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Developmental patterning of 
peptide transcription in the central 
circadian clock in both sexes
Vania Carmona-Alcocer 1†‡, Lindsey S. Brown 2†‡, Aiesha Anchan 1, 
Kayla E. Rohr 1† and Jennifer A. Evans 1*
1 Department of Biomedical Science, Marquette University, Milwaukee, WI, United States, 2 Harvard John 
A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, United States

Introduction: Neuropeptide signaling modulates the function of central clock 
neurons in the suprachiasmatic nucleus (SCN) during development and adulthood. 
Arginine vasopressin (AVP) and vasoactive intestinal peptide (VIP) are expressed early 
in SCN development, but the precise timing of transcriptional onset has been difficult 
to establish due to age-related changes in the rhythmic expression of each peptide.

Methods: To provide insight into spatial patterning of peptide transcription during 
SCN development, we used a transgenic approach to define the onset of Avp 
and Vip transcription. Avp-Cre or Vip-Cre males were crossed to Ai9+/+ females, 
producing offspring in which the fluorescent protein tdTomato (tdT) is expressed 
at the onset of Avp or Vip transcription. Spatial patterning of Avp-tdT and Vip-tdT 
expression was examined at critical developmental time points spanning mid-
embryonic age to adulthood in both sexes.

Results: We find that Avp-tdT and Vip-tdT expression is initiated at different 
developmental time points in spatial subclusters of SCN neurons, with 
developmental patterning that differs by sex.

Conclusions: These data suggest that SCN neurons can be distinguished into further 
subtypes based on the developmental patterning of neuropeptide expression, which 
may contribute to regional and/or sex differences in cellular function in adulthood.

KEYWORDS

circadian, suprachiasmatic nucleus, development, neuropeptide transcription, sex 
differences, spatial mapping

Introduction

Daily rhythms in mammals are programmed by the circadian timekeeping system (Mohawk 
et al., 2012), which ensures that behavior and physiology are well matched to environmental 
conditions over the solar day. In nearly every biological system, cell physiology is modulated by 
autoregulatory genetic feedback loops controlling circadian rhythms in gene expression (Buhr 
and Takahashi, 2013). At the system level, clock tissues in the body are coordinated by a central 
clock in the suprachiasmatic nucleus (SCN), which is necessary for daily rhythms in behavior 
and physiology (Hastings et al., 2018). As the central pacemaker, the SCN processes photic 
inputs from the retina, sustains tissue-level rhythms through local communication, and provides 
outputs to coordinate cellular rhythms in downstream targets. Neural network mechanisms that 
support SCN timekeeping are essential for achieving internal and external coordination of the 
circadian system in an ever-changing environment.

The SCN is a heterogenous network of cellular clocks that displays self-sustained circadian 
rhythms in metabolism, electrical activity, gene/protein expression, and peptide release 
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(Hastings et al., 2018). SCN neurons express the neurotransmitter 
GABA and can be distinguished into different subpopulations based 
on peptide expression (Antle et al., 2003). Two types of SCN neurons 
have been studied in mammals in depth (Abrahamson and Moore, 
2001; Moore et al., 2002; Ono et al., 2021). Located in the SCN shell 
and core respectively, AVP and VIP neurons provide network signals 
that regulate daily rhythms in behavior and physiology (Vosko et al., 
2007; Kalsbeek et al., 2010; Ono et al., 2021). In addition to regional 
patterns of peptide expression, SCN neurons display cellular rhythms 
with spatial gradients that repeat across the network each circadian 
cycle (Hamada et  al., 2004; Evans et  al., 2011; Enoki et  al., 2012; 
Brancaccio et  al., 2013). Spatial gradients in clock function are 
stereotyped across individual animals, are evident in a variety of 
cellular processes, and can be modulated by experience (Inagaki et al., 
2007; Evans et al., 2013). How neural identity maps onto differences 
in cellular function in the SCN network is a key question in the field.

The importance of the SCN clock during adulthood is well 
established, but the process by which SCN circuits form is not fully 
understood (Landgraf et  al., 2014; Bedont and Blackshaw, 2015; 
Carmona-Alcocer et al., 2020). Across mammalian species, SCN 
neurogenesis occurs over the third to fourth quarter of gestation 
(Shimada and Nakamura, 1973; Altman and Bayer, 1978; Davis et al., 
1990; Antle et al., 2005; Kabrita and Davis, 2008). The onset of daily 
rhythms in SCN activity has been detected as early as the end of 
neurogenesis and as late as the first few days after birth (Reppert, 
1992; Shimomura et al., 2001; Sladek et al., 2004; Ohta et al., 2006; 
Wreschnig et al., 2014; Carmona-Alcocer et al., 2018). Despite these 
early milestones, postnatal development is critical for SCN circuit 
formation (Landgraf et  al., 2014; Bedont and Blackshaw, 2015; 
Carmona-Alcocer et al., 2020). Both Avp and Vip transcripts are 
detected in the mouse SCN during late embryonic development 
(Okamura et al., 1983; Vandunk et al., 2011), but transcript and 
peptide levels increase over the first 3 weeks after birth (Hyodo et al., 
1992; Ban et al., 1997; Herzog et al., 2000). Previous work suggests 
that the roles of AVP and VIP in the regulation of SCN function vary 
over development (Wreschnig et  al., 2014; Ono et  al., 2016; 
Carmona-Alcocer et al., 2018; Mazuski et al., 2020), but how these 
peptide circuits mature remains unclear.

One outstanding question concerns spatial patterning of SCN 
circuits during development. Spatiotemporal gradients in SCN 
neurogenesis have been reported, with SCN core neurons appearing 
before those in the SCN shell in mice, rats, and hamsters (Altman and 
Bayer, 1978; Davis et al., 1990; Antle et al., 2005; Kabrita and Davis, 
2008). In the mouse, SCN shell neurons are generated in the middle-
posterior regions before those in the anterior pole (Okamura et al., 
1983; Kabrita and Davis, 2008). These studies suggest that SCN 
neurons in different regions of the network develop at different times, 
but it remains unclear if spatial patterning occurs for other milestones 
in cellular development (e.g., differentiation). Interestingly, previous 
work suggests that the onset of Vip transcription occurs in two distinct 
subclusters of SCN neurons that differ in spatial location and cellular 
function in adulthood (Ban et  al., 1997). One obstacle in 
understanding SCN peptide development is that rhythms in SCN 
transcripts can change as the network matures (Isobe and Muramatsu, 
1995; Ban et al., 1997; Shimomura et al., 2001; Houdek and Sumova, 
2014). The resulting need to conduct a circadian time course at each 
developmental age has limited insight into spatial patterning during 
SCN development.

Here we use a genetic approach to test if SCN neurons display 
spatial patterning of peptide transcription during development. 
This approach uses Cre to permanently label cells with a 
fluorescent reporter at the time of Avp and Vip transcription 
(Harris et al., 2014; Taniguchi, 2014), thus circumventing the need 
to conduct a circadian time course to detect expression of the 
peptide itself. Using this genetic approach, we tracked Avp and Vip 
transcription across the entire SCN at key stages of pre-and post-
natal development. We find that genetically labeled cells in each 
peptide class appear in spatially distinct subclusters over 
development. In addition, we find that biological sex influences 
developmental patterning of Avp and Vip labeling in a manner 
that differs for each SCN peptide class. Collectively, these data 
suggest that SCN neurons can be  distinguished into further 
subclasses based on developmental patterning of 
neuropeptide transcription.

Materials and methods

Mice lines and general husbandry

Mice were bred and raised under a 24-h light–dark cycle with 
12 h of light and 12 h of darkness [LD12:12: lights off: 1800 CST 
defined as Zeitgeber Time 12 (ZT12)]. Throughout life, ambient 
temperature was maintained at 22°C ± 2°C, and mice had ad 
libitum access to water and food (Teklad Rodent Diet 8,604). 
These studies used mice derived from crossing Ai9+/+ females 
(Madisen et al., 2010) with Avp-IRES2-Cre+/− males (Harris et al., 
2014), JAX# 023530, C57Bl/6 background) or Vip-IRES-Cre+/+ 
males (Taniguchi, 2014), JAX# 010908, C57Bl/Jx129S 
background). In the heterozygous progeny of this cross (i.e., Avp-
Cre+/−; Ai9+/− and Vip-Cre+/−; Ai9+/−), Cre recombinase is expressed 
under the Avp/Vip promoter, causing cell-specific expression of 
the red fluorescent protein, tdTomato (tdT) at the onset of peptide 
transcription. For convenience, we refer to these as Avp-tdT and 
Vip-tdT mice. All procedures were conducted according to the 
NIH Guide for the Care and Use of Animals and were approved 
by the Institutional Animal Care and Use Committees at 
Marquette University.

Experimental breeding

To genetically label Avp and Vip neurons over specific 
developmental ages, male Avp-Cre or Vip-Cre mice were paired 
overnight with nulliparious female Ai9+/+ mice. On the morning 
following cohabitation, successful mating was verified by the 
presence of vaginal plugs and designated Embryonic Day 1 (E01). 
Pregnant dams were tracked throughout pregnancy, and the day of 
birth was designated Postnatal Day 0 (P00). Sex and genotype of 
offspring were determined by PCR amplification of Sly/Xlr 
(McFarlane et  al., 2013) and Cre+/− (Jackson Laboratory, oligo 
primers # 18475, 18,474, 10,362), respectively. Both male and 
female mice were used in all experiments, with biological sex 
confirmed by genotyping (McFarlane et al., 2013).

https://doi.org/10.3389/fnins.2023.1177458
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Carmona-Alcocer et al. 10.3389/fnins.2023.1177458

Frontiers in Neuroscience 03 frontiersin.org

Brain collection, tissue processing, and 
microscopy

To evaluate specificity of labeling, brains were collected from 
Ai9+/+, Avp-tdT and Vip-tdT mice of both sexes and sectioned in the 
coronal plane (40 μm) prior to mounting onto microscope slides for 
cell counting. To evaluate the correspondence between tdT labeling 
and peptide expression in adulthood, Avp-tdT and Vip-tdT mice of 
both sexes (n = 4-5/sex/genotype, P84, 22 weeks of age) received 1 μl 
colchicine injection into the third ventricle (0.5 μL/min) to slow 
microtubule transport and measure cumulative peptide expression 
over the circadian cycle. Brains were collected 48 h later (ZT06) and 
fixed in 4% paraformaldehyde overnight, cryoprotected in 20% 
sucrose for 4 days, and then sectioned in the coronal plane (25 μm). 
Free-floating slices were washed 6 times in PBS, blocked for 1 h in 
normal donkey serum, incubated for 48 h at 4°C with primary 
antibodies (Rabbit anti-AVP, Millipore AB1565, 1:1 K; Rabbit anti-
VIP, Sigma HPA017324, 1:500), washed 6 times in PBS, incubated for 
2 h at room temperature with secondary antibodies (Alexa Fluor 488, 
Donkey anti-rabbit, JIR 711–545-152, 1:500), and then washed 6 times 
in PBS before mounting in Prolong Anti-Fade medium with DAPI 
(Thermo Fisher, Cat# P36935) and cover slipped. For each experiment, 
slices were imaged by collecting 10X Z-stack images on a Nikon A1R+ 
confocal microscope (Nikon Instruments, Melville, NY, United States). 
The anterior, middle, and posterior SCN slice was identified for each 
sample and used for data analyses. Using ImageJ, a hyperstack 
projection of the Z-stack for each slice from each sample was created, 
and the total number of tdT+ and/or AVP/VIP+ cells was counted 
using the 3D Object Counter module.

To evaluate developmental patterns of Avp-tdT and Vip-tdT 
expression, brains were collected at E16, E18, E19, P01, P03, P05, P10 or 
P84 (i.e., Adult, n = 3–7 mice/sex/genotype, at least 2 litters collected at 
each age). For embryonic ages, pregnant females were anesthetized with 
isoflurane and euthanized by cervical dislocation before pups were 
extracted from the uterus and decapitated. Postnatal mice were 
euthanized by decapitation, whereas adult mice were anesthetized and 
euthanized as described for dams. Brains were collected in the middle of 
the photophase (ZT06), except E19 brains were collected 1 h before 
lights-off. Brains were fixed in 4% paraformaldehyde overnight at 4°C, 
cryoprotected in 20% sucrose for 48 h and 30% sucrose for 72 h at 4°C, 
then sectioned in the coronal plane (40 μm). All slices through the entire 
SCN were retained as one series and thaw-mounted onto microscope 
slides or saved as free-floating slices (P84). Nuclear staining was achieved 
by embedding slices in DAPI-containing mounting media (Abcam, Cat# 
ab104135) before cover-slipping. As described above, confocal images of 
tdT expression were collected. Using ImageJ, SCN images were aligned 
across samples in the XY plane using the Python OpenCV package and 
verified manually using SCN DAPI-determined boundaries. tdT+ cells 
were counted using a hyperstack as above, and the XYZ location of each 
cell was recorded (Supplementary Figure S1). Each SCN slice was 
mapped to the corresponding slice in the adult data based on preserved 
morphology across ages (Supplementary Figures S2A,B). Sex did not 
influence SCN area over development (Supplementary Figure S2C). 
tdT+ cells were counted using a hyperstack as above, and the XYZ 
location of each cell was recorded (Supplementary Figure S1). Cell 
counts were analyzed based on anteroposterior SCN region (anterior, 
middle, posterior SCN). In addition, cell clusters were identified using 
k-means clustering (Python scikit-learn), with the optimal number of 

clusters determined by the location of the elbow in the sum of squared 
distances (Nugent and Meila, 2010). At each developmental timepoint, 
cells were assigned to one of the spatial clusters identified in P84 adult 
samples. To visualize cellular density in different SCN regions, cellular 
coordinates were used to determine the number of neighboring cells 
within a 50 μm radius for each sample (Supplementary Figures S3A–C).

Data analyses

Statistical analyses were performed with JMP software (SAS 
Institute). Data are represented in figures and tables as mean ± SEM. When 
datasets contained within-subject factors (Slice Position, Cell Cluster), a 
mixed linear model was used to parse out random effects driven by 
individual differences among mice. When models only contained 
between-subject factors (Sex, Cell Type, Age), a full-factorial ANOVA 
was used to assess main effects and interactions. Post-hoc tests were 
performed with Tukey’s HSD or Least Square Mean contrasts to control 
for family-wise error. Statistical significance was set at p < 0.05.

Results

Genetic approach for labeling SCN 
neurons by neuropeptide class

To evaluate spatial patterning of SCN development, we employed 
a genetic strategy (Figure 1A). Driven by the Avp- or Vip-promoter, 
Cre recombinase induced tdTomato (tdT) expression in Avp-tdT and 
Vip-tdT mice. As expected, tdT expression in the SCN was 
Cre-dependent, with very little recombination in Ai9+/+ mice 
(Figure 1B, Supplementary Figure S4). Next, co-expression of tdT and 
AVP/VIP peptide expression was evaluated in adult mice using in vivo 
intracranial colchicine injections and immunohistochemistry 
(Figures 1C–F, Supplementary Figures S5A–D). AVP-IHC+ neurons 
outnumbered VIP-IHC+ neurons (Figure  1D, Cre: F(1,15) = 175, 
p < 0.0001), as expected based on previous work in the mouse 
(Abrahamson and Moore, 2001). However, the number of Avp-tdT+ 
and Vip-tdT+ SCN cells were more similar [Figure  1D, Cre: 
F(1,15) = 4.1, p = 0.06]. Approximately 30% Vip-tdT+ neurons were 
co-labeled by IHC, compared to 70% of Avp-tdT+ neurons [Figure 1E, 
Cre: F(1,15) = 112.5, p < 0.0001]. On the other hand, over 80% of 
VIP-IHC+ neurons were co-labeled with tdT, compared to only 43% 
of AVP-IHC+ neurons [Figure 1F, Cre: F(1,15) = 105.8, p < 0.0001]. 
Failure of Cre-mediated recombination in the Avp-tdT model 
appeared to be  highest in the dorsal middle SCN (Figure  1C, 
Supplementary Figures S5A,E). Importantly, sex did not influence 
measures of tdT/AVP/VIP labeling or co-expression 
(Supplementary Figures S5C–F). These results indicate that this 
genetic approach does not fully capture peptide expression in the adult 
SCN, but that tdT can be used in both sexes.

Mapping Avp-tdT+ and Vip-tdT+ neurons 
in the adult SCN

As a next step toward constructing a developmental atlas, 
we mapped the spatial location of Avp-tdT and Vip-tdT SCN neurons 

https://doi.org/10.3389/fnins.2023.1177458
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in adulthood using a more comprehensive approach. All Avp-tdT+ 
and Vip-tdT+ cells were counted throughout the anteroposterior SCN 
in each sex (Figure 2A, Supplementary Figure S1). When counted 
across all SCN slices, Vip-tdT+ cells outnumbered Avp-tdT+ cells 
[Figure 2B, Cre: F(1,9) = 18.1, p < 0.005], with more Vip-tdT+ cells in 
females than males [Figure 2B, Sex: F(1,9) = 7.3, p < 0.05, Contrasts, 
p < 0.05]. When parsed by SCN slice position, females displayed more 
Avp-tdT+ cells than males in the anterior and posterior SCN, and 
females displayed more Vip-tdT+ cells than males in the middle SCN 
(Figure 2C, Contrasts, p < 0.05).

To complement anatomical division of anteroposterior regions, 
we used k means clustering based on the cellular coordinates for each 
sample. For both cell types and sexes, the best fit was achieved by k = 3 
spatial clusters, as determined by the elbow location for total cell 
dispersion (i.e., Inertia, Figure 3A) and cell dispersion normalized to 
the total cell counts/sample (Distance, Supplementary Figure S6A). 
Spatial mapping of k means revealed one posterior cluster and two 

clusters that were positioned more anterior, which differed in lateral-
medial location (Figure 3B). As expected, there was greater dispersion 
of Avp-tdT+ than Vip-tdT+ neurons at k = 3 (Figure  3B, 
Supplementary Figure S6B), with differences in both inertia and 
distance [Inertia-Cre: F(1,9) = 17.5, p < 0.005; Distance-Cre: 
F(1,9) = 17.5, p < 0.005, Contrasts, p < 0.05]. There were no significant 
sex differences in cell dispersion [Inertia-Sex: F(1,9) = 4.8, p = 0.06; 
Distance- Sex: F(1,9) = 0.1, p > 0.7]. Nevertheless, more subtle sex 
differences were detected in the number and location of cells in 
specific clusters (Figures 3B,C). Specifically, females displayed a larger 
number of lateral Avp-tdT+ cells relative to males (Figure  3C, 
Contrasts, p < 0.01), and the lateral cluster for both cell types was 
positioned more anterior in the female SCN (Figure 3B).

To evaluate spatial patterns of cell density, next we mapped the 
number of neighboring cells within a 50 μm radius of each cellular 
coordinate (Figure 4A, Supplementary Videos S1–S4). Cell density 
maps were aggregated for all samples, with and without normalization 
to the total number of cells in each sample (Figures  4B,C, 
Supplementary Figures S7, S8). For both cell types, the overall 
morphology was similar across sex (Figures  4B,C, 
Supplementary Figures S7, S8). Compared to males, between-sample 
variability in cell density and total cell counts was larger in female 
Avp-tdT SCN neurons [Supplementary Figure S3B, Levene’s test 
F(1,5) = 10.52, p < 0.05], and Avp-tdT+ cell density was similar when 
normalized to the total number of cells in each sample (Figures 4B,C, 
Supplementary Figures S7, S8). For Vip-tdT+ neurons, variability in 
cell density and total cell counts did not differ by sex 
[Supplementary Figure S3C, Levene’s test F(1,4) = 0.38, p > 0.7]. 
Collectively, these results suggest that spatial patterning of cellular 
density for Avp-tdT+ and Vip-tdT+ populations does not markedly 
differ between male and female SCN in adulthood.

SCN development of Avp-tdT and Vip-tdT 
expression

To evaluate SCN developmental patterning, we  applied these 
mapping approaches to samples collected from age E18-P10 
(Figures 5A,B). Gestational weight, litter size, and gains in pup weight 
did not differ by genotype (Supplementary Figures S9A–C). Sex did 
not influence growth in SCN area (Supplementary Figure S2C). 
Overall, Avp-tdT mice had smaller SCN than Vip-tdT mice 
[Supplementary Figure S9D, Cre: F(1,84) = 8.53, p < 0.005], but this 
was only statistically significant at P05 (Supplementary Figure S9D, 
Contrasts, p < 0.01). These data indicate that the presence of Avp-tdT 
and Vip-tdT transgenes did not interfere with gross measures 
of development.

Over development, the total number of Avp-tdT+ and Vip-tdT+ 
cells increased, with differences across cell type [Figure  5C, Age: 
F(7,99) = 411.9, p < 0.0001, Cre: F(1,99) = 89.6, p < 0.001, Cre*Age: 
F(7,99) = 11.3, p < 0.0001]. In addition, sex influenced the 
developmental appearance of Avp-tdT+ and Vip-tdT+ cells 
[Supplementary Figure S10A, Age*Sex: F(7,99) = 5.17, p < 0.0001]. 
Effects of cell-type and sex persisted when cell counts were normalized 
to sex-specific adult values [Figure 5D, Age: F(7,99) = 409.4, p < 0.0001, 
Sex: F(1,99) = 50.18, p < 0.0001, Age*Sex: F(7,99) = 8.27, p < 0.0001, 
Cre*Age: F(7,99) = 2.88, p < 0.01], indicating that these effects were not 
driven by differences in the total number of cells. In each sex, a very 

FIGURE 1

Genetic strategy to label spatial location of SCN peptide classes. 
(A) Schematic illustrating genetic approach to label Avp- and Vip-
expressing SCN neurons with tdT. (B) tdT labeling is Cre-dependent 
in the SCN. Also see Supplementary Figure S4. Cre: F(2,22) = 24.1, 
p < 0.0001; Sex: F(1,22) = 0.3, p > 0.5; Cre*Sex: F(2,22) = 0.6, p > 0.5. 
(C) Representative SCN slices illustrating tdT and AVP/VIP expression 
in a male Avp-tdT  or Vip-tdT SCN. Scale bars = 100 μm. (D) Total 
number of labeled neurons collapsed across three SCN slices. AVP/
VIP IHC: Cre: F(1,15) = 175, p < 0.0001; Sex: F(1,15) = 0.2, p > 0.6; Cre*Sex: 
F(1,15) = 0.3, p > 0.5. tdT+: Cre: F(1,15) = 4.12, p = 0.06; Sex: F(1,15) = 2.3, 
p > 0.1; Cre*Sex: F(1,15) = 2.9, p > 0.1. (E) More Avp-tdT+ neurons 
express AVP compared to Vip-tdT+ neurons that express VIP. Cre: 
F(1,15) = 112.5, p < 0.0001; Sex: F(1,15) = 3.2, p = 0.09; Cre*Sex: 
F(1,15) = 0.1, p > 0.8. (F) More Vip-tdT+ express tdT compared to Avp-
tdT+ neurons. Cre: F(1,15) = 105.8, p < 0.0001; Sex: F(1,15) = 1.6, p > 0.2; 
Cre*Sex: F(1,15) = 0.2, p > 0.6. Numbers below x-axis in panels (B,D) 
indicate sample sizes for each group. Contrasts comparing 
genotype, *p < 0.05.
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small number of Avp-tdT+ and Vip-tdT+ cells were detected at E18 
(Supplementary Figure S10A, Avp = 1.2 ± 0.1%, Vip =  1.9% ± 0.2% 
relative to adult). Population size for both cell types increased 
progressively after birth. When collapsed by sex, Avp-tdT+ cells 
appeared between P01–P05, after which it stabilized to adult levels. In 
contrast, the relative number of Vip-tdT+ cells increased from 
P01-P03 and P05-P10. At P05, there was a greater percentage of Avp-
tdT+ cells compared to Vip-tdT+ cells (Figure  5C, Contrasts, 
p < 0.005). For each cell type, males displayed an accelerated 
appearance of tdT+ cells (Figure 5D). Relative to females, males had 
more Avp-tdT+ cells from P01–P05 and more Vip-tdT+ cells from 
P01-P10 (Figure 5D, Contrasts, p < 0.05). The number of labeled cells 
decreased to adult levels in males, and females displayed a more linear 
appearance of total cells for each peptide class (Figure 5D).

To evaluate spatial patterning, the number of cells in each class 
was analyzed in the anterior, middle, and posterior SCN. Age 
influenced cellular patterning in a manner that interacted with SCN 
region and sex (Figure 6, Supplementary Figure S10). Specifically, 
Avp-tdT+ cells appeared in a posterior-to-anterior pattern over P01–
P05, with larger regional differences in males (Figures 6A,B, Contrasts, 
p < 0.05). In the posterior SCN of males, Avp-tdT+ cells exceeded adult 
levels from P03–P05 (Figure  6B). Regional patterning was also 
detected for Vip-tdT+ cells, which was likewise influenced by sex 
(Figures 6C,D, Contrasts, p < 0.05). Vip-tdT+ cells increased steadily 
in the middle SCN, with a larger proportion in males at P03 

(Figure  6D, Contrasts, p < 0.05). At P05, both sexes displayed an 
increased proportion of Vip-tdT+ cells in the posterior SCN that 
exceeded adult levels (Figure 6D). Last, the appearance of Vip-tdT+ 
cells in the anterior SCN was delayed in females, with a lower 
percentage relative to males at P05 and P10 (Figure 6D, Contrasts, 
p < 0.05). These results suggest that there are regional gradients in the 
onset of peptide transcription that differ by cell type, region, and sex.

For each cell type, cell dispersion within k-means clusters 
increased as the SCN grew with age (Figure 7A). Cellular dispersion 
was greater in Avp-tdT+ than Vip-tdT+ cells (Figures  7B,C, 
Supplementary Figure S11B, Contrasts, p < 0.05). Avp-tdT+ cells 
displayed a stepwise pattern of increasing cell dispersion over P03–
P10 (Figure 7A), likely since this cell type spans the anteroposterior 
extent of the SCN. Developmental patterning of cellular appearance 
and density was influenced by sex (Figures 8, 9). The spatial location 
of clusters was largely similar in each sex across development 
(Figure 8A), but sex influenced the appearance of cells in different 
clusters (Figures 8B,C). In male SCN, there was a greater number of 
Avp-tdT+ cells in the posterior cluster at P05 and in the lateral cluster 
over P03–P10 relative to females (Figure 8B, Contrasts, p < 0.05). In 
addition, males had more Vip-tdT+ cells in the lateral cluster from 
P01–P10 and in the posterior cluster at P10 (Figure 8C, Contrasts, 
p < 0.05). In contrast, females displayed more Avp-tdT+ cells in the 
medial cluster at P03 and more Vip-tdT+ cells in the medial cluster at 
P10 (Figures 8B,C, Contrasts, p < 0.05). Overall, male SCN displayed 

FIGURE 2

Spatial mapping of SCN neurons in each peptide class in adulthood. (A) A representative subset of SCN slices collected through the anteroposterior 
axis from a female Avp-tdT or Vip-tdT mouse. Each slice is color-coded by slice position, with cells in all SCN slices superimposed in rightmost panel. 
The full set of SCN slices from this mouse is illustrated in Supplementary Figure S1A. (B) Total number of SCN Avp-tdT+ and Vip-tdT+ neurons in each 
sex. Cre: F(1,9) = 18.1, p < 0.005, Sex: F(1,9) = 7.3, p < 0.05; Sex*Cre: F(1,9) = 1.1, p > 0.3. (C) Sex influences the number of Avp-tdT+ and Vip-tdT+ neurons in 
different anteroposterior SCN regions. Avp-tdT - Sex: F(1,5) = 5.6, p = 0.06; Position: F(2,10) = 25.1, p = 0.0001; Sex*Position: F(2,10) = 4.5, p < 0.05. Vip-tdT 
– Sex: F(1,4) = 3.6, p > 0.1; Position: F(2,8) = 63.3, p < 0.0001; Sex*Position: F(2,8) = 1.5, p > 0.2. aSCN, mSCN, and pSCN: Anterior, middle, and posterior SCN. 
Contrasts comparing male and female data for each cell type, *p < 0.05.
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higher cell density for Avp-tdT+ and Vip-tdT+ cells at P05 relative to 
females (Figure  9). Collectively, these results indicate that the 
developmental patterning of SCN Avp-tdT+ and Vip-tdT+ cells 
differs by sex.

Discussion

Hypothalamus anatomy is conserved across vertebrates, guided 
by molecular mechanisms that determine nuclei that contain a large 
diversity of neuron subtypes (Xie and Dorsky, 2017; Benevento et al., 
2022). Relative to early induction, less is known about how these 
peptide circuits are built and remodeled. In the SCN, AVP and VIP 
neurons regulate the timing of sleep, stress, and reproductive rhythms. 
How peptide circuits in the SCN network are patterned over 
development may have profound impacts on clock function in 
adulthood. Using a genetic approach to track SCN development of 

peptide circuits, our results suggest that SCN patterning varies by cell 
type, regional subcluster, and sex. The genetic and/or hormonal 
factors that guide spatial patterning of SCN peptide circuits warrant 
further research.

Genetic labeling provides insight into cellular appearance over 
development without the need for surgical or chemical interventions 
that could interfere with gestation and rearing, but this approach is 
not without limitations. Both Avp-tdT and Vip-tdT expression were 
Cre-dependent consistent with previous work describing these 
genetic models (Harris et al., 2014; Taniguchi, 2014). We find that 
70% of Avp-tdT+ neurons were AVP-IHC+, but less than 30% of 
Vip-tdT+ neurons were VIP-IHC+. Low VIP co-expression could 
reflect transient Vip transcription over development in a large subset 
of these cells, which would suggest that the VIP cell population may 
expand and contract over development. However, this observation 
could also reflect threshold limits of IHC and/or expression of 
VIP-related peptides that are not recognized by the antibody used 

FIGURE 3

K means clustering of SCN neurons in each peptide class in adulthood. (A) Elbow plots illustrating measures of cell dispersion in each sex. Arrow 
indicates optimal number of clusters. (B) Spatial location of cluster centers in each sex in the front and lateral views. Lattice frames illustrate SCN 
boundaries determined using the position of all tdT identified cells observed across adult samples of both genotypes. (C) Number of labeled cells in 
each cluster divided by sex. Cre: F(1, 9) = 18.1, p < 0.005, Cluster: F(2,18) = 10.4, p = 0.001, Sex: F(1,9) = 7.3, p < 0.05, Cell*Cluster: F(2,18) = 0.2, p > 0.8, Cell*Sex: 
F(1,9) = 1.1, p > 0.3, Cluster*Sex: F(2,18) = 1.3, p > 0.3, Cell*Cluster*Sex: F(2,18) = 0.2, p > 0.8. m, medial; l, lateral; p, posterior. Contrasts comparing male and 
female data for each cell type, *p < 0.05.
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here (Lee et al., 2013; Southey et al., 2014). On the other hand, over 
80% of VIP+ cells were labeled with Vip-tdT, but only 43% of AVP+ 
cells were labeled by Avp-tdT. This has been noted in previous work 
using this genetic model (Jamieson, 2020), and our data indicate that 
the dorsal region of the middle SCN displays the highest rate of AVP 
and Avp-tdT discordance. Failure of Cre-mediated recombination 
may reflect cellular variation in epigenetic landscape or genetic 
history (i.e., loss of Cre during cell division), as suggested in previous 
work (Jamieson, 2020). Interestingly, low co-expression of AVP and 
Avp-tdT labeling also occurs in this genetic model after adult-
specific viral transduction (Jamieson, 2020), which suggests that this 
observation is not a developmental artifact. Further, we  used 
colchicine to visualize total protein expression over the daily cycle, 
yet our estimates of colocalization are similar to this previous work 
(Jamieson, 2020). Collectively, these data indicate that each mouse 
model used here does not fully capture peptide expression in 
adulthood, thus limiting the ability to comprehensively map each 
peptide population during development. However, these validation 
data also provide an interesting complement to our developmental 
results by suggesting that neurons in each peptide class may 
be divided into subclusters. Another known caveat of Cre models is 
that the transgene can interfere with native peptide expression 

(Cheng et al., 2019; Joye et al., 2020; Rohr et al., 2020). Importantly, 
peptide levels in heterozygous Avp-tdT and Vip-tdT mice do not 
differ from wildtype mice during early development, and circadian 
behavior does not differ between these two groups during adulthood 
(Joye et al., 2020; Rohr et al., 2020). However, it is difficult to dismiss 
that a non-significant decrease in peptide expression could  
alter SCN patterning. With these caveats in mind, we decided to 
employ this genetic approach to study SCN peptide development 
because it avoids the need to conduct a circadian time course at 
every age.

Consistent with previous work, we find developmental differences 
in the appearance of SCN neurons in these two peptide classes. Avp-
tdT+ and Vip-tdT+ neurons were detected as early as E18, and cell 
number for each peptide class increased over the first 10 days after 
birth. Our results align well with previous work characterizing peptide 
development, despite the likely delays between transcription onset and 
tdT labeling. Avp and Vip transcripts are first detected in the mouse 
SCN at E17-18 and E18-19, respectively (Vandunk et al., 2011). AVP 
and VIP peptide levels increase over the first 2 days after birth (Hyodo 
et al., 1992; Carmona-Alcocer et al., 2018). SCN AVP cell numbers are 
stable after P06, but AVP peptide levels continue to increase from 
P06-P30 (Herzog et al., 2000), which would not be captured with the 

FIGURE 4

Cell density plots for SCN neurons in each peptide class in adult males and females. (A) Representative samples illustrating cell density in individual 
mice of each sex. All samples are illustrated in Supplementary Figures S3B,C. (B–C) Cell density plots aggregated across samples illustrating total 
number of neighboring cells (B) and the percentage of neighboring cells normalized to total SCN cells in each sample (C). Number in bottom right 
corner for each map indicates the number of aggregated samples. Other orientations are illustrated in Supplementary Figures S7–S8 and Videos S1–S4.
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present approach. Interesting, VIP cell numbers increase between P06 
and P30 (Herzog et al., 2000), which we also observed in the present 
work. It remains unclear what molecular factors drive ontogenetic 
patterning in these two different SCN peptide classes. The expression 
of transcription factors during embryogenesis (e.g., Lhx1, Shh, Six3, 
Six6) is important in early SCN specification (Bedont and Blackshaw, 
2015; Carmona-Alcocer et  al., 2020). Lhx1 and Foxd1 deletion 
decreases both Avp and Vip expression (Vandunk et al., 2011; Newman 
et  al., 2018), suggesting common genetic programs direct cellular 

differentiation in both classes. Differences in the timing of 
developmental patterning across these two cell types may be linked to 
intrinsic and/or extrinsic factors. Over the first week of life, terminal 
differentiation, synaptogenesis, gliogenesis, and retinal innervation 
occurs in the SCN (Bedont and Blackshaw, 2015; Carmona-Alcocer 
et al., 2020), and later maturation of the VIP population may be linked 
to postnatal maturation of retinal inputs (McNeill et al., 2011). Both 
AVP and VIP influence SCN circuit formation and function during 
development (Ono et al., 2016; Bedont et al., 2018; Mazuski et al., 

FIGURE 5

Developmental appearance of SCN Avp-tdT+ and Vip-tdT+ neurons. (A) Timeline illustrating ages of tissue collection. Breeding and pup development 
data are in Supplementary Figure S9. (B) Labeled cells aggregated across SCN slice positions for a representative mouse from each age group 
illustrating progressive appearance of Avp-tdT+ and Vip-tdT+ cells during postnatal development. (C) Top: Total number of SCN Avp-tdT+ and Vip-
tdT+ cells across development. Cre: F(1,99) = 89.6, p < 0.001, Age: F(7,99) = 411.9, p < 0.0001, Sex: F(1,99) = 0.7, p = 0.4, Cre*Age: F(7,99) = 11.3, p < 0.0001, 
Cre*Sex: F(1,99) = 0.01, p > 0.9, Age*Sex: F(7,99) = 5.2, p < 0.0001, Cre*Age*Sex: F(7,99) = 0.9, p > 0.5. Bottom: To compare developmental patterns across 
cell type, cell counts at each age were expressed as a percent relative to the number of labeled cells in adults. Cre: F(1,99) = 0.2, p > 0.6, Age: 
F(7,99) = 409.4, p < 0.0001, Sex: F(1,99) = 50.2, p < 0.0001, Cre*Age: F(7,99) = 2.9, p < 0.01, Cre*Sex: F(1,99) = 1.6, p > 0.2, Age*Sex: F(7,99) = 8.3, p < 0.0001, 
Cre*Age*Sex: F(7,99) = 1.1, p > 0.3. Total cell counts divided by sex, with magnification of E18-P01 data, are in Supplementary Figure S10A. (D) Percent 
labeled cells at each age divided by sex and cell type. Avp-tdT+: Age: F(7,47) = 204.3, p < 0.0001, Sex: F(1,47) = 16.4, p < 0.0005, Age*Sex: F(7,47) = 3.0.1, 
p < 0.01. Vip-tdT+: Age: F(7,52) = 222.5, p < 0.0001, Sex: F(1,52) = 36.0, p < 0.0001, Age*Sex: F(7,52) = 6.7, p < 0.0001. Contrasts comparing genotype or sex in 
each cell type, *p < 0.05.
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2020); thus, the timing and patterning of these peptides may have 
important consequences for pacemaker function.

Notably, we  find that SCN peptide classes can be  further 
subdivided based on spatial patterning during development. For Avp-
tdT+ neurons, we find that there is a posterior–anterior gradient when 
analyzed by anatomical division based on slice position. Consistent 
with these results, k means clustering detected that the posterior Avp-
tdT+ cluster matured faster than other clusters in each sex, with 
development of one of the more anterior Avp-tdT+ clusters delayed in 
a sex-influenced manner. For Vip-tdT+ neurons, we observed a rapid 
increase of cells in the posterior cluster. Consistent with this result, 
VIP neurons have been reported to increase in the middle and 
posterior SCN over P06 to P30  in the mouse SCN (Herzog et al., 

2000). In rats, two developmental waves of Vip expression have been 
reported, with Vip transcription occurring in medial SCN cells earlier 
than lateral SCN cells (Ban et al., 1997; Kawamoto et al., 2003). These 
two spatially defined subclusters displayed different patterns of clock 
gene expression and photic sensitivity in adulthood (Ban et al., 1997; 
Kawamoto et  al., 2003). Further, VIP neurons in adulthood can 
be divided into two subpopulations based on electrical firing (Mazuski 
et al., 2018) and Grp expression (Todd et al., 2020; Wen et al., 2020). 
Interestingly, recent work in the mouse has found two subsets of Avp 
cells that differ in the expression of Cck or Nms (Moffitt et al., 2018). 
Whether functional subclasses of SCN Vip and Avp cells map onto the 
regional subclusters found here would be interesting to examine in 
future work. It is also unclear how the current spatial gradients may 

FIGURE 6

Developmental appearance of Avp-tdT+ and Vip-tdT+ neurons across the anteroposterior SCN. (A) Representative samples illustrating spatial 
patterning of Avp-tdT+ development in the reconstructed horizontal plane. Coronal sections are illustrated in Supplementary Figure S10A. (B) Regional 
gradients in the developmental appearance of Avp-tdT+ neurons are influenced by sex. Age: F(7,47) = 190.4, p < 0.0001, Sex: F(1,47) = 18.5, p < 0.0001, 
Position: F(2,94) = 14.7, p < 0.001, Age*Sex: F(7,47) = 3.3, p < 0.01, Age*Position: F(14,94) = 3.3, p < 0.0005, Sex*Position: F(2,94) = 4.2, p < 0.02, 
Age*Sex*Position: F(14,94) = 0.8, p > 0.6. (C) Representative samples illustrating spatial patterning Vip-tdT+ development in the reconstructed horizontal 
plane. Coronal sections are illustrated in Supplementary Figure S10B. (D) Regional gradients in the developmental appearance of Vip-tdT+ neurons are 
influenced by sex. Age: F(7,53) = 97.5, p < 0.0001, Sex: F(1,53) = 22.7, p < 0.0001, Position: F(2,106) = 3.3, p < 0.05, Age*Sex: F(7,53) = 4.0, p < 0.005, 
Age*Position: F(14,106) = 2.9, p < 0.001, Sex*Position: F(2,106) = 1.8, p > 0.1, Age*Sex*Position: F(14,106) = 0.7, p > 0.7. Post hoc contrasts comparing male 
and female data for each slice position are indicated by color-coded asterisks below the x axis of each female graph in panels (B,D). *p < 0.05.
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relate to those found for SCN neurogenesis (Okamura et al., 1983; 
Kabrita and Davis, 2008). In the mouse, SCN neurogenesis occurs 
over embryonic days 11–16 (E11–16), with a peak at E14 (Shimada 
and Nakamura, 1973; Kabrita and Davis, 2008). SCN core neurons are 
generated at an earlier age (peak at E12) than shell neurons (peak 
E13.5) in the mouse (Kabrita and Davis, 2008). In the hamster, AVP 
neurons are generated over a longer period of gestation than VIP and 
GRP neurons in the SCN core, with posterior-to-anterior gradients 
(Antle et  al., 2005). The degree to which onset of neuropeptide 
expression is timed by neurogenesis and/or extrinsic cues present in 
the microenvironment (Xie and Dorsky, 2017; Benevento et al., 2022) 
remains an open question.

Last, our results suggest that developmental patterning of peptide 
circuits is influenced by sex. The male SCN displayed postnatal 
increases in Avp-tdT+ and Vip-tdT+ cell number and density that 
were not maintained into adulthood. The number of Vip-tdT+ cells 
at P05–P10 exceeded adult levels in male SCN by 20%, and the 
number of Avp-tdT+ neurons at P05 exceeded adult levels in male 
SCN by 14%. Given that tdT labeling is permanent, this observation 
suggests a loss of SCN cells in males. The majority of SCN apoptosis 
occurs over P01-P07 in mice, but an estimated 20% of cells are lost 
between P07 and adulthood (Ahern et al., 2013; Bedont et al., 2014; 
Mosley et al., 2017). In contrast, the female SCN displayed a more 
linear patterning of Avp-tdT+ and Vip-tdT+ cell appearance, with 
increasing numbers of both cell types between P10 and P84. In 
addition, the more anterior Avp-tdT+ cluster that matured last 
differed by sex, with the lateral cluster appearing last in females and 
the medial cluster appearing last in males. Interestingly, the lateral 
cluster had significantly more Avp-tdT+ neurons in adult females 

than males due to the increase in cell number after P10. Likewise, the 
Vip-tdT+ cluster that matured last differed by sex, again being the 
lateral cluster in females and the medial cluster in males. Cell number 
in the lateral Vip-tdT+ cluster also differed by sex due to post-P10 
increases in cell numbers in females. Collectively, these data indicate 
that SCN development is not complete by P10, raising the possibility 
that puberty represents another time of SCN development (Bakker 
and Baum, 2008).

Whether these sex differences are driven by genetic and/or 
hormonal factors remains to be tested, but it is tempting to speculate 
that sex steroids are organizing development of SCN circuits. The 
critical period in the mouse is E18-P01, with testosterone levels 
decreasing rapidly at birth and the sensitive period in females 
extending to P07 (McCarthy et al., 2018). The mouse SCN expresses 
receptors for sex steroids that are regionally clustered in adulthood 
(Joye and Evans, 2021), potentially contributing to the spatial 
gradients in peptide development observed here. Sex differences in 
SCN neurogenesis have been reported in mice (Abizaid et al., 2004). 
Specifically, females display more SCN neurogenesis at E18, and 
testosterone administration to pregnant dams reduces SCN 
neurogenesis at this late stage of gestation (Abizaid et al., 2004). This 
suggests that neurogenesis closes earlier in males (Shimada and 
Nakamura, 1973; Kabrita and Davis, 2008) due to sex steroid signaling. 
Last, the peak in SCN apoptosis occurs at P03 in males and P05 in 
females with equivalent postnatal SCN volume (Ahern et al., 2013). 
To our knowledge, sex steroid receptor expression over early SCN 
development has not been examined in the mouse, but androgen 
receptors are expressed later in life in the slow-maturing diurnal 
rodent Octogon degus (Lee et al., 2004). Overall, our work suggests 

FIGURE 7

K means clustering of SCN neurons appearance across development. (A) Elbow plots illustrating measures of cell dispersion across age, collapsed 
across sex. (B,C) Measures of cell dispersion across age, collapsed across sex. Inertia and distance data are divided by sex in Supplementary Figure S11B. 
Inertia: Cre: F(1,88) = 34.4, p < 0.001, Age: F(6,88) = 124.7, p < 0.0001, Sex: F(1,88) = 0.2, p > 0.6, Cre*Age: F(6,88) = 4.0, p < 0.005, Cre*Sex: F(1,88) = 0.1, p > 0.7, 
Age*Sex: F(6,88) = 1.9, p = 0.08, Cre*Age*Sex: F(6,88) = 0.3, p > 0.9. Distance: Cre: F(1,88) = 408.4, p < 0.001, Age: F(6,88) = 33.1, p < 0.0001, Sex: F(1,88) = 2.1, 
p > 0.1, Cre*Age: F(6,88) = 6.7, p < 0.001, Cre*Sex: F(1,88) = 1.0, p > 0.3, Age*Sex: F(6,88) = 0.3, p > 0.9, Cre*Age*Sex: F(6,88) = 0.6, p > 0.7. Contrasts comparing 
genotype, *p < 0.05.
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that SCN shape and peptide expression is influenced by sex, as 
reported in humans (Swaab et  al., 1985, 1994). Future work is 
warranted to further explore how adult clock function in both sexes 
is influenced by SCN patterning during development and how this 
process is impacted by postnatal conditions, such as light exposure 

(Cambras et al., 1998, 2015; Ohta et al., 2006; Ciarleglio et al., 2011; 
Ono et al., 2013; Madahi et al., 2018).

A central question here concerned the spatial patterning of 
SCN maturation, which we have represented in 3D maps for two 
different peptide classes at critical developmental time points 

FIGURE 8

Sex differences in the development of SCN Avp-tdT+ and Vip-tdT+ cell clusters. (A) Spatial location of cellular clusters at each age for each cell type. 
Blue lattice frames illustrate SCN boundaries at each age. Number in bottom right corner for each map indicates number of samples. (B,C) Regional 
gradients in the developmental appearance of Avp-tdT+ and Vip-tdT clusters are influenced by sex. Age: F(6,88) = 237.2, p < 0.0001, Cre: F(1,88) = 75.4, 
p < 0.0001, Cluster: F(2,176) = 144.5, p < 0.0001, Sex: F(1,88) = 0.1, p > 0.8, Age*Cre: F(6,88) = 7.4, p < 0.0001, Age*Cluster: F(12,176) = 14.7, p < 0.0001, Age*Sex: 
F(6,88) = 3.2, p < 0.01, Cre*Cluster: F(2,176) = 8.3, p < 0.0005, Cre*Sex: F(1,88) = 0.3, p > 0.6, Cluster*Sex: F(2,176) = 5.1, p < 0.01, Age*Cre*Cluster: (12,176) = 4.4, 
p < 0.0001, Age*Cluster*Sex: F(12,176) = 1.9, p < 0.05, Age*Cre*Cluster*Sex: F(12,176) = 1.5, p > 0.1. Post hoc contrasts comparing male and female data for 
each slice position are indicated by color-coded asterisks below the x axis of each female graph in Figures 6B,C. *p < 0.05.
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spanning mid-embryonic age to adulthood in both sexes. Both AVP 
and VIP neurons provide local and long-range cues that regulate 
daily rhythms (Vosko et al., 2007; Kalsbeek et al., 2010; Mieda et al., 
2016; Rohr et al., 2020; Shan et al., 2020). In addition to shell-core 
compartmentalization, cellular differences in clock function are also 
evident across the anteroposterior axis (Hamada et al., 2004; Yan 
et  al., 2007; Evans et  al., 2011; Yoshikawa et  al., 2015, 2017). Do 
regional and sex differences in peptide development relate to 
differences in cellular clock function in adulthood? Does the spatial 
patterning of the SCN circuit extend to other developmental 
milestones (e.g., gliogenesis, axonal projections)? Do sexual 
dimorphisms in spatial patterning relate to sex differences in peptide 
expression and clock function in adulthood? More broadly, how do 
changes in the conditions present during the postnatal SCN 
developmental period influence circuit formation to modulate adult 
clock function? Future work investigating these questions may 
provide insight into the long-lasting effects of perinatal light exposure 
on health (Torrey et al., 2000; Madahi et al., 2018).
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