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Abstract
When digestates from anaerobic digestion of crop residues are added to soil, a considerable body of
information indicates that soil organic carbon (SOC) levels are comparable to those when crop
residues are left in the field. This occurs although the amount of digestate added to soil is
diminished by digestion and implies that digestion increases the proportion of carbon inputs
stabilized as SOC. Here we examine the likelihood and implications of these features being
manifested for soil application of high lignin-fermentation byproduct (HLFB) from liquid biofuel
production. We show that steady-state SOC levels are much less sensitive to crop residue removal
with HLFB return than without it, and provide an example supporting the feasibility of foregoing
process energy and coproduct revenue when HLFB is returned to the soil. Informed by this review
and analysis, we expect with moderate confidence that long-term SOC levels for soils amended
with HLFB from some liquid cellulosic biofuel processes will not be substantially lower than those
occurring when crop residues are left in the field. We have high confidence that the economically
optimum rate of fertilizer nitrogen (N) application and N2O emissions will be lower at most sites
for HLFB return to the soil than if crop residues were left in the field. We estimate that the per
hectare N demand for processing crop residues to liquid biofuels is about a third of the per hectare
demand for crop production, giving rise to an opportunity to use N twice and thereby realize cost
savings and environmental benefits. These observations support but do not prove the hypothesis
that a ‘win-win’ is possible wherein large amounts of liquid biofuel feedstock can be obtained from
crop residues while improving the economics and sustainability of food and feed production. A
research agenda aimed at exploring and testing this hypothesis is offered.

1. Introduction

Liquid fuels produced from cellulosic biomass fea-
ture prominently in many future energy scenarios,

primarily because of their potential to enable car-
bon (C) neutral or C negative heavy duty trans-
port (Fulton et al 2015, Brown and Le Feuvre 2017,
van Vuuren et al 2018, Field et al 2020, Rogelj
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et al 2022). In addition, there has been an increased
focus on ecosystem C stocks as both a tool and a
risk for climate stabilization (Lynd 2017, Ramos and
Pressinott 2022). Although a liquid cellulosic bio-
fuel industry was slow to emerge over the last dec-
ade (Lynd 2017), replication of profitable industrial
facilities has recently begun in Brazil (Ramos and
Pressinott 2022).

Crop residues are important feedstocks in many
scenarios for production of liquid fuels from cellu-
losic biomass (Creutzig et al 2015, Panoutsou et al
2016, U.S. Department of Energy 2016). While use of
crop residues for biofuel production avoids concerns
related to dedicated use of land for production of
bioenergy feedstocks, it potentially affects soil organic
carbon (SOC) cycling present in the underlying crop-
land, as well as nutrient recycling, erosion prevention,
and other ecosystem services. Theworld’s agricultural
soils have already experienced a median loss of 16%
of SOC (25%–61% for a depth of ⩽1 m) relative to
levels before widespread intensive agriculture, repres-
enting a total emission to the atmosphere of about
116 Pg C, equivalent to a quarter of cumulative emis-
sions from fossil fuel combustion to date (Sanderman
et al 2017, Friedlingstein et al 2022). Indiscriminate
residue removal thus gives rise to concerns related
to maintaining soil fertility ranging from caution to
alarmwith SOC a particular concern (Lal 2004, Cruse
and Herndl 2009, Lal and Stewart 2010, Liska et al
2014, Johnson 2019).

SOC is the largest reservoir of carbon in the ter-
restrial biosphere (Smith 2012, Jackson et al 2017), is
a key determinant of soil fertility (Lal 2004), and has
considerable monetized and non-monetized value to
society (Lal 2014). It is widely accepted that most
persistent SOC has undergone transformations by
soil microbes and interacts physically and chemic-
ally with soil minerals instead of persisting without
transformation due to inherent chemical recalcit-
rance (Lehmann andKleber 2015, Basile-Doelsch et al
2020). Physical protection within soil aggregates and
sorption/complexing to soil minerals or as organo-
metallic compounds are important determinants of
SOC storage, and such organic matter persists sig-
nificantly longer than free particulate SOC (Cotrufo
et al 2013,Medina et al 2015,Dignac et al 2017, Basile-
Doelsch et al 2020, Heckman et al 2022). Microbial
necromass (dead microorganisms) is a key compon-
ent of long-lived soil organic matter (SOM) (Cotrufo
et al 2013, Mazzilli et al 2014, Liang et al 2019,
Buckeridge et al 2020, Cui et al 2020,Wang et al 2021),
and there is evidence that microbial carbon use effi-
ciency is a major determinant of SOC storage (Tao
et al 2023). Below-ground processes involving roots,
their exudates, and associated microbiota appear to
contribute disproportionately to SOC compared to
above-ground biomass (Mazzilli et al 2014, Jackson

et al 2017). Considering the importance of micro-
bial transformation, necromass, root inputs, and geo-
chemical characteristics, a strong argument has been
made that SOC is an ecosystem property determined
by complex interactions between soil’s biotic and abi-
otic components (Jenkinson et al 1990, Schmidt et al
2011, Dungait et al 2012, Lehmann et al 2020).

Mechanistic modeling of SOC transformation
is a work in progress with significant outstanding
uncertainties (Sulman et al 2018, Basile-Doelsch et al
2020, Hayes and Swift 2020, Lehmann et al 2020,
Nyang’au et al 2022, Noë et al 2023). Reasonable pre-
dictive accuracy is generally thought to be achieved
frommodels which divide organic matter into slowly
and quickly mineralized fractions based on empirical
measurements and fitted parameters, provided that
models are applied to systems and conditions sim-
ilar to those used for calibration. The extent to which
lignin contributes to, or is correlatedwith, SOC form-
ation is particularly unclear and indeed contentious
(Hall et al 2020, Hayes and Swift 2020, Huang et al
2023). Hall et al (2020) observe that that lignin can
lag, lead, or limit the decomposition of litter and SOC.
Work of Huang, Hall and colleagues aims to reconcile
old and new ideas about the role of lignin in SOC and
implicates a growing list of factors impactingwhich of
these outcomes occurs. Such factors includemicrobe-
iron interactions (Liao et al 2022), solid-phase parti-
tioning (Huang et al 2019), oxygen and redox fluctu-
ations (Huang et al 2021, Huang et al 2019, Hall et al
2020), soil geochemical characteristics, and fungal
communities (Huang et al 2023).

Anaerobic digestion (AD) of crop residues and
other lignocellulosic residues to biogas is widely prac-
ticed, often with mixtures with manure and other
organic material, resulting in solid process residues
commonly referred to as ‘digestates’. Land applica-
tion of digestates is the most common fate of digest-
ates (Arthurson 2009, Lukehurst et al 2010, Möller
and Müller 2012, Dale et al 2020, Pastorel et al
2021) and has received considerable analysis (Fuchs
et al 2008, Marcato et al 2009, Smith et al 2014a,
Béghin-Tanneau et al 2019, Barłóg et al 2020, Nielsen
et al 2020). Biologically mediated production of
liquid cellulosic biofuels also results in a solid post-
fermentation residue termed ‘high lignin ferment-
ation byproduct’ (HLFB) by Johnson et al (2007).
The yield and composition of HLFB from cellulosic
biomass-to-liquid fuel processes are different from
the yield and composition of AD digestates and also
vary among alternative liquid biofuel processes. In
contrast to AD of crop residues, for which return
of digestates to agricultural fields is the norm, most
studies envisioning biological production of liquid
cellulosic biofuels assume that HLFB is burned to
provide process energy and in many cases exported
electricity (Humbird et al 2011) as practiced in Brazil
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(Chandel et al 2019). Other studies considers value-
added coproducts derived fromHLFB (Schutyser et al
2018, Liu et al 2019). Return of HLFB to the soil
has been considered at a conceptual level (Johnson
et al 2004, 2007, Johnson 2019) and in a few simula-
tion studies (Pourhashem et al 2013, Adler et al 2015,
Lugato and Jones 2015), but lab data are too scant
to be conclusive and to our knowledge field studies
examining HLFB return have not been reported.

Here we assess soil application of HLFB from bio-
logical production of liquid cellulosic biofuels bring-
ing to bear expertise and insights from three often
disparate fields: AD, liquid cellulosic biofuel produc-
tion, and SOM transformation. Our objective is to
explore the possibility that returning HLFB to the
field can enable conversion of crop residues to liquid
biofuels from land already devoted to food produc-
tion with at least neutral and ideally positive impacts
on the economics and sustainability of agriculture.
Nitrogen supply and biological transformation are
both a driver and consequence of SOC transforma-
tion as well as a key factor impacting agricultural sus-
tainability and economics. Impacts of crop residue
removal and HLFB return are thus considered with
respect to N management, including N2O emissions,
as well as SOC. Section 2 provides an overview of crop
residues, including fate and ecosystem services, pro-
duction and utilization, and accessibility and sustain-
able removal levels. The carbon balance and compos-
ition of solid residues following biological processing
of lignocellulose is considered in section 3. Impacts of
adding organic matter to soil with and without biolo-
gical processing are considered with respect to SOC
in section 4, including development of an analytical
framework and sensitivity analysis, and with respect
to N in section 5. Section 6 articulates the hypothesis
that a ‘win-win’ is possible wherein large amounts of
liquid biofuel feedstock can be obtained from crop
residues while improving the economics and sustain-
ability of food and feed production. A research agenda
aimed at exploring and testing this hypothesis is also
offered.

2. Crop residue overview

2.1. Fate and ecosystem services
In soils with regular (e.g. yearly) addition of organic
matter, SOC is a mixture of chemically heterogenous
compounds including recently added plant material,
some of which can mineralize rapidly, and long-lived
organic components that can have residence times
of centuries and even millennia (Basile-Doelsch et al
2020, Shi et al 2020, and earlier references therein).
When crop residues are left on the soil surface or
incorporated into the soil after crop harvest, a large
fraction is quickly decomposed. For example, more
than 80%of the corn stover left on the land is returned
to the atmosphere within 2 years (Buyanovsky and

Wagner 1996, Mazzilli et al 2014), and more than
60% of sugar cane straw left on the soil surface is
decomposed within a year (Cherubin et al 2019).
Liang et al (2019) report that microbial necromass
makes up over half of the SOC in temperate agri-
cultural and grassland soils, and Lugato et al (2021)
report that mineral-associated organic matter origin-
ating primarily as a result of microbial processing of
plant inputs represents 70% or more of total SOC.
Basile-Doelsch et al (2020) estimate that dead organic
mattermakes up 95%of total SOC, with 60%–99%of
this frommicroorganisms and 1%–40% being partic-
ulate organic matter.

Crop residues left in the agricultural field provide
ecosystem services including decreased wind and
water erosion, maintenance of SOC (which increases
water and nutrient retention), weed control, and
moderation of soil temperature (Lal 2004, 2014,
Wilhelm et al 2010, Adler et al 2015, Cherubin et al
2018). They also provide a source of nutrients which
otherwise need to be replaced. For example, Karlen
et al (2014) found that moderate corn stover harvest
(3.9 Mg ha−1) removed 24, 2.7, and 31 kg ha−1 for
N, P, and K respectively, and that removals increased
with increasing stover harvest. Cherubin et al (2019)
found that by harvesting 12 Mg ha−1 of sugarcane
straw, the potential N, P, and K removal was 69, 7,
and 92 kg ha−1, respectively, representing a nutri-
ent (NPK) replacement cost of US$ 90.00 ha−1 (US$
7.60 perMg of removed straw). In Asia, where 90% of
the world’s rice is produced, rice straw contains about
80, 40, and 30% of the potassium (K), N, and phos-
phorus (P), respectively, taken up by rice (Chivenge
et al 2020). Soil incorporation of straw can reduce
the fertilizer requirement of the subsequent crop and
increase SOC, but is not widely practiced currently
(Chivenge et al 2020). The SOC benefits of rice straw
return to the field or paddy may be outweighed, by
over 10-fold in some cases, by increased CH4 emis-
sions when applied under flooded conditions due to
anaerobic decomposition (Allen et al 2020).

2.2. Production and utilization
Inedible, above-ground parts of annual crops are pro-
duced with non-food to food ratios generally in the
range of 1:1–1:1.5 for corn, wheat, barley, rice, oats,
rye, sorghum, and millet, and 0.25:1 for sugarcane
(Lal 1995, Scarlat et al 2010), although these ratios are
not fixed (Kemanian et al 2007). Global production
of such crop residues in 2013 was estimated at about
5 billion tons (Cherubin et al 2018), corresponding
to about 85 EJ of primary energy based on a repres-
entative heating value of 17 MJ kg−1. Cherubin et al
(2018) estimate that global crop residue production
increased by 33% in the decade from 2003 to 2013.
If production were to continue to increase at this rate
in the subsequent decade, global production in 2023
would be about 113 EJ. The estimates of crop residues
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by Cherubin et al (2018) align well with, and indeed
consider, the older estimate of 70 EJ in 2001 by Lal
(2005). Most recently, Smith et al (2021) estimated
the potential energy provision from crop residues
produced in 2018 to be approximately 107 EJ. Among
annual and semi-annual field crops, corn, wheat, rice,
and sugar cane are produced in the largest amounts,
occupy the largest land area, and produce the largest
amounts of crop residues. According to data compiled
by Cherubin et al (2018), these four crops account for
76% of global crop residue production in 2013, with
Asia producing 47% of total crop resides, America
29%, Africa 6%, and Oceana 2%.

A portion of crop residues is used for fodder,
household fuel, construction material, and animal
bedding. Perlack and Stokes (U.S. Department of
Energy 2011) estimate that approximately 15% of
crop residues available at the farm gate for $60/ton
will be used for purposes other than bioenergy in the
United States in 2030. In Southeast Asia, 30%–40%
of total rice straw production is used to feed rumin-
ants (Aquino et al 2020). However, the low digestib-
ility of rice straw leads to high yield-scaled methane
(CH4) emissions compared to more high-quality fod-
der, such as cowpea straw (Allen et al 2020), and use of
rice straw as fodder has been shown to increase global
warming potential by 13% compared to straw burn-
ing (Launio et al 2016).

A further fraction of crop residues is burned in
the field, negating any contribution to SOC and lead-
ing to loss of N and P (Van Hung et al 2020). Lin
and Begho (2022) estimate that between 2000 and
2014 a third of crop residues from rice, wheat, maize,
and sugar cane was burned in the field. Local frac-
tions of crops residues burned can be much higher,
for example 85% of rice straw in the Baja California
region of Mexico (Montero et al 2018). The global
inventory of Cassou (2018) found that the mass of
crop residues burned increased between 1992 and
2012 in ten out of ten regions examined, is expec-
ted to remain at about 2012 levels through 2030;
China, India, and the United States are the top burn-
ers of crop residues, followed by Brazil, Indonesia,
and the Russian Federation. Open-field burning of
rice straw in South and Southeast Asia is becoming
more widespread because of labor shortages, greater
mechanization, and increased intensification of crop-
ping systems (Van Hung et al 2020). The widespread
burning of crop residues is a key factor contributing
to poor air quality, with Nepal, Pakistan, India, and
Bangladesh being the most affected (Lin and Begho
2022). Diverting these residues for bioenergy pur-
poses would not compete with other markets and
would produce air quality benefits.

2.3. Accessibility and sustainable removal levels
The quantity of crop residues that can be practically
accessed will be less than the total produced due to

multiple factors, including avoidance of ecologically
sensitive sites, slope and other terrain limitations,
inefficiencies in biomass collection and handling, and
availability in quantities sufficient to support a con-
version facility with a reasonable feedstock catch-
ment area (Williams et al 2015, U.S. Department
of Energy 2016). Additional factors are expected to
constrain feasible residue supply in the near term
with decreasing impact over time if an industry
were to develop. These include harvesting equipment,
storage and transport infrastructure, seasonal labor
availability, and operational considerations reflect-
ing near-term technical challenges for harvesting vari-
able amounts of available residue at field and subfield
levels (Huggins et al 2014, U.S. Department of Energy
2016).

Comprehensive studies and meta-analyses sup-
port transient accrual of SOC over time when 100%
of crop residues are returned to the soil for corn (Xu
et al 2019), sugar cane ( Sousa Junior et al 2018), and
rice (Chivenge et al 2020), as well as maize and wheat
double crops (Zhao et al 2018). Thus, in most sys-
tems some fraction of crop residues can be harvested
while maintaining SOC at present-day levels. When
100% of crop residues are removed, net loss of SOC
is observed for all these crops except rice (Chivenge
et al 2020). A particular concern associated with the
harvest of annual crop residues is loss of SOC due to
decreased inputs and soil erosion (Nelson et al 2004,
Wilhelm et al 2007, Adler et al 2015, Johnson 2019).
For continuous corn,Wilhelm et al (2007) found that
the retention of corn stover needed to avoid SOC loss
was 2.4 times greater than required retention to avoid
water erosion for moldboard plow tillage and this
increased to 6.2 times greater for no-till or conser-
vation tillage. For corn-soybean rotations, the corres-
ponding figures were 4.5-fold an 8-fold, respectively.
While erosion control is a critical constraint for some
sites, the literature on allowable crop residue removal
for biofuel production focuses primarily on SOC, and
we do so here as well.

There is a large body of work aimed at estimat-
ing the fraction of above-ground crop residues that
can be sustainably removed to produce liquid cellu-
losic biofuel feedstocks. The vast majority of studies
addressing this topic, including all references cited in
this section, do not consider the possibility of return-
ingHLFB to the soil. For corn grown in temperate cli-
mates, retention of about 6Mg ha−1 of above-ground
residues are estimated to be necessary to maintain
SOC and avoid erosion (Johnson et al 2014), cor-
responding to about 50% removal based on current
above-ground corn yields in the US. A series of stud-
ies by the US Departments of Energy and Agriculture
estimate the sustainable corn stover resource based
on maintaining SOC and crop yields and minimiz-
ing erosion at between 150 and 200 × 106 Mg yr−1,
corresponding to half to two-thirds of total stover
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production (U.S. Department of Energy 2011, 2016,
Muth et al 2013, Bonner et al 2014). Most of these
studies assume changes to current practice, such as
reduced tillage or cover crops, that may compensate
for the SOC loss that would occur due to crop residue
removal in the absence of such practices. In a study of
Southern Sweden, Björnsson and Prade (2021) found
that intermediate crops cultivated after harvest of cer-
eals and before the next crop increased SOM at a rate
more than 10 times higher than the loss of SOM from
removing restrictions on crop residue removal, and
that growing such intermediate crops increased the
availability of removable straw by 2.5-fold. For sugar
cane production in Brazil, return of 6–7 Mg ha−1

of sugar cane straw, representing approximately 50%
removal, has been recommended based on an extens-
ive series of studies (Carvalho et al 2017, Vasconcelos
et al 2022). Since the above-ground yields of energy
cane are about 3-fold higher than sugarcane (Leal
et al 2013, Junqueira et al 2017), it is likely that
a lower fraction of energy cane straw needs to be
returned to the field. However, this has not been veri-
fied experimentally.

Reviewing the literature in 2021, Battaglia et al
(2021) find that negative impacts of crop residue
removal on SOC are less evident for wheat than for
corn. Inventories of crop residues in the EU, with
wheat the largest contributor, recommend that half
to two-thirds be retained in the field (Scarlat et al
2010, Thorenz et al 2018). In their regional analysis of
Southern Sweden, Björnsson and Prade (2021) sug-
gest that high levels of retained crop residues are
well-intended but inefficient strategies for SOC pre-
servation and may hinder more efficient measures
involving cover crops and conversion of crop residues
to chemicals and fuels. For all feedstocks, there is
broad agreement that site-specific factors are import-
ant to consider when determining the fraction of crop
residues that can be sustainably harvested (Meki et al
2011, Cherubin et al 2018). For example, TenelTenelli
et al (2021) recommend that sugarcane straw not
be removed from sandy soils. Tarkalson et al (2009)
point out that the allowable fraction of harvestable
residues increases with increasing precipitation and
yield for wheat and barley, and this is likely the
case for other cereals as well. Allowable or recom-
mended fractions of crop residue removal will likely
decrease in response to changes in local conditions
that accelerate microbial decomposition of agricul-
tural residues and SOC (Andriulo et al 1999, Knorr
et al 2005), but will likely increase in response to con-
tinued yield increases.

While concern over removal of crop residues has
often been expressed and merits close attention, it is
also the case that excessive crop residues are prob-
lematic under some circumstances and that par-
tial removal of crop can be accompanied by agro-
nomic benefits. Partial harvest has been proposed

for mitigation of negative impacts of high levels of
crop residues (Coulter and Nafziger 2008), provid-
ing an alternative to increased tillage intensity (Adler
et al 2015, Vanhie et al 2015). Removal of crop
residues appears to be an effective way to avoid yield
losses from adoption of no-till (NT) management
in many settings (Vyn et al 1998, Karlen et al 2014,
Ogle et al 2019). An accepted means for reducing
erosion compared to conventional tillage (McGregor
and Greer 1982, Garcı́a-Préchac et al 2004, Singh
et al 2009), NT increases SOC at shallow depths
although not necessarily in the entire soil profile
compared with tilled soils (Baker et al 2007, Du
et al 2017, Cai et al 2022). Sindelar et al (2015)
observe that ‘stover removal in continuous corn sys-
tems has been shown to have short-term agronomic
advantages like increased plant emergence, greater
early-season growth, and, subsequently, greater grain
production. However, adverse effects of corn stover
removal on soil and environmental properties such
as SOC declines, expedited nutrient removal, and
greater susceptibility to soil erosion are also docu-
mented.’ Similar considerations apply to sugarcane
straw, for which Melo et al (2020) found that moder-
ate straw removal resulted in higher per hectare root
mass and stalk production compared to both total
straw removal and no straw removal.

3. Carbon balance and solid residue
composition following biological
processing of lignocellulosic biomass

A general C balance for biological conversion of agri-
cultural residues into an organic biofuel is:

YCBiofuel +YCCO2 +YCR = 1 (1)

where YCBiofuel, Y
C
CO2, and Y

C
R are the respective dimen-

sionless carbon-based yields of biofuel (e.g methane
or a liquid biofuel such as ethanol), carbon dioxide
(CO2), and unreacted solid process residues (digest-
ate in the case of AD, HLFB in the case of liquid bio-
fuel production).

Because separation of biogas from fermentation
broth occurs spontaneously and separation of liquid
biofuels does not, the authors observe that there
is considerably more economic incentive to achieve
high carbohydrate solubilization for liquid cellulosic
biofuel production than for AD. For the same feed-
stock, the economically optimal fraction of carbo-
hydrate solubilizedwill thus generally be substantially
higher for liquid biofuel production than for AD, cor-
responding to a higher value of YCR for AD than for
liquid biofuel production.Whereas YCR is often repor-
ted for AD, fractional carbohydrate solubilization is
more commonly reported for liquid biofuel produc-
tion. These two parameters can however be inter-
converted for a specified feedstock composition with
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assumptions about the biodegradability of various
feedstock fractions as developed in the supplemental
material.

Based on data from hundreds of farm-scale
digesters receiving a mixture of corn stover, cover
crops, and manure, a representative material balance
developed by the Italian Biogas Consortium features
47% of the fed C remaining in the solid digestate
applied to the field. Li et al (2016) report solids loss
of 49% for AD of corn stover, and 51% of rice straw
and wheat straw. Approximately 50% feedstock C
loss after attack by anaerobic microorganisms corres-
ponds to carbohydrate solubilization of about 65%
(supplemental material) as seen by Liang et al (2018)
for AD of early season switchgrass and Kubis et al
(2022) for corn stover utilization by defined ther-
mophilic cultures. For ethanol production from corn
stover, the fraction of feedstock C remaining as HLFB
following biological conversion is 32.7% in the design
of Humbird et al (2011) featuring thermochemical
pretreatment and added enzymes and 37.3% for the
design of Kubis and Lynd (2023) featuring consolid-
ated bioprocessing with cotreatment. The studies of
bothHumbird et al (2011) andKubis and Lynd (2023)
entail about 90% solubilization of non-lignin struc-
tural components. For recalcitrant crop residues, we
take 0.5 to be a representative value of YCR for AD and
0.35 to be a representative value of YCR for liquid bio-
fuel production, corresponding to about 65% carbo-
hydrate solubilization for AD and 90% carbohydrate
solubilization for liquid biofuel production. Lower
values of YCR are anticipated for more easily digested
feedstocks.

Processes for conversion of cellulosic biomass
to liquid biofuels are still under development, with
many alternatives being considered. The composi-
tion and properties of HLFB have seldom been repor-
ted in the literature and can be expected to vary
substantially depending on the conversion process
and, likely to a lesser extent, the feedstock. For the
many biomass pretreatment processes that feature
low pH—including processes that involve dilute sul-
furic acid, SO2, steam, or liquid hot water—less
than 20% of feedstock lignin is removed and resid-
ual solids after biological processing are enriched in
lignin (Wyman et al 2011) although these processes
cause lignin to agglomerate and be chemically altered
(Sun et al 2015). Lignin from emergent conversion
processes featuringmechanical disruption during fer-
mentation in lieu of thermochemical pretreatment
does not undergo appreciable dissolution or reaction
(Balch et al 2017). For alkaline pretreatment with
sodium hydroxide or co-solvent-enhanced lignocel-
lulosic fractionation (Bhalla et al 2019), lignin sol-
ubilization can be 85% or higher (Jung et al 2018).
Residues from biological processing of biomass after
such alkaline pretreatments contain little lignin and
are not addressed in consideration of HLFB herein.

Looking beyond pretreatment, many liquid cellulosic
biofuel conversion processes feature addition of cel-
lulase preparations having very high concentrations
of protein, deadmicrobes (necromass) and biological
oxygen demand. Given these factors, there is no basis
to assume that properties ofHLFB fromdifferent con-
version processes will be the same, and this includes
the fate of HLFB in the soil.

Notwithstanding these uncertainties, salient fea-
tures may be identified based on both understand-
ing of the processes involved and empirical data.
The predominant mechanisms of biologically medi-
ated lignin deconstruction require molecular oxy-
gen (Cagide and Castro-Sowinski 2020, Li and Zheng
2020, Cui et al 2022). Consistent with this, carbo-
hydrate is consumed and lignin is very nearly inert
for lignocellulose digestion by livestock (Van Soest
1994), AD (Li et al 2021), and liquid cellulosic biofuel
production processes that produce HLFB (Lynd et al
2022). Ranked carbohydrate mass fraction on a dry
matter basis from the same feedstock will thus gener-
ally be as-harvested feedstock > manure > digested
manure > HLFB from liquid cellulosic biofuel pro-
duction, with lignin fraction exhibiting the opposite
trends for most processes. These statements apply to
processes occurring under strictly oxygen-free condi-
tions, and do not apply to soil transformations for
which oxygen is often present and lignin recalcitrance
cannot in general be assumed.

In addition to transformation and mineralization
of many organic components of crop residues, trans-
formation of N-containing compounds also occurs
during AD and liquid biofuel production. For both
AD and liquid cellulosic biofuel production, NH3

volatilization losses are small during biological pro-
cessing in closed vessels (Schievano et al 2011, Smith
et al 2014a), nitrification does not occur without oxy-
gen (Firestone and Davidson 1989), and denitrific-
ation does not occur since NH3 is not nitrified to
nitrate (Firestone et al 1980). Near complete con-
servation of N is therefore likely for AD prior to
field application or post-digestion storage and is anti-
cipated for liquid biofuel production as well. Most
agricultural residues have a very high C:N ratio, for
example ∼80 (Humbird et al 2011) and up to 200
(Kemanian et al 2007) in the case of corn stover.
Manure has lower C:N ratios as a result of gaseous
C respiration, fermentation C losses, despite some
animal N retention as protein, and in general has
more N present than needed to support AD ormicro-
bial processes occurring in soil. AD of manure fur-
ther decreases the C:N ratio, and much of the N not
required to support growth of the anaerobic micro-
biome is mineralized to ammonium (Gutser et al
2005, Möller and Müller 2012). For liquid cellulosic
biofuel production, N is generally added to N-poor
crop residues to the level necessary to support biosyn-
thesis of the microorganismsmediating carbohydrate
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fermentation. As a result, the C:N ratio of HLFB from
liquid biofuel production can be expected with con-
fidence to be less than corn stover and greater than
manure with or without digestion. These trends are
supported by the data in table 1.

For illustrative purposes, we develop here a
process-based model applicable to either corn stover
processed via AD or via liquid biofuel production
followed by AD of liquid process residues. Results
obtained using such a model, described in detail in
the supplemental material, are presented in figure 1.
As shown therein, about 58% of the C in unpro-
cessed corn stover is structural carbohydrate, about
24% lignin, about 13% extractives, and about 6%
other structural components. At 50% of feedstock
C remaining in digestate, corresponding to about
65% carbohydrate solubilization and representative
of AD of recalcitrant crop residues as discussed above,
digestate C according to our model is 48% lignin,
41% structural carbohydrate, 3.9% non-lignin struc-
tural components, and 7.5% microbial biomass. At
90% carbohydrate solubilization, corresponding to
about 35% of the feedstock C remaining in HLFB and
representative of ethanol production from recalcit-
rant crop residues, HLFB C according to our model
is 68% lignin, 16.% structural carbohydrate, 1.6%
non-lignin structural components, and 14% micro-
bial biomass.

4. Soil organic carbon-related impacts of
adding organic matter to soil with and
without biological processing

4.1. Manure with and without anaerobic digestion
Reviewing 11 reports, at least two of which were
multi-year field studies, Möller (2015) observes that
SOC levels for soil application of manure with and
without AD are similar, and that the C losses from
biogas production during AD are compensated by
decreased C loss after field application. For example,
commenting on the comparison of digested and
undigested cattle slurry by Fouda (2011), Möller
(2015) observed that SOC accumulation was similar
although the organic C input for the undigested treat-
ment was nearly twice as high as in the AD treat-
ment. The review of Insam et al (2015) also con-
cluded that addition of digestedmanure does not neg-
atively affect SOC compared to undigested manure
applied to agricultural fields. Nyang’au et al (2022)
found that adding a second AD step prior to soil
application of digestates increased the fraction of pre-
digestion feedstock (75% cattle manure, 25% grass-
clover silage) mineralized during digestion. However,
long-term retention of predigestion feedstock carbon
increased somewhat with addition of the second AD
step, indicating that increased stabilization due to
added biological processing more than makes up for

the decreased amount of organicmatter applied to the
soil.

4.2. Agricultural residues and silage with and
without anaerobic digestion
When equal masses of digested and undigested
agricultural residues are added to soils, several labor-
atory soil incubation studies observe that digested
residues are mineralized more slowly than undiges-
ted residues, and that added digestate leads to the
formation of a higher proportion of long-lived SOC
(Marcato et al 2009, Chen et al 2012, Schouten et al
2012, Thomsen et al 2013, Smith et al 2014a, Cavalli
et al 2017, Béghin-Tanneau et al 2019, Nielsen et al
2020, Iocoli et al 2021). A few studies show increased
mineralization of agricultural residues after AD com-
pared to undigested residues (Bernal and Kirchmann
1992, Kirchmann and Bernal 1997). Positive prim-
ing appears to have been operative in the study
of Bernal and Kirchmann (1992). The 3 year field
study of Bachmann et al (2014) comparing diges-
ted and undigested maize silage found no difference
in SOM, and the 2 year field study of Erhart et al
(2014) observed equal or slightly higher SOM levels
for digested biomass compared to undigested bio-
mass. In 76 day laboratory experiments involving
crop residues from corn, sorghum, wheat, soybean,
and sunflower, Stewart et al (2015) observed that
high-lignin residues were mineralized more com-
pletely than low-lignin residues. By contrast, Nielsen
et al (2020) observed in 178 day incubations that the
extent of mineralization of five anaerobic digestates
exhibited a strong negative correlation with lignin
content, and no correlation of mineralization with
cellulose, hemicellulose, or N contents. The main
apparent difference between these studies is that the
Stewart et al study involved undigested agricultural
residues whereas the Nielsen et al study involved
digestates.

Of over a hundred references identified by
searches based on ‘anaerobic digestion’ combined
with soil carbon storage, soil carbon sequestration
and similar terms, three were found that consider the
same starting material with and without AD, nor-
malize results to biomass prior to biological con-
version, explicitly recognize the C lost to biogas
during AD, and infer long-term SOC levels from
short-term decomposition data. Results from these
three studies are summarized in table 2. Thomsen
et al (2013) evaluated the fate of C in ruminant feed
treated differently before addition to soil: no treat-
ment (feed), AD (digested feed), consumed by cattle
(feces), and consumed by cattle and AD (digested
feces). After fitting net CO2 release data to a kin-
etic model, they concluded that the retention in soil
of C over decades to centuries appears to be similar
whether the initial turnover of plant biomasses occurs
in the soil, in the digestive tract of ruminants, in an
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Figure 1. Calculated composition of solid residues from biological processing of corn stover as a function of fractional
solubilization of non-lignin structural organic matter. See text and supplemental materials for calculations. Values not in
parenthesis are percentages of unprocessed corn stover. Values in parenthesis are percentages of solid material remaining after
biological processing.

anaerobic reactor or in a combination of the latter
two. Smith et al (2014a) used the Roth-C model with
parameters based on soil incubation experiments to
estimate long-term soil C levels for leaving agricul-
tural residues in the field compared to various crop
residue management strategies including AD. Soil
C levels for AD with return of residual bioslurry to
the soil were found to be about the same as leaving
residues in the field without harvest, whereas removal
of crop residues without returning bioslurry resulted
in declining SOC. Béghin-Tanneau et al (2019) evalu-
ated mineralization of digested and undigested maize
silage as distinct from organic matter present in the
soil prior to soil amendment. After a 178 day soil
incubation, 91% of the C present in the undigested
maize silage was mineralized leaving 9% in the soil.
For AD, 64% of the C present in maize silage prior
to digestion was lost to biogas and an additional 15%
was lost during soil incubation, leaving 21% in the
soil. For undigested silage, a positive priming effect
led to net loss of soil C equal to 4% of the addedmaize

silage C—that is, lower SOC than without addition of
maize silage. For digested silage, a negative priming
effect increased the net increase in SOC to 27% of
the added maize silage carbon. Iocoli et al (2021) also
observed that application of digestate was accompan-
ied by a negative priming effect and resulted in net
soil C immobilization. Allowing for the loss of over
50% of feed C during AD, estimated SOC levels at the
longest times considered are greater with AD than
without it for two of the three studies considered in
table 2, and are about the same for the third study. It
may be noted that the C loss observed during AD of
the feeds considered in table 2 is higher than generally
observed for lignocellulose-rich agricultural residues
of the type considered for liquid biofuel production.

The experience of the Italian Biogas Consortium
(Conzorzio ItalianoBiogas, CIB), exemplifies benefits
of incorporating AD with field application of digest-
ate as part of an integrated management system. In
response to a favorable tariff for on-farm electricity
production, members of the CIB have over the last
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Figure 2. Illustration of organic matter stabilization as a result of anerobic digestion. (A) Soil inputs showing extensive loss of C
due to mineralization during AD. (B) Added crop residue C remaining as a function of time for one-time soil application of
digestate and unharvested crop residues. (C) SOC levels over time for digestate, unharvested crop residues and crop residues
removed from the field. Green, blue, and red curves are simulations using Roth C with parameters as reported in Smith et al
(2014a): 75% soil carbon lost during digestion and DPM:HUM ratio 0.14.

15 years implemented AD with soil application of
both solid process residue and liquid digestate (Dale
et al 2016, Valli et al 2017). Combining NT agri-
culture with soil application of digestate from crop
residues, crops grown during the winter on land that
was formerly left fallow, and application of manure,
CIB farmers simultaneously realize multiple benefits
compared to practices in the absence of biogas pro-
duction. These include increased per hectare maize
yields, SOC, and per hectare revenue, decreased fertil-
izer inputs, N2O emissions, and use of pesticides and
herbicides, and cumulative production of 1.4 GW of
electricity (Dale et al 2016, Valli et al 2017).

4.3. Increased long term stabilization of organic
matter following anaerobic digestion
As presented above, all empirical studies known to
us involving manure, crop residues and silage indic-
ate that soil application after AD results in SOC levels
comparable to what would occur if crop residues were
left in the field. This occurs although the amount
of C added to the soil is diminished by digestion
when crop residues are converted to biogas, e.g. by
2- to 5-fold, and implies that AD increases the effi-
ciency of long-term SOC stabilization. The mechan-
istic basis for this increased efficiency is not entirely
clear but is consistent with the general notion that
the effectiveness of microbial conversion at stabiliz-
ing organic matter is comparable whether this con-
version occurs in a digester or in soils. These trends
are illustrated in figure 2. Substantially less C is added
to the soil with AD than for crop residues left in the

field (figure 2(A)). Once added to the soil, undiges-
ted crop residues added at a given time are initially
mineralized very rapidly, eventually reaching lower
levels of SOC than more slowly mineralized digestate
(figure 2(B)). SOC levels for yearly addition of crop
residues (figure 2(C)) are similar for digestate and
undigested crop residues but aremuch lower when all
crop residues are removed.

4.4. Agricultural residues with and without liquid
cellulosic biofuel production
Soil amendment with HLFB from liquid cellulosic
biofuel production has received much less study than
soil amendment with anaerobic digestates. In initial
studies of soil application of residues from corn stover
conversion to ethanol, Johnson et al (2004), (2007)
concluded that this practice can enhance soil proper-
ties but may not negate all problems of crop residue
removal. This work did not estimate impacts of HLFB
addition on long-term SOC. Cayuela et al (2010)
observed that a second-generation biofuel byproduct
obtained from wheat straw by alkaline pretreatment
and enzymatic hydrolysis, but not fermentation, was
mineralized more rapidly than unprocessed wheat
straw. The composition of this byproduct was not
specified but is expected to be substantially delignified
and thus to be quite different from HLFB as defined
herein. Also, because wheat straw was not fermented,
theHLFBwould not be expected to containmicrobial
biomass. To our knowledge there have been no field
experiments involving soil application of HLFB from
liquid cellulosic biofuel production.
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There has been some effort devoted to model-
ing HLFB return to the soil using models that favor
SOC accumulation as the amount of lignin in the
organic input increases. In a coordinated pair of stud-
ies, Pourhashem et al (2013) and Adler et al (2015)
compared the life cycle greenhouse gas (GHG) emis-
sions and cost for three management options for
HLFB from a conversion process featuring dilute acid
pretreatment: land application, combustion at the
biorefinery to provide process energy, and combus-
tion away from the biorefinery to displace coal used
for electricity generation. Adler et al (2015) used
DayCent to model SOC dynamics over a 20 year
period for a corn-soybean rotation implemented at
three sites in the US. Simulation results projected that
SOC with corn stover harvest and return of HLFB to
the soil would be higher at all three sites compared
to a baseline with no residue harvest, and had the
added benefit of increased available N. Of the three
management options considered, Pourhashem et al
(2013) found that land application had the highest
life-cycle GHG emission abatement (g CO2e/MJ), the
lowest capital cost, and the lowest cost for GHG
abatement ($/ton CO2) assuming a value of $50 to
$100/dry ton for HLFB as a soil amendment. They
concluded further that GHG emissions associated
with trucking solid residue from the biorefinery to
the field are very small. When lignin is not burned
for power generation, Pourhashem et al (2013) found
that biogas produced from soluble process residues
was sufficient to meet the heat demands of the corn
stover-to-ethanol design of Humbird et al (2011) fea-
turing dilute acid hydrolysis, added fungal cellulase,
and yeast fermentation. Biogas is also sufficient to
provide process heat demands for ethanol produc-
tion from corn stover featuring consolidated biopro-
cessing (Kubis and Lynd 2023).

Lugato and Jones (2015) used the Century model
to estimate changes in SOC resulting from corn
stover removal for biofuel production in Europe.
Management scenarios considered stover left in the
field and incorporated into the soil by successive till-
age operations, 30% removal of corn stover, and 90%
removal of corn stover with (a) no measures to mit-
igate soil C loss, (b) a winter rye cover crop, and
(c) return of ‘biodigestate’ (synonymous with HLFB)
from cellulosic ethanol production based on dilute
acid pretreatment. At 90% corn stover removal, SOC
was projected to decrease compared to BAU with and
without biodigestate return, but biodigestate return
reduced SOC loss by 3-fold. Also at 90% corn stover
removal, biodigestate return was found to be more
effective atmitigating SOC loss than planting a winter
rye cover crop. Modeled SOC loss was comparable
for 30% corn stover removal without biodigestate
return and 90% corn stover removal with biodigest-
ate return. SOC impacts of biodgestate return were
not modeled for corn stover removal rates<90%.

4.5. Analytical framework and sensitivity analysis
Informed by the evidence and fundamental under-
standing presented above, we develop here an ana-
lytical framework and compare alternative strategies
for managing a given quantity of above-ground crop
residues via two strategies:

No Harvest (NH), in which above-ground crop
residues are left in the field;

Harvest, Process, and Return (HPR), in which
above-ground crop residues are harvested, processed
biologically, and solid byproduct (digestate or HLFB)
produced at fractional C yield Yc is returned to the
field.

We consider an unchanging yearly schedule of
organic matter input over a sufficient time for SOC
to reach steady-state, defined as constant SOC at a
fixed time of year. We first address SOC formation
from above-ground inputs only, with SOC formed
from below-ground processes included thereafter.We
assume that below ground C inputs and SOC forma-
tion are the same for the two management strategies
and thus that differences in SOC formation for these
strategies are a function of above ground residue
management only.

For the NH strategy, a parameter representing
the efficiency of SOC formation, τNH can be defined
as the steady-state SOC pool derived from decom-
position of above-ground crop residues left in the
field (SOCss

NH,a, mass C · area−1, with the a subscript
denoting above-ground) divided by the annual crop
residue C (mass C·area−1·time−1). τNH corresponds
to the mean residence time of crop residue C in the
soil under NH management and is a measure of the
efficiency of crop residue conversion into SOC

τNH =
SOCss

NH,a

Annual crop residue C
. (2)

For the HPR strategy, τHPR can be similarly
defined as the steady-state SOC pool derived from
decomposition ofHLFBor digestate added to the field
(SOCss

HPR,a) divided by the annual HLFB or digestate
C. τHPR corresponds to the mean residence time of
crop residue C in the soil under HPR management.

τHPR =
SOCss

HPR,a

Annual HLFB or digestate C
. (3)

Combining equations (2) and (3), we define Ra,
the ratio of steady state C pools derived from above-
ground inputs, as

Ra =

(
SOCss

HPR,a

SOCss
NH,a

)
=

(Annual HLFB or digestate C)

(Annual crop residue C)
· τHPR

τNH

= YCRε (4)
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where ε= τHPR
τNH

is the relative efficiency of steady-state
SOC formation from above-ground organic matter
for the HPR and NH strategies and YCR is the frac-
tion of crop residue C remaining after biological pro-
cessing as defined for equation (1) (section 3).

It follows that ε YCR
c = 1 for steady-state SOCss

HPR

to be equal to SOCss
NH, that is in order for Ra to = 1.

For example, if half the mass of agricultural residue C
remains after digestion, YCR = 0.5 and εmust = 2 for
Ra to= 1. If ε YCR > 1, then Ra > 1; if ε YCR < 1, then
Ra < 1.

As presented above in the discussion accompany-
ing table 2, literature reports involving manure, crop
residues, animal feed components and mixtures of
these indicate that long-term SOC levels are similar
for field-applied digestates produced by AD and for
crop residues left in the field. That is, Ra ≈ 1. For the
Thomsen et al (2013) study detailed in table 2, for
which YCR = 0.2, Ra = 1 implies that ε = 5. For the
Smith et al (2014a) study, for which YCR is between
0.2 and 0.31 (average 0.255) and the average steady-
state value of Ra is 1.23, the implied value of ε is 4–6.2
(average 4.83). For the Béghin-Tanneau et al (2019)
study, YCR = 0.36, Ra is > 1 over the timeframe eval-
uated, and the implied value of ε is >2.8. ε YCR ≈ 1 is
consistent with a large body of empirical results in the
AD literature as well as the observation of Thomsen
et al (2013) that long-term C retention in soil is sim-
ilar whether the initial turnover of plant biomasses
occurs in the soil, in the digestive tract of ruminants,
in an anaerobic digester or in a combination of the
latter two.

Analysis of steady-state SOC levels for the HPR
and NH strategies can be extended to consider the
contribution of below-ground biomass and a vari-
able fraction of above-ground biomass harvested, f,
as presented in box 1.

Figure 3 presentsRT, the ratio of steady-state SOC
values for the HPR and NH strategies, as a function
of f, the fraction of above-ground crop residue C har-
vested, using equation (8) with the assumption that
b:a = 1. The RT = 1 line applies to any combina-
tion of ε and YCR such that εYCR = 1 as repeatedly
observed for AD. The ε= 4.8, YCR = 0.26 line corres-
ponds to results of Smith et al (2014a). The dashed
lines are for Yc = YCR , typical of HLFB production
accompanying liquid cellulosic biofuels (section 3),
and a range of speculative values for ε from 2 to 4. For
liquid cellulosic biofuel production with YCR = 0.35,
the break-even value of ε is 2.86 with ε > 2.86 result-
ing inRT > 1, that is higher steady-state SOC forHPR
than for NR, and ε < 2.86 resulting in RT < 1. In gen-
eral, the sensitivity of SOC to crop residue removal is
substantially less with digestate or HLFB return than
without such return.

Box 1. Derivation of an equation for ( SOCss,HPR

SOCss,NH
)

considering the contribution of below- and
above-ground plantmatter and a variable frac-
tion of above-ground crop residue harvested
and processed.

The total steady state SOC for the NH strategy
considering above and below ground con-
tributions can be described by modifying
equation (2)

SOCss
NH,T = (b:a + 1)(Annual crop residue C)

∗ τNH (5)

where b:a is the ratio of below and above
ground contribution to SOC formation for the
NH strategy at steady-state and the subscript T
denotes total (above-ground+ below-ground).

For the HPR strategy with a variable fraction
of crop residue harvested, the contribution of
HLFB or digestate applied to the soil plus unhar-
vested above-ground crop residues to steady-
state SOC, SOCss

HPR,a,variable f, can be described by

SOCss
HPR, a, variable f = (Annual crop residue C)

× (f ·YCR · τHPR +(1− f) · τNH)
(6)

where the f ·YCR · ηHPR term represents SOC
from HLFB and the (1− f) · ηNH ) term repres-
ents SOC from unharvested crop residue left in
the field. With below-ground contribution to
steady-state SOC the same for the NH and HPR
strategies (see supplemental materials), the total
steady state SOC for the HPR strategy consider-
ing above and below ground contributions can
be described by

SOCss
HPR,T = (Annual crop residue C)(b:a · τNH

+f ·YCR · τHPR +(1− f) · τNH
)
.
(7)

Dividing equations (5) and (6) by ηNH and
substituting ε= ηHPR

ηNH
,

RT =

(
SOCss

HPR,T

SOCss
NH,T

)
=

b : a+ f ·YCR · ε+(1− f)

(b : a + 1)

=
b : a+ 1+ f ·

(
YCR · ε− 1

)
(b : a + 1)

. (8)

As for Ra, the condition for RT to be > 1 is
that Ycε is> 1.
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Figure 3. Steady-state SOC levels with and without HLFB return as a function of the fraction of above-ground biomass harvested
with variable values of ε. Results are calculated using equation (8) with b:a= 1. That is RT = 1+ 0.5f ·

(
YCR · ε− 1

)
. RT is the

ratio of the steady-state SOC with harvest, processing, and return (HPR):Steady-state SOC with no harvest (NH). f is the fraction
of above-ground crop residue harvested and processed. ε is the relative efficiency of steady-state SOC formation from soil-applied
organic matter for the HPR and NH strategies. YCR is the carbon yield of HLFB. See text for added details.

5. Nitrogen-related impacts of adding
organic matter to soil with and without
biological processing

5.1. Nitrogen immobilization
Biological transformation and N supply play a cent-
ral role in forming SOM from agricultural residues,
as may be inferred by observing that the 11:1 C:N
ratio typical of non-pyrogenic SOM (Khan et al 2016)
is similar to the 8:1 ratio typical of microbial bio-
mass (Sinsabaugh et al 2016) whereas the main com-
ponents of agricultural residues—cellulose, hemicel-
lulose and lignin—are N free. Most of the N in
SOC is in the form of amides (Hedges et al 2000).
Decomposition of high C:N crop residues in the soil
gives rise to substantial N uptake by microorgan-
isms, resulting in decreased availability of mineral
N for crops (Aulakh et al 2000, Sharma and Prasad
2008, Manzoni et al 2010, White et al 2014), a pro-
cess known as microbial N immobilization. Although
the N taken up by microbes is not lost to agri-
cultural fields and can become available to crops
at times subsequent to fertilizer application, crop
residue removal decreases N immobilization, and has
been observed to decrease the economically optimal
N rate (EONR) in all studies known to us which
have examined this. For continuous corn production,
Coulter andNafziger (2008) observed that corn stover
removal decreased EONR by 13% compared to no
removal. Sindelar et al (2015) reported a decrease
of >12 kg ha−1 of N for NT and >19 kg ha−1 of
N for strip tillage, and Pantoja et al (2015) repor-
ted decreases of 22 and 45 kg ha−1 for partial and
complete residue removal, respectively. These values

are significant relative to the typical application of
188 kg ha−1 of N applied to corn on average in Ohio,
Indiana, Illinois and Iowa (Xia et al 2021). Nitrogen
recovery efficiency (N uptake by plants relative to
N applied) is higher with corn stover removal than
without it at lower fertilization rates, and roughly
equal with and without stover removal at higher fer-
tilization rates (Sindelar et al 2015).Nitrogen immob-
ilization has also been observed for sugarcane crop
residue return (Vieira-Megda et al 2015, Rasche and
Sos Del Diego 2020), rice (Said-Pullicino et al 2014),
and wheat (Grahmann et al 2014). Rasche and Sos
Del Diego (2020) found N fertilizer needs to be
30 kg ha−1 higher with sugar cane straw removal as
compared to 90% of straw left on the field. However,
de Castro et al (2021) found only slight N immob-
ilization when sugarcane straw was retained in the
field.

5.2. HLFB nitrogen reuse
Microbial conversion of crop residues in liquid bio-
fuel production is expected to require addition of
N to support growth of fermentative microorgan-
isms. For liquid cellulosic biofuel production, about
8.2 kg of N is needed per Mg corn stover assum-
ing a cell yield of 0.07 g cell C/g stover C consumed
(Supplementary Materials). Nitrogen added during
liquid cellulosic biofuel production from agricultural
residues is expected to be available for uptake by
crops if HLFB were returned to agricultural fields.
As a result, we observe that there is an oppor-
tunity to use N twice, and thus for production
of liquid biofuels and row crops to share the cost
of N.
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Table 3. Effect of corn stover removal on the economically optimum N application rate and reusable N from liquid biofuel production.

Corn stover
removed

Change in the economically-
optimum N application ratea

Reusable N from liquid
biofuel production

% kg ha −1 (% typical
application)b

kg ha −1 (% typical
application)a.c

50 − 22 (−12) 45 (24)
75 − 45 (−24) 68 (36)

a Based on an application rate of 188 kg N ha−1 (Xia et al 2021).
b From Pantoja et al (2015).
c See supplemental materials for details.

The magnitude of the change in the economically
optimum N application rate due to avoided short-
term N immobilization as well as the reusable N
from cellulosic biofuel production represents a sig-
nificant percentage of total N application (table 3).
Values for these quantities are expected to be site- and
process-specific.

5.3. Nitrous oxide emissions
Nitrous oxide (N2O) is a greenhouse gas that has
∼300 times the global warming potential compared
to CO2 (Smith et al 2014b). It is estimated that
anthropogenic N2O emission are increasing and
currently amount to 43% of total N2O emission
with agriculture accounting for about two thirds of
the anthropogenic emissions (Xu et al 2021b). Of
GHG emissions associated with N fertilizer produc-
tion and use, N2O emissions from soil are respons-
ible for about half of the total and are substan-
tially larger than emissions from fertilizer production
(Brentrup et al 2016). Emission of N2O is favored
when three conditions coincide: high availability of
readily-decomposable organic matter, high availab-
ility of inorganic N, and low but not zero availab-
ility of molecular oxygen (Firestone and Davidson
1989). Drury et al (2021) found N2O emissions to
be higher in one of 3 years with corn stover removal,
and Lehman and Osborne (2016) find N2O emis-
sions to be higher with corn stover removal than
without it in the soybean phase of a corn-soy rotation,
but differences were minor when averaged through
the rotation. Baker et al (2014) and Johnson and
Barbour (2019) find no change in N2O emissions
accompanying residue removal. These variable res-
ults are consistent with corn stover either increas-
ing N2O formation by providing a source of labile C
and consuming oxygen during degradation (Saha et al
2021), or decreasing denitrification and N2O release
due to microbial immobilization of inorganic N in
a N-poor soils. Most studies of partial or complete
removal of sugar cane straw have observed substan-
tially decreased N2O emissions, particularly in con-
junction with application of N fertilizer (Carvalho
et al 2017, Vasconcelos et al 2018, Gonzaga et al
2019), although this is not always the case (Gonzaga
et al 2019, de Castro et al 2021). The recent study of
Vasconcelos et al (2022) found that complete removal

of sugar cane strawwas accompanied by a 25% reduc-
tion in N2O emissions.

As with SOC, anticipating the impacts of liquid
biofuel production with HLFB return on soil N2O
emissions is speculative at this time and can only
be made based on inference. Features of HLFB that
would be expected to impact relative formation of
N2O compared to NH management include:

• Addition of substantially less organic matter to the
soil. As presented in the discussion accompanying
figure 1, we estimate about 3-fold less organic mat-
ter for liquid cellulosic biofuel production com-
pared to leaving crop residues in the field.

• Because of the economic disincentive to add N to
liquid biofuel production processes beyond what is
needed for growth of microorganisms, almost all
HLFB N is expected to be in organic rather than
inorganic form, and soil application of HLFB is
expected to be accompanied by much lower inor-
ganic N levels than soil application of manure,
digested manure, or inorganic fertilizers.

• Evidence that carbohydrate-depleted, lignin-
enriched organic matter after biological processing
is less easily decomposable and less stimulatory
to N2O formation than crop residues not subjec-
ted to biological processing. The studies presented
in table 2 imply that the potential of digestates to
yield long-lived SOC is several-fold greater than
undigested crops and crop residues, and AD is
generally found to reduce N2O emissions when
applied to soils compared to undigested manure
(Insam et al 2015, Möller 2015). As well, the meta-
analysis of Cao et al (2021) found that the quality of
organic matter is a key determinant of N2O form-
ation, and in particular that carbohydrates stimu-
late N2O formation more than tannins and oxalic
acid.

In comparison to leaving residues in the field, crop
residue removal withHLFB return to the soil is expec-
ted to result in less organic matter added to the
field, less N2O formed per organic matter added, will
provide economicmotivation to add lessN to the field
and in any case is expected to involve lower levels of
inorganic N. All of these factors favor reduced N2O
formation.
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Table 4. Anticipated results of liquid cellulosic biofuel production with HLFB return to the soil.

Feature Anticipated Outcomea Rationale Confidence

SOC Similar Analogy to
well-established results
for anaerobic digestate

Moderate
Awaits lab and field
testing
Likely impacted by
conversion process
features

Economically optimum N
application (kg ha−1)

Less Avoided N
immobilization

High
Magnitude likely
site-dependent

Unit cost of N ($/kg) Less Opportunity for farmers
and biofuel producers to
reuse N, share costs

High at small scale
Cost penalty at increasing
scale to be determined
Awaits detailed analysis of
HLFB return logistics

N2O emissions Much less Lower soil-applied C and
inorganic N

High

a Compared to leaving crop residues in the field.

6. A potential food/fuel win-win and
research agenda

A large body of evidence indicates that soil applica-
tion of solid digestate from AD results in SOC levels
comparable to what would occur if crop residues were
left in the field (section 4.3). This occurs although
the mass of digested carbon applied to the field is
2- to 5-fold less than the original crop residue C,
and implies that the relative efficiency of forming
SOC from crop residues—e.g. as represented by ε
as defined in section 4.5 is 2–5-fold higher for soil
application of digestates relative to undigested crop
residues. Compared to unprocessed crop residues,
digestate has a lower fraction of carbohydrate and
higher fractions of lignin and microbial biomass.
Compared to anaerobic digestate, HLFB from the
same feedstock is expected with a high degree of con-
fidence to have a yet lower fraction of carbohydrate
and a higher fraction of lignin (figure 1). The relat-
ive production of microbial biomass in liquid biofuel
production and AD is of particular importance given
the central role of microbial biosynthesis and organic
matter transformation in forming SOC (section 2.1).
For compelling economic reasons related to product
recovery (section 3), the fraction of crop residue car-
bohydrate subjected to microbial biosynthesis and
transformation is in general higher for liquid biofuel
production than for AD. Many thermochemical pre-
treatment processes proposed for liquid biofuel pro-
duction modify lignin, e.g via physical and chemical
condensation, in ways that are expected to increase
recalcitrance to subsequent biological attack. Clearly,
HLFB return diminishes the sensitivity of SOC levels
to crop residue removal compared to crop residue
harvest and liquid biofuel production without HLFB
return (figure 3). Given that liquid biofuel produc-
tion from crop residues converts about a third of
crop residue C to HLFB C (section 3), equal SOC

levels for soil application of HLFB and leaving crop
residues in the field requires that the relative efficiency
of SOC stabilization be about three-fold higher for
HLFB than for undigested crop residues. This relative
efficiency, corresponding to the parameter ε, has not
been systematically evaluated for HLFB. However, an
ε value of 3 is well within the range seen for digestate.
Based on these considerations, we expect with mod-
erate confidence that long-term SOC levels for soil
application of HLFB from some liquid cellulosic bio-
fuel processes will not be substantially lower than for
leaving crop residues in the field, and with high con-
fidence that achieving this outcomewill be affected by
conversion process features that have to date received
little consideration relative to processes in the soil.

We have high confidence that the economic-
ally optimum N application rate will be lower for
soil application of HLFB compared to leaving crop
residues in the field, although the magnitude of this
effect will be site-dependent. Because the per hectare
demand of N for processing crop residues to liquid
biofuels can be a third or more of the per hectare
demand for crop production (table 3), there is a sub-
stantial opportunity to use N twice, first in biofuel
production and again when HLFB is applied to the
field, and to realize cost savings thereby. This oppor-
tunity can likely be realized for small scale biorefiner-
ies, but the cost penalty of returning HLFB to crop-
land at increasing scale has yet to be determined. We
expect with high confidence that N2O emissions will
be lower for soil application of HLFB compared to
leaving crop residues in the field.

Our expectation that SOC will not be substan-
tially lower for HLFB compared to leaving crop
residues in the field is based on empirical observations
of SOC stabilization in analogous AD systems but
is not strongly supported by theoretical arguments
in large part because deterministic understanding of
SOC dynamics is still a work in progress. By contrast,
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Table 5. Key elements of a research agenda pursuant to evaluating
liquid cellulosic biofuel production from crop residues with HLFB
return.

I. Lab, field, and modeling studies aimed at comparing har-
vest, process and return (HPR) and no harvest (NH) man-
agement, as defined in section 4.5
(a) Empirical data for SOC levels and climate-important

soil emissions (N2O and CH4) for a range of cropping
systems, soil types, and climate regimes.

(b) Understanding the impact of conversion process fea-
tures, resultant HLFB properties, and field manage-
ment practices on SOC levels and climate-important
soil emissions.

(c) The degree to which N and other plant nutrients in
HLFB can meet crop requirements and substitute for
other fertilizers.

II. Process, technoeconomic, and life cycle analysis of liquid
cellulosic biofuel production processes featuring vari-
ous fates of HLFB including combustion, value-added
coproducts, and soil application, including:
(a) Options for meeting process energy requirements if

HLFB is used for other purposes.
(b) Impact of lost revenues from HLFB-derived

coproducts in relation to the value of HLFB as a
soil amendment.

III. Landscape-scale analysis
(a) Economic and environmental benefits and costs of

land-applying HLFB, and
(b) How these vary with scale of the production facility

and the feedstock catchment area.

our expectation that soil application of HLFB will
result in lower N2O emissions is based on what we
believe to be consensus understanding that little N2O
will be formed when degradable organic matter and
inorganic N are at low levels. Anticipated results of
liquid cellulosic biofuel productionwithHLFB return
to the soil compared to leaving crop residues in the
field are summarized in table 4.

These observations support but do not prove the
hypothesis that a ‘win-win’ is possible wherein large
amounts of liquid biofuel feedstock are obtained from
cropland while not sacrificing SOC and improving
the economics and sustainability of food and feed
production. Confirming this hypothesis would be a
major development. By way of illustration, conver-
sion of half of the 100 EJ of global crop residues pro-
duced annually (section 2.2) would result in ∼25 EJ
of liquid fuel depending on the process (Laser et al
2009). This may be compared to about 15 EJ of
fuel used by the global aviation sector (International
Energy Agency 2021), for which biofuels are widely
regarded as a leading low-C option (Fulton et al
2015, Davis et al 2018). Global production of trans-
port biofuels was about 4 EJ in 2022 (International
Energy Agency 2023). Testing the ‘win-win’ hypo-
thesis articulated here is a high priority in light of the
climate crisis, the importance of biofuels for climate
stabilization and the extent to which a perceived food

vs fuel conflict has impeded support for biofuels to
date. Key elements of a research agenda are presented
in table 5.

As noted in II.(a) and II.(b) of table 5, return-
ing HLFB to the soil implies foregoing HLFB-derived
generation of process energy and coproduct revenues.
Process heat can in principle be obtained from a
variety of low-C sources, including solar thermal,
renewable natural gas, and biomass—e.g. wood chips
(Moreira et al 2020), sugarcane straw (Moraes et al
2016). For ethanol production from corn stover via
projected mature technology, biogas produced by AD
of process wastewater was found to be more than suf-
ficient to provide process heat requirements without
burning HLFB (Kubis and Lynd 2023). Converting
HLFB to fuel pellets instead of cogenerating elec-
tricity resulted in shorter investment payback peri-
ods, improved economic feasibility at small scale,
and increased mitigation of greenhouse gases (Lynd
et al 2017). Analysis presented in the supplementary
materials modifies the process model of Lynd et al
(2017) to examine the impact of soil application of
HLFB in lieu of pellet production and export for sale.
Even with the conservative assumption that HLFB
has zero net value as a soil amendment, we find that
the cost penalty associated with foregoing pellet rev-
enue is not prohibitive and indeed is much smaller
than the cost savings of foreseeable process improve-
ments. These considerations support the proposition
that neither process energy provision nor coproduct
revenues are show-stoppers with respect to the feasib-
ility of liquid cellulosic biofuel productionwithHLFB
returned to the soil.

The concept of utilizing HLFB as a soil amend-
ment is analogous to the biochar concept. Both HLFB
and biochar are co-products of lignocellulosic con-
version to biofuels and bioenergy. Biochar is suf-
ficiently recalcitrant that it supports increased soil
carbon storage even after accounting for losses dur-
ing conversion (Lehmann et al 2006), and it is also
known to have value for nutrient management and
control of N2O emissions (Joseph et al 2021, Kaur
et al 2023). A growing body of field research suggests
that biochar also has small but largely positive effects
on crop yields in intensively-managed temperate sys-
tems (Jeffery et al 2017, Schmidt et al 2021). The rel-
ative feasibility of biological conversion of cellulosic
biomass with HLFB returned to the soil and thermo-
chemical conversion with biochar returned to the soil
depend on process economics, which are moving tar-
gets since conversion technologies are under devel-
opment. Increased future attention to soil applica-
tion of HLFB would appear warranted since both
biological and thermochemical production routes are
being considered as sources of fuels for aviation and
other heavy-duty applications (Falter et al 2020, Lynd
et al 2022).

The liquid cellulosic biofuel field has proceeded
to date largely within a ‘refinery’ conceptual
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framework emphasizing valorization of all feed-
stock components. While this perspective is import-
ant and economic viability is a critical prerequisite
for impact, circular material flows and maintaining
resource stocks are also relevant in light of sustainab-
ility, land use and climate considerations. For biofuel
production from crop residues, the (bio)refinery and
circular economy frameworks lead us in different
directions with respect to HLFB management. It will
be important to gracefully reconcile this discrepancy
as humanity chooses how to deploy cellulosic bio-
fuels in the sustainable resource revolution our times
demand.
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