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Preface

Spatial statistics is one of the most important methodologies for a large diversity of disciplines,

such as ecology, hidrology, environmental sciences, etc. In all these fields, experiments involve

spatial-referred data. When collecting data, that is, when measuring a certain variable at differ-

ent locations, specialist on these areas have the intuition that places close to one another tend

to have similar values, whereas ones that are farther apart differ more. Then, it seems obvious

that such samples can not be treated as independent. General references on the spatial statistics

topic, which collect many practical examples, are Cressie (1993), Chilès and Delfiner (1999) (for

the geostatistics context) or Schabenberger and Gotway (2005).

The design of spatial models for representing the variability of a spatial process is one of the

fundamental issues in spatial statistics. The variability in the model can be due to two different

sources. On one hand, the ”small-scale” variability (i.e. dependence) and, on the other hand, the

”large-scale” variability (i.e. trend). The large-scale variability has been traditionally modelled

by linear regression, nonparametric regression methods (e.g. Lefohn and Shadwick (1991)) or gen-

eralized additive models (e.g. Holland et al. (2000)), in the spatial and spatio-temporal contexts.

Our interest is focused on the dependence structure of the process. Modelling the dependence

structure is a crucial task in spatial statistics, and particularly, in the geostatistical context.

Geostatistics refers to continuous spatial processes, for instance, phosphorus content on the

soil or ozone concentration in the atmosphere. Measurements of such quantities may be taken

at any location. But measurements are not taken at all locations, and prediction is one of the

main objectives of a geostatistical analysis. In this context, prediction differs from classical es-

timation because it relies on spatial models: geostatistical prediction involves the dependence

structure of the process. For that reason, much effort has been devoted to describe the behaviour

of the dependence structure, above all, under stationary assumptions, both from parametric and

nonparametric approaches. Nonetheless, there’s still a shortage on techniques for assessing the

goodness-of-fit of such estimators.

xi



xii Preface

This is the main purpose of this dissertation: to propose goodness-of-fit testing techniques

that allow for checking the validity of a certain model for the dependence structure of a stationary

spatial process.

We set our research context in the spectral domain, so the dependence structure is modelled

by the spectral density. In our way towards the construction of a goodness-of-fit test for spatial

dependence models, we had to confront other related issues, which form now part of this manu-

script. First, we explore the estimation problem in the frequency domain, just to highlight some

features on the estimation of the spectral density. Then, when trying to apply our goodness-of-fit

test in practice, we design a method for simulating spatial process which takes advantages of

the spectral domain features. We finish our work proposing a test for comparing spatial spectral

densities.

This manuscript is organized as follows:

Chapter 1. Spatial statistics and spectral methods. In this chapter we make a brief

overview of the different situations where the scientist confront the treatment of spatially depen-

dent data (e.g. Cressie (1993), Chilès and Delfiner (1999)). In this spatial context, we focus on

the geostatistical case, and particularly, on the problem of the dependence structure modelling

and kriging interpolation. Besides, we also include a section on spectral representation of random

fields (see Grenander (1981) or Yaglom and Yaglom (1987)), which will serve as the basis for

the posterior theoretical developments. We also introduce the datasets that we will consider for

illustration purposes along the manuscript.

Chapter 2. Spectral techniques for modeling spatial dependence. We introduce in

this chapter the concept of spatial periodogram, as a nonparametric estimator for the spatial

spectral density. A brief overview on spatial spectral density estimation (from parametric and

non-parametric approaches) is also provided. Some considerations on two modified-periodogram

estimators of the spatial spectral density are given.

Chapter 3. Simulation of spatial dependence structures. In this chapter, we revise the

Fourier Integral Method for simulating stationary random fields (see Pardo-Igúzquiza and Chica-

Olmo (1993) and Chilès and Delfiner (1999)) and provide a modification of this method, which

shows a better performance. We also include some simulation results for discrete and continuous

spatial process.



Preface xiii

Chapter 4. Goodness-of-fit tests for the spatial spectral density. The main objective of

our work is to propose goodness-of-fit testing techniques for the dependence structure of a spatial

random process, in our case, represented through the spatial spectral density. Two goodness-of-fit

tests are provided, the first one based on the periodogram (in a analogous way to the test proposed

in Paparoditis (2000) for the one-dimensional spectral density) and the other test based on the

log-periodogram (similar to Fan and Zhang (2004), for the time series case). The performance of

these tests is illustrated by a simulation study and real data application. In the appendix of this

chapter, we include the theoretical details.

Chapter 5. Comparison of dependence structures. This last chapter is devoted to a testing

technique for comparing two or more spatial spectral densities. Equivalently, we provide a test for

checking whether the dependence structure of a collection of sets of observations exhibit the same

pattern of dependence. The test is based on an L2 distance, similar to the test in Vilar-Fernández

and González-Manteiga (2004), for comparing regression curves. We also provide some simulation

results and application to real data. The theoretical developments are included in the appendix.

Finally, the last part of the manuscript is devoted to the discussion on some future research

lines and open problems. We also enclose a summary of this dissertation thesis in Galician lan-

guage.

I would like to thank my advisors, Prof. Wenceslao González-Manteiga and Prof. Rubén

Fernández-Casal for their work and support during these years.

This work has been supported by the Ministry of Education and Science and FEDER, projects

BFM2002-03213, MTM2005-0020 and grant BES2003-0581. Also Xunta de Galicia Project PGIDIT06PXIB207009PR.
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2 Chapter 1. Spatial statistics and spectral methods.

1.1 Spatial data and spatial models.

When talking about spatial data, we refer to those random variables whose observations are

associated to locations in the d-dimensional Euclidean space Rd (d = 2 for the plane, or d = 3

for space-time, for instance). Within this context we may find different relations between the

observed data and the reference location. Denote by {Z(s), s ∈ D}, with D ⊂ Rd, a spatial

random process. We may distinguish three different situations (e.g. Cressie (1993), Sections 1.1

and 1.2):

• Geostatistics. The non-stochastic observation region D ⊂ Rd contains a d-dimensional

rectangle with positive volume and Z(s) is a random vector varying continuously over D.

That is, between any two sample locations si and sj , si 6= sj , an infinite number of samples

could be placed. Data with continuous variation are referred to as geostatistical data.

Examples of this kind of spatial data have been commented in the Preface (phosphorus

content on the soil, ozone concentration in the atmosphere, etc.).

• Lattice data. The non-stochastic observation region D is a fixed collection of countable

many points (regularly or irregularly spaced) on Rd and Z(s) is a random vector at s ∈ D.

In this case, the domain D is non-random and countable. Some examples of lattice data

are those collected by ZIP code, for instance, and they are quite common in epidemiology

studies. Spatial epidemiology, which concerns the analysis of the spatial distribution of the

incidence of a disease, has become a major research topic (e.g. Lawson (2006)). In many

cases, sites (spatial locations) represent areal regions. Offently, we must assign a spatial

coordinate to each site, as for instance, the centroid of the region. See Cressie (1993), Part

II.

• Point processes. Z(s) is a random vector at s ∈ D, but the locations s are randomly

distributed over D ⊂ Rd. A classical example of such a process is that given by a measure

taken on trees in a forest. See Cressie (1993) (Part III), Diggle (2003) or Stoyan et al. (1995),

for example.

In some cases, the difference may not be clear and geostatistical techniques have been applied

for analyzing point processes or lattice data. In any case, when confronting a practical spatial

data case, it is usual to begin with a exploratory geostatistical analysis. However, the derived

conclussions must be taken carefully under consideration.

In these three situations, there exist different features and objectives. For instance, in the

geostatistical context, prediction is an important goal. However, it is not a key point for lattice

data analysis, since in this setting, information is usually exhaustive. Nevertheless, modeling
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dependence structure is a common goal both in geostatistical, lattice or point process context.

In fact, for solving the prediction problem in the geostatistical context, it is crucial to obtain an

adequate model for the dependence structure of the data, as we will see later.

We will provide a brief overview on these three topics, just to remark the characteristic features

in each case. We will also give some practical examples both for the lattice data and point process

cases. Finally, we will focus our attention on the geostatistical context.

1.1.1 Lattice data.

Lattice data (also called regional data or areal data) can be considered the coarse of the three

types of spatial data introduced above. Lattice data can be obtained by integration (accumu-

lation) from geostatistical or point-process data. The spatial locations associated with a lattice

data process are called sites, and they are denoted by si, as in the geostatistical case. Then,

the observations from a lattice data process are usually denoted by Z(si), but this notation may

be misleading. It is not suprising to find lattice data studied in the same way as data from a

continuous (geostatistical) process.

When analyzing a lattice structure, a key point is the description of spatial connectivity. Con-

nectivity is expressed in terms of distances between representative points. This quantity takes

value zero if the two points are not connected and takes value one if there exists a spatial con-

nection between sites. Therefore, a measure of spatial correlation is needed, in order to define

connectness between sites.

The spatial autocorrelation (or correlation) refers to the correlation between Z(si) and Z(sj),

that is, the correlation between the same variable observed in two different locations. In order

to measure this spatial autocorrelation, there exist three classical statistics: the Cross-Product

statistic, Moran’s I and Geary’s c. These three statistics are particular cases of the Mantel’s test,

introduced by Mantel in 1967.

Denote by Zi = Z(si) and let Yij be a measure of the similarity between the response in the

locations i and j (for instance, the squared difference between the observations). Let Wij be a

measure of the spatial proximity between locations i and j, for instance, Wij = 1 if the regions

corresponding to sites i and j are neighbours and Wij = 0 otherwise. The Cross-Product statistic

is defined as:

C =
∑

i

∑

j

WijYij . (1.1)
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For Yij = (Zi − Zj)
2, low values of C indicate positive spatial correlation (observations taken

in locations which are near tend to be similar) and high values of C indicate negative correlation.

In order to judge whether an observed value of C is low or high, there exist different approaches

based on Monte Carlo simulations, randomization tests or asymptotic Normal approximation,

which allow for calibrating the distribution of C.

In the fifties, Moran proposed a statistic which has been widely used in many practical context,

and which is stil studied and discussed (see Li et al. (2005)). Moran’s I statistic is given by:

I =
n

S0

∑
i

∑
j Wij(Zi − Z̄)(Zj − Z̄)
∑

i(Zi − Z̄)2
, (1.2)

where Z̄ =
∑

i Zi/n, n is the number of observation and S0 =
∑

i6=j Wij . Under the null hypoth-

esis that the observed data are an independent and identically distributed sample from a Normal

distribution, the distribution of Moran’s I is known.

Moran’s I is a measure of global autocorrelation, but it has been interpreted as a dependence

parameter when adjusting a dependence model to lattice data, such as CAR or SAR models (see

Banerjee et al. (2004), pp.69-88). In Li et al. (2005), the authors shows that Moran’s I is only

a good estimator of the strength of the spatial dependence parameter when there is little spatial

dependence in the data.

The other well-known statistic for measuring spatial correlation in lattice data was introduced

by Geary in 1954:

c =
n− 1

S0

∑
i

∑
j Wij(Zi − Zj)

2

∑
i(Zi − Z̄)2

. (1.3)

This statistic does never take negative values, and under the null hypothesis of independence, its

mean value is one. Besides, low values (near to zero) indicate positive spatial association. It has

also asymptotic Normal distribution.

The performance of this two tests for checking the presence of spatial autocorrelation is evalu-

ated in the same way as for the Cross-Product statistic, that is, by Monte Carlo or randomization

tests.

In order to model the dependence structure in a lattice data context, much work has been

focused on the Markov Random Field context (see the seminal paper Besag (1974)). In time

series analysis, a Markov condition is usually considered: the observation value depends only on
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Figure 1.1: Choynowski probability map for North Carolina SID data. Grey: counties with low

probabilities. Black: counties with high probabilities.

its inmediate preceding values.

For lattice data, a Markov condition implies that the value of an observation in a spatial site

depends only on its neighbour values. This fact confronts the geostatistical point of view, where

the dependence between observations is usually a function of the distance (or the difference vector)

between the locations where the observations are taken. In the lattice data context, the neigh-

bourhood idea may not be given in terms of Euclidean distances. In some cases, regions which

are geographical neighbours may not be considered as lattice neighbours, for instance, because of

the existence of geographical barriers.

A well known example in this context is the North Carolina Sudden Infant Death (SID) dataset.

Number of sudden infant deaths in all counties in North Carolina were measured from 1974 to

1984. This dataset has been analyzed by different authors (see, for instance, Cressie (1993) Sec-

tions 4.4 and 6.2).

In Figure 1.1 we show a choropleth map (Choynowski probability map, Cressie (1993), p.392)

for North Carolina SID data. We can see clusters with unusually high values in the north-west

and south regions in North Carolina.
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Moran’s I Geary’s c

p−value I p−value c

MC 0.01199 0.1436 0.95305 0.8523

RMC 0.007475 0.1436 0.96175 0.8523

RN 0.009691 0.1436 0.98281 0.8523

Table 1.1: Tests for Moran’s I and Geary’s c. MC: Monte Carlo test. RMC: randomization

test, with Monte Carlo approximation of the variance. RN: randomization test, with Normal

approximation of the variance.

Both Moran’s I and Geary’s c provide a statistical measure of global autocorrelation. In Table

1.1 we can see that the value of Moran’s I is high (and the value of Geary’s c is low), so it is an

indicator of positive autocorrelation.

Another atractive feature of Moran’s I statistic is that it allows for the construction of a

spatial correlogram, due to its similarity with the autocorrelation coefficient from time series. In

Figure 1.2, we show the spatial correlogram for this dataset. Lattice neighbours are defined as

geographical neighbours (counties that share a border). We can see that there is a significative

correlation until second-order neighbours.

This brief illustrative analysis has been done with R software, using maptools and spdep

packages.

1.1.2 Point processes.

A spatial point pattern is a set of locations within a designated region and presumed to have

been generated by some stochastic mechanism. Data in this form arise in different context, but

a well-known example is that of locations of trees in a forest (see, for instance, Pentinnen et al.

(1992)). Such data-set is called a spatial point pattern, and locations are refered as events, in

order to be distinguished from arbitrary points in the region.

In order to illustrate the basic techniques in point process analysis, we will introduce the

example of the Laurisilva Forest (see Tawaga (1997)), in the Canary Islands. In this particular

example, the DBH (diameter at breast height) has been measure at each event. We work then

with a marked spatial point process, since there is a random variable (mark) associated with each
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Figure 1.2: Spatial correlogram for North Carolina SID data, based on Moran’s I.

spatial location. Data collected in this way can not be treated as independent random variables.

Before looking deeper into our example, we introduce some basic concepts.

One of the crucial hypothesis to test when describing a spatial pattern is complete spatial

randomness (CSR). For a spatial point pattern, CSR asserts that:

(i) the number of events in any planar region D with area |D| follows a Poisson distribution

with mean λ|D|,

(ii) given n events xi in a region D, the xi are an independent random sample from a uniform

distribution on D.

The constant λ in (i) is the intensity of the process, or mean number of events per unit area. Ac-

cording to (i), CSR therefore implies that the intensity does not vary over the plane and according

to (ii), CSR also implies that there are no interactions between the events. Other features that

may present a spatial point process are inhibition and cluster behaviour (see Schabenberger and

Gotway (2005), Chapter 3).

Rejection of CSR is a previous step for any serious attempt to model an observed pattern as

CSR operates as a dividing hypothesis between regular and aggregated (cluster) patterns. Several

tests may be used to test the CSR hypothesis, and they can be classified in two groups (e.g.
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Schabenberger and Gotway (2005), Section 3.3):

(i) Nearest neighbour distances tests: if di denotes the distance from the ith event to the nearest

other event in the observation region, then the Empirical Distribution Function (EDF) is

given by:

Ĝ(r) =
1

n
#(di ≤ r), (1.4)

where # denotes the cardinal of the set.

(i) Point to nearest event distances tests: using distances ei from each of m sample points in

the observation region to the nearest of the n events. The EDF is given by:

F̂ (r) =
1

m
#(ei ≤ r). (1.5)

Monte Carlo tests can be implemented for both functions, in order to check for CSR. Also in order

to test CSR, other testing techniques are based on the pair correlation function. If we denote by

P (r) the probability that two circles contain a point of the point process, we can write:

P (r) = λ2g(r)dxdy. (1.6)

The function g is called pair correlation function and it is a function of the interpoint distance

r. For a CSR-process, this function takes constant value equal to one. Besides, inhibition and

clustering behaviour can be detected by this function g. If the pair correlation function takes

values larger than 1, this fact means that the interpoint distances around r are more frequent

than in a complete random point process. Conversely, when g takes values smaller than one, it

indicates that the distances around r are less frequent (inhibition process). When dealing with a

clustered process, the pair correlation function will decay to 1, and the distance r0 from which the

pair correlation function exhibits a strictly decreasing behaviour, will give us an idea of the cluster

radio. On the other hand, when our data come from an inhibition process, the function will be

(almost) increasing. Observing the behaviour of the function with respect to r could provide us

with an approximate idea of the inhibition distance.

The function g is related to the cumulative second-order characteristic of the process, given

by the K−Ripley’s function:

K(r) =

∫ r

0
g(u)2πudu, r > 0. (1.7)

This function has a more intuitive interpretation since λK(r) can be seen as the mean number of

further points within a distance no more than r from a randomly chosen point. For a CSR process

K(r) = πr2. A transformed version of K is given by L(r) =
√
K(r)/π. Both K and L are used
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for statistical testing whereas g is used for exploratory analysis (Diggle (2003)).

As it has already been mentioned, at each location of the process (that is, at each tree) we

have measured the DBH. To measure the dependence between the marks of two events located

a distance r apart, we use the mark correlation function (Pentinnen et al. (1992)). The mark

correlation function can be defined (not in a rigurously way, but quite intuitively) as

ρf (r) =
Ef(M1,M2)

Ef(M,M ′)
, (1.8)

where M1 and M2 are marks at points r units apart and M,M ′ come from independent realiza-

tions of the marginal distribution of the marks. The function f involved in this definition may

take different forms, depending on the nature of the marks (for instance, in the case of continuous

real-valued processes, f(x, y) = xy).

Back to our example, description and interpretation of spatial patterns of trees has been a

major focus in forest research. The interaction between trees in a forest makes feasible their con-

sideration as a set of spatially dependent random variables from an underlying stochastic process.

We have applied different point processes techniques to describe the behaviour of the trees in a

set of laurel forests in the Canary Islands.

Focusing our attention on the spatial pattern of the locations of the trees, we have tested

whether the species assess a random distribution, a regular pattern or a cluster behaviour. Be-

sides, we have also performed an analysis on the marks of the trees: the DBH (diameter at breast

height). The results we obtain on the statistical analysis confirm the ecological models on com-

peting vegetation and successional status.

Our research has been developed in order to describe the behaviour of macaronesian laurel

forest. Macaronesian laurel forest, a subtype of the evergreen lucidophyll oak-laurel forests, is a

relic forestand its study is important in helping to understand the composition and ecology of

Tertiary Mediterranean flora (at the edges of the Tethys Sea in the Late Miocene epoch). This

type of forest is now restricted to northern parts of the Canary Islands (the Laurisilva Forest),

Madeira and the Azores.

An experimental plot was located in the Agua Garćıa Mountains of Tenerife (UTM x= 362464;

y= 3148692) at 820-830 m altitude; with a slope of 8 to 12 facing NNE. Six tree species were con-

sidered: Myrica faya, Laurus azorica, Erica arborea, Persea indica, Ilex canariensis, and Ilex

perado.



10 Chapter 1. Spatial statistics and spectral methods.

 
Erica arborea AG 93, F-test

c(minx, maxx)

c(
m

in
y,

 m
ax

y)

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Laurus azorica AG 93, G-test

c(minx, maxx)

c(
m

in
y,

 m
ax

y)

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 

Figure 1.3: F test for Erica Arborea and G test for Laurus Azorica in Agua Garćıa Mountains,

for measurements taken in 1993, with 95% confidence bands.

For the pattern of locations of trees measured in 1993, applying the previous tests, we conclude

a CSR for the whole forest. When considering just different tree species, we observed a regular

pattern for Erica Arborea and a cluster pattern for Laurus Azorica, with cluster radio smaller

than 2 m (see Figure 1.3).

Applications of the mark correlation function have also been conducted. We have seen that

Laurus Azorica, which exhibits a cluster pattern, shows inhibition between marks (large values of

the DBH surrounded by small values), which corresponds to values smaller than one. In the case

of Erica Arborea, we have seen that there is no strong correlation between marks. At the end of

Section 1.2, we will see the realtion between Point Process and Geostatistics.

1.2 A brief introduction to geostatistics.

1.2.1 Stationary spatial processes.

Let {Z(s), s ∈ D} be a random process, where D ⊂ Rd has positive d-dimensional volume. The

description of the process can be done through its finite-dimensional distributions:

Fs1,...,sm(z1, . . . , zm) = P{Z(s1) ≤ z1, . . . , Z(sm) ≤ zm}, m ≥ 1, (1.9)
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which must satisfy the following conditions of symmetry (F remains invariant if sj and zj are

subjected to the same permutation) and consistency:

Fs1,...,sm(z1, . . . , zm) = Fsi1,...,sim(zi1, . . . , zim),

Fs1,...,sm,sm+1,...,sm+k
(z1, . . . , zm,∞, . . . ,∞) = Fs1,...,sm(z1, . . . , zm).

In order to make inference possible, one usually has to make some assumption on the process.

The most widely used are those concerning stationarity and isotropy.

Definition. Z is said to be strictly stationary if, ∀s + u ∈ D and ∀m ≥ 1:

Fs1+u,...,sm+u(z1, . . . , zm) = Fs1,...,sm(z1, . . . , zm). (1.10)

Strict stationarity states that the joint distribution of the process, considering a set of obser-

vation points, remains the same when this set is translated into any direction u ∈ Rd. Indeed,

this is a very strong stationarity condition. Weaker stationarity conditions are the following:

Definition. Z is said to be weakly stationary if:

E(Z(s)) = µ(s), ∀s ∈ D, (1.11)

Cov(Z(s + u), Z(s)) = C(u), ∀s, s + u ∈ D. (1.12)

In (1.11), µ(s) denotes the trend function, which collects the large-scale variability of the

process and C(u) denotes the covariance between two observations taken at locations with differ-

ence vector u. Weak stationarity means that the first two moments of the process are invariant

under translations. This property is also known as second-order stationarity (or the process is

said to be homogeneous).

Definition. Z is said to be intrinsic stationary if:

E(Z(s + u) − Z(s)) = 0, ∀s, s + u ∈ D, (1.13)

V ar(Z(s + u) − Z(s)) = 2γ(u), ∀s, s + u ∈ D. (1.14)

The intrinsic stationarity condition implies that for every u, the increment (Z(s + u) − Z(s))

is weakly stationary (a more general intrinsic hypothesis assumes that generalized increments are

second-order stationary; see, for instance, Chilès and Delfiner (1999), pp.245-251).
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The function C in (1.12) is called the covariogram (covariance function) and 2γ in (1.14) is

the variogram (γ is called the semivariogram but we may use this notation indistinctly).

Weak and strict stationarity are equivalent for Gaussian processes. In general, the class of

intrinsic stationary processes is wider than the class of second-order stationary processes. Let Z

be a second-order stationary process with covariogram C. Then:

V ar(Z(s + u) − Z(s)) =

V ar(Z(s + u)) + V ar(Z(s)) − 2Cov(Z(s + u), Z(s)) =

2(C(0) − C(u)),

that is

2γ(u) = 2(C(0) − C(u)). (1.15)

Thus, a second-order stationary process is intrinsic stationary. This relation does not hold in gen-

eral on the other direction. For instance, an isotropic d−dimensional Brownian motion is intrinsic

stationary, but not second-order stationary (Cressie (1993)). When the variogram is a bounded

function, we could find an equivalent second-order stationary spatial process whose variogram can

be represented as in (1.15) (see Matheron (1973)).

If the covariogram or the variogram can be written as:

C(u) = C0(‖u‖) or γ(u) = γ0(‖u‖)

the process is isotropic (weak isotropy). That is, the dependence structure does not depend on

the direction, only on the distance between the locations. The isotropy assumption makes com-

putations easier, since it reduces a d-dimensional problem to one dimension.

A stronger assumption is strict isotropy. A spatial process Z is said to be strictly isotropic

(see Stein (1995), p.17) if the finite dimensional joint distributions are invariant under all rigid

motions. That is, for all orthogonal d× d matrix H,

P (Z(Hs1 + s) ≤ z1, . . . , Z(Hsn + s) ≤ zn) = P (Z(s1) ≤ z1, . . . , Z(sn) ≤ zn) .

Random fields that become isotropic after a linear transformation of the coordinates are said to

exhibit geometric anisotropy. Recently, a test for (weak) isotropy has been proposed in Guan

et al. (2006).

Both the variogram and the covariogram are used to model the dependence structure in geosta-

tistical processes and satisfy some conditions, which must be taken into account when constructing
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estimators for these functions.

• Properties of the covariogram.

1. C(0) = V ar(Z(s)) ≥ 0.

2. C(u) = C(−u).

3. |C(u)| ≤ C(0).

4. Semidefinite positive. For n ≥ 1:

n∑

i=1

n∑

j=1

aiajC(si − sj) ≥ 0, ∀{si}n
i=1 ⊂ D, ∀{ai}n

i=1 ⊂ R.

Besides, given any semidefinite positive function C, one can construct a Gaussian stationary ran-

dom process with covariance function given by C (by Bochner’s theorem, as we will see later).

Thus, the class of semidefinite positive functions in Rd and the class of covariance functions in Rd

are identical.

Some other properties also satisfied by the covariance functions are the so called stability

properties. Let C, C1 and C2 be covariograms in Rd. In order to obtain valid covariograms in Rd,

the following properties hold:

1. aC is a covariogram in Rd, ∀a ≥ 0.

2. C1 + C2 is a covariogram in Rd.

3. C = C1 · C2 is a covariogram in Rd.

Besides, if {Cn}n∈N is a sequence of covariograms in Rd, then

C(u) = lim
n→∞

Cn(u)

is a covariogram, provided that this limit exists for all u.

These properties are derived from the semidefinite condition of the covariogram. The prop-

erty concerning the product of covariograms is directly obtained by establishing the covariance of

the product of two independent random processes with covariance functions C1 and C2. Under

isotropy, if C is a covariogram in Rd, then it is also a covariogram in Rp, ∀p ≤ d.
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• Properties of the variogram.

The variogram shows how the dissimilarity between Z(s+u) and Z(s) evolves with the difference

vector u. It satisfies the following properties:

1. γ(0) = 0.

2. γ(u) = γ(−u).

3. γ(u) ≥ 0.

4. Conditionally semidefinite negative. For n ≥ 1 and for all {ai}n
i=1 ⊂ R such that

∑n
i=1 ai = 0:

n∑

i=1

n∑

j=1

aiajγ(si − sj) ≤ 0, ∀{si}n
i=1 ⊂ D.

Let γ, γ1 and γ2 be semivariograms in Rd:

1. aγ is also a semivariogram in Rd, ∀a ≥ 0.

2. γ1 + γ2 is also a semivariogram in Rd.

Besides, under isotropy, if γ is a semivariogram in Rd, then it is also a semivariogram in Rp, ∀p ≤ d.

Some other characteristics related to the variogram function will be introduced. If the vari-

ogram is a bounded function, then

lim
‖u‖→∞

γ(u) = σ2 (1.16)

and σ2 is called the sill. If Z is a second-order stationary process and lim‖u‖→∞C(u) = 0, then

σ2 = C(0). If σ2 is the sill of the semivariogram, the range in the direction e0 = u0/‖u0‖ ∈ Rd is

defined by:

r0 = min{r : γ(r(1 + ε)e0) = σ2,∀ε > 0}. (1.17)

The range in direction e0 can be seen as the distance for independence: observations of the process

Z taken at locations separated by r0 units in direction e0 are uncorrelated.

The value of the variogram at the origin is zero, but it may present a discontinuity at this

point. This microscale variation is called the nugget effect. The nugget, c0, is defined by:

lim
u→0

γ(u) = c0 > 0. (1.18)
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Provided that σ2 exists, the difference (σ2 − c0) is the partial sill. Both sill and range are features

of the variogram related to the behaviour of this function for large distances. Another property

of the variogram is the following:

lim
‖u‖→∞

γ(u)

‖u‖2
= 0. (1.19)

If we try to relate the covariance function of a process and the smoothness of its realizations,

we will not find an easy answer. Nevertheless, there is a relation between the covariogram and

the mean square properties of a spatial process.

Definition. A random process Z is mean square continuous at a point s if

lim
‖u‖→0

E(Z(s + u) − Z(s))2 = 0.

This property is also called L2−continuity.

Therefore, a second order stationary process is mean square continuous if and only if its covar-

iogram C is continuous at the origin. In terms of the variogram, any intrinsic stationary process is

L2−continous everywhere if and only if its variogram in continous at the origin. Mathematically

speaking, none L2−continuous processes can present a discontinuity at the origin: L2−continuous

processes do not present nugget effect.

Further discussion on mean square continuity and differentiability of a random process can be

found in Stein (1995), Section 2.4.

Just to complete this overview on the different scenes in spatial statistics, we must remark

that point process analysis and geostatistics are closely related. Consider a realization of a (point)

process Z on a set of spatial locations {s1, . . . , sn}, so we have a random field (for the random

locations) and a marked point process. In general, a marked point process can not be viewed as

a geostatistical process, since there may exist interactions between the locations and the marks.

This extension is possible in the random field model introduce in (Walden and Stoyan (1996)). In

that context, under stationarity and isotropy assumptions, Mateu and Ribeiro (1999) study the

second order characteristics of a marked point process and obtain the following relation between

the mark correlation function and the mark variogram:

ρf (r)µ2 = E2(Z(0)) − γ(r). (1.20)
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1.2.2 Kriging.

Consider that the spatial process Z admits the following decomposition:

Z(s) = µ(s) + ε(s), (1.21)

where µ(s) is the trend of the process, a deterministic function, and ε is a zero-mean process, with

known variogram or covariogram. If we observe Z at a set of locations {s1, . . . , sn} and we want

to predict Z(s0) we could consider the best linear unbiased predictor (BLUP), that minimizes

the prediction Mean Square Error (see Stein (1995), pp. 2-3 and pp.7-9). Best linear unbiased

predictor for Z(s0) is called kriging predictor in the geostatistical context. If the mean function

µ is assumed to be a known, the best linear unbiased prediction is called simple kriging. If the

unknown trend function is assumed to be constant, the best linear unbiased prediction is called

ordinary kriging. In a more general setting where µ is unknown but it can be written as a linear

combination of a collection of known functions,

µ(s) =

p∑

j=0

fj(s)βj , (1.22)

where (β0, β1, . . . , βp) ∈ Rp+1 is a vector of unknown coefficients, the best linear unibased pre-

diction is called universal kriging. Ordinary kriging can be seen as a particular case of universal

kriging.

These prediction methods assume that the covariogram or the variogram are known. For il-

lustration purposes, we will describe the universal kriging method. In this case, if f0 = 1, we can

assume that the variogram is known. Otherwise, kriging equations can only be written in terms

of the covariogram.

We will introduce the equations for universal kriging prediction, just to highlight the impor-

tance of the dependence structure in the construction of such predictors of the process. Consider

representation (1.21) for the spatial process Z, where µ(s) is given by (1.22) and ε is a zero-mean

spatial process with known variogram (usually stationary), given by:

2γ(s1, s2) = V ar(ε(s1) − ε(s2)). (1.23)

Assume that f0 = 1 (if f0 = 1 and p = 0 we are in an ordinary kriging setting). In matrix

notation, we can write:

Z = Xβ + ε, (1.24)

where ε = (ε(s1), . . . , ε(sn))T , and X is an (n× (p+ 1)) matrix where each entry Xij = fj−1(si).

Besides,

Z(s0) = X(s0)
T β + ε(s0) (1.25)
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where X(s0) = (f0(s0), . . . , fp(s0)). The universal kriging predictor has the following expression:

p(Z, s0) =
n∑

i=1

λiZ(si) + λ0, (1.26)

and since

E

(
n∑

i=1

λiZ(si) + λ0

)
= λTXβ + λ0 (1.27)

where λ = (λ1, . . . , λn)T , a necessary and sufficient condition for p(Z, s0) in (1.26) to be uniformly

unbiased, that is to say:

E(p(Z, s0)) = E(Z(s0)) = xT β, ∀β ∈ R
p+1

is that λ0 = 0 and

λTX = xT . (1.28)

For the particular case of ordinary kriging, since f0 = 1, the restriction on the weights is:

n∑

i=1

λi = 1. (1.29)

Therefore, the universal kriging predictor is given by:

p(Z, s0) =

n∑

i=1

λiZ(si), (1.30)

such that (1.28) is satisfied and the Mean Square Prediction Error is minimized. Then, we must

minimize:

E

(
Z(s0) −

n∑

i=1

λiZ(si)

)2

− 2

p∑

j=0

mj

(
n∑

i=1

λifj(si) − fj(s0)

)
(1.31)

with respect to {λi : i = 1, ..., n} and {mj : j = 0, ..., p}, which are Lagrange multipliers chosen in

order such that (1.28) is satisfied.

Since the predictor is unbiased and the weights satisfy (1.29), we have:

(
n∑

i=1

λiZ(si) − Z(s0)

)2

=

(
n∑

i=1

λiε(si) − ε(s0)

)2

= −1

2

n∑

i=1

n∑

j=1

λiλj (ε(si) − ε(sj))
2 +

n∑

i=1

λi (ε(si) − ε(s0))
2 ,
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and we can write (1.31) as:

−
n∑

i=1

n∑

j=1

λiλjγ(si, sj) + 2
n∑

i=1

λiγ(si, s0) − 2

p∑

j=0

mj

(
n∑

i=1

λifj(si) − fj(s0)

)
. (1.32)

Deriving with respect to {λi : i = 1, ..., n} and {mj : j = 0, ..., p}, and taking the equality to zero,

we get the n+ p+ 1 kriging equations. In matrix form:

ΓUλU = γU , (1.33)

with

ΓU =

(
Γ X

XT 0

)
, λU = (λ,m)T and γU = (γ,x)T .

where γ = (γ(s1, s0), . . . , γ(sn, s0))
T , m = (m0, . . . ,mp)

T and Γ is an n × n matrix with entries

Γij = γ(si, sj). Besides, the minimum Mean Square Prediction Error:

σ2
KU (s0) = 2

n∑

i=1

λiγ(s0, si) −
n∑

i=1

n∑

j=1

λiλjγ(si, sj)

can be obtained, just taking into account (1.33), as:

σ2
KU (s0) =

n∑

i=1

λiγ(s0, si) +

p∑

j=0

mjfj(s0) = λT
UγU .

For the particular case of the ordinary kriging (recall, p = 0), the expression for the kriging

variance is given by:

σ2
KO(s0) =

n∑

i=1

λiγ(s0, si) +m0.

Kriging methods provide an estimation of the prediction variances, which are not obtained

from other spatial prediction methods, such as inverse distance (see Cressie (1993), Section 5.9).

One of the appealing features of these estimators is that they can be used in the construction of

prediction intervals.

In case the covariogram C exists, the kriging equations can be written in terms of C (in facto,

if no fj is equal to 1, then the equations can be only written in terms of the covariogram). The

equations can be obtained following a similar process. Some considerations on the kriging inter-

polation can be seen in Chilès and Delfiner (1999), Sections 3.3.2 and 3.4.2. Further discussion on

the effect of the variogram estimation in the kriging equations can be found in Fernández-Casal

(2003), Section 3.4.2.



1.2. A brief introduction to geostatistics. 19

1.2.3 Modeling spatial dependence.

The variogram or the covariogram have a crucial role in spatial prediction, as we can see from

(1.33). In practice, for a given realization of a process, the covariogram or the variogram are un-

known. Therefore, we must obtain valid covariogram or variogram estimators in order to compute

the kriging equations.

The traditional approach for modeling the spatial dependence is to adjust a valid variogram

or covariogram model to a pilot estimator.

Pilot estimators.

Assume that the spatial process Z is intrinsic stationary, observed on a set of points {si}n
i=1 ⊂

D ⊂ Rd. A natural estimator for the variogram (known as classical or empirical) was proposed

by Matheron in 1962, based on the estimation method-of-moments:

2γ̂(u) =
1

|N(u)|
∑

N(u)

(Z(si) − Z(sj))
2 , (1.34)

where

N(u) = {(i, j) : si − sj = u; i, j = 1, . . . , n}

denotes the set of pairs of points separated by u, and |N(u)| is the cardinal of this set. The

main drawback of this estimator is that it is not defined for u such that N(u) = ⊘. Besides,

N(u) 6= N(−u) whereas γ(u) = γ(−u). For large sets of data, obtaining this estimator may

be computationally expensive. In Fuentes (2001), a modification of (1.34) using subsampling is

proposed, for regularly spaced observations.

In the case that observations are taken at irregularly spaced locations, a smoothed version of

the estimator (1.34) is built by defining a tolerance region (usually disjoint) for each u, namely

Tol(u). The smoothed empirical estimator is then given by:

2γ̂(u) =
1

|Ñ(u)|
∑

Ñ(u)

(Z(si) − Z(sj))
2 , (1.35)

where

Ñ(u) = {(i, j) : si − sj ∈ Tol(u)}.

Another problem of (1.34) is its lack of robustness. If Z is a Gaussian process, then the square

of the difference follows approximately a shifted χ2 distribution; it is highly asymmetric. A first

approach to solve this drawback is replacing the sum of squared differences by a lower power.
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Cressie and Hawkins (1980) present in their work a more robust estimator for the variogram:

2γ̂(u) =
1

0.457 + 0.494
|N(u)|


 1

|N(u)|
∑

N(u)

|Z(si) − Z(sj)|1/2




4

. (1.36)

Another alternative is to consider a robust statistic on the differences {|Z(si) − Z(sj)|1/2},
such as the median. In that case, the denominator in (1.36) must be adapted for bias correction.

On this scope, Armstrong and Delfiner (1980) propose an estimator based on the quantiles of the

squared-differences of the process:

γ̂(u) = Qp

(
1

2
(Z(si) − Z(sj))

2

)
, where si − sj ∼ Tol(u) (1.37)

and Qp denotes the p-quantile. If the process Z is Gaussian, then the distribution of the differ-

ences in (1.37) are shifted χ2, with scaling factor γ(u).

In Genton (1998) the robustness of the estimator (1.36) is discussed and a highly robust esti-

mator based on M -estimation procedures is proposed (see Shao (2003), Section 5.2.2). Both (1.34)

and (1.36) can be seen as particular cases of the general estimator proposed in Genton (1998),

but none of them are bias-robust (infinitesimal modifications in observations may provoque unex-

pectedly large changes in the estimator).

Nonparametric estimators of the variogram have been also introduced by Garćıa-Soidán et al.

(2003) and Garćıa-Soidán et al. (2004). These estimators are based on nonparametric regression

techniques, just viewing the variogram cloud as a dispersion plot. The Nadaraya-Watson estimator

for the variogram is given by:

2γ̂(u) =

∑
i6=j Wij(Z(si) − Z(sj))

2

∑
i6=j Wij

, (1.38)

where the weigths Wij , in the isotropic case, are defined as:

Wij = K

(‖u‖ − (‖si − sj‖)
h

)
,

with K a kernel function and h a bandwidth parameter. These estimators are asymptotically

unbiased and efficient. Despite their flexibility, these estimators present an important drawback

since, in general they are not valid variograms (they do not satisfy the conditional negative definite

property). Besides, as it happens in the regression context, this estimator may present edge-effect

problems, which can be mitigated by the used of a boundary-kernel function K.
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The local linear estimator in Garćıa-Soidán et al. (2003) for 2γ̂(u) is obtained, in the isotropic

case, from (1.38) but considering weights:

Wij = K

(‖u‖ − ‖si − sj‖
h

)
·

∑

i6=j

∑

k 6=l

K

(‖u‖ − ‖sk − sl‖
h

)
(‖sk − sl‖ − ‖s‖) (‖sk − sl‖ − ‖si − sj‖) .

This estimator avoids the edge-effects, but as the Nadaraya-Watson estimator, it does not

provide a valid variogram model.

In some cases, it is not easy to determine whether a nonparametric estimator of the variogram

is valid or not, and this condition is necessary in order to compute the kriging equations. If these

estimators do not satisfy the conditionally definite negative condition, kriging variance estimators

may be negative or even the kriging system matrix may be singular.

The power of these estimators, such as the Nadaraya-Watson or the local-linear one, lies in

the fact that they can be used as pilot estimators when trying to adjust a valid parametric model.

Before going into these adjustment methods, we will introduce some valid parametric families of

variograms.

Parametric models.

Most of the models proposed below are valid (conditionally definite negative) isotropic variograms

in Rd, for d ≥ 1. For simplicity, we will consider isotropic models.

• Linear model.

γθ(u) =

{
0 if u = 0,

c0 + c1‖u‖ if u 6= 0.
(1.39)

This model depends on two parameters: θ = (c0, c1)
T . The nugget effect is denoted by c0

throughout the text and c1 ≥ 0 is a scale parameter. It is straightforward to see that this model

can not correspond to a second-order stationary process. For instance, it is easy to see that the

Brownian motion has linear semivariogram. In practice, one could also consider a truncated linear

model.
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Figure 1.4: Exponential variograms. Solid line: c0 = 0.0, c1 = 0.5, a = 20. Dashed line: c0 = 0.25,

c1 = 0.25, a = 30. Dotted line: c0 = 0.25, c1 = 0.25, a = 50.

• Exponential model.

γθ(u) =

{
0 if u = 0,

c0 + c1

(
1 − e−

3‖u‖
a

)
if u 6= 0.

(1.40)

The exponential variogram is a bounded model, but it does not reach the sill, c0 + c1. Parameter

a denotes the practical range, which is defined as the lag where the 95% of the sill is reached.

• Rational model.

γθ(u) =

{
0 if u = 0,

c0 + c1
‖u‖2

a2/19+‖u‖2 if u 6= 0.
(1.41)

The sill is given by c0 + c1 and the pratical range is a.

• Power model.

γθ(u) =

{
0 if u = 0,

c0 + c1‖u‖c2 if u 6= 0,
(1.42)
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with 0 ≤ c2 < 2, c1 ≥ 0. This model is not bounded and it encloses the linear variogram as a

particular case.

• Spherical model (valid for Rd, d = 1, 2, 3).

γθ(u) =





0 if ‖u‖ = 0,

c0 + c1

(
3
2
‖u‖
a − 1

2

(
‖u‖
a

)3
)

if 0 < ‖u‖ ≤ a,

c0 + c1 if ‖u‖ > a.

(1.43)

The spherical model shows a behaviour similar to the exponential variogram. It is bounded and

it reaches the sill, c0 + c1. Nugget and range are given by c0 and a, respectively.

• Wave model (valid for Rd, d = 1, 2, 3).

γθ(u) =





0 if u = 0,

c0 + c1

(
1 − a

‖u‖ sin
�

‖u‖
a

�) if u 6= 0.
(1.44)

For large values of ‖u‖, the wave models oscillates around the sill, c0 + c1.

• Matérn model.

γθ(u) =

{
0 if u = 0,

c0 + c1

(
1 − 1

2ν−1Γ(ν)

(
‖u‖
a

)ν
Kν

(
‖u‖
a

))
if u 6= 0,

(1.45)

where Kν is a modified Bessel function of the second kind of order ν (see Abramowitz and Stegun

(1965), pp.358-389). Special attention is paid to this family of variograms at the end of the chapter.

Fitting a valid model.

Variogram estimators can not be used directly in the kriging equations, since if they do not satisfy

the conditional semidefinite negative property one may obtain negative estimations for the mean

square prediction error, as we have already noticed. Usually, one tries to adapt a parametric

model in order to describe the dependence in a dataset. For that purpose, different adjustment

techniques have been proposed, such as Maximun Likelihood, Restricted Maximum Likelihood

and Least Squares (LS) methods. An overview on these techniques can be seen in Cressie (1993).

As an example, we will introduce the LS methods, since they involve a pilot estimator of the

dependence structure (for instance, any of the nonparametric estimators introduced above) and a
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parametric model.

Denote by 2γ(h, θ0) the theoretical variogram and denote by γ̂i = γ̂(hi) the semivariogram

estimations obtained by any of the nonparametric methods introduced along this section.

The LS estimator of θ̂0 (see Cressie (1993), pp.96-97) is obtained by minimizing

(γ̂ − γ(θ))T
V(θ) (γ̂ − γ(θ)) ,

where γ̂ = (γ̂(h1), . . . , γ̂(hk))
T , γ(θ) = (γ(h1, θ), . . . , γ(hk, θ))

T and V(θ) is a k × k semidefinite

positive matrix, which may depend on θ on any of the following ways:

• Ordinary Least Squares (OLS): V(θ) = Ik, where Ik denotes the k × k identity matrix.

• Weighted Least Squares (WLS): V(θ) = diag(w1(θ), . . . , wk(θ)), with wi(θ) ≥ 0, for i =

1, . . . , k. These weights are usually proportional to the inverse of V ar(γ̂(hi)).

• Generalized Least Squares (GLS): V(θ) = Σγ̂(θ)−1, where Σγ̂(θ) is the covariance matrix of

γ̂, considering γ(θ) as the true model for the dependence.

This approach has been criticized since the weighting matrix depends also on the target para-

meter. An alternative would be to consider the minimization of:

(γ̂ − γ(θ))T
V(θ0) (γ̂ − γ(θ)) .

But this method can not be directly applied in practice, since it depends on the unknown parame-

ter θ0 through the variance-covariance matrix V. This problem ca be solved by using an iterative

method.

Nonparametric methods.

A different nonparametric alternative is found in the spectral representation of the covariogram

(see Section 1.3.3 devoted to the Hankel transform). Based on this spectral representation of the

isotropic covariogram, Shapiro and Botha (1991) proposed a method for adjusting a valid vari-

ogram.

The representation of the variogram of an isotropic second-order stationary process can be

written as:

γ(u) =

{
c0 − C(u) u 6= 0,

0 u = 0,
(1.46)
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where c0 > 0 and C is a covariogram, with the following spectral representation:

C(u) =

∫ ∞

0
κd(ωu)dG(ω), (1.47)

where

κd(x) =

(
2

x

) d−2
2

Γ

(
d

2

)
J d−2

2
(x),

with Jl a Bessel function of order l (see Abramowitz and Stegun (1965), pp.358-389). G is a

positive function, bounded and non-decreasing on [0,∞). Therefore, the problem reduces to

finding a positive constante c0 and a positive, bounded and non-decreasing function G such that

the variogram in (1.46) describes the dependence structure of the dataset. However, this problem

may present some incovenients when trying to solve it numerically. Shapiro and Botha (1991)

consider a discretization of the function G, considering that dG is an atomic measure with finite

jumps zj at points xj , j = 1, . . . , J :

G(x) =
∑

xj≤x

zj ,

and, for simplicity, the authors considered equally-spaced points xj = zφ, where φ > 0 is a fixed

constant.

The variograms obtained by this method have the following representation:

γ(u) =
J∑

j=1

κd(xju)zj , (1.48)

subject to

c0 −
J∑

j=1

zj ≥ 0. (1.49)

The restriction (1.49) corresponds to the following property of semidefinite positive functions:

the absolute value of any semidefinite positive function is bounded by its value at the origin.

Therefore, in (1.46), we have that:

c0 − C(0) = c0 −
∫ ∞

0
dG(ω)dω ≥ 0.

By a Weighted Least Squares procedure, one could determine the vector of unknown parame-

ters (z1, . . . , zJ , c0)
T , by quadratric programming. A Generalized Least Squares method could be

also applied.

Other approaches have been also given by Barry and Ver Hoef (1996) (black-box models) and

by Lele (1995), based on splines.



26 Chapter 1. Spatial statistics and spectral methods.

1.3 Spectral representation of random fields.

At first sight, spectral representation of random fields may appear artificious since mathematics in

the frequency domain involve complex-valued random variables. Besides, the interpretation of the

spectrum requires a further effort since the intuition we may have when dealing with the data may

be lost when working with their signal. Nevertheless, spectral methods are gaining an increasing

importance in spatial data analysis. The main advantage of an spectral domain perspective is

that mathematical theory is often simpler in the frequency domain. Besides, the spectral density

function and the covariance function of a stationary stochastic process are closely related since

they form a Fourier Transform pair. So, studying the second-order properties of a random field

via the covariance function or the spectral density can be viewed as equivalent, as we will see in

subsequent sections.

However, we should note that the spectral density and the covariance are two different but

complementary representations of the second-order properties of a stochastic process. The covari-

ance function emphasizes spatial dependence as a function of coordinate separation. The spectral

density fucntion emphasizes the association of components of variability with frequencies.

The spectral density function can be estimated from data via the periodogram, that will be

introduced later. This feature does not provide any particular challenges beyond computing the

sample covariances, at least if data are observed on a grid. Nevertheless, summary statistics

calculated from data in the spatial domain are usually correlated. This correlation may arise

from the fact that the same data point Z(si) is repeatedly used in multiple summaries and/or

from the spatial autocorrelation. In the spectral domain, the ordinates of the periodogram, the

data-based estimate of the spectral density function, are -at least asymptotically- independent and

have simple distributional properties. This enables the construction of test statistic with standard

properties.

Since covariance function and spectral density form a Fourier transform pair, it is worth

it making a brief review of the concepts of Fourier analysis. Fourier analysis is the study of

how functions defined on a continuum can be represented and analyzed in terms of periodic

functions like sines and cosines. We will recall the notions of Fourier Transform (FT), Discrete

Fourier Transform (DFT) and Fast Fourier Transform (FFT), in order to understand better their

relationship and to clarify technical details which may arise in theoretical developments involving

this functions. We will introduce first the Fourier Transform of L1-functions. Then, we will also

define the Fourier Transform of an absolutely summable sequence. Once we have defined the

Fourier Transform, we will introduce a natural approximation: the Discrete Fourier Transform.
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We will also give a brief overview on the Fast Fourier Transform algorithm, which will be used

in practice. Finally, we will present the spectral representation of stationary processes, giving the

relationship between the covariance function and the spectral density of a process.

1.3.1 Fourier transform in L1(Rd).

More theoretical details on this topic can be seen in (Dautray and Lions (1985)). Denote by

xT ω =< x,ω >=
∑d

k=1 xkωk, the usual scalar product in Rd and let L1(Rd) be the set of ab-

solutely integrable functions on Rd.

Definition. For g ∈ L1(Rd) define the Fourier Transform of g by:

ĝ(ω) =
1

(2π)d

∫

Rd

g(x)e−ixT ω, ω ∈ R
d. (1.50)

It is easy to see that the Fourier transform exchanges translation of amplitude and multipli-

cation by an exponential and the mapping g → ĝ is linear. Besides, taking into account that

|ĝ(ω)| ≤ 1

(2π)d

∫

Rd

|g(x)|dx, ∀ω ∈ R
d,

it is clear that ĝ is a bounded, continuous function on Rd and ‖ĝ‖∞ ≤ ‖g‖1, where

‖ĝ‖∞ = sup
ω

|ĝ(ω)|, and ‖ĝ‖1 =

∫
|ĝ(ω)|dω.

In addition, |ĝ(ω)| → 0 in C, as |ω| → ∞, by the Riemann-Lebesgue Theorem. It may

be interesting to guarantee that the Fourier Transform exchanges differentiability and decay at

infinity; then, it is necessary to introduce a new space of functions of rapid decay at infinity and

belonging to C∞ (the space of infinitely differentiable functions). Let’s introduce the following

notation:

xα =
d∏

i=1

xαi
i , and Dβg =

∂β1+...+βdg

∂xβ1
1 . . . ∂xβd

d

.

Definition. The Schwarz space of functions is defined as:

S(Rd) = {g ∈ C∞;∀α, β ∈ N
d,xαDβg → 0, as |x| → ∞}.

The Schwarz space S(Rd) is not a normed space, but it is dense in Lp(Rd), ∀1 ≤ p < ∞.

In our case, the most important characteristic of this space is that, for g ∈ S, we can define its

Fourier Transform ĝ, which is also an element of S. The corresponding inversion formula is:

g(x) =

∫

Rd

ĝ(ω)eix
T ω, x ∈ R

d. (1.51)
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This is the Inverse Fourier Transform (IFT). The Fourier Transform is an isomorphism of S onto

itself, with inverse given by (1.51). Expression (1.50) and (1.51) are said to form a Fourier Trans-

form pair.

Many authors begin by discussing the Fourier transform on L1(Rd) (or even directly on

L2(Rd)). Dautray and Lions (1985) give two reasons for considering the Schwartz space when

defining the Fourier Transform. First, the Fourier transform is a one-to-one map of Schwartz

space onto itself. This makes it easy to talk about the inverse Fourier transform, which turns out

to be the inverse map. That is, on Schwartz space, it is possible to deal with the transform and

the inverse transform. Consider now g, f ∈ S(Rd). Then, the following statements hold:

• Convolution formula.

(̂g ∗ f) = ĝf̂ , where (g ∗ f)(x) =

∫

Rd

g(x − u)f(u)du,

denotes the convolution operator.

• Derivatives.

D̂αg = (iω)αĝ, and Dβ ĝ = ̂(−ix)βg, ∀α, β ∈ N
d.

Providing S(Rd) with the topology induced by that of L2(Rd), the following statements hold:

• The Plancherel Theorem.

< g, f >= (2π)d < ĝ, f̂ > and ‖g‖ = (2π)2‖ĝ‖2. (1.52)

where

< g, f >=

∫

Rd

g(x)f(x)dx and ‖g‖ =
√
< g, g >,

and ‖·‖ denotes the L2-norm. Though all these statements are also true for the Fourier Transform

on L2(Rd), it is not possible to define the Fourier Transform on L2(Rd) directly, by the integral

formula, since L2(Rd) functions may not be in L1(Rd); a limiting procedure must be used.
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In L2(Rd), the integral
∫

Rd g(x)eix
T ωdx does not have a meaning in so far as the Lebesgue

integral
∫

Rd |g(x)|dx diverges for g ∈ L2 but g /∈ L1. Anyway, we use the same notation.

Before going on, we should point out that the definition of Fourier Transform that we have

adopted here is not universally accepted. Two other frequently used definitions are:

g̃(ω) =
1

(2π)d/2

∫

Rd

g(x)e−ixT ω, g(x) =
1

(2π)d/2

∫

Rd

g̃(ω)eix
T ωdω,

and

ǧ(ω) =

∫

Rd

g(x)e−i2πxT ω, g(x) =

∫

Rd

ǧ(ω)ei2πxT ω.

There may be also differences in the exponential function. The minus sign may be omitted in

ĝ, g̃ and ǧ, but the it appears in the exponent of the inversion formula. These three versions of

the Fourier Transform have their advantages and disadvantages. g̃ has the advantage of getting

rid of the factor (2π)d in Plancherel’s theorem, but it introduces it in the convolution formula,

(̃f ∗ g) = (2π)d/2f̃ g̃. ǧ obviates this factor in both Plancherel’s and convolution formulae, but it

introduces it in the formula for the derivatives ǧ′(ω) = (2π)diωǧ(ω). In any case, the Fourier

Transform preserves exactly the scalar product and the L2−norm of the elements of S(Rd).

Our interest may not be always focused on L1(Rd) functions, but on sequences of real numbers.

Consider and absolutely summable sequence

{ρ(r); r ∈ Z
d},

∑

r∈Zd

|ρ(r)| <∞.

It can be seen as the sequence of Fourier coefficients of a function g, defined on L1(Πd), where

Πd = [−π, π]d:

ĝ(ω) =
1

(2π)d

∑

r∈Zd

ρ(r)e−irT ω, (1.53)

where the Fourier coefficients are given by:

ρ(r) =

∫

Πd

ĝ(x)eir
T x. (1.54)

The Fourier Transform of an infinite absolutely summable sequence {ρ(r)} is defined by (1.53)

and the corresponding Inverse Fourier Transform by (1.54). To sum up, we have defined the

Fourier Transform of an L1(Rd) function and the Fourier Transform of an absolutely summable

sequence. We will deal with these two cases later, when discussing the spectral density of a process.

We will give a final result which will be useful in the next section. Suppose that g ∈ L2(R)

and g is band-limited. That is to say, g involves only frequencies smaller than some constant Ω
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(or equivalently, ĝ vanishes outside [−Ω,Ω]). This result can be extended to higher dimensions.

Theorem. Suppose that g ∈ L2(R) and ĝ(ω) = 0 for |ω| ≥ Ω. Then, g is completely determined

by its values at the points xn = nπ/Ω, n = 0,±1,±2, . . .. In fact:

g(x) =
∞∑

n=−∞
g
(nπ

Ω

) sin(Ωx− nπ)

Ωx− nπ
. (1.55)

Proof. See Folland (1993), pp.230-231.

Although in practice the band-limited condition is rarely possible to meet, many functions of

practical use are essentially band-limited and have a rapid decay rate. A function g is essentially

band-limited if there exist constants β, µ > 0 such that:

|ĝ(ω)| ≤ β(1 + |ω|)−1−µ,

which means that |ĝ(ω)| decays faster than |ω|−1 as |ω| → ∞. For these kind of functions, it is

possible to choose a grid spacing sufficiently small that the error in the representation (1.55) is

negligible. A deeper and more precise statement about the rate of decay of Fourier Transforms is

given by the Paley-Wiener Theorem (see Dautray and Lions (1985), pp.505-506).

1.3.2 Discrete Fourier Transform.

The Discrete Fourier Trasnsform can be introduced from two points of view. We will briefly de-

scribe both approaches.

Analytical approach.

Suppose that g(x), with x ∈ Rd, is a 2π-periodic function with complex values. That is, g(x) =

g(x1, . . . , xd) = g(x1 + 2π, . . . , xd + 2π), for all x ∈ Rd. Its Fourier series is given by:

g(x) =
∑

k∈Zd

cke
ikT x.

From the scalar product:

< g, f >=
1

(2π)d

∫

Πd

g(x)f(x)dx,

where f(x) denotes the conjugate of f(x), there results the expression:

g(x) =
∑

k∈Zd

< g, eik
T x > eik

T x. (1.56)
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Let SN be the finite dimensional space generated by the N =
∏d

i=1(2ni + 1) basis:

{eikT x}k∈N , N = {k = (k1, . . . , kd); ki = −ni, . . . , ni}.

The function gN ∈ SN obtained by truncating the expression of the Fourier series of g in (1.56),

is the best approximation to g (in the sense of the L2-norm) in SN . But it is difficult to calculate,

since integrals must be evaluated to get the ck coefficients.

Consider hN ∈ SN given by:

hN (x) =
∑

k∈N
ake

ikT x,

such that hN coincides with g at the N points

xk =

(
2πk1

2n1 + 1
, . . . ,

2πkd

2nd + 1

)
, 0 ≤ ki ≤ 2ni, i = 1, . . . , d (1.57)

that is, hN is the interpolate of g in SN :

∑

j∈N
aje

ijT xk = g(xk).

Therefore, if we denote by N ∗ = {k = (k1, . . . , kd); ki = 0, . . . , 2ni}, for j ∈ N :

aj =
1

(2π)dN

∑

k∈N ∗
g(xk)eij

T xk , . (1.58)

Definition. The mapping between CN → CN which associates {ak}k∈N with {g(xk)}k∈N ∗ given

by (1.58) is the Discrete Fourier Transform.

The Discrete Fourier Transform is, roughly speaking, a linear mapping that operates on

N−dimensional vectors of Cd in much the same way that the Fourier Transform operates on

functions on Rd.

In dimension d = 1, N = 2n + 1 is odd. In the case that N is an even number, SN must be

chosen as the space that is generated by:

{eikx}k, −n+ 1 ≤ k ≤ n,

which has dimension 2n. This also must be extended for the higher dimensional setting.

Remark. The reader must not be confused by the notation in terms of xk in (1.57). If g is

2π-periodic, the corresponding Fourier frequencies are integer numbers, and the equations in the
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spectral domain are simpler. In a general setting, for a Al-periodic function g in dimension l, we

would consider a grid of points xT
k = (xk1 , . . . , xkd

); xkl
= ∆lkl kl = −nl where ∆l = Al

(2nl+1) ,

and the corresponding basis should be {eiωT
k
x} with ωT

k = (ωk1 , . . . , ωkd
); ωkl

= 2πkl
∆l(2nl+1) ; kl =

−nl, . . . , nl, l = 1, . . . , d.

Numerical approach.

Based on a quadrature approximation formula, an alternative motivation of the Discrete Fourier

Transform can be found in (Briggs and Henson (1995)) and its briefly described below. For

simplicity, we will only restrict to the one dimensional case. Assume that g(x), x ∈ R vanishes

outside [−A/2, A/2]. Then, the Fourier Transform of this function with limited extent is given by

ĝ(ω) =
1

2π

∫ ∞

∞
g(x)e−ixωdx =

1

2π

∫ A/2

−A/2
g(x)e−ixωdx. (1.59)

The aim is to approximate this integral numerically. For that purpose, divide the interval

[−A/2, A/2] into N subintervals of length ∆x = A/N . Assume for the moment that N is even.

That is, the grid we define has N + 1 equally spaced points xn = n∆x for n = −N/2, . . . , N/2:

x−N/2 = −A/2, . . . , x0 = 0, . . . , xN/2 = A/2.

Assume that the fuction g is known at these grid points and name the integrand

h(x) = g(x)e−ixω.

Then, the trapezoid rule leads to the approximation:

ĝ(ω) =
1

2π

∫ A/2

−A/2
h(x)dx ≈ 1

2π

∆x

2




h

(
−A

2

)
+ 2

N
2
−1∑

n=−N
2

+1

h(xn) + h

(
A

2

)



.

With the assumption that g(−A/2) = g(A/2), the trapezoid rule approximation may be written

as

ĝ(ω) =
1

2π

∫ A/2

−A/2
h(x)dx ≈ ∆x

2π
;

N
2∑

n=−N
2

+1

h(xn) =
A

2πN

N
2∑

n=−N
2

+1

g(xn)e−ixnω.

Consider N irregularly spaced data xn = n∆x and denote gn = g(xn). Let N be an even

positive integer and let gn be a sequence of N complex numbers where n = −N/2 + 1, . . . , N/2.

Then, its Discrete Fourier Transform is another sequence of N complex numbers given by

Gk = G(ωk) =
1

N

N/2∑

n=−N/2+1

gne
−ixnωk

=
1

N

N/2∑

n=−N/2+1

gne
−2πikn/N ; k = −N/2 + 1, . . . , N/2
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xnωk = 2πkn/N

xn = nA
N ωk = k 2π

A

∆x = A
N ∆ω = 2π

A

∆x∆ω = 2π
N

AΩ = 2πN

Table 1.2: Spatial and spectral domain relations.

where ωk = 2πk
∆xN ∈ [−Ω/2,Ω/2]; k = −N/2 + 1, . . . , N/2, and Ω =

2πN

A
.

If N is an odd positive integer and gn is a sequence of N complex numbers where n =

−(N − 1)/2, . . . , (N − 1)/2, the Discrete Fourier Transform is given by

Gk =
1

N

(N−1)/2∑

n=−(N−1)/2

gne
−ixnωk

=
1

N

(N−1)/2∑

n=−(N−1)/2

gne
−2πikn/N , for k = −(N − 1)/2, . . . , (N − 1)/2.

An alternate form of the Discrete Fourier Transform, without regarding whether N is odd or

even,

Gk =
1

2πN

N−1∑

n=0

gne
−ink/N , for k = 0, . . . , N − 1. (1.60)

The equivalence with the centered expressions is obtained assuming that g is A-periodic,

g(x + sA) = g(x);x ∈ [−A/2, A/2].Then, g−n = g(−xn) = g(A − xn) = gN−n (recall that

e−2πik(N−n)/N = e−2πikn/N ).

The Inverse Discrete Fourier Transform is given by:

gn =

N/2∑

k=−N/2+1

Gke
ink/N , for n = −N/2 + 1, . . . , N/2

if N is even, and if N is odd:

gn =

(N−1)/2∑

k=−(N−1)/2

Gke
ink/N , for n = −(N − 1)/2, . . . , (N − 1)/2.

It is important to remark the relationship between the spectral and spatial scales. These re-

lations are summarised in Table 1.2. It can be said that there exists an inverse relation between
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both scales. For instance, when decreasing the spacing in the spatial domain, the spectral spacing

increases and vice versa. Besides, we could also say that the increasing domain asymptotics in

the spatial context corresponds to infilling asymptotics in the spectral case.

As we noted at the beginning of this section, if we assume the g has a compact support, we have

g(ωk) ≃ A
2πGk. When the function g does not vanish outside [−A/2, A/2], a limit reasoning must

be made, letting N → ∞ and ∆x → 0, with ωk held constant. The error in this approximation

is a truncation error due to the fact that the interval of integration (−∞,∞) has been truncated.

Therefore, a second limit is required to eliminate this error and recover the exact value ĝ(ωk) we

must let A→ ∞ :

lim
A→ ∞
∆ω → 0

lim
N → ∞
∆x→ 0

∆x

2π

N/2∑

n=−N/2+1

gne
−ixnωk = ĝ(ωk).

And for the Inverse Transform:

lim
Ω → ∞
∆x→ 0

lim
N → ∞
∆ω → 0

2π

N∆x

N/2∑

k=−N/2+1

Gke
ixnωk = g(xn).

The Fast Fourier Transform.

The direct computation of the Discrete Fourier Transform involves O(N2) operations (complex

additions and multiplications), since it one must compute the product of an N ×N matrix by a

vector. The Fast Fourier Transform refers to an efficient algorithm for computing the usual Dis-

crete Fourier Transform. The classical algorithm is due to Cooley and Tukey (1965) and applies

in the case in which N = 2m, reducing the computational cost to O(N log2N) operations. In

practice, usually the data series is extended to the closest power 2 number by zero padding. This

may be result in a additional computational cost. For instance, if N = 70000, the closest power

2 number is 217 = 131072. In some cases, it may be preferable to consider a modification of this

algorithm (e.g. FFTPACK library, http://www.netlib.org/fftpack/). Some of these modifications

result more efficient when N is a product of small prime factors. Therefore, N values should be

approximated to the higher closest k-smooth number (with prime factors ≤ k), where k is a small

integer number (e.g. k = 5 corresponds to Hamming numbers or ugly numbers). Hamming num-

bers can be easily obtained by a similar algorithm to that proposed by Dijkstra (1976). The set

of 5-smooth numbers is more dense that the 2-smooth ones (for instance, between 519 and 1024

there are 16 Hamming numbers), with the consequent reduction of computational cost. If N are

not chosen carefully, the FFT algorithm may require N2 operations. Some of these modifications
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can be found in Press et al. (1989).

As a final comment, FFT algorithms has been designed for the computation of non-centered

expressions such that (1.60). In order to obtain centered DFTs, we must use the so-called wrap-

around order, defining gN−n = g−n.

1.3.3 The Hankel Transform.

Not only the Fourier Transform or its discrete version have played an important role in spatial

spectral analysis. (Stein (1999), pp. 44-46) notes that isotropic autocovariance functions can be

characterized, based on the representation of the covariance as the Hankel Transform of a spectral

density, under certain regularity conditions.

Definition. The Hankel Transform of order ν ∈ R of the function g : R+ → C is defined by:

Hν(g)(ω) =

∫ ∞

0
g(x)Jν(xω)xdx, (1.61)

where Jν is the Bessel function of the first kind of order ν. (See Abramowitz and Stegun (1965)).

Theorem. Let g : R+ → R be a function such that x → √
xg(x) belongs to L1(0,∞). Then, for

each real number ν > 1/2, the Hankel Transform Hν(g) exists and
∫ ∞

0
Hν(g)(ω)Jν(xω)dω =

1

2
(g(x+) + g(x−)),

where g(x+) (respectively, g(x−)) denotes the limit from the right.

Corollary. If g is continuous at x0, then
∫ ∞

0
Hν(g)(ω)Jν(x0ω)dω = g(x0).

In the case in which a function g : Rd → C is invariant under rotations, the Fourier Transform

can be written as a function of quantities invariant under rotation:

ĝ(ρ) =
(2π)d/2

ρd/2−1

∫ ∞

0
g(r)rd/2Jd/2−1(ρr)dr.

The transformation rd/2−1g(r) → (2π)−d/2ρd/2−1ĝ(ρ) is the Hankel Trasnform of order d/2 −
1. This result is specially useful for isotropic spatial covariances, where d = 2, so the Hankel

Transform is defined in terms of the Bessel function of the first kind of order 0.
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1.3.4 Spectral representation of stochastic processes.

We restrict our attention on spatial processes {Z(s), s ∈ R2}. Every weakly-stationary process

can be represented in the form of a Fourier-Stieltjes integral:

Z(s) =

∫

R2

eix
T ωY(dω), (1.62)

(see Yaglom (1987), pp.98-100) where Y is an orthogonal complex random measure. This is called

the spectral representation of Z. Instead of this interval function, one could also consider a random

point function Y (λ) = Y ((−∞,λ]), where (−∞,ω] = (−∞, ω1] × (−∞, ω2], and representation

(1.62) can be written in the form:

Z(s) =

∫

R2

eix
T ωdY(ω). (1.63)

This point function Y is a random function with uncorrelated increments. It is known the identity

between the class of continuous covariance functions on Rd and the class of positive definite func-

tions in Rd, given by Bochner’s theorem. Characteristic functions Φ of probability distributions

in Rd can be identified with positive definite continuous functions satisfying Φ(0) = 1. Khinchin’s

theorem establishes that a continuous real function C defined in Rd is a covariance function if and

only if it is the Inverse Fourier Transform of a positive bounded symmetric measure F (dω), that

is, for d = 2:

C(u) =

∫

R2

eiu
T ωF (dω), with

∫

R2

F (dω) <∞. (1.64)

The integral
∫
F (dω) of the spectral measure is equal to the total power C(0), that is, the variance

of the process, σ2. If C is the covariance of the process Z(s), and this process admits representation

(1.62), then:

E|Y(dω)|2 = F (dω).

Besides, if C decays sufficiently rapidly to ensure that C ∈ L1(R2), the measure F is the integral

of a bounded continuous function f(ω), which is called the spectral density of the process:

F (dω) = f(ω)dω.

Therefore, the spectral density can be seen as the Fourier Transform (in the sense we have seen

in Section 1.3.1) of the covariance, and these functions form a Fourier pair (see (1.50)):

f(ω) =
1

(2π)2

∫

R2

C(u)e−iuT ωdu, ω ∈ R
2,

C(u) =

∫

R2

f(ω)eiu
T ωdω.

All we have written above involve continuous processes, that is, processes that may be observed

continuously over the space. If we turn now our attention to discrete parameter stationary



1.3. Spectral representation of random fields. 37

processes, i.e. Z(s) which only take values at a discrete set of points, say s ∈ Z2, the covari-

ance function is now defined for u ∈ Z2. If the covariance values form an absolutely summable

sequence, then we can define its Fourier Transform as (see (1.53)):

f(ω) =
1

(2π)2

∑

u∈Z2

C(u)e−iuT ω, ω ∈ Π2,

and the covariance function at a lag u can be recovered by Inverse Fourier Transform as:

C(u) =

∫

Π2

f(ω)eiu
T ωdω.

The analogue of Khinchin’s theorem for discrete parameter processes is known as Wold’s theorem.

In time series setting, some authors prefer working with the normalized spectra. The normalized

power spectral density is defined by

h(ω) =
1

σ2
f(ω)

where σ2 denotes the variance of the process. The use of the normalized version of the spectral

density may help to clarify the physical interpretation of the process and
∫
h(ω)dω = 1. In the

same way, the normalized integrated spectrum H is given by:

H(ω) =

∫ ω1

−∞

∫ ω2

−∞
f(λ)dλ.

The properties of the normalized integrated spectrum are similar to those of a distribution func-

tion. For this reason, H is sometimes referred to as the spectral distribution function, although

throughout this manuscript, by abuse of notation, we may referred to F in the same way.

For intrinsic stationary processes, a spectral representation can be obtained for the variogram.

Let g be a positive function in Rd, g(0) = 0. Then, the following assertions are equivalent:

1. g is conditional semidefinite negative;

2. e−tg(u) is semidefinite positive, ∀t > 0;

3. g can be written as:

g(u) =

∫

Rd

1 − cos(uT ω)

‖ω‖2
dF (ω) +Q(u), (1.65)

where Q ≥ 0 is a quadratic form and dF is a simmetric positive measure, continuous about 0 and

satisfying: ∫

Rd

1

1 + ‖ω‖2
dF (ω) <∞.

By assertion (2), C(u) = e−tg(u) is a covariogram, ∀t > 0. Besides, it can be proved that if

γ(u) satisfies assertion (3) with Q = 0, then γ is the variogram of an intrinsic stationary process
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in Rd (see Cressie (1993), pp.87-88).

Remark. A special remark should be made about the non-stationary case, since spatial processes

in environmental science, for instance, may be non-stationary: the spatial dependence structure

depends on location. Yaglom and Yaglom (1987) proposes a generalization of the spectral rep-

resentation (1.63), considering, for a spatial process Z, a corresponding spectral process Y that

does not have uncorrelated increments. Then, the covariance of Z can be given by:

C(s,u) =

∫

R2

∫

R2

exp(sT ω + uT λ)d2G(ω,λ),

where G(ω,λ) is given by:

G(ω,λ) = E(Y(ω)Y(λ)).

Similarly to the stationary case, if G has a density with respect to the Lebesgue measure, namely

g, it will be given by the Fourier Transform of the covariance function. That is:

g(ω,λ) =
1

(2π)4

∫

R2

∫

R2

exp(−i(sT ω + uT λ))C(Z(s), Z(u))dsdu.

1.3.5 Aliasing.

If Z is defined over a continuum (Z takes values on any location s ∈ D, that is, geostatistical

context), the spectrum lies on λ ∈ R2. For a discrete process (D is a discrete set of points), the

spectrum can be restrited to the bounded support Π2 = [−π, π] × [−π, π].

In practice, we may aim to recover the spectrum of a continuous process from a discrete real-

ization and therefore, despite the frequency band is the whole space R2, the frequency behaviour

we can recover is restricted to Π2
∆ = [−π/∆1, π/∆1] × [−π/∆2, π/∆2], where ∆1 and ∆2 are

the spacing between neighbouring coordinates in each direction. This effect is known as aliasing.

Aliasing effect has been analized in time series context. See Priestley (1981), p. 224) or Robinson

(1976), among others.

The spectral density f of a continuous process Z, can not be completely restored from a discrete

set of observations. It is easy to justify just taking into account that complex exponentials in a

frequency λ and in λ±(2π, 2π) are undistinguishable. In this case the spectrum of the observations

is concentrated on the band Π2
∆ and the aliased spectral density is given by:

f∆(λ) =
∞∑

m1=−∞

∞∑

m2=−∞
f

(
λ + 2π

(
m1

∆1
,
m2

∆2

)T
)
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= f(λ) +
∑

m1 6=0

∑

m2 6=0

f

(
λ + 2π

(
m1

∆1
,
m2

∆2

)T
)
. (1.66)

Therefore, if we want to determine the spectral characteristics of a process from a set of obser-

vations, the Nyquist frequency (π/∆1, π/∆2) must be high enough to guarantee that frequencies

above it make negligible contribution to the total power of the process.

Aliasing must be taken into account when trying to estimate the spectral density, and also, as

we will see later, when we want to simulate a realization of a continuous process on a discrete set

of locations.

Figure 1.5: Matérn covariances. c0 = 0.0, σ2 = 1.0 and ν = 0.5. From left to right and from top

to bottom: α1 = 0.25, α2 = 0.5, α3 = 1.0 and α4 = 2.0.

1.3.6 Matérn class of covariances.

Consider a spectral density, for a random field on Rd, of the form:

f(λ) = φ(α2 + ‖λ‖2)−ν−d/2, φ, ν, α > 0. (1.67)

The corresponding covariance function is given by:

C(u) =
πd/2φ

2ν−1Γ(ν + d/2)α2ν
(α‖u‖)νKν(α‖u‖), (1.68)
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where Kν is a modified Bessel function of the second kind. This family of covariances (or spectral

densities) is known as the Matérn class of covariances. The corresponding variogram has already

been introduced in (1.45). The parameter α can be interpreted as the inverse of the autocorrelation

range, ν controls the rate of decay of the spectral density at high frequencies and φ is proportional

to the variance of the process σ2 times α2ν :

φ = σ2 · α
2νΓ(ν + d/2)

Γ(ν)Γ(d/2)
. (1.69)

Some considerations on the parameters must be made. First, the parameter ν given the

smoothness of the process since, for instance, Z will be m-times Mean Square differentiable if and

only if ν > m (see Stein (1995), pp.32-33). The particular case ν = 1/2 corresponds to the ex-

ponential model (1.40). The Matérn model allows for flexibility in the smoothness of the process,

and the number of parameters involved is still manageable. Unfortunately, with the parametriza-

tion above, the autocorrelation range is a function of the smoothness and scale parameters, α and

ν. There exist other parametrizations which involve paramterers not so highly dependent on the

smoothness (see Stein (1995), pp. 49-50).

In Figures (1.5) and (1.6) we have plotted the Matérn covariances and the corresponding log-

spectral densities, for smoothness parameter ν = 0.5. We have fixed no nugget effect and unit

variance. We can see that, as the parameter α increases, or equivalently, as the autocorrelation

range decreases, the covariance becomes more concentrated around zero. The inverse behaviour

can be seen for the log-spectral densities. Results are shown in the logarithmic scale since, for the

parameters we have chosen, visualization is easier after a logarithmic transform.

1.4 Real data examples

In this section we will introduce two real data sets. The first one, Mercer and Hall wheat data,

is a classical example in spatial statistics. The second data set has been kindly provided by the

Department of Ecology and Celular Biology of the University of Santiago de Compostela.

These two datasets will be considered along the manuscript for illustration purposes.

1.4.1 Mercer and Hall wheat data (a classical example).

Mercer and Hall experiment carried out in 1911 consisted of a uniform trial on a field of wheat

(all the plots received the same treatment) on an area of one acre. Yields of grain were measured
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Figure 1.6: Matérn log-spectral densities. c0 = 0.0, σ2 = 1.0 and ν = 0.5. From left to right and

from top to bottom: α1 = 0.25, α2 = 0.5, α3 = 1.0 and α4 = 2.0.

in pounds. On the 20× 25 layout, each of the 20 rows runs in the E-W direction, and each of the

25 columns runs in the N-S direction. Although the exact size of the plots from the original data

set seems to be unknown, some researchers have used 3.30 meters east to west, and 2.51 meters

north to south. Histogram for these data is plotted in Figure 1.7. This dataset has been broadly

studied by different authors (Whittle (1954), Cressie (1993), Young and Young (1998)). Young

and Young (1998) conducted an exploratory data analysis on these data and Cressie (1993) shows

that data indicate an irregular east-west trend. Some authors have considered lattice data models

in order to analyze this dataset but, although the data are given on a spatial lattice, we may think

about wheat yields on potential plots located bewteen observed plots. Therefore, a geostatistical

analysis could be also conducted (see Cressie (1993), pp. 248-259).

A prediction surface for this dataset was constructed considering model (1.21) with trend

function as in (1.22), and f0 = 1, fj(s) = sj with j = 1, 2 and exponential variogram for ε. In

order to obtain a variogram estimation, we use the iterative algorithm proposed by Neuman and

Jacobson (1984). In the universal kriging interpolation method, the estimated parameters are

β = (4.1484,−0.144,−0.0035)T . The adjusted valid variogram model (by WLS) was an expo-

nential variogram (1.40), with parameters c0 = 0.079, c1 = 0.118 and practical range a = 4.663.

Empirical semivariogram estimator (1.34) and exponential variogram fit for Mercer and Hall data

are plotted in Figure 1.8. In Figure 1.9, we show the number of pairs contributing at each lag
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Figure 1.7: Histogram for Mercer and Hall wheat yield data.
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Figure 1.8: Empirical and exponential variogram fit for Mercer and Hall wheat yield data. Solid

line: exponential semivariogram. Dots: empirical semivariogram.
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in the semivariogram estimation. We have also computed a robust empirical variogram estimator

(1.36), with similar results. Results are plotted in Figure 1.10.

In Figure 1.11 we can see the universal kriging surface for Mercer and Hall data. In Figure

1.12 we show the corresponding kriging variance surface.

1.4.2 Heavy metal depositions in Galicia.

One method used for large-scale monitoring of long-range transport is the moss technique, which

was developed in Sweden in the late 1960s as a means of surveying atmospheric metal deposition.

Following this technique, biomonitoring studies have been hold over the last years in order to de-

termine levels of heavy metal concentration all over Europe. The use of mosses as biomonitors has

been proved to be a useful way of determining levels of atmospheric deposition since the uptake

of heavy metals in mosses occurs mainly from this source.

The accumulation of heavy metals over large areas and long time periods may cause chronic

damage to living organisms and it must be thoroughly controlled. In the particular case of Galicia

(NW Spain), mosses have been used as biomonotors. This technique was first used in Galicia in

1995 (Fernández et al. (2000)) and measurements of heavy metal concentrations have been taken

every two years. In 1995 and 1997, observation points where selected attending a kind of prefer-

ential sampling. Most locations where placed in the north part of Galicia, where two electricity

power plants are located.

In 2000, a new sample grid of regularly spaced locations was considered (see Figure 1.13). In

2004, samples of two types of mosses, Scleropodium purum and Hypnum cupressiforme were col-

lected on a grid with 148 points. The sampling locations spread over the entire region (29434km2)

and the limiting area. The sampling stations are regularly spaced on a 15 × 15 lattice. Besides,

samples were collected at least 300 meters away from main roads and urban areas, and alt least

100 meters apart from other kind of roads and isolated areas. Concentrations of different heavy

metals were measured: Al, As, Co, Cr, Cu, Fe, Hg, Ni, Pb, Se and Zn. For more details, see

Fernández et al. (2000). From the collection of measured metals above, we will consider data

corresponding to Selenium and Mercury (in parts per billion) concentrations in 2004.

Although Selenium is an essential trace element in humans it is toxic if taken in large doses.

Symptoms of selenosis (intoxication by Se) include gastrointestinal disorders, fatigue and neu-

rological damage, among others. Extreme cases of selenosis can result in cirrhosis of the liver,

pulmonary edema and death. Selenium poisoning of water systems may result whenever new



44 Chapter 1. Spatial statistics and spectral methods.

0 5 10 15 20 25 30

0
20

00
40

00
60

00
80

00

lag

co
nt

rib
ut

io
ns

Figure 1.9: Number of contributions in each lag for Mercer and Hall wheat yield data.
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Figure 1.10: Classical and robust variogram estimators for Mercer and Hall wheat yield data.

Circles: classical semivariogram (1.34). Triangles: robust semivariogram (1.36).
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Figure 1.11: Universal kriging surface with linear trend, for Mercer and Hall wheat yield data.

Figure 1.12: Universal kriging variance surface for Mercer and Hall data.
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Figure 1.13: Sampling sites in Galicia and limiting area for two types of mosses. Squares: Scle-

ropodium purum. Triangles: Hypnum cupressiforme.
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Figure 1.14: Left panel: histogram of log(Se) concentrations in March 2004. Right panel: his-

togram of log(Se) concentrations in September 2004.
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Figure 1.15: Empirical variogram estimation and linear variogram fit for log(Se) concentrations,

March 2004.

agricultural runoff courses through normally-dry undeveloped lands. This process leaches natural

soluble Se compounds into the water, which may then be concentrated in new wetlands as it

evaporates. In Figure 1.14 we show the distribution of log(Se) concentrations in March and Sep-

tember 2004. We could see that raw data exhibit asymmetry, and by the logarithmic transform,

this asymmetry is corrected.

A linear semivariogram was fitted by WLS over the classical semivariogram estimates provided

by (1.34). The estimated parameters were (c0, c1) = (2.71E − 02, 1.30E − 06). Classical semivar-

iogram estimates and linear fit are plotted in Figure 1.15. In Figure 1.16 we show the ordinary

kriging surface for logarithms of Se concentrations. The kriging variance surface is plotted in

Figure 1.17.

The study of Hg concentrations is particularly interesting since Hg is not a common element

in earth’s crust. However, since mercury does not blend geochemically with elements in the crustal

mass, Hg ores can be highly concentrated. Besides, Hg is a bioaccumulative toxin and it is easily

absorbed through the skin, respiratory and gastrointestinal tissues, so the exposure to high Hg

concentrations produces toxic effects on human beings.
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Figure 1.16: Ordinary kriging surface for log(Se) concentrations, March 2004.

Figure 1.17: Ordinary kriging variance surface for log(Se) concentrations, March 2004.
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Figure 1.18: Left panel: histogram of log(Hg) concentrations in March 2004. Right panel: his-

togram of log(Hg) concentrations in Semptember 2004.

Figure 1.18 show the histograms of the concentrations of Hg in March (left panel) and the

logarithmic transformation of the data (right panel). Similar results are obtained for the data

corresponding to September sampling. For log(Hg) concentrations, a linear semivariogram was

fitted by WLS over the classical semivariogram estimates provided by (1.34). The estimated pa-

rameters were (c0, c1) = (4.452E− 021.455E− 07). Classical and robust semivariogram estimates

are plotted in Figure 1.19.

In Figure 1.20 we show the ordinary kriging surface for log(Hg) concentrations. The kriging

variance surface is plotted in Figure 1.21. For Hg we see a hot-spot in the south-west of the

region, which does not appear for Se concentrations.
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Figure 1.19: Classical and robust variogram estimators for log(Hg) concentrations, March 2004.

Circles: classical semivariogram (1.34). Triangles: robust semivariogram (1.36).

Figure 1.20: Ordinary kriging surface for log(Hg) concentrations, March 2004.
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Figure 1.21: Ordinary kriging variance surface for log(Hg) concentrations, March 2004.
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Chapter 2

Spectral techniques for modeling

spatial dependence.
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Describing the dependence structure of spatial random processes has been a major topic of

discussion in spatial statistics. For geostatistical data, the study of the dependence features has

been mainly done by modelling the variogram or the covariogram function associated with the

spatial, or even more generally, spatio-temporal, process. Some modelling techniques for the vari-

ogram have been introduced in Chapter 1. In recent years, some authors have developed spectral

methods in this context (e.g. Stein (1995)), considering the Fourier Transform of the covariogram,

the spectral density, as the new target function.

The classical nonparametric estimator of the spectral density is, in time series context, the

periodogram. This estimator has been extended to the spatial setting. In fact, the spatial spectral

techniques have been inspired in the time series spectral analysis developed in Hannan (1970),

Brillinger (1981) or Priestley (1981), among others. In the spatial setting, Stein (1995) investi-

gated periodogram properties for stationary processes under a fixed-domain asymptotic frame-

work. Fuentes (2002) studied asymptotic periodogram properties and proposes a nonstationary

periodogram, under shrinking asymptotics. Fuentes (2006a) introduces a modification of Whit-

tle’s approximation to the Gaussian loglikelihood, for spatial regular lattices with missing values

and for irregularly spaced datasets.

Although asymptotically unbiased, the periodogram is not consistent because its variance at

each spectral frequency is proportional to the square of the density at these frequencies. We study

a class of consistent estimates of the spectral density for geostatistical processes: smoothed non-

parametric kernel spectral estimates. We will refer to these estimators as smoothed-covariances

periodograms. These kind of estimates have been broadly studied in time series (Hannan (1970),

Priestley (1981)) and in spatial lattice data processes (Robinson (2006)). The basic idea of the

smoothed kernel non parametric estimators for the spatial spectral density is to soften the influ-

ence of the sample covariance estimate, damping its value for u with large |u| by the introduction

of a lag window. Examples of such functions will be introduced in this chapter. We confront this

problem from the continuous setting, when the dependence structure of a geostatistical process

has to be recovered from a discrete spectral signal.

In some cases, the edge-effect bias may not be negligible. We have to deal not only with an

edge-effect, but also with the aliasing problem. We observe that bias can be dominated by the

edge-effect but, as it happens for lattice processes, this problem can also be mitigated by tapering.

The choice of the kernel, bandwidth and spacing parameter presents some implications for the

edge-effect bias.

Although not in the scope of our work, parametric spectral density estimation is another al-
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ternative. Some remarks on this topic will be made at the end of this chapter.

2.1 The spatial periodogram.

The periodogram (also called sample spectral density) is a classical nonparametric estimator of

the spectral density. For a spatial process Z observed on a regular grid D = {s = (s1, s2) : s1 =

0, . . . , n1 − 1, s2 = 0, . . . , n2 − 1}, D ⊂ R2, with N = n1n2 points, the spatial periodogram at a

frequency λ is given by:

I(λ) =
1

(2π)2N

∣∣∣∣∣
∑

s∈D

Z(s)e−isT λ

∣∣∣∣∣

2

, λ ∈ Π2. (2.1)

Assume that the spacing between locations is given by ∆1 in one direction (x-axis direction)

and ∆2 in the other direction (y-axis direction). Then, the frequency band is λ ∈ Π2
∆ =

[−π/∆1, π/∆1] × [−π/∆2, π/∆2]. In this case, the spacing must be taken into account when

defining the periodogram. Denote by ∆s = (∆1s1,∆2s2). Then, the spatial periodogram is given

by:

I∆(λ) =
∆1∆2

(2π)2N

∣∣∣∣∣
∑

s∈D

Z(∆s)e−i∆sT λ

∣∣∣∣∣

2

. (2.2)

The periodogram is usually computed at the set of bidimensional Fourier frequencies λT
k =

(λk1 , λk2):

λk1 = 2πk1
n1

, k1 = 0,±1, . . . ,±m1, where m1 = [(n1 − 1)/2],

λk2 = 2πk2
n2

, k2 = 0,±1, . . . ,±m2, where m2 = [(n2 − 1)/2]

for (2.1) and for (2.2)

λk1 = 2πk1
∆1n1

, k1 = 0,±1, . . . ,±m1, where m1 = [(n1 − 1)/2],

λk2 = 2πk2
∆2n2

, k2 = 0,±1, . . . ,±m2, where m2 = [(n2 − 1)/2].

For (2.1), it is known that the spatial periodogram is an asymptotically unbiased estimator of the

spectral density, but it is not consistent (Brilinger (1974)), since the variance is proportional to

the square of the spectral density at each frequency. Nevertheless, the periodogram characteristic

which makes it useful is that periodogram values at different frequencies are asymptotically un-

correlated. This fact allows for dealing with periodogram values as if they were independent data,

for a large enough sample.

In the geostatistical data case, Fuentes (2002) proved that the assertions above (asymptotic

unbiasedness, inconsistency and asymptotic uncorrelation) also hold for (2.2), with two further
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assumptions: (1) the rate of decay of the spectral density f(λ) is proportional to ‖λ‖−τ , for τ > 2

and (2) n1, n2 → ∞, ∆1 = ∆2 = ∆ → 0, n1/n2 → c (for a constant c) and ∆n1,∆n2 → ∞.

This type of asymptotics is called shrinking asymptotics (Fuentes (2002)) and it is a mixture

between increasing-domain (Cressie (1993)) and fixed-domain asymptotics (Stein (1995)). In an

increasing-domain asymptotic analysis, one assumes that the number of observations grows, pre-

serving a minimum positive distance between the locations where the observations are taken. In

fixed-domain asymptotics, the number of observations grows filling in the observation region.

Theorem. (Fuentes, 2002) Let Z be a second-order stationary process, with spectral density f

and assume that:

(i) The rate of decay of the spectral density f(ω) at high frequencies is proportional to ‖ω‖−τ ,

for τ > 2.

(ii) The covariance function satisfies the inequality
∫
‖u‖|C(u)|du <∞.

Then, under shrinking asymptotics:

(i) The expected value of the periodogram I(ω), for ω ∈ [−π/∆, π/∆]2 is asymptotically f(ω).

(ii) The asymptotic variance of I(ω) given in (2.2) is f2(ω).

(iii) The periodogram values I(ω) and I(λ), for ω 6= λ are asymptotically uncorrelated.

If we observe a continuous process and we consider a different asymptotic framework, for in-

stance, increasing domain asymptotics, then, the periodogram is no longer an unbiased estimator

of the spectral density but for f∆, the aliased spectral density given in (1.66).

Remark. Fuentes (2002) also studied the non-stationary case, considered in Section 1.3. The

author defines the periodogram for a non-stationary spatial process Z and proved that, under

shrinking asymptotics, the asymptotic expected value of the periodogram at a pair of frequencies

(ω,λ) is the spectral density f(ω,λ). Expressions for the asymptotic variance and the covariance

are also given. In order to get these results under non-stationarity assumptions, some conditions

on the rate of decay of the spectral density and the integrability of the covariance are needed.

The spatial periodogram has been defined in terms of the observed data, both in (2.1) and (2.2).

Since the spectral density is the Fourier Transform of the covariance function, it is not unnatural
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to write the periodogram in terms of a covariance estimator. Define the sample covariances for a

lattice and a geostatistical process:

Ĉ(u) =
1

N

∑

s∈D(u)

Z(u)Z(s + u), (2.3)

Ĉ∆(u) =
1

N

∑

s∈D(u)

Z(∆s)Z(∆(s + u)), (2.4)

where D(u) = {s ∈ D : s + u ∈ D}. The periodogram can be written in terms of the sample

covariances as:

I(λ) =
1

(2π)2

∑

u∈U
Ĉ(u)e−iuT λ, (2.5)

I∆(λ) =
∆1∆2

(2π)2

∑

u∈U
Ĉ∆(u)e−i∆uT λ. (2.6)

and u ∈ U = {(u1, u2) : 1 − n1 ≤ u1 ≤ n1 − 1, 1 − n2 ≤ u2 ≤ n2 − 1}. Representations (2.5) and

(2.6) for the spatial periodogram will be considered when constructing consistent estimators for

the spectral density. These estimators will be based on smoothed versions of the sample covari-

ances.

The periodogram is, essentially the same function for the sample covariances Ĉ(u) as f is of

the theoretical covariances C(u). For a spatial process Z on the Euclidean space Rd, the bias

of these estimators is of order N−1/d (see Robinson (2006)). When computing the periodogram

at a fixed frequency λ, it includes all the sample covariances and hence, no matter how large N

becomes, it always involves a tail effect.

Note also that, if we define the Discrete Fourier Transform of the data as:

J(λ) =
1

2π
√
n1n2

∑

s∈D

Z(s)e−isT λ, (2.7)

then, the periodogram can be obtained as:

I(λ) = J(λ)J(λ) = |J(λ)|2, (2.8)

where (·) denotes the congujate. We can also obtain a similar representation of I∆, just modifying

(2.7) in a suitable way:

J∆(λ) =
1

2π

√
∆1∆2

n1n2

∑

s∈D

Z(∆s)e−i∆sT λ. (2.9)

Despite its lack of consistency as an estimator of the spectral density, the periodogram (2.1)

has an attractive feature for some kind of processes. Consider a spatial processes which can be
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represented as:

Z(s) =
∞∑

j=−∞

∞∑

l=−∞
ajlε(s1 − j, s2 − l),

∞∑

j=−∞

∞∑

l=−∞
a2

jl <∞ (2.10)

where the error variables ε are independent and identically distributed as N(0, σ2
ε). The condition

on the coefficients ajl is neeeded in order to guarantee stationarity. This kind of structure for

an underlying model of an observed set of data holds for any Gaussian, stationary process with

absolutely continuous spectral density.

Remark. If ε is a continuous white-noise, a general linear process is given by:

Z(s) =

∫
a(u)ε(s − u)du with

∫
a2(u)du <∞, (2.11)

in order to guarantee the stationarity of the process. Expression (2.10) can be interpreted as an

approximation of a general linear process.

The spectral density of (2.10) at a frequency λ ∈ Π2 is given by:

f(λ) =

∣∣∣∣∣∣

∞∑

j=−∞

∞∑

l=−∞
ajle

−i(j,l)λ

∣∣∣∣∣∣

2

σ2

(2π)2
= |A(λ)|2fε(λ), (2.12)

where

A(λ) =
∞∑

j=−∞

∞∑

l=−∞
ajle

−i(j,l)λ, fε(λ) = σ2/(2π)2.

and (j, l)λ = jλ1 + lλ2. Therefore, f can be written in terms of fε, the spectral density of the

innovation process. A similar expression is obtained for the periodogram of Z, when its covariance

C is axial and diagonal symmetric, which can be written in terms of the periodogram of ε:

I(λ) = |A(λ)|2 Iε(λ) +RN (λ), (2.13)

where, the residual term is uniformly bounded and Iε denotes the periodogram for ε. Expression

(2.13) can be written as

I(λk) = f(λk)Vk +RN (λk) (2.14)

where each λk denotes a Fourier frequency and Vk’s are independent identically distributed random

variables with standard exponential distribution (see Brockwell and Davis (1991)). Then, applying

logarithms in (2.14), we have

Yk = m(λk) + zk + rk (2.15)

where m = log f and

rk = log

[
1 +

RN (λk)

f(λk)Vk

]
. (2.16)
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The variables zk are independently and identically distributed with density function:

h(x) = e−ex+x. (2.17)

The mean is the Euler constant E(zk) = C0 = −0.57721 and the variance is Var(zk) = π2/6.

This is a particular case of the Gumbel distribution, with position and scale parameters 0 and 1

(Gum(0, 1)), respectively.

We will take advantage of the representation (2.14) for the periodogram and (2.15) for the

log-periodogram in next chapters, for simulation purposes and in order to build goodness-of-fit

tests for the spatial spectral density.

Remark. Under additional assumptions on the rate of decay of the coefficients ajl in (2.10), the

residual term RN (λk) in (2.14) can be uniformly bounded (Brockwell and Davis (1991)).

2.2 Some modifications on the periodogram.

In this section, we revise two spectral density estimation approaches, based on modifications of

the periodogram. The first one is based on tapering techniques and its goal is to reduce the bias

of the periodogram for finite samples. The second approach aims to build consistent spectral

density estimators, by smoothing the sample covariances. A review on these two approaches, in

time series context, can be found in Robinson (1983).

2.2.1 Tapered periodogram.

The periodogram has an asymptotically negligible bias, but for a fixed grid of size N , there are

biases due to leakage. In order to reduce this bias, data tapers (or faders) are introduced (see

Brillinger (1970)). The tapered spatial periodogram, for discrete processes, is defined by:

Itap(λ) =
1

(2π)2H

∣∣∣∣∣
∑

s∈D

h(s)Z(s)e−isT λ

∣∣∣∣∣

2

, (2.18)

and for continuous processes:

Itap
∆ (λ) =

∆1∆2

(2π)2H

∣∣∣∣∣
∑

s∈D

h(s)Z(∆s)e−i∆sT λ

∣∣∣∣∣

2

, (2.19)
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where h denotes the bidimensional taper and H =
∑

s h
2(s). Asymptotic distributional aspects

of Itap(λ) have been studied in Brillinger (1970).

We will focus our attention on the discrete context. Discrete Fourier Transform of the tapered

observations, in a similar way to (2.7) as:

J tap(λ) =
∑

s∈D

h(s)Z(s)e−isT λ, (2.20)

and the tapered spatial periodogram (2.18) can be written as:

Itap(λ) =
1

(2π)2H
|J tap(λ)|2. (2.21)

Once again, we can also obtain a similar representation of Itap
∆ , just modifying (2.20) in a suitable

way.

The bidimensional taper function h is usually obtained as the tensor product of one-dimensional

tapers. Data tapers are usually required to be measurable functions, bounded with bounded sup-

port, L2-integrable and Lipschitz continuous. Examples of data tapers, for dimension one, can be

seen in Priestley (1981), pp. 561-562.

As a general example, a one-dimensional taper h(u), for u ∈ [0, 1], with smoothness parameter

ρ, could be given by (see Dahlhaus and Künsch (1987)):

h(u) =





w(2u/ρ) 0 ≤ u < ρ/2,

1 ρ/2 ≤ u ≤ 1/2,

h(1 − u) 1/2 < u ≤ 1.

(2.22)

The function w is chosen to be differentiable on [0, 1], with a Lipchitz-continuous derivative.

For instance, for w(u) = 1/2(1 − cos(uπ)), the Tukey-Hanning taper is obtained (see Priestley

(1981), pp. 442). In an unpublished Technical Report of North Carolina State University, Fuentes

introduces the so-called rounded-taper, designed for giving more tapering to the grid corner ob-

servations. The rounded taper presents discontinuities when wheighting the borders, which may

result unnatural. These taper functions can be considered in a similar way to those weight func-

tions introduced in Section 2.2.2.

Data tapers help in removing the edge-effect in high dimensions. For that purpose, these

estimators have been also used by Dahlhaus and Künsch (1987) in order to obtain
√
N consistent

parametric Whittle estimators, as we will see later.
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Remark. In Fourier analysis, it is known that the partial sums of a Fourier series are not

necesarily a good approximation of a function of interest. Data tapers appeared in Fourier analysis

to improve the approximation of the partial sums of a Fourier series to a continuous function.

These tapers (convergence factors) usually involve a maximum of 1 at s = 0 and then they

decrease to 0 as ‖s‖ increases, where ‖s‖ =
√
s21 + s22.

2.2.2 Smoothed-covariances periodogram

One way of reducing the variance in the spatial-periodogram is simply to omit some of the terms

which cause the tail-effect in (2.5) and (2.6). But this procedure will affect the expected value of

the new expression. However, if the process has continuous spectrum, the covariances tend to zero

as s increases and hence, if we omit only those terms which correspond to the tail of the sample

covariance function, then the bias will not be so seriously affected.

Consider the following estimator for the spatial spectral density, obtained by truncating the

covariances involved in the spatial periodogram estimation:

f̃(λ) =
1

(2π)2

m1∑

u1=−m1

m2∑

u2=−m2

Ĉ(u) exp(−iuT λ) (2.23)

where m1 and m2 (truncation points) are such that m1 < n1−1 and m2 < n2−1. In this case, the

variance of the estimate is O(M/N) (M = m1m2, N = n1n2). Thus, choosing N → ∞, M → ∞
and M/N → 0, the bias and the variance tend to zero.

In order to solve the lack of consistency problem in high dimensions, Robinson (2006) studied a

class of nonparametric spectral density estimates, for lattice processes, based on weighted sample

covariances:

f̃(λ) =
1

(2π)2

∑

u∈U
kn(u)Ĉ(u)e−iuT λ, (2.24)

which can be extended to the geostatistical data case as:

f̃∆(λ) =
∆1∆2

(2π)2

∑

u∈U
kn(u)Ĉ∆(u)e−i∆uT λ, (2.25)

where kn(u) are weight functions (data windows or lag windows) obtained as the tensor product

of one-dimensional windows:

kn(u) = kn1

(
u1

m1

)
kn2

(
u2

m2

)
. (2.26)

The truncated periodogram estimator given by (2.23) can be regarded as a particular case of

(2.24). If kn(u) are chosen such that they decrease gradually, the contribution of the tail of the
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sample covariances would be reduced, rather than eliminated. Provided that kn(u) decreases at

a suitable rate, we may expect f̃(λ) still being consistent estimates.

We consider bidimensional windows, obtained as the tensor product of one-dimensional win-

dows. Some common lag windows used in the literature can be found in Hannan (1970) and

Priestley (1981).

Chosing mj , j = 1, 2 small relative to nj , j = 1, 2, the variability of the estimated is controlled,

and letting mj for j = 1, 2 grow, the estimate becomes unbiased. For the geostatistical data case,

define also, for j = 1, 2, the corresponding spectral window:

Wn,∆(λ) = Km1,∆1(λ1)Km2,∆2(λ2), (2.27)

where

Kmj ,∆(λj) =
∆j

2π

∑

uj

knj

(
uj

mj

)
e−i∆ujλj , j = 1, 2. (2.28)

This kind of spectral windows are called scale parameter forms. The data windows in (2.26) are

even, continuous, knj (0) = 1 and L2 integrable and by Parseval’s Theorem:

(2π)2
∫

Π2
∆

W 2(θ)dθ =
∑

u∈U
k2

n(u), (2.29)

where W denotes Wn (corresponding to ∆ = 1) or Wn,∆, by abuse of notation. These kind of

estimators can be seen as weighted integrals of the periodogram, as we will see later.

f̃∆(λ) =

∫

Π2
∆

Wn,∆(λ − ω)I∆(ω)dω. (2.30)

We will give some examples of these lag-window functions, following (2.26). We will also give

the corresponding Fourier Transform in (2.29). For simplicity, we will denote by k the weight

functions knj , j = 1, 2.

• Truncated periodogram window.

k(uj) =

{
1 |uj | ≤ mj

0 |uj | > mj ,
(2.31)

with mj ≤ nj − 1 (for j = 1, 2). Then, its Fourier Transform is given by the product of two

Dirichlet kernels:

W (θ) = Dm1(θ1)Dm2(θ2), Dmj (θj) =
1

2π

sin
((
mj + 1

2

)
θj

)

sin
(

θj

2

) . (2.32)
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• Bartlett Window.

k(uj) =

{
1 − |uj |

mj
|uj | ≤ mj

0 otherwise.
(2.33)

Its Fourier Transform is the product of two Fejer kernels:

W (θ) = Fm1(θ1)Fm2(θ2), Fmj (θj) =
1

2π

sin2
(

mjθj

2

)

m sin
(

θj

2

) , j = 1, 2. (2.34)

• Tukey window.

k(uj) =

{
1 − 2a+ 2a cos

(
πuj

mj

)
|uj | ≤ mj

0 otherwise.
(2.35)

The Fourier Transform:

W (θ) = Fm1(θ1)Fm2(θ2), (2.36)

Fmj (θj) = (1 − 2a)Dmj (θj) + aDmj

(
θj −

π

mj

)
+ aDmj

(
θj +

π

mj

)
, (2.37)

where Dmj (θj), j = 1, 2, is the Dirichlet kernel given by (2.32).

• Tukey-Hanning window (it is a particular case of Tukey window, taking a = 0.25).

k(uj) =

{
1
2

(
1 + cos

(
πuj

mj

))
|uj | ≤ mj

0 otherwise.
(2.38)

W (θ) = Fm1(θ1)Fm2(θ2), (2.39)

Fmj (θj) =
1

4
Dmj

(
θj −

π

mj

)
+

1

2
Dmj (θj) +

1

4
Dmj

(
θj +

π

mj

)
. (2.40)

• Parzen window.

k(uj) =





1 − 6
(

uj

mj

)2
+ 6

(
|uj |
mj

)3
|uj | ≤ mj

2 ,

2
(
1 − |uj |

mj

)3 mj

2 ≤ |uj | ≤ mj ,

0 otherwise.

(2.41)
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An approximation of its Fourier Transform is given by:

W (θ) ≈ Fm1(θ1)Fm2(θ2), j = 1, 2, (2.42)

Fmj (θj) =
3

8πm3
j




sin
(

mjθj

4

)

1
2 sin

(
θj

2

)




4

. (2.43)

• Priestley-Bartlett window.

k(uj) =
3m2

j

(πuj)2

(
mj

πuj
sin

(
πuj

mj

)
− cos

(
πuj

mj

))
. (2.44)

The Fourier Transform is given by:

W (θ) = Fm1(θ1)Fm2(θ2), (2.45)

Fmj (θj) =





3mj

4π

(
1 −

(
mjθj

π

)2
)

|θj | ≤ π
mj
,

0 otherwise, j = 1, 2.
(2.46)

Other lag windows are Daniell window, where k(u) = sin(πu)/(πu) and the Cosine window.

Lemma 1. Consider Z a zero-mean weakly stationary geostatistical process, observed on a regular

lattice D, with N = n1n2 points. Assume kn is a bidimensional lag-window and Wn and Kmj

are defined as in (2.27) and (2.28) with unit spacement, respectively. Then, the smooth kernel

estimator of the spectral density on the lattice, f̃ given by (2.24) can be written as:

f̃(λ) =

∫

Π2

Wn(λ − ω)In(ω)dω. (2.47)

Lemma 2. Consider Z a zero-mean weakly stationary geostatistical process, observed on a regular

lattice D, with N = n1n2 points and spacing ∆1 = ∆2 = ∆. Assume kn is a bidimensional lag-

window and Wn,∆ and Kmj ,∆ are defined as in (2.27) and (2.28), respectively. Then, the smooth

kernel estimator of the spectral density on the lattice, f̃∆ given by (2.25) can be written as:

f̃∆(λ) =

∫

Π2
∆

Wn,∆(λ − ω)I∆(ω)dω. (2.48)

Therefore, the device of weighting the sample covariance function so as to reduce the con-

tribution from the tail has exactly the same effect as smoothing the periodogram by a weighted

integral. Extension of this lemma for different spacements ∆1 and ∆2 is straightforward.
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For most of the sequences kn(u) which we shall use in practice, the function Wn is typically

concentrated around λ = 0; the more slowly kn(u) decays, the more concentrated is Wn. The

same holds for Wn,∆. The introduction of these weights may produce negative estimates of the

spatial spectral density (see Section 2.5).

2.3 Expectation and covariance on finite grids.

In practice, the periodogram is computed just over the Fourier frequencies and thus, the charac-

teristics of unbiasedness and independence do not hold, unless N is large enough. This fact implies

that the error involved in considering the periodogram as an estimator of the spectral density can

not be treated as a random noise component. These characteristics of the periodogram are useful

whenever working on a dense grid, but in practice we usually work on finite grids with sparse

data. Thus, the uncertainty of how much information is lost under the assumption of indepen-

dence arises. The problem is how to quantify this loss of information. A first step would be to

evaluate the expected value and the covariance of the periodogram with and without tapering, for

a finite grid D.

Assumption 1. Assume that for each s ∈ R2, the taper h(s) is measurable in s, bounded, with

compact support,
∫
h(s)2ds 6= 0, and there exists a finite constant L ∈ R such that

∫
|h(s + t) − h(t)|dt < L|s|. (2.49)

This condition is a form of integrated Lipschitz condition. As it is pointed out in Brillinger

(1981) and in Brockwell and Davis (1991), this condition is satisfied by functions with uniformly

bounded first derivatives and by functions of bounded variation.

The results shown below can be found in Porcu et al. (2005).

2.3.1 A brief note on cumulants.

In the same way that the generating function of a random variable generates its moments, the

logarithm of the generating function, provides the cumulants. Cumulants are symmetric and mul-

tilinear in their arguments (Brillinger (1981)) and if any subset of {X1, . . . , Xr} is statistically

independent of the remaining set, then cum(X1, . . . , Xr) = 0. From this property, cumulants may

be used to measure the statistical dependence of variables. In Brillinger (1970) cumulants theory

is the fundamental tool to develop the frequency analysis of spatial series.
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Cumulants have also been called semi-invariants and they admit a representation in terms of a

Toeplitz form. They have been used in the context of long-memory processes. Recent applications

of cumulants theory may be also found in applied physics (thermostatistics, signal processes...)

and in probability theory. A complete description of the cumulants for spatial series properties

can be found in Brillinger (1970). In this section, we just introduce the definition and remark

some properties.

Definition 1. Let (X1, . . . , Xr) be a r-variate random variable. The joint cumulant of X1, . . . , Xr

is the coefficient of t1, . . . , tr in the expansion of the cumulant generating function

logE
(
e
P

j Xjtj
)

(2.50)

An alternative definition is given by

cum(X1, . . . , Xr) =
∑

(−1)p−1(p− 1)!E(
∏

j∈µ1

Xj) . . . E(
∏

j∈µp

Xj) (2.51)

where the sum and products extend over all partitions (µ1, . . . , µp), p = 1, . . . , r of (1, . . . , r).

From this definition, an inverse relation is obtained

E(X1 . . . Xr) =
∑

(cum{Xj , j ∈ µ1}) . . . (cum{Xj , j ∈ µp}) (2.52)

Definition 2. Suppose that moments of all orders exist for Xj , j = 1, . . . , r. The joint cumulant

function of order k is defined as

c1,...,k(s1, . . . , s(k−1)) = cum{X1(s1 + s), . . . , Xk−1(sk−1 + s), Xk(s)} (2.53)

Note that

c1,...,k(s1, . . . , sk−1) = c1,...,k(s1, . . . , sk−1,0) (2.54)

Then, the cumulant of a single variable is its expectation and the covariance between X and Y is

the joint cumulant of X and Y . Therefore, the spectral density can be recovered from a certain

cumulant.

If X is stationary and its moments exist and satisfy
∫ ∫

{|s1| + . . .+ |sk−1|} · |c1,...,k|(s1, . . . , sk−1)ds1 . . . dsk−1 <∞ (2.55)

then, we can define the cumulant spectra of order k

f1,...,k(λ1, . . . ,λk−1) =

(2π)−2(k−1)
∫ ∫

c1,...,k(s1, . . . , sk−1)e
−i
Pk−1

j=1 λT
j sjds1 . . . dsk−1

For the particular case of k = 2, the spectral density is obtained. Cumulants theory will be

used in order to prove the results shown in this section.
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2.3.2 Expected value of the periodogram and the tapered periodogram.

The following results are concerned with the expected value of the periodogram and the tapered

periodogram. We will see that, in both cases, the expected value of the periodogram depends on

the grid dimensions.

The expectation of the (non-tapered) periodogram depends directly on the grid dimensions,

but the corresponding expected value of the tapered periodogram depends on the grid dimensions

through the associated taper. This property is proved by the next results.

Define

Hr(λ) =
∑

s∈D

h(s)re−isT λ, r ∈ N.

Proposition 1. Let Z be a second-order stationary random field, with mean µ and covariance

function C. Assume Z is observed on a regular grid of size N = n1n2. Let I be the periodogram

with no taper as in equation (2.1). Suppose
∑

u∈U
|C(u)| <∞. Then, for λ ∈ Π2

E(I(λ)) = (2.56)

1

(2π)2n1n2

∫

Π2

[
sinn1(λ1 − ω1)/2

sin(λ1 − ω1)/2

sinn2(λ2 − ω2)/2

sin(λ2 − ω2)/2

]2

f(ω)dω (2.57)

+
1

(2π)2n1n2

[
sinn1λ1/2

sinλ1/2

]2 [sinn2λ2/2

sinλ2/2

]2

µ2. (2.58)

Proposition 2. Let Z be a second-order stationary random field, with mean µ and covariance

function C. Assume Z is observed on a regular grid of size N = n1n2. Let Itap be the tapered

periodogram as in equation (2.18). Suppose
∑

u∈U
|C(u)| <∞. Then, for λ ∈ Π2

E(Itap(λ)) = (2.59)
(

(2π)2
∫

Π2

|H(ω)|2dω
)−1∫

Π2

|H(λ − ω)|2f(ω)dω (2.60)

+

(
(2π)2

∫

Π2

|H(ω)|2dω
)−1

|H(λ)|2µ2. (2.61)

2.3.3 Covariance of the periodogram and the tapered periodogram.

The next results are concerned with the covariance structure associated with the periodogram and

the tapered periodogram. These results show that the covariance between periodogram values is

non-stationary.



68 Chapter 2. Spectral techniques for modeling spatial dependence.

Proposition 3. Let Z be a second-order stationary random field, with mean µ and covariance

function C. Assume Z is observed on a regular grid of size N = n1n2. Let I be the periodogram

with no taper as in equation (2.1). Then, the covariance structure associated with the periodogram

I is given by

Cov(I(ω), I(λ)) =

{(
sinn1(ω1 + λ1)/2

n1 sin(ω1 + λ1)/2
· sinn2(ω2 + λ2)/2

n2 sin(ω2 + λ2)/2

)2

+

(
sinn1(ω1 − λ1)/2

n1 sin(ω1 − λ1)/2
· sinn2(ω2 − λ2)/2

n2 sin(ω2 − λ2)/2

)2
}
f(ω)2

+ O(N−1). (2.62)

Proposition 4. Let Z be a second-order stationary random field, with mean µ and covariance

function C. Assume Z is observed on a regular grid of size N = n1n2. Let Itap be the tapered

periodogram as in equation (2.18). Then, the covariance structure associated to the tapered peri-

odogram Itap is given by

Cov(Itap(ω), Itap(λ)) = |H2(0)|−2
{
|H2(ω − λ)|2 + |H2(ω + λ)|2

}
f(ω)2

+ O(N−1). (2.63)

2.3.4 The spatio-temporal case.

Consider now a stationary spatio-temporal process Z(s, t), s ∈ D ⊂ R2, t ∈ T ⊂ R. The process is

observed on a spatial regular grid n1 ×n2 and at n time observations. Define the spatio-temporal

periodogram, I : R3 → R, in a spatio-temporal frequency (ω, τ) ∈ R3 as:

I(λ, τ) =
1

(2π)3n1n2n

∣∣∣∣∣∣
∑

(s,t)∈D×T

Z(s, t) exp(−isT λ) exp(−itτ)

∣∣∣∣∣∣

2

. (2.64)

By abuse of notation, we will denote by I the spatio-temporal periodogram and J for the discrete

Fourier Transform of the spatio-temporal data. Define then J : R3 → R

J(λ, τ) =
1

(2π)2/2√n1n2n

∑

(s,t)∈D×T

Z(s, t) exp(−isT λ) exp(−itτ). (2.65)

Then, the spatio-temporal periodogram can be obtained as:

I(λ, τ ) = |J(λ, τ )|2. (2.66)

Similarly to the spatial case, we may consider the tapered spatio-temporal periodogram. The

data taper, in this setting, is obtained as the product of two data tapers: h, the spatial component
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taper and g the temporal taper. Thus, we define the tapered spatio-temporal peridogram as

Itap(λ, τ) =
1

(2π)3HG

∣∣∣∣∣∣
∑

(s,t)∈D×T

h(s)g(t)e−isT λe−itτ

∣∣∣∣∣∣

2

(2.67)

where

H =
∑

s∈D

h2(s) and G =
∑

t∈T

g2(t). (2.68)

If we define

J tap(λ, τ) =
∑

(s,t)∈D×T

h(s)g(t)e−isT λe−itτZ(s, t), (2.69)

then, the spatio-temporal tapered periodogram periodogram can be written as the square mod-

ulus of J tap, similarly to (2.66). The same considerations about the spectral density apply for

the spatio-temporal setting. Thus, the spatio-temporal periodogram will be an asymptotically

unbiased estimator of

f(λ, τ) =
1

(2π)3

∑

u∈U

∑

t∈T
C(u, t) exp(−iuT λ) exp(−itτ)

with u ∈ U and t ∈ T = {1 − n, . . . , n− 1}.
Proposition 5. Let Z be a second-order stationary space-time random field, with mean µ and

covariance function C(u, t). Assume Z is observed on a regular grid n1×n2×n and let N = n1n2n.

Let I be the periodogram with no taper as in equation (2.64). Suppose
∑

(u,t)∈U×T
|C(u, t)| < ∞.

Then,

E(I(λ, τ)) =
1

(2π)3N

∫

Π3

Bλ,τ (ω, ν)f(ω, ν)dωdν (2.70)

+
1

(2π)3N
Bλ,τ (0, 0)µ2 where Π3 = [−π, π]3 (2.71)

and

Bλ,τ (ω, ν) =

(
sinn1(λ1 − ω1)/2

sin(λ1 − ω1)/2

)2(sinn2(λ2 − ω2)/2

sin(λ2 − ω2)/2

)2(sinn(τ − ν)/2

sin(τ − ν)/2

)2

. (2.72)

Proposition 6. Let Z be a second-order stationary space-time random field, with mean µ and co-

variance function C(u, t). Assume Z is observed on a regular grid n1 × n2 × n and let N =

n1n2n. Let Itap be the spatio-temporal tapered periodogram as in equation (2.67). Suppose∑

(u,t)∈U×T
|C(u, t)| <∞. Then,

E(Itap(λ, τ)) = (2.73)

1

(2π)3HG

∫

Π3

|H(λ − ω)|2|G(τ − ν)|2f(ω, ν)dωdν (2.74)

+
1

(2π)3HG
|H(λ)|2|G(τ)|2µ2. (2.75)
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2.4 Bias of periodogram estimators.

The nonparametric estimators of the spectral density introduced in Section 2.2.2 (equations 2.24

and 2.25) may present edge-effect biases, due to the choice of kernel and bandwidth when smooth-

ing the covariances. For geostatistical data, we will study the asymptotic properties of the

smoothed-covariances estimators (2.25) for the spatial spectral density. The asymptotic frame-

work considered is shrinking asymptotics, as in (Fuentes (2002)). These estimators have been

called smooth non-parametric kernel estimators in Robinson (2006), for the lattice data case.

Expressions for the bias and the covariance structure are obtained and the implications on the

edge-effect bias of the choice of the kernel, bandwidth and spacing parameter in the design are

also discussed, both for tapered and untapered smoothed-covariances estimators.

2.4.1 Bias of smoothed-covariances periodogram estimators.

Consider Z a zero-mean weakly stationary spatial process, observed on a region D ⊂ R2, with

covariance function C and spectral density f . Consider a shrinking-asymptotics framework, and

for simplicity, take equal spacing parameters ∆1 = ∆2 = ∆. Extensions for different spacings are

straightforward. We restrict our attention to spatial processes on R2, but generalizations for Rd

present no challenges.

Assumption 1: k(v) is a real, even function such that |k(v)| ≤ 1, for some q > 0 (the character-

istic exponent, Priestley (1981), p.459), 0 < kq <∞

lim
v→0

1 − k(v)

|v|q = kq and

∫ ∞

−∞
|k(v)|dv <∞.

Assumption 2: Let nj → ∞ and j = 1, 2. Then,

mj → ∞, ∆ → 0, and ∆nj → ∞.

Assumption 3: Z is a covariance stationary process and

∫

R2




2∑

j=1

|uj |max(q,1)


 |C(u)|du <∞.

Assumption 4: The rate of decay of the spectral density f(ω) at high frequencies is proportional

to |ω|−τ , for τ > 2.
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Proposition 7. Let Assumptions 1-4 above hold. Then, as nj → ∞, j = 1, 2, the expectation

of the smoothed kernel estimate (2.25) is given by:

E(f̃∆(ω)) = f(ω) + α1n,∆ + α2n,∆ + o


∆2

2∑

j=1

(m−q
j + n−1

j )


+ O(∆τ ), (2.76)

where

α1n,∆ =
∆2

(2π)2
kq

2∑

j=1

m−q
j

∑

u∈Z2

|uj |qC∆(u)e−i∆uT ω, (2.77)

α2n,∆ =
−∆2

(2π)2

2∑

j=1

n−1
j

∑

u∈Z2

|uj |C∆(u)e−i∆uT ω. (2.78)

If we focus on the magnitude of α1n,∆ (the bias term), α2n,∆ (the edge-effect) and ∆τ (from the

approximation of the continuous spectral density through the spectral in the lattice) we will have

to study the relations between nj ,mj ,∆ for different values of τ (decay of the spectral density)

and q, we have that

α1n,∆ = O


∆2

2∑

j=1

m−q
j


 , α2n,∆ = O


∆2

2∑

j=1

n−1
j


 and O(∆τ ),

with τ > 2. The last term corresponds to the aliasing part. In order to achieve consistency, we

require
mj

nj
→ 0, j = 1, 2.

In order to guarantee that the bias is the leading term, we have to impose the following condition

on the spacing parameter, ∆:

∆βmq
j → 0, β > 0, j = 1, 2.

Therefore, when q ≤ 1, the edge-effect α2n,∆ is dominated by the bias α1n,∆.

Remark. The characteristic exponent for a weight function k is defined as the largest exponent

q > 0 such that:

k(q) = lim
u→0

(
1 − k(u)

|u|q
)

exists, is finite and non-zero. For instance, Bartlett window has characteristic exponent q = 1.

Parzen and Daniell windows have characteristic exponent q = 2. In the case of the truncated

periodogram, the characteristic exponent is not finite.

The behaviour of k near the origin is related to the behaviour of its Fourier Transform for large

frequencies and the characteristic exponent is a measure of the width of the Fourier Transform of

k. The larger q, the slower does the function k decay.
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2.4.2 Bias of smoothed-covariances tapered-periodogram estimators.

We will introduce a spectral density estimator, obtained from the combination of tapering and

smoothing-covariances approaches. Consider a taper function h(v) satisfaying the following con-

dition:

Assumption 5. h(v) is Lipschitz-continuous on [0, 1] and satisfies

h(0) = 0, h(1 − v) = h(v), 0 ≤ v <
1

2
,

and ∫ 1

0
h2(v)dv > 0.

For an integer t, define

hj,t = h

(
t− 1/2

nj

)
, j = 1, 2

and define the tapered sample covariances

Ĉh
∆(u) =

1

Hn

∑

s∈D(u)




2∏

j=1

hj,sjhj,sj+uj


Z(∆s)Z(∆s + ∆u) (2.79)

where

Hn =
2∏

j=1

nj∑

sj=1

h2
j,sj
.

The smoothed-covariances tapered spectral density estimate is defined by:

f̃h
∆(λ) =

1

(2π)2

∑

u∈U
kn(u)Ĉh

∆(u)e−i∆uT λ.

Consider also the following conditions on the spectral density and the spectral window.

Assumption 6. f(ω) is twice boundedly differentiable on R2.

Assumption 7. For n large enough (which implies, ∆ small),

Kmj ,∆(ωj) ≥ 0 j = 1, 2.

Proposition 8. If Assumptions 1-7 hold, then as nj → ∞, for j = 1, 2, the expectation of the

smoothed kernel estimate, using the tapered covariances, is given by:

E
(
f̃h
∆(λ)

)
= f(λ) + α1n,∆(1 + o(1)) + O




2∑

j=1

n−2
j


+ O(∆τ ) (2.80)

where α1n,∆ is given by (2.77).
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From this result, we can see the improvement obtained by using a taper. For q ≤ 2, we have

to require ∆βmq
j → 0 to guarantee that the bias term is the dominant one. By the consistency

requirement, we ensure that it dominates the remainder term (O(
∑2

j=1 n
−2
j )).

2.4.3 Optimal bandwidth selection.

The bandwidth parameter for smoothed-covariances estimators (2.25) is given by the values m1

and m2. We will give an asymptotically optimal (in the sense of the Mean Square Error) band-

width. For that purpose, we will obtain asymptotic expressions for the bias and variance of such

estimators.

Lemma 3. Consider estimator (2.25) and assume that conditions in Theorem 1 hold. Then, the

asymptotic expectation of (2.25) as an estimator of f(λ) can be approximated by:

E(f̃∆(λ)) − f(λ) =as
−kq

2∆2
tr (Hf∆(λ))

2∑

j=1

m−q
j , (2.81)

where Hf∆ denotes the Hessian matrix and tr denotes the trace operator.

From now, we will assume that the process we observe is a linear sequence as in (2.10).

Lemma 4. Consider estimator (2.25) and assume that conditions in Theorem 1 hold. Assume

also that Z can be represented as (2.10). Then, the asymptotic variance of (2.25) as an estimator

of f(λ) can be approximated by:

V ar(f̃∆(λ)) =as (1 + δ0,π)
(2π)2∆2m1m2

n1n2

∫

Π2
∆

f2
∆(ω)W 2

n,∆(λ − ω)dω. (2.82)

The function δ0,π vanishes unless the frequency λ belongs to {−π, 0, π}×{−π, 0, π}, in which case,

it takes value 1.

For scale-parameter windows (the ones we are considering), by Parseval’s Theorem, we can

approximate the variance by:

V ar(f̃∆(λ)) =as (1 + δ0,π)
(2π)2∆2m1m2

n1n2
f2
∆(λ)

(∫
k2(u)du

)2

. (2.83)

In order to evaluate the goodness of these spectrum estimators, one can use several criteria.

We will try to minimize the asymptotic Mean Square Error, where Bias denotes the asymptotic

bias of the estimator (2.25) and V ar denotes the asymptotic variance:

AMSE = Bias2(f̃∆(λ)) + V ar(f̃∆(λ)).
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Proposition 9. Consider estimator (2.25) and assume that conditions in Theorem 1 hold. As-

sume also that Z can be represented as (2.10). Then, the AMSE is minimized by:

m1 = m2 = m = c(4q∆n1n2)
1

2q+2 ,

where

c =


q

q−1
q+1 k2

q tr(Hf∆(λ))2 (n1n2)
2q

q+1

2
3q+7
q+1 π∆5f∆(λ)

(∫
k2(u)du

)2




1
2q+2

.

For q = 1, the optimal bandwidth is given by:

m =

(
k2

1tr(Hf∆(λ))2(n1n2)
2

8πf∆(λ)
(∫
k2(u)du

)2
∆4

)1/4

.

2.5 Parametric estimation of the spectral density

In the spectral parametric context, Whittle parameter estimation (introduced in Whittle (1954))

is the most popular method. This estimation procedure is based on an approximation to the

Gaussian log-likelihood and it uses the periodogram as a pilot estimate (e.g. Guyon (1982)).

For a parametric model of the spatial spectral density fθ with θ ∈ Θ ⊂ Rp, the Whittle

parameter estimator θ̂ is given by:

θ̂ = arg min
θ
L(θ, I), (2.84)

where L(θ, I) denotes the Whittle log-likelihood

L(θ, I) =

∫

Π2

(
log fθ(λ) +

I(λ)

fθ(λ)

)
dλ. (2.85)

The log-likelihood function (2.85) can be interpreted as the Kullback-Leibler divergence between

I and fθ. This estimator shows good consistency properties in the one dimensional case.

Note that, in practice, this log-likelihood (2.85) is approximated by a discretized version:

∑

k

(
log fθ(λk) +

I(λk)

fθ(λk)

)
, (2.86)

where the sums extends over all Fourier frequencies.
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Suppose that we have a random process on the Euclidean space Rd. Assume that it is ob-

served on a grid D with N points, the number of points tending to infinity at the same speed

in all directions. In that case, we find an edge-effect bias of order N−1/d (Guyon (1982)). For

dimension d = 1, this effect is negligible but it becames important for dimension d ≥ 2.

A first attempt to correct this edge-effect bias in d = 2 is proposed by Guyon (1982). In

order to obtain a
√
N -consistent estimator of θ, an unbiased version of the periodogram can be

used in the Whittle log-likelihood expression. The unbiased periodogram is obtained from (2.5),

replacing the sample covariances Ĉ(v) by the unbiased sample covariances, namely C̃(v), with

vT = (v1, v2), given by

C̃(v) =
∑

s∈D(v)

1

(n1 − s1 + v1)(n1 − s2 + v2)
Z(s)Z(s + v). (2.87)

Although the use of unbiased covariances in Whittle log-likelihood approximation provides

consistent estimators, C̃ present some unpleasant features. The first drawback of this unbiased

estimator for the covariance is that it may not be positive definite. This fact implies that spectral

estimates obtained from C̃ may present negative values. Besides, the positive definite character al-

lows to interpret the Whittle estimator as a minimun distance estimator. This intuitive idea is lost

when considering C̃ Another problem is that C̃ has larger variance than Ĉ, specially for large lags.

Dahlhaus and Künsch (1987) proved that the inconsistency problem of Whittle estimates

for multidimensional settings can be solved by tapering the data. Introducing a data taper as

(2.22) and considering a tapered-periodogram as in (2.18), the parameter estimators obtained by

minimizing(2.85) are
√
N -consistent, assuming that the smoothness parameter in the taper (2.22)

ρ = ρN satisfies: ρN → ρ0 and ρN = o
(
N2/d−1

)
, for a constant ρ0.

A more recent study by Robinson and Vidal Sanz (2006) shows that the edge-effect problem

in Whittle estimation for dimension d ≥ 2 can be overcome by optimizing a Whittle function by

a Newton method, using a smoothed-covariances periodogram. We will see (in Chapter 4, when

treating the goodness-of-fit test) that this bias can be also corrected by Bootstrap procedures.

2.5.1 A nonparametric estimator based on Whittle’s log-likelihood.

Based on the discrete approximation to Whittle’s log-likelihood (2.86), it is possible to obtain a

nonparametric estimator for the log-spectral density mθ = log fθ. It is easy to see that, minimizing
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(2.86) is equivalent to maximize in θ:

∑

k

(
Yk −mθ(λk) − eYk−mθ(λk)

)
, (2.88)

where Yk denotes the log-periodogram value at the Fourier frequency λk. Besides, this equations

corresponds to the log-likelihood associated to (2.15) when ignoring the residual term rk.

From a non parametric approach, we consider the estimator obtained for the log-spectral

density function mθ by a multidimensional local linear kernel estimator. For any x ∈ R2, we

approximate mθ(λk) by the plane a + bT (λk − x). Then, we construct the local loglikelihood

function ∑

k

[
Yk − a− bT (λk − x) − eYk−a−bT (λk−x)

]
KH(λk − x), (2.89)

where the function KH is a reescaled bidimensional kernel, H is a bidimensional bandwidth ma-

trix and KH(x) = |H|−1/2K(H−1/2x). The local maximum likelihood estimator m̂LK(H,x) ≡
m̂LK(x) of m(x) is â in the maximizer (â, b̂) of (2.89).

For Mercer and Hall wheat yield data, introduced in Section 1.4.1, in Figure (2.1) we show

the spatial periodogram, a parametric estimation obtained Whittle’s method and the nonpara-

metric estimation obtained by maximun local log-likelihood (2.89). The parametric estimation

corresponds to a first-order autoregressive model (see Whittle (1954)):

Z(s) = α1(Z(s1 + 1, s2) + Z(s1 − 1, s2)) + α2(Z(s1, s2 + 1) + Z(s1, s2 − 1)) + ε(s), (2.90)

where ε(s) are zero-mean independent Gaussian random variables, with variance σ2
ε . The corre-

sponding spectral density is given by

f(λ) =
σ2

(2π)2
(1 − 2α1 cos(λ1) − 2α2 cos(λ2))

−2 , λ ∈ Π2. (2.91)

We will refer to model (2.90) as the spatial autoregressive model (SAR(1) model). We obtain as

estimated parameters α̂1 = 0.23217, α̂2 = 0.09267 and variance 0.12452. The estimates we got

are quite similar to those obtained by Whittle (1954), which gives α̃1 = 0.213 and α̃2 = 0.102.
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Figure 2.1: Spatial spectral density estimation for Mercer and Hall wheat yield data. From top-

left to right-bottom: periodogram, parametric SAR model and local log-likelihood estimator from

(2.89).

2.6 An illustrative simulation study.

We consider a particular case of the linear-by-linear processes: the doubly geometric process

(Martin (1979)). This type of process will be also used in next chapters. The spectral density of

such a process is given by:

f(λ) =
σ2

(2π)2
· 1

1 + β2
1 − 2β1 cos(λ1)

· 1

1 + β2
2 − 2β2 cos(λ2)

, (2.92)

with β1, β2 ∈ [0, 1). One thousand simulations have been carried out on a 20 × 20 regular grid,

using the algorithm provided by Alonso et al. (1996). We compute different estimations for

the spectral density: tapered and non-tapered periodogram, smoothed-covariance estimator and

smoothed-covariance tapered-periodogram. We present the results from the estimation of the

spectral density (2.92), with autoregression parameters (0.5, 0.5).

In Figures 2.2 and 2.3, we show the Mean and Mean Square Errors in the estimation of the

spectral density. Results in the logarithmic scale are shown in Figures 2.4 and 2.5, for Mean and

Mean Square Errors, respectively.
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Figure 2.2: Mean Error. Legend: NT-NF=No tapering and no smoothing; MB-NF=Multiplicative

Bartlett taper and no smoothing; C5(10)-NF= Cosine taper with m1 = m2 = 5(10) and

no smoothing; NT-T5(10)=No tapering and truncated covariances (m1 = m2 = 5(10)); MB-

C10=Multiplicative Bartlett taper and cosine kernel for smoothing covariances; NT-C5(10)=No

tapering and cosine smoothing in the covariances (m1 = m2 = 10); MB-C10=Multiplicative

Bartlett taper and cosine smoothing in the covariances (m1 = m2 = 10).

In these figures, each box-plot corresponds to a different spectral density estimator. The first

one is for the spatial periodogram (no tapering and no smoothing). The second box-plot is for a

multiplicative Bartlett taper, with no smoothing on the covariances. The third and fourth ones

use a cosine taper, with parameters 5 and 10, respectively. The fifth and sixth box-plots are for

the truncated periodogram. The seventh is for multiplicative Bartlett taper and truncation in the

covariances. The eighth and ninth box-plots are for no-tapering and cosine smoothing and the

last one is for multiplicative Bartlett taper and cosine smoothing. Then, we could divide these

box-plots in four cases: spatial periodogram (box-plot 1), tapered periodogram (box-plots 2, 3

and 4), smoothed covariances (box-plots 5, 6, 8 and 9) and tapered and smoothed-covariances

(box-plots, 7 and 10).

From Figure 2.2, we can see that the bias of the smoothed-covariance estimates is higher than

the bias of the tapered periodograms, although this bias can be corrected by tapering (as we can

see in the box-plots corresponding to MB-T10 and MB-C10).
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Figure 2.3: Mean Square Error. Legend: NT-NF=No tapering and no smoothing; MB-

NF=Multiplicative Bartlett taper and no smoothing; C5(10)-NF= Cosine taper with m1 =

m2 = 5(10) and no smoothing; NT-T5(10)=No tapering and truncated covariances (m1 =

m2 = 5(10)); MB-C10=Multiplicative Bartlett taper and cosine kernel for smoothing covari-

ances; NT-C5(10)=No tapering and cosine smoothing in the covariances (m1 = m2 = 10); MB-

C10=Multiplicative Bartlett taper and cosine smoothing in the covariances (m1 = m2 = 10).
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Figure 2.4: Mean Error. Logarithmic scale. Legend: NT-NF=No tapering and no smooth-

ing; MB-NF=Multiplicative Bartlett taper and no smoothing; C5(10)-NF= Cosine taper with

m1 = m2 = 5(10) and no smoothing; NT-T5(10)=No tapering and truncated covariances

(m1 = m2 = 5(10)); MB-C10=Multiplicative Bartlett taper and cosine kernel for smoothing

covariances; NT-C5(10)=No tapering and cosine smoothing in the covariances (m1 = m2 = 10);

MB-C10=Multiplicative Bartlett taper and cosine smoothing in the covariances (m1 = m2 = 10).
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Figure 2.5: Mean Square Error. Logarithmic scale. Legend: NT-NF=No tapering and no

smoothing; MB-NF=Multiplicative Bartlett taper and no smoothing; C5(10)-NF= Cosine taper

with m1 = m2 = 5(10) and no smoothing; NT-T5(10)=No tapering and truncated covariances

(m1 = m2 = 5(10)); MB-C10=Multiplicative Bartlett taper and cosine kernel for smoothing co-

variances; NT-C5(10)=No tapering and cosine smoothing in the covariances (m1 = m2 = 10);

MB-C10=Multiplicative Bartlett taper and cosine smoothing in the covariances (m1 = m2 = 10).
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2.7 Appendix Chapter 2.

2.7.1 Proofs for Section 2.2

Proof of Lemma 1. The periodogram can be written as:

I(λ) =
1

(2π)2
1

n1n2

n1∑

x1=1

n2∑

x2=1

n1∑

y1=1

n2∑

y2=1

Z(x)Z(y)e−i(x−y)T λ

This last form will be the one that we use to prove the expression of the f̃(ω) estimate in terms

of the periodogram:

f̃(λ) =
1

(2π)2

∑

u∈U
kn(u)C(u)e−iuT λ =

1

(2π)2

∑

u∈U
k

(
u1

m1

)
k

(
u2

m2

)
C(u)e−iuT λ =

1

(2π)2

∑

u∈U
k

(
u1

m1

)
k

(
u2

m2

)
1

n1n2

∑

s∈D(u)

Z(s)Z(s + u)e−iuT λ =

1

2π

n1−1∑

u1=1−n1

k

(
u1

m1

)
1

2π

n2−1∑

u2=1−n2

k

(
u2

m2

)
1

n1n2

∑

s∈D(u)

Z(s)Z(s + u)e−iuT λ =

∫

Π2

Km1(λ1 − ω1)Km2(λ2 − ω2)
1

(2π)2n1n2

∑

s∈D(u)

Z(s)Z(s + u)e−iuT ωdω

where

Kmj (λj) =
1

2π

∑

uj

k

(
uj

mj

)
e−iujλj , j = 1, 2.

Defining Wn(λ) = Km1(λ1)Km2(λ2) we can write:

f̃(λ) =

∫

Π2

Wn(λ − ω)I(ω)dω.

Proof of Lemma 2. The proof of this Lemma is inmediate, recalling that product and convolution

operators for a Fourier pair. The smooth kernel estimator

f̃∆(λ) =
∆2

(2π)2

∑

u∈U
kn(u)C∆(u)e−i∆uT λ, (2.93)

is given by the Discrete Fourier Transform (DFT) of the product of kn and C∆. Then f̃∆ can be

writen as the convolution of the Discrete Fourier Transforms of kn and C∆. The DFT of kn is

given by Wn,∆ in (2.27), and the DFT of C∆ is the periodogram in (2.2).
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2.7.2 Proofs for Section 2.3

Proof of Proposition 1. The proof of Proposition 1 is obtained just applying elementary properties

of the cumulants. Recall representation (2.8) for the periodogram. Then,

E(I(ω)) = E(J(ω)J(ω)) = cum(J(ω)J(ω)) + |E(J(ω))|2,

where J(ω) is defined as in equation (2.7). Then, we obtain

E(I(ω)) =

cum(J(ω)J(ω)) + |cum(J(ω))|2 =

1

(2π)2n1n2

∑

s∈D

∑

x∈D

exp(−iωT (s − x))C(s − x)

+
1

(2π)2n1n2

∣∣∣∣∣
∑

s∈D

exp(−iωT s)

∣∣∣∣∣

2

µ2.

Computing the differences s− x = u , the difference vector belongs to the index set u ∈ U . Each

vector u appears

(
1 − |u1|

n1

)(
1 − |u2|

n2

)
times and plays the same role as a taper in a DFT. Note

now that the Bartlett’s kernel given by:

1

(2π)2n1n2

[
sin(n1ω1)/2

sin(ω1)/2

]2 [sin(n2ω2)/2

sin(ω2)/2

]2

(2.94)

can be obtained from

∑

u∈U

(
1 − |u1|

n1

)(
1 − |u2|

n2

)
g(u) exp(−iωTu) =

=

∫

Π2

1

(2π)2n1n2

[
sinn1λ1/2

sinλ1/2

]2 [sinn2λ2/2

sinλ2/2

]2

G(ω − λ)dλ.
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Thus, we finally complete the proof by having

E(I(ω))

=
1

(2π)2N

∑

u∈U

(
1 − |u1|

n1

)(
1 − |u2|

n2

)
exp(−ihT ω)C(h)

+
1

(2π)2N

∣∣∣∣∣
∑

s∈D

exp(−isT ω)

∣∣∣∣∣

2

=
1

(2π)2N

∫

Π2

(
sinn1λ1/2

sinλ1/2

)2(sinn2λ2/2

sinλ2/2

)2

fθ(ω − λ)dλ

+
1

(2π)2N

(
sinn1ω1/2

sinω1/2

)2(sinn2ω2/2

sinω2/2

)2

µ2

=
1

(2π)2N

∫

Π2

(
sinn1(ω1 − λ1)/2

sin(ω1 − λ1)/2

)2(sinn2(ω2 − λ2)/2

sin(ω2 − λ2)/2

)2

fθ(λ)dλ

+
1

(2π)2N

(
sinn1ω1/2

sinω1/2

)2(sinn2ω2/2

sinω2/2

)2

µ2.

Proof of Proposition 2. Note that the taper function satisfies the Parseval’s identity:

∫

Π2

|H(λ)|2dλ = (2π)2
∑

s∈D

h2(s).

Then, the expectation of the tapered periodogram:

E(Itap(ω)) =
1

(2π)2H
E(J tap(ω)J tap(ω)) = (2.95)

1

(2π)2H
cum(J tap(ω), J tap(ω)) + (2.96)

1

(2π)2H
|E(J tap(ω))|2, (2.97)



86 Chapter 2. Spectral techniques for modeling spatial dependence.

where J tap is given by (2.20). Now, doing computations in the first term in (2.97) we have

1

(2π)2H
cum(J tap(ω), J tap(ω))

=
1

(2π)2H

∑

s∈D

∑

x∈D

h(s)h(x) exp(−isT ω) exp(ixT ω)C(s − x)

=
1

(2π)2H

∫

Π2

∑

s∈D

∑

x∈D

h(s)h(x) exp(−i(s − x)T ω)

× exp(i(s − x)T λ)fθ(λ)dλ

=
1

(2π)2H

∫

Π2

∑

s∈D

∑

x∈D

h(s)h(x) exp(−i(s − x)T (ω − λ))fθ(λ)dλ

=
1

(2π)2H

∫

Π2

{∑

s∈D

h(s) exp(−isT (ω − λ))

×
∑

x∈D

h(x) exp(ixT (ω − λ))

}
fθ(λ)dλ

=
1

(2π)2H

∫

Π2

|H(ω − λ)|2fθ(λ)dλ

=
1

(2π)2H

∫

Π2

|H(λ)|2fθ(ω − λ)dλ

Finally, doing computations now on the second term, we have

1

(2π)2H
|E(J tap(ω))|2

=
1

(2π)2H

∣∣∣∣∣
∑

s∈D

exp(−isT ω)

∣∣∣∣∣

2

µ2 =
1

(2π)2|H(0)
|H(ω)|2µ2

which completes the proof.

Proof of Proposition 3. We derive the expression for the covariance using the following cumulants-

based equality

Cov(I(ω), I(λ)) = cum(J(ω)J(ω), J(λ)J(λ))

Denote:

A(λ) =
∑

s∈D

exp(−isT λ).

Since the cumulant of product variables can be expressed in terms of the sum of cumulants, we

have that



2.7. Appendix Chapter 2. 87

Cov(I(ω), I(λ)) = ((2π)2)3Nf4(ω,−ω,λ) + O(1)

+ (A(ω)f1 + O(1))
(
(2π)2A(−ω)f3(−ω,λ) + O(1)

)

+ three similar terms

+ (A(ω)f1 + O(1)) (A(λ)f1 + O(1))
(
(2π)2A(−ω − λ)f2(−ω) + O(1)

)

+ three similar terms

+
(
(2π)2A(ω + λ)f2(ω) + O(1)

) (
(2π)2A(−ω − λ)f2(−ω) + O(1)

)

+
(
(2π)2A(ω − λ)f2(ω) + O(1)

) (
(2π)2A(−ω + λ)f2(−ω) + O(1)

)

From these two last addends

(
(2π)2A(ω + λ)f2(ω) + O(1)

) (
(2π)2A(−ω − λ)f2(−ω) + O(1)

)

+
(
(2π)2A(ω − λ)f2(ω) + O(1)

) (
(2π)2A(−ω + λ)f2(−ω) + O(1)

)

we obtain

(2π)4|A(ω + λ)|2f2(ω)2 + (2π)4|A(ω − λ)|2f2(ω)2 =[(
sinn1(ω1 + λ1)/2

sin(ω1 + λ1)/2
· sinn2(ω2 + λ2)/2

sin(ω2 + λ2)/2

)2

+

(
sinn1(ω1 − λ1)/2

sin(ω1 − λ1)/2
· sinn2(ω2 − λ2)/2

sin(ω2 − λ2)/2

)2
]
f2(ω)2

the leading term in expression (2.62). The O(N−1) term comes from some computations on the

first addend, writing f4 in terms of cumulants. Assuming f1 = E(Z) = 0, the other terms in the

sum cancel.

Proof of Proposition 4. For the complete expression of the tapered periodogram, we must consider

the fractional factors where H is involved. Recall the definition of Hr:

Hr(λ) =
∑

s∈D

h(s)re−isT λ. (2.98)

Thus,

cum(J tap(ω)J tap(ω))

= ((2π)2)3H4(0)f4(ω,−ω,λ) + O(1)

+
[
(2π)2H2(ω + λ)f2(λ) + O(1)

] [
(2π)2H2(−ω − λ)f2(λ)

]

+
[
(2π)2H2(ω − λ)f2(λ) + O(1)

] [
(2π)2H2(−ω + λ) + O(1)

]
,
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where J tap is defined as in (2.20). Then, the expression for the covariance is obtained

Cov(Itap(ω), Itap(λ)) = |H2(0)|−2
{
|H2(ω + λ)|2 + |H2(ω − λ)|2

}
f2(λ) + O(N−1)

Proof of Proposition 5. By standard properties of cumulants, we obtain

E(I(ω, τ)) =
1

(2π)3N
E(J(ω, τ)J(ω, τ))

=
1

(2π)3N
cum(J(ω, τ)J(ω, τ)) +

1

(2π)3N
|E(J(ω, τ))|2 ,

where J is defined as in equation (2.65). By properties of the sum of exponentials, the second

term in the above expression can be further developed to give:

1

(2π)3N
|E(J(ω, τ))|2 =

1

(2π)3N

∣∣∣∣∣∣
∑

(s,t)∈D×T

exp(−isT ω) exp(−itτ)

∣∣∣∣∣∣

2

µ2

=
1

(2π)3N

∣∣∣∣∣
∑

s∈D

exp(−isT ω)
∑

t∈T

exp(−itτ)
∣∣∣∣∣

2

µ2

=
1

(2π)3N

(
sinn1ω1/2

sinω1/2

)2(sinn2ω2/2

sinω2/2

)2(sinnτ/2

sin τ/2

)2

µ2

Finally, the first term can also be decomposed as follows

1

(2π)3N
cum(J(ω, τ)J(ω, τ))

=
1

(2π)3N

∑

(s,t)∈D×T

∑

(s∗,t∗)∈D×T

e(−isT ω)e(−itτ)e(−is∗T ω)e(−it∗τ)Cov(s − s∗, t− t∗)

=
1

(2π)3N

∫

Π3

∑

(s,t)∈D×T

∑

(s∗,t∗)∈D×T

e−i(s−s∗)T ωe−i(t−t∗)τei(s−s∗)T λei(t−t∗)νfθ(λ, ν)dλdν

=
1

(2π)3N

∫

Π3

∑

(s,t)∈D×T

∑

(s∗,t∗)∈D×T

e−i(s−s∗)T (ω−λ)e−i(t−t∗)(τ−ν)fθ(λ, ν)dλdν

=
1

(2π)3N

∫

Π3

∑

s,s∗∈D

e−i(s−s∗)T (ω−λ)
∑

t,t∗∈T

e−i(t−t∗)(τ−ν)fθ(λ, ν)dλdν

=
1

(2π)3N

∫

Π3

Bω,τ (λ, ν)fθ(λ, ν)dλdν,

which completes the proof.
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Proof of Proposition 6. The expectation of the tapered spatio-temporal periodogram is given by

E(Itap(ω, τ)) =
1

(2π)3HG
E(J tap(ω, τ)J tap(ω, τ)) =

=
1

(2π)3HG

∑

(s,t)∈D×T

∑

(s∗,t∗)∈D×T

h(s)h(s∗)g(t)g(t∗)

× e−i(s−s∗)T ωe−i(t−t∗)τCov(Z(s, t), Z(s∗, t∗))

+
1

(2π)3HG

∣∣∣∣∣∣
∑

(s,t)∈D×T

h(s)g(t)e−isT ωe−itτ

∣∣∣∣∣∣

2

µ2

Doing computations in the second term of the above equation, and considering H and G obtained

as in (2.98), we have

1

(2π)3H

∣∣∣∣∣∣
∑

(s,t)∈D×T

h(s)g(t)e−isT ωe−itτ

∣∣∣∣∣∣

2

µ2

=
1

(2π)3HG

∣∣∣∣∣
∑

s∈D

h(s)e−isT ω

∣∣∣∣∣

2 ∣∣∣∣∣
∑

t∈T

g(t)e−itτ

∣∣∣∣∣

2

µ2

=
1

(2π)3HG
|H(ω)|2|G(τ)|2µ2.

Finally, for the first term (without the fraction) we have

∑

(s,t)∈D×T

∑

(s∗,t∗)∈D×T

h(s)h(s∗)g(t)g(t∗)e−i(s−s∗)T ωe−i(t−t∗)τCov(Z(s, t), Z(s∗, t∗))

=
∑

(s,t)∈D×T

∑

(s∗,t∗)∈D×T

h(s)h(s∗)g(t)g(t∗)e−i(s−s∗)T ωe−i(t−t∗)τC(s − s∗, t− t∗)

=

∫

Π3

∑

(s,t)∈D×T

∑

(s∗,t∗)∈D×T

h(s)h(s∗)g(t)g(t∗)e−i(s−s∗)T (ω−λ)e−i(t−t∗)(τ−ν)fθ(λ, ν)dλdν

=

∫

Π3

∣∣∣∣∣
∑

s∈D

h(s)e−isT (ω−λ)

∣∣∣∣∣

2 ∣∣∣∣∣
∑

t∈T

g(t)e−it(τ−ν)

∣∣∣∣∣

2

fθ(λ, ν)dλdν

=

∫

Π3

|H(ω − λ)|2|G(τ − ν)|2fθ(λ, ν)dλdν

which completes the proof.

2.7.3 Proofs of Section 2.4.

This section is devoted to the introduction of the smoothed kernel estimates of the spectral density

and it also includes some results that will be used later. The lag-u sample autocovariances are
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defined in equation (2.4). The sample autocovariance estimate is not an unbiased estimator of the

theoretical covariance C∆(u). The expectation of this estimator is given by:

E(Ĉ∆(u)) = C∆(u)(ηn(u) + 1),

where

ηn(u) =

(
1 − |u1|

n1

)(
1 − |u2|

n2

)
− 1.

For a fixed u, we can see that, as n1, n2 → ∞:

ηn(u) =


−

2∑

j=1

|uj |
nj


+ (1 + o(1))

For u such that ∣∣∣∣∣∣

2∑

j=1

|uj |
nj

∣∣∣∣∣∣
≥ c

2∑

j=1

1

nj

we can apply the inequality between arithmetic and geometric means and conclude that the bias

of the estimate is of order 1/
√
N , where N = n1n2. This is the so-called edge-effect (Guyon

(1982)).

In order to obtain the covariance structure of the sample covariance estimates, assume that Z

is stationary to the fourth moment. Under this assumption, the fourth order cumulants behave

like a stationary sequence and the expression of the covariance is much simpler. For s, r in the

grid

Cov(Ĉ∆(s), Ĉ∆(r)) = E(Ĉ∆(s) · Ĉ∆(r)) − E(Ĉ∆(s))E(Ĉ∆(r)) =

1

n2
1n

2
2

E

(∑

τ∈T

∑

u∈U
Z(∆s)Z(∆s + ∆τ )Z(∆r)Z(∆r + ∆u)

)
−

(
1 − |s1|

n1

)(
1 − |s2|

n2

)(
1 − |r1|

n1

)(
1 − |r2|

n1

)
C∆(s)C∆(r)

Applying the following result for quadrivariate zero-mean distributions:

E(Z(∆τ )Z(∆τ + ∆s)Z(∆u)Z(∆u + ∆r)) =

= E(Z(∆τ )Z(∆τ + ∆s))E(Z(∆u)Z(∆u + ∆r)) +

E(Z(∆τ )Z(∆u))E(Z(∆τ + ∆s)Z(∆u + ∆r)) +

E(Z(∆τ )Z(∆u + ∆r))E(Z(∆τ + ∆s)Z(∆u)) +

k4(∆r − ∆s,∆τ ,∆u),
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where k4 is the finite fourth-order cumulant (Priestley (1981), p. 404). The first addend in the

covariance is given by:

1

n2
1n

2
2

∑

τ∈T

∑

r∈U
{C∆(s)C∆(r) + C∆(r − s + u − τ )C∆(u − τ )+

C∆(r + u − τ )C∆(u − s − τ ) + k4(r − s, τ ,u)}

and the first part cancels with the second addend. In order to obtain a simpler expression, consider

Cov(Ĉ∆(s), Ĉ∆(s + r)) =

1

n1n2

n1−s1−r1−1∑

u1=1−n1+s1

n2−s2−r2−1∑

u2=1−n2+s2

(
1 − η(u1) + s1 + r1

n1

)(
1 − η(u2) + s2 + r2

n2

)

{C∆(u)C∆(u + r) + C∆(u + s + r)C∆(u − s) + k4(u + s + r)}

where

η(uj) =





uj if uj > 0

0 if −rj ≤ uj ≤ 0

−uj − rj if 1 − nj + sj ≤ uj ≤ −rj .
As a particular case, the variance of the sample-covariance is obtained:

V ar(Ĉ∆(s)) =

1

n1n2

n1−s1−1∑

u1=1−n1+s1

n2−s2−1∑

u2=1−n2+s2

(
1 − |u1| + s1

n1

)(
1 − |u2| + s2

n2

)

{
C2

∆(u) + C∆(u + s)C∆(u − s) + k4(u + s)
}
.

Proof of Lemma 3. We will just give a sketch of the proof. It can be obtained following standard

arguments from spectral density estimation. The asymptotic bias is dominated by the α1n,∆ term,

which is given by:

α1n,∆ =
∆2

(2π)2
kq

2∑

j=1

m−q
j

∑

u

|uj |2C∆(u)e−i∆uT λ

Since the trace of the Hessian matrix of f∆ in λ is

tr (Hf∆(λ)) =
−2∆4

(2π)2

∑

u

(u2
1 + u2

2)C∆(u)e−i∆uT λ,

then, the expression of the bias can be simplified by

α1n,∆ =
−kq

2∆2
tr (Hf∆(λ))

2∑

j=1

m−q
j .
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Proof of Lemma 4. Recall the representation of the smoothed-kernel estimates in terms of the

periodogram given by (2.30). The covariance structure for these estimates, for ω,ν ∈ Π2
∆ can be

approximated by:

Cov(f̃∆(ω), f̃∆(ν)) ≈
(2π)2∆2m1m2

n1n2

∫
Wn,∆(ω − θ)Wn,∆(ν − θ′)

· (FN,∆(ω + ν) + FN,∆(ω − ν)) f∆(θ)f∆(θ′)dθdθ′,

integrating over Π2
∆ × Π2

∆. As a particular case, an approximation of the variance for ω ∈ Π2
∆:

V ar(f̃∆(ω)) ≈ (1 + δ0,π)
(2π)2∆2m1m2

n1n2

∫

Π2
∆

f2
∆(θ)W 2

n,∆(ω − θ)dθ.

For scale-parameter windows, by the Parseval’s Theorem, we can approximate the variance by:

V ar(f̃∆(ω)) ≈ (1 + δ0,π)
(2π)2∆2m1m2

n1n2
f2
∆(ω)

(∫
k2(u)du

)2

.

Proof of Proposition 7. Consider the difference between the smooth kernel estimator bias and the

aliased spectral density f∆, at a frequency λ

E(f̃∆(λ)) − f∆(λ) =

∆2

(2π)2

∑

u∈U
(kn(u) − 1)C∆(u)e−i∆uT λ

+
∆2

(2π)2

∑

u∈U
kn(u)ηn(u)C∆(u)e−i∆uT λ

− ∆2

(2π)2

∑

u∈Z2−U
C∆(u)e−i∆uT λ = (A) + (B) + (C).

First, we proof that (A) = α1n,∆(1 + o(1)). It is easy to see that

kn(u) − 1 =
2∑

j=1

(
k

(
uj

mj

)
− 1

)
+ vn
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where vn is linear in products of two k
(

uj

mj

)
− 1 (or more, in the case d > 2). Then:

(2π)2

∆2
(A) =

∑

u∈U
(kn(u) − 1)C∆(u)e−i∆uT λ =

∑

u∈U

2∑

j=1

(
k

(
uj

mj

)
− 1

)
C∆(u)e−i∆uT λ +

∑

u

vnC∆(u)e−i∆uT λ =

∑

u∈U
vnC∆(u)e−i∆uT λ


1 +

∑
u

∑2
j=1

(
k
(

uj

mj

)
− 1
)
C∆(u)e−i∆uT λ

∑
u vnC∆(u)e−i∆uT λ


 =

∑

u∈U
vnC∆(u)e−i∆uT λ(1 + o(1))

For any subset L of {1, 2}, proceeding as in (Hannan (1970), p.284)

∑

u∈U

∏

j∈L

(
k

(
uj

mj

)
− 1

)
C∆(u)e−i∆uT λ =

∏

j∈L

m−q
j

∑

u∈U


∏

j∈L

k(uj/mj) − 1

|uj/mj |q
|uj |q


C∆(u)e−i∆uT λ

Then

(A) =
∆2

(2π)2

2∑

j=1

m−q
j kq

∑

u∈U
|uj |qC∆(u)e−i∆uT λ(1 + o(1)). (2.99)

For the second addend, (B), we must take into account that:

ηn(u) = −
2∑

j=1

|uj |
nj

+ sn (2.100)

where sn is linear in products of two |uj |/nj (two or more, in the case that d > 2). Then:

(2π)2

∆2
(B) =

∑

u∈U
kn(u)


−

2∑

j=1

|uj |
nj

+ sn


C∆(u)e−i∆uT λ =

∑

u∈U
kn(u)


−

2∑

j=1

|uj |
nj


C∆(u) +

∑

u

kn(u)snC∆(u)e−i∆uT λ =

∑

u∈U
kn(u)snC∆(u)e−i∆uT λ


1 +

∑
u kn(u)

(
−∑2

j=1
|uj |
nj

)
C∆(u)

∑
u kn(u)snC∆(u)e−i∆uT λ


 =

∑

u∈U
kn(u)snC∆(u)e−i∆uT λ(1 + o(1))
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Now, by Assumption 1, we have that kn(u) → 1 for every u as n → ∞. Therefore, the first

addend can be approximated by:

∏

j∈L

n−1
j

∑

u∈U


∏

j∈L

|uj |


C∆(u)e−i∆uT λ

Then:

(B) =
∆2

(2π)2

2∑

j=1

n−1
j

∑

u∈U
|uj |C∆(u)e−i∆uT λ(1 + o(1)) (2.101)

The last addend is the tail effect, and it can be bounded by:

O


 ∆2

(2π)2

2∑

j=1

n−q
j

∑

|uj |>nj

|uj |q|C∆(u)|


 = o


∆2

2∑

j=1

n−q
j


 (2.102)

By Assumption 4, we ensure the convergence of f∆(λ) to f(λ), at a rate O(∆τ ), for τ > 2 (Stein

(1999)), and the result is proved.

Proof of Proposition 8. In order to proof Proposition 8, define the tapered periodogram as

Ih
∆(λ) =

∆2

(2π)2Hn

∣∣∣∣∣∣
∑

s∈D




2∏

j=1

hj,sj


Z(∆s)e−i∆sT λ

∣∣∣∣∣∣

2

. (2.103)

The smooth kernel tareped estimate for the spectral density can be written as:

f̃h
∆(λ) =

∫

Π2
∆

Wn,∆(λ − ν)Ih
n,∆(ν)dν, (2.104)

and the expectation of (2.103) is:

E
(
Ih
∆(λ)

)
=

∫

Π2
∆

f∆(ν)
2∏

j=1

gj(ωj − νj)dν,

where

gj(ωj) =


2π

nj∑

sj=1

h2
j,sj




−1 ∣∣∣∣∣∣

nj∑

sj=1

hj,sje
isjωj

∣∣∣∣∣∣

2

The proof is analogous as Theorem 2 in (Robinson (2006)).

Proof of Proposition 9. A first strategy for finding an optimal bandwidth, in the sense that the

MSE is minimized, is considering the order of the bias and the variance and try to minimize the

order of the MSE. Considering the equation of the MSE orders, we have:

φ(m1,m2) =


∆2

2∑

j=1

m−q
j




2

+
∆2m1m2

n1n2
.
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To minimize, this function, we have to solve the following equations:

∂φ

∂m1
= −2q∆4m−2q−1

1 − 2q∆4m−q−1
1 m−q

2 +
∆2m2

n1n2
,

∂φ

∂m2
= −2q∆4m−2q−1

2 − 2q∆4m−q−1
2 m−q

1 +
∆2m1

n1n2
.

The solution of this equation system implies that m1 = m2 = m, and

m = c (4q∆n1n2)
1

2q+2 .

Therefore, we have to find c such that the MSE is minimized. The MSE is given by:

MSE =
k2

q

4∆4
tr2 (Hf∆(λ))2

(
2

mq

)2

+ (1 + δ0,π)
4π2∆2

n1n2
m2f2

∆(λ)

(∫
k2(u)du

)2

.

Replacing m by its expression in terms of n1, n2 and ∆, the constant c which minimizes the

MSE is:

c =


q

q−1
q+1 k2

q tr(Hf∆(λ))2 (n1n2)
2q

q+1

2
3q+7
q+1 π∆5f∆(λ)

(∫
k2(u)du

)2




1
2q+2

.

2.7.4 A note on the order of the periodogram bias.

The main drawback of the periodogram as a estimate of the spectrum is its lack of consistency.

It can be easily proved that its variance does not tend to zero as the number of observations

increases. For data from a process Z observed on a lattice, the periodogram is defined as:

I(λ) =
∆2

(2π)2n1n2

∣∣∣∣∣
∑

s∈D

Z(∆s)e−i∆sT λ

∣∣∣∣∣

2

.

Consider also the shrinking asymptotic model defined above. Asymptotic bias and covariance

structure of the periodogram in this setting have been studied by Fuentes (2002). We give here

an alternative study in order to analyze the bias.

The bias of the periodogram as an estimator of the spectral density f is given by:

E(I(λ)) − f(λ) = E(I(λ)) − f∆(λ) + f∆(λ) − f(λ) = Bias + Aliasing
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The bias term:

E(I(λ)) − f∆(λ) =

∆2

(2π)2n1n2

∑

s∈D

∑

x∈D

E(Z(∆s)Z(∆x))e−i∆(s−x)T λ − f∆(λ) =

∆2

(2π)2

∑

u∈U

(
1 − |u1|

n1

)(
1 − |u2|

n2

)
C∆(u)e−i∆uT λ

− ∆2

(2π)2

∑

u∈Z2

C∆(u)e−iuT λ =

∆2

(2π)2

∑

u∈U
(kn(u) − 1)C∆(u)e−iuT λ − ∆2

(2π)2

∑

Z2−U
C∆(u)e−iuT λ

where

kn(u) =

(
1 − |u1|

n1

)(
1 − |u2|

n2

)
.

The second of the addends is the tail effect. So, we are working with Bartlett-type weights (no

window), and proceeding as in the proof of Theorem 1, we have:

E(I(λ)) − f(λ) = α2n,∆ + o


∆2

2∑

j=1

n−1
j


+ o


∆2

2∑

j=1

n−q
j


+ O(∆τ ),

where

α2n,∆ =
∆2

(2π)2

2∑

j=1

n−1
j

∑

u∈Z2

|uj |C∆(u)e−i∆uT λ.

Therefore, the order of the bias is given by:

O


∆2

2∑

j=1

n−1
j


+ O

(
∆−τ

)
, τ > 2.
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In most applied works in spatial statistics, one can not avoid the use of simulation techniques

for spatial (lattice or geostatistical) dependent data, or even in more theoretical developments,

when trying to illustrate the performance of a certain statistical technique. For instance, when

the approximation of any distributional characteristic of a statistic is required (e.g. a p-value).

Spatial random fields simulation has been an important research topic in spatial statistics.

In the geostatistical context, Gaussian process generation, with a certain covariance struc-

ture, can be done using the Cholesky factorization (Cressie (1993), pp.201-203) of the variance-

covariance matrix, but such a matrix factorization may be computationally expensive. The most

well-known method for generating a multidimensional stationary process, avoiding the factoriza-

tion of the variance-covariance matrix, is the Turning-Bands method (e.g. Chilès and Delfiner

(1999), pp.472-477). The success of this method relies on the fact that it simplifies the multidi-

mensional simulations to the one-dimensional case.

In the Markov random field context, Moura and Balram (1992) consider the problem of gener-

ating a non-causal Gaussian-Markov random field defined on finite lattices. The characterization

of the field structure is not given in terms of its covariance matrix, but on its potential or pre-

cision matrix (the inverse of the covariance matrix). A recursive structure is developed for this

type of processes, consisting of two equivalent one-sided representations obtained by the Cholesky

factorization of the potential matrix.

Also based on the potential matrix, Rue (2001) proposes an algorithm which takes advantages

of the Markov properties of the field, applying numerical techniques for sparse matrices. For

regularly-spaced observations with Gaussian correlations, Martin (2000) obtains the theoretical

autoregressive and moving-average representations. This fact allows for the exact simulation of

a set of observations, given a certain vector of innovations. The author also points out that the

moving-average form is preferable for simulation but the autoregression and moving-average co-

efficients are difficult to approximate.

The methods introduced above, both for geostatistical or lattice data contexts, involve the

covariance matrix. An alternative to these techniques is spectral simulation. On this context,

Shinozuka (1971) proposes a method for simulating multivariate and multidimensional random

processes, with a specified spectral density. Another method for generating a stationary ran-

dom field with an imposed model of covariance function is the so-called Fourier Integral Method

(Borgman et al. (1984), Pardo-Igúzquiza and Chica-Olmo (1993), Yao (1998) and Yao (2004)).

For instance, Pardo-Igúzquiza and Chica-Olmo (1993) describe this algorithm in the multidimen-

sional case and their results are compared with Shinozuka’s method, in one-dimension, and with
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Turning-Bands in two and three dimensions. One of the main advantages of these methods is

their computational efficiency, since the computations involved can be done using the Fast Fourier

Transform algorithm.

We may be interested in the simulation of spatial processes realizations, with a certain covari-

ance (known or unknown) structure. If our aim is to obtain a realization of a spatial process from

which we have a set of observations and the underlying covariance function is not known, we must

estimate first the covariance from these data.

Simulation methods that do honor the observed data (simulated values at observed locations

agree with observed values) are known as conditional simulation methods. However, simulation

procedures that do not honor the data (maybe because no data has been collected) are known as

unconditional simulation methods. We may have obtained some observations of the process, and

our aim could be simulate the process in such a way that the new realizations are consistent with

the observed data. This is conditional simulation which is not in the scope of this chapter. Note

that we focus on non-conditional simulation, although conditiona simulation procedures can be

obtained from unconditional methdos (see Cressie (1993), Section 3.6.2).

On the other hand, in many situations, one only needs to simulate statistics related to the

dependence structure of the process. For instance, simulate covariance or spectral density es-

timators, in order to make inference on these functions. Concretly, one may be interested in

approximating the distribution of the classical nonparametric estimator of the spectral density,

the periodogram (or different estimators derived from this one). In this case, it is worth it to have

an adequate method for generating periodogram values. Different bootstrap approaches, based

on resampling the periodogram, have been proposed in time series context. For instance, Franke

and Härdle (1992) introduce a bootstrap technique for kernel spectral estimates, considering the

periodogram as the response in an approximate multiplicative regression model. This method is

extended in Dahlhaus and Janas (1996) for ratio statistics and Whittle estimates. In Paparoditis

and Politis (1999), a local bootstrap method is proved to be consistent for kernel estimates, ratio

statistics and Whittle estimates. A more complex procedure is given by Kreiss and Paparoditis

(2003), where the authors propose a combination of time domain parametric and frequency do-

main non parametric bootstrap. Instead of considering periodogram values, Fan and Zhang (2004)

propose a parametric method for generating log-periodogram values, regarding the fact that the

log-periodogram can be obatined as the response in an additive regression model. Extensions of

these methods to the multidimensional setting must be done carefully. Apart from some challenges

in the theoretical developments, the results obtained from straightforward extensions may not be

as satisfactory as in the one-dimensional case, as we will be shown in a simulation study. Another
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difficulty that we find when constructing simulation methods for spatial process is the continuous

character of geostatistical data. In this case, the aliasing problem arises.

In this chapter, we focus our attention on spectral simulation methods and we propose a mod-

ification of the Fourier Integral Method which exhibits a better performance. Our purpose is to

generate unconditional simulations. The contents of this chapter can be found in Crujeiras and

Fernández-Casal (2006).

3.1 Some background on simulation techniques for spatial processes

3.1.1 Spectral simulation methods.

We have already seen that any stationary random field has a spectral representation (1.62). There-

fore, simulating a stationary process with a certain covariance (or equivalently, a certain spectral

density), can be done by simulation the corresponding spectral process Y satisfying

E(|Y(B)|2) = F (B), for any Borel set B ∈ R
2.

The spectral process Y can be decomposed in its real and imaginary parts, namely U(λ) =

Re(Y(λ)) and V (λ) = Im(Y(λ)), where U and V satisfy certain conditions that will be described

later.

As we have already seen, if the spatial process Z is defined over a continuum (Z takes values

on any location s ∈ D, that is, geostatistical context), the spectrum lies on λ ∈ R2. For a discrete

process (D is a discrete set of points), we can define the spectrum bounded in Π2. However, in

practice we may aim to recover the spectrum of a continuous process from a discrete realization

and therefore, despite the frequency band is the whole space R2, the frequency behaviour we can

recover is restricted to Π2
∆ = [−π/∆1, π/∆1] × [−π/∆2, π/∆2], where ∆l, l = 1, 2, is the spacing

between neighbouring coordinates in the corresponding direction. This effect is known as aliasing

and it has been discussed in Section 1.3.5. The aliased spectral density has been defined in (1.66).

It is important to note that in the discrete case the aliasing problem does not arise (f∆(λ) ≡
f(λ)). Spectral simulation techniques, as well as most part of the spectral theory for spatial

processes, are based on generalizations of spectral procedures for time series. Therefore, the ex-

tension of one-dimensional algorithms must be made carefully, regarding the possible continuous

character of the spatial process.
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In order to capture the continuous character of the spatial process, consider Z observed at

locations on a regular grid:

D = {0, . . . ,∆1(n1 − 1)} × {0, . . . ,∆2(n2 − 1)}

and denote by N = n1n2 the number of observations. The periodogram (2.2) is usually computed

at the set of Fourier frequencies λk = (λk1 , λk2)
T :

λkl
=

2πkl

∆lnl
; kl = 0,±1, . . . ,±[(nl − 1)/2], l = 1, 2. (3.1)

For simplicity, write the periodogram in terms of the sample covariances as follows:

I(λk) =
∆1∆2

(2π)2

n1−1∑

j1=1−n1

n2−1∑

j2=1−n2

Ĉ(uj)e
−iλT

kuj , (3.2)

where

Ĉ(uj) =
1

N

n1−|j1|∑

k1=0

n2−|j2|∑

k2=0

Z(sk)Z(sk+|j||), (3.3)

|j| = (|j1|, |j2|), uT
j = (uj1 , uj2), ujl

= ∆ljl; jl = 1 − nl, . . . , nl − 1,

and l = 1, 2. In practice, the periodogram is usually computed from equation (3.2), using an FFT

algorithm and with corresponding frequencies given in (3.1). Nevertheless, from this frequency set

it is not possible to recover the complete set of sample covariances {Ĉ(uj) : jl = 0, . . . , nl−1, l =

1, 2} (see e.g. Priestley (1981), pp. 577-579, for more details on the one-dimensional case).

Therefore, it may be preferable to compute the periodogram at a larger set of frequencies, given

by λT
k = (λk1 , λk2):

λkl
=

2πkl

∆l(2nl − 1)
; kl = 0,±1, . . . ,±(nl − 1), l = 1, 2. (3.4)

In order to use an FFT algorithm, it would be necessary to obtain a (2n1 − 1)× (2n2 − 1) dataset

by zero padding. One could find in the literature different expressions for the Fourier frequency

set. With representation (3.4), the Fourier frequencies are symmetric in Π2
∆ and the boundary is

never reached (avoiding some complications).

Any stationary random field admits the Fourier-Stieltjes representation (1.62), as we have

already commented, and this fact is the key point in spectral simulation. This integral can be

approximated by a discrete transformation. Considering a regular grid with {0, . . . ,m1 − 1} ×
{0, . . . ,m2 − 1} observations (for simplicity, assume that m1 and m2 are odd), we can define:

J(λk) =
1

M

m1−1∑

j1=0

m2−1∑

j2=0

Z(sj)e
−iλT

k sj , (3.5)
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where M = m1m2 y λkl
= 2πkl

∆lml
, kl = 0, . . . ,ml − 1, l = 1, 2. The observations of the process in

the grid points can be recovered by an Inverse Fourier Transform:

Z(sj) =

m1−1∑

k1=0

m2−1∑

k2=0

J(λk)eiλ
T
k sj , (3.6)

where J(λk) are complex random variables:

J(λk) = U(λk) + iV (λk),

such that J(λm−k) = J(λ−k) = J(λk)c, or equivalently, its real and imaginary parts verify:

U(λm−k) = U(λ−k) = U(λk),

V (λm−k) = V (λ−k) = −V (λk).

Asymptotic properties for U and V have been studied in Brilinger (1974) (as an extension of

Theorem 4.4.2 in Brillinger (1981)), for the particular case of ∆1 = ∆2 = 1. Under the assumption

that well separated values of the process are weakly dependent (a kind of mixing condition), it

can be proved that asymptotically :

(i) U(λk) and V (λk) are independent.

(ii) U(λk) and U(λj) are independent, for k 6= ±j. This assertion also holds for V .

(iii) E(U(λk)) = E(V (λk)) = 0, for λk 6= 0 and E(U(0)) = E(Z(s)) (note that V (0) = 0).

(iv) V ar

(√
M∆1∆2

(2π)2
U(λk)

)
=
f∆(λk)

2
, for λk 6= 0. This assertion also holds for V . Besides,

for the origin, V ar

(√
M∆1∆2

(2π)2
U(0)

)
= f∆(0). In terms of the discrete approximation

(3.5), it implies that:

V ar

(√
M∆1∆2

(2π)2
|J(λk)|

)
= f∆(λk).

(v) U(λk) and V (λk) are asymptotically Gaussian distributed.

Taking into account properties (i)-(v), it is possible to generate Z(sj) values from equation

(3.6), by simulation U(λk) and V (λk) variables from the (asymptotic) normal distribution. In

this case, the variance could be approximated by:

σ2
k = V ar (|J(λk)|) ≈ (2π)2

M∆1∆2
f∆(λk). (3.7)

From another point of view, we could consider (3.6) as the mechanism which generates the

process. Therefore, we would have a circular process:

Z(sm−j) = Z(s−j);Z(sj) = Z(sm+j),
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and, assuming that this process is also stationary, its covariogram satisfies:

C∗(um−j) = C∗(u−j) = C∗(uj). (3.8)

In this situation, it is easy to see (for instance, in Priestley (1981), pp. 258-261, for the one-

dimensional case) that:

σ2
k = V ar (|J(λk)|) =

1

M

m1−1∑

j1=0

m2−1∑

j2=0

C∗(uj)e
−iλT

kuj . (3.9)

Note that, asymptotically, C∗(uj) = C(uj). Most spectral simulation algorithms are based on

this result, aproximating σ2
k by the Discrete Fourier Transform of the covariances (symmetrized in

such a way that (3.8) holds). It may be also taken into account that the covariances of the original

process may not be valid for a circular process. This fact may result in negative approximations

of the variances σ2
k. In practice, negative estimations are normally set to zero, although better

results may be expected when considering (3.7). Further comments on this problem are given at

the end of this section.

In any of the spectral simulation methods based on (3.6), since the covariances verify (3.8), if

we want to obtain a sample on a n1 ×n2 grid that reproduces a certain covariance structure, data

must be generated on a m1 ×m2 grid with ml ≥ 2nl − 1, l = 1, 2. For simplicity, we consider

ml = 2nl − 1, for l = 1, 2, although ml may be preferably fixed to larger values (more details will

be given at the end of the section).

3.1.2 Parametric Model.

As we pointed out in the introduction, sometimes one does not need to reproduce a complete set

of data, but only its signal. Therefore, in some cases it would be enough with using a resampling

technique for reproducing periodogram (or log-periodogram) values. Assume that the set of

observations can be represented in the following way:

Z(sj) =
∞∑

k=−∞

∞∑

l=−∞
aklε(s1 − ∆1k, s2 − ∆2l), (3.10)

where the innovation variables ε come from a white noise process and the {akl} are an L2-summable

sequence. Then (as an extension of Theorem 10.3.1 in Brockwell and Davis (1991), pp. 346-347),

the periodogram can be written as:

I(λk) = f∆(λk)Wk +R∆
N (λk) (3.11)
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where the Wk’s are independent identically distributed random variables with standard exponetial

distribution and R∆
N (λk) is a residual term. The idea of a Bootstrap technique for resampling

the periodogram in time series context (Franke and Härdle (1992)) comes from model (3.11).

Ignoring the residual term R∆
N (λk) leads to representing the periodogram as the response in a

multiplicative regression model. Applying logarithms in (3.11), we have

Yk = m∆(λk) + zk + r∆k (3.12)

where m = log f∆ denotes the log-spectral density, Yk is the log-periodogram value at frequency

λk and

r∆k = log

[
1 +

R∆
N (λk)

f∆(λk)Wk

]
. (3.13)

The variables zk are independently and identically distributed with Gumbel(0, 1) distribution.

The expected value for this variables is the Euler constant E(zk) = −0.57721 and the variance is

V ar(zk) = π2/6.

Fan and Zhang (2004) propose a Bootstrap method for resampling log-periodogram values,

based on model (3.12), in the discrete time series setting. The simulated log-periodogram values

at the Fourier frequencies λk are obtained as:

Y ∗
k = mθ̂(λk) + z∗k, (3.14)

where mθ̂ is a parametric estimator of the log-spectral density and z∗k are independent random

realizations of a Gumbel(0, 1) distribution. This parametric estimator of the log-spectral density

is obtained by maximizing the log-likelihood function associated with (3.12) when ignoring the

residual term r∆k . Proceeding in such a way, a source of variability in the periodogram scale is

removed, given by R∆
N (λk), and part of the uncertainty given by the Wk variables. In fact, the

parametric estimator θ̂ is the Whittle estimator (see Section 2.5). Apart from the estimation

problem, even when considering the theoretical spectral density, the results obtained with sim-

ulation methods based on (3.12), ignoring r∆k , may not be satisfactory in the multidimensional

case. Similar results are obtained from simulation methods based on (3.11) when ignoring R∆
N (λk).

When introducing this straightforward extension of a time series simulation method, we

are pursuing a double objective: first, we want to emphasize that the naive extension of one-

dimensional techniques to the spatial context may not lead to satisfactory results. Secondly, we

want to remark that ignoring this residual part r∆k causes a serious loss of variability in the esti-

mation of the log-spectral density.
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3.2 Fourier simulation methods.

In this section we will recall the Fourier Integral Method, proposed in Pardo-Igúzquiza and Chica-

Olmo (1993) and comment some of its drawbacks. We will propose an extension of this method:

the Modified Fourier Integral Method.

3.2.1 The Fourier Integral Method.

A spectral simulation algorithm, called the Fourier Integral Method (FIM), has been proposed for

the simulation of stationary processes with a certain dependence structure. Originally introduced

in Borgman et al. (1984), this algorithm was extended to higher dimensions in Pardo-Igúzquiza

and Chica-Olmo (1993). Yao (1998) adapts this method for conditional simulation. Given a

certain covariance structure (or a variogram model), the algorithm proposed by these authors is

as follows:

1. Use the variogram or covariogram model to compute discrete covariances C(uj), for j1 =

0, . . . , n1 − 1 and j2 = 0, . . . , n2 − 1.

2. Compute the discrete Fourier transform of {C∗(uj)}, defined by C∗(uj) = C(uj) if jl ≤ nl

and C∗(um−j) = C(uj) otherwise, and obtain the discrete density spectrum (3.9). If negative

values are obtained, these values are often set to zero.

3. Draw random phases φ(λk), from a uniform distribution in [0, 2π]. To obtain real values,

phases must be symmetric: φ(λk) = −φ(λ−k)

4. Build the Fourier coefficients as J(λk) =
√
σ2
ke

−iφ(λk), for k 6= 0 and J(λ0) =
√

2σ2
0 cos(λ0).

5. Perform the Fast Fourier Transform (3.6) to get the simulated Z(sj) values.

6. Take a subgrid of (n1 × n2) observations (and compute the periodogram for these data, if

that is the case).

Notice that, with this algorithm, the only source of variability in the simulated dependence

structure comes from Step 6. For example, if one computes the periodogram with the complete

set of data, no variations in the periodogram values will be found.

3.2.2 The Modified Fourier Integral Method.

We revise the FIM considering an additional source of variability in the frequency domain. We

introduce in the amplitudes of the Fourier coefficients an exponential variable, as it is suggested
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in the representation of the periodogram (3.11). The Modified Fourier Integral Method (MFIM)

is as follows:

1. Compute the approximation of the spectral variances σ2
k. This could be done by different

ways:

(a) Proceed as in Steps 1 and 2 from FIM algorithm.

(b) Use the asymptotic approximation (3.7).

(c) Combine (a) and (b) (e.g. use (3.9) and if negative values are obtained, replace them

by (3.7)).

2. Draw random phases φ(λk), from a uniform distribution in [0, 2π]. To obtain real values,

phases must be symmetric: φ(λk) = −φ(λ−k)

3. Build the Fourier coefficients as J(λk) =
√
σ2
kWke

−iφ(λk), for k 6= 0 and J(λ0) =
√

2σ2
0W0 cos(λ0),

where the variables {Wk} are independent and randomly sampled from a standard expo-

nential distribution Wk ∼ Exp(1).

4. Perform the Fast Fourier Transform (3.6) to get the simulated Z(sj) values.

5. Take a subgrid of (n1 × n2) observations (and compute the periodogram for these data, if

that is the case).

By the following theorem, it is easy to show that the realizations of the spectral process J(λk)

drawn fron the MFIM method verify the asymptotic conditions of independence, normal distrib-

ution, zero mean and variance given in (iv) on the real and imaginary parts.

Theorem. (Box and Muller (1958)). Let A1 and A2 be independent random variables, U(0, 1)

distributed. Consider the random variables:

B1 = (−2 logA1)
1/2 cos(2πA2), B2 = (−2 logA1)

1/2 sin(2πA2).

Then, B1 and B2 are independent random variables, N(0, 1) distributed.

Since A1 ∼ U(0, 1), the transformed variable (− logA1) follows a standard exponential dis-

tribution, Exp(1), which coincides with the distribution of the Wk variables involved in MFIM

method. Taking random amplitudes
√
σ2
kWk, gives zero mean Gaussian variables with variance

σ2
k/2. The computational efficiency in the generation of the Fourier coefficients can be improved,

avoiding the computation of sines and cosines, by considering a similar approximation to that
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given by Ross (1997), pp. 74-75.

This method provides realizations of a Gaussian process, which could be done by directly sim-

ulating Gaussian variables. For instance, in Chilès and Delfiner (1999) (pp.496-498) the algorithm

for simulating a unidimensional spatial process (based on the approximation (3.9)) is thoroughly

described. It is important to note that this algorithm is based on the approximation of a stationary

circular process, which is equivalent to the circular embedding method proposed by Dietrich and

Newsam (1997). The advantage of considering an algorithm based on the Box-Muller represen-

tation, makes easier the extension of this method to non-Gaussian cases (see Cressie (1993), p.205).

From Theorem 1.5.5 in Muirhead (1982), it can be seen that if J is spherically distributed,

then the random phases are uniformly distributed on Π2 and the distribution of J is characterized

by the distribution of the amplitudes in the following way:

f|J |2(y) = Cy−1/2h(y) and fJ(z) = Ch(z2), (3.15)

where fJ denotes the univariate density of the real and imaginary parts of J(λk). We could

consider the generation of scaled Student’s t random variables with p > 2 degrees of freedom, which

corresponds with uniformly distributed random phases on Π2 and squared random amplitudes W 2
k

with density:

f|J |2(y) =

√
p− 2Γ

(
p+1
2

)

pΓ
(p

2

)√
π

y−1/2

(
1 + p−2

p y
) p+1

2

, y > 0. (3.16)

Both for the discrete and continuous cases, but more noticeable in this last situation, trunca-

tion errors from the computation in Step 2 may not be negligible. The discrete density spectrum

is obtained from the Discrete Fourier Transform of m1 ×m2 covariances, and not from the whole

set of covariances, which leads to a non finite sum. In the geostatistical context, if the range is

large relative to the number of covariances, the discrete spectrum will be a poor approximation

of the spectral density.

As we have already noticed, in order to simplify the description of the algorithms, we take

ml = 2nl − 1, l = 1, 2, although ml may be better fixed to other values. The discrete density

spectrum (3.9) does not take into account the covariances for all possible lags. Thus, negative

estimates for the spectral variances σ2
k may be obtained. This may happen when the range of

the spatial dependence is large, compared with the simulation grid size. If the covariogram has a

finite range r, this truncation problem can be avoided by choosing (ml − 1)∆l ≥ 2r. In case the

covariogram has a non-finite range, the truncation problem persists no matter now large ml are

taken. In this case, it may be better to select (ml − 1)∆l ≥ 2r∗, where r∗ denotes the practical
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range (see also Chilès and Delfiner (1999), pp.500-501 for different approaches).

From a computational point of view, it may be interesting to modify the ml values, in order

to take advantage of the FFT algorithm we chose, as it has been pointed out in Section 1.3.2.

We could chose m1 and m2 as products of small prime factors. If ml, l = 1, 2, satisfy this con-

dition, then the computational effort required is proportional to M log(M). Therefore, ml values

should be approximated to the higher closest k-smooth number. Other authors consider ml = 2nl,

l = 1, 2, which may be a good option if nl are smooth numbers.

One must be careful in the construction of the Fourier coefficients. With an odd number of

Fourier frequencies, the Fourier coefficient at the origin is real and in all the other frequencies

we have complex coefficients. If ml is even, then the frequency ± π
∆l

is reached. The algorithms

described above should be adapted in a suitable way to these situations. The Fourier coefficients

corresponding to frequencies with both components multiples of π
∆l

must be handled in the same

way as the origin, with real coefficients.

3.2.3 Aliasing correction.

Another problem of the spectral simulation method is related to the aliasing phenomena, which

appears when the spectral density of a continuous spatial process presents significative side lobes

outside Π2
∆.

In practice, in order to avoid inconvenients derived from the aliasing problem, the spacing in

the simulation grid may be reduced, and consider ∆∗
l = ∆l/pl, n

∗
l = plnl, with integer pl > 1.

Proceeding in this way, the last subsampling step in the algorithms should be modified and one

from each pl simulated values should be taken in l dimension.

The aliasing problem has already been commented in Section 1.3.5 and, as we have already

seen, the FIM method does not account for this feature when trying to recover the signal of a

continuous spatial (geostatistical) processes from a discrete set of observations. In the Modified

Fourier Integral Method, for the continuous process situation, we compute σ2
k depending on ∆1

and ∆2, which can be seen as the aliased dicrete density spectrum.

Nevertheless, this approach may not be sufficient if there is a significant spectral mass beyond

the frequency band Π2
∆. There are different options for reducing the aliased effect. Some modifi-
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cations for aliasing reduction involve the specification of a functional form for the spectral density

f(‖λ‖) out of the frequency band Π2, in order to determine the aliasing term. The aliased version

can be approximated, at each frequency, by truncation. That is:

f(λ) ≈ f∆(λ) −
τ1∑

m1=−τ1

τ2∑

m2=−τ2

f(‖λ + 2πm‖).

The selection of the truncation terms τ1 and τ2 depends on the characteristics of the density, as

well as on the size of the sample grid.

A more formal approach, in the time series setting, is given by Robinson (1976). In this work,

the author investigates the biases that may occur in the estimation of the spectral density when

some spectral mass lies beyond the bounded frequency band [−π, π]. Some modifications to reduce

the biases are also proposed. Under isotropy, we can extend in a natural way this technique to

reduce the effect of aliasing in a spatial spectrum. The aliasing term,

∑

m1 6=0

∑

m2 6=0

f(‖λ + 2πm‖) (3.17)

can be approximated when the theoretical spectral density shows a certain behaviour for high

frequencies. In particular, as an extension of (Robinson (1976)), the following cases are considered:

f(‖λ‖) = C‖λ‖−n, |λ1| > π or |λ2| > π, (3.18)

and when the exponent n ∈ Z is large enough, one could proceed to the limiting case

f(‖λ‖) = Ce−‖λ‖, |λ1| > π or |λ2| > π. (3.19)

For the Matérn spectral density (continuous spectrum), in Section 3.3, if we consider the modifica-

tion for correcting aliasing proposed in (3.19), which makes sense for large smoothness parameter

ν, the aliased term in the spectral density is bounded by (if f is even):

∑

|m1|≥1

∑

|m2|≥1

φe−‖λ+2πm‖ =

∑

|m1|≥1

∑

|m2|≥1

φe−
√

(λ1+2πm1)2+(λ2+2πm2)2 ≤

φ
∑

|m1|≥1

∑

|m2|≥1

e−(λ1+2πm1)2e−(λ2+2πm2)2 =

φ
∑

|m1|≥1

e−(λ1+2πm1)2
∑

|m2|≥1

e−(λ2+2πm2)2 =

φ coshλ1 coshλ2

e2 sinh2 1
.
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If f is odd: ∑

|m1|≥1

∑

|m2|≥1

φe−‖λ+2πm‖ =
φ sinhλ1 sinhλ2

e2 sinh2 1
.

For the particular case of an exponential density (ν = 1/2), one could use a less conservative

approach, given by (3.18); that is, considering f(λ) = φ‖λ‖−2 outside the frequency band. The

aliased term can be then bounded by:
∑

|m1|≥1

∑

|m2|≥1

φ‖(λ1 + 2πm1, λ2 + 2πm2)‖−2 =

∑

|m1|≥1

∑

|m2|≥1

φ
1

(λ1 + 2πm1)2 + (λ2 + 2πm2)2
≤

φ
∑

|m1|≥1

1

(λ1 + 2πm1)2

∑

|m2|≥1

1

(λ2 + 2πm2)2
=

4φVν

(
λ1

π

)
Vν

(
λ2

π

)
,

where

Vν(x) =
π

2

(
sin−2

(πx
2

)
+ x−2

)
.

The bounds for the aliased term proposed above have a limited use in practice, when a dataset

is given and the covariance structure is unknown. For a generation of a spatial process with a

certain spatial-spectral density, the bounds above may help to calibrate the influence of the alised

part. Nevertheless, we must say that, in the cases we have studied, the aliasing effect involves a

lower error than that one caused by truncation in Step 2, both for FIM and MFIM.

3.3 Simulation Results.

In the lattice context, we consider the doubly-geometric process (see Martin (1979)), namely

BAR(1), with spectral density given by (2.92). 10000 generations of the process are drawn in a

20×20 regular grid. We compare the results obtained with those produced by methods for gener-

ating linear-by-linear processes (see Alonso et al. (1996)), the FIM, the MFIM and an extension

of a simulation algorithm from time series.

Extending time series simulation techniques, we generate log-periodogram values from equa-

tion (3.14), with mθ the theoretical log-spectral density, following Fan and Zhang (2004). We will

call this procedure Log-Periodogram Simulation method (LPS). This procedure will be equivalent

to generate periodogram values from representation (3.11), ingoring R∆
N (λk).
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As a represenative of geostatistical processes, we consider Gaussian spatial process with Matérn

spectral density (see Stein (1999)). For certain smoothness and range parameters, the covariances

of this model are not valid for a circular process. Therefore, we may obtain negative approxi-

mations for the spectral variances σ2
k. For the MFIM algorithm, we observe better results when

considering option (c) in Step 1, although option (a) provide quite similar results. In this case,

we take Cholesky’s factorization method as reference (benchmark).

Mean Error, Mean Square Error and Whittle Error surfaces are computed in order to com-

pare the performance of the periodogram as an estimator of the spectral density, when data are

provided by different simulation procedures.

For B simulated samples, Mean, Mean Square and Whittle Errors of the log-periodogram as

an estimate for the log-spectral density are given by (3.20), (3.21) and (3.22), respectively.

ME(mθ(λk), Yk) = 1
B

∑B
b=1(mθ(λk) − Y b

k ); (3.20)

MSE(mθ(λk), Yk) = 1
B

∑B
b=1(mθ(λk) − Y b

k )2, (3.21)

WE(mθ, Yk) = 1
B

∑B
b=1(Y

b
k −mθ(λk) − eY

b
k
−mθ(λk)). (3.22)

These three surfaces are compared when data are generated by traditional methods, FIM and

MFIM. Besides, we also compare the results when log-periodogram values are obtained by LPS.

3.3.1 Bidimensional autoregresive process.

The BAR(1) process has already been introduced in Section 2.6. It is the simplest case of the

linear-by-linear processes introduced by Martin (1979). For the BAR(1) model, realizations can

be obtained with the following formula:

Z(i, j) = β1Z(i− 1, j) + β2Z(i, j − 1) − β1β2Z(i− 1, j − 1) + ε(i, j) (3.23)

where ε are independent, identically distributed Gaussian random variables, with zero-mean and

variance σ2. Parameters β1 and β2 must be in [0, 1) to guarantee stationarity. The log-spectral

density for an BAR(1) process (see equation (2.92)), with autoregression parameters β1 = β2 = 0.5

is shown in Figure 3.1.
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A method for generating this process is proposed by Alonso et al. (1996). For i = 2, . . . , n1

and j = 2, . . . , n2, a realization from a bidimensional autoregresive process, in a regular grid

D = {1, . . . , n1} × {1, . . . , n2} can be obtained by computing:

Z(i, j) = β1Z(i− 1, j) + β2Z(i, j − 1) − β1β2Z(i− 1, j − 1) + ε(i, j)

Z(i, 1) = β1Z(i− 1, 1) + ε(i, 1)

Z(1, j) = β2Z(1, j − 1) + ε(1, j)

Z(1, 1) = ε(1, 1)

where

ε(i, j) ∼ N(0, σ2)

ε(i, 1) ∼ N(0, (1 − β2
1)−1σ2)

ε(1, j) ∼ N(0, (1 − β2
2)−1σ2)

ε(1, 1) ∼ N(0, (1 − β2
1)−1(1 − β2

2)−1σ2)

and all the inputs are assumed to be jointly independent.

Figure 3.1: Log-spectral density for a BAR(1) process, given by equation (2.92), with autoregres-

sion parameters β1 = β2 = 0.5.

Table 3.1 shows summary statistics (mean, median and standard deviation) for a 20× 20 and

a 50 × 50 regular grid simulation. These statistics are obtained from 10000 simulations. Results

from LPS simulations are not affected by the sample size. The mean and median oscilate around

the Euler constant c0 and the Mean Square Error is about (π2/6 + c20) (see remark at the end of

the section for further explanation). Besides, the LPS method exhibits lower variation than the

other methods. The MFIM shows a better performance than the FIM.
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Table 3.1: Summary statistics.

Mean Error Linear MFIM FIM LPS

Mean -0.5100 -0.5120 -0.4823 -0.5762

20 × 20 Median -0.5107 -0.5109 -0.4816 -0.5748

St.dev. 0.0964 0.0967 0.0898 0.0682

Mean -0.5457 -0.5460 -0.5167 -0.5774

50 × 50 Median -0.5458 -0.5461 -0.5165 -0.5775

St.dev. 0.0369 0.0368 0.0345 0.0261

Mean Square Error

Mean 1.8533 1.8578 1.7698 1.9739

20 × 20 Median 1.8362 1.8414 1.7549 1.9599

St.dev. 0.2827 0.2804 0.2726 0.2343

Mean 1.8839 1.8836 1.7955 1.9789

50 × 50 Median 1.8829 1.8414 1.7931 1.9772

St.dev. 0.1088 0.1099 0.1056 0.0899

Whittle Error

Mean 1.5754 1.5766 1.5474 1.5764

20 × 20 Median 1.5740 1.5748 1.5456 1.5757

St.dev. 0.0589 0.0579 0.0554 0.0425

Mean 1.5723 1.5720 1.5431 1.5774

50 × 50 Median 1.5719 1.5719 1.5427 1.5773

St.dev. 0.0222 0.0226 0.0212 0.0164
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LPS MFIM

Linear-by-linear FIM

Figure 3.2: BAR(1) process. Mean Error for the estimation of the log-spectral density. Linear-by-

linear: simulations by Alonso et al. (1996). LPS: simulations by the extension of Fan’s parametric

Bootstrap. 20 × 20 grid.

For a 20× 20 regular grid simulation, in terms of Mean Error (Figure 3.2), both FIM and the

MFIM show a good behaviour, although MFIM is slightly better. The log-periodogram values

from LPS do not capture all the variability. In Figure 3.2, the loss of variability in the LPS method

is clear. Recall that this method ignores the term r∆k in the representation of the log-periodogram

(3.12). This term can be considered proportional to the inverse of the spatial spectral density,

represented in Figure 3.1. Removing the term r∆k provoques the lost of the lobes that appear in

the Mean Error surfaces for the other methods. This behaviour is also shown in Figure 3.3, in

Mean Square Error terms. The Mean Square Error surface obtained by LPS simulations shows

an almost constant shape.

For Whittle’s Error (Figure 3.4), LPS exhibits a good behaviour. This fact is not surprising

because the log-periodogram values are computed from a regression model which also provides the

log-likelihood (see remark at the end of the section). While results obtained from data generated

by the FIM shows that it does not capture all the variability in terms of the log-periodogram,

MFIM still shows a good behaviour.
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LPS MFIM

Linear-by-linear FIM

Figure 3.3: BAR(1) process. Mean Square Error for the estimation of the log-spectral density.

Linear-by-linear: simulations by Alonso et al. (1996). LPS: simulations by the extension of Fan’s

parametric Bootstrap. 20 × 20 grid.

It may be surprising the fact that LPS works badly for ME and MSE, but it does pretty well

in terms of Whitle’s Error. For Yk generated by LPS method, ME, MSE and WE results are:

1

B

B∑

i=1

(Y i
k −mθ(λk)) =

1

B

B∑

i=1

zi
k ≈ E(zk) = C0 = −0.57721,

1

B

B∑

i=1

(Y i
k −mθ(λk))2 =

1

B

B∑

i=1

(zi
k)2 ≈ π2

6
+ c20 = 1.978,

1

B

B∑

i=1

(Y i
k −mθ(λk) − eY

i
k
−mθ(λk)) =

1

B

B∑

i=1

(zi
k − ez

i
k) ≈ −1.57721.

3.3.2 Matérn spectral density family.

The Matérn class of spectral densities has been introduced in Section 1.3.6. Equations (1.67) and

(1.68) correspond to the spatial spectral density and the corresponding covariance function. In

this section, we have considered a Gaussian process with spatial spectral density belonging to the

Matérn family.

In this context, we will confront two problems: the aliasing and the truncation errors. In

Figure 3.5 we can see the error surfaces for the discrete density spectrum as an approximation
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LPS MFIM

Linear-by-linear FIM

Figure 3.4: BAR(1) process. Whittle’s Error for the estimation of the log-spectral density. Linear-

by-linear: simulations by Alonso et al. (1996). LPS: simulations by the extension of Fan’s para-

metric Bootstrap. 20 × 20 grid.

to the spatial spectral density, in logarithmic scale. In order to point out that truncation errors

become serious for large autocorrelation ranges, we have fixed the smoothness parameter ν = 0.5

and, over a grid of size 41 × 41, different autocorrelation ranges (a = α−1) are explored: a = 10,

a = 20 and a = 40. Autocorrelation ranges with values a = 10 and a = 20 correspond to a 25%

and a 50% of the side-length of the grid. This effect is related to the construction of covariances,

which are not valid for a circular process (see Section 3.1.2).

In Tables 3.2 to 3.4 we show summary statistics for the Mean, Mean Square and Whittle’s

errors for the log-periodogram as an estimator of the log-spectral density. Simulations were carried

out considering a Matérn model, with smoothness parameter ν = 0.5 and different autocorrelation

ranges. In order to make results comparable, we have consider ranges of the 20%, 50% and 80%

of the side-length of the grid. MFIM shows slightly better results for a 20 × 20 regular grid, and

its performance improves for 50 × 50 simulations.

In Table 3.5, we show the results for ν = 0.05 and different autocorrelation ranges, for 20× 20

and 50 × 50 regular grids. In Table 3.6, the same summary statistics are shown for a larger

smoothness parameter ν = 1.00.



3.3. Simulation Results. 117

In Figures 3.6 to 3.8 we show the Mean Error, Mean Square Error and Whittle’s Error surfaces

for the estimation of the log-spectral density, by Cholesky factorization, FIM, MFIM and LPS

methods. In these figures, the smoothness parameter is fixed to ν = 0.5 and the autocorrelation

range is large (80% of the side-length of the grid). We have already seen that truncation errors

are serious in this situation, around frequencies with one zero component. The most relevant

differences are found around the origin. The peaks near frequencies with components ±π appear

because of the spectral density (see Figure 3.5).

Figure 3.5: Error surfaces for the discrete approximation of the log-spectral density. Smoothness

parameter ν = 0.5. Grid size 41× 41. From left to right and from top to bottom, autocorrelation

range a = α−1: a = 10, a = 20 and a = 40.

Just a note about computational time: in a Pentium IV (2.6 Ghz), for the simulation a 50×50

regular grid using Cholesky factorization, it takes 28.19 seconds, approximately. The same simu-

lation using MFIM takes 0.01 seconds.
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Table 3.2: Summary statistics. Matern spectral density with parameters ν = 0.5 and α = 80%N .

Mean Error Cholesky MFIM FIM LPS

Mean 0.3319 0.3445 0.3783 -0.5773

20 × 20 Median 0.3226 0.3333 0.3729 -0.5759

St.dev. 0.1453 0.1417 0.1262 0.0613

Mean 0.2685 0.2763 0.3052 -0.5771

50 × 50 Median 0.2589 0.2671 0.2989 -0.5772

St.dev. 0.0826 0.0784 0.0706 0.0251

Mean Square Error

Mean 1.9102 1.9209 1.8983 1.9787

20 × 20 Median 1.8863 1.8973 1.8846 1.0699

St.dev. 0.2538 0.2511 0.2281 0.2110

Mean 1.7870 1.8016 1.7810 1.9785

50 × 50 Median 1.7681 1.7858 1.7728 1.9767

St.dev. 0.1516 0.1476 0.1325 0.0871

Whittle Error

Mean 2.6621 2.6975 2.6691 1.5776

20 × 20 Median 2.4958 2.5269 2.5757 1.5771

St.dev. 0.6159 0.6217 0.4791 0.0384

Mean 2.6228 2.6649 2.6422 1.5772

50 × 50 Median 2.4705 2.5169 2.5597 1.5771

St.dev. 0.5522 0.5419 0.4273 0.0158
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Table 3.3: Summary statistics. Matérn spectral density with parameters ν = 0.5 and α = 20%N .

Mean Error Cholesky MFIM FIM LPS

Mean 0.1892 0.1904 0.2171 -0.5773

20 × 20 Median 0.1883 0.1861 0.2166 -0.5759

St.dev. 0.1106 0.1088 0.1008 0.0613

Mean 0.1539 0.1529 0.1806 -0.5771

50 × 50 Median 0.1516 0.1503 0.1797 -0.5772

St.dev. 0.0549 0.0535 0.0498 0.0251

Mean Square Error

Mean 1.8207 1.8125 1.7741 1.9787

20 × 20 Median 1.8073 1.8022 1.7670 1.9699

St.dev. 0.2063 0.2010 0.1950 0.2110

Mean 1.7753 1.7768 1.7354 1.9785

50 × 50 Median 1.7714 1.7741 1.7321 1.9767

St.dev. 0.0869 0.0874 0.0827 0.0871

Whittle Error

Mean 2.1712 2.1686 2.1426 1.5776

20 × 20 Median 2.1474 2.1461 2.1283 1.5771

St.dev. 0.1794 0.1794 0.1541 0.0384

Mean 2.1353 2.1338 2.1103 1.5772

50 × 50 Median 2.1142 2.1142 2.0955 1.5771

St.dev. 0.1160 0.1134 0.0991 0.0158
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Table 3.4: Summary statistics. Matérn spectral density with parameters ν = 0.5 and α = 50%N .

Mean Error Cholesky MFIM FIM LPS

Mean 0.2708 0.2728 0.3033 -0.5773

20 × 20 Median 0.2652 0.2644 0.2999 -0.5759

St.dev. 0.1313 0.1303 0.1178 0.0613

Mean 0.2330 0.2353 0.2643 -0.5771

50 × 50 Median 0.2257 0.2281 0.2600 -0.5772

St.dev. 0.0753 0.0726 0.0659 0.0251

Mean Square Error

Mean 1.8706 1.8650 1.8334 1.9787

20 × 20 Median 1.8561 1.8496 1.8231 1.9699

St.dev. 0.2241 0.2194 0.2038 0.2110

Mean 1.7983 1.8028 1.7744 1.9785

50 × 50 Median 1.7839 1.7902 1.7668 1.9767

St.dev. 0.1282 0.1151 0.0726 0.0871

Whittle Error

Mean 2.3919 2.3903 2.3629 1.5776

20 × 20 Median 2.3126 2.3037 2.3152 1.5771

St.dev. 0.3598 0.3616 0.2863 0.0384

Mean 2.4330 2.4412 2.4184 1.5772

50 × 50 Median 2.3373 2.3483 2.3639 1.5771

St.dev. 0.3700 0.3625 0.2906 0.0158
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Table 3.5: Summary statistics. Matérn spectral density 20 × 20 regular grid, ν = 0.05 with

different ranges.

Mean Error Cholesky MFIM FIM

Mean 1.6390 1.6400 1.6705

80% Median 1.6402 1.6401 1.6722

St.dev. 0.0880 0.0870 0.0824

Mean 1.6357 1.6367 1.6672

20% Median 1.6370 1.6366 1.6687

St.dev. 0.0871 0.0860 0.0818

Mean 1.6360 1.6369 1.6673

50% Median 1.6372 1.6369 1.6690

St.dev. 0.0876 0.0863 0.0822

Mean Square Error

Mean 4.8680 4.8657 4.9074

80% Median 4.8646 4.8617 4.9051

St.dev. 0.2759 0.2787 0.2549

Mean 4.8712 4.8701 4.9121

20% Median 4.8668 4.8666 4.9085

St.dev. 0.2757 0.2781 0.2548

Mean 4.8657 4.8640 4.9060

50% Median 4.8617 4.8613 4.9027

St.dev. 0.2753 0.2546 0.0863

Whittle Error

Mean 9.8501 9.8458 9.88090

80% Median 9.8136 9.8125 9.7882

St.dev. 0.8455 0.8476 0.7368

Mean 9.8572 9.8531 9.8159

20% Median 9.8200 9.8245 9.7977

St.dev. 0.8455 0.8473 0.7361

Mean 9.8424 9.8382 9.8015

50% Median 9.8066 9.8068 9.7838

St.dev. 0.8442 0.8465 0.7358
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Table 3.6: Summary statistics. Matérn spectral density: 20 × 20 regular grid, ν = 1.00 with

different ranges.

Mean Error Cholesky MFIM FIM

Mean 1.2255 1.3405 1.3742

80% Median 1.1491 1.2604 1.3023

St.dev. 0.3453 0.3149 0.2878

Mean 0.3892 0.3918 0.4210

20% Median 0.3635 0.3638 0.4025

St.dev. 0.2138 0.2152 0.1930

Mean 0.7654 0.8183 0.8537

50% Median 0.6973 0.7506 0.7939

St.dev. 0.3245 0.3117 0.2833

Mean Square Error

Mean 3.4625 3.8331 3.9306

80% Median 3.2863 3.6326 3.7780

St.dev. 1.1230 1.0634 0.9264

Mean 2.0643 2.0647 2.0592

20% Median 2.0204 2.0152 2.0353

St.dev. 0.3742 0.3743 0.3337

Mean 2.6223 2.7414 2.7947

50% Median 2.5026 2.6135 2.7116

St.dev. 0.7726 0.7604 0.6583
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Cholesky Fourier

Figure 3.6: Matérn spectral density: ν = 0.5, α = 80%N . Mean Error for the estimation of the

log-spectral density. Linear-by-linear: simulations by Alonso et al. (1996). Fourier: simulations

by FIM. Modified Fourier: simulations by MFIM. LPS: simulations by the extension of Fan’s

parametric Bootstrap. 20 × 20 grid.
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LPS Modified Fourier

Cholesky Fourier

Figure 3.7: Matérn spectral density: ν = 0.5, α = 80%N . Mean Square Error for the estimation

of the log-spectral density. Linear-by-linear: simulations by Alonso et al. (1996). Fourier: sim-

ulations by FIM. Modified Fourier: simulations by MFIM. LPS: simulations by the extension of

Fan’s parametric Bootstrap. 20 × 20 grid.
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LPS Modified Fourier

Cholesky Fourier

Figure 3.8: Matérn spectral density: ν = 0.5, α = 80%N . Whittle’s Error for the estimation of the

log-spectral density. Linear-by-linear: simulations by Alonso et al. (1996). Fourier: simulations

by FIM. Modified Fourier: simulations by MFIM. LPS: simulations by the extension of Fan’s

parametric Bootstrap. 20 × 20 grid.
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This part of the dissertation is devoted to goodness-of-fit testing in spatial statistics. Be-

fore looking at the problem of goodness-of-fit testing in this context, we give a brief overview on

goodness-of-fit tests for regression models. Nonparametric testing techniques in regression con-

text have inspired both testing techniques for geostatistical and lattice data. In geostatistics, for

instance, the variogram cloud can be thought as a dispersion plot from a certain regression model.

One could think about solving the crucial problem of modelling the spatial dependence in

the spectral domain, instead of working with the variogram or the covariogram in the spatial

setting (e.g. Fuentes (2002), for modelling non-stationary spatial dependence structures). The

spatial spectral density is the Fourier Transform of the covariogram (see Section 1.3.4), so testing

a certain covariance structure is equivalent to test a spatial spectral density model. From the the-

oretical point of view, as we have already commented along this manuscript, the main advantage

of the spectral methodology is that the dependence between observations can be avoided, for a

large enough sample. Therefore, traditional techniques on independent data may be applied to a

suitable spectral transformation of the data, that is, the periodogram values at Fourier frequencies.

Besides, the periodogram can be obtained as the response variable in a multiplicative regression

model, as in (2.14). In time series context, Paparoditis (2000) proposes a goodness-of-fit test based

on a smoothed ratio between the periodogram and a parametric estimator of the spectral density,

under the null hypothesis of an underlying parametric model. Equivalently, the log-periodogram

can be seen as the exogenous variable in an additive regression model. This idea is considered in

Fan and Zhang (2004), in time series context, where the authors apply a generalized likelihood ratio

test for regression models (Fan et al. (2001)). In order to adapt a regression goodness-of-fit test to

the spectral setting, other techniques could be considered. For instance, one could use tests based

on the error distribution function, using the empirical process methodology (Stute (1997), Stute

et al. (1998)). In time series case, Delgado et al. (2005) propose a goodness-of-fit test based on

empirical processes. Other tests could be based on smoothed estimators of the regression function

(Härdle and Mammen (1993), González Manteiga and Cao (1993) and Hart (1997), among others).

The main goal of this part is to show that one could take advantage of the goodness-of-fit

test techniques for regression models and translate them into the spectral domain, in the sense

that an estimator of the spectral density can be seen as the response variable in a regression model.

The first section of this part is devoted to a revision of goodness-of-fit tests for regression

models, in order to provide an adequate background which allows the reader to understand the

testing techniques for spatial models, both those tests we propose and other existing techniques.

Goodness-of-fit tests for geostatistical data are also revised in Section 4.2. In Section 4.3, we
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introduce two different testing techniques based on the spectral representation of the covariance

structure, that is, the spectral density. We also provide a simulation study and real data appli-

cations, in Sections 4.4 and 4.5 respectively. Proofs of the theoretical results can be found in the

Appendix of this chapter. The contents of this chapter can be found in Crujeiras et al. (2006b).

4.1 Goodness-of-fit tests for regression models

Nonparametric goodness-of-fit test for regression models may be mainly classified in two groups:

tests based on the error distribution function, using the empirical process methodology (Stute

(1997), Stute et al. (1998)) and those tests based on smoothed estimators of the regression function

(Härdle and Mammen (1993), González Manteiga and Cao (1993) and Hart (1997), among others).

For our brief overview, suppose that we have a sequence of independent observations {(Xi, Yi), i =

1, . . . , n} from a population (X,Y ). Consider, for the sake of simplicity, that both X and Y are

one-dimensional random variables and assume that

m(x) = E(Y |X = x),

and consider the following model checking problem:

H0 : m ∈ Mθ,

Ha : m /∈ Mθ

where Mθ = {m(·, θ), θ ∈ Θ} is a given family of functions, with Θ ⊂ Rp.

A fundamental approach to this problem is the comparison between parametric and non-

parametric models. Denote by m̂ a nonparametric estimator of m, based on a linear smooth of

(Y1, . . . , Yn) and let θ̂ denote a consistent estimate of θ, under the null hypothesis H0.

For a local polynominal regression estimate m̂, and considering m̂θ̂(x) a local polynomial

regression estimate ofmθ̂(x), three major types of nonparametric regression tests can be considered

(see Zhang and Dette (2004)):

• Härdle and Mammen (1993) propose the following test statistic

T1 =

∫
(m̂(x) − m̂θ̂(x))

2dx, (4.1)

whereas González Manteiga and Cao (1993) simmultaneously studied a Riemann approxi-

mation to T1

T ∗
1 =

n∑

i=1

(m̂(Xi) − m̂θ̂(Xi))
2.
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• Zheng (1996) introduces the test statistic

T2 =
1

n

∑

i6=j

Kh(Xi −Xj)(Yi −mθ̂(Xi))(Yj −mθ̂(Xj)), (4.2)

where K is a symmetric probability density function and Kh(·) = h−1K(·/h) in the rescaled

kernel.

• Dette (1999) and Fan et al. (2001) consider

T3 =

n∑

i=1

(Yi −mθ̂(Xi))
2 −

n∑

i=1

(Yi − m̂(Xi))
2. (4.3)

Zhang and Dette (2004) provides a power comparison, under fixed and contiguous alternatives, of

these three types of tests. These three tests statistics have some power detecting local alternatives,

under null rate (nh1/2)−1/2. But, from a local asymptotic point of view, ignoring the bias and

using an identical bandwidth h for the three tests, then T2 is more powerful than T3, but it is less

powerful than T1, the L2-distance test.

4.1.1 Empirical Process techniques.

Stute et al. (1998) introduce a testing technique which avoids smoothing the data. We briefly

described this method.

Consider the integrated regression function defined as

I(x) =

∫ x

−∞
m(u)dF (u), x ∈ R (4.4)

where F denotes the unknown distribution function of the regressors X. The empirical analog of

I becomes

In(x) =
1

n

n∑

i=1

1{Xi≤x}Yi.

Consider a simple null hypothesis H0: m = mθ0 . Then, a parametric estimator of the integrated

regression function is given by:

I0 (x) =

∫ x

−∞
mθ0 (y) dFn (y) =

1

n

n∑

i=1

1{Xi≤x}mθ0 (Xi) .

Thus, the difference between the empirical counterpart of I and the parametric estimator under

H0 is given by:

In (x) − I0 (x) =
1

n

n∑

i=1

1{Xi≤x} (Yi −m0 (Xi)) .
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In this context, the empirical process marked by the regression errors:

Rn (x) = n1/2 (In (x) − I0 (x))

= n−1/2
n∑

i=1

1{Xi≤x} (Yi −m0 (Xi))

has been studied by Stute (1997), who proved (under E
(
Y 2
)
<∞) that

Rn−→R∞,

in the Skorohod space D [−∞,∞], where R∞ is a Brownian motion with respect to time. In order

to test whether H0 : m = mθ holds, we need to choose some functional (for instance the supremum

that will lead to the Kolmogorov-Smirnov statistic). The critical value can be obtained from the

distribution of such a functional computed from R∞.

Under a composite null hypothesis H0: m ∈ Mθ, consider θ̂ a consistent estimator of the true

parameter θ0. The goodness-of-fit test statistics is then based on the process

R1
n (x) = n−1/2

n∑

i=1

1{Xi≤x}
(
Yi −mθ̂ (Xi)

)
.

Under fairly general assumptions Stute (1997) proved that R1
n converges in distribution to a cen-

tered Gaussian limit, R1
∞, with a quite complicate covariance structure. As a consequence, the

principal components of R1
∞ are difficult to obtain. This makes a real problem for full model

checks, since optimal Neyman-Pearson tests for H0 versus a given directional local alternative

depend on these principal components. A solution to this problem is given by Bootstrap approx-

imations.

Consider {(X∗
i , Y

∗
i )}n

i=1 a bootstrap resample of {(Xi, Yi)}n
i=1 and θ̂∗, the least squares esti-

mator computed with this sample. The bootstrap version of R1
n is given by:

R1∗
n (x) = n−1/2

n∑

i=1

1{X∗
i ≤x}

(
Y ∗

i −mθ̂∗ (X∗
i )
)
.

Name Ψ, a continuous functional to define the test statistic:

Tn = Ψ
(
R1

n

)
.

The null hypothesis H0 is rejected if Tn > c∗α, for c∗α satisfying

P ∗ (Ψ
(
R1∗

n

)
> c∗α

)
= α.
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Intuitively c∗α is a reasonable estimator of the cα satisfying

P
(
Ψ
(
R1

n

)
> cα

)
= α.

In practice we use

ĉ∗α = T ∗([B(1−α)])
n

the [B (1 − α)]-th order statistic of the bootstrap replications T ∗b
n , b = 1, 2, . . . , B.

If the Bootstrap sample is obtained by naive Bootstrap (based on the empirical distribution

of the original sample), then this approach is inconsistent. González Manteiga and Cao (1993)

proved that sampling from a bivariate distribution

F̂n (x, y) = n−1
n∑

i=1

1{Yi≤y}

∫ x

−∞
Kh (t−Xi) dt

leads also to an inconsistent method. Stute et al. (1998) proved that a wild Bootstrap resampling

is consistent and under H0

R1∗
n −→ R1∗

∞,

with probability one in the space D [−∞,∞], where R1∗
∞ and R1

∞ have the same distribution.

4.1.2 Likelihood ratio tests.

When testing a simple hypothesis vs. a simple alternative, it is shown that the most powerful

test of a given size rejects the null hypothesis for small values of a likelihood ratio (by Neymann

and Pearson’s theorem). This fact led to the use of likelihood ratio tests in more general settings

where the model is parametric and one or both of the hypothesis are composite.

Consider regression model

Yi = m(Xi) + εi, i = 1, . . . , n,

where {εi} are a sequence of i.i.d. random variables from N(0, σ2) and Xi has a density f with

support [0, 1]. Suppose that the parameter space is

Fk =

{
m ∈ L2[0, 1];

∫ 1

0
m(k)(x)2dx ≤ C

}

for a given constant C and consider the testing problem

H0 : m(x) = α0 + α1x,

Ha : m(x) 6= α0 + α1x.
(4.5)
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The conditional log-likelihood function is given by

ln(m) = −n log(
√

2πσ2) − 1

2σ2

n∑

i=1

(Yi −m(Xi))
2.

Denote by (α̂0, α̂1) the maximum likelihood estimator under H0 and by m̂ the maximum likelihood

estimator under the full model, that is:

m̂ = arg min
m∈Fk

n∑

i=1

(Yi −m(Xi))
2, .

In this case, the estimator obtained is a smoothing spline. The logarithm of the conditional

maximum likelihood ratio statistic for the testing problem (4.5) is given by:

Λ =
n

2

RSS0 −RSS1

RSS1
,

where

RSS0 =
n∑

i=1

(Yi − α̂0 − α̂1Xi)
2, and RSS1 =

n∑

i=1

(Yi − m̂(Xi))
2.

In an effort to derive a generally applicable testing procedure for multivariate nonparametric mod-

els, Fan et al. (2001) proposed a generalized likelihood ratio test. The authors point out that the

maximum likelihood ratio test is not optimal due to its restrictive choice of smoothing parame-

ters and, in general, maximum likelihood estimators under non parametric regression models are

hard to obtain. In order to attenuate these difficulties, the maximum likelihood estimator under

the alternative non parametric model may be replaced by a reasonable nonparametric estimator,

leading to a generalized likelihood ratio:

Λ = ln(H1) − ln(H0),

where ln(H1) denotes the log-likelihood with unknown regression function replaced by a non para-

metric regression estimator. In this case, the smoothing parameter can be selected to optimize

the performance of the test.

An interesting feature of this type of tests is that, when Λ is based on a local linear estimator,

the asymptotic distribution of the generalized likelihood ratio statistic exhibits a kind of Wilks

phenomenon: under H0, the asymptotic distribution of the ratio does not depend on nuisance

parameters α0, α1 and σ2 and the nuisance design density function. Fan et al. (2001) prove that

this distribution is nearly a χ2 with large degrees of freedom.

In time series context, Fan and Zhang (2004) consider a generalized likelihood ratio test in order

to check whether a family of parametric time series models fits a set of data, without restrictions
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on the forms of the alternative models. One of the tests statistic we introduce in this chapter is

based in the ideas in Fan and Zhang (2004). Whereas the one-dimensional problem (time series)

is a direct application of Fan et al. (2001), the results we obtain are based on extensions of the

generalized likelihood ratio test .

4.2 Goodness-of-fit tests for spatial data.

Although we focus our attention on spectral techniques, the variogram is an important tool for the

assessment of spatial variability and, of course, a crucial parameter for kriging. A first attempt

to provide a testing technique for spatial variability, under stationarity and isotropy, is proposed

by Diblasi and Bowman (2001). The authors propose a method for assessing the evidence for

the presence of any spatial correlation, that is, a technique for checking for independence. The

test statistic is based on a ratio of quadratic forms and the asymptotic distribution is studied,

under the null hypothesis of independence. This null hypothesis (independence) implies that the

variogram is constant.

The test statistic proposed in Diblasi and Bowman (2001) is given by:

TDB =

∑
i<j(dij − d̄)2 −∑i<j(dij − d̂ij)

2

∑
i<j(dij − d̂ij)2

, (4.6)

where dij is given by |Z(si)−Z(sj)|1/2, d̄ is the sample mean of the dij and d̂ij represents a local

linear approach of the variogram at distance |si − sj |. The test statistic can be written as the

ratio

TDB =
dTAd

dTBd
,

where d is the vector of the dij , A = I − L, N denotes the sample size, I is the identity matrix

and L is a matrix filled with the value 2/(N(N − 1)); B = (I −W )T (I −W ), where the rows of

W consist of the smoothing weights used in the construction of the local linear estimator. The

asymptotic null distribution for this test statistic is a shifted and scaled χ2 although the authors

proceed through the calculation of a p-value:

p = P{eTQe > 0},

where e is zero-mean multivariate normal and matrix covariance Σ (see Diblasi and Bowman

(2001) for more details) and Q = A− tB, where t denotes the observed value of the test statistic.

The authors noticed the computational difficulties that may arise due to the sample size, as an

initial sample of size n produces N(N − 1)/2 differences dij . They propose binning to overcome

this problem.
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An extension of this test was considered by Maglione and Diblasi (2004) in order to assess a

specific model for the variogram. The new test statistic is based on smoothed variables to reflect

the correlation features, and when independence is the null hypothesis, the variance-covariance

matrix of the variables involved in the statistic depends only on the distances between spatial

locations. When a non-constant model for the variogram is considered in the null hypothesis, this

variance-covariance matrix depends also on the shape of the variogram. The expression of the

test statistic is:

TMD =

∑κ
k=1(Sk − aγ0(hk)

1/4S̄)2 −∑κ
k=1(Sk − Ŝk)

2

∑κ
k=1(Sk − Ŝk)2

,

where γ0 denotes the variogram under the null hypothesis, Sk = |Rk|1/2 − E(|Rk|1/2), with

k = 1, . . . , κ = N(N − 1)/2 and Rk = Z(si) − Z(sj). The variables Ŝk denote a smoothed

approach of Sk and a = 21/2Γ(3/4)π−1/2 is used to mathch aγ0(hk)
1/4 with the expected value

of |Rk|1/2, denoting by hk the distance between si and sj . As in the test for independence, the

distribution is approximated by a shifted χ2.

4.3 Testing the spatial spectral density

First of all, we will introduce the context where our study is carried out. Let Z be a zero-mean,

second-order stationary process observed on a regular grid D = {0, . . . , n1 − 1} × {0, . . . , n2 − 1}
and denote by N = n1n2, number of observations and denote by C the covariance function of

Z. Assuming that
∑

u |C(u)|du < ∞, recall that by Khinchin’s theorem (see Section 1.3), the

covariance function of a stationary random process is the inverse Fourier Transform of the spectral

density f .

We consider a spatial processes which can be represented as in (2.10). Then, the periodogram

can be written as the response variable in a multiplicative regression model as in (2.14) and, after

a logarithmic transform, the log-periodogram is the response variable in model (2.15).

In the next subsections we propose two different testing techniques, as the result of the ex-

tension to the multidimensional lattice data case of two tests: the first test is based on the ratio

between the periodogram and the spectral density (see equation (2.14)). The second one consists

on the extension of the generalized likelihood ratio test in regression models to a higher dimension

particular case, that is, equation (2.15).

Our main goal is testing whether the spectral density for Z belongs to a parametric family Fθ,
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with θ ∈ Θ ⊂ Rp:

H0 : f ∈ Fθ = {fθ; θ ∈ Θ},
Ha : f /∈ Fθ = {fθ; θ ∈ Θ}. (4.7)

Considering the log-spectral density, the problem can be written as

H̃0 : m ∈ Mθ = {mθ; θ ∈ Θ},
H̃a : m /∈ Mθ = {mθ; θ ∈ Θ}. (4.8)

The periodogram is written in (2.14) as the exogenous variable in a multiplicative regression

model. From equation (2.15), the log-spectral density function m can be seen as a regression

function in a model where the response is given by the log-periodogram (substracting a residual

term rk) and the explanatory variables are the corresponding Fourier frequencies (fixed design

case).

Provided that n1 → ∞, n2 → ∞ and n1/n2 → c, for a constant c, the following assumptions

on the process, spectral density and bidimensional kernel function, K, are needed.

Assumption 1. Assume the spatial process Z can be represented as in (2.10), and
∑

j,l |j|1/2|aj,l| <
∞,

∑
j,l |l|1/2|aj,l| <∞ and

∑
j,l |l|4|j|4|aj,l| <∞. Assume also that the error process is such that

E(ε(s)) = 0, E(ε2(s)) = σ2 and E(ε8(s)) <∞.

Assumption 2. The spectral density f is Lipschitz continuous and non vanishing, that is to say,

infλ∈[−π,π]×[−π,π] f(λ) > 0.

Assumption 3. K is symmetric , bounded and non-negative bidimensional kernel with support

Π2 = [−π, π] × [−π, π], such that
∫

R2 K(u)du = (2π)2 and
∫

R2 K
2(u)du < ∞. The rescaled ker-

nel KH is defined by KH(u) = |H|−1/2K(H−1/2u), following (Ruppert and Wand (1994)). The

sequence of bandwidth matrices is such that each entry of H tends to zero and N |H|1/2 → ∞.

Some further assumptions on the bandwidth matrix are needed in Theorem 4.

Assumption 4. The parameter space Θ is an open subset of Rp and the spectral density fθ is

twice differentiable w.r.t. θ with continuous second derivatives.
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4.3.1 Using the periodogram for hypothesis testing.

It is known that, if assumption 1 holds,

E

(
I(λk)

fθ(λk)

)
=

f(λk)

fθ(λk)
+ O(N−1 logN), (4.9)

uniformly in k. Condition (4.9) implies that, under H0, the asymptotic expected value of this

ratio equals one. We consider a squared deviation criterion on a kernel type estimator of the ratio

between the periodogram and the spectral density (under H0), as it is proposed in Paparoditis

(2000) for the one-dimensional case.

Paparoditis (2000) gives procedures for testing both a simple and a composite hypothesis, based

on a smoothed estimator of the ratio I(λ)/f(λ). When testing a composite hypothesis H0 : f = fθ

against Ha : f 6= fθ, a generalization of the test statistic proposed to the bidimensional case is

given by:

TP = N |H|1/4

∫

Π2

(
1

N |H|1/2

∑

k

K(H−1/2(λ − λk))

(
I(λ)

fθ̂(λ)
− 1

))2

dλ, (4.10)

where
∑

k extends over the Fourier frequencies and θ̂ is the Whittle estimator. Asymptotic nor-

mality of this statistic is also obtained.

Theorem 1. Under assumptions (1)-(4) and under H0 : fθ ∈ Fθ

TP − µH → N(0, τ2) in distribution ,

where µH and τ2 are given by:

µH = |H|−1/4

∫
K2(s)ds, (4.11)

τ2 =
1

2π2

∫

2Π2

(∫

Π2

K(s)K(s + u)ds

)2

du, 2Π2 = [−2π, 2π] × [−2π, 2π]. (4.12)

We consider now the consistency properties of the test when testing a composite hypothesis, in

the case that the true spectral density lies in F −Fθ. Then, the Whittle estimator θ̂ is an efficient

estimator of θ∗, where:

θ∗ = arg min
θ
L(θ, f)

and

L(θ, f) =

∫

Π2

(
log fθ(λ) − f(λ)

fθ(λ)

)
dλ.
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θ∗ is not the true parameter, but it determines the best fit in Fθ. L(θ, f) is the Kullback-

Leibler divergence between a Gaussian process and a Gaussian model. Following Dahlhaus and

Wefelmeyer (1996), we can see that:

√
N(θ̂ − θ∗) =

√
N

∫

Π2

W (λ)(I(λ) − f(λ))dλ + oP(1) (4.13)

where

W (λ) = −H−1∇f−1
θ (λ)|θ=θ∗ , H =

∫

Π2

∇2D(θ∗, f,λ)dλ,

D(θ∗, f,λ) = log fθ∗(λ) +
f(λ)

fθ∗(λ)
,

and ∇ and ∇2 denote the first and second derivatives with respect to θ.

Some further assumptions must be made in order to guarantee that θ̂ is a consistent estimator

of θ∗.

Assumption 5. Θ ⊂ Rp is compact and fθ is three times differentiable with respect to θ, with

continuous derivatives. Besides, θ∗ exists, is unique and lies in the interior of Θ.

Theorem 2. Consider the problem of testing a composite hypothesis H0 : f ∈ Fθ vs. Ha : f ∈
F − Fθ. Under assumptions (1)-(3) and (5), as n1, n2 → ∞:

N−1|H|−1/4TP →
∫

Π2

(
f(λ)

fθ∗(λ)
− 1

)2

dλ

in probability.

This result is analogous to Theorem 3 in Paparoditis (2000) for time series context. As in the

one-dimensional situation, this result implies the omnibus property of the TP test, that is, TP is

consistent against any alternative such that f /∈ Fθ. The power function of this test is a monotone

increasing function. It is given in terms of the L2 distance between f , the true spectral density,

and fθ∗ , its best approximation in Fθ (given the Kullback-Leibler discrepancy). An analogous

result is obtained for the simple hypothesis case.

The problem of testing a simple hypothesis H0 : fθ = fθ0 vs. Ha : fθ 6= fθ0 is solved using the

test statistic T 0
P , which is obtained from TP just replacing θ̂ for the parameter under H0, θ0. It is

proved in the appendix that T 0
P has the same limit behaviour.
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Theorem 3. Consider the simple hypothesis testing problem H0 : fθ = fθ0 vs. Ha : fθ 6= fθ0

and let f ∈ F − {fθ0} be the true spectral density. Under the assumptions of Theorem 2, as

n1, n2 → ∞:

N−1|H|−1/4T 0
P →

∫

Π2

(
f(λ)

fθ0(λ)
− 1

)2

dλ

in probability.

These consistency properties of the test guarantee that, for any level α ∈ (0, 1), the probability

of rejecting the null hypothesis under the alternative approaches 1, as the sample size increases.

4.3.2 Using the log-periodogram for hypothesis testing.

In this part, we tackle the testing problem (4.8). Consider the following regression model:

Y ∗∗
k = m(λk) + z∗k, (4.14)

where we denote by Y ∗∗
k = Y ∗

k − rk, Y ∗
k = Yk − C0 and z∗k = zk − C0. The Y ∗∗

k variables are not

observed, so we establish the testing procedure in terms of Yk, although the theoretical reasoning

takes this fact into account.

Following Fan and Zhang (2004), we introduce the generalized likelihood ratio test statistic

based on two likelihood approaches of equation (2.14). The first approach is given by the loglike-

lihood maximization under the null hypothesis. The second approach is purely non-parametric,

obtained by a local loglikelihood function maximization. The loglikelihood function associated

with (2.15), when rk has been removed, is
∑

k

[
Yk −m(λk) − eYk−m(λk)

]
, (4.15)

as we have seen in Section 2.5.1. We will introduce two likelihood-based approaches to obtain

the generalized likelihood ratio test statistic. Under the null hypothesis, the maximizer of the

loglikelihood function of (2.15), when ignoring the residual part rk, is the Whittle estimate from

equation (2.84).

From a nonparametric approach, we have seen in Section 2.5.1 that the log-spectral density

function m can be approximated by a multidimensional local linear kernel estimator. The local

maximum likelihood estimator m̂LK(H,x) ≡ m̂LK(x) of m(x) is â in the maximizer (â, b̂) of

(2.89), where the rescaled kernel KH satisfies assumption 3. Then, a generalized likelihood test

statistic can be constructed as

TLK =
∑

k

[
eYk−mθ̂(λk) +mθ̂(λk) − eYk−m̂LK(λk) − m̂LK(λk)

]
. (4.16)
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The local estimator m̂LK contains biases even under the null hypothesis which affect the distri-

bution under H0. In the regression context, Härdle and Mammen (1993) in order to compare

parametric vs. nonparametric regression fits, propose smoothing the residuals from both ap-

proaches. The bias correction technique consists on a reparametrization of the log-periodogram.

Let θ denote the true parameter under H0 and rewrite mBC(λ) = m(λ) − mθ(λ). Then, the

hypothesis testing statement, in terms of mBC is given by:

H0 : mBC = 0,

Ha : mBC 6= 0.

The expression for the test statistic is:

TLK,BC =
∑

k

(
eỸk − eỸk−m̂∗

LK(λk) − m̂∗
LK(λk)

)
,

where θ̂ is the Whittle estimator of θ and Ỹk = Yk−mθ̂(λk) denote the synthetic data. m∗
LK is the

local linear estimator of mBC , considering these synthetic data. Although asymptotic distribution

of the test statistic is also obtained, in practice, we approximate the null distribution of TLK using

Monte Carlo simulations. Consider the following decomposition of the test statistic.

TLK = TLK,1 − TLK,2

where

TLK,1 =
∑

k

[
e(Yk−mθ(λk)) +mθ(λk) − e(Yk−m̂LK(λk)) − m̂LK(λk)

]

TLK,2 =
∑

k

[
e(Yk−mθ(λk)) +mθ(λk) − e(Yk−mθ̂(λk)) −mθ̂(λk)

]

The test statistic TLK,1 is the generalised likelihood ratio test statistic for testing between

H̃0 : m = mθ

H̃a : m 6= mθ

while TLK,2 is the maximum likelihood ratio test statistic for testing between

H̄0 : θ = θ0

H̄a : θ 6= θ0

where θ0 denotes the true parameter in the parametric family of models Mθ. For simplicity, we

will denote the true parameter by θ, instead of θ0 and the spectral density of Z will be denoted

by fθ. Under certain regularity conditions, the asymptotic null distribution of TLK,2 is χ2
p, where

p = dim(θ). Hence, TLK,2 = OP(1). Therefore, we can simplify the test statistic to TLK,1 with a

simple null hypothesis test:

TLK =
∑

k

[
e(Yk−mθ(λk)) +mθ(λk) − e(Yk−m̂LK(λk)) − m̂LK(λk)

]
. (4.17)
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In order to study the asymptotic properties of this statistic, we decompose TLK in some addends.

We consider T ∗
LK , which is the same statistic as TLK but replacing Yk by Y ∗∗

k given in equation

(4.14) and m̂LK by m̂∗
LK . If the observed test statistic is larger than a selected critical value, then

we reject the null hypothesis.

Define also the following quantities, related to the asymptotic distribution of the test statistic:

µH =
4π2

|H|1/2

(
K(0) − 1

2

∫
K2(s)ds

)
, (4.18)

bH =
∑

k

−|H|2
8fθ(λk)

∫ ∫
sTHmθ

(λk)s · (s + u)THmθ
(λk)(s + u)K(s)K(s + u)dsdu, (4.19)

σ2 =
2π2

|H|1/2

∫
(2K(s) −K ∗K(s))2 ds. (4.20)

Where Hmθ
(λk) is the Hessian matrix of mθ.

Theorem 4. Under assumptions (1)-(4), as N (ζ−1)/ζ |H|1/2 ≥ c logδ N , for a constant c and some

δ > (ζ − 1)/(ζ − 2)), ζ > 2 and provided that H0 holds,

σ−1(TLK − µH + bH) → N(0, 1),

where µH , bH and σ2 are given by (4.18), (4.19) and (4.20), respectively.

The former theorem extends Theorem 1 in Fan and Zhang (2004) to the multidimensional

setting. Other goodness-of-fit testing techniques based on smoothed estimators m̂ of the log-

spectral density could be used. An L2−approach could be considered:

TC =
∑

k

(m̂(λk) − m̂θ̂(λk))2. (4.21)

This test statistic was studied by González Manteiga and Cao (1993) (and simultaneously by

Härdle and Mammen (1993), in a continuous form). For the test statistics (4.21), asymptotic

normal distributions is obtained in the one-dimensional case. Also in the one-dimensional case,

Zhang and Dette (2004) give a power comparison between nonparametric regression tests. Simi-

larly, it would be possible to obtain the normal asymptotic distribution of the extensions of these

tests.

The results in this section can be generalized for stationary random fields on Rd, under a

similar asymptotic framework. The d-variate kernel K (with support on Πd = [−π, π]d) and the

d × d bandwidth matrix H must satisfy the corresponding assumption 3. For the TP test, the

expressions for the mean and the variance are given by:

µ
(d)
H =

1

|H|1/4

∫

Πd

K2(s)ds,
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τ2(d) =
1

2d−1πd

∫

2Πd

(∫

Πd

K(s)K(s + u)

)2

du, 2Πd = [−2π, 2π].

For the TLK test:

µ
(d)
H =

(2π)d

|H|1/2

(
K(0) − 1

2

∫

Πd

K2(s)ds

)

σ2(d) =
2d−1πd

|H|1/2

∫

Πd

(2K(s) −K ∗K(s))2 ds.

These expressions generalize the results in this section and those provided by Paparoditis (2000)

and Fan and Zhang (2004).

4.3.3 Testing in practice.

Since the rate of convergence of the distributions of TP and TLK to their Gaussian limit is quite

slow, we show an alternative way of estimating the distribution of the test statistic, under H0, by

a Monte Carlo approach. The performance of TP and TLK tests is shown in a simulation study.

We propose the following algorithm, for computing the p−value of the test statistics TP and TLK :

Step 1. Obtain the parametric estimate θ̂.

Step 2. Compute the observed test statistic T obs. For the TP test:

T obs
P = N |Ĥ|1/4

∑

k


N−1|Ĥ|−1/2

∑

j

K
(
H−1/2(λk − λj)

)( I(λj)

fθ̂(λj)
− 1

)


2

and for the TLK , obtain the non-parametric estimate m̂LK(H, ·) and:

T obs
LK =

∑

k

{
eYk−mθ̂(λk) − eYk−m̂LK(λk) +mθ̂(λk) − m̂LK(λk)

}
,

Step 3. From fθ̂, generate a random sample of size N = n1 · n2.

Step 4. Using the generated random sample in Step 3, obtain the test statistic T ∗.

Step 5. Repeat B times steps 3 and 4 and obtain the bootstrap test statistics T ∗
1 , T

∗
2 , . . . , T

∗
B.

Step 6. Compute the p-value of the test statistic as the percentage of the bootstrap replicates

{T ∗
1 , T

∗
2 , . . . , T

∗
B} that exceed T obs.

Both for TP and TLK non-linear multidimensional optimization problems must be solved.

Whittle estimates θ̂ are obtained in Step 1, using a discretized version of (2.85). Newton type

methods can be used to solve this problem, although these methods are not suitable for situations
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where local maximum values are found. In order to guarantee the convergence to a global maxi-

mum, genetic algorithms were implemented (e.g. Goldberg (1989)).

In the case of the algorithm for TLK , the computational cost is highly increased in Step 2 with

the nonparametric estimation of the log-spectral density, obtained by local maximum loglikeli-

hood. There is again a non-linear multidimensional optimization problem, which must be solved

for every Fourier frequency. For each λk, we take (Yk,0) as initial values of (a,b) in (2.89). As it

happens for solving Step 1, one could think of using genetic algorithms for avoiding convergence

problems.

A key problem in nonparametric statistics is the selection of the bandwidth parameter. Opti-

mal bandwidth selection for nonparametric testing in multidimensional problems is still an open

question. Usually, in practice, the standard approach consists of examining a range of bandwidths.

Automatic bandwidth selection criteria is another alternative. For instance, the bandwidth

matrix could be chosen by minimizing the Mean Integrated Square Error of the nonparametric

estimator under the null hypothesis that H0 : f = fθ0 :

Ĥ = arg min
H

E

(∫

Π2

(m̂LK(H,λ) −mθ0(λ))2dλ

)
. (4.22)

Bandwidth estimation can be obtained using a Monte Carlo approach of the MISE error (4.22):

Ĥ = arg min
H

1

M

M∑

j=1

∫

Π2

(m̂LK(H,λ) −mθ0(λ))2 dλ, (4.23)

although in practice, the theoretical parameter θ0 is replaced by an estimator θ̂. However, the

computational cost of this approach can be really high in some cases (due to the computation of

the local log-likelihood estimator). Since log-periodogram values are asymptotically independent,

for a large enough sample, good approximations are expected using a traditional cross-validation

criteria. That is, select Ĥ such that:

Ĥ = arg min
H

∑

k

(
m̂−k

LK(H,λk) −mθ̂(λk)
)2
, (4.24)

where m̂−k
LK(H, ·) is the nonparametric estimator of the log-spectral density obtained by maximiz-

ing expression (2.89), deleting the frequency λk.

It is important to note that the bandwidth matrix H plays a different role in both test sta-

tistics. In the TLK test, the bandwidth matrix is involved in the nonparametric estimation of
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the log-spectral density. In the TP test, the bandwidth matrix is not involved in the estimation

procedure. Therefore, it may be expected that this test statistic will be less influenced by the

bandwidth parameter.

The algorithm we propose for calibrating the p−value of the test statistics needs, in Step 3, the

generation of a sample of size N , given a parametrically estimated spectral density function fθ̂. For

that purpose, we consider a spectral simulation procedure, as the MFIM, introduced in Chapter 2.

Remark. If Z is a continous process (geostatistical data), the summation in representation

(2.10) is replaced by an integral (Priestley (1981)) and the spectrum of such a process is defined

for all λ in R2. Although asymptotic theory has not been yet obtained in this case, the tests can

be applied, with suitable modifications, when the observations are taken on a regular grid. In

this case, the spectral density estimators should be modified in order to account for the spacing

between data (e.g. Fuentes (2002)).

4.4 Simulation study.

In this section, we study the performance of the testing procedures in terms of size and power.

For illustration purposes, we consider the bidimensional autoregressive process (the BAR(1) from

Chapter 3), defined as in (3.23). Parameters β1 and β2 in (3.23) belong to [0, 1) to guarantee

stationarity. The spectral density of this process can be factorized with respect to β1 and β2 as

f(λ) =
σ2

ε

(2π)2
· 1

1 + β2
1 − 2β1 cos(λ1)

· 1

1 + β2
2 − 2β2 cos(λ2)

. (4.25)

In order to study the size of the tests, we consider different values for the parameters β1 and β2

from 0.0 (which corresponds to the independence case) to 0.9. 1000 simulations of the process are

generated on a 20 × 20 and 50 × 50 regular grid. Random sample generations of this process are

obtained as in (Alonso et al. (1996)). Estimators for β1 and β2 are obtained from the periodogram

of the generated data, using a discretized version of the Whittle log-likelihood (2.85).

We set the null hypothesis that Z is a doubly-geometric process, considering different parame-

ters. A multiplicative Epanechnikov bidimensional kernel is used along the study. The bandwidth

parameter has been chosen using the cross-validation criteria (4.24). In order to simplify the com-

putations, we consider diagonal bandwidth matrices, with elements proportional to the spacing

between frequencies:

H = r · diag
(

2π

n1
,
2π

n2

)
. (4.26)
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α = 0.01 α = 0.05 α = 0.1

(β1, β2) TP TLK TP TLK TP TLK

(0.0, 0.0) 0.014 0.009 0.043 0.054 0.090 0.105

(0.1, 0.1) 0.014 0.014 0.043 0.045 0.090 0.085

(0.2, 0.2) 0.018 0.011 0.051 0.049 0.024 0.088

(0.3, 0.3) 0.021 0.080 0.058 0.052 0.112 0.100

(0.4, 0.4) 0.020 0.090 0.058 0.053 0.099 0.099

(0.5, 0.5) 0.022 0.014 0.058 0.054 0.103 0.105

(0.6, 0.6) 0.023 0.015 0.067 0.059 0.113 0.117

(0.7, 0.7) 0.044 0.037 0.104 0.097 0.172 0.161

(0.8, 0.8) 0.096 0.067 0.210 0.171 0.289 0.225

(0.9, 0.9) 0.170 0.189 0.346 0.347 0.443 0.457

(0.1, 0.9) 0.088 0.092 0.195 0.186 0.287 0.264

Table 4.1: Size of the tests. 20 × 20 grid.

α = 0.01 α = 0.05 α = 0.1

(β1, β2) TP TLK TP TLK TP TLK

(0.7, 0.7) 0.018 0.023 0.060 0.056 0.125 0.105

(0.9, 0.9) 0.097 0.052 0.269 0.114 0.396 0.168

Table 4.2: Size of the tests, 50 × 50 grid.

α = 0.01 α = 0.05 α = 0.1

(β1, β2) TP TLK TP TLK TP TLK

(0.7, 0.7) 0.027 0.019 0.054 0.049 0.097 0.098

(0.8, 0.8) 0.034 0.030 0.075 0.070 0.119 0.119

(0.9, 0.9) 0.048 0.053 0.107 0.112 0.165 0.169

(0.1, 0.9) 0.028 0.031 0.072 0.069 0.131 0.117

Table 4.3: Size of the tests, 20 × 20 grid, with bias correction on the parameter estimates.
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The behaviour of the test in size terms is shown in Table 4.1, at three different significance

levels: 0.01, 0.05 and 0.10. The percentage of rejections of both test statistics are computed

from 1000 simulations. The results are quite satisfactory for both test, when the autoregression

parameters are smaller than 0.5. For autoregresion parameters near 1, the performance is not so

good as in the previous cases. It may happens that, for high dependence parameters, this sample

size is too small for hypothesis testing.

As an example, in Table 4.2, we show the results of applying TLK and TP for parameters

(0.7, 0.7) and (0.9, 0.9), in a 50 × 50 regular grid. Despite increasing the sample size, the size of

the test does not improve as it could be expected. In Figure 4.1 we observed that, for a 20×20 reg-

ular grid, large autoregression parameter estimates from Whittle’s likelihood are seriously biased.

It seems clear that the bias in the parametric estimation distorts the results in the approximation

of the size of the tests.

As we have already commented, Whittle parameter estimates computed from the raw peri-

odogram are biased. We propose a bootstrap correction technique, which can be included in the

Bootstrap procedure for approximating the test statistic distribution. The modifications in the

algorithm described in the section 3.3, in order to include the bias correction technique, are the

following:

Step 1. Obtain the parametric estimate θ̂.

1.A. Generate B′ random samples of size N fron fθ̂.

1.B. Estimate θ̂∗i for each sample.

1.C. b̂(θ, θ̂) = 1
B′
∑

i(θ̂ − θ̂∗i ).

1.D. Replace θ̂ by the bias corrected version θ̂ + b̂(θ, θ̂).

. . .

Step 5. Using the generated random sample in Step 4, obtain the test statistic T ∗, correcting the

parameter estimator θ̂∗ by θ̂∗ + b̂(θ, θ̂), and repeat B times steps 3 and 4.

The percentage of rejections of both tests, in a 20 × 20 grid, when applying the Bootstrap

bias correction on the parameter estimates, is shown in Table 4.3. Significative improvements

are observed in all cases, although for parameters near one, the results are not still completely

satisfactory.
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Figure 4.1: Parameter estimates.

Behaviour of the test in terms of power is shown in Table 4.4, when testing for independence,

that is H0 : f = c, for some positive constant c. We set as alternatives different parameters

approaching the null hypothesis. It seems that TLK performs better than TP . This feature may

be explained by the fact that the bandwidth matrix approximates the optimal bandwidth for the

nonparametric estimation.

α = 0.01 α = 0.05 α = 0.1

(β1, β2) TP TLK TP TLK TP TLK

(0.01, 0.01) 0.017 0.009 0.062 0.047 0.110 0.088

(0.05, 0.05) 0.036 0.017 0.096 0.079 0.169 0.148

(0.1, 0.1) 0.085 0.097 0.192 0.254 0.307 0.374

(0.2, 0.2) 0.376 0.713 0.589 0.903 0.720 0.943

(0.3, 0.3) 0.882 0.993 0.952 1.000 0.980 1.000

Table 4.4: Power of the tests.Testing for independence.
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4.5 Real data application.

The testing techniques we propose have been applied to different data sets. First, the tests are

applied to Mercer and Hall wheat data, a classical example. We also use the tests in order to

check spatial dependence between heavy metal depositions in mosses. In fact, this is the most

appealing example, due to the ecological implications of the results.

4.5.1 Mercer and Hall wheat data.

Wheat data from Mercer and Hall experiment have been introduced in Section 1.4.1. Whittle

(1954) fitted a zero-mean, first-order autoregressive model:

Z(s) = α1(Z(s1 + 1, s2) + Z(s1 − 1, s2)) + α2(Z(s1, s2 + 1) + Z(s1, s2 − 1)) + ε(s), (4.27)

where ε(s) are zero-mean independent Gaussian random variables, with variance σ2
ε . The corre-

sponding spectral density is given by

f(λ) =
σ2

(2π)2
(1 − 2α1 cos(λ1) − 2α2 cos(λ2))

−2 . (4.28)

We will refer to model (4.27) as the spatial autoregressive model (SAR(1) model).

As a first approach, we test for independence, using both TLK and TP test statistics. We ex-

amine a range of diagonal bandwidth matrix (4.26), with r varying from 2.0 to 20.0. In both cases,

the hypothesis of independence is rejected (p-values lower than 0.001) along the whole bandwidth

range.

Once the independence hypothesis is rejected, we apply TLK and TP in order to check that

model (4.27) fits the data. We obtain as estimated parameters α̂1 = 0.23217, α̂2 = 0.09267 and

variance 0.12452. The p−values for different bandwidths are shown in Figure 4.2. In the horizon-

tal axis, we represent the parameter r from equation (4.26) varying from 2.0 to 20.0.

As it has been commented before, TP test is less affected by the choice of the bandwidth, and

the null hypothesis that the data admit a SAR model fit is accepted. TLK test accepts the null

hypothesis, for a significance level α = 0.05, in most part of the bandwidth range, as it is shown

in Figure 4.2. In particular, the null hypothesis is accepted for the cross-validation bandwidth.
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Figure 4.2: p-values for testing SAR(1) model. Solid line: TLK test p−values. Dashed line: TP test

p−values. Dotted line: significance level 0.05. Vertical solid line: cross-validation bandwidth.

4.5.2 Heavy metal concentrations.

We have also considered Selenium concentrations (from measurements taken in March, 2004).

In this set, the independence hypothesis is rejected, by both TLK and TP along the complete

bandwidth range. We have also applied these two tests in order to check whether model (3.23) or

(4.27) fit the data. For BAR model, the following estimations for the parameters in (2.92) were

obtained: σ̂2 = 2658.20, β̂1 = 0.369 and β̂2 = 0.399. For SAR model (4.27) we get: σ̂2 = 2350.16,

α̂1 = 0.160 and α̂2 = 0.175.

In Figure 4.4, we show the p-values for TLK and TP when testing BAR and SAR models.

Both hypothesis are accepted, so both spatial spectral densities (3.23) or (4.27) could explain

the dependence structure of the data. In the horizontal axis, we represent the parameter r from

equation (4.26) varying from 2.0 to 10.0. In Figure 4.3 we show the plots for the periodogram and

the adjusted parametric models.
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Figure 4.3: Spatial spectral density estimation for log(Se), March 2004. From top-left to right-

bottom: periodogram, BAR and SAR models.
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Figure 4.4: Left panel: p-values of TLK and TP for log(Se) concentrations in March 2004. Right

panel: p-values. Solid line: TLK test p-values. Dashed line: TP test p-values. Dotted line:

significance level 0.05. r denotes the scaling parameter in (4.26).
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4.6 Appendix Chapter 4.

4.6.1 Proof of Theorem 1.

In order to prove Theorem 1, we must introduce some lemmas. Lemma 10 gives a decomposition

of the TP statistic as a sum of the test statistic when considering a simple null hypothesis plus a

negligible term. Lemma 9 gives the asymptotic distribution of the TP statistic, under H0 : θ = θ0.

Lemmas 5 to 9 provide some tools which are needed in Lemma 10 and 11.

Lemma 5. Assume that {θN} is a sequence of estimators of θ0 ∈ Θ ∈ Rp such that
√
N(θN−θ0) =

OP(1). Assume that the spectral density fθ0 is continuously differentiable w.r.t. θ with bounded

derivatives in λ ∈ Π2 = [−π, π] × [−π, π]. Then, under the assumptions in Theorem 1:

sup
λ∈Π2

∣∣∣∣
fθN

(λ) − fθ0(λ)

fθN
(λ)

∣∣∣∣ = OP(N−1/2). (4.29)

Proof. Since for any θN , the estimated spectral density fθN
is continuous in Π2, then

sup
λ∈Π2

∣∣∣∣
1

fθN
(λ)

∣∣∣∣ = OP(1).

Besides, since
√
N(θN − θ0) = OP(1), it implies that the difference between the estimator θN and

the parameter θ0 can be stochastically bounded by: θN − θ0 = OP(N−1/2). For a fixed λ, using a

Taylor expansion of fθN
around fθ and considering the Lagrange remainder, we have:

fθN
(λ) = fθ0(λ) + (θN − θ0)

T∇fθ̃(λ) ≤ fθ0(λ) +

p∑

i=1

|θi
N − θi

0| sup
λ∈Π2

∣∣∣∣
∂

∂θi
fθ̃(λ)

∣∣∣∣

for some θ̃ with ‖θ̃ − θ0‖ ≤ ‖θN − θ0‖. Therefore,

sup
λ∈Π2

|fθN
(λ) − fθ0(λ)| ≤

p∑

i=1

|θi
N − θi

0| sup
λ∈Π2

∣∣∣∣
∂

∂θi
fθ̃(λ)

∣∣∣∣ = OP(N−1/2). (4.30)

The result is proved combining equations (4.29) and (4.30).

Lemma 6. Consider Z a spatial process with representation (2.10) and suppose that assumption

(1) holds. Then:

max
λ∈Π2

E(R4
n(λ)) = O(N−2), (4.31)

max
k

|Rn(λk)| = OP(N−1/2 logN). (4.32)
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Proof. In order to prove (4.31), the residual term Rn(λ) can be written as:

Rn(λ) = A(λ)Jε(λ)Yn(−λ) +A(−λ)Jε(−λ)Yn(λ) + |Yn(λ)|2 , (4.33)

where,

A(λ) =
∞∑

j=−∞

∞∑

l=−∞
ajle

−i(j,l)λ, (4.34)

Jε(λ) =
1

2π
√
N

n1−1∑

s1=0

n2−1∑

s2=0

ε(s)e−isT λ, (4.35)

Un,j,l(λ) =
1

2π
√
N





n1−1−j∑

s1=−j

n2−1−l∑

s2=−l

e−isT λε(s) −
n1−1∑

s1=0

n2−1∑

s2=0

e−isT λε(s)



 , (4.36)

and finally

Yn(λ) =
∞∑

j=−∞

∞∑

l=−∞
ajle

−i(j,l)λUn,j,l(λ), (4.37)

just following similar arguments to those in (Brockwell and Davis (1991)). Therefore, taking

expectations on the fourth order moment:

E
(
R4

n(λ)
)
≤ k1E

(
|A(λ)Jε(λ)Yn(−λ)|4

)

+k2E
(
|A(−λ)Jε(−λ)Yn(λ)|4

)
+ k3E(|Yn(λ)|8),

for some positive constants k1, i = 1, 2, 3. For the first term on the right hand side using Caucy-

Schwarz inequality:

E
(
|A(λ)Jε(λ)Yn(−λ)|4

)
≤ |A(λ)|4

(
E|Jε(λ)|8

)1/2 (
E|Yn(−λ)|8

)1/2

= O(1)
√
E(|Yn(−λ)|8).

For E|Yn(−λ)|8, we can get a bound taking into account that, if |j| < n1 and |l| < n2, 2π
√
NUn,j,l

is a sum of 4|j||l| independent indentically distributed (i.i.d.) random variables. For |j| ≥ n1,

|l| ≥ n2, it is a sum of 4n1n2 iid random variables. In the case |j| < n1, |l| ≥ n2, it is a sum of

4|j|n2 iid random variables, whereas if |j| ≥ n1, |l| < n2, it is a sum of 4|l|n1 iid random variables.

Then, using the inequality:

E




n∑

j=1

Zj




8

≤

nEZ8
1 + 28n2EZ6

1EZ
2
1 + 35n2(EZ4

1 )2 + 210n3EZ4
1 (EZ2

1 )2 + 105(EZ2
1 )4

where Zj are independent identically distributed random variables, with zero mean and finite

eight-order moment, we have:

E |Un,j,l(λ)|8 ≤ c1|j||l|E(ε8) + c2|j|2|l|2E(ε6)E(ε2) + c3|j|2|l|2E2(ε4)
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+c4|j|3|l|3E(ε4)E2(ε2) + c5|j|4|l|4E4(ε2).

By assumption (1), concercing the summability of {|j||l|aj,l} and Jensen’s inequality, we get

E|Yn(λ)|8 ≤ O(N−4):

E(|Yn(λ)|8) = E



∣∣∣∣∣∣
∑

j,l

aj,le
−i(j,l)λUn,j,l(λ)

∣∣∣∣∣∣

8
 ≤

c6
∑

j,l

aj,l

(
E
(
|Un,j,l(λ)|8

))

c6


 1

N4

∑

j,l

|aj,l|c1|j||l|E(ε(s)8) +
1

N4

∑

j,l

|aj,l|c2|j|2|l|2E(ε(s)6)E(ε(s)2)

+
1

N4

∑

j,l

|aj,l|c3|j|2|l|2E2(ε(s)4) +
1

N4

∑

j,l

|aj,l|c4|j|3|l|3E(ε(s)4)E2(ε(s)2)

+
1

N4

∑

j,l

|aj,l|c5|j|4|l|4E4(ε(s)2)


 = O(N−4),

and from the expression above, we obtain that E1/2(|Yn(λ)|8) = O(N−2).

The bound for (4.32) ca be obtained by a straightforward extension of the arguments in (Kooper-

berg et al. (1995)).

Let’s prove now (4.32). Consider the expression of Jε(λ) given by (4.35) and split it in its real

and imaginary parts. The real part of Jε(λ) is distributed as:

Re(Jε(λ)) ∼ N

(
0,
ATAσ2

(2π)2N

)
,

where A is given by

A =




1

cos((1, 0)λ)
...

cos((1, n2 − 1)λ)

cos((2, 1)λ)
...

cos((2, n2 − 1)λ)
...

cos((n1 − 1, 1)λ)
...

cos((n1 − 1, n2 − 1)λ)




.



154 Chapter 4. Goodness-of-fit tests for the spatial spectral density

We prove that the real part is OP(
√

logN), where N = n1 · n2. For that purpose, let ν ∈ R. We

will prove that:

P

(
1

2π
√
N

∑

s

cos(λT
ks)ε(s) ≥ ν

√
logN

)
→ 0. (4.38)

First, considering the distribution of Re(Jε(λ)), we can write:

P

(
1

2π
√
N

∑

s

cos(λT
ks)ε(s) ≥ ν

√
logN

)
=

√
2πN

ATAσ2

∫ ∞

ν
√

log N
e

�
− 2π2Nx2

AT Aσ2

�
dx. (4.39)

Applying a change of variable:

2π2Nx2

ATAσ2
=
y2

2
,

we rewrite (4.39) as:

P

(
1

2π
√
N

∑

s

cos(λT
ks)ε(s) ≥ ν

√
logN

)
=

1√
2π

∫ ∞

2πν

σ
√

AT A

√
N log N

e−
y2

2 dy. (4.40)

Since the following exponential inequality holds:

∫ ∞

y

e−x2/2

e−y2/2
dx ≤

∫ ∞

y

x

y
e(−x2/2dx =

1

y

∫ ∞

−y2/2
e−udu =

1

y
e−y2/2,

that is ∫ ∞

y
e−x2/2dx ≤ 1

y
e−y2/2, y > 0,

expression (4.40) can be bounded by:

1√
2π

∫ ∞

2πν

σ
√

AT A

√
N log N

e−
y2

2 dy ≤ σ
√
ATA

(2π)3/2ν
√
N logN

e
− 1

2

�
2πν

√
N log N

σ
√

AT A

�2

, (4.41)

and since ATA = O(N), it is easy to see that the right hand side in (4.41) tends to zero. Then,

(4.38) is proved. The same result hold for the imaginary part of Jε(λ).

We find a (uniform) bound for Yn(λ). We can write the expression as:

Yn(λ) =
∞∑

j=−∞

∞∑

l=−∞
ajl exp(−iλT (j, l))

1

2π
√
N




n1−1−j∑

s1=−j

n2−1−l∑

s2=−l

e(−i(j,l)T λ)ε(s)

−
n1−1∑

s1=0

n2−1∑

s2=0

e(−i(j,l)T λ)ε(s)

]
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Decomposing each addend in real and imaginary part and taking as an example just the one

dealing with the cosines (since the same procedure can be applied to the other addends), we have:

1

2π
√
N

∞∑

j=−∞

∞∑

l=−∞

n1−1−j∑

s1=−j

n2−1−l∑

s2=−l

ajl cos(λT (j + s1, l + s2))ε(s) =

1

2π
√
N

∞∑

j=−∞

∞∑

l=−∞

n1−1∑

p1=0

n2−1∑

p2=0

ajl cos(λTp)ε(p − (j, l)), pT = (p1, p2).

We will see that this term is an OP

(√
log N

N

)
:

P


 1

2π
√
N

∞∑

j=−∞

∞∑

l=−∞

n1−1∑

p1=0

n2−1∑

p2=0

ajl cos(λTp)ε(p − (j, l)) ≥ ν

√
logN

N


 =

P




∞∑

j=−∞

∞∑

l=−∞
ajlN

(
0,

σ2

(2π)2N

)
≥ ν

√
logN

N


 ≤

P

(
N

(
0,

σ2

(2π)2N

)
≥ ν

SA

√
logN

N

)
=

∫ ∞

ν
SA

q
log N

N

√
(2π)2N

σ
e

�
− (2π)2Nx2

2σ2

�
dx =

∫ ∞

ν2π
√

N
νSA

q
log N

N

√
(2π)2N

σ

σ

2π
√
N
e−

y2

2 dy =
1√
2π

∫ σ

2πν
√

log N
SAσ

e

�
− y2

2

�
dy ≤

1√
2π

1
2πν

SAσ
√

log N

e

�
− (2π)2ν2 log n

S2
A

σ2

�
=

SAσ

(2π)3/2ν
√

logN
e

�
− (2π)2ν2 log N

S1
A

σ2

�
=

SAσ

(2π)3/2ν
√

logN
e

�
− (2π)2ν2

S2
A

σ2 log N

�
= M

e−p log N

√
N

→ 0

The constants involved in the proof are given by:

M =
SAσ

(2π)3/2ν
√

logN
, p =

(2π)2ν2

2S2
Aσ

2
and SA =

∞∑

j=−∞

∞∑

l=−∞
ajl.

So, for all λk, we have the following stochastic convergence rates:

Jε(λk) = OP(
√

logN) and Yn(λk) = OP

(√
logN

N

)
.

Then, for the residual term Rn(λk), we obtain that:

Rn(λk) = OP

(
logN√
N

)
.
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Lemma 7. Under assumptions (1) and (2), as N → ∞

|H|1/4

N

∫

Π2

(∑

k

KH(λ − λk)
Rn(λk)

fθ0(λk)

)2

dλ → 0 in probability.

Proof. The proof of this lemma can be done by similar arguments to those in the proof of Lemma

5 in Paparoditis (2000), with bidimensional kernel function K and bandwidth matrix H.

We have that, from Lemma 6 and using the Cauchy-Schwarz inequality:

E(Rn(λk)Rn(λj)Rn(λi)Rn(λm)) ≤
{
E(R2

n(λk)R2
n(λj))

}1/2 {
E(R2

n(λi)R
2
n(λm))

}1/2 ≤
{
E(R4

n(λk))E(R4
n(λj))E(R4

n(λi))E(R4
n(λm))

}1/4 ≤
O(N−2).

We prove that

|H|1/4

N

∫

Π2

(∑

k

KH(λ − λk)
Rn(λk)

fθ0(λk)

)2

dλ

tends to zero in L2 norm.

0 ≤ E


 |H|1/4

N

∫

Π2

(∑

k

KH(λ − λk)
Rn(λk)

fθ0(λk)

)2

dλ




2

=

|H|1/2

N2
E



∫

Π2

∑

k

∑

j

KH(λ − λk)KH(λ − λj)
Rn(λk)

fθ0(λk)

Rn(λj)

fθ0(λj)
dλ




2

=

|H|1/2

N2
E


∑

k

∑

j

∫

Π2

KH(λ − λk)KH(λ − λj)dλ
Rn(λk)

fθ0(λk)

Rn(λj)

fθ0(λj)




2

=

|H|1/2

N2
E




∑

k

∑

j

∫

Π2

KH(λ − λk)KH(λ − λj)dλ
Rn(λk)

fθ0(λk)

Rn(λj)

fθ0(λj)




[∑

l

∑

m

∫

Π2

KH(ω − λl)KH(ω − λm)dω
Rn(λl)

fθ0(λl)

Rn(λm)

fθ0(λm)

])
≤

|H|1/2

N2

∑

k

∑

j

∫

Π2

KH(λ − λk)KH(λ − λj)dλ ·

∑

l

∑

m

∫

Π2

KH(ω − λl)KH(ω − λm)dω

1

fθ0(λk)fθ0(λj)fθ0(λl)fθ0(λm)
E|Rn(λk)Rn(λj)Rn(λl)Rn(λm)| = O(|H|1/2),
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where the last equality follows from the fact that
∫

Π2

KH(λ − λk)KH(λ − λj)dλ <∞.

Lemma 8. Consider Z a spatial process with spectral density f and denote Wk = Vk − 1, where

Vk ∼ Exp(1), independent random variables. Under assumptions (1)-(2),

|H|1/4

N

∫

Π2

∑

k

∑

j

KH(λ − λk)KH(λ − λj)Wk

Rn(λj)

f(λj)
dλ → 0

in probability.

Proof. Consider the following notation, in order to make the proof more brief:

KH(λ − λk) = Kk
H(λ), f(λk) = fk and Rn(λk) = Rk

n.

We will prove L2−consistency:

E


 |H|1/4

N

∫

Π2

∑

k

∑

j

KH(λ − λk)KH(λ − λj)(Vk − 1)
Rn(λj)

f(λj)
dλ




2

(4.42)

=
|H|1/2

N2

∫ ∫ ∑

k,j,l,m

Kk
H(λ)Kj

H(λ)Kl
H(ω)Km

H (ω)
1

fkfj
E
(
WkR

j
nWlR

m
n

)
dλdω (4.43)

In order to find a bound for this term, consider that k, j, l and m are all different indexes. From

Theorem 2.3.2 in (Brillinger (1981)):

E(WkR
j
nWlR

m
n ) =

cum(WkR
j
n)cum(WlR

m
n ) + cum(WkR

m
n )cum(WlR

j
n)

+cum(Rj
n)cum(WkWlR

m
n ) + cum(Rl

n)cum(WkWlR
j
n)

+cum(Wk)cum(Rj
nWlR

m
n ) + cum(Wl)cum(WkR

j
nR

m
n ).

Since cum(Wk) = E(Wk) = 0 and cum(WkWl) = E(WkWl) = 0, and applying Theorem 2.3.2 of

(Brillinger (1981)) on the three term cumulants, the expression above can be simplified:

E(WkR
j
nWlR

m
n ) = E(WkR

j
n)E(WkR

m
n ) + E(WlR

j
n)E(WlR

m
n ) = O(N−2),

where the last equality is obtained recalling the expression for Rj
n in (4.33), and from a straight-

forward extension of Lemma 2 in Paparoditis (2000). Then, (4.43) is O(|H|1/2).

Consider the case k = j 6= l = m. By the Cauchy-Schwarz inequality and Lemma 6,

|E(WkR
j
nWlR

m
n )| ≤

√
E(WkR

j
n)2E(WlRm

n )2 ≤ O(N−1).

Then, (4.43) is O(N−1|H|1/2). For the case k 6= j 6= l = m, using the same arguments, (4.43) is

also O(N−1|H|1/2).
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Lemma 9. Assume that assumption (2) is fulfilled and consider Uk independent identically dis-

tributed random variables with E(Uk) = 1, V ar(Uk) = 1 and E(U4
k) <∞. Then,

|H|1/4

N

∫

Π2

(∑

k

KH(λ − λk)(Uk − 1)

)2

dλ − µH → N(0, τ2),

where µH and τ2 are given in (4.11) and (4.12), respectively and the sum
∑

k extends over the

set of Fourier frequencies.

Proof. Let Zk = Uk − 1.

|H|1/4

N

∫

Π2

(∑

k

KH(λ − λk)(Uk − 1)

)2

dλ − µH =

|H|1/4

N

∫

Π2

∑

k

K2
H(λ − λk)Z2

kdλ

−|H|1/4

∫

Π2

K2(u)du +
|H|1/4

N

∫

Π2

∑

k 6=j

KH(λ − λk)KH(λ − λj)ZkZjdλ

= T1 − µH + T2.

Note that, as N → ∞:

|E(T1) − µH | =

|H|−1/4

∣∣∣∣∣

∫

Π2

1

N |H|1/2

∑

k

K2(H−1/2(λ − λk))dλ −
∫

Π2

K2(u)du

∣∣∣∣∣→ 0.

For the variance of this first term T1, since the Zk are independent zero-mean variables:

V ar(T1) = V ar

(
|H|1/4

∫

Π2

1

N |H|1/2

∑

k

K2(H−1/2(λ − λk))Zkdλ

)

=
1

N2|H|3/2

(∑

k

∫

Π2

K2(H−1/2(λ − λk))dλ

)2

V ar(Z2
0) = O

(
N−1|H|−1/2

)
.

using the same arguments as above. Let’s analyze T2. Define, for j 6= k

a(k, j) = a(k1, k2, j1, j2) =
|H|1/4

N

∫

Π2

KH(λ − λk)KH(λ − λj)dλ

and define a(k,k) = 0; then, T2 can be decomposed as follows:

T2 =
|H|1/4

N

∫

Π2

∑

k 6=j

KH(λ − λk)KH(λ − λj)ZkZjdλ =
∑

k

∑

j

a(k, j)ZkZj.



4.6. Appendix Chapter 4. 159

Define b(k, j) = b(k1, k2, j1, j2) as:

b(k1, k2, j1, j2) = a(k1, k2, j1, j2) + a(k1,−k2, j1, j2) + a(k1, k2,−j1, j2) + a(k1, k2, j1,−j2)+

a(−k1, k2, j1, j2) + a(−k1,−k2, j1, j2) + a(−k1, k2,−j1, j2) + a(−k1, k2, j1,−j2)+

a(−k1,−k2,−j1, j2) + a(−k1,−k2, j1,−j2) + a(−k1,−k2,−j1, j2) + a(k1,−k2,−j1,−j2)+

a(k1,−k2,−j1,−j2) + a(k1, k2,−j1,−j2) + a(−k1, k2,−j1,−j2) + a(−k1,−k2,−j1,−j2).

Then, T2 can be written as T2 = QN + T3 where

QN =

m1∑

k1=1

m2∑

k2=1

m1∑

j1=1

m2∑

j2=1

b(k, j)ZkZj

and

T3 =

m2∑

k2=−m2

m1∑

j1=−m1

m2∑

j2=−m2

a(k1, k2, j1, j2)ZkZjδkj,

where the function

δkj =

{
1 if 0 < 1(k1=0) + 1(k2=0) + 1(j1=0) + 1(j2=0),

0 otherwise,

and 1 is the indicator function. Consider any of the addends in the expression of T3, for instance:

m2∑

k2=−m2

m1∑

j1=−m1

m2∑

j2=−m2

a(0, k2, j1, j2)ZkZj.

Since the Zk are independent zero-mean random variables, in order to obtain a non-null expecta-

tion term, k must equal to j. For k0 = (0, k2):

E




m2∑

k2=−m2

m1∑

j1=−m1

m2∑

j2=−m2

a(0, k2, j1, j2)ZkZj


 =

|H|1/4

N

m2∑

k2=−m2

∫

Π2

K2
H(λ − λk0)dλE(Z2

k0
) = O(n−1

1 |H|−1/4).

Besides:

E




m2∑

k2=−m2

m1∑

j1=−m1

m2∑

j2=−m2

a(0, k2, j1, j2)ZkZj




2

=

|H|1/2

N2

m2∑

k2=−m2

m1∑

j1=−m1

m2∑

j2=−m2

∫

Π2

∫

Π2

(KH(λ − λk0)KH(λ − λj)

·KH(ω − λk0)KH(ω − λj)dλdω)E (Zk0Zj)
2
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and then

E




m2∑

k2=−m2

m1∑

j1=−m1

m2∑

j2=−m2

a(0, k2, j1, j2)ZkZj




2

= O(n−1
1 ).

Analogous expressions are obtained for the other addends. Therefore

T2 =

m1∑

k1=1

m2∑

k2=1

m1∑

j1=1

m2∑

j2=1

b(k, j)ZkZj + oP(1) = QN + oP(1).

In order to prove the asymptotic normal distribution of QN , we will apply Theorem 5.2 in de Jong

(1987). For that purpose, we must write QN as a quadratic form, namely QN =
∑

i,j ci,jZiZj ,

where i and j are one-dimensional indexes and Zi are i.i.d. random variables with zero mean and

unit variance.

First, define a new subindex for the Fourier frequencies λk, with k = (k1, k2) and kl = 0,±1, . . . ,±ml,

for l = 1, 2. Consider λk = λk′ where k′ = (k′1, k
′
2), with k′l = 1, . . . ,m′

l = 2ml + 1, in such a way

that k′l = kl +ml + 1 for l = 1, 2. Let M = m′
1 ×m′

2 and denote by MM×M the space of square

matrices with size M , that is, with M rows and M columns.

The new coefficients, with one dimensional indexes, are given by the following matrix:

A = (cij) , A ∈ MM×M ,

and each entry of this matrix is defined by aij = bij and aii = 0, where the bidimensional indexes

i determine unidimensional indexes i such that:

i = (i1, i2), if (i1 − 1)m′
2 ≤ i ≤ i1m

′
2 and i = (i1 − 1)m′

2 + i2, (4.44)

Now, define the variables:

Zi = Zi, where i = (i1 − 1)m′
2 + i2, i = 1, . . . ,M.

With this definitions, QN can be written as a quadratic form with one-dimensional indexes:

QN =
∑

i,j

ci,jZiZj .

In order to apply Theorem 5.2 (de Jong (1987)) on the quadratic form QN , we must prove that,

as N → ∞:

1. There exists a sequence k(n1, n2) → ∞ such that

k(n1, n2)
4 1

V ar(QN )
max

i

∑

j

c2ij → 0.
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Taking into account that n1 and n2 tend to infinity at the same rate, it holds that E(T3) =

O(n−1
1 |H|−1/4) and V ar(T3) ≤ E(T 2

3 ) = O(n−1
1 ). Then, applying that V ar(QN ) = V ar(T2)+

V ar(T3)−2Cov(T2, T3), the variance of the quadratic form can be approximated by V ar(T2),

since V ar(T3) ≤ O(n−1
1 ) and |Cov(T2, T3)| ≤

√
V ar(T2)V ar(T3) = O(n−1

1 ), using the

Cauchy-Schwarz inequality.

We prove that

V ar(T2) = V ar


∑

k

∑

j

a(k, j)ZkZj


 = (4.45)

∑

k

∑

j

∑

l

∑

m

a(k, j)a(l,m)E(ZkZjZlZm) (4.46)

The non-vanishing terms correspond to k 6= j and l 6= m.Then, (4.45) can be written as:

V ar(T2) =

|H|1/2

N2

∑

k 6=j

∑

l6=m

∫

Π2

KH(λ − λk)KH(λ − λj)dλ

·
∫

Π2

KH(ω − λl)KH(ω − λm)dωE(ZkZjZlZm) =

2|H|1/2

N2

∑

k

∑

j

∫

Π2

KH(λ − λk)KH(λ − λk)dλ

·
∫

Π2

KH(ω − λj)KH(ω − λj)dω

−2|H|1/2

N2

∑

k

∫

Π2

K2
H(λ − λk)dλ

∫

Π2

K2
H(ω − λk)dω,

where E(ZkZjZlZm) = 1 if an only if k = j 6= l = m or k = m 6= j = l. The second addend

is O(N−1|H|−1/2):

2|H|1/2

N2

∑

k

∫

Π2

∫

Π2

K2
H(λ − λk)K2

H(ω − λk)dλdω

=
2

N2|H|3/2

∑

k

(∫

Π2

K2(H−1/2(λ − λk))dλ

)2

=
2

N2|H|1/2

∑

k

(∫

Π2

K2(ω − λk)dω

)2

= O(N−1|H|−1/2),
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whereas, for the first term we obtain:

2|H|1/2

N2

∑

k

∑

j

∫ ∫
KH(λ − λk)KH(λ − λj)KH(ω − λk)KH(ω − λj)dλdω

=
2|H|1/2

N2

∑

k

∑

j

(∫
KH(λ − λk)KH(λ − λj)dλ

)2

=
2

N2|H|1/2

∑

k

∑

j

(∫
K(u)K

(
u +H−1/22π

(
k1 − j1
n1

,
k2 − j2
n2

)T
)
du

)2

=
2

N |H|1/2

2m1∑

k1=−2m1

2m2∑

k2=−2m2

c(k, N)

(∫
K(u)K

(
u +H−1/22π

(
k1

n1
,
k2

n2

)T
)
du

)2

→ 1

2π2

∫

2Π2

(∫

Π2

K(u)K(u + x)du

)2

dx,

where 2Π2 = [−2π, 2π] × [−2π, 2π] and c(k, N) = 2m1+1−|k1|
n1

2m2+1−|k2|
n2

. Therefore, in order

to prove the required condition, since c2ij is a squared sum of a(i, j) terms, we prove the

condition for one of the addends, that is, for a2(i, j). Besides, using that KH(·) ≤ |H|−1/2C,

for 0 < C <∞:

k4(n1, n2)max
k

∑

j

a2(k, j) =

k4(n1, n2)max
k

∑

j

(
|H|1/4

N

∫
KH(λ − λk)KH(λ − λj)dλ

)2

k4(n1, n2)C
2

N2|H|1/2

∑

j

∫ ∫
KH(λ − λj)KH(ω − λj)dωdλ =

O(k4(n1, n2)N
−1|H|−1/2).

So, this condition is satisfied for all k(n1, n2) → ∞ such that

k4(n1, n2)

n1n2|H|1/2
→ 0.

2. We also have to check that max
k

E(Z2
k)1{|Zk|>k(n1,n2)} → 0, but this assertion follows just

taking into account that Zk are identically distributed with E(Z2
k) = 1.

3. It remains to show that
maxi µ

2
i

V ar(QN )
→ 0 where µi, i = 1, 2, . . . ,M are the eigenvalues of the

matrix A = (cij) define above.

The matrix A is symmetric, because the cij entries are defined in terms of the a(i, j) terms defined

above. Besides, the a(i, j) satisfy that a(i, j) = a(j, i), and
∑

j

|a(i, j)| = O(|H|1/4).
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Thus, the same condition applies on the cij terms.

Now, to prove the required condition, since A is a symmetric M × M matrix, there exists an

ortogonal matrix U such that U−1AU is diagonal. This result implies that B is diagonalizable

with real eigenvalues, {µi}, with i = 1, . . . ,M , with M = m′
1×m′

2. The ‖ · ‖∞ norm of the matrix

B is given by:

‖A‖∞ = max
i

∑

j

|cij |,

where the maximum is taken over i ∈ {1, . . . ,M} and consider the spectral ratio of the matrix:

ρ(A) = max
i

|µi|.

The spectral ratio of the matrix can be bounded by any norm in the matrix space MM×M ;

therefore, for the particular case of the supremun norm ‖ · ‖∞:

max
i

|µi| ≤ max
i

∑

j

|cij |.

To prove the result, just take into account that:

max
i
µ2

i ≤
(

max
i

|µi|
)2

≤


max

i

∑

j

|cij |




2

.

Then, since |H|1/2 → 0 and V ar(QN ) → τ2:

maxi µ
2
i

V ar(QN )
≤

(
maxi

∑
j |cij |

)2

V ar(QN )
=

O(|H|1/2)

V ar(QN )
→ 0.

Lemma 10. Let T 0
P denote the test statistic in (4.10) assuming that the true parameter is given

by θ0. Then, under assumptions in Theorem 1:

TP = T 0
P + oP(1).

Proof. The test statistic T 0
P is given by

T 0
P = N |H|1/4

∫

Π2

(
1

N |H|1/2

∑

k

K(H−1/2(λ − λk))

(
I(λk)

fθ0(λk)
− 1

))2

dλ. (4.47)

Note that:
I(λk)

fθ̂(λk)
− 1 =

(
I(λk)

fθ0(λk)
− 1

)
−
(
fθ̂(λk) − fθ0(λk)

fθ̂(λk)

)
I(λk)

fθ0(λk)
. (4.48)
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Therefore,

TP = T 0
P +N |H|1/4

∫

Π2

(
1

N

∑

k

KH(λ − λk)
I(λk)

fθ0(λk)

(
fθ̂(λk) − fθ0(λk)

fθ0(λk)

))2

dλ

−2|H|1/4

N

∫

Π2

∑

k

∑

j

KH(λ − λk)KH(λ − λj)

(
I(λk)

fθ0(λk)
− 1

)
fθ̂(λj) − fθ0(λj)

fθ̂(λj)

I(λj)

fθ0(λj)
dλ

For the second addend, using Lemma 5 and the fact that

∫

Π2

(
1

N

∑

k

KH(λ − λk)
I(λk)

fθ0(λk)

)2

dλ = OP(1)

we have

N |H|1/4

∫

Π2

(
1

N

∑

k

KH(λ − λk)
I(λk)

fθ0(λk)

(
fθ̂(λk) − fθ0(λk)

fθ0(λk)

))2

dλ

≤ N |H|1/4

(
sup
k

∣∣∣∣
fθ̂(λk) − fθ0(λk)

fθ0(λk)

∣∣∣∣
)2 ∫

Π2

(
1

N

∑

k

KH(λ − λk)
I(λk)

fθ0(λk)

)2

dλ =

OP(|H|1/4).

For the last addend:

|H|1/4

N

∫

Π2

∑

k

∑

j

KH(λ − λk)KH(λ − λj) ·
(
I(λk)

fθ0(λk)
− 1

)
fθ̂(λj) − fθ0(λj)

fθ̂(λj)

I(λj)

fθ0(λj)
dλ =

M1 +M2,

where

M1 =
|H|1/4

N

∫

Π2

∑

k

∑

j

KH(λ − λk)KH(λ − λj)

(
I(λk)

fθ0(λk)
− 1

)
·

fθ̂(λj) − fθ0(λj)

fθ̂(λj)

(
I(λj)

fθ0(λj)
− 1

)
dλ

and

M2 =
|H|1/4

N

∫

Π2

∑

k

∑

j

KH(λ − λk)KH(λ − λj)

(
I(λk)

fθ0(λk)
− 1

)
fθ̂(λj) − fθ0(λj)

fθ̂(λj)
dλ.

We will prove that M1 = oP(1). Recall that

I(λk)

fθ0(λk)
− 1 = Wk +

Rn(λk)

fθ0(λk)
,
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where Wk = Vk − 1, and the Vk are independent identically distributed Exp(1). Then,

M1 =
|H|1/4

N

∫

Π2

∑

k

∑

j

KH(λ − λk)KH(λ − λj)dλ

×
{
WkWj

(
fθ̂(λj) − fθ0(λj)

fθ̂(λj)

)
+Wk

Rn(λj)

fθ0(λj)

(
fθ̂(λj) − fθ0(λj)

fθ̂(λj)

)

+Wj

Rn(λk)

fθ0(λk)

(
fθ̂(λj) − fθ0(λj)

fθ̂(λj)

)

+
Rn(λj)

fθ0(λj)

Rn(λk)

fθ0(λk)

(
fθ̂(λj) − fθ0(λj)

fθ̂(λj)

)}
= C1 + C2 + C3 + C4.

In order to prove the bounds for Cj , j = 1, 2, 3, 4, we have to consider the Taylor expansion of

fθ̂(λ) around fθ0(λ), for a fixed λ:

fθ̂(λ) = fθ0(λ) + (θ̂ − θ0)
T∇fθ0(λ) +

1

2
(θ̂ − θ0)

T∇2fθ̃(λ)(θ̂ − θ0),

where ‖θ̃ − θ0‖ ≤ ‖θ̂ − θ0‖. By similar arguments to those in Lemma 5, for λj

fθ̂(λj) − fθ0(λj)

fθ̂(λj)
= OP(1)

(
(θ̂ − θ0)

T∇fθ0(λj) +
1

2
(θ̂ − θ0)

T∇2fθ̃(λj)(θ̂ − θ0)

)
, (4.49)

and the OP(1) factor is uniform in j. We will see that C1 = OP(N−1/2) +OP(|H|1/4). Taking into

account (4.49), C1 can be written as:

C1 = OP(1)(θ̂ − θ0)
T |H|1/4

N

∫

Π2

∑

k

∑

j

KH(λ − λk)KH(λ − λj)WkWj∇fθ0(λj)dλ

+OP(1)(θ̂ − θ0)
T |H|1/4

2N

∫

Π2

∑

k

∑

j

KH(λ − λk)KH(λ − λj)WkWj∇2fθ̃(λj)dλ(θ̂ − θ0).

Since
|H|1/4

N

∫

Π2

∑

k

∑

j

KH(λ − λk)KH(λ − λj)WkWjdλ = OP(1)

and the derivatives of fθ are uniformly bounded, the first addend in C1 is OP(N−1/2). Taking

into account that (θ̂ − θ0) = OP(N−1/2), the second addend is OP(|H|1/4). In order to obtain a

bound for C2, one should consider the results in Lemma 8. From Taylor expansion (4.49), C2 can

be written as:

C2 = OP(1)(θ̂ − θ0)
T |H|1/4

N

∫

Π2

∑

k

∑

j

KH(λ − λk)KH(λ − λj)Wk

Rn(λj)

fθ0(λj)
∇fθ0(λj)dλ

+OP(1)(θ̂ − θ0)
T |H|1/4

2N

∫

Π2

∑

k

∑

j

KH(λ − λk)KH(λ − λj)Wk

Rn(λj)

fθ0(λj)
∇2fθ̃(λj)(θ̂ − θ0).
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From Lemma 8, we have that:

|H|1/4

2N

∫

Π2

∑

k

∑

j

KH(λ − λk)KH(λ − λj)Wk

Rn(λj)

fθ0(λj)
dλ = oP(1).

Then, the first addend in C2 is OP(N−1/2)oP(1). For the second addend, one should note that

|Rn(λj)| = OP(N−1/2), from Lemma 6. Then:

OP(1)(θ̂ − θ0)
T |H|1/4

2N

∫

Π2

∑

k

∑

j

KH(λ − λk)KH(λ − λj)Wk

Rn(λj)

fθ0(λj)
∇2fθ̃(λj)(θ̂ − θ0)dλ =

= OP(N−1/2|H|1/4).

The third addend C3 can be bounded using the same arguments as in the proof for C2. For the

last addend C4, and taking also into account Lemma 6:

|C4| ≤
∑

j

∣∣∣∣
fθ̂(λj) − fθ0(λj)

fθ0(λj)

∣∣∣∣
|H|1/4

N

∫

Π2

∑

k

∑

j

KH(λ − λk)KH(λ − λj)
|Rn(λj)|
fθ0(λj)

|Rn(λk)|
fθ0(λk)

dλ

= OP(N−1/2)OP(|H|1/4N)OP(N−1) = OP(|H|1/4N−1/2).

M2 = oP(1) can be proved using similar arguments.

Lemma 11. If θ = θ0 is the true parameter, under assumptions (1)-(4):

T 0
P − µH → N(0, τ2),

as N → ∞, where µH and τ2 are given in (4.11) and (4.12), respectively and T 0
P is given in

(4.47).

Proof. Recall the expression for the periodogram

I(λk) = f(λk)Vk +Rn(λk), (4.50)

where {λk} denote the Fourier frequencies and recall the notation Wk = 1 − Vk (where Vk

are independent identically distributed random variables with Exp(1) distribution) introduced in

Lemma 10. Then:
I(λk)

fθ0(λk)
− 1 = Wk +

Rn(λk)

fθ0(λk)
.

The statistic T 0
P can be decomposed in three addends in the following way:

T 0
P − µH =

|H|1/4

N

∫

Π2

(∑

k

KH(λ − λk)Wk

)2

dλ − µH (4.51)

+
|H|1/4

N

∫

Π2

(∑

k

KH(λ − λk)
Rn(λk)

fθ0(λk)

)2

dλ (4.52)

+
2|H|1/4

N

∫

Π2

∑

k

∑

j

KH(λ − λk)KH(λ − λj)Wk

Rn(λj)

fθ0(λj)
dλ (4.53)
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From Lemma 7, (4.52) tends to zero in probability. Also, from Lemma 8, (4.53) tends to zero in

probability. The theorem is proved by Lemma 9.

Proof of Theorem 1. Theorem 1 is proved combining the results in Lemma 10 and Lemma 11.

4.6.2 Proofs of Theorems 2 and 3.

Before proving the theorem, we must verify that (4.13) holds. The prove of the following lemma

is obtained generalizing Theorem 3.2 in Dahlhaus and Wefelmeyer (1996).

Lemma 12. Under assumptions (2) and (5), if f is bounded and bounded away from cero, then

√
N(θ̂ − θ∗) −

√
N

∫

Π2

W (λ)(I(λ) − f(λ))dλ → 0

in probability, where

W (λ) = −H−1∇f−1
θ (λ)|θ=θ∗ , H =

∫

Π2

∇2G(θ∗, f,λ)dλ,

G(θ, f,λ) = log fθ(λ) +
f(λ)

fθ(λ)
.

Proof. Let’s write the Kullback-Lebiler discrepancy between f and fθ

L(θ, f) =

∫

Π2

(
log fθ(λ) +

f(λ)

fθ(λ)

)
dλ, (4.54)

in a more general form as:

L(θ, f) =

∫

Π2

G(θ, f,λ)dλ.

In our particular case, the function in the integrand is given by:

G(θ, f,λ) = aθ(λ) + bθ(λ)f(λ) where aθ(λ) = log fθ(λ), bθ(λ) = f−1
θ (λ).

Then, the H matrix can be written as:

H =

∫

Π2

(
∇2aθ∗(λ) + ∇2bθ∗(λ)f(λ)

)
dλ,

where θ∗ gives the best fit in Fθ. Considering L(θ, I) the analogous expression to (4.54), but

replacing f by the periodogram I, it is straightforward to see that L(θ̂, I) ≤ L(θ∗, I) and L(θ∗, f) ≤
L(θ̂, f), only recalling the definitions of θ̂ and θ∗:

θ̂ = arg min
θ
L(θ, I) and θ∗ = arg min

θ
L(θ, f).



168 Chapter 4. Goodness-of-fit tests for the spatial spectral density

Since

sup
θ

|L(θ, I) − L(θ, f)| → 0 (4.55)

in probability (see Dahlhaus and Wefelmeyer (1996), Lemma A.7), then the Kullback-Leibler dis-

crepancy L(θ̂, f) converges to L(θ∗, f) in probability. This result is proved by the convergence of

Cesaro sums of the Fourier transform of f−1
θ (λ).

Therefore, θ̂ tends to θ∗ in probability. The result follows from a Taylor expansion of ∇L(θ̂, I)

around ∇L(θ∗, I). Note that ∇L(θ̂, I) = 0, then:

0 = ∇L(θ∗, I) + ∇2L(θ̃, I)(θ̂ − θ∗). (4.56)

for θ̃ such that ‖θ̃ − θ∗‖ ≤ ‖θ̂ − θ∗‖. For the first addend:

∇L(θ∗, I) =

∫

Π2

∇G(θ∗, I,λ)dλ =

∫

Π2

(∇aθ∗(λ) + ∇bθ∗(λ)I(λ)) dλ

=

∫

Π2

∇G(θ∗, f,λ)dλ +

∫

Π2

∇bθ∗(λ)(I(λ) − f(λ))dλ

=

∫

Π2

∇bθ∗(λ)(I(λ) − f(λ))dλ,

since the first term is zero. For the second addend in (4.56), it can be seen that, for θ̃ such that

‖θ̃ − θ∗‖ ≤ ‖θ̂ − θ∗‖:

∇2L(θ̃, I) =

∫

Π2

∇2G(θ̃, f,λ)dλ +

∫

Π2

∇2bθ̃(λ)(I(λ) − f(λ))dλ.

Then, (4.56) can be written as:

−
∫

Π2

∇bθ∗(λ)(I(λ) − f(λ))dλ =

∫

Π2

∇2G(θ̃, f,λ)dλ +

∫

Π2

∇2bθ̃(λ)(I(λ) − f(λ))dλ.

Provided that H is non-singular:

−
√
NH−1

∫

Π2

∇bθ∗(λ)(I(λ) − f(λ))dλ = (4.57)

√
NH−1

(∫

Π2

∇2G(θ̃, f,λ)dλ +

∫

Π2

∇2bθ̃(λ)(I(λ) − f(λ))dλ

)
(θ̂ − θ∗). (4.58)

By the smoothness of G, ∫

Π2

∇2G(θ̃, f,λ)dλ → H (4.59)

in probability, and by Lemma A.7 in (Dahlhaus and Wefelmeyer (1996)):
∫

Π2

∇2bθ̃(λ)(I(λ) − f(λ))dλ → 0 (4.60)

also in probability.

The result is proved replacing (4.59) and (4.60) in (4.57)-(4.58).
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Proof of Theorem 2. Once we have obtained the
√
N -consistency of θ̂ as an estimator of θ∗, the

proof of the theorem is analogous as the proof of Theorem 3 in Paparoditis (2000). Note that:

I(λk)

fθ̂(λk)
− 1 =

(
I(λk)

f(λk)
− 1

)
+

I(λk)

fθ∗(λk)

(
fθ∗(λk)

fθ̂(λk)
− 1

)
+
I(λk)

f(λk)

(
f(λk)

fθ∗(λk)
− 1

)
,

and recall that I(λk)/f(λk) = Vk +Rn(λk)/f(λk). Then,

N−1|H|−1/4TP =

∫

Π2

(
1

N |H|1/2

∑

k

K(H−1/2(λ − λk))
I(λk)

f(λk)

(
f(λk)

fθ∗(λk)
− 1

))2

dλ + oP(1).

The first addend can be decomposed in two terms:

∫

Π2

(
N−1

∑

k

KH(λ − λk)

(
f(λk)

fθ∗(λk)
− 1

))2

dλ

+

∫

Π2

(
N−1

∑

k

KH(λ − λk)

(
Wk +

Rn(λk)

f(λk)

)(
f(λk)

fθ∗(λk)
− 1

))2

dλ,

where Wk = Vk − 1. From Lemma 8:

N−2

∫

Π2

∑

k

∑

j

KH(λ − λk)KH(λ − λj)f(λk)/fθ∗(λk)f(λj)/fθ∗(λj)Wk

Rn(λj)

f(λj)
dλ = oP(1).

From Lemma 7, we have:

N−2

∫

Π2

(∑

k

KH(λ − λk)f(λk)/fθ∗(λk)
Rn(λk)

f(λk)

)2

dλ = oP(1).

Besides,

N−2

∫

Π2

(∑

k

KH(λ − λk)Wk

)2

dλ → 0.

Then,

N−1|H|−1/4TP =

∫

Π2

(
N−1

∑

k

KH(λ − λk)

(
f(λk)

fθ∗(λk)
− 1

))2

dλ + oP(1). (4.61)

Besides, this uniform convergence holds:

N−1
∑

k

KH(λ − λk)
f(λk)

fθ∗(λk)
→ f(λ)

fθ∗(λ)
(4.62)

The result is concluded from (5.28) and (4.62).

Proof of Theorem 3. The result is obtained using:

I(λk)

fθ0(λk)
− 1 =

(
I(λk)

f(λk)

)
+

(
Wk +

Rn(λk)

f(λk)

)(
f(λk)

fθ0(λk)
− 1

)
+

(
f(λk)

fθ0(λk)
− 1

)

and similar arguments to those in the proof of Theorem 2.
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4.6.3 Proof of Theorem 4.

From now on, note that N = n1n2 denotes the number of data points whereas n denotes the

number of Fourier frequencies and ‖ · ‖ is the L2-norm. We will drop the subindex 0 and denote

by θ the true parameter under the null hypothesis. Define

q1(m(λk), Yk) = +eYk−m(λk) − 1, q2(m(λk), Yk) = −eYk−m(λk),

where m can be replaced by mθ or by m̂LK . Assume mθ is the log-likelihood under the null

hypothesis and denote

εk = q1(mθ(λk), Y ∗∗
k ) = eY

∗∗
k

−mθ(λk) − 1, qk2 = q2(mθ(λk), Y ∗∗
k ) = −eY ∗∗

k
−mθ(λk),

where Y ∗∗
k is given by (4.14). Define, also

Γ(λk) = −E (q2(mθ(λ), Y ∗∗
k ))

1

4π2
.

Some other constants and vectors that will appear in our computations are

βT = β(λ)T =
(
mθ(λ), |H|1/2∇Tmθ(λ)

)
∈ R

3,

where ∇mθ(λ) denotes the gradient vector ∇mθ(λ) =
(

∂mθ
∂x (λ), ∂mθ

∂y (λ)
)

and ∂
∂x , ∂

∂y denote the

derivatives with respect to the first and second components. Besides, define

βT
2 = β2(λ)T =

√
n|H|1/2(a−m(λ), |H|1/2(b −∇m(λ))T ) ∈ R

3,

where (a,b) are the parameters in the non-parametric model (2.89),

Wk = Wk(λ) = (1, |H|−1/2(λ − λk)) ∈ R
3,

r2N =
1

N |H|1/2
, and m̄k = m̄k(λ) = mθ(λ) + ∇Tmθ(λ)(λ − λk).

Besides,

Φn,j = sup
λ∈Π2,‖α‖=c1rN

∣∣∣q2(βT
∗Wk + αTWk, Yk)|H|(j−1)/2‖(λ − λk)‖(j−1)KH(λ − λk)

∣∣∣ ,

where β∗ denotes β or β2 and assume that

E(Φn,j)
ζ = O(1), j = 1, 2, 3.

Lemma 13. The Generalized Likelihood Ratio Test statistic

TLK =
∑

k

[
eYk−mθ(λk) +mθ(λk) − eYk−m̂LK(λk) − m̂LK(λk)

]
(4.63)
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admits the following decomposition

TLK = T ∗
LK +B1 +B2 −B3 (4.64)

where T ∗
LK is the same as TLK but replacing Yk by Y ∗∗

k and m̂LK(λk) by m̂∗
LK(λk) and,

B1 =
∑

k

{
1 − eYk−m̂∗

LK(λk)
}

(m̂LK(λk) − m̂∗
LK(λk)) ,

B2 =
∑

k

eYk−m̂∗
LK(λk) (m̂LK(λk) − m̂∗

LK(λk))2 ,

B3 =
∑

k

RN (λk)

fθ(λk)

{
emθ(λk)−m̂∗

LK(λk) − 1
}
.

Proof.

TLK − T ∗
LK =

∑

k

[
m̂∗

LK(λk) − m̂LK(λk) + eYk−mθ(λk) − eY
∗∗
k

−mθ(λk)

+eY
∗∗
k

−m̂∗
LK(λk) − eYk−m̂LK(λk)

]
=

∑

k

[
m̂∗

LK(λk) − m̂LK(λk) + eYk−mθ(λk) − eY
∗∗
k

−mθ(λk) + eYk−m̂∗
LK(λk)

−eYk−m̂∗
LK(λk) + eY

∗∗
k

−m̂∗
LK(λk) − eYk−m̂LK(λk)

]

By Taylor’s expansion of hk(x) = eYk−x evaluated at m̂∗
LK(λk), and doing the expansion around

m̂LK(λk):

eYk−m̂LK(λk) = eYk−m̂∗
LK(λk) − (m̂LK(λk) − m̂∗

LK(λk))eYk−m̂∗
LK(λk)

+
1

2
(m̂LK(λk) − m̂∗

LK(λk))2eYk−m̂LK(λk) − 1

3!
(m̂LK(λk) − m̂∗

LK(λk))3eYk−zk

where zk is such that |m̂LK(λk) − m̂∗
LK(λk)| ≥ |zk − m̂∗

LK(λk)|. The last addend is given in

Lagrange’s remainder form, and it can be bounded by:

(m̂LK(λk) − m̂∗
LK(λk))3eYk−zk

= (m̂LK(λk) − m̂∗
LK(λk))3

(
1 + (m̂LK(λk) − zk) +

1

2
(m̂LK(λk) − zk)2 + . . .

)

= OP(N−3/2 log3N),

applying Lemma 6:

|Yk − zk| ≤ |m̂LK(λk) − zk| ≤ OP(N−1/2 logN).
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Then, TLK − T ∗
LK can be written as:

∑

k

[
eYk−mθ(λk) − eY

∗∗
k

−mθ(λk) + eY
∗∗
k

−m̂∗
LK(λk) − eYk−m̂∗

LK(λk)+

m̂∗
LK(λk) − m̂LK(λk) + eYk−m̂∗

LK(λk)(m̂∗
LK(λk) − m̂LK(λk)

+
1

2
eYk−m̂∗

LK(λk)(m̂LK(λk) − m̂∗
LK(λk))2 + OP(N−3/2 log3N)

]

=
∑

k

[
eYk−mθ(λk) − eY

∗∗
k

−mθ(λk) + eY
∗∗
k

−m̂∗
LK(λk) − eYk−m̂∗

LK(λk)

+(1 − eYk−m̂LK(λk))(m̂LK(λk) − m̂∗
LK(λk))

+
1

2
eYk−m̂∗

LK(λk)(m̂LK(λk) − m̂∗
LK(λk))2 + OP(N−3/2 log3N)

]
=

∑

k

[
(1 − eYk−m̂LK(λk))(m̂∗

LK(λk) − m̂LK(λk))
]

+

∑

k

[
1

2
eYk−m̂∗

LK(λk)(m̂∗
LK(λk) − m̂LK(λk))2

]
+

∑

k

[
eYk−mθ(λk) − eY

∗∗
k

−mθ(λk) + eY
∗∗
k

−m̂∗
LK(λk) − eYk−m̂∗

LK(λk)
]

+OP(N−3/2 log3N)

The first two addends correspond to B1 and B2. To obtain the third part, B3, we should recall

the following relations:

I(λk) = fθ(λk)Vk +RN (λk), Yk = mθ(λk) + zk + rk (4.65)

eYk = fθ(λk)Vke
rk , eY

∗∗
k = fθ(λk)Vk, eYk−Y ∗∗

k = fθ(λk)Vk(erk − 1). (4.66)

And recall also that emθ(λ) = fθ(λ). In order to derive the final expression for B3, we must

consider the following Taylor’s expansion:

eYk−mθ(λk) = eY
∗∗
k

−mθ(λk) + (Yk − Y ∗∗
k )eY

∗∗
k

−mθ(λk) +
1

2
(Yk − Y ∗∗

k )2eck−mθ(λk), (4.67)

where ck is such that |Yk − Y ∗∗
k | ≥ |ck − Y ∗∗

k |. Besides, the difference between Yk and Y ∗∗
k is

bounded by:

|Yk − Y ∗∗
k | = |rk − C0|, where C0 is the Euler constant.

From the expression for rk:

rk = log

(
1 +

RN (λk)

f(λk)Vk

)
,

and taking into account that RN (λk) is uniformly bounded by:

max
k

|RN (λk)| = OP(N−1/2 logN), (4.68)
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the remainder in Taylor’s expansion can be bounded by:

|Yk − Y ∗∗
k | = OP(logN−1/2 log logN),

and this bound is uniform in λk. Using similar arguments, we have:

eYk−m̂∗
LK(λk) = eY

∗∗
k

−m̂∗
LK(λk) + (Yk − Y ∗∗

k )eYk−m̂∗
LK(λk) + OP(logN−1/2 + log logN). (4.69)

Applying Taylor’s expansion in B3 (for two groups of addends) we have

B3 =
∑

k

(
eYk−mθ(λk)(Yk − Y ∗∗

k ) − eYk−m̂∗
LK(λk)(Yk − Y ∗∗

k ) + OP(logN−1/2 + log logN)
)

=

∑

k

eYk(Yk − Y ∗∗
k )(e−mθ(λk) − e−m̂∗

LK(λk)) + OP(N logN−1/2 log logN) =

∑

k

eYk(Yk − Y ∗∗
k )

1

fθ(λk)

(
1 − emθ(λk)−m̂∗

LK(λk)
)

+ OP(N logN−1/2 +N log logN)

And, with another Taylor’s expansion on eYk around eY
∗∗
k :

B3 =
∑

k

(eYk − eY
∗∗
k )

1

fθ(λk)
(1 − emθ(λk)−m̂∗

LK(λk)) + OP(N logN−1/2 +N log logN) =

∑

k

rN (λk)
1

fθ(λk)
(1 − emθ(λk)−m̂∗

LK(λk)) + OP(N logN−1/2 +N log logN).

We prove now that T ∗
LK follows an asymptotically normal distribution.

Proof of Theorem 4. .

The regresion model (4.14) under the null hypothesis

Y ∗∗
k = mθ(λk) + zk (4.70)

can be seen regresion model with non-Gaussian error variables with density (2.17). The asymptotic

distribution of T ∗
LK is obtained as a particular case of Theorem 10 in (Fan et al. (2001)), extended

to the bidimensional situation. The loglikelihood associated with model (5.10):

f(Y ∗∗
k ,mθ(λk)) = Y ∗∗

k −mθ(λk) − eY
∗∗
k

−mθ(λk) (4.71)

and the generalized likelihood ratio test statistic is given by

T ∗
LK =

∑

k

{
eY

∗∗
k

−mθ(λk) +mθ(λk) − eY
∗∗
k

−m̂∗
LK(λk) − m̂∗

LK(λk)
}
.



174 Chapter 4. Goodness-of-fit tests for the spatial spectral density

Using Taylor’s expansion of the loglikelihood function, with the notation introduced above:

T ∗
LK =

∑

k

{
εk(m̂∗

LK(λk) −mθ(λk)) + qk2
1

2
(m̂∗

LK(λk) −mθ(λk))2 + OP(N−3/2 log3N)

}
(4.72)

For the sake of simplicity, we will drop the residual part. Now, using the asymptotic representation

for the nonparametric estimator given in Lemma 15, and the expression for HN (λ) in (4.73), the

non-negligible part of (4.72) can be written as:

T ∗
LK =

∑

k

{
εkr

2
NΓ(λk)−1

∑

i

εiK(H−1/2(λi − λk))(1 + oP(1)) + εkHN (λk)

+
1

2
qk2

[
r2NΓ(λk)−1

∑

i

K(H−1/2(λi − λk))(1 + oP(1)) +HN (λk)

]2


 =

r2N
∑

k

∑

i

εkεiΓ(λk)−1K(H−1/2(λi − λk))(1 + oP(1)) +
∑

k

εkHN (λk)

+
1

2

∑

k

qk2


r4NΓ(λk)−2

∑

i

∑

j

εiεjK(H−1/2(λi − λk))K(H−1/2(λj − λk))(1 + oP(1))2

+H2
N (λk) + 2r2NΓ(λk)−1

∑

i

εiK(H−1/2(λi − λk))(1 + oP(1))HN (λk)

]
=

r2N
∑

k

∑

i

εkεiΓ(λk)−1K(H−1/2(λi − λk))(1 + oP(1)) +
∑

k

εkHN (λk)

+
r4N
2

∑

k

qk2 Γ(λk)−2
∑

i

∑

j

εiεjK(H−1/2(λi − λk))K(H−1/2(λj − λk))(1 + oP(1))2

+
1

2

∑

k

qk2H
2
N (λk) − r2N

∑

k

qk2 Γ(λk)−1
∑

i

εiK(H−1/2(λi − λk))(1 + oP(1))HN (λk) =

S1N + S2N +R1N +R2N +R3N ,

where

HN (λ) = r2NΓ(λ)−1
∑

k

[
q1(β(λ)TWk, Y

∗∗
k ) − εk

]
K(H−1/2(λ − λk))(1 + oP(1)). (4.73)

The residual terms are

R1N =
∑

k

εkHN (λk), (4.74)

R2N =
−1

2

∑

k

qk2H
2
N (λk), (4.75)

R3N = −r2N
∑

k

qk2 Γ(λk)−1
∑

i

εiK(H−1/2(λi − λk))HN (λk), (4.76)
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and the leading terms:

S1N = r2N
∑

k

∑

i

εkεiΓ(λk)−1K(H−1/2(λi − λk)) (4.77)

and

S2N =
r4N
2

∑

k

qk2 Γ(λk)−2
∑

i

∑

j

εiεjK(H−1/2(λi − λk))K(H−1/2(λj − λk)). (4.78)

The addend S1N given by (4.77) can be decomposed as:

S1N = r2N
∑

k

ε2kΓ(λk)−1K(H−1/2(λk − λk))

+r2N
∑

k 6=i

εkεiΓ(λk)−1K(H−1/2(λi − λk)) =

= r2N
∑

k

ε2kΓ(λk)−1K(H−1/20)

+r2N
∑

k 6=i

εiεkΓ(λk)−1K(H−1/2(λi − λk)) = S1
1N + S2

1N .

For the first addend,

S1
1N = r2N

∑

k

ε2kΓ(λk)−1K(H−1/20) =

=
1

N |H|1/2

∑

k

4π2E−1(q2(mθ(λk), Y ∗∗
k ))K(H−1/20) →P

4π2

|H|1/2
K(0).

Therefore:

S1N ≈ 4π2

|H|1/2
K(0) + S2

1N ,

with

S2
1N = r2N

∑

k 6=i

εkεiΓ(λk)−1K(H−1/2(λi − λk)).

Note that:

E(ε2k/λ = λk) = −E(q2(mθ(λk), Y ∗∗
k ),

and consider the following decomposition for (4.78):

S2N =
r4N
2

∑

k

qk2 Γ(λk)−2
∑

i=j

εiεjK(H−1/2(λi − λk))K(H−1/2(λj − λk))

+
r4N
2

∑

k

qk2 Γ(λk)−2
∑

i6=j

εiεjK(H−1/2(λi − λk))K(H−1/2(λj − λk)) =

S1
2N + S2

2N .
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The first part S1
2N converges in probability to:

S1
2N =

r4N
2

∑

k

qk2 Γ(λk)−1
∑

i

ε2iK
2(H−1/2(λi − λk)) →P

4π2

2|H|1/2

∫
K2(u)du.

The addend S2
2N can be decomposed in two parts:

S2
2N =

r4N
2

∑

k

qk2 Γ(λk)−2
∑

i6=j

εiεjK(H−1/2(λi − λk))K(H−1/2(λj − λk))

=
r4N
2
K(0)

∑

k

∑

j

εkεjq
k
2 Γ(λk)−2K(H−1/2(λj − λk)) +

r4N
2

∑

i,j

εiεj
∑

k 6=i,k 6=j

qk2 Γ(λk)−2K(H−1/2(λi − λk))K(H−1/2(λj − λk))

= S21
2N + S22

2N .

The variance of the first addend can be bounded by:

V ar(S21
2N ) = V ar


r

4
N

2
K(0)

∑

k

∑

j

εkεjq
k
2 Γ(λk)−2K(H−1/2(λj − λk))




= O(N−2|H|−3/2) = o(|H|−1/2),

therefore, this addend is

S21
2N = oP(|H|−1/4).

Then, in the expression of T ∗
LK we have:

T ∗
LK ≈ µH +R1N +R2N +R3N + S2

1N + S22
2N = µH +R1N +R2N +R3N +

1

2
WN |H|−1/4,

where

WN =
|H|1/4

N

∑

i6=j

εiεjΓ(λj)
−1 (2KH(λi − λj) −KH ∗KH(λi − λj)) .

Besides, if we define, for i 6= j:

b(i, j) =
|H|1/4

N
(2KH(λi − λj) −KH ∗KH(λi − λj))Γ(λj)

−1,

and b(i, i) = 0. Then, WN can be written as:

WN =
∑

i

∑

j

b(i, j)εiεj.

In order to prove the asymptotic normal distribution of WN , we will apply Proposition 3.2 in

de Jong (1987). For that purpose, we must write WN as a quadratic form of indpendent random
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variables, namely WN =
∑

i<j ci,jεiεj , where i and j are one-dimensional indexes.

As it is done in the proof of Theorem 1, define a new subindex for the Fourier frequencies λk,

with k = (k1, k2) and kl = 0,±1, . . . ,±ml, for l = 1, 2. Consider λk = λk′ where k′ = (k′1, k
′
2),

with k′l = 1, . . . ,m′
l = 2ml +1, in such a way that k′l = kl +ml +1 for l = 1, 2. Let M = m′

1 ×m′
2.

The new coefficients, with one dimensional indexes, are given by the following matrix:

A = (aij) , A ∈ MM×M ,

and each entry of this matrix is defined by aij = bij and aii = 0, where the bidimensional indexes

i determine unidimensional indexes i such that:

i = (i1, i2), if (i1 − 1)m′
2 ≤ i ≤ i1m

′
2 and i = (i1 − 1)m′

2 + i2, (4.79)

With this definitions, WN can be written as a quadratic form with one-dimensional indexes:

WN =
∑

i,j

ai,jεiεj .

For aij we have that:

aij =
|H|1/4

N
2KH(λi − λj)Γ(λj)

−1 − |H|1/4

N
KH ∗KH(λi − λj)Γ(λj)

−1 = a1
i,j − a2

i,j ,

where

a1
ij =

|H|1/4

N
2KH(λi − λj)Γ(λj)

−1, a2
ij =

|H|1/4

N
KH ∗KH(λi − λj)Γ(λj)

−1.

Now, if we define:

c1ij = a1
ij , c2ij = c1ji,

c3ij = a2
ij , c4ij = c3ji.

Define also, Wij =
(
c1ij + c2ij − c3ij − c4ij

)
εiεj . Then, WN can be wrriten as:

WN =
∑

i<j

Wij .

The variance of this form is given by (4.20). In order to apply Proposition 3.2 in (de Jong (1987)),

we must check some conditions on WN . The first one is the WN is clean, but this is clear, by

definition (see definition 2.1 in de Jong (1987)). Consider:

GI =
∑

i<j

W 4
ij ,

GII =
∑

i<j<k

{
E
(
W 2

ijW
2
ik

)
+ E

(
W 2

jiW
2
jk

)
+ E

(
W 2

kiW
2
kj

)}
,

GIII =
∑

i<j<k<l

{E (WijWikWljWlk) + E (WijWilWkjWkl) + E (WikWilWjkWjl)} .
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We must check that GI , GII and GIII are of smaller order than V ar(WN ), which is given by

(4.20). It is easy to see that GI = O(N−2|H|−1/2), just taking into account that:

E
(
a1

ijεiεj
)4

= O
( |H|
N4

16K4
H(λi − λj)Γ(λj)

−4

)
= O

(
1

N4|H|1/2

)
,

and E(a3
ijεiεj)

4 = O(N−4). GII is O(N−1|H|−1/2), since:

E
(
(a1

ij)
2(a2

ij)
2
)

= O
(

1

N4|H|1/2

)
.

Similar computations lead to GIII = O
(
|H|1/2

)
. Then, we have that WN → N(0, σ2). Finally,

we must find a bound for the residual terms R1N , R2N and R3N in (4.75), (4.76) and (4.76),

respectively and HN (λ) is given by (4.73). We can see that both R1N and R3N are stochastically

bounded. In fact R1N = N1/2|H|R1N0, where

R1N0 =
1√
N

∑

k

εk

∫
uTHmθ

(λk)uK(u)du

and R3N = N1/2|H|R3N0, where

R3N0 =
−1√
N

∑

k

εkΓ(λk)−1

∫ ∫
sTHmθ

(λk)suTHmθ
(λk)uK(s)K(u)dsdu.

Both R1N0 and R3N0 are asymptotically normal, and therefore, stochastically bounded. The

remaining residual term, R2N admits the following asymptotic expression:

R2N =
−|H|2

8

∑

k

1

fθ(λk)

∫ ∫
sTHmθ

(λk)s(s + u)THmθ
(λk)(s + u)K(s)K(u)dsdu.

An additional term of the bias, bH is obtained from R2N , as N1/2|H| → ∞.

The following lemmas are needed for bounding B1, B2 and B3 in Lemma 13.

Lemma 14. Define

ΨN (λ) = |H|1/2(N |H|1/2)−1/2
∑

k

(eY
∗∗
k

−m̄k − 1)WkKH(λ − λk) (4.80)

By Taylor’s expansion and conditions in Theorem 3, the following hold also uniformly in λ:

|H|1/2l(β) = ΨN (λ)T β +
1

2
βTAβ + ∆1(β),

where l(β) is given by:

l(β) =
∑

k

[
−(N |H|1/2)−1/2βTWk − eY

∗∗
k

−m̄k−(N |H|1/2)−1/2βT Wk + eY
∗∗
k

−m̄k

]
KH(λ − λk).
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Proof. The expression for l(β) is given by:

|H|1/2l(β) =

|H|1/2
∑

k

{
−(N |H|1/2)−1/2βTWk − eY

∗∗
k

−(N |H|1/2)−1/2βT Wk + eY
∗∗
k

−m̄k

}
KH(λk − λ),

and by Taylor’s expansion, we can write:

eY
∗∗
k

−(N |H|−1/2)−1/2βT Wk = eY
∗∗
k

−m̄k + (N |H|−1/2)−1/2βTWke
Y ∗∗
k

−m̄k +

1

2
(N |H|−1/2)−1βTWkW

T
k βeY

∗∗
k

−ck ,

where ck is such that |(N |H|−1/2)−1/2βTWk − m̄k| ≥ |ck − m̄k|. Then, |H|1/2l(β) is given by:

|H|1/2
∑

k

{
−(N |H|1/2)−1/2βTWk − (N |H|−1/2)−1/2βTWke

Y ∗∗
k

−m̄k

−1

2
(N |H|1/2)−1βTWkW

T
k β(eY

∗∗
k

−ck − 1 + 1)

}
KH(λ − λk)

= |H|1/2(N |H|1/2)−1/2
∑

k

(eY
∗∗
k

−m̄k − 1)W T
k KH(λ − λk)β

−1

2
|H|1/2(N |H|1/2)−1

∑

k

βTWkW
T
k βKH(λ − λk)

−1

2
|H|1/2(N |H|1/2)−1

∑

k

βTWkW
T
k β(eY

∗∗
k

−ck − 1)KH(λ − λk)

= ΨN (λ)T β +
1

2N

∑

k

βTWkW
T
k βKH(λ − λk) + ∆1(β)

= ΨN (λ)T β +
1

2N

∑

k

βTAkβKH(λ − λk) + ∆1(β).

The matrix Ak is given by WkW
T
k :

Ak = WkW
T
k =

(
1 |H|−1/2(λ − λk)T

|H|−1/2(λ − λk)T |H|−1/4(λ − λk)(λ − λk)T

)

and it converges in probability to

1

N

∑

k

AkKH(λ − λk) →P A,

where A is given by

A =
−1

4π2

(
1 0T

0
∫

uuTK(u)du

)
.

The residual term ∆1(β) is OP(1), provided that N (ζ−1)/ζ |H|1/2 ≥ c0 logN :

∆1(β) =
−|H|1/2

2
(N |H|1/2)−1

∑

k

βTWkW
T
k β(eY

∗∗
k

−ck − 1)KH(λ − λk).
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Since |rNβTWk − m̄k| ≥ |ck − m̄k|, ck can be written as ck = βTWk +αTWk, where ‖α‖ ≤ c1rN ,

for some c1 > 0. Then, ∆1(β) can be decomposed in two addends:

∆1
1(β) =

−|H|1/2

2
(N |H|1/2)−1

∑

k

q2(β
TWk + αTWk, Y

∗∗
k )βTWkW

T
k βKH(λ − λk),

∆2
1(β) =

|H|1/2

2
(N |H|1/2)−1

∑

k

βTWkW
T
k βKH(λ − λk).

Uniform bound OP(1) for both addends is obtained from condition on Φn,j , for the particular case

of j = 1 and j = 3. Then, the expression for l(β) is proved.

Lemma 15. If fθ is twice differentiable, we have the following representation for the difference

between the non parametric estimation m̂∗
LK and the log-spectral density under the null hypothesis

mθ, in a frequency λ and under conditions in Theorem 3:

m̂∗
LK(λ) −mθ(λ) = r2NΓ(λ)−1

∑

k

εkK
(
H−1/2(λ − λk)

)
(1 + oP(1)) +HN (λ) (4.81)

and HN is given by (4.73).

Proof. Using the expression for l(β) obtained in Lemma 14 and applying the convexity lemma of

Pollard (1991) we obtain the maximizer β̂ of the expression for l(β) is given by

β̂ = B−1ΨN (λ) + oP(1).

The inverse of matrix A is given by:

B−1 = −π2




1 0 0

0 b2 −b12
0 −b12 b1


 ,

bj =

∫
u2

jK(u)du

a1
, j = 1, 2, b12 =

−
∫
u1u2K(u)du

a1
,

a1 =

∫
u2

1K(u)du

∫
u2

2K(u)du −
(∫

u1u2K(u)du

)2

,

where u1 and u2 denote the first and the second components of vector u ∈ R2. The first component

of β is

β̂(1) = (N |H|1/2)−1/2(m̂LK(λ) −mθ(λ)).
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We obtain, from the expression for Ψn(λ) in (4.80):

ΨN (λ) = |H|1/2(N |H|1/2)−1/2
∑

k

(eY
∗∗
k

−m̄k − 1)WkKH(λ − λk) =

|H|1/2(N |H|1/2)−1/2
∑

k

(eY
∗∗
k

−m̄k − 1)WkKH(λ − λk) =

|H|1/2(N |H|1/2)−1/2
∑

k

(eY
∗∗
k

−βT Wk − 1)WkKH(λ − λk) =

|H|1/2(n|H|1/2)−1/2
∑

k

(eY
∗∗
k

−βT Wk + eY
∗∗
k

−mθ(λk) − eY
∗∗
k

−mθ(λk) − 1)WkKH(λ − λk) =

|H|1/2(N |H|1/2)−1/2
∑

k

(eY
∗∗
k

−mθ(λk) − 1)WkKH(λ − λk) +

|H|1/2(N |H|1/2)−1/2
∑

k

(eY
∗∗
k

−βT Wk − eY
∗∗
k

−mθ(λk))WkKH(λ − λk).

The result is proved just considering the first component of Ψn(λ).

Ψ
(1)
N (λ) = |H|1/2(N |H|1/2)−1/2

∑

k

(eY
∗∗
k

−mθ(λk) − 1)KH(λ − λk) +

|H|1/2(N |H|1/2)−1/2
∑

k

(eY
∗∗
k

−βT Wk − eY
∗∗
k

−mθ(λk))KH(λ − λk) =

(N |H|1/2)−1/2
∑

k

εkK(H−1/2(λ − λk)) +

(N |H|1/2)−1/2
∑

k

(q1(β
TWk, Y

∗∗
k ) − εk)K(H−1/2(λ − λk)).

Lemma 16. Under assumption (1)-(3), we have

sup
λ∈[0,π]2

|m̂LK(λ) − m̂∗
LK(λ)| = OP(N−1/2 logN)

Proof. The proof of this Lemma is obatined using similar arguments as that for the proof of

Lemma 15. Recall the expression for the local loglikelihood given by:

∑

k

[
Yk − a− bT (λ − λk) − eYk−a−bT (λ−λk)

]
KH(λ − λk). (4.82)

This expression can be written in terms of the vector β2 as

L(β2) =
∑

k

[
Yk − m̄k − (N |H|1/2)−1/2βT

2Wk − eYk−m̄k−(N |H|1/2)−1/2βT
2 Wk

]
KH(λ − λk)

and the difference:

L(β2) − L(0) =
∑

k

[
−(N |H|1/2)−1/2βT

2Wk − eYk−m̄k−(N |H|1/2)−1/2βT
2 Wk

]
KH(λ − λk).
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If we set

Un(β2) =
∑

k

rN (λk)
[
e−m̄k−(n|H|1/2)−1/2βT

2 Wk − e−m̄k

]
KH(λ − λk)

Then,

L(β2) − L(0) = l(β2) − UN (β2)

An uniform bound for UN (β2) is easily found just by Taylor’s expansion and using the bound

maxk |rN (λk)| = OP(N−1/2 logN):

|H|1/2 sup
λ∈[0,π]2

UN (β2) = OP(|H|−1/4 logN)

With the same arguments as in Lemma 15, we show that the following bounds also hold uniformly

in λ:

|H|1/2(l(β2) − UN (β2)) = |H|1/2(L(β2) − L(0)) = ΨN (λ)T β2 +
1

2
βT

2Aβ2 + ∆2(β2)

∆1(β2) = OP(1), ∆2(β2) = OP(1)

∇∆1(β2) = OP((N |H|1/2)−1/2 log |H|1/2αN + |H|)

∆2(β2) = ∇∆1(β2) +OP(|H|1/4 logN)

where αN → ∞. Using the same arguments as that for the proof of Theorem 2 in Carroll et al.

(1997) and the proof of the quadratic approximation lemma in Fan and Gijbels (1995) we obtain:

(N |H|1/2)1/2{m̂LK(λ) −m(λ)} = (π2, 0, 0)ΨN (λ) +OP

(
|H|1/4 logN

)
, (4.83)

and

(N |H|1/2)1/2{m̂∗∗
LK(λ) −m(λ)} = (π2, 0, 0)ΨN (λ) +OP

(
log |H|1/2

√
N |H|1/2

αN + |H|
)
. (4.84)

Lemma 17. Assume that ε1, . . . , εN are independent identically distributed random variables, with

E(ε1) = 0 and E(|ε1|s) < ∞, for some s > 2. Assume that x1, . . . ,xN are fixed design points in

[0, 1]2 ⊂ R2 such that xi ∈ Ai ⊂ R2, ∪N
i=1Ai = [0, 1]2, Ai∩Aj = ⊘, where Ai is Jordan-measurable,

with maxi µ(Ai) = O(N−1), where µ is the Jordan measure and

max
i
d(Ai) = O(N−1),

where d(B) = supx,y∈B ‖x−y‖, ‖·‖ is the L2-norm. Assume that W is a weight function satisfying

a Lipchitz condition and:

max
i

|Wi(x))| ≥ c0N
−1,
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uniformly in x ∈ [0, 1]2, for a constant c0. Finally assume that there is a sequence αN → 0 and

constants η ∈ (0, s− 2), c > 1/2 such that, for all x ∈ [0, 1]2:

N2/(s−η) max
i

|Wi(x)|logN ≤ αNc, and

(∑

i

Wi(x) logN

)2

≤ αNc. (4.85)

Then:

sup
x∈[0,1]2

∣∣∣∣∣
∑

i

Wi(x)εi

∣∣∣∣∣ = O(αN ).

Proof. This lemma is a straightforward extension of Theorem 11.2 in Müller (1988). The proof is

similar, since the stochastic part is not affected by the dimension.

Lemma 18. Assume conditions in Lemma 17 hold and suppose that the weight functions are

kernel weights:

Wi(x) = |H|−1/2K(H−1/2(x − xi)).

Then,

sup
x∈[0,1]2

1

N

∣∣∣∣∣
∑

i

KH(x − xi)εi

∣∣∣∣∣ = o((N |H|1/2)−1/2(− log |H|1/2)βN ),

where the sequence βN → ∞ and provided that there exists s > 2, η ∈ (0, s − 2) such that

N2/(s−η)|H|−1/2 logN → C, for some constant C.

Proof. The proof is inmediate from Lemma 17. The condition on s and η is obtained from the

restriction (4.85) on the kernel weights.

Lemma 19. The terms B1, B2 and B3 in Lemma 13 are bounded by:

B1 = OP

(
logN√
N

|H|−1/2 log |H|1/2αN

)
,+OP(log2N)

B2 = OP(log2N),

B3 = OP(|H|−1/4 logN(− log |H|1/2)αN ),

where αN → ∞.

Proof. Recall the expression for B2 is given by:

B2 =
∑

k

eYk−m̂∗
LK(λk) (m̂LK(λk) − m̂∗

LK(λk))2 .
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By Taylor’s expansion of ex and Lemma 16:

B2

=
∑

k

[1 + Yk − m̂∗
LK(λk) + OP((Yk − m̂∗

LK(λk))2)] · (m̂LK(λk) − m̂∗
LK(λk))2 ≈

∑

k

(m̂LK(λk) − m̂∗
LK(λk))2 +

∑

k

(Yk − m̂∗
LK(λk))(m̂LK(λk) − m̂∗

LK(λk))2 ≤

≤ N sup
k

|m̂LK(λk) − m̂∗
LK(λk)|2 = OP(log2N).

Just taking into account that:

eYk = I(λk) = fθ(λk)Vk + rN (λk) = Vke
mθ(λk) + rN (λk)

the term B1 is decomposed in two addends:

B1 =
∑

k

(1 − eYk−m̂∗
LK(λk)) (m̂LK(λk) − m̂∗

LK(λk))

=
∑

k

(1 − Vke
mθ(λk)−m̂∗

LK(λk))(m̂LK(λk) − m̂∗
LK(λk)) +

∑

k

rN (λk)e−m̂∗
LK(λk)(m̂LK(λk) − m̂∗

LK(λk)) =

B1,1 +B1,2.

The second addend, B1,2 can be bounded by:

B1,2 ≤
∑

k

sup
k

|rN (λk)| · |m̂LK(λk) − m̂∗
LK(λk)| ≤

∑

k

OP(N−1/2 logN) sup
k

|m̂LK(λk) − m̂∗
LK(λk)| = OP

(
log2N

)
.

For the first addedn, B1,1, applying Taylor’s expansion on emθ(λk)−m̂∗
LK(λk) around the origin, we

have:

B1,1 =
∑

k

(
1 − Vke

mθ(λk)−m̂∗
LK(λk)

)
(m̂LK(λk) − m̂∗

LK(λk))

=
∑

k

(1 − Vk − Vk(mθ(λk) − m̂∗
LK(λk))eck)(m̂LK(λk) − m̂∗

LK(λk)),

where ck satisfies that |mθ(λk) − m̂∗
LK(λk)| ≥ |ck|. Then,

B1,1 =
∑

k

(Vk − 1)(m̂∗
LK(λk) − m̂LK(λk))

−
∑

k

Vk(mθ(λk) − m̂LK(λk))(m̂∗
LK(λk) − m̂LK(λk))eck .
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The variables Vk are zero-mean, so the first term in B1,2 is oP(1). For the first addend, applying

Lemma 16:

B1,1 =
∑

k

Vk(mθ(λk) − m̂∗
LKλk)(m̂LK(λk) − m̂∗

LK(λk))eck

≤ OP(N−1/2 logN)
∑

k

(mθ(λk) − m̂∗
LK(λk))

= OP(N−1/2 logN)
∑

k

(
(π2, 0, 0)ΨN (λk)

+OP((N |H|1/2)−1/2) log |H|1/2αN + |H|
)

(N |H|1/2)−1/2

= OP

(
logN√
N

)∑

k


 |H|1/4

√
N

∑

j

(eY
∗∗
j

−m̄j − 1)KH(λk − λj)

+OP((N |H|1/2)−1/2 log |H|1/2αN + |H|)
)
,

applying the expressions (4.83) and (4.84). By a Taylor’s expansion on eY
∗∗
j

−m̄j around the origin,

Lemma 18 can be applied on the sum in the first addend. Now, applying Lemmas (6) and (16),

B1,2 = OP

(
logN√
N

|H|−1/2 log |H|1/2αN

)
,

For the last term, B3, also using Lemmas 6, 16, and Lemma 18 in a Taylor’s expansion for the

expression of ΨN (λk) we derive:

B3 =
∑

k

RN (λk)

fθ(λk)

{
emθ(λk)−m̂∗

LK(λk) − 1
}
≤

N max
k

RN (λk)

fθ(λk)
sup
k

∣∣∣emθ(λk)−m̂∗
LK(λk) − 1

∣∣∣ ≤

N max
k

RN (λk)

fθ(λk)

(
N |H|1/2

)−1/2
·

sup
k

∣∣∣(π2, 0, 0)ΨN (λk) + OP

(
(N |H|1/2)−1/2 log |H|1/2αN + |H|

)∣∣∣ =

OP

(
logN |H|3/4

)
+ OP

(
(N |H|1/2)−1/2 logN log |H|1/2

)

+ OP

(
|H|−1/4 logN(− log |H|1/2)αN

)

= OP(|H|−1/4 logN(− log |H|1/2)αN ).
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In this part of our work, we will establish statistical methodology in order to analyze changes

in the dependence structure for different spatial processes or for a process observed on a reg-

ular grid at different time moments. We propose a test statistic for testing the hypothesis

H0 : f1 = . . . = fL, where each fl denotes the spectral density of each observed process, for

l = 1, . . . , L.

As we have already seen, much effort has been devoted to the problem of estimating/modelling

the dependence structure of spatial data, from both parametric and nonparametric approaches.

This problem can be focused from the spatial domain, taking the variogram or the covariogram

as the target function. From these two points of view, can be also focused the construction of

goodness-of-fit tests problem, as we have pointed at the beginning of Chapter 4.

It is clear from the previous chapter that an alternative to these techniques is to consider

the signal process and describe the dependence structure using the spectral density (instead of

the covariance function). Considering this spectral scheme, we have already provided two test

statistics, using distances on the spectral and on the log-spectral domain. These goodness-of-fit

testing techniques take advantage of the representation of the spatial periodogram (as the re-

sponse variable in a multiplicative regression model) and the spatial log-periodogram, which can

be written as the exogenous variable in a regression model, where the regression function is the

log-spectral density. Once again, we will use the representation of the log-periodogram for testing

the equality of a set of log-spectral densities. For that purpose, we will adapt to our context some

methodology from the regression setting.

In regression context, King et al. (1991) study the problem of comparing two regression curves

under independence and Gaussian errors. The general case of comparing L ≥ 2 regression curves

is studied in Dette and Neumeyer (2001). Vilar-Fernández and González-Manteiga (2004) pro-

vide a goodness-of-fit technique for testing the equality of regression curves, under fixed design

and dependent errors. The goal of this chapter is, based on the ideas in Vilar-Fernández and

González-Manteiga (2004), to provide a test for testing the hypothesis that the spectral densities

of L observations of a spatial random process are equal, without specifying a parametric model.

The same applies for L observations from different processes. In spatial statistics, the design

points for different realizations of a process are, in many cases, the same. For instance, when

these realizations represent the evolution of the process along time. In this setting, it is not un-

reasonable to assume that observations are taken on the same set of locations, along time.

On this scope, Zhu et al. (2002) establish a statistical methodology to analyze changes in the

spatial cumulative distribution function (SCDF), over time. Under shrinking asymptotics (a mix-
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ture between increasing and infilling domain asymptotics), following Lahiri (1999), the authors

prove asymptotic normal distribution of two test statistics, for comparing two time moments.

The first statistic is based on the difference between the empirical estimators of the SCDF, at

both time moments. The second statistic is a weighted integrated squared difference between

the empirical counterparts of the SCDF. Both testing techniques are devoted to the detection

of differences over time, but they are not specifically focused on the detection of changes in the

dependence structure, as it is our purpose.

As a particular case, this technique allows to detect changes on the dependence structure of

a process observed at different time moments. This capacity makes the technique relevant when

studying spatio-temporal processes. Invariance of the spatial dependence along time makes fea-

sible the use of stationary spatio-temporal dependence models (e.g. Fernández-Casal et al. (2003)).

The application of our technique is related to biomonitoring studies. Biomonitoring studies

have been hold over the last years in order to determine levels of heavy metal concentration all

over Europe. We will consider the mosses dataset introduced in Section 1.4.2, focusing on Sele-

nium and Mercury concentrations. The contents of this chapter can be seen in Crujeiras et al.

(2006a) and Crujeiras et al. (2006c).

5.1 Some background.

We will start introducing the notation for this part of the work, which is slightly different from

that used in previous chapters. Just note that the number of the grid points (number of obser-

vations) and the number of Fourier frequencies have a different notation. Let Zl be a zero mean

second-order stationary spatial process, observed on a regular grid Dl, for l = 1, . . . , L. That is,

{Zl(s), s ∈ Dl = al +D}, with D = {1, . . . , d1} × {1, . . . , d2}. The case a1 = . . . = aL implies

that the processes are observed on the same grid of locations. Denote by Nd = d1d2 the number

of points in any of the grids Dl, with l = 1, . . . , L. The covariance function of the processes are

defined by:

Cl(u) = E(Zl(s), Zl(s + u)), s,u ∈ Z
2. (5.1)

Assuming that
∑

u |Cl(u)| <∞, by Khinchin’s theorem (see Section 1.3.5), the covariance function

of a stationary random process can be written, for l = 1, . . . , L as:

Cl(u) =

∫

Π2

e−iuT λfl(λ)dλ, (5.2)
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where fl, the spectral density, is bounded and continuous for all l = 1, . . . , L. The classical

nonparametric estimator of the spatial spectral density, the periodogram, is given by:

Il(λk) =
1

(2π)2Nd

∣∣∣∣∣∣
∑

s∈Dl

Zl(s)e
−isT λk

∣∣∣∣∣∣

2

, (5.3)

where sT λk denotes the scalar product in R2. The periodogram is usually computed at the set of

bidimensional Fourier frequencies, λT
k = (λk1 , λk2):

λki =
2πki

di
, ki = 0,±1, . . . ,±ni = ⌊di − 1

2
⌋, i = 1, 2 (5.4)

and denote by N = (2n1 + 1)(2n2 + 1) the number of Fourier frequencies. The periodogram (5.3)

can be also written in terms of the sample covariances as:

Il(λk) =
1

(2π)2

∑

u∈U
Ĉl(u)e−iuT λk , l = 1, . . . , L (5.5)

where U = {u = (u1, u2);ui = 1 − di, . . . , di − 1, i = 1, 2} and the sample covariances, for Zl with

l = 1, . . . , L, are given by:

Ĉl(v) =
1

Nd

∑

s∈Dl(v)

Zl(s)Zl(s + v), Dl(v) = {s ∈ Dl; s + v ∈ Dl}. (5.6)

We will suppose that the spatial process Zl can be represented as:

Zl(s) =

∞∑

j=−∞

∞∑

k=−∞
ψl

jkεl(s1 − j, s2 − k), (5.7)

where the error variables εl are independent and identically distributed as N(0, σ2
εl

), for l =

1, . . . , L. Then, the corresponding spectral density fl can be written as:

fl(λ) = |Al(λ)|2 fεl
(λ), λ ∈ Π2 (5.8)

where fεl
(λ) =

σ2
εl

(2π)2
and

Al(λ) =

∞∑

j=−∞

∞∑

l=−∞
ψl

jke
−i(j,k)λ, (j, k)λ = jλ1 + kλ2.

In this case, the periodogram for each process Zl, with l = 1, . . . , L, admits the following repre-

sentation:

Il(λk) = fl(λk)V l
k +Rl

N (λk), (5.9)
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where the variables V l
k are i.i.d. standard exponential distributed, and V l

k and V l′
k , with l 6= l′ are

also independent. The residual term RN (λk) is uniformly bounded (see Crujeiras et al. (2006b)).

Applying logarithms in (5.9) we have:

Y l
k = ml(λk) + zl

k + rl
k, l = 1, . . . , L (5.10)

where ml = log fl is the log-spectral density, the variables zl
k = log V l

k are i.i.d. with density

function h(x) = ex−ex
, and the residual term rl

k is given by:

rl
k = log

(
1 +

Rl
N (λk)

fl(λk)V l
k

)
.

Our main purpose is to test whether the spatial spectral densities are the same, or equivalently,

in terms of the spatial log-spectral densities:

H0 : m1 = . . . = mL,

Ha : ml 6= mj , for some l 6= j.
(5.11)

In this context, the comparison can be made by considering nonparametric estimators of the

spatial log-spectral densities. Different nonparametric estimators of the spatial log-spectral density

could be obtained considering a smoothed combination of log-periodogram values, that is:

m̂l(λk) =
∑

i

W l
i (λk)Y l

i . (5.12)

The weights W l
i can be defined as Gasser-Muller weights, for instance:

W l
i (λ) =

(2π)2

|H|1/2

∫

Ai

K(H−1/2(λ − µ))dµ, (5.13)

where K is a bidimensional kernel function, H is a bidimensional bandwidth matrix and the

integration region is such that:

Ai = [ai1−1, ai1 ] × [ai2−1, ai2 ], λi ∈ Ai, ∪iAi = A, Ai ∩Aj = ⊘, i 6= j.

The sets Ai in the partition of A must be Jordan measurable and maxi µ(Ai) = O(N−1) (see

Müller (1988)). Another options are Priestley-Chao weights:

W l
i (λ) =

(2π)2

N
KH(λ − λi) =

(2π)2

N |H|1/2
K(H−1/2(λ − λi)), (5.14)

and Nadaraya-Watson weights:

W l
i (λ) =

(2π)2KH(λ − λi)∑
iKH(λ − λi)

=
(2π)2K(H−1/2(λ − λi))∑

iK(H−1/2(λ − λi))
. (5.15)
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Another alternative consists of considering a local-linear estimator for the spatial log-spectral

density. A pilot local-linear estimator for ml(λ), with λ = (λ1, λ2)
T , is obtained by multivariate

local linear least squares regression by minimizing:

∑

k


Y l

k − (β0, β10, β01)




1

λ1 − λk1

λ2 − λk2







2

·KH(λ − λk), (5.16)

and the nonparametric estimator is given by m̂l(λ) = β̂0, where (β̂0, β̂10, β̂01) is the argument that

minimizes expression (5.16).

The previous expressions for a nonparametric estimator of the log-spectral density come from

the nonparametric regression context. Back to model (5.10), and taking into account the distri-

bution of the error variables zl
k, the log-likelihood associated with this model, ignoring the term

rl
k, is given by:

∑

k

(
Y l
k −ml(λk) − eY

l
k
−ml(λk)

)
, l = 1, . . . , L. (5.17)

From a nonparametric approach, consider the estimator obtained for the spatial log-spectral den-

sity ml by a multidimensional local linear kernel estimator. For x ∈ R2, we approximate ml(λk)

by the plane al + bT
l (λk − x). Therefore, a local log-likelihood function based on (5.17) is given

by:
∑

k

(
Y l
k − al − bT

l (λk − x) − eY
l
k
−al−bT

l (λk−x)
)
KH(λk − x), l = 1, . . . , L (5.18)

where KH is the rescaled kernel, and take the maximum local log-likelihood estimator m̂l(x) of

ml(x) as âl in the maximizer (âl, b̂l) of (5.18). These nonparametric estimators are used to illus-

trate the simulation study and the real data application.

In some cases, we may know some features of the dependence structures. For instance, by

applying a goodness-of-fit test as those proposed in Crujeiras et al. (2006b), before testing the

equality of the spatial spectral densities, we could assess whether the spectral densities belong to

the same parametric family. In that case, the testing problem would be stated as:

H0 : θ1 = . . . = θL,

Ha : θl 6= θj , for some l 6= j,
(5.19)

with mθl
= log fθl

, l = 1, . . . , L and fθl
∈ FΘ, where FΘ denotes a parametric family of spectral

densities.
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5.2 An L2 test for comparing spatial spectral densities.

As we have already commented in the introduction, Zhu et al. (2002) develop hypothesis testing

methods to detect differences in a spatial random process, at two different time points. The testing

techniques are based on the SCDF. This random function provides a spatial statistical summary

of the random field and it is defined as:

F∞,Z(z;D) =
1

|D|

∫

D
1(Z(s) ≤ z)ds, (5.20)

where {Z(s), s ∈ D}, with s a continuous spatial index, D ⊂ Rd, |D| denotes the volume of D and

1 is the indicator function. For a finite sample of the process {Z(s1), . . . , Z(sN )}, the empirical

counterpart of the SCDF in (5.20), namely the empirical spatial cumulative distribution function

(ESCDF) is given by:

FN,Z(z;D) =
1

N

N∑

i=1

1(Z(si) ≤ z). (5.21)

In Lahiri (1999), asymptotic theoretical results on the SCDF are given, considering a shrinking

asymptotic framework (Cressie (1993), pp. 100-101). With the motivation of detecting changes

or trends in ecological resources over time, and for the particular case of two time points, the

authors derive the large-sample distribution of a normalized test statistic based on the difference

of the ESCDFs at two time moments. A second procedure quantifies the change using a weighted

integrated squared difference between the SCDFs.

In the spatial context, we do not know more references on this topic of spatial processes com-

parison. In our case, we are interested in detecting changes on the dependence structure and, for

that purpose, we will consider a spectral approach.

Consider the following test statistic, based on a L2-distance:

Q =
L∑

l=2




l−1∑

j=1

(∫

Π2

(m̂l(λ) − m̂j(λ))2 ω(λ)dλ

)
 , (5.22)

where ω is a weighting function in Π2. This weighting function ω is chosen in such a way the

edge-effect on the estimation is avoided. In our context, we consider a weighting function that

filters frequencies around the origin and those ones with components near to 2πni
di

. Besides, in

these cases, the log-periodogram values may present a higher variability. This edge-effect error is

also corrected by the local linear estimator.
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For simplicity, consider the testing problem H0 : m1 = m2 vs. Ha : m1 6= m2. In the general

case of L processes, we proceed similarly. Assume that both Z1 and Z2 have been observed on

grids with the same design. This implies that the corresponding Fourier frequencies are the same

in both cases. Using Riemann approximation, Q can be approximated by Q̂, which is given by:

Q̂ =
(2π)2

N

∑

k

(m̂1(λk) − m̂2(λk))2 ω(λk). (5.23)

In order to perform the test in practice, we will compute the distribution of the test statistic

under the null hypothesis H0. The asymptotic behaviour of Q̂, under H0, can be established

but usually, the convergence of this type of test statistic to its limit distribution is slow (see, for

instance, some works in the regression setting as Härdle and Mammen (1993)). Therefore, this

distribution must be approximated by simulation methods. For that purpose, it is necessary to

obtain an estimation of the spatial log-spectral density under H0 : m1 = m2 = m.

In the case we consider, the design points (that is, the grid of Fourier frequencies) are the

same, and we could build a pilot estimator of the log-spectral density under H0, namely m̂, as an

average of the log-periodograms:

Ỹk =

(
Y 1
k + Y 2

k

)

2
. (5.24)

If our null hypothesis can be relaxed by the fact that fθ1 , fθ2 ∈ FΘ, as in problem (5.19), then,

an estimation of the log-spectral density under H0 : mθ1 = mθ2 = mθ can be given by a parametric

estimator mθ̂. The parameter vector θ can be estimated, under H0, by a Whittle log-likelihood

approach:

θ̂ = arg max
θ

∑

k

(
Ỹk −mθ(λk) − eỸk−mθ(λk

)
. (5.25)

As we have pointed, Whittle estimators are not consistent for dimensions higher or equal to two,

and in the case of dimension two, these estimators show a non negligible bias. Different alterna-

tives to achieve consistency in this estimation procedure can be found in Guyon (1982), Dahlhaus

and Künsch (1987) or Crujeiras et al. (2006b).

In order to compute the test statistic (5.23), we must fix a bandwidth matrix H. The selection

of the bandwidth matrix parameter is a crucial step in nonparametric estimation and testing.

Nevertheless, the choice of optimal bandwidth matrices in multidimensional testing problems re-

mains unsolved and usually, the standard approach consists of examining the behaviour of the

test over a range of bandwidths.
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Instead of trying a range of bandwidths, an automatic bandwidth selection criteria could be

also used. For instance, we could take an optimal bandwidth matrix for the estimation problem,

under H0.

Since log-periodogram values are asymptotically independent, for a large enough sample, we

may expect good approximations of Ĥ by using a cross-validation criteria. For the testing problem

(5.19), the bandwidth matrix Ĥ may be selected such that:

Ĥ = arg min
H

∑

k

(
m̂−k(H,λk) −mθ̂(H,λk)

)2
, (5.26)

where m̂−k(H, ·) is the nonparametric estimator of the spatial log-spectral density obtained when

ignoring the frequency λk for obtaining the nonparametric estimator of m at this frequency.

In the nonparametric testing problem (5.11), the bandwidth matrix could be obtained from:

Ĥ = arg min
H

∑

k

(
m̂−k(H,λk) − Ỹk

)2
. (5.27)

5.2.1 Asymptotic theory.

Consider {Zl(s), s ∈ Dl}, with l = 1, . . . , L, L realizations of a spatial stochastic process (for

instance, realizations taken on L time moments) or L realizations of different spatial processes.

Our main purpose is to solve the testing problem (5.11).

In this context, the comparisson can be made by considering nonparametric estimators of the

spatial log-spectral densities. Consider the test statistic (5.22), based on an L2-distance.

A1 The spatial processes can be represented as:

Z l(s) =
∞∑

i=−∞

∞∑

j=−∞
ψl

ijεl(s1 − i, s2 − j), l = 1, . . . , L,

where εl are i.i.d. N(0, σ2
εl

) (and independent among themselves) random variables and∑ |ψl
ij |2 <∞.

A2 The spectral densities are non-vanishing:

inf
λ∈Π2

fl(λ) > 0, l = 1, . . . , L.
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A3 We consider Gasser-Muller type weights, given by (5.13), or Priestley-Chao weights, given

by (5.14). Besides, W 1
i = . . . = WL

i .

A4 The bidimensional kernel function K is continuously differentiable, with compact support

and
∫
K2(u)du <∞.

A5 The bidimensional bandwidth matrix, H satisfies N |H|1/2 → ∞, as N → ∞, with n1, n2 →
∞ and n1/n2 → c, for some constant c.

Consider first the testing problem H0 : m1 = m2 vs. Ha : m1 6= m2 and assume that both Z1

and Z2 have been observed on grids with the same design. Consider the Riemann approximation

to the (5.22), namely Q̂, given by (5.23).

Theorem 5. Assume conditions (A1)-(A5) hold. Then, under the null hypothesis that H0 : m1 =

m2, we have that, as N → ∞:

√
N |H|1/2

(
Q̂− (2π)4

12N |H|1/2
CKIω

)
→ N(0, σ2

Q), (5.28)

in distribution, with

CK =

∫
K2(u)du, Iω =

∫
ω(v)dv and the asymptotic variance is

σ2
Q =

(2π)8

72

∫
(K ∗K)2(u)du

∫
ω2(v)dv,

where ∗ denotes the convolution operator.

Also in this context of two dependence structures comparison, consider that the null hypothesis

is false and assume:

m1(λ) −m2(λ) = CNp(λ), (5.29)

where p(λ) is a non-zero function. We will see that the test statistic Q̂ allows for detecting local

alternatives at a distance of order N−1/2|H|−1/8.

Theorem 6. Assume conditions (A1)-(A5) hold. Then, if (5.29) holds, we have that, as N → ∞:

√
N |H|1/2

(
Q̂− (2π)4

12N |H|1/2
CKIω

)
→ N

(∫
p2(v)ω(v)dv, σ2

Q

)
,

in distribution, with CK , Iω and σ2
Q as in Theorem 1, and with C2

N = (N2|H|1/2)−1/2.

It is easy to generalize Theorems 5 and 6 for random fields on Rd. Considering a d-variate

kernel function K satisfying condition A4 and a d-dimensional bandwidth matrix H, satisfying

condition A5. The corresponding asymptotic mean and variance in (5.28) are given by:

4

3
π2d 1

N |H|1/2
CKIω, and
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σ2
Q,d =

22d+1

9
π4+2d

∫
(K ∗K)2(u)du

∫
ω2(v)dv,

where the weighting function ω is now defined on Πd = [−π, π]d. Thus, in the particular case of

d = 1, we provide a testing technique for comparing temporal spectral densities. In this case, we

have a scalar bandwidth parameter h, which plays the role ofH1/2 in the general dimension setting.

If the spatial process Zl, for l = 1, . . . , L, are observed on regular grids with different sizes,

then the corresponding frequency spectrum is not the same. The asymptotic behaviour of Q̂ could

be determined following similar arguments to those in (Vilar-Fernández and González-Manteiga

(2004), Theorem 3), under some conditions on the asymptotic rates of the samples.

5.2.2 Bootstrap procedures for calibrating p-values.

Consider the testing problem (5.19). This a priori information will simplify the algorithm for

callibrating the p-value of the test in practice. An estimation of the test statistic, under H0, can

be given by a Monte Carlo approach. In order to calibrate the p-value of the test statistic Q̂, the

following algorithm can be employed in practice.

• Algorithm 1.

Step 1. Compute the observed test statistic Q̂obs.

Step 2. Draw two random samples of size d1 × d2, with the log-spectral density under H0, that is,

mθ̂.

Step 3. Compute the test statistic for these generated random samples Q̂(b).

Step 4. Repeat Step 1 and Step 2 B times and obtain the tests statistic Q̂(1), . . . , Q̂(B).

Step 5. Compute the p-value of the test statistic as the percentage of bootstrap replicates {Q̂(1), . . . , Q̂(B)}
that exceed the observed value Q(obs).

In this algorithm, a parametric estimation of the spatial log-spectral density is needed in Step

2. This parametric estimator is usually obtained by a Whittle-log likelihood approach, based on

an average of the periodograms in the different observations. Whittle estimators are obtained by

maximizing (5.17).
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Also in Step 2, in order to generate a random sample from a spatial process with a certain

spatial spectral density, one could use a specific algorithm, for instance, when we consider linear-

by-linear process (see Alonso et al. (1996)). When an specific algorithm is not available, then

we must use a standard technique for the simulation of spatial processes. In this case, Cholesky

factorization based method (see Cressie (1993), for example) could be used. Another alterna-

tive is spectral simulation procedures, as the Modified Fourier Integral Method (Crujeiras and

Fernández-Casal (2006)), which has been introduced in Chapter 3.

In the nonparametric testing problem, when we ignore whether the spectral densities belong

to the same parametric familiy, a totally nonparametric algorithm for approximating the p-value

of the test must be considered.

• Algorithm 2.

Step 1. Compute the observed test statistic Q̂obs.

Step 2. Draw two random samples of size Nd, with the log-spectral density under H0 : m1 = m2 as

follows:

2.a Obtain a non parametric estimation m̂ of the log-spectral density. For example compute

the log-periodograms, taking the average at each frequency (as in (5.24)) and smooth

this average to get Ỹ s
k (see Robinson (2006)).

2.b Apply the Inverse Fourier Transform on Ĩs(λk) = eỸ
s
k and get an estimation of the

covariance function Ĉ(u), with u ∈ U .

2.c Obtain two realizations of the process, on a grid of size Nd, from the estimated covari-

ances, Ĉ.

Step 3. Compute the test statistic for these generated random samples Q̂(b).

Step 4. Repeat Step 1 and Step 2 B times and obtain the tests statistic Q̂(1), . . . , Q̂(B).

Step 5. Compute the p-value of the test statistic as the percentage of bootstrap replicates {Q̂(1), . . . , Q̂(B)}
that exceed the observed value Q̂(obs).

In Step 2.a we must take into account that, in order to generate a sample on a grid {1, . . . , d1}×
{1, . . . , d2} the covariances Ĉ(u) must cover a wider grid of size {1, . . . , k1} × {1, . . . , k2}, with

ki = 2di − 1, with i = 1, 2 (see Priestley (1981)). Therefore, the frequency spectrum must be also

recalculated. In Step 2.c, Cholesky factorization method could be applied.
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These algorithms can be easily generalized to the general case of checking for differences within

a collection of L > 2 processes, or L > 2 observations of the same process.

5.3 Simulation results.

We illustrate the performance of the test statistic considering bidimensional autoregressive process

(BAR(1)):

Zl(i, j) = βl
1Z(i− 1, j) + βl

2Z(i, j − 1) − βl
1β

l
2Z(i− 1, j − 1) + εl(i, j), l = 1, 2, (5.30)

where εl(i, j) are independent identically distributed Gaussian random variables, with zero mean

and variance σ2
εl

. The spectral densities corresponding to Z1 and Z2 are given by:

fl(λ) =
σ2

ε

(2π)2
· 1

1 + (βl
1)

2 − 2βl
1 cos(λ1)

· 1

1 + (βl
2)

2 − 2βl
2 cos(λ2)

, l = 1, 2. (5.31)

In order to study the performance of the test, in terms of size and power, we consider different

values for βl
1 and βl

2, from 0.0 (corresponding to the case of independence) to 0.9. One thousand

replicates of the process are generated on a 20 × 20 regular grid. Random sample generations of

this process are obtained as in Alonso et al. (1996).

We set the null hypothesis that Z1 and Z2 are BAR(1) processes with the same dependence

structure, that is, testing problem (5.19). Therefore, Algorithm 1 is implemented in this case. A

multiplicative Epanechnikov bidimensional kernel is considered. The weighting function ω filters

the frequencies near the origin and those with the largest components, in order to avoid the edge

effect. The bandwidth parameter is chosen using the cross-validation criteria (5.26). We consider

diagonal bandwidth matrices, whose elements are proportional to the spacing between frequencies,

that is:

H = r · diag
(

2π

n1
,
2π

n2

)
. (5.32)

The nonparametric estimator for the spatial log-spectral density is obtained from the local-

linear method, specified in equation (5.16).

The size of the test is shown in Table 5.1, at three different significance levels α: 0.01, 0.05

and 0.10. βj = (βj
1, β

j
2), for j = 1, 2, denote the parameters in Z1 and Z2, respectively. The

percentage of rejections of the test statistic is computed from 1000 simulations. Some results on

the power of the test are shown in Table 5.2. The test shows a good behaviour in all cases.
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α = 0.01 α = 0.05 α = 0.10

β1 = β2 = (0.0, 0.0) 0.010 0.050 0.093

β1 = β2 = (0.3, 0.3) 0.007 0.033 0.076

β1 = β2 = (0.6, 0.6) 0.010 0.041 0.081

β1 = β2 = (0.9, 0.9) 0.048 0.107 0.193

Table 5.1: Size of the test, with Algorithm 1. 20 × 20 grid. βj parameter vector, in model

(5.30), for the sample from Zj , j = 1, 2. Significance level α.

α = 0.01 α = 0.05 α = 0.10

β1 = (0.0, 0.0),β2 = (0.05, 0.05) 0.015 0.054 0.112

β1 = (0.0, 0.0),β2 = (0.1, 0.1) 0.017 0.065 0.133

β1 = (0.0, 0.0),β2 = (0.2, 0.2) 0.067 0.196 0.293

β1 = (0.0, 0.0),β2 = (0.3, 0.3) 0.290 0.550 0.670

β1 = (0.0, 0.0),β2 = (0.6, 0.6) 0.990 0.990 1.000

β1 = (0.0, 0.0),β2 = (0.9, 0.9) 1.000 1.000 1.000

β1 = (0.3, 0.3),β2 = (0.6, 0.6) 0.220 0.500 0.590

β1 = (0.3, 0.3),β2 = (0.9, 0.9) 0.910 0.980 0.990

β1 = (0.6, 0.6),β2 = (0.9, 0.9) 0.200 0.380 0.520

Table 5.2: Power of the test, with Algorithm 1. 20 × 20 grid. βj parameter vector, in model

(5.30), for the sample from Zj , j = 1, 2. Significance level α.

α = 0.01 α = 0.05 α = 0.10

β1 = β2 = (0.0, 0.0) 0.014 0.049 0.095

β1 = β2 = (0.3, 0.3) 0.011 0.046 0.102

β1 = β2 = (0.6, 0.6) 0.015 0.056 0.099

β1 = β2 = (0.9, 0.9) 0.057 0.131 0.210

Table 5.3: Size of the test, with Algorithm 2. 20 × 20 grid. βj parameter vector, in model

(5.30), for the sample from Zj , j = 1, 2. Significance level α.
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α = 0.01 α = 0.05 α = 0.10

β1 = (0.0, 0.0),β2 = (0.05, 0.05) 0.015 0.054 0.109

β1 = (0.0, 0.0),β2 = (0.1, 0.1) 0.015 0.069 0.130

β1 = (0.0, 0.0),β2 = (0.2, 0.2) 0.074 0.207 0.317

β1 = (0.0, 0.0),β2 = (0.3, 0.3) 0.326 0.579 0.700

β1 = (0.0, 0.0),β2 = (0.6, 0.6) 0.994 0.999 1.000

β1 = (0.0, 0.0),β2 = (0.9, 0.9) 1.000 1.000 1.000

β1 = (0.3, 0.3),β2 = (0.6, 0.6) 0.252 0.489 0.638

β1 = (0.3, 0.3),β2 = (0.9, 0.9) 0.927 0.983 0.995

β1 = (0.6, 0.6),β2 = (0.9, 0.9) 0.265 0.469 0.590

Table 5.4: Power of the test, with Algorithm 2. 20 × 20 grid. βj parameter vector, in model

(5.30), for the sample from Zj , j = 1, 2. Significance level α.

α = 0.01 α = 0.05 α = 0.10

β1 = (0.0, 0.0),β2 = (0.05, 0.05) 0.034 0.112 0.192

β1 = (0.0, 0.0),β2 = (0.1, 0.1) 0.202 0.390 0.518

β1 = (0.0, 0.0),β2 = (0.2, 0.2) 0.910 0.974 0.988

Table 5.5: Power of the test, with Algorithm 2. 40 × 40 grid. βj parameter vector, in model

(5.30), for the sample from Zj , j = 1, 2. Significance level α.

When no a priori knwoledge on the form of the spectral densities is available, then Algorithm

2 must be implemented. Under the same conditions on the size of the grid, kernel function, band-

width selection and number of Bootstrap replicates, we run new simulations. In this case, Z1 and

Z2 are simulated from model (5.30) but we do not use the fact that both spectral densities belong

to the same family.

Results of the test, using the completely nonparametric algorithm, are given in Tables 5.3 and

5.4. Comparing these results with the ones shown in Tables 5.1 and 5.2, we can see that there

is not a great loss in terms of size and power, when the fact that the two log-spectral densities

belong to the same parametric family.

In Table 5.5, we show the power results for the nonparametric algorithm, in a 40× 40 regular

grid. We can see that its performance is better than for the 20 × 20 grid case.
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Figure 5.1: Left panel: test statistics. Right panel: p-values. Solid line: based on the local

linear estimator (5.16). Dashed line: based on local loglikelihood estimator (5.18). Dotted line:

significance level 0.05. r denotes the scaling parameter in (5.32).
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Figure 5.2: Left panel: test statistics for log(Hg) concentrations. Right panel: p-values. Solid

line: based on the local linear estimator (5.16). Dashed line: based on local loglikelihood estimator

(5.18). Dotted line: significance level 0.05. r denotes the scaling parameter in (5.32).
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Figure 5.3: Left panel: test statistics for log(Se) concentrations. Right panel: p-values. Solid line:

based on the local linear estimator (5.16). Dashed line: based on local loglikelihood estimator

(5.18). Dotted line: significance level 0.05. r denotes the scaling parameter in (5.32).

5.4 Real data application.

We apply the testing technique to Mercury and Selenium concentration datasets. Mercury and

Selenium concentrations were measured (over a the same regular grid) on 2000, 2002 and 2004

(March and September, in this last year). Our main goal is to check whether the dependence

structure in the process observed in March 2004 and September 2004 is the same. The impor-

tance of controlling Hg and Se concentrations has beeen pointed out in Section 1.4.2.

In this case, we consider two nonparametric estimators for the spatial log-spectral density.

First, we consider a local linear estimator, given by (5.16). Secondly, the Whittle estimator from

(5.18) is used. The kernel function is a multiplicative Epanechnikov kernel and the weighting

function is chosen to avoid the edge-effect. The algorithm for approximating the p-value of the

test statistic is the nonparametric Algorithm 2. In Figure 5.1 we show the values of the tests

(right panel) and the corresponding p-values (left panel) along a range of bandwidths. In Figure

5.2, we show the results of the tests and the corresponding p-values when applying a logarithmic

transform to the data. There is no evidence that the dependence structure in Hg concentrations

has changed from March to September.

Histogram for log(Se) concentrations has already been given in Section 1.4.2. In Figure 5.3

we show the tests statistics and the corresponding p-values from Algorithm 2, considering local

linear (5.16) and local Whittle (5.18) estimation. Once again, there is no significative change in

the dependence structure of selenium concentrations.
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5.5 Appendix Chapter 5.

Let’s introduce the following notation. Consider the following regression model:

Y l∗
k = ml(λk) + zl∗

k , l = 1, 2. (5.33)

where Y l∗
k = Y l

k − C0 − rl
k, and zl∗

k = zl
k − C0, where C0 = E(zl

k) is the Euler constant. Denote

by m̂l the nonparametric estimator of ml in (5.33)

m̂l
∗(λk) =

∑

j

Wj(λk)Y l∗
j .

and denote by Bl
k:

Bl
k =

∑

j

Wj(λk)rl
j, l = 1, 2.

5.5.1 Proof of Theorem 5

Lemma 20. The test statistic Q̂ can be decomposed in three addends:

Q̂ = Q̂1 + Q̂2 + Q̂3,

where

Q̂1 =
(2π)2

N

∑

k

(m̂1
∗(λk) − m̂2

∗(λk))2ω(λk),

Q̂2 =
(2π)2

N

∑

k

(B1
k −B2

k)2ω(λk),

Q̂3 = 2
(2π)2

N

∑

k

(m̂1
∗(λk) − m̂2

∗(λk))(B1
k −B2

k)ω(λk).

Proof. It is straightforward from the definitions of the non parametric estimator in regression

model (5.33) and the quantities B1
k, B2

k.

Q̂ =
(2π)2

N

∑

k

(m̂1(λk) − m̂2(λk))2ω(λk)

=
(2π)2

N

∑

k

(m̂1
∗(λk) − m̂2

∗(λk) +B1
k −B2

k)2ω(λk)

= Q̂1 + Q̂2 + Q̂3.
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Lemma 21. Under conditions (A1)-(A5) and under H0, we have that:

Q̂2 = OP

(
log2N

N2|H|1/2

)
,

Q̂3 = OP

(
log2N

N

)
.

Proof. Recall that, by definitions of B1
k and B2

k, the statistic Q̂2 can be written as:

Q̂2 =
(2π)2

N

∑

k

(B1
k −B2

k)2ω(λk),

where

B1
k =

∑

j

Wj(λk)r1j , B2
k =

∑

j

Wj(λk)r2j .

Then, Q̂2 can be decomposed as:

Q̂2 =
(2π)2

N

∑

k

∑

j

W 2
j (λk)(r1j − r2j )

2ω(λk)

+
(2π)2

N

∑

k

∑

i

∑

j6=i

Wj(λk)Wi(λk)(r1j − r2j )(r
1
i − r2i )ω(λk)

= Q̂2,1 + Q̂2,2.

Recall the expression for the residual part rl
j, for l = 1, 2:

rl
j = log

(
1 +

Rl
N (λj)

fl(λj)Vj

)
, l = 1, 2

and apply a Taylor expansion around 0:

rl
j = −Rl

N (λj)

fl(λj)Vj

− 1

2(1 + xj)2

(
Rl

N (λj)

fl(λj)Vj

)2

,

where xj ∈
(

0,
Rl

N (λj)

fl(λj)Vj

)
. Since,

max
j

|Rl
N (λj)| = OP(N−1/2 logN),

for l = 1, 2, just following Kooperberg et al. (1995), the Lagrange remainder in the Taylor expan-

sion can be uniformly bounded by:

max
j

∣∣∣∣∣
1

2(1 + xj)2

(
Rl

N (λj)

fl(λj)Vj

)2
∣∣∣∣∣ = OP

(
log2N

N

)
.
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Denote the Lagrange remainder from the Taylor expansion by LRl
j, for l = 1, 2. Then:

Q̂2,1 =
(2π)2

N

∑

k

∑

j

W 2
j (λk)

(
R2

N (λj)

f2(λj)Vj

− R1
N (λj)

f1(λj)Vj

+ LR2
j − LR1

j

)2

ω(λk).

Since we assume that H0 : f1 = f2 holds, we will omit the subindex in the spectral densities.

Besides, since the Vj variables are independent (both between and within populations 1 and 2),

we will denote this variables by V . Computing the square, Q̂2,1 can be decomposed again in three

addends as:

Q̂2,1 = Q̂1
2,1 + Q̂2

2,1 + Q̂3
2,1,

where

Q̂1
2,1 =

(2π)2

N

∑

k

∑

j

W 2
j (λk)

(
R2

N (λj)

f(λj)V
− R1

N (λj)

f(λj)V

)2

ω(λk),

Q̂2
2,1 =

(2π)2

N

∑

k

∑

j

W 2
j (λk)(LR2

j − LR1
j )

2ω(λk),

and

Q̂3
2,1 = 2

(2π)2

N

∑

k

∑

j

W 2
j (λk)

(
R2

N (λj)

f(λj)V
− R1

N (λj)

f(λj)V

)
(LR2

j − LR1
j )ω(λk).
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Let’s find a bound for Q̂2
2,1, the addend involving the Lagrange remainders.

Q̂2
2,1 =

(2π)2

N

∑

k

∑

j

W 2
j (λk)(LR1

j − LR2
j )

2ω(λk)

≤ max
j

|LR1
j − LR2

j |2
(2π)2

N

∑

k

∑

j

W 2
j (λk)ω(λk)

= OP

(
log4N

N2

)
(2π)2

N

∑

k

∑

j

(2π)4

N2|H|K
2(H−1/2(λk − λj))ω(λk)

= OP

(
log4N

N2

)
(2π)6

N


∑

k

∑

j6=k

1

N2|H|K
2(H−1/2(λk − λj))ω(λk)

+
∑

k

1

N |H|K
2(H−1/20)ω(λk)

)

= OP

(
log4N

N4|H|1/2

)

+ OP

(
log4N

N2

)
(2π)6

N3|H|
∑

k

∑

j6=k

K2(H−1/2(λk − λj))ω(λk)

≤ OP

(
log4N

N4|H|1/2

)

+ OP

(
log4N

N2

)
(2π)6

N2|H| max
k

∑

j6=k

K2(H−1/2(λk − λj))

≈ OP

(
log4N

N4|H|1/2

)
+ OP

(
log4N

N2

)
1

N |H|1/2
CK

= OP

(
log4N

N3|H|1/2

)
,

where the last inequality follows from maxk ω(λk) ≤ c, for some constant c. Following similar

arguments as above, we will found bounds for Q̂2,1 and Q̂2,3. Let’s start with Q̂1
2,1:

Q̂1
2,1 =

(2π)2

N

∑

k

∑

j

W 2
j (λk)

(
R2

N (λj)

f(λj)V
− R1

N (λj)

f(λj)V

)2

ω(λk)

= Q̂1,1
2,1 + Q̂1,2

2,1 + Q̂1,3
2,1

where

Q̂1,1
2,1 =

(2π)2

N

∑

k

∑

j

W 2
j (λk)

(
R1

N (λj)

f(λj)V

)2

ω(λk),

Q̂1,3
2,1 = 2

(2π)2

N

∑

k

∑

j

W 2
j (λk)

R1
N (λj)

f(λj)V

R2
N (λj)

f(λj)V
ω(λk)
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and Q̂1,2
2,1 is the similar to Q̂1,1

2,1, but replacing each R1
N (λj) for R2

N (λj). We will find a bound for

Q̂1,1
2,1. Similar computations lead to the same bound for the other addends.

Q̂1,1
2,1 ≤ (2π)2

N
N max

j

(
R1

N (λj)

f(λj)V

)2∑

j

∑

k

W 2
j (λk)ω(λk)

= OP

(
log2N

N

)∑

j

∑

k

(2π)4

N2|H|K
2(H−1/2(λk − λj))ω(λk)

≈ OP

(
log2N

N

)
1

N |H|1/2

∫
ω(v)dv

∫
K2(u)du

= OP

(
log2N

N2|H|1/2

)
.

Let’s find a bound for the third addend, Q̂3
2,1:

Q̂3
2,1 = 2

(2π)2

N

∑

k

∑

j

W 2
j (λk)

(
R1

N (λj)

f(λj)V
− R2

N (λj)

f(λj)V

)
(LR2

j − LR1
j )ω(λk)

≤ 2
(2π)2

N
max

j

∣∣∣∣
R1

N (λj)

f(λj)V
− R2

N (λj)

f(λj)V

∣∣∣∣ |LR2
j − LR1

j |

×
∑

j

∑

k

(
1

N2|H|K
2(H−1/2(λk − λj))

)
ω(λk)

= OP

(
logN

N1/2

)
OP

(
log2N

N

)
(2π)6

N

×
∑

j

∑

k

1

N2|H|K
2(H−1/2(λk − λj))ω(λk)

= OP

(
log3N

N5/2|H|1/2

)
.

Therefore,

Q̂2 ≤ OP

(
log2N

N2|H|1/2

)
.
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Now, we will find a bound for Q̂3. This statistic can be written as:

Q̂3 = 2
(2π)2

N

∑

k

(m̂1(λk) − m̂2(λk)) (B1
k −B2

k)ω(λk)

= 2
(2π)2

N

∑

k


∑

j

Wj(λk)Y 1
j −

∑

i

Wi(λk)Y 2
i


 ·


∑

j

Wj(λk)r1j −
∑

i

Wi(λk)r2j


ω(λk)

≤ 2 max
k

|B1
k −B2

k|
(2π)2

N

∑

k

∑

j

Wj(λk)(Y 1
j − Y 2

j )ω(λk)

≤ OP

(
logN

N1/2

)
max

j
|Y 1

j − Y 2
j |

(2π)6

N

×
∑

k

∑

j

1

N |H|1/2
K(H−1/2(λk − λj))ω(λk)

= OP

(
log2N

N

)

since H0 : f1 = f2, it implies that Y 1
j − Y 2

j = r1j − r2j , for every Fourier frequency.

Lemma 22. Under conditions (A1)-(A5) and under H0, we have that

√
N2|H|1/2

(
Q̂1 −

(2π)4

12N |H|1/2
CKIω

)
→ N(0, σ2

Q),

in distribution, where

CK =

∫
K2(u)du, Iω =

∫
ω(v)dv and the asymptotic variance is

σ2
Q =

(2π)8

72

∫
(K ∗K)2(u)du

∫
ω2(v)dv,

where ∗ denotes the convolution operator.

Proof. Define the following random variables:

Λk = z1∗
k − z2∗

k .

Therefore:

E(Λk) = 0, E(Λ2
k) =

π2

3
and Cov(Λk,Λj) = 0 for j 6= k.

since the variables z1∗
k and z2∗

k are independent with variance π2/6. Under H0, the difference

between log-periodogram values in both population at a fixed Fourier frequency λk is given by:
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Y 1∗
k − Y 2∗

k = z1∗
k − z2∗

k = Λk. Then, the statistic Q̂1 can be decomposed in two addends, in the

following way:

Q̂1 =
(2π)2

N

∑

k

(m̂1
∗(λk) − m̂2

∗(λk))
2
ω(λk)

=
(2π)2

N

∑

k


∑

j

Wj(λk)Y 1∗
k −

∑

i

Wi(λk)Y 2∗
i




2

ω(λk)

=
(2π)2

N

∑

k


∑

j

Wj(λk)Λj




2

ω(λk) = Q̂1,1 + Q̂1,2,

where Q̂1,1 and Q̂1,2 are given by:

Q̂1,1 =
(2π)2

N

∑

k

∑

j

W 2
j (λk)Λ2

jω(λk),

Q̂1,2 =
(2π)2

N

∑

k

∑

j

∑

i6=j

Wj(λk)Wi(λk)ΛjΛiω(λk).

Define

bi,j =
(2π)2

N

∑

k

Wi(λk)Wj(λk)ω(λk).

Then:

Q̂1,1 =
∑

j

bj,jΛ
2
j , and Q̂1,2 =

∑

i6=j

bi,jΛiΛj.

First, we will study the behaviour of Q̂1,1. For simplicity, consider Priestley-Chao weights, this

statistic is given by:

Q̂1,1 =
∑

j

bj,jΛ
2
j =

(2π)2

N

∑

k

∑

j

W 2
j (λk)ω(λk)Λ2

j

=
(2π)2

N

∑

k

ω(λk)
∑

j

(2π)2

N2|H|K
2(H−1/2(λk − λj))Λ

2
j .
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Taking expectations and using Riemann approximation, it is easy to see that:

E(Q̂1,1)

=
(2π)2

N2|H|1/2

∑

j

E(Λ2
j )

(
(2π)4

N |H|1/2

∑

k

K2(H−1/2(λk − λj))ω(λk)

)

=
π2

3

(2π)2

N2|H|1/2


∑

k

ω(λk)
(2π)4

N |H|1/2

∑

j

K2(H−1/2(λk − λj))




=
1

12

1

N |H|1/2


(2π)4

N

∑

k

ω(λk)
(2π)4

N |H|1/2

∑

j

K2(H−1/2(λk − λj))




=
1

12

1

N |H|1/2


(2π)4

N

∑

k

ω(λk)
(2π)4

N |H|1/2

∑

j

K2
k(H−1/2λj)




≈ (2π)4

12

1

N |H|1/2

∫
ω(v)dv

∫
K2(u)du.

Let’s check the order of the variance of Q̂1,1. Denote by c2 = V ar(Λ2
j ) This variance can be

computed taking into account that:

V ar(Q̂1,1) =
(2π)12

N6|H|2 c2
∑

j

α2
j ,

where the coefficients αj are given by:

αj =
∑

k

K2(H−1/2(λk − λj))ω(λk).

Then,

V ar(Q̂1,1) =

c2
(2π)12

N6|H|2
∑

k

∑

k′

∑

j

ω(λk)ω(λk′)

×K2(H−1/2(λk − λj))K
2(H−1/2(λk′ − λj))

which can be approximated, using a changes of variable and Riemann summation, by:

V ar(Q̂1,1) ≈ C2
Kc2

(2π)8

N4|H|
∑

k

ω(λk)
∑

k′
ω(λk′) = O

(
1

N2|H|

)

Therefore, applying Markov’s inequality, it follows that:

Q̂1,1 =
(2π)4

12N |H|1/2
CKIω + OP

(
1

N |H|1/2

)
.
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Now, we will check the behaviour of Q̂1,2. We will see that this term does not make contribu-

tions in bias. Recall the expression of Q̂1,2:

Q̂1,2 =
∑

i6=j

bi,jΛiΛj.

Then, computing its expectation:

E(Q̂1,2) = E


∑

i6=j

bi,jΛiΛj


 = E


∑

i6=j

∑

k

Wi(λk)Wj(λk)ω(λk)ΛiΛj




=
∑

i6=j

∑

k

Wi(λk)Wj(λk)ω(λk)E(ΛiΛj) = 0,

since Λi and Λj are uncorrelated, for i 6= j.

Let’s compute the variance of Q̂1,2. Since the variables Λj are i.i.d., we have:

V ar(Q̂1,2) =
∑

i6=j

∑

u6=v

bijbuvCov(ΛiΛj,ΛuΛv)

=
∑

i6=j

∑

u6=v

bijbuv (E(ΛiΛjΛuΛv) − E(ΛiΛj)E(ΛuΛv))

=
∑

i6=j

∑

u6=v

bijbuvE(ΛiΛjΛuΛv),

since i 6= j and therefore: E(ΛiΛj) = E(Λi)E(Λj) = 0. The same applies for u 6= j. For

E(ΛiΛjΛuΛv) to be different from zero, one of these two conditions hold: i = u and j = v or

i = v and j = u. Then:

V ar(Q̂1,2) =
∑

i

∑

j6=i

bij
∑

u

∑

u6=v

buvE(ΛiΛjΛuΛv)

=
∑

i

∑

j6=i

bij
∑

u=i

∑

v=j

buvE(ΛiΛjΛuΛv)

+
∑

i

∑

j6=i

bij
∑

u=j

∑

v=i

buvE(ΛiΛjΛuΛv)

= 2
∑

i

∑

j6=i

b2ijE(Λ2
i )E(Λ2

j ) =
2π4

9

∑

i

∑

j6=i

b2ij.

Consider the following approximation for the product of two bij coefficients:

bijbuv ≈ (2π)4

N4|H|K ∗K(H−1/2(λi − λj))ω(λi)K ∗K(H−1/2(λu − λv))ω(λu).
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Then,

V ar(Q̂1,2) ≈
2π4

9

∑

i

∑

j6=i

(2π)8

N4|H|(K ∗K)2(H−1/2(λi − λj))ω
2(λi)

≈ (2π)8

72

1

N |H|1/2

∫
(K ∗K)2(u)du

∫
ω(v)dv.

Therefore, the asymptotic variance of Q̂ is given by:

σ2
Q̂

= lim
N→∞

N2|H|1/2σ2
Q̂1,2

=
(2π)8

72

∫
(K ∗K(u))2 du

∫
ω2(v)dv.

In order to prove the asymptotic normal distribution of Q̂1,2, we will apply Theorem 5.2 in de Jong

(1987). For that purpose, we must write Q̂1,2 as a quadratic form, namely Q̂1,2 =
∑

i,j ai,jXiXj ,

where i and j are one-dimensional indexes and Xi are i.i.d. random variables with zero mean and

unit variance.

First, define a new subindex for the Fourier frequencies λk, with k = (k1, k2) and kl =

0,±1, . . . ,±nl, for l = 1, 2. Consider λk = λk′ where k′ = (k′1, k
′
2), with k′l = 1, . . . ,ml = 2nl + 1,

in such a way that k′l = kl + n1 + 1 for l = 1, 2. Recall that N = m1 ×m2. Denote by MN×N

the space of square matrix with size N . The new coefficients, with one dimensional indexes, are

given by the following matrix:

A = (aij) , A ∈ MN×N ,

and each entry of this matrix is defined by aij = π√
3
bij and aii = 0, where the bidimensional

indexes are given by:

i = (i1, i2), if (i1 − 1)m2 ≤ i ≤ i1m2 and i = (i1 − 1)m2 + i2, (5.34)

j = (j1, j2), if (j1 − 1)m2 ≤ j ≤ j1m2 and j = (j1 − 1)m2 + j2. (5.35)

Now, define the variables:

Xi =

√
3

π
Λi, where i = (i1 − 1)m2 + i2.

With this definitions, Q̂1,2 can be written as a quadratic form with one-dimensional indexes:

Q̂1,2 =
∑

i,j

ai,jXiXj .

Asymptotic normality is proved if the following conditions are satisfied:

(i) There exists a sequence of real numbers k(N) such that:

k(N)4σ2
Q̂

max
i

∑

j

a2
ij → 0, N → ∞.
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(ii) The random variables Xi satisfy:

max
i
E
(
X2

i 1{|Xi|>k(N)}
)
→ 0, N → ∞.

(iii) The eigenvalues of the matrix A = (aij) are negligible:

σ2
Q̂

max
i
µ2

i → 0, N → ∞.

Let’s prove that condition (i) is satisfied. The coefficients in the quadratic form are given by:

aij =
π√
3

(2π)2

N

∑

k

Wi(λk)Wj(λk)ω(λk),

where i and j are determined by (5.34) and (5.35), respectively. Then,

a2
ij =

π2(2π)4

3N2

(∑

k

Wi(λk)Wj(λk)ω(λk)

)2

=
π2(2π)4

3N2

∑

k

W 2
i (λk)W 2

j (λk)ω2(λk)

+
π2(2π)4

3N2

∑

k

Wi(λk)Wj(λk)ω(λk)
∑

k 6=k′
Wi(λk′)Wj(λk′)ω(λk′)

= a2A
ij + a2B

ij .

Consider now:

max
i

∑

j

a2A
ij = max

i

∑

j

π2(2π)4

3N2

∑

k

W 2
i (λk)W 2

j (λk)ω2(λk).

This term can be approximated (up to a factor (2π)4) by:

max
i

∑

j

a2A
ij =

π2(2π)4

3N2
max

i

∑

k

ω2(λk)W 2
i (λk)

∑

j

W 2
j (λk)

=
π2(2π)4

3N2
max

i

∑

k

ω2(λk)
1

N2|H|K
2(H−1/2(λk − λi))

×
∑

j

1

N2|H|K
2(H−1/2(λk − λj))

≈ π2(2π)2

3N3
max

i

∑

k

ω2(λk)
1

N2|H|K
2(H−1/2(λk − λi))CK

= CK
π2

3N4|H|1/2
max

i

(2π)2

N |H|1/2

∑

k

ω2(λk)K2(H−1/2(λk − λi))

≈ CK
π2

3N4|H|1/2
max

i
(ω2 ∗K2)(λi) = O

(
N−4|H|−1/2

)
.
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Following similar arguments, the same rate is obtained for maxi
∑

j a
1B
ij Therefore,

k4(N)σ2
Q̂

max
i

∑

j

aij = O
(
k4(N)

N6|H|

)
,

which tends to zero if the sequence k(N) → ∞ satisfies that
k4(N)

N6|H| → 0.

Condition (ii) holds since the variables Xi are i.i.d. with second order moment E(X2
i ) = 1. It

remains to show that condition (iii) also holds. Since A is a symmetric N×N matrix, there exists

an ortogonal matrix U such that U−1AU is diagonal. This result implies that A is diagonalizable

with real eigenvalues, {µi}, with i = 1, . . . , N . The ‖ · ‖∞ norm of the matrix A is given by:

‖A‖∞ = max
i

∑

j

|aij |,

The spectral ratio of the matrix is defined as the maximum of the eigenvalues of A and it can

be bounded by any norm in the matrix space MN×N ; therefore, for the particular case of the

supremun norm ‖ · ‖∞:

max
i

|µi| ≤ max
i

∑

j

|aij |.

Besides,

max
i

|µi|2 ≤
(

max
i

|µi|
)2

≤


max

i

∑

j

|aij |




2

,

so we will give a bound for the last term in the inequality.

max
i

∑

j

|aij | = max
i

∑

j

π(2π)2√
3N

∣∣∣∣∣
∑

k

Wi(λk)Wj(λk)ω(λk)

∣∣∣∣∣

≤ π(2π)2√
3N

(2π)4

N2|H| max
i

∑

j

∑

k

∣∣∣K(H−1/2(λk − λi))
∣∣∣

×
∣∣∣K(H−1/2(λk − λj))

∣∣∣ |ω(λk)|

≈ 24π5

√
3N(2π)2

max
i

(ω ∗K)(λi)

∫
K(u)du = O(N−1).

Therefore,

σ2
Q̂

max
i

|µi|2 = O
(

1

N4|H|1/2

)
→ 0.

Then, the asymptotic convergence to a normal distribution is proved.

Proof of Theorem 5. The theorem is proved combining the results from Lemmas 20-22.
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5.5.2 Proof of Theorem 6

Proof of Theorem 6. Consider the decomposition of the test statistic given in Lemma 20: Q̂ =

Q̂1a + Q̂2a + Q̂3a. The sketch of the proof is as follows: first, we will find bounds for Q̂2a and Q̂3a.

Second, Q̂1a is decomposed in three addends Q̂1a1, Q̂1a2 and Q̂1. The asymptotic normality of Q̂1

is proved in Theorem 5. We will find a bound for Q̂1a2 and we will derive the asymptotic value of

Q̂1a1.

From Lemma 21, it is obvious that Q̂2a = OP

(
log2N

N2|H|1/2

)
, since the equality of the spectral

densities in both models is not necessary. Let’s find a bound for Q̂3a.

Q̂3a = 2
(2π)2

N

∑

k

(m̂1(λk) − m̂2(λk))(B1
k −B2

k)ω(λk)

≤ 2 max
k

|B1
k −B2

k|
(2π)2

N

∑

k

∑

j

Wj(λk)(CNp(λj) + r1j − r2j )

= 2 max
k

|B1
k −B2

k|CN
(2π)2

N

∑

k

∑

j

Wj(λk)p(λj)

+2 max
k

|B1
k −B2

k|
(2π)2

N

∑

k

∑

j

Wj(λk)(r1j − r2j )

= Q̂1
3a + Q̂2

3a.

From Lemma 21, it is obvious that:

Q̂2
3a ≤ OP

(
log2N

N

)
,

and for Q̂1
3a, proceeding in a similar way, we obtain:

Q̂1
3a ≤ OP

(
log2N

N3/2|H|1/8

)
.

Therefore,

Q̂3a = OP

(
log2N

N

)
.
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The first addend in the decomposition of Q̂ can be written as:

Q̂1a =
(2π)2

N

∑

k

(
m̂1

∗
(λk) − m̂2

∗
(λk)

)2
ω(λk)

=
(2π)2

N

∑

k


∑

i

Wi(λk)Y 1∗
i −

∑

j

Wj(λk)Y 2∗
j




2

ω(λk)

=
(2π)2

N

∑

k

(∑

i

Wi(λk)(m1(λk) −m2(λk) + z1∗
k − z2∗

k )

)2

ω(λk)

=
(2π)2

N

∑

k


∑

i

Wi(λk)CNp(λk) +
∑

j

Wj(λk)Λj




2

ω(λk)

=
(2π)2

N

∑

k

(∑

i

Wi(λk)CNp(λk)

)2

ω(λk)

+
(2π)2

N

∑

k


∑

j

Wj(λk)Λj




2

ω(λk)

+2
(2π)2

N

∑

k

(∑

i

Wi(λk)CNp(λk)

)
∑

j

Wj(λk)Λj


ω(λk)

= Q̂1a1 + Q̂1 + Q̂1a2.

The asymptotic distribution of Q̂1 has been proved in Theorem 6. We will study the asymptotic

behaviour of Q̂1a1.

Q̂1a1 =
(2π)2

N

∑

k

(∑

i

Wi(λk)CNp(λk)

)2

ω(λk)

=
(2π)2

N

∑

k

(∑

i

(2π)2

N |H|1/2
K(H−1/2(λk − λi))CNp(λi)

)2

ω(λk)

=
(2π)2

N
CN

(2π)2

N2|H|
∑

k

(
K(H−1/2(λk − λi))p(λi)

)2
ω(λk)

≈
∫
p2(v)ω(v)dv,

where the last approximation holds if C2
N = N−1|H|−1/4.

We must find a bound for Q̂1a2,. The expected value of this term is zero, since E(Λ) = 0. And
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for the variance, we have that:

V ar(Q̂1a2) =

= V ar


2

(2π)2

N

∑

k

(∑

i

Wi(λk)CNp(λi)

)
∑

j

Wj(λk)Λj


ω(λk)




= 4
(2π)4

N2
C2

N

∑

k

∑

i

∑

j

W 2
i (λk)W 2

j (λk)p2(λi)ω
2(λk)V ar(Λj)

= OP

(
C2

N

N2|H|1/4

)
= OP

(
1

N3|H|5/4

)
.

Then, applying the Markov inequality,

Q̂1a2 = OP

(
1

N3/2|H|5/8

)
.





Further research

We will describe briefly some of the future research lines we have started to explored. Keeping

our interest focused on the dependence structure of spatial processes and particularly, on the

construction of goodness-of-fit test techniques (Chapter 4). An alternative could be to consider

goodness-of-fit tests based on Empirical Processes. From another point of view, our theoretical de-

velopments could be translated into the wavelet spectrum, and the goodness-of-fit problem could

be tackled from this context.

One of the assumptions on the spatial design, related to classical Fourier analysis, along this

dissertation is that sampling locations are regularly spaced as it happens, for instance, with satel-

lite data. But in many applications in geostatistics, this restriction may be too strong. Considering

the Wavelet Transform overcomes this drawback.

Chapter 3 in this manuscript was devoted to simulation methods for spatially dependent data,

all of them under stationarity and gaussianity assumptions. We will try to extend the spectral

simulation methods to a non-gaussian non-stationarity situation, by considering resampling tech-

niques on the spectral domain.

In Chapter 5, we pointed out the interest of the test for comparing spatial spectral densities

in the spatio-temporal context. If the spatial dependence remains invariant along time, then the

process is temporal stationary and simple spatio-temporal models for describing the dependence

structure could be used. A class of simple models for spatio-temporal dependence are separable

covariances. From the spectral domain setting, we can also propose a test for separability.

Finally, even though our main interest has been focused on the dependence structure, the

small-scale variability, we provide some ideas for constructing a goodness-of-fit test for the large-

scale variability component.

221



222 Further research

Goodness-of-fit test based for the spatial spectral density on Em-

pirical Processes.

As we have seen in the overview on goodness-of-fit test techniques for regression models (Chapter

4, Section 4.1), in order to build a goodness-of-fit test for the spatial log-spectral density, we have

chosen a generalized likelihood ratio test statistics, but other choices would be also possible.

An appealing alternative is the construction of goodness-of-fit tests based on Empirical Processes.

In the spatial statistics literature, Lahiri (1999) consider a empirical process in order to determine

the asymptotic distribution of the empirical spatial cumulative distribution function (ESCDF)

predictor in (5.21).

From (2.15) we could consider a nonparametric estimator of the integrated regression function

m = log f :

I(λ) =
1

N

∑

k

1{λk<λ}Yk, (5.36)

where < denotes the lexicographic order in Z2 and
∑

k denotes the sum over all the Fourier

frequencies. An empirical process on this context could be defined as:

ηN (λ) =
1

N

∑

k

1{λk<λ}(Yk −m(λk)). (5.37)

In order to study the asymptotic distribution of (5.37), we must note that we have fixed design

points (the Fourier frequencies) and we somehow control the distribution of the error term. The

distribution of the zk variables is known and the behaviour of the rk term can be uniformly

bounded. A similar problem has been studied in Diebolt and Zuber (2001), for the regression

context but the basis of the theory developed in their paper can be found in Stute (1997).

Since the spectral density is unknown, we must consider an estimated empirical process:

η̂N (λ) =
1

N

∑

k

1{λk<λ}(Yk −mθ̂(λk)),

where the parameter estimator satisfy a consistency requirement. The critical issue in the theo-

retical developments is proving the tightness of the empirical process (5.37).

Wavelet approach.

The goodness-of-fit test statistic (4.10) based on the spatial periodogram can be adapted in terms

of the scalogram (the periodogram for Wavelet Transform). The introduction of wavelet techniques
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allows for more flexibility in the statement of the testing problems.

For a spatial random field Z defined on Rd, its dependence structure can be characterized in

terms of a continuous spectrum of the covariance operator. In particular, if Z is a second-order

stationary process, this continuous spectrum coincides with the spectral density.

Besides, the covariance operator generates a bilinear form which defines the inner product of

the associated reproducing kernel Hilbert space H(Z). If this space is isomorphic to a fractional

Sobolev space, then Z admits an orthogonal decomposition:

Z(s) =
∑

j

∑

k

γjk(s)Zjk +
∑

k

ϕ0k(s)Z0k, (5.38)

where γjk and ϕ0k are defined in terms of the kernel generating by self-convolution the covariance

and the wavelet basis (see Angulo and Ruiz-Medina (1999)). Apart from the technical details

and mathematical concepts that encloses this approach, representation (5.38) reminds us to the

moving average representation considered in our developments.

Definition 3. The extended-scalogram, at a level j and translations k and l, is defined as:

S(j,k, l) =

(∑

s

Z(s)ψjk(s)

)(∑

v

Z(v)ψjl(v)

)
. (5.39)

The expectation of the scalogram is the Wavelet Transform of the covariance, at level j and

translations k and l. For a fixed level of resolution j, a goodness-of-fit test for the covariance

of a spatial process could be formulated from the wavelet spectrum, as a Weighted Least Square

criterion on the difference:
S(j,k, l)

TW 2D(Ĉ)(j,k,l)

− 1,

where TW 2D(Ĉ)(j,k,l) denotes the 2D-wavelet transform of an estimator Ĉ of the covariance

function.

A nonparametric resampling method.

The uniform distribution of the phases is a sufficient condition for the stationarity of the process.

Besides, the Gaussian distribution of the real and imaginary parts of the process (regardless the

distribution of the spatial process) is only achieved asymptotically. Then, the algorithms pre-

sented in the Chapter 3 may not perform well for a non-Gaussian context. The classical spectral

simulation method can be extended to a non-Gaussian situation.
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Since conditions (i)− (v) in Section 3.1.1 hold for any stationary spatial process Z, and such a

process admits a representation in a Fourier-Stieltjes form as (1.62), it is possible from a realization

of Z obtain a discrete approximation to the associated spectral process Y given by:

Y(λk) =
1

(2π)2N

∑

s∈D

Z(s)e−isT λk (5.40)

This spectral complex process can be splitted in its real and imaginary parts, U(λk) and

V (λk). For a finite set of observations, that is, from a realization of the spatial process Z, we

may not be able to determine the distribution of U and V particularly if the distribution of Z is

far from being Gaussian.

1. {Z(s), s ∈ D ⊂ R2}, observed data, with D = {0, . . . , n1 − 1} × {0, . . . , n2 − 1} and denote

by N = n1 × n2. Assume the covariance function C is known.

2. Get {Y(λk),λk ∈ Π2} the associated spectral process given by (5.40) at the Fourier fre-

quencies and obtain the real and imaginary parts of the process:

U(λk) =
1

(2π)2N

∑

s∈D

Z(s) cos(sT λk),

V (λk) =
1

(2π)2N

∑

s∈D

Z(s) sin(sT λk).

3. U(λk) have the same distribution for all λk and we have seen that these random variables

are uncorrelated. Consider

Ũ(λk) =

√
2(2π)2

σ2
k

U(λk),

for λk 6= (0, 0). The rescaled sample {Ũ(λk)} can ben considered as a random sample of

the distribution F Ũ . Consider also the empirical distribution F Ũ
N and draw a sample from

this distribution: {Ũ∗(λk)}.

4. Proceed for V (λk) as we have done with U(λk), and get, from F Ṽ
N a random sample

{Ṽ ∗(λk)}.

5. Rescaled the generated samples and get U∗(λk) =

√
σ2
k

2(2π)2
Ũ∗(λk) (similarly, V ∗(λk)), for

λk 6= (0, 0).

6. For the origin, assuming that E(Z(s)) = 0, draw U∗(0, 0) ∼ N
(
0,

σ2
0

(2π)2

)
. In practice, we

must estimate the mean from the data by Z̄ and simulate U∗(0, 0) ∼ N
(
Z̄,

σ2
0

(2π)2

)
.
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7. Build a realization of the spectral process as:

Y∗(λk) = U∗(λk) + iV ∗(λk).

8. Consider the inverse discrete Fourier transform of the realization of the spectral process

Y∗(λk) and get Z∗(s), for s ∈ D.

This resampling method is consistent in the sense that the distribution of the simulated spectral

process Y∗ converges to the distribution of Y. It is straightforward just regarding the indepen-

dence of the real and imaginary parts and applying Glivenko-Cantelli’s theorem for the uniform

convergence of the empirical distribution. Some considerations on the continuous case must be

made.

A test for separability.

As we have already commented, applications in many scientific fields involve spatio-temporal

processes. In these cases, the interested is not only focused on the spatial dependence structure,

but on the spatio-temporal one. The simplest way for modelling spatio-temporal processes is by

considering a separable covariance function.

A spatio-temporal process Z(s, t) with covariance function C(u, h) = Cov(Z(s, t), Z(s+u, t+

h)), is said to be separable if C can be factorized as: C(u, t) = CS(u)CT (t), where CS and CT

are spatial and temporal covariance functions, respectively. However, separable models are not

always adequate for describing the spatio-temporal dependence structure. In this context, Fuentes

(2006b) proposes a formal test for separability. The test is based on the spectral representation of

the process and it consists basically in studying whether the coherence function is constant across

frequencies. An advantage of this method is that it does not neet data to be regularly spaced.

Our idea is also based on spectral analysis, but on a different way. Since the log-periodogram

can be written as the response variable in a regression model:

log I(λk, τ) = m(λk, τ) + zk,τ + rk,τ . (5.41)

If we consider a spatio-temporal process (and a spatio-temporal periodogram), testing for the

separability of the process will be equivalent to test for the additivity of the log-spectral density,

as the regression function in (5.41).
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Goodness-of-fit test for the trend function.

Large-scale variability is often incorporated into the mean structure of a model, along with any

relevant covariates. Trend terms may be incorporated in a simple way without any scientific

knowledge. Sometimes, this is accomplished through the use of nonparametric smoothing func-

tions. The goal of incorporating such trend terms in a model is often to produce some form of

stationarity in the residuals. For instance, the estimation of trends for spatio-temporal processes

in airborne concentrations, has been the subject of several works using different methods such as

linear regression models, nonparametric models or generalized additive models (e.g. Lefohn and

Shadwick (1991), Holland et al. (2000)).

Our aim would be to test the validity of an estimated trend function through the study of an

empirical process of the error term.

Consider a spatial (or spatio-temporal) process Z, observed on a regular grid with spacing

between neighbour coordinates ∆, with the following decomposition:

Z(s) = µ(s) + ε(s), (5.42)

where µ is a deterministic trend function and ε is the error term which models the dependence

structure, not necessarily weakly stationary. Similarly to the Integrated Regression Function

introduced in (4.4), we can define the Cummulative Mean Function (CMF), for a fixed s0 ∈ R2+:

F (s0) =

∫ s0

0

µ(s)dP (s),

where P is the distribution of the spatial locations. Under the condition of uniformly distributed

locations over an observation region D ⊂ R2 (regular grid), we can write the CMF as follows:

F (s0) =
1

|D|

∫

D
µ(s)1{s≤s0}ds,

where |D| denotes the volume of D, and a natural estimator for the CMF is given by:

FN (s0) =
1

N

∑

s∈D

Z(∆s)1{∆s≤s0}.

We define the Empirial Spatial Process (ESP) as:

ηN,∆(s0) =
∆2

N

∑

s∈D

ε(∆s)1{∆s≤s0}, (5.43)

where ∆ denots the spacing between neighbour coordinates in the grid, as usual. We assume,

for simplicity, equal spacement in all directions. Assume that the error process is second-order



Further research 227

stationary. Considering the spectral representation of the error process ε, as it has been introduced

in Section 1.3.4, and assuming that the spectral density of the error process fε, decays at a rate

proportional to ‖λ‖−τ , τ > 2, at high frequencies, it is easy to see that the covariance function of

the ESP (5.43) converges to:

Cη(s, s
′) =

∫
FT (1s)(−λ)FT (1s′)(λ)fε(λ)dλ, (5.44)

under a shrinking asymptotic framework. FT denotes the Fourier Transform operator, so (5.44)

can be written as:

Cη(s, s
′) =

∫
e−i(s−s′)T λA(λ)A(−λ)fε(λ)dλ,

where

A(λ) =
1

λ1λ2
+
π(δ(λ1) + δ(λ2))

i
+ π2δ(λ1)δ(λ2),

where i2 = (−1) and δ is the Dirac-delta function.

If the error process ε is non-stationary, then the non-stationary spectral density is required to

decay at a rate proportional to ‖(λ,ω)‖−τ , with τ > 4, for high frequencies. Once again, under

shrinking asymptotics we have that the covariance function of the ESP (5.43) converges to:

Cη(s, s
′) =

∫ ∫
FT (1s)(λ)FT (1s′)(ω)fε(λ,ω)dλdω. (5.45)

Both (5.44) and (5.45) depend on the unknown spectral density of the error process. We could

adjust a parametric model by applying a goodness-of-fit tests, as those proposed in Chapter 4.

Note that the ESP is non-stationary, thus in order to estimate its spectral density, we could

use the non-stationary periodogram introduced in (Fuentes (2002)):

I(λ,ω) =
∆2

N∆2

∑

s∈D

ηN,∆(∆s)e−i∆sT λ
∑

x∈D

ηN,∆(∆x)e−i∆xT ω. (5.46)

An idea for testing

H0 : µ ∈ Mθ = {µθ, θ ∈ Θ},
Ha : µ /∈ Mθ = {µθ, θ ∈ Θ}.

is based on the comparison of the periodogram of the ESP (5.46) with its spatial spectral density,

obtained as the Fourier Transform of (5.44) or (5.45). This comparison could be done using a

Kullback-Leibler discrepancy or a Bootstrap approach.

A more complete research would be the study of the asymptotic behaviour of the ESP. The

convergence of the finite dimensional distributions to a Gaussian limit can be obtained, but once

again, proving the stochastic equicontinuity (tightness) may pose some challenges.
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Software.

All the techniques presented along this manuscript (estimation methods, simulation algorithms

and goodness-of-fit test procedures) have been implemented in Visual Fortran. Aware of the

importance of allowing the scientific community for using these methods, our next objetive is to

create a library for R statistical software.



Resumo en galego

A estat́ıstica espacial é unha das metodolox́ıas fundamentais para unha grande variedade de dis-

ciplinas, como a ecolox́ıa, a hidrolox́ıa ou as ciencias medioambientais. En todos estes campos,

os experimentos que se levan a cabo recollen datos que poden estar relacionados a unhas certas

coordenadas no espazo. Neste proceso, os especialistas das distintas áreas, soen ter a idea intuitiva

de que os valores dunha variable en localizacións próximas tenderán a ser máis semellantes que

os tomados en localizacións alonxadas xeográficamente. Polo tanto, parece obvio que estes datos

non poden ser tratados como independentes.

Algunhas referencias xerais no eido da estat́ıstica espacial son os libros de Cressie (1993), Chilés

e Delfiner (1999) (para o caso xeoestat́ıstico), Stein (1999) ou o máis recente de Schabenberger e

Gotway (2005).

O deseño de modelos espaciais para representar a variabilidade dun proceso é un dos obxec-

tivos principais en estat́ıstica espacial. A variabilidade nun modelo pode ser debida a dúas fontes.

Por unha banda, a variabilidade a pequena escala (dependencia) e, pola outra, a variabilidade a

grande escala (tendencia). Esta última ten sido modelada a través de modelos de regresión, como

os modelos lineais xeneralizados ou os modelos aditivos. O noso interese centrarase na estrutura

de dependencia do proceso.

Aı́nda dentro da estat́ıstica espacial, poderiamos facer a seguinte distinción entre os procesos

estocásticos no espazo:

i) Procesos Xeoestat́ısticos. O proceso Z toma valores de xeito continuo sobre unha rexión

D ⊂ R2. Por exemplo, supoñamos que nos interesa medir a concentración que existe dun

certo metal pesado no solo ou no ambiente. As medicións da concentración de metal podeŕıan

tomarse en calqueira punto, posto que o proceso toma valores en calquera localización (véxase

Cressie (1993) ou Chilés e Delfiner (1999)).
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ii) Procesos Reticulares. O proceso Z toma valores nun conxunto finito de puntos no espazo,

D = {s1, . . . , sn}. Un exemplo: en estudos epidemiolóxicos, os datos de ı́ndice de mor-

tandade por unha certa enfermidade en Galicia veñen dados por comarcas (as localizacións

sobre as que toma valores o proceso son puntos asociados a cada comarca) (véxase, por

exemplo, Cressie (1993), Parte II).

iii) Procesos Puntuais. O proceso Z toma valores nunha rexión D ⊂ R2, pero as posicións onde

se atopan realizacións deste proceso Z distribúense de xeito aleatorio sobre D, sen que o

investigador teña control sobre elas. Esta é a situación que se plantexa en estudos forestais

(medicións en árbores: o investigador non ten control sobre onde tomar as medicións) (por

exemplo, Stoyan et al. (1995) e Diggle (2003)).

O modelado da dependencia espacial ten unha especial importancia no contexto xeoestat́ıstico.

A xeoestat́ıstica ref́ırese aos procesos espaciais continuos. Como xa se comentou, a medición de

tales cantidades asociadas a procesos continuous, pódese facer en calquera localización no espazo.

Pero as medidas non se toman en tódolos puntos, e a predición é un dos principais obxectivos da

análise xeoestat́ıstica.

Neste contexto, as técnicas de predición difiren das clásicas porque involucran ao modelo espa-

cial: a predición xeoestat́ıstica ten que conta a estrutura de dependencia do proceso. É por iso que

se teñen invertido moitos esforzos na descrición do comportamento da estrutura de dependencia,

en particular, baixo suposicións de estacionariedade. Con todo, non se ten prestado atención ao

problema do contraste da bondade de axuste.

O obxectivo principal deste traballo é propoñer contrastes de bondade de axuste que permitan

contrastar a validez dun certo modelo para explicar a estrutura de dependencia dun proceso es-

pacial estacionario. Centrarémos a nosa investigación no dominio espectral, polo que a estrutura

de dependencia será modelada a través da densidade espectral.

A continuación expoñemos un breve resumo de cada un dos caṕıtulos que constitúen esta tese

doutoral, facendo mención dos principais avances obtidos en cada un deles.

Caṕıtulo 1. Estat́ıstica espacial e métodos espectrais. Neste caṕıtulo facemos unha breve

revisión das diferentes situacións nas que nos atopamos cando dispoñemos de datos con depen-

dencia espacial (e.g. Cressie (1993) ou Chilés e Delfiner (1999)). Faremos unha revisión do caso

xeoestat́ıstico, centrándonos no problema de modelado da dependencia e interpolación kriging.
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Para poder explicar a estrutura de dependencia e facer posible a inferencia, unha das hipóteses

básicas que manexaremos é a de estacionariedade de segunda orde (estancionariedade débil ou ho-

moxeneidade do proceso).

Definición. Un proceso espacial Z dise debilmente estacionario se:

E(Z(s)) = µ(s), ∀s ∈ D, (5.47)

Cov(Z(s + u), Z(s)) = C(u), ∀s, s + u ∈ D. (5.48)

En (5.47), µ(s) denota a función de tendencia, que recolle a variabilidade a grande escala do

proceso. A estacionariedade débil implica que a dependencia entre dúas observacións do proceso

non depende das posicións nas que son tomadas, senón do vector diferenza entre as localizacións.

Un caso máis sinxelo é aquel no que a dependencia é función só da distancia entre as posicións:

isotroṕıa.

Definición. Un proceso espacial Z dise intrinsecamente estacionario se:

E(Z(s + u) − Z(s)) = 0, ∀s, s + u ∈ D, (5.49)

V ar(Z(s + u) − Z(s)) = 2γ(u), ∀s, s + u ∈ D. (5.50)

A estacionariedade intŕınseca supón que, para todo u, o incremento (Z(s + u) − Z(s)) é de-

bilmente estacionario.

Tanto o covariograma C como o variograma 2γ describen a estructura de dependencia dos

datos. Estas dúas funcións do proceso teñen interese por si mesmas, posto que modelizan a de-

pendencia; pero ademais, son fundamentais cando o noso obxectivo é a predición do proceso en

puntos onde non temos observacións. O variograma ou o covariograma interveñen dentro dos

métodos de interpolación óptima de datos espaciais: kriging (Stein (1999)).

Existe unha ampla literatura sobre a estimación destas dúas funcións, de xeito paramétrico

e unha alternativa máis recente a través de técnicas de estimación non paramétrica. Con todo,

non imos considerar o covariograma ou o variograma para o modelado da dependencia, posto que

non traballaremos no dominio dos datos, senón no dominio das frecuencias. Centrarémonos en

procesos espaciais {Z(s), s ∈ D ⊂ R2} que son debilmente estacionarios, posto que todo proceso

deste tipo admite unha representación en forma de integral de Fourier-Stieltjes:

Z(s) =

∫

R2

eix
T ωY(dω), (5.51)
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(véxase (Yaglom (1987))) onde Y é unha medida aleatoria ortogonal complexa. Esta expresión

coñécese como a representación espectral de Z. Ademais, existe unha identidade entre a clase de

funcións de covarianzas continuas en Rd e a clase de funcións definidas positivas en Rd (Teorema

de Bochner). O Teorema de Khinchin establece que unha función real continua C(u) definida

sobre Rd é unha función de covarianzas (un covariograma) se e só se é a Transformada de Fourier

Inversa dunha medida acotada, simétrica e positiva F (dω). No caso d = 2:

C(u) =

∫

R2

eiu
T ωF (dω), con

∫

R2

F (dω) <∞. (5.52)

Ademais, se C(u) decae suficientemente rápido para asegurar que C ∈ L1(R2), a medida F é a

integral dunha función acotada e continua f(ω), que se coñece como a densidade espectral do

proceso. Polo tanto, a densidade espectral pódese escribir como a Transformada de Fourier da

covarianza, formando un par de Fourier:

f(ω) =
1

(2π)2

∫

R2

C(u)e−iuT ωdu, ω ∈ R
2, (5.53)

C(u) =

∫

R2

f(ω)eiu
T ωdω. (5.54)

No caso de que traballemos con procesos discretos, as integrais das fórmulas anteriores pasaŕıan

a expresarse en termos de sumatorios.

Na última sección deste caṕıtulo inclúımos unha sección na que se recollen os aspectos máis

importantes da representación espectral de campos aleatorios (e.g. Grenander (1981), Yaglom

and Yaglom (1987)), como base para os desenrolos teóricos posteriores.

Caṕıtulo 2. Técnicas espectrais para o modelado da dependencia espacial. Intro-

ducimos neste caṕıtulo o concepto de periodogram espacial, como estimador non paramétrico

da densidade espectral. Tamén facemos unha breve revisión das técnicas de estimación para a

densidade espectral, dende unha perspectiva paramétrica e non paramétrica. O caṕıtulo com-

pleméntase con algunhas consideracións sobre estimadores da densidade espectral derivados do

periodograma. No apéndice deste caṕıtulo inclúense as probas dos resultados obtidos. Por sim-

plicidade, centrarémonos no caso de procesos discretos, áında que os desenrolos correspondentes

ao caso continuo pódense atopar no Caṕıtulo 2.

O periodograma (tamén denominado densidade espectral mostral) é o estimador non paramétrico

clásico da densidade espectral. Para un proceso espacial Z observado nunha grella regular

D = {s = (s1, s2) : s1 = 0, . . . , n1 − 1, s2 = 0, . . . , n2 − 1} con N = n1n2 puntos, o periodograma
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espacial na frecuencia λ vén dado por:

I(λ) =
1

(2π)2N

∣∣∣∣∣
∑

s∈D

Z(s)e−isT λ

∣∣∣∣∣

2

, λ ∈ Π2 = [−π, π] × [−π, π]. (5.55)

O periodogram soe avaliarse no conxunto das frecuencias de Fourier bidimensionais (como xa

explicamos na Sección 1.3.1) λT
k = (λk1 , λk2):

λk1 = 2πk1
n1

, k1 = 0,±1, . . . ,±m1, onde m1 = [(n1 − 1)/2],

λk2 = 2πk2
n2

, k2 = 0,±1, . . . ,±m2, onde m2 = [(n2 − 1)/2].

O periodograma def́ınese en termos dos datos observados en (5.55), pero dado que a densidade

espectral é a Transformada de Fourier da función de covarianzas, non resultaŕıa extraño escribir

o periodograma en termos dun estimador da covarianza. Se definimos as covarianzas mostrais

como:

Ĉ(u) =
1

N

∑

s∈D(u)

Z(u)Z(s + u), (5.56)

onde D(u) = {s ∈ D; s + u ∈ D}, o periodograma pódese escribir como:

I(λ) =
1

(2π)2

∑

u∈U
C(u)e−iuT λ, (5.57)

onde u ∈ U = {(u1, u2); 1 − n1 ≤ u1 ≤ n1 − 1, 1 − n2 ≤ u2 ≤ n2 − 1}.

O periodograma é un estimador asintóticamente insesgado da densidade espectral, pero non é

consistente. A representación (5.57) utilizarase para constrúır estimadores consistentes da densi-

dade espectral, a través da suavización das covarianzas.

Neste caṕıtulo estudiamos o sesgo e a dependencia dun periodograma, no caso dun proceso

discreto, cando se fai tapering nas observacións. Tamén se propón unha clase de estimadores

consistentes do periodograma para procesos continuos. O problema destes estimadores, baseados

nun suavizado das covarianzas, é que presentan efecto-fronteira. As implicacións da selección

do núcleo de suavizado, o parámetro ventana e o espaciado entre os datos neste efecto-fronteira,

estúdianse na Sección 2.4.

A pesar da súa falta de consistencia como estimador da densidade espectral, o periodograma

(5.55) presenta unha formulación atractiva para a clase dos procesos lineais:

Z(s) =
∞∑

j=−∞

∞∑

l=−∞
ajlε(s1 − j, s2 − l),

∞∑

l=−∞
a2

jl <∞ (5.58)
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onde ε son variables aleatorias independentes e identicamente distribúıdas N(0, σ2
ε). Esta rep-

resentación non resulta excesivamente restritiva, dado que todo proceso Gaussiano estacionario

pode ser representado deste xeito. Ademais, pode tamén intrepretarse como unha aproximación

discreta aos procesos lineais continuous. O periodograma dunha realización deste proceso pódese

escribir en termos do periodograma do proceso de innovación ε. En consecuencia:

I(λk) = f(λk)Vk +Rn(λk) (5.59)

onde as Vk’s son independentes e identicamente distribúıdas Exp(1) (véxase Brockwell e Davis

(1991). Se aplicamos logaritmos en (5.59) teremos

Yk = m(λk) + zk + rk (5.60)

onde m = log f e o termo residual

rk = log

[
1 +

Rn(λk)

f(λk)Vk

]
. (5.61)

As variables zk son independentes e identicamente distribúıdas Gum(0, 1). Nos desenrolos pos-

teriores sacaremos vantaxe das representacións (5.59) e (5.60) do periodograma espacial e do seu

logaritmo, tanto para a proposta de métodos de simulación como para a construción de contrastes

de bondade de axuste para a densidade espectral no espazo.

Caṕıtulo 3. Simulación de estruturas de dependencia espacial. Neste caṕıtulo, revisamos

o método clásico de simulación espectral para procesos espaciais, o denominado Método Integral

de Fourier (véxase Pardo-Igúzquiza e Chica-Olmo (1993) e Chilés e Delfiner (1999)) e propoñemos

unha modificación do mesmo que presenta un mellor comportamento.

A nosa proposta está inspirada na representación do periodograma como resposta nun modelo

de regresión multiplicativo (5.59), onde a densidade espectral aparece perturbada por unha vari-

able exponencial de media unidade. Os algoritmos do Método Integral de Fourier e do Método

Integral de Fourier Modificado pódense atopar na Sección 3.2. As modificacións propostas sobre

o Método Integral de Fourier tamén abranguen o caso de xeneración de realizacións de procesos

continuos.

A través dun estudo de simulación, amósase o bo funcionamente do Método Integral de Fourier

Modificado, tanto no caso de procesos discretos como continuos. Tamén se pon te manifesto que

a extensión directa de métodos de simulación no contexto das series temporais pode dar lugar a

resultados pouco satisfactorios.
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Caṕıtulo 4. Contrastes de bondade de axuste para a densidade espectral espacial.

Neste caṕıtulo propóñense dúas técnicas de bondade de axuste para a densidade espectral. Neste

eido, podemos plantexar un contraste de hipóteses que teña como hipótese nula que a densidade

espectral dun proceso da forma (5.58) pertence a unha certa familia paramétrica:

H0 : f ∈ Fθ = {fθ; θ ∈ Θ},
Ha : f /∈ Fθ = {fθ; θ ∈ Θ}. (5.62)

Ou ben, considerando o logaritmo da densidade espectral, o problema pódese escribir como

H̃0 : m ∈ Mθ = {mθ; θ ∈ Θ},
H̃a : m /∈ Mθ = {mθ; θ ∈ Θ}. (5.63)

Baixo algunhas condicións de regularidade nos coeficientes de (5.58), proponse o seguinte es-

tat́ıstico de contraste (de xeito similar a Paparoditis (2000), para series de tempo):

TP = N |H|1/4

∫

Π2

(
1

N |H|1/2

∑

k

K(H−1/2(λ − λk))

(
I(λ)

fθ̂(λ)
− 1

))2

dλ, (5.64)

onde
∑

k denota a suma sobre tódalas frecuencias de Fourier frequencies e θ̂ é o estimador de

Whittle (véxase Sección 2.5). N denota o número de datos, K é un kernel bivariante e H é a

matriz ventana. Os resultados obtidos sobre este estatśtico son os seguintes:

Teorema 1. Baixo as suposicións (1)-(4) da Sección 4.3.1 e baixo a hipótese nula H0 : fθ ∈ Fθ

TP − µH → N(0, τ2) en distribución ,

onde µH e τ2 veñen dadas por:

µH = |H|−1/4

∫
K2(u)du, (5.65)

τ2 =
1

2π2

∫

2Π2

(∫

Π2

K(u)K(u + v)du

)2

dv, 2Π2 = [−2π, 2π] × [−2π, 2π]. (5.66)

Teorema 2. Consideremos o problema H0 : f ∈ Fθ vs. Ha : f ∈ F − Fθ. Baixo as hipóteses

(1)-(3) e (5) da Sección 4.3.1, cando n1, n2 → ∞:

N−1|H|−1/4TP →
∫

Π2

(
f(λ)

fθ∗(λ)
− 1

)2

dλ

en probabilidade.
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A segunda proposta para un contraste (similar a Fan and Zhang (2004) para o caso unidimen-

sional) baséase na expresión (2.15) para o logaritmo do periodograma. O estat́ıstico de contraste

proposto é un estat́ıstico de razón de verosimilitudes xeneralizado:

TLK =
∑

k

[
eYk−mθ̂(λk) +mθ̂(λk) − eYk−m̂LK(λk) − m̂LK(λk)

]
, (5.67)

onde m̂LK é un estimador non-paramétrico da log-densidade espectral (Sección 2.5.1).

Teorema 3. Baixo as hipóteses (1)-(4) da Sección 4.3, se N (ζ−1)/ζ |H|1/2 ≥ c logδ N , para unha

constante c e unha δ > (ζ − 1)/(ζ − 2)), ζ > 2 supoñendo que se estamos baixo H0,

σ−1(TLK − µH + bH) → N(0, 1),

onde µH , bH e σ2 son:

µH =
4π2

|H|1/2

(
K(0) − 1

2

∫
K2(s)ds

)
, (5.68)

bH =
∑

k

−|H|2
8fθ(λk)

∫ ∫
sTHmθ

(λk)s · (s + u)THmθ
(λk)(s + u)K(s)K(s + u)dsdu, (5.69)

σ2 =
4π2

|H|1/2

∫
(2K(s) −K ∗K(s))2 ds, (5.70)

e Hmθ
(λk) é a matriz Hessiana de mθ.

Dado que a velocidade de converxencia das distribucións de TP e TLK ao seu ĺımite Gaussiano

é lenta, propoñemos unha forma alternativa de estimar as distribucións dos estat́ısticos de con-

traste, baixo a hipótese nula, a través dunha aproximación Monte Carlo.

O comportamento dos dous tests ilústrase mediante un estudo de simulación e a aplicación a

datos reais. No apéndice deste caṕıtulo inclúense as probas dos resultados obtidos.

Caṕıtulo 5. Comparación de estruturas de dependencia. Este último caṕıtulo ded́ıcase a

un test para comparar dúas ou máis densidades espectrais. De xeito equivalente, estase a propoñer

un test para ver se a estrutura de dependencia dun conxunto de observacións vaŕıa ao longo do

tempo. Este test está baseado nunha distancia L2, como en Vilar-Fernández e González-Manteiga

(2004), para a comparación de curvas de regresión.

O noso obxectivo é contrastar se as densidades espectrais de varias observacións dun mesmo

proceso (ou de procesos distintos) son a mesma. De xeito equivalente, en termos da log-densidade

espectral, o contraste pode formularse como:

H0 : m1 = . . . = mL,

Ha : ml 6= mj , para algún l 6= j.
(5.71)
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Neste contexto, a comparación pódese facer a través de estimadores non-paramétricos da log-

densidade espectral, da forma:

m̂l(λk) =
∑

i

W l
i (λk)Y l

i , (5.72)

onde os pesos W l
i pódense definir como pesos de Gasser-Muller, de Priestley-Chao ou locais-lineais.

No noso contexto, os puntos do deseño son fixos (son as frecuencias de Fourier), polo que estes

pesos son asintóticamente equivalentes. O estat́ıstico de contraste proposto será:

Q̂ =
(2π)2

N

L∑

l=2

l−1∑

j=1

∑

k

(
m̂l(λk) − m̂j(λk)

)2
ω(λk). (5.73)

No caso máis sinxelo de comparar dúas densidades espectrais, obtemos os seguintes resultados:

Teorema 4. Supoñamos que se satisfacen as condicións (A1)-(A5) da Sección 5.2.1. Entón,

baixo a hipótese nula H0 : m1 = m2 temos que:

√
N |H|1/2

(
Q̂− 1

12N |H|1/2
CKIω

)
→ N(0, σ2

Q),

en distribución, con

CK =

∫
K(u)du, Iω =

∫
ω(v)dv e a varianza asintótica é

σ2
Q =

1

18

∫
(K ∗K)2(u)du

∫
ω(v)dv,

onde ∗ denota o operador de convolución.

Tamén neste contexto de comparar dúas estrutras de dependencia, consideremos que a hipótese

nula é false e supoñamos que:

m1(λ) −m2(λ) = CNp(λ), (5.74)

onde p(λ) é unha función determińıstica non nula.

Teorema 5. Supoñamos que se satisfacen as condicións (A1)-(A5) da Sección 5.2.1. Entón, se

(5.74) é certa, temos que:

√
N |H|1/2

(
Q̂− 1

12N |H|1/2
CKIω

)
→ N

(∫
p2(v)ω(v)dv, σ2

Q

)
,

en distribución, onde CK , Iω e σ2
Q son como no teorema anterior, e con C2

N = (N2|H|1/2)−1/2.

Para a aplicación deste contraste na práctica, propóense dous algoritmos. O primeiro deles

utiĺızase cando temos algunha infomación sobre a forma paramétrica das densidades espectrais, e
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o segundo cando non dispoñemos de información ningunha a priori. Tamén inclúımos algúns re-

sultados de simulación e a aplicación a datos reais. Os desenrolos teóricos achéganse nun apéndice.
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