se analizan dende un punto de vista teórico e numérico a solución destes
inconvintes empregando unha función absorbente non integrable. A segunda parte da tese
está organizada como segue:

Caṕıtulo 4: Un material poroso non reflectante: as capas perfectamente adap-
tadas (PML). Neste caṕıtulo introdúcese a técnica das capas perfectamente adaptadas,
primeiro, como un remedio que modifica o comportamento das ecuacións do modelo de
Darcy para medios porosos ŕıxidos e que convirte o material disipativo nun medio que non
xenera reflexións espureas e artificiais cando se acopla cun fluido acústico. De feito, se
escribimos as ecuacións da PML en función do desplazamento pódese interpretar a PML
como un matetial viscoelástico con memoria longa. A continuación se enuncia cales son
as ecuacións en derivadas parciais do modelo no caso tridimensional e usando coordenadas
cartesianas. O que é máis, tamén se fai unha analise preliminar nunha dimensión para
ilustrar as vantaxes de usar unha función absorbente singular (non integrable) en vez de
escoller unha función limitada, como pode ser a elección clásica dunha función cuadrática.
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Caṕıtulo 5: Unha PML exacta e limitada en coordenadas radiais. O obxectivo
deste caṕıtulo é introducir unha capa perfectamente adaptada (PML) cun espesor limitado
e ao mesmo tempo “exacta” para a ecuación escalar de Helmholtz. Esta PML está basada
no uso dunha función absorbente non integrable. A “exactitude” debe ser entendida no sen-
tido de que esta técnica permite recuperar a solución do problema harmónico de dispersión
acústica en dominios non limitados. A pesar da singularidade da función absorbente, o
problema acoplado fluido/PML está ben posto cando a solución se busca no adecuado es-
pacio de Sobolev con pesos non standar. A existencia e unicidade de solución do problema
acoplado fluido/PML é demostrada para o caso das PML definidas en coordenadas radiais.
Posto que o problema variacional asociado non é de Fredholm, os pasos a seguir na de-
mostración centranse na representación dun novo operador Dirichet-to-Neumman asociado
á capa PML e máis á posibilidade de definir dito operador mediante unha representación
en serie do operador cando a función é suficientemente regular. Por último, a formulación
variacional resultante pode ser manexada numéricamente mediante unha discretización por
elementos finitos standar. A alta precisión de está técnica é demostrada numéricamente
cando se compara coa técnica PML clásica. Parte destes resultados contidos neste caṕıtulo
foron presentados en [32] e [33].

Caṕıtulo 6: Unha PML óptima en coordenadas cartesianas. Introducimos en co-
ordenadas cartesianas unha técnica de capas perfectamente adaptadas (PML) óptima e cun
espesor limitado escollendo como función absorbente unha función de integral non limitada.
Con esta escolla, as reflexións espúreas son evitadas, a pesar de que o espesor da capa é
finita. Ademais probamos que tal elección é sinxela de implementar usando un método de
elementos finitos. O escoller unha función absorbente singular permı́tenos evitar a depen-
dencia de parámetros que as funcións absorbentes limitadas teñen respecto da xeometŕıa
ou dos datos f́ısicos no problema discretizado. Por último, a eficiencia e a precisión desta
técnica PML son ilustradas mediante algúns exemplos numéricos. Parte destes resultados
contidos neste caṕıtulo foron presentados en [30].

Na terceira parte Aplicacións computacionais na acústica de medios disipa-
tivos, preséntanse algunas aplicacións numéricas da técnica das PML e dos modelos de
medios porosos que foron estudiados nas dúas primeiras partes. Primeiro, comparamos
dous modelos diferentes que tratan de modelar medios disipativos: o modelo de Allard-
Champoux, que se pode entender como un medio de reacción extensa (entendendo que o
campo de presión nun punto espacial depende dos valores da presión que hai ao seu redor) e
o modelo de impedancia de parede que se clasifica como un modelo de reacción local (xa que
a presión na impedancia de parede depende unicamente do que ocorre nese punto espacial
concreto). Os dous modelos son comparados en varios problemas de dispersión acústica
enunciados en dominios non limitados. Despois, o cálculo do coeficiente de absorción é
analizado para os modelos de medios porosos de parte sólida ŕıxida e para diferentes tipos
de paneis de reacción local. En todos os casos, lévase a cabo unha análise preliminar con
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ondas planas e, ademais, a técnica das PML é usada para truncar o dominio computacional
de interese f́ısico en todos os problemas. A terceira parte da tese está organizada como segue:

Caṕıtulo 7: Validación de dous modelos acústicos de medios disipativos. O obx-
ectivo deste caṕıtulo é o estudio no dominio da frecuencia dos problemas de propagación
acústica que involucran un sistema acoplado fluido/medio poroso. Nos consideramos dous
modelos diferentes para o tratamento dos materiais porosos: o modelo de Allard-Champoux
e un modelo aproximado basado no condición de impedancia de parede. Ambolos dous
modelos son comparados calculando analiticamente as súas respectivas solucións en tres
problemas nos que as xeometŕıas son planas, considerando sucesivamente ondas planas con
incidencia normal e oblicúa e, por outra, banda ondas esféricas. Un método numérico
que combina a técnica óptima das capas perfectamente adaptadas (PML), que usan unha
función de absorción singular, cun método de elementos finitos é tamén presentado para
calcular as solucións de problemas que empregan os dous modelos no caso máis xeral das
xeometŕıas axisimétricas. Este método é usado para comparar as solucións do campo de
presións para unha estructura esférica absorbente. Parte destes resultados contidos neste
caṕıtulo foron presentados en [31].

Caṕıtulo 8: Simulación numérica de paneis de reacción local. Como unha al-
ternativa aos modelos de medios porosos presentados na primeira parte da tese, nos que a
propagación acústica viña determinada por diferentes ecuacións en derivadas parciais en do-
minios que pod́ıan ter pequenas dimensións e que conlevaŕıan difilcultades computacionais
na discretización dos problemas, preséntanse outro tipo de modelos baixo a simplificación
de consideralos de reacción local. Máis precisamente, introdúcense catro condicións de con-
torno: a impedancia de parede, o velo poroso, unha panel poroso de reacción local e unha
multicapa de reacción local en contacto cunha parede ŕıxida, coas que se escriben canda
seu problema variacional enunciado nun dominio non limitado recheo dun fluido acústico.
Como en caṕıtulos previos, úsase un método de elementos finitos combinado coa técnica das
capas perfectamente adaptadas (PML) en coordenadas cartesianas para calcular o campo
de presións en problemas tridimensionais nunha bateŕıa de problemas test onde a solución
exacta coecida. Por último, unha vez validado o programa, móstranse algúns resultados
numéricos nun exemplo máis realista. Parte destes resultados contidos neste caṕıtulo foron
presentados no informe técnico [29].
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isterio de Ciencia y Tecnoloǵıa (Spain) a través da bolsa predoutoral de Formación de
Profesorado Universitario AP2003-1092.





Bibliography

[1] S. Abarbanel, D. Gottlieb, and J. S. Hesthaven. Well-posed perfectly matched layers
for advective acoustics. J. Comp. Phys., 154(2):266–283, 1999.

[2] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions, With For-
mulas, Graphs, and Mathematical Tables. Dover Publications, Inc., 1965.

[3] J.-F. Allard. Propagation of sound in porous media: modelling sound absorbing ma-
terials. Elsevier, New York, 1993.

[4] J.-F. Allard, A. Aknine, and C. Depollier. Acoustical properties of partially reticu-
lated foams with high and medium flow resistance. J. Acoust. Soc. Am., 79:1734–1740,
1986.

[5] J.-F. Allard and Y. Champoux. New empirical equations for sound propagation in
rigid frame fibrous materials. J. Acoust. Soc. Am., 91:3346–3353, 1992.

[6] J.-F. Allard, C. Depollier, J. Nicolas, W. Lauriks, and A. Cops. Propiétés acoustiques
des matériaux poreux saturés d’air et théorie de Biot. J. Acoust., 3:29–38, 1990.
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